

Firmware manual

## ACH580 HVAC control program



## List of related manuals

Drive manuals and guides
ACH580 HVAC control program firmware manual ACH580-01 ( 0.75 to 250 kW ) hardware manual ACH580-01 quick installation and start-up guide ACS-AP-x assistant control panels user's manual

Code (English)
3AXD50000027537
3AUA0000076331
3AUA0000076330
3AUA0000085685

## Option manuals and guides

CDPI-01 communication adapter module user's manual 3AXD50000009929
DPMP-01 mounting platform for ACS-AP control panel 3AUA0000100140
DPMP-02/03 mounting platform for ACS-AP control panel 3AUA0000136205
FBIP-21 BACnet/IP adapter module 3AXD50000028468
FCAN-01 CANopen adapter module user's manual 3AFE68615500
FCNA-01 ControlNet adapter module user's manual 3AUA0000141650
FDNA-01 DeviceNet ${ }^{\text {TM }}$ adapter module user's manual 3AFE68573360
FECA-01 EtherCAT adapter module user's manual 3AUA0000068940
FENA-01/-11/-21 Ethernet adapter module user's 3AUA0000093568 manual
FEPL-02 Ethernet POWERLINK adapter module user's 3AUA0000123527 manual
FLON-01 LonWORks® adapter module user's manual 3AUA0000041017 FPBA-01 PROFIBUS DP adapter module user's manual 3AFE68573271 FSCA-01 RS-485 adapter module user's manual 3AUA0000109533
Flange mounting quick guide for frames R6 to R9 3AXD50000019099
Flange mounting supplement
3AXD50000019100

## Tool and maintenance manuals and guides

Drive composer PC tool user's manual 3AUA0000094606
Converter module capacitor reforming instructions 3BFE64059629
NETA-21 remote monitoring tool user's manual 3AUA00000969391
NETA-21 remote monitoring tool installation and start-up 3AUA0000096881 guide

You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative.


ACH580-01 manuals

## Table of contents

1. Introduction to the manual

## 2. Start-up, control with I/O and ID run

3. Control panel
4. Default configuration
5. Program features
6. Parameters
7. Additional parameter data
8. Fault tracing
9. Fieldbus control through the embedded fieldbus interface (EFB)
10. Fieldbus control through a fieldbus adapter
11. Control chain diagrams

Further information

## Table of contents

List of related manuals ..... 2

1. Introduction to the manual
Contents of this chapter ..... 7
Applicability ..... 7
Safety instructions ..... 7
Target audience ..... 7
Purpose of the manual ..... 8
Contents of this manual ..... 8
Related documents ..... 8
Categorization by frame (size) ..... 9
2. Start-up, control with I/O and ID run
Contents of this chapter ..... 13
How to start up the drive ..... 14
How to start up the drive using the First start assistant on the HVAC control panel ..... 14
How to control the drive through the I/O interface ..... 21
How to perform the ID run ..... 22
ID run procedure ..... 23
3. Control panel
Contents of this chapter ..... 29
Removing and reinstalling the control panel ..... 29
Layout of the control panel ..... 30
Layout of the control panel display ..... 31
Keys ..... 33
Key shortcuts ..... 34
4. Default configuration
Contents of this chapter ..... 35
HVAC default ..... 36
Default control connections for the HVAC default. ..... 36
5. Program features
What this chapter contains ..... 39
Local control vs. external control ..... 39
Local control ..... 40
External control ..... 40
Operating modes of the drive ..... 43
Speed control mode ..... 43
Torque control mode ..... 43
Frequency control mode ..... 43
Special control modes ..... 44

## 2 Table of contents

Drive configuration and programming ..... 45
Configuring via parameters ..... 45
Control interfaces ..... 46
Programmable analog inputs ..... 46
Programmable analog outputs ..... 46
Programmable digital inputs and outputs ..... 46
Programmable frequency input and output ..... 46
Programmable relay outputs ..... 46
Programmable I/O extensions ..... 47
Fieldbus control ..... 47
Motor control ..... 48
Motor types ..... 48
Motor identification ..... 48
Power loss ride-through ..... 48
Vector control ..... 48
Reference ramping ..... 49
Constant speeds/frequencies ..... 50
Critical speeds/frequencies ..... 50
Rush control ..... 52
Jogging ..... 52
Speed control performance figures ..... 55
Torque control performance figures ..... 55
Scalar motor control ..... 56
User load curve ..... 57
U/f ratio ..... 58
Flux braking ..... 58
DC magnetization ..... 59
Energy optimization ..... 61
Switching frequency ..... 61
Speed compensated stop ..... 62
Application control ..... 64
Control macros ..... 64
Process PID control ..... 64
Pump and fan control (PFC) ..... 66
Timed functions ..... 67
DC voltage control ..... 68
Overvoltage control ..... 68
Undervoltage control (power loss ride-through) ..... 68
Voltage control and trip limits ..... 69
Brake chopper ..... 70
Safety and protections ..... 72
Fixed/Standard protections ..... 72
Emergency stop ..... 72
Motor thermal protection ..... 73
Programmable protection functions ..... 76
Automatic fault resets ..... 78
Diagnostics ..... 79
Signal supervision ..... 79
Energy saving calculators ..... 79
Load analyzer ..... 79
Diagnostics menu ..... 81
Miscellaneous ..... 82
Backup and restore ..... 82
User parameter sets ..... 83
Data storage parameters ..... 83
6. Parameters
What this chapter contains ..... 85
Terms and abbreviations ..... 86
Summary of parameter groups ..... 87
Parameter listing ..... 89
01 Actual values ..... 89
03 Input references ..... 91
04 Warnings and faults ..... 92
05 Diagnostics ..... 93
06 Control and status words ..... 95
07 System info ..... 101
10 Standard DI, RO ..... 101
11 Standard DIO, FI, FO ..... 106
12 Standard AI ..... 108
13 Standard AO ..... 112
15 I/O extension module ..... 118
19 Operation mode ..... 125
20 Start/stop/direction ..... 126
21 Start/stop mode ..... 136
22 Speed reference selection ..... 143
23 Speed reference ramp ..... 152
24 Speed reference conditioning ..... 156
25 Speed control ..... 156
26 Torque reference chain ..... 161
28 Frequency reference chain ..... 165
30 Limits ..... 175
31 Fault functions ..... 180
32 Supervision ..... 186
34 Timed functions ..... 192
35 Motor thermal protection ..... 199
36 Load analyzer ..... 207
37 User load curve ..... 210
40 Process PID set 1 ..... 213
41 Process PID set 2 ..... 224
43 Brake chopper ..... 225
45 Energy efficiency ..... 227
46 Monitoring/scaling settings ..... 230
47 Data storage ..... 232
49 Panel port communication ..... 233
50 Fieldbus adapter (FBA) ..... 234
51 FBA A settings ..... 238
52 FBA A data in ..... 240
53 FBA A data out ..... 240
58 Embedded fieldbus ..... 241
70 Override ..... 247
71 External PID1 ..... 249
76 PFC configuration ..... 251
77 PFC maintenance and monitoring ..... 257
80 Flow calculation ..... 257
95 HW configuration ..... 258
96 System ..... 259
97 Motor control ..... 264
98 User motor parameters ..... 267
99 Motor data ..... 268
Differences in the default values between 50 Hz and 60 Hz supply frequency settings ..... 274
7. Additional parameter data
What this chapter contains ..... 277
Terms and abbreviations ..... 277
Fieldbus addresses ..... 278
Parameter groups 1... 9 ..... 279
Parameter groups 10... 99 ..... 282
8. Fault tracing
What this chapter contains ..... 309
Safety ..... 309
Indications ..... 309
Warnings and faults ..... 309
Pure events ..... 310
Editable messages ..... 310
Warning/fault history ..... 310
Event log ..... 310
Viewing warning/fault information ..... 310
QR code generation for mobile service application ..... 311
Warning messages ..... 312
Fault messages ..... 319
9. Fieldbus control through the embedded fieldbus interface (EFB)
What this chapter contains ..... 327
System overview ..... 327
Connecting the fieldbus to the drive ..... 328
Setting up the embedded fieldbus interface ..... 329
Setting the drive control parameters ..... 330
Basics of the embedded fieldbus interface ..... 332
Control word and Status word ..... 333
References ..... 333
Actual values ..... 333
Data input/outputs ..... 333
Register addressing ..... 333
About the control profiles ..... 335
Control Word ..... 336
Control Word for the ABB Drives profile ..... 336
Control Word for the DCU Profile ..... 337
Status Word ..... 340
Status Word for the ABB Drives profile ..... 340
Status Word for the DCU Profile ..... 341
State transition diagrams ..... 343
State transition diagram for the ABB Drives profile ..... 343
References ..... 345
References for the ABB Drives profile and DCU Profile ..... 345
Actual values ..... 346
Actual values for the ABB Drives profile and DCU Profile ..... 346
Modbus holding register addresses ..... 347
Modbus holding register addresses for the ABB Drives profile and DCU Profile ..... 347
Modbus function codes ..... 348
Exception codes ..... 349
Coils (0xxxx reference set) ..... 350
Discrete inputs (1xxxx reference set) ..... 352
Error code registers (holding registers 400090...400100) ..... 354
10. Fieldbus control through a fieldbus adapter
What this chapter contains ..... 355
System overview ..... 355
Basics of the fieldbus control interface ..... 357
Control word and Status word ..... 358
References ..... 359
Actual values ..... 360
Contents of the fieldbus Control word ..... 361
Contents of the fieldbus Status word ..... 363
The state diagram ..... 364
Setting up the drive for fieldbus control ..... 365
Parameter setting example: FPBA (PROFIBUS DP) ..... 366
11. Control chain diagrams
Contents of this chapter ..... 369
Frequency reference selection ..... 370
Frequency reference modification ..... 371
Speed reference source selection I ..... 372
Speed reference source selection II ..... 373
Speed reference ramping and shaping ..... 374
Speed error calculation ..... 375
Speed controller ..... 376
Torque reference source selection and modification ..... 377
Reference selection for torque controller ..... 378
Torque limitation ..... 379
Process PID setpoint and feedback source selection ..... 380
Process PID controller ..... 381
External PID setpoint and feedback source selection ..... 382
External PID controller ..... 383

## 6 Table of contents

## Further information

Product and service inquiries ..... 385
Product training ..... 385
Providing feedback on ABB Drives manuals ..... 385
Document library on the Internet ..... 385

## 1

## Introduction to the manual

## Contents of this chapter

The chapter describes applicability, target audience and purpose of this manual. It also describes the contents of this manual and refers to a list of related manuals for more information.

## Applicability

The manual applies to the ACH580 HVAC control program (version 1.60.1).
To check the firmware version of the control program in use, see system information (select Menu - System info) or parameter 07.05 Firmware version (see page 101) on the control panel.

## Safety instructions

Follow all safety instructions.

- Read the complete safety instructions in the Hardware manual of the drive before you install, commission, or use the drive.
- Read the firmware function-specific warnings and notes before changing parameter values. These warnings and notes are included in the parameter descriptions presented in chapter Parameters on page 85.


## Target audience

The reader is expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

The manual is written for readers worldwide. Both SI and imperial units are shown. Special US instructions for installations in the United States are given.

## Purpose of the manual

This manual provides information needed for designing, commissioning, or operating the drive system.

## Contents of this manual

The manual consists of the following chapters:

- Introduction to the manual (this chapter, page 7) describes applicability, target audience, purpose and contents of this manual. At the end, it lists terms and abbreviations.
- Start-up, control with I/O and ID run (page 13) describes how to start up the drive as well as how to start, change the direction of the motor rotation and adjust the motor speed through the I/O interface.
- Control panel (page 29) contains instructions for removing and reinstalling the assistant control panel and briefly describes its display, keys and key shortcuts.
- Default configuration (page 35) contains the connection diagram of the HVAC default configuration together with a connection diagram. The predefined default configuration will save the user time when configuring the drive.
- Program features (page 39) describes program features with lists of related user settings, actual signals, and fault and warning messages.
- Parameters (page 85) describes the parameters used to program the drive.
- Additional parameter data (page 277) contains further information on the parameters.
- Fieldbus control through the embedded fieldbus interface (EFB) (page 327) describes the communication to and from a fieldbus network using the embedded fieldbus interface of the drive.
- Fieldbus control through a fieldbus adapter (page 355) describes the communication to and from a fieldbus network using an optional fieldbus adapter module
- Fault tracing (page 309) lists the warning and fault messages with possible causes and remedies.
- Control chain diagrams (page 369) describes the parameter structure within the drive.
- Further information (inside of the back cover, page 385) describes how to make product and service inquiries, get information on product training, provide feedback on ABB Drives manuals and find documents on the Internet.


## Related documents

See List of related manuals on page 2 (inside of the front cover).

## Categorization by frame (size)

The ACH580 is manufactured in several frames (frame sizes), which are denoted as RN, where N is an integer. Some information which only concern certain frames are marked with the symbol of the frame (RN).

The frame is marked on the type designation label attached to the drive, see chapter Operation principle and hardware description, section Type designation label in the Hardware manual of the drive.

## Terms and abbreviations

| Term/abbreviation | Explanation |
| :---: | :---: |
| ACS-AP-x | Assistant control panel, advanced operator keypad for communication with the drive. The ACH580 supports type ACH-AP-H. |
| AI | Analog input; interface for analog input signals |
| AO | Analog output; interface for analog output signals |
| Brake chopper | Conducts the surplus energy from the intermediate circuit of the drive to the brake resistor when necessary. The chopper operates when the DC link voltage exceeds a certain maximum limit. The voltage rise is typically caused by deceleration (braking) of a high inertia motor. |
| Brake resistor | Dissipates the drive surplus braking energy conducted by the brake chopper to heat. Essential part of the brake circuit. See chapter Brake chopper in the Hardware manual of the drive. |
| Control board | Circuit board in which the control program runs. |
| CDPI-01 | Communication adapter module |
| CCA-01 | Configuration adapter |
| CHDI-01 | Optional 115/230 V digital input extension module |
| CMOD-01 | Optional multifunction extension module (external $24 \mathrm{~V} \mathrm{AC/DC}$ and digital I/O extension) |
| CMOD-02 | Optional multifunction extension module (external 24 V AC/DC and isolated PTC interface) |
| DC link | DC circuit between rectifier and inverter |
| DC link capacitors | Energy storage which stabilizes the intermediate circuit DC voltage |
| DI | Digital input; interface for digital input signals |
| DO | Digital output; interface for digital output signals |
| DPMP-01 | Mounting platform for ACS-AP control panel (flange mounting) |
| DPMP-02/03 | Mounting platform for ACS-AP control panel (surface mounting) |
| Drive | Frequency converter for controlling AC motors |
| EFB | Embedded fieldbus |
| FBA | Fieldbus adapter |
| FCAN-01 | Optional CANopen adapter module |
| FCNA-01 | ControlNet adapter module |
| FDNA-01 | Optional DeviceNet adapter module |
| FECA-01 | Optional EtherCAT adapter module |
| FENA-01/-11/-21 | Optional Ethernet adapter module for EtherNet/IP, Modbus TCP and PROFINET IO protocols |
| FEPL-02 | Ethernet POWERLINK adapter module |
| FLON-01 | LONWORKS® adapter module |
| FPBA-01 | Optional PROFIBUS DP adapter module |


| Term/abbreviation | Explanation |
| :---: | :---: |
| Frame (size) | Refers to drive physical size, for example R0 and R1. The type designation label attached to the drive shows the frame of the drive, see chapter Operation principle and hardware description, section Type designation label in the Hardware manual of the drive. |
| FSCA-01 | Optional RSA-485 adapter module |
| ID run | Motor identification run. During the identification run, the drive will identify the characteristics of the motor for optimum motor control. |
| IGBT | Insulated gate bipolar transistor |
| Intermediate circuit | See DC link. |
| Inverter | Converts direct current and voltage to alternating current and voltage. |
| I/O | Input/Output |
| LONWORKS® | LONWORKS $®$ (local operating network) is a networking platform specifically created to address the needs of control applications. |
| LSW | Least significant word |
| NETA-21 | Remote monitoring tool |
| Network control | With fieldbus protocols based on the Common Industrial Protocol ( $\mathrm{CIP}^{\text {TM }}$ ), such as DeviceNet and Ethernet/IP, denotes the control of the drive using the Net Ctrl and Net Ref objects of the ODVA AC/DC Drive Profile. For more information, see www.odva.org, and the following manuals: <br> - FDNA-01 DeviceNet adapter module user's manual (3AFE68573360 [English]), and <br> - FENA-01/-11/-21 Ethernet adapter module user's manual (3AUA0000093568 [English]). |
| Parameter | User-adjustable operation instruction to the drive, or signal measured or calculated by the drive |
| PID controller | Proportional-integral-derivative controller. Drive speed control is based on PID algorithm. |
| PLC | Programmable logic controller |
| $\begin{aligned} & \text { PROFIBUS, } \\ & \text { PROFIBUS DP, } \\ & \text { PROFINET IO } \end{aligned}$ | Registered trademarks of PI - PROFIBUS \& PROFINET International |
| PTC | Positive temperature coefficient, thermistor whose resistance is dependent on temperature, |
| R0, R1, ... | Frame (size) |
| RO | Relay output; interface for a digital output signal. Implemented with a relay. |
| Rectifier | Converts alternating current and voltage to direct current and voltage. |
| STO | Safe torque off. See chapter The Safe torque off function in the Hardware manual of the drive. |

12 Introduction to the manual
ac.maher.co.ilr

## Start-up, control with I/O and ID run

## Contents of this chapter

The chapter describes how to:

- perform the start-up
- start, stop, change the direction of the motor rotation and adjust the speed of the motor through the I/O interface
- perform an Identification run (ID run) for the drive.


## How to start up the drive

## How to start up the drive using the First start assistant on the HVAC control panel

## Safety

Do not start-up the drive unless you are a qualified electrician.
Read and obey the instructions in chapter Safety instructions at the beginning of the Hardware manual of the drive. Ignoring the instructions can cause physical injury or death, or damage to the equipment

Check the installation. See chapter Installation checklist in the Hardware manual of the drive.

AMake sure there is no active start on (DI1 in factory settings, that is, ABB standard macro). The drive will start up automatically at power-up if the external run command is on and the drive is in the external control mode.
Check that the starting of the motor does not cause any danger.
De-couple the driven machine if

- there is a risk of damage in case of an incorrect direction of rotation, or
- a Normal ID run is required during the drive start-up, when the load torque is higher than $20 \%$ or the machinery is not able to withstand the nominal torque transient during the ID run.

Hints on using the assistant control panel
The two commands at the bottom of the display (Options and Menu in the figure on the right), show the functions of the two softkeys $\square$ and $\beth$ located below the display. The commands assigned to the softkeys vary depending on the context.
Use keys $\triangle, \triangle, \triangle$ and $\square$ to move the cursor and/or change values depending on the active view.
Key? shows a context-sensitive help page. For more information, see ACS-AP-x assistant control panels user's manual (3AUA0000085685 [English]).


## 1 - First start assistant guided settings:

Language, motor nominal values, and date and time
$\square$
Have the motor name plate data at hand. Power up the drive.

| $\square$ | The First start assistant guides you through the first start-up. <br> The assistant begins automatically. Wait until the control panel enters the view shown on the right. <br> Select the language you want to use by highlighting it (if not already highlighted) and pressing $\curvearrowleft$ (OK). <br> Note: After you have selected the language, it takes a few minutes to download the language file to the control panel. | English <br> Deutsch <br> Suomi <br> Français <br> Italiano <br> Nederlands <br> Syenska |  |
| :---: | :---: | :---: | :---: |
|  |  |  | OK |
| $\square$ | Select Commission the ACH580 and press$\square$ (Next). | Off ( ${ }^{\text {c ACH580 }}$ | 0.0 Hz |
|  |  | Set-up Assistant <br> Set up drive now? <br> Spin the motor mode | $\bar{\square}$ |
|  |  | Commission the ACH580 |  |
|  |  | Exit $\&$ don't show at pom Exit |  |
|  |  | $01: 15$ | Next |

Refer to the motor nameplate for the following nominal value settings of the motor. Enter the values exactly as shown on the motor nameplate.

Example of a nameplate of an induction (asynchronous) motor:


Check that the motor data is correct. Values are predefined on the basis of the drive size but you should verify that they correspond to the motor.
Start with the motor type.

- Go to the edit view of a selected row by pressing $\downarrow$.
- Scroll the view with $\Delta$ and $\mathbf{\nabla}$.

Motor nominal $\cos \Phi$ and nominal torque are optional.
Press $\qquad$ (Next) to continue.

| Off今 | C ACH580 | 0.0 Hz |
| :--- | ---: | ---: |
|  |  |  |

Hotor nominal values
Find the values on the motor's
nameplate, and enter them here:

| Type: | Asynchronous motorp\| |  |
| :--- | ---: | ---: |
| Current: |  | 1.8 A |
| Voltage: |  | 400.0 V |
| Back | 0117 | Next |


| $\square$ | To change a value in an edit view: <br> - Use $\square$ and $\square$ to move the cursor left and right. <br> - Use $\square$ and $\square$ to change the value. <br> Press $\square$ (Save) to accept the new setting, or press $\square$ (Cancel) to go back to the previous view without making changes. | Off* | ( ACH580 | 0.0 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Current: |  |  |
|  |  |  |  |  |
|  |  | 0.0 |  | 5.2 |
|  |  | Cancel | 01:18 | Save |
| $\square$ | This step is optional, and requires rotating the motor. Do not do this if it could cause any risk, or if the mechanical set-up does not allow it. <br> To do the direction test, select Spin the motor and press (Next). | Off® | C ACH580 | 0.0 Hz |
|  |  | Direction test? <br> Spin the motor to check direction? <br> Spin the motor <br> Not now |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Back | 01:19 | Next |
| $\square$ | Press the Hand key on the panel to start the drive. | Off\% Cr ACH580 <br> Press Hand <br> Warning: Until set-up is done, safeties <br> are not active and motor speed is 5 <br> Hz . <br> Press Hand now to spin the motor, <br> then check the direction of rotation. |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Back 01:19 |  |  |
| $\square$ | Check the direction of the motor. <br> If it is forward, select Yes, motor is spinning forward and press (Next) to continue. If the direction is not forward, select No, fix direction and press $\square$ (Next) to continue. | Hand\& C ACH580 $\quad+5.0 \mathrm{~Hz}$ <br> Is this forward? <br> Selecting "No, fix direction" tells the <br> drive to change direction, and labels <br> the new direction "formard". |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Yes, motor is spinning formard |  |  |
|  |  | No, fix direction |  |  |
|  |  |  | 01:19 | Next |
| $\square$ | Select the localization you want to use and press$\square$ (Next). | OFF\% (\%ACH580 0.0 Hz |  |  |
|  |  | Localization <br> Unit defaults: <br> International [S]] <br> US standard (Imperial) |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Back | 01:19 | Next |






## How to control the drive through the I/O interface

The table below describes how to operate the drive through the digital and analog inputs when:

- the motor start-up is performed, and
- the default parameter settings of the HVAC default configurations are in use.



## How to perform the ID run

The drive automatically estimates motor characteristics using Standstill ID run when the drive is started for the first time in vector control and after any motor parameter (group 99 Motor data) is changed. This is valid when

- parameter 99.13 ID run requested selection is Standstill and
- parameter 99.04 Motor control mode selection is Vector.

In most applications there is no need to perform a separate ID run. The ID run should be selected manually if:

- vector control mode is used (parameter 99.04 Motor control mode is set to Vector), and
- permanent magnet motor (PM) is used (parameter 99.03 Motor type is set to Permanent magnet motor), or
- drive operates near zero speed references, or
- operation at torque range above the motor nominal torque, over a wide speed range is needed.

Do the ID run with the ID run assistant by selecting Menu - Primary settings - Motor - ID run (see page 23) or with parameter 99.13 ID run requested (see page 23).

Note: If motor parameters (group 99 Motor data) are changed after the ID run, it must be repeated.

Note: If you have already parameterized your application using the scalar motor control mode (99.04 Motor control mode is set to Scalar) and you need to change motor control mode to Vector,

- change the control mode to vector with the Control mode assistant (go to Menu Primary settings - Motor - Control mode) and follow the instructions. The ID run assistant then guides you through the ID run.
or
- set parameter 99.04 Motor control mode to Vector, and
- for I/O controlled drive, check parameters in groups 22 Speed reference selection, 23 Speed reference ramp, 12 Standard AI, 30 Limits and 46 Monitoring/scaling settings.
- for torque controlled drive, check also parameters in group 26 Torque reference chain.


## ID run procedure

## With the ID run assistant

## Pre-check

WARNING! The motor will run at up to approximately $50 . . .80 \%$ of the nominal speed during the ID run. The motor will rotate in the forward direction. Make sure that it is safe to run the motor before performing the ID run!De-couple the motor from the driven equipment
Check that the values of the motor data parameters are equivalent to those on the motor nameplate.
$\square \quad$ Check that the STO circuit is closed.
The assistant will ask if you want to use temporary motor limits. They must meet the following conditions:
Minimum speed $\leq 0$ rpmMaximum speed $=$ motor rated speed (Normal ID run procedure needs the motor to be run at $100 \%$ speed.)
$\square$ Maximum current $>I_{\mathrm{HD}}$
$\square$
Maximum torque > 50\%
Make sure that the panel is in the Off mode control (text Off shown at the top left). Press the Off key $\varnothing$ to switch to the Off mode.

## ID run

| $\square$ | Go to the Main menu by pressing $\qquad$ (Menu) in the Home view. <br> Select Primary settings and press <br> (Select) (or ). $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Exit | 22:47 | Select |
| $\square$ | Select Motor and press ( $\smile$ (Select) (or $\square$ ) | Off介 | ACH580 | 0.0 Hz |
|  |  | Prima | $95$ |  |
|  |  | Mot |  | - |
|  |  |  | ontrol | $\begin{gathered} \text { ected } \\ \text { Off } \\ \text { RTU } \end{gathered}$ |
|  |  | Back | 22:47 | Select |


| $\square$ | If the control modes is scalar, select Control mode and press $\boxtimes$ (Select) (or $\triangle$ ) and continue to the next step. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Back | 22.47 | Select |
| $\square$ | Select Vector control and press (Select) (or $\square$ ). |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Vector control |  |  |
|  |  | Back 22.47 Select |  |  |
| $\square$ | Warning message Identification run is shown for a moment. | Offß C ACH580 0.0 rpm <br> W. Warning AFF6   <br> Identification run <br> Motor identification run about to be <br> Merformed   <br> pern   |  |  |
|  |  |  |  |  |
|  |  | Hide | 22.47 | How to fix |
| $\square$ | Check the motor speed limits. The following must be true: <br> - Minimum speed $\leq 0 \mathrm{rpm}$ <br> - Maximum speed $=$ motor rated speed. | Off\% ¢ ACH580 0.0 rpm |  |  |
|  |  | Check motor limits <br> These motor limits apply to vector control. Adjust the values if needed: |  |  |
|  |  | Winimumin speed $\quad-1500.00$ грпп * |  |  |
|  |  | Maximum speed 1500000 грm <br> Maximum current 3.24 A |  |  |
|  |  | Back | 22.47 | Next |
| $\square$ | Check the motor current as well as torque limits. The following must be true: <br> - Maximum current $>I_{\mathrm{HD}}$ <br> - Maximum torque >50\%. | OFFP ( ${ }^{\text {ACH580 }} 0.0 \mathrm{rpm}$ |  |  |
|  |  | Check motor limits <br> These motor limits apply to wector control. Adjust the values if needed: |  |  |
|  |  |  |  |  |
|  |  | Maximum current 3.24 A <br> Minimum torque 1 $-300.0 \%$ |  |  |
|  |  |  |  |  |
|  |  | Maximum torque 1 |  | $300.0 \%$ |
|  |  | Back | 22.48 | Next |


| $\square$ | Check Al1 scaling, see parameters 12.19 Al1 scaled at Al1 min and 12.20 Al1 scaled at Al1 max. | Off® |
| :---: | :---: | :---: |
|  |  | Check other functions |
|  |  | Vector control uses rpmi walues instead of Hz . Adjust the values if needed: |
|  |  | Al1 scaled min: $\quad 0.000$ гроп $\sim$ 0 |
|  |  | All scaled max $\quad 15000000 \mathrm{rpm*}$ |
|  |  | Back 22:48 Next |
| $\square$ | Select the type of ID run you want to do and press $\backsim$ (Select) (or $\square$ ). |  |
|  |  | ID run? |
|  |  | Select what kind of ID run to do, if any.Press [?] for more information. Standstill ID run |
|  |  | Normal ID run |
|  |  | Reduced ID гun |
|  |  | Back 22:48 Next |
| $\square$ | Check the motor limits shown on the panel. If you need other limits during the ID run you can enter them here. The originals limits will be restored after the ID run, unless you select Set values as permanent. |  |
|  |  | Hotor limits <br> If you need special limits during thelD run, adjust the values now. Current values are restored after the ID run. |
|  |  | $\square$ Set values as permanent Selectrol |
|  |  | Minimum speed |
|  |  | Back $22: 48$ Next |
| $\square$ | Press the Hand key ( $\Delta$ ) to start the ID run. In general, it is recommended not to press any control panel keys during the ID run. However, you can stop the ID run at any time by pressing the Off key ( $\otimes$ ). <br> During the ID run a progress view is shown. After the ID run is completed, text ID run done is shown. The LED stops blinking. <br> If the ID run fails, fault FF61 ID run is shown. See chapter Fault tracing on page 309 for more information. | Offer ${ }^{\text {P ACH580 }} 0.0 \mathrm{rpm}$ |
|  |  | Press Hand for ID run <br> When you press Hand, the motor will rotate for about 90 seconds and accelerate up to the nominal speed. After the ID run the drive stops. |
|  |  | Back 22:48 |
|  |  |  |
|  |  | ID run in progress  <br> This may take a fewim minutes.  <br> Motor speed used 446.48 rpm <br> Motor current 1.43 A |
|  |  | 22:49 |


| $\square$ | After the ID run is completed, text Done is shown on row ID run. | Off ${ }^{\text {P }}$ | ACH580 | 0.0 г pm |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Done,$x / \mathrm{D}$ run <br> Thermal protection estimated $29^{\circ} \mathrm{C} \cdot$ <br> Thermal protection measured |  |  |
|  |  |  |  |  |
|  |  | Back | 22.50 | Select |

## With parameter 99.13 ID run requested




Panel LED starts blinking green to indicate an active warning (AFF6).
The AFF6 warning view is shown when no key has been pressed for one minute. Pressing $\nearrow$ (How to fix) shows text informing that the ID run will be done at the next start. You can hide the warning view by pressing $\square$ (Hide).

Press the Hand key $\qquad$ ) to start the ID run. In general, it is recommended not to press any control panel keys during the ID run. However, you can stop the ID run at any time by pressing the Off key ( $\otimes$ ).
During the ID run the arrow is rotating at the top.
After the ID run is completed, text ID run done is shown. The LED stops blinking.
If the ID run fails, fault FF61 ID run is shown. See chapter Fault tracing on page 309 for more information.


## Control panel

## Contents of this chapter

This chapter contains instructions for removing and reinstalling the assistant control panel and briefly describes its display, keys and key shortcuts. For more information, see ACS-AP-x assistant control panels user's manual (3AUA0000085685 [English]).

## Removing and reinstalling the control panel

To remove the control panel, press the retaining clip at the top (1a) and pull it forward from the top edge (1b).


To reinstall the control panel, put the bottom of the container in position (1a), press the retaining clip at the top (1b) and push the control panel in at the top edge (1c).


## Layout of the control panel



| 1 | Layout of the control panel display |
| :--- | :--- |
| 2 | Left softkey |
| 3 | Right softkey |
| 4 | Status LED, see chapter Maintenance <br> and hardware diagnostics, section <br> LEDs in the Hardware manual of the <br> drive. |
| 5 | Help |


| 6 | The arrow keys |
| :--- | :--- |
| 7 | Off (see Hand, Off and Auto) |
| 8 | Hand (see Hand, Off and Auto) |
| 9 | Auto (see Hand, Off and Auto) |
| 10 | USB connector |

## Layout of the control panel display

In most views, the following elements are shown on the display:


1. Control location and related icons: Indicates how the drive is controlled:

- No text: The drive is in local control, but controlled from another device. The icons in the top pane indicate which actions are allowed:

| Text/lcons | Starting from this <br> control panel | Stopping from this <br> control panel | Giving reference <br> from this panel |
| :--- | :--- | :--- | :--- |
|  | Not allowed | Not allowed | Not allowed |

- Local: The drive is in local control, and controlled from this control panel. The icons in the top pane indicate which actions are allowed:

| Text/Icons |  | Starting from this <br> control panel | Stopping from this <br> control panel | Giving reference <br> from this panel |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Off | $\diamond$ | $\star$ | Allowed | Drive is stopped | Not allowed |
| Hand | $\varnothing$ | $\star$ | Allowed | Allowed | Allowed |

- External: The drive is in external control, ie, controlled through I/O or fieldbus. The icons in the top pane indicate which actions are allowed with the control panel:

| Text/lcons | Starting from this <br> control panel | Stopping from this <br> control panel | Giving reference <br> from this panel |
| :--- | :--- | :--- | :--- |
| Auto | Not allowed | Not allowed | Not allowed |
| Auto $\odot$ | Allowed | Allowed | Not allowed |
| Auto | $\bullet$ | Not allowed | Allowed |
| Auto $\quad \hookleftarrow$ | Allowed | Allowed | Allowed |

2. Panel bus: Indicates that there are more than one drive connected to this panel. To switch to another drive, go to Options - Select drive.
3. Status icon: Indicates the status of the drive and the motor. The direction of the arrow indicates forward (clockwise) or reverse (counter-clockwise) rotation.

| Status icon | Animation | Drive status |
| :---: | :---: | :---: |
| $\stackrel{ }{ }$ | - | Stopped |
| $\mathbb{N}$ | - | Stopped, start inhibited |
| $\xrightarrow{\sim}$ | Blinking | Stopped, start command given but start inhibited. See Menu - Diagnostics on the control panel |
| $\mathbb{N} \leftrightarrow \otimes$ | Blinking | Faulted |
| $\stackrel{\sim}{\leftrightarrow}$ | Blinking | Running, at reference, but the reference value is 0 |
| $\sim^{1 \times 2}$ | Rotating | Running, not at reference |
| $\Gamma_{\leftrightarrow}$ 2 | Rotating | Running, at reference |

4. Drive name: If a name has been given, it is displayed in the top pane. By default, it is "ACH580". You can change the name on the control panel by selecting Menu - Primary settings - Clock, region, display (see page 53).
5. Reference value: Speed, frequency, etc. is shown with its unit. For information on changing the reference value in the Primary settings menu (see page 44).
6. Content area: The actual content of the view is displayed in this area. The content varies from view to view. The example view on page 31 is the main view of the control panel which is called the Home view.
7. Softkey selections: Displays the functions of the softkeys ( $\triangle$ and $\backsim$ ) in a given context.
8. Clock: The clock displays the current time. You can change the time and time format on the control panel by selecting Menu - Primary settings - Clock, region, display (see page 53 ).

You can adjust the display contrast and back light functionality on the control panel by selecting Menu - Primary settings - Clock, region, display (see page 53).

## Keys

The keys of the control panel are described below.

## Left softkey

The left softkey ( $\Xi$ ) is usually used for exiting and canceling. Its function in a given situation is shown by the softkey selection in
 the bottom left corner of the display.

Holding $\triangle$ down exits each view in turn until you are back in the Home view. This function does not work in special screens.

## Right softkey

The right softkey ( $ص$ ) is usually used for selecting, accepting and confirming. The function of the right softkey in a given situation is shown by the softkey selection in the bottom right corner of the display.

## The arrow keys

The up and down arrow keys ( $\Delta$ and $\square$ ) are used to highlight selections in menus and selection lists, to scroll up and down on text pages, and to adjust values when, for example, setting the time, entering a passcode or changing a parameter value.

The left and right arrow keys ( $\triangle$ and are used to move the cursor left and right in parameter editing and to move forward and backward in assistants. In menus, $\square$ and $\square$ function the same way as $\Xi$ and $\boxtimes$, respectively.

## Help

The help key (?) opens a help page. The help page is context-sensitive, in other words, the content of the page is relevant to the menu or view in question.

## Hand, Off and Auto

The ACH580 can be in local or external control. The local control has two modes: Hand and Off. See also the diagram in section Local control vs. external control on page 39.
Hand key (@):

- In local control / Off mode: Starts the drive. The drive will switch to the Hand mode.
- In external control: Switches the drive to local control / Hand mode, keeping it running.
Off key ( $(\square)$ ):
- Stops the drive and switches to the Off mode.

Auto key $\square$

- In local control: The drive will switch to external control.


## Key shortcuts

The table below lists key shortcuts and combinations. Simultaneous key presses are indicated by the plus sign (+).

| Shortcut | Available in | Effect |
| :---: | :---: | :---: |
| $\begin{aligned} & \square+\square \\ & +\Delta \end{aligned}$ | any view | Save a screenshot. Up to fifteen images may be stored in the control panel memory. <br> To transfer images to PC, connect the assistant control panel to PC with a USB cable and the panel will mount itself as an MTP (media transfer protocol) device. <br> Pictures are stored in the screen shots folder. <br> For more instructions, see ACS-AP-x assistant control panels user's manual (3AUA00000085685 [English]). |
| $\begin{aligned} & \square+\square \\ & \square+\square \end{aligned}$ | any view | Adjust backlight brightness. |
| $\begin{aligned} & \approx+\square \\ & \approx+\square \end{aligned}$ | any view | Adjust display contrast. |
| [ $]$ or $\overline{7}$ | Home view | Adjust reference. |
| [ $]+\square$ | parameter edit views | Revert an editable parameter to its default value. |
| (4) + | view showing a list of selections for a parameter | Show/hide selection index numbers. |
| (keep down) | any view | Return to the Home view by pressing down the key until the Home view is shown. |

## 4

## Default configuration

## Contents of this chapter

This chapter describes the intended use, operation and default control connections of the application.

## HVAC default

This is the default configuration for HVAC.
Default control connections for the HVAC default.


See the notes on the next page.

Terminal sizes:
R0...R3: $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (24... 14 AWG): Terminals +24V, DGND, DCOM, B+, A-, DGND, Ext. 24V
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (26...16 AWG): Terminals DI, AI, AO, AGND, RO, STO
R6...R9: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: 0.5...0.6 N•m (0.4 lbffft)

## Notes:

${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory.
${ }^{5)}$ Note: Use shielded twisted-pair cables for digital signals.

## Input signals

- Analog frequency reference (AI1)
- Start/stop selection (DI1)
- Constant speed/frequency selection (DI3)


## Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

38 Default configuration
ac.maher.co.ilr

## Program features

## What this chapter contains

This chapter describes some of the more important functions within the control program, how to use them and how to program them to operate. It also explains the control locations and operating modes.

## Local control vs. external control

The AH580 has two main control locations: external and local. In local control there are additionally two different modes: Off mode and Hand mode.

In the Off mode, the drive is stopped. In the Hand mode, the drive is running.The initial reference in the Hand mode is copied from the drive reference.

The following diagram shows the state transitions when you press the Hand, Off or Auto button:


The control location can also be selected in the PC tool.
Note: When you restart the drive while fault 7081 Control panel loss is active, the mode changes from Hand or Off to Auto.

Note: Override function overrides the actual running mode.


## Local control

The control commands are given from the control panel keypad or from a PC equipped with Drive composer when the drive is in local control. Speed and torque control modes are available in vector motor control mode; frequency mode is available when scalar motor control mode is used (see parameter 19.16 Local control mode).

Local control is mainly used during commissioning and maintenance. The control panel always overrides the external control signal sources when used in local control. Changing the control location to local can be prevented by parameter 19.17 Local control disable.

The user can select by a parameter (49.05 Communication loss action) how the drive reacts to a control panel or PC tool communication break. (The parameter has no effect in external control.)

## External control

When the drive is in external control, control commands are given through

- the I/O terminals (digital and analog inputs), or optional I/O extension modules
- the fieldbus interface (via the embedded fieldbus interface or an optional fieldbus adapter module).

Two external control locations, EXT1 and EXT2, are available. The user can select the sources of the start and stop commands separately for each location setting parameters $20.01 \ldots 20.10$. The operating mode can be selected separately for each location, which s quick switching between different operating modes, for example speed and torque control. Selection between EXT1 and EXT2 is done via any binary source such as a digital input or fieldbus control word (parameter 19.11 Ext1/Ext2 selection). The source of reference is selectable for each operating mode separately.

## Settings

- Parameters 19.11 Ext1/Ext2 selection (page 125); 20.01...20.10 (page 126).


## Motor potentiometer

The motor potentiometer is, in effect, a counter whose value can be adjusted up and down using two digital signals selected by parameters 22.73 Motor potentiometer up source and 22.74 Motor potentiometer down source.

When enabled by 22.71 Motor potentiometer function, the motor potentiometer assumes the value set by 22.72 Motor potentiometer initial value. Depending on the mode selected in 22.71, the motor potentiometer value is either retained or reset over a power cycle.

The change rate is defined in 22.75 Motor potentiometer ramp time as the time it would take for the value to change from the minimum (22.76 Motor potentiometer min value) to the maximum ( 22.77 Motor potentiometer max value) or vice versa. If the up and down signals are simultaneously on, the motor potentiometer value does not change.

The output of the function is shown by 22.80 Motor potentiometer ref act, which can directly be set as the reference source in the main selector parameters, or used as an input by other source selector parameters, both in scalar and vector control.

The following example shows the behavior of the motor potentiometer value.


## Settings

Parameters 22.71... 22.80 (page 150).

## Operating modes of the drive

The drive can operate in several operating modes with different types of reference. The mode is selectable for each control location (Local, EXT1 and EXT2) in parameter group 19 Operation mode. An overview of the different reference types and control chains is shown below.


The following is a more detailed representation of the reference types and control chains. The page numbers refer to detailed diagrams in chapter Control chain diagrams.

## Speed control mode

The motor follows a speed reference given to the drive. This mode can be used either with estimated speed used as feedback.

Speed control mode is available in both local and external control. It is supported in vector motor control only.

## Torque control mode

Motor torque follows a torque reference given to the drive. Torque control mode is available in both local and external control. It is supported in vector motor control only.

## Frequency control mode

The motor follows a frequency reference given to the drive. Frequency control is available in both local and external control. It is supported in scalar motor control only.

## Special control modes

In addition to the above-mentioned control modes, the following special control modes are available:

- Process PID control. For more information, see section Process PID control (page 64).
- Emergency stop modes OFF1 and OFF3: Drive stops along the defined deceleration ramp and drive modulation stops.
- Jogging mode: Drive starts and accelerates to the defined speed when the jogging signal is activated. For more information, see section Jogging (page 52).
- Pre-magnetization: DC magnetization of the motor before start. For more information, see section Pre-magnetization (page 59).
- DC hold: Locking the rotor at (near) zero speed in the middle of normal operation. For more information, see section DC hold (page 60).
- Pre-heating (motor heating): Keeping the motor warm when the drive is stopped. For more information, see section Pre-heating (Motor heating) (page 60).


## Drive configuration and programming

The drive control program performs the main control functions, including speed, torque and frequency control, drive logic (start/stop), I/O, feedback, communication and protection functions. Control program functions are configured and programmed with parameters.


## Configuring via parameters

Parameters configure all of the standard drive operations and can be set via

- the control panel, as described in chapter Control panel
- the Drive composer PC tool, as described in Drive composer user's manual (3AUA0000094606 [English]), or
- the fieldbus interface, as described in chapters Fieldbus control through the embedded fieldbus interface (EFB) and Fieldbus control through a fieldbus adapter.

All parameter settings are stored automatically to the permanent memory of the drive. However, if an external +24 V DC power supply is used for the drive control unit, it is highly recommended to force a save by using parameter 96.07 Parameter save manually before powering down the control unit after any parameter changes have been made.

If necessary, the default parameter values can be restored by parameter 96.06 Parameter restore.

## Control interfaces

## Programmable analog inputs

The control unit has two programmable analog inputs. Each of the inputs can be independently set as a voltage ( $0 / 2 \ldots 10 \mathrm{~V}$ ) or current ( $0 / 4 \ldots 20 \mathrm{~mA}$ ) input by a switch on the control unit. Each input can be filtered, inverted and scaled.

## Settings

Parameter group 12 Standard AI (page 108).

## Programmable analog outputs

The control unit has two current ( $0 . .20 \mathrm{~mA}$ ) analog outputs. Each output can be filtered, inverted and scaled.

## Settings

Parameter group 13 Standard AO (page 112).

## Programmable digital inputs and outputs

The control unit has six digital inputs.
Digital input DI5 can be used as a frequency input.
Six digital inputs can be added by using a CHDI-01 115/230 V digital input extension module and one digital output by using a CMOD-01 multifunction extension module.

## Settings

Parameter groups 10 Standard DI, RO (page 101) and 11 Standard DIO, FI, FO (page 106).

## Programmable frequency input and output

Digital input (DI5) can be configured as a frequency input. A frequency output can be implemented with a CMOD-01 multifunction extension module.

## Settings

Parameter groups 10 Standard DI, RO (page 101) and 11 Standard DIO, FI, FO (page 106).

## Programmable relay outputs

The control unit has three relay outputs. The signal to be indicated by the outputs can be selected by parameters.

Two relay outputs can be added by using a CMOD-01 multifunction extension module or a CHDI-01 115/230 V digital input extension module.

## Settings

Parameter group 10 Standard DI, RO (page 101).

## Programmable I/O extensions

Inputs and outputs can be added by using a CMOD-01 multifunction extension module or a CHDI-01 115/230 V digital input extension module. The module is mounted on option slot 2 of the control unit.

The table below shows the number of I/O on the control unit as well as optional CMOD-01 and a CHDI-01 modules.

| Location | Digital <br> inputs <br> (DI) | Digital <br> outputs <br> (DO) | Digital <br> I/Os <br> (DIO) | Analog <br> inputs <br> (AI) | Analog <br> outputs <br> (AO) | Relay <br> outputs <br> (RO) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Control unit | 6 | - | - | 2 | 2 | 3 |
| CMOD-01 | - | 1 | - | - | - | 2 |
| CHDI-01 | 6 | - | - | - | - | 2 |

The I/O extension module can be activated and configured using parameter group 15.

Note: The configuration parameter group contains parameters that display the values of the inputs on the extension module. These parameters are the only way of utilizing the inputs on an I/O extension module as signal sources. To connect to an input, choose the setting Other in the source selector parameter, then specify the appropriate value parameter (and bit, for digital signals) in group 15.

## Settings

Parameter group 15 I/O extension module (page 118).

## Fieldbus control

The drive can be connected to several different automation systems through its fieldbus interfaces. See chapters Fieldbus control through the embedded fieldbus interface (EFB) (page 327) and Fieldbus control through a fieldbus adapter (page 355).

## Settings

Parameter groups 50 Fieldbus adapter (FBA) (page 234), 51 FBA A settings (page 238), 52 FBA A data in (page 240), and 53 FBA A data out (page 240) and 58 Embedded fieldbus (page 241).

## Motor control

## Motor types

The drive supports asynchronous AC induction, permanent magnet (PM) and synchronous reluctance motors (SynRM). PM motors are supported starting from firmware revision 1.70.x.

## Motor identification

The performance of vector control is based on an accurate motor model determined during the motor start-up.

A motor Identification magnetization is automatically performed the first time the start command is given. During this first start-up, the motor is magnetized at zero speed for several seconds and the motor and motor cable resistance are measured to allow the motor model to be created. This identification method is suitable for most applications.

In demanding applications a separate Identification run (ID run) can be performed.

## Settings

99.13 ID run requested (page 271)

## Power loss ride-through

See section Undervoltage control (power loss ride-through) on page 68.

## Vector control

The switching of the output semiconductors is controlled to achieve the required stator flux and motor torque. The output frequency is changed only if the actual torque and stator flux values differ from their reference values by more than the allowed hysteresis. The reference value for the torque controller comes from the speed controller or directly from an external torque reference source.

Motor control requires measurement of the DC voltage and two motor phase currents. Stator flux is calculated by integrating the motor voltage in vector space. Motor torque is calculated as a cross product of the stator flux and the rotor current. By utilizing the identified motor model, the stator flux estimate is improved. Actual motor shaft speed is not needed for the motor control.

The main difference between traditional control and vector control is that torque control operates at the same time level as the power switch control. There is no separate voltage and frequency controlled PWM modulator; the output stage switching is wholly based on the electromagnetic state of the motor.

The best motor control accuracy is achieved by activating a separate motor identification run (normal ID run).

See also section Speed control performance figures (page 55).

## Settings

## - Menu - Primary settings - Motor - Control mode

- Parameters 99.04 Motor control mode (page 269) and 99.13 ID run requested (page 271).


## Reference ramping

Acceleration and deceleration ramping times can be set individually for speed, torque and frequency reference.

With a speed or frequency reference, the ramps are defined as the time it takes for the drive to accelerate or decelerate between zero speed or frequency and the value defined by parameter 46.01 Speed scaling or 46.02 Frequency scaling. The user can switch between two preset ramp sets using a binary source such as a digital input. For speed reference, also the shape of the ramp can be controlled.

With a torque reference, the ramps are defined as the time it takes for the reference to change between zero and nominal motor torque (parameter 01.30 Nominal torque scale).

## Variable slope

Variable slope controls the slope of the speed ramp during a reference change. With this feature a constantly variable ramp can be used.

Variable slope is only supported in external control.

## Settings

Parameters 23.28 Variable slope (page 154) and 23.29 Variable slope rate (page 154).

## Special acceleration/deceleration ramps

The acceleration/deceleration times for the jogging function can be defined separately; see section Jogging (page 52).

The change rate of the motor potentiometer function (page 55) is adjustable. The same rate applies in both directions.

A deceleration ramp can be defined for emergency stop ("Off3" mode).

## Settings

- Speed reference ramping: Parameters $23.11 \ldots 23.15$ and 46.01 (pages 152 and 230).
- Torque reference ramping: Parameters 01.30, 26.18 and 26.19 (pages 90 and 164).
- Frequency reference ramping: Parameters 28.71 ... 28.75 and 46.02 (pages 172 and 230).
- Jogging: Parameters 23.20 and 23.21 (page 153).
- Motor potentiometer: Parameter 22.75 (page 151).
- Emergency stop ("Off3" mode): Parameter 23.23 Emergency stop time (page 153).


## Constant speeds/frequencies

Constant speeds and frequencies are predefined references that can be quickly activated, for example, through digital inputs. It is possible to define up to 7 speeds for speed control and 7 constant frequencies for frequency control.

WARNING: Speeds and frequencies override the normal reference irrespective of where the reference is coming from.

## Settings

- Parameter groups 22 Speed reference selection (page 143) and 28 Frequency reference chain (page 165).


## Critical speeds/frequencies

Critical speeds (sometimes called "skip speeds") can be predefined for applications where it is necessary to avoid certain motor speeds or speed ranges because of, for example, mechanical resonance problems.

The critical speeds function prevents the reference from dwelling within a critical band for extended times. When a changing reference (22.87 Speed reference act 7) enters a critical range, the output of the function (22.01 Speed ref unlimited) freezes until the reference exits the range. Any instant change in the output is smoothed out by the ramping function further in the reference chain.

When the drive is limiting the allowed output speeds/frequencies, it limits to the absolutely lowest critical speed (critical speed low or critical frequency low) when accelerating from standstill, unless the speed reference is over the upper critical speed/ frequency limit.

The function is also available for scalar motor control with a frequency reference. The input of the function is shown by 28.96 Frequency ref act 7 .

## Example

A fan has vibrations in the range of 540 to 690 rpm and 1380 to 1560 rpm . To make the drive avoid these speed ranges,

- the critical speeds function by turning on bit 0 of parameter 22.51 Critical speed function, and
- set the critical speed ranges as in the figure below.



## Settings

- Critical speeds: parameters 22.51... 22.57 (page 149)
- Critical frequencies: parameters 28.51... 28.57 (page 171).


## Rush control

In torque control, the motor could potentially rush if the load were suddenly lost. The control program has a rush control function that decreases the torque reference whenever the motor speed exceeds 30.11 Minimum speed or 30.12 Maximum speed.


The function is based on a PI controller. The program sets the proportional gain to 10.0 and integration time to 2.0 s .

## Jogging

The jogging function s the use of a momentary switch to briefly rotate the motor. The jogging function is typically used during servicing or commissioning to control the machinery locally.

Two jogging functions ( 1 and 2 ) are available, each with their own activation sources and references. The signal sources are selected by parameters 20.26 Jogging 1 start source and 20.27 Jogging 2 start source (Menu - Primary settings - Start, stop, reference - Jogging). When jogging is activated, the drive starts and accelerates to the defined jogging speed (22.42 Jogging 1 ref or 22.43 Jogging 2 ref) along the defined jogging acceleration ramp (23.20 Acc time jogging). After the activation signal switches off, the drive decelerates to a stop along the defined jogging deceleration ramp (23.21 Dec time jogging).

The figure and table below provide an example of how the drive operates during jogging. In the example, the ramp stop mode is used (see parameter 21.03 Stop mode).

Jog cmd = State of source set by 20.26 Jogging 1 start source or 20.27 Jogging 2 start source
Jog = State of source set by 20.25 Jogging
Start cmd = State of drive start command.


| Phase | Jog <br> cmd | Jog | Start <br> cmd | Description |
| :---: | :---: | :---: | :---: | :--- |
| $1-2$ | 1 | 1 | 0 | Drive accelerates to the jogging speed along the acceleration <br> ramp of the jogging function. |
| $2-3$ | 1 | 1 | 0 | Drive follows the jog reference. |
| $3-4$ | 0 | 1 | 0 | Drive decelerates to zero speed along the deceleration ramp <br> of the jogging function. |
| $4-5$ | 0 | 1 | 0 | Drive is stopped. |
| $5-6$ | 1 | 1 | 0 | Drive accelerates to the jogging speed along the acceleration <br> ramp of the jogging function. |
| $6-7$ | 1 | 1 | 0 | Drive follows the jog reference. |
| $7-8$ | 0 | 1 | 0 | Drive decelerates to zero speed along the deceleration ramp <br> of the jogging function. |
| $8-9$ | 0 | $1->0$ | 0 | Drive is stopped. As long as the jog signal is on, start <br> commands are ignored. After jog switches off, a fresh start <br> command is required. |
| $9-10$ | $x$ | 0 | 1 | Drive accelerates to the speed reference along the selected <br> acceleration ramp (parameters 23.11...23.15). |
| $10-11$ | $x$ | 0 | 1 | Drive follows the speed reference. |
| $11-12$ | $x$ | 0 | 0 | Drive decelerates to zero speed along the selected <br> deceleration ramp (parameters 23.11...23.15). |
| $12-13$ | $x$ | 0 | 0 | Drive is stopped. |
| $13-14$ | $x$ | 0 | 1 | Drive accelerates to the speed reference along the selected <br> acceleration ramp (parameters 23.11...23.15). |


| Phase | Jog <br> cmd | Jog | Start <br> cmd | Description |
| :---: | :---: | :---: | :---: | :--- |
| $14-15$ | x | $0->1$ | 1 | Drive follows the speed reference. As long as the start <br> command is on, the jog signal is ignored. If the jog signal is <br> on when the start command switches off, jogging is enabled <br> immediately. |
| $15-16$ | $0->1$ | 1 | 0 | Start command switches off. The drive starts to decelerate <br> along the selected deceleration ramp (parameters <br> 23.11...23.15). <br> When the jog command switches on, the decelerating drive <br> adopts the deceleration ramp of the jogging function. |
| $16-17$ | 1 | 1 | 0 | Drive follows the jog reference. |
| $17-18$ | 0 | $1->0$ | 0 | Drive decelerates to zero speed along the deceleration ramp <br> of the jogging function. |

See also the block diagram on page 374.

## Notes:

- Jogging is not available when the drive is in local control.
- Jogging cannot be enabled when the drive start command is on, or the drive started when jogging is d. Starting the drive after the jog switches off requires a fresh start command.

WARNING! If jogging is enabled and activated while the start command is on, jogging will activate as soon as the start command switches off.

- If both jogging functions are activated, the one that was activated first has priority.
- Jogging uses vector control.
- The inching functions activated through fieldbus (see 06.01 Main control word, bits $8 \ldots 9$ ) use the references and ramp times defined for jogging, but do not require the jog signal.


## Settings

- Menu - Primary settings - Start, stop, reference - Jogging
- Parameters 20.25 Jogging (page 133), 20.26 Jogging 1 start source (page 133), 20.27 Jogging 2 start source (page 134), 22.42 Jogging 1 ref (page 149), 22.43 Jogging 2 ref (page 149), 23.20 Acc time jogging (page 153) and 23.21 Dec time jogging (page 153).


## Speed control performance figures

The table below shows typical performance figures for speed control.


## Torque control performance figures

The drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control.


## Scalar motor control

Scalar motor control is the default motor control method. In scalar control mode, the drive is controlled with a frequency reference. However, the excellent performance of vector control is not achieved in scalar control.

It is recommended to activate scalar motor control mode in the following situations:

- If the exact nominal motor values are not available or the drive needs to run different motor after the commissioning phase
- If a short commissioning time is needed or no ID run is wanted
- In multimotor drives: 1 ) if the load is not equally shared between the motors, 2 ) if the motors are of different sizes, or 3 ) if the motors are going to be changed after motor identification (ID run)
- If the nominal current of the motor is less than $1 / 6$ of the nominal output current of the drive
- If the drive is used without a motor connected (for example, for test purposes)
- If the drive runs a medium-voltage motor through a step-up transformer.

In scalar control, some standard features are not available.
See also section Operating modes of the drive (page 43).

## IR compensation for scalar motor control

IR compensation (also known as voltage boost) is available only when the motor control mode is scalar. When IR compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR compensation is useful in applications that require a high break-away torque.

In vector control, no IR compensation is possible or needed as it is applied
 automatically.

## Settings

- Menu - Primary settings - Motor - IR compensation
- Parameters 97.13 IR compensation (page 266) and 99.04 Motor control mode (page 269)
- Parameter group 28 Frequency reference chain (page 165).


## User load curve

The User load curve provides a supervisory function that monitors an input signal as a function of frequency or speed, and load. It shows the status of the monitored signal and can give a warning or fault based on the violation of a user defined profile.

The user load curve consists of an overload and an underload curve, or just one of them. Each curve is formed by five points that represent the monitored signal as a function of frequency or speed.

In the example below, the user load curve is constructed from the motor nominal torque to which a $10 \%$ margin is added and subtracted. The margin curves define a working envelope for the motor so that excursions outside the envelope can be supervised, timed and detected.


An overload warning and/or fault can be set to occur if the monitored signal stays continuously over the overload curve for a defined time. An underload warning and/or fault can be set to occur if the monitored signal stays continuously under the underload for a defined time.

Overload can be for example used to monitor for a saw blade hitting a knot or fan load profiles becoming too high.

Underload can be for example used to monitor for load dropping and breaking of conveyer belts or fan belts.

## Settings

Parameter group 37 User load curve (page 210).

## U/f ratio

The U/f function is only available in scalar motor control mode, which uses frequency control.

The function has two modes: linear and squared.
In linear mode, the ratio of voltage to frequency is constant below the field weakening point. This is used in constant torque applications where it may be necessary to produce torque at or near the rated torque of the motor throughout the frequency range

In squared mode (default), the ratio of the voltage to frequency increases as the square of the frequency below the field weakening point. This is typically used in centrifugal pump or fan applications. For these applications, the torque required follows the square relationship with frequency. Therefore, if the voltage is varied using the square relationship, the motor operates at improved efficiency and lower noise levels in these applications.

The U/f function cannot be used with energy optimization; if parameter 45.11 Energy optimizer is set to Enable, parameter 97.20 U/F ratio is ignored.

## Settings

## - Menu - Primary settings - Motor - U/f ratio

- Parameter 97.20 U/F ratio (page 266).


## Flux braking

The drive can provide greater deceleration by raising the level of magnetization in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy.
Motor
speed
Flux braking

The drive monitors the motor status continuously, also during flux braking. Therefore, flux braking can be used both for stopping the motor and for changing the speed. The other benefits of flux braking are:

- The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it can start the braking.
- The cooling of the induction motor is efficient. The stator current of the motor increases during flux braking, not the rotor current. The stator cools much more efficiently than the rotor.
- Flux braking can be used with induction motors and permanent magnet synchronous motors.

Two braking power levels are available:

- Moderate braking provides faster deceleration compared to a situation where flux braking is disabled. The flux level of the motor is limited to prevent excessive heating of the motor.
- Full braking exploits almost all available current to convert the mechanical braking energy to motor thermal energy. Braking time is shorter compared to moderate braking. In cyclic use, motor heating may be significant.

WARNING: The motor needs to be rated to absorb the thermal energy generated by flux braking.

## Settings

- Menu - Primary settings - Motor - Flux braking
- Parameter 97.05 Flux braking (page 264).


## DC magnetization

The drive has different magnetization functions for different phases of motor start/rotation/stop: pre-magnetization, DC hold, post-magnetization and pre-heating (motor heating).

## Pre-magnetization

Pre-magnetization refers to DC magnetization of the motor before start. Depending on the selected start mode (21.01 Vector start mode or 21.19 Scalar start mode), premagnetization can be applied to guarantee the highest possible breakaway torque, up to $200 \%$ of the nominal torque of the motor. By adjusting the pre-magnetization time (21.02 Magnetization time), it is possible to synchronize the motor start and, for example, the release of a mechanical brake.

## Settings

Parameters 21.01 Vector start mode, 21.19 Scalar start mode, 21.02 Magnetization time

## DC hold

The function makes it possible to lock the rotor at (near) zero speed in the middle of normal operation. DC hold is activated by parameter 21.08 DC current control. When both the reference and motor speed drop below a certain level (parameter 21.09 DC hold speed), the drive will stop generating sinusoidal current and start to inject DC into the motor. The current is set by parameter 21.10 DC current reference. When the reference exceeds parameter 21.09 DC hold speed, normal drive operation continues.


## Settings

Parameters 21.08 DC current control and 21.09 DC hold speed

## Post-magnetization

The function keeps the motor magnetized for a certain period (parameter 21.11 Post magnetization time) after stopping. This is to prevent the machinery from moving under load, for example before a mechanical brake can be applied. Postmagnetization is activated by parameter 21.08 DC current control. The magnetization current is set by parameter 21.10 DC current reference.

Note: Post-magnetization is only available when ramp stop is selected (see parameter 21.03 Stop mode).

## Settings

Parameters 21.01 Vector start mode, 21.02 Magnetization time and 21.08...21.11 (page 140).

## Pre-heating (Motor heating)

The pre-heating function keeps the motor warm and prevents condensation inside the motor by feeding it with DC current when the drive has been stopped. The heating
can only be activated when the drive is in the stopped state, and starting the drive stops the heating.

The heating is started 60 seconds after zero speed has been reached or modulation has been stopped to prevent excessive current if coast stop is used.

The function can be defined to be always active when the drive is stopped or it can be activated by a digital input, fieldbus, timed function or supervision function. For example, with the help of signal supervision function, the heating can be activated by a thermal measurement signal from the motor.

The pre-heating current fed to the motor can be defined as $0 . .30 \%$ of the nominal motor current.

## Notes:

- In applications where the motor keeps rotating for a long time after the modulation is stopped, it is recommended to use ramp stop with pre-heating to prevent a sudden pull at the rotor when the pre-heating is activated.
- The heating function requires that the STO circuit is closed or not triggered open.
- The heating function requires that the drive is not faulted.
- Pre-heating uses DC hold to produce current.


## Settings

## - Menu - Primary settings - Motor - Pre-heating

- Parameters 21.14 Pre-heating input source and 21.16 Pre-heating current (page 140)


## Energy optimization

The function optimizes the motor flux so that total energy consumption and motor noise level are reduced when the drive operates below the nominal load. The total efficiency (motor and drive) can be improved by $1 . . .20 \%$ depending on load torque and speed.

Note: With permanent magnet and synchronous reluctance motors, energy optimization is always enabled.

## Settings

## - Menu - Energy efficiency

- Parameter 45.11 Energy optimizer (page 229)


## Switching frequency

The drive has two switching frequencies: reference switching frequency and minimum switching frequency. The drive tries to keep the highest allowed switching frequency (= reference switching frequency) if thermally possible, and then adjusts dynamically between the reference and minimum switching frequencies depending
on the drive temperature. When the drive reaches the minimum switching frequency (= lowest allowed switching frequency), it starts to limit output current as the heating up continues.

For derating, see chapter Technical data, section Switching frequency derating in the Hardware manual of the drive.

Example 1: If you need to fix the switching frequency to a certain value as with some external filters, set both the reference and the minimum switching frequency to this value and the drive will retain this switching frequency.

Example 2: If the reference switching frequency is set to 8 kHz and the minimum switching frequency is set to 2 kHz , the drive maintains the highest possible switching frequency to reduce motor noise and only when the drive heats it will decrease the switching frequency. This is useful, for example, in applications where low noise is necessary but higher noise can be tolerated when the full output current is needed.

## Settings

Parameter 97.01 Switching frequency reference and 97.02 Minimum switching frequency (page 258).

## Speed compensated stop

Speed compensation stop is available for example for applications where a conveyer needs to travel a certain distance after receiving the stop command. At maximum speed, the motor is stopped normally along the defined deceleration ramp, after the application of a user defined delay to adjust the distance traveled. Below maximum speed, stop is delayed still more by running the drive at current speed before the motor is ramped to a stop. As shown in the figure, the distance traveled after the stop command is the same in both cases, that is, area $\mathrm{A}+$ area B equals area C .


Speed compensation does not take into account shape times (parameters 23.32 Shape time 1 and 23.33 Shape time 2). Positive shape times lengthen the distance traveled.

Speed compensation can be restricted to forward or reverse rotating direction.
Speed compensation is supported in both vector and scalar motor control.

## Settings

Parameters 21.30 Speed compensated stop mode (page 143), 21.31 Speed delay (page 143) and 21.32 Speed comp stop threshold (page 143).

## Application control

## Control macros

Control macros are predefined parameter edits and I/O configurations. See chapter Default configuration (page 35).

## Process PID control

There is a built-in process PID controller in the drive. The controller can be used to control process such as pressure or flow in the pipe or fluid level in the container.

In process PID control, a process reference (setpoint) is connected to the drive instead of a speed reference. An actual value (process feedback) is also brought back to the drive. The process PID control adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (setpoint). This means that user does not need to set a frequency/speed/torque reference to the drive but the drive adjust its operation according to the process PID.

The simplified block diagram below illustrates the process PID control. For more detailed block diagrams, see pages 380 and 381 .


The drive contains two complete sets of process PID controller settings that can be alternated whenever necessary; see parameter 40.57 PID set1/set2 selection.

Note: Process PID control is only available in external control; see section Local control vs. external control (page 39).

## Sleep and boost functions for process PID control

The sleep function is suitable for PID control applications where the consumption varies, such as clean water pumping systems. When used, it stops the pump completely during low demand, instead of running the pump slowly below its efficient operating range. The following example visualizes the operation of the function.

Example: The drive controls a pressure boost pump. The water consumption falls at night. As a consequence, the process PID controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor would never stop rotating. The sleep function detects the slow rotation and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still monitoring the pressure. The pumping resumes when the pressure falls under the predefined minimum level and the wakeup delay has passed.

The user can extend the PID sleep time by the boost functionality. The boost functionality increases the process setpoint for a predetermined time before the drive enters the sleep mode.


## Tracking

In tracking mode, the PID block output is set directly to the value of parameter 40.50 (or 41.50) Set 1 tracking ref selection. The internal I term of the PID controller is set so that no transient is allowed to pass on to the output, so when the tracking mode is left, normal process control operation can be resumed without a significant bump.

## Settings

- Parameter 96.04 Macro select (macro selection)
- Parameter groups 40 Process PID set 1 (page 213) and 41 Process PID set 2 (page 224).


## Pump and fan control (PFC)

The Pump and fan control (PFC) is used in pump or fan systems consisting of one drive and multiple pumps or fans. The drive controls the speed of one of the pumps/fans and in addition connects (and disconnects) the other pumps/fans directly to the supply network through contactors.

The PFC control logic switches auxiliary motors on and off as required by the capacity changes of the process. In a pump application for example, the drive controls the motor of the first pump, varying the motor speed to control the output of the pump. This pump is the speed regulated pump. When the demand (represented by the process PID reference) exceeds the capacity of the first pump (a user defined speed/frequency limit), the PFC logic automatically starts an auxiliary pump. The logic also reduces the speed of the first pump, controlled by the drive, to account for the addition to the total system output by the auxiliary pump. Then, as before, the PID controller adjusts the speed/frequency of the first pump in such a way that the system output meets the process needs. If the demand continues to increase, the PFC logic adds further auxiliary pumps, in a similar manner as just described.

As the demand drops, making the speed of the first pump fall below a minimum limit (user defined as a speed/frequency limit), the PFC logic automatically stops an auxiliary pump. The PFC logic also increases the speed of the drive controlled pump to account for the missing output of the stopped auxiliary pump.

## The Pump and fan control (PFC) is supported in external control location EXT2 only.Autochange

Automatic rotation of the start order, or Autochange functionality, serves two main purposes in many PFC type setups. One is to keep the run times of the pumps/fans equal over time to even their wear. The other is to prevent any pump/fan from standing still for too long, which would clog up the unit. In some cases it is desirable to rotate the start order only when all units are stopped, for example to minimize the impact on the process.

The Autochange can also be triggered by the Timed function (see page 67).

## Interlock

There is an option to define interlock signals for each motor in the PFC system. When the interlock signal of a motor is Available, the motor participates in the PFC starting sequence. If the signal is Interlocked, the motor is excluded. This feature can be used for informing the PFC logic that a motor is not available (for example due to maintenance or manual direct-on-line starting).

## Soft pump and fan control (SPFC)

The Soft pump and fan control (SPFC) logic is a variant of the PFC logic for pump and fan alternation applications where lower pressure peaks are desirable when a new auxiliary motor is to be started. The SPFC logic is an easy way to implement soft starting of direct on line (auxiliary) motors.

The main difference between traditional PFC and SPFC logic is how the SPFC logic connects auxiliary motors on-line. When the criteria for starting a new motor is fulfilled (see above) the SPFC logic connects the drive controlled motor to the supply network in a flying start, that is, while the motor is still coasting. The drive then connects to the next pump/fan unit to be started and starts controlling the speed of that one, while the previously controlled unit now is connected directly on line through a contactor. Further (auxiliary) motors are started in a similar manner. The motor stopping routine is the same as for the normal PFC routine.

In some cases SPFC makes it possible to soften the start-up current while connecting auxiliary motors on-line. Lower pressure peaks on the pipelines and pumps may be achieved as a result.

## Settings

- Parameter 96.04 Macro select (macro selection)
- Parameter group 10 Standard DI, RO (page 101)
- Parameter group 40 Process PID set 1 (page 213)
- Parameter groups 76 PFC configuration (page 251) and 77 PFC maintenance and monitoring (page 257).


## Timed functions

See parameter group 34 Timed functions.

## Settings

Parameter group 34 Timed functions (page 192).

## DC voltage control

## Overvoltage control

Overvoltage control of the intermediate DC link is typically needed when the motor is in generating mode. The motor can generate when it decelerates or when the load overhauls the motor shaft, causing the shaft to turn faster than the applied speed or frequency. To prevent the DC voltage from exceeding the overvoltage control limit, the overvoltage controller automatically decreases the generating torque when the limit is reached. The overvoltage controller also increases any programmed deceleration times if the limit is reached; to achieve shorter deceleration times, a brake chopper and resistor may be required.

## Undervoltage control (power loss ride-through)

If the incoming supply voltage is cut off, the drive will continue to operate by utilizing the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue operation after the break if the main contactor (if present) remained closed.

Note: Units equipped with a main contactor must be equipped with a hold circuit (e.g. UPS) to keep the contactor control circuit closed during a short supply break.


## Implementing the undervoltage control (power loss ride-through)

Implement the undervoltage control function as follows:

- Check that the undervoltage control function of the drive is enabled with parameter 30.31 Undervoltage control.
- Parameter 21.01 Vector start mode must be set to Automatic (in vector mode) or parameter 21.19 Scalar start mode to Automatic (in scalar mode) to make flying start (starting into a rotating motor) possible.

If the installation is equipped with a main contactor, prevent its tripping at the input power break. For example, use a time delay relay (hold) in the contactor control circuit.

WARNING! Make sure that the flying restart of the motor will not cause any danger. If you are in doubt, do not implement the undervoltage control function.

## Automatic restart

It is possible to restart the drive automatically after a short (max. 5 seconds) power supply failure by using the Automatic restart function, provided that the drive is allowed to run for 5 seconds without the cooling fans operating.

When enabled, the function takes the following actions upon a supply failure to a successful restart:

- The undervoltage fault is suppressed (but a warning is generated).
- Modulation and cooling is stopped to conserve any remaining energy.
- DC circuit pre-charging is enabled.

If the DC voltage is restored before the expiration of the period defined by parameter 21.18 Auto restart time and the start signal is still on, normal operation will continue. However, if the DC voltage remains too low at that point, the drive trips on a fault, 3220 DC link undervoltage.

4
WARNING! Before you activate the function, make sure that no dangerous situations can occur. The function restarts the drive automatically and continues operation after a supply break.

## Voltage control and trip limits

The control and trip limits of the intermediate DC voltage regulator are relative to the supply voltage as well as drive/inverter type.The DC voltage ( $U_{D C}$ ) is approximately 1.35 times the line-to-line supply voltage, and is displayed by parameter 01.11 DC voltage.

The following table shows the values of selected DC voltage levels. Note that the absolute voltages vary according to the drive/inverter type and AC supply voltage range.

|  | DC voltage level [V] |  |
| :---: | :---: | :---: |
| See 95.01 Supply voltage. | $\begin{aligned} & \text { Supply voltage range [V] } \\ & 380 \ldots 415 \end{aligned}$ | Supply voltage range [V] 440... 480 |
| Overvoltage fault limit | 840 | 840 |
| Overvoltage control limit | 780 | 780 |
| Internal brake chopper start limit | 780 | 780 |
| Internal brake chopper stop limit | 760 | 760 |
| Overvoltage warning limit | 745 | 745 |
| Undervoltage warning limit | $\begin{gathered} 0.85 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.85 \times 1.41 \times 380=455^{2)} \end{gathered}$ | $\begin{gathered} 0.85 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.85 \times 1.41 \times 440=527^{2)} \end{gathered}$ |
| Undervoltage control limit | $\begin{gathered} 0.75 \times 1.41 \times \text { par } 95.03 \text { value }^{1)} \\ 0.75 \times 1.41 \times 380=402^{2)} \end{gathered}$ | $\begin{gathered} 0.75 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.75 \times 1.41 \times 440=465^{2)} \end{gathered}$ |
| Charging relay closing limit | $\begin{gathered} 0.75 \times 1.41 \times \text { par } 95.03 \text { value }^{1)} \\ 0.75 \times 1.41 \times 380=402^{2)} \end{gathered}$ | $\begin{gathered} 0.75 \times 1.41 \times \text { par } 95.03 \text { value }^{1)} \\ 0.75 \times 1.41 \times 440=465^{2)} \end{gathered}$ |
| Charging relay opening limit | $\begin{gathered} 0.65 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.65 \times 1.41 \times 380=348^{2)} \end{gathered}$ | $\begin{gathered} 0.65 \times 1.41 \times \text { par } 95.03 \text { value }^{1)} \\ 0.65 \times 1.41 \times 440=403^{2)} \end{gathered}$ |
| DC voltage at upper bound of supply voltage range ( $U_{\mathrm{DCmax}}$ ) | 560 | 648 |
| DC voltage at lower bound of supply voltage range ( $U_{\mathrm{DC} \text { min }}$ ) | 513 | 594 |
| Charging activation/standby limit | $\begin{gathered} 0.65 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.65 \times 1.41 \times 380=348^{2)} \end{gathered}$ | $\begin{gathered} 0.65 \times 1.41 \times \text { par } 95.03 \text { value }^{1)} \\ 0.65 \times 1.41 \times 440=403^{2)} \end{gathered}$ |
| Undervoltage fault limit | $\begin{gathered} 0.45 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.45 \times 1.41 \times 380=241^{2)} \end{gathered}$ | $\begin{gathered} 0.45 \times 1.41 \times \text { par } 95.03 \text { value }{ }^{1)} \\ 0.45 \times 1.41 \times 440=279^{2)} \end{gathered}$ |

${ }^{1)}$ If parameter 95.01 Supply voltage is set to Automatic / not selected and 95.02 Adaptive voltage limits is set to Enable, the value of parameter 95.03 Estimated AC supply voltage is used,
${ }^{2)}$ otherwise the lower limit of the range selected with parameter 95.01 Supply voltage is used.

## Settings

Parameters 01.11 DC voltage (page 89), 30.30 Overvoltage control (page 180), 30.31 Undervoltage control (page 180), 95.01 Supply voltage (page 258) and 95.02 Adaptive voltage limits (page 258).

## Brake chopper

A brake chopper can be used to handle the energy generated by a decelerating motor. When the DC voltage rises high enough, the chopper connects the DC circuit to an external brake resistor. The chopper operates on the pulse width modulation principle.

The internal brake choppers in the drive (in frames R0...R3) start conducting when the DC link voltage reaches approximately $1.15 \times U_{\mathrm{DCmax}} .100 \%$ maximum pulse
width is reached at approximately $1.2 \times U_{\mathrm{DCmax}}$. ( $U_{\mathrm{DCmax}}$ is the DC voltage corresponding to the maximum of the AC supply voltage range.) For information on external brake choppers, refer to their documentation.

Note: Overvoltage control needs to be disabled for the chopper to operate.

## Settings

Parameter 01.11 DC voltage (page 89); parameter group 43 Brake chopper (page 225).

## Safety and protections

## Fixed/Standard protections

## Overcurrent

If the output current exceeds the internal overcurrent limit, the IGBTs are shut down immediately to protect the drive.

## DC overvoltage

See section Overvoltage control on page 68.

## DC undervoltage

See section Undervoltage control (power loss ride-through) on page 68.

## Drive temperature

If the temperature rises high enough, the drive first starts to limit the switching frequency and then the current to protect itself. If it is still keeps heating up, for example because of a fan failure, an overtemperature fault is generated.

## Short circuit

In case of a short circuit, the IGBTs are shut down immediately to protect the drive.

## Emergency stop

The emergency stop signal is connected to the input selected by parameter 21.05
Emergency stop source. An emergency stop can also be generated through fieldbus (parameter 06.01 Main control word, bits 0...2).

The mode of the emergency stop is selected by parameter 21.04 Emergency stop mode. The following modes are available:

- Off1: Stop along the standard deceleration ramp defined for the particular reference type in use
- Off2: Stop by coasting
- Off3: Stop by the emergency stop ramp defined by parameter 23.23 Emergency stop time.
- Stop torque.

With Off1 or Off3 emergency stop modes, the ramp-down of the motor speed can be supervised by parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay.

## Notes:

- The installer of the equipment is responsible for installing the emergency stop devices and all additional devices needed for the emergency stop function to fulfill
the required emergency stop categories. For more information, contact your local ABB representative.
- After an emergency stop signal is detected, the emergency stop function cannot be canceled even though the signal is canceled.
- If the minimum (or maximum) torque limit is set to $0 \%$, the emergency stop function may not be able to stop the drive.


## Settings

- Parameters 21.04 Emergency stop mode (page 138), 21.05 Emergency stop source (page 138), 23.23 Emergency stop time (page 153), 31.32 Emergency ramp supervision (page 185) and 31.33 Emergency ramp supervision delay (page 186).


## Motor thermal protection

The control program features two separate motor temperature monitoring functions. The temperature data sources and warning/trip limits can be set up independently for each function.

The motor temperature can be monitored using

- the motor thermal protection model (estimated temperature derived internally inside the drive), or
- sensors installed in the windings. This will result in a more accurate motor model.


## Motor thermal protection model

The drive calculates the temperature of the motor on the basis of the following assumptions:

1. When power is applied to the drive for the first time, the motor is assumed to be at ambient temperature (defined by parameter 35.50 Motor ambient temperature). After this, when power is applied to the drive, the motor is assumed to be at the estimated temperature.
2. Motor temperature is calculated using the user-adjustable motor thermal time and motor load curve. The load curve should be adjusted in case the ambient temperature exceeds $30^{\circ} \mathrm{C}$.

Note: The motor thermal model can be used when only one motor is connected to the inverter.

## Temperature monitoring using PTC sensors

PTC sensors are connected through a CMOD-02 multifunction module (see chapter Optional I/O extension modules, section CMOD-02 multifunction extension module
(external 24 V AC/DC and isolated PTC interface) in the Hardware manual of the drive).

${ }^{1)}$ One or $3 \ldots 6$ PTC thermistors connected in series.

The resistance of the PTC sensor increases when its temperature rises. The increasing resistance of the sensor decreases the voltage at the input, and eventually its state switches from 1 to 0 , indicating overtemperature.

The figure below shows typical PTC sensor resistance values as a function of temperature.


## Temperature monitoring using Pt100 sensors

1... 3 Pt100 sensors can be connected in series to an analog input and an analog output.

The analog output feeds a constant excitation current of 9.1 mA through the sensor. The sensor resistance increase as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

It is possible to adjust the motor temperature supervision limits and select how the drive reacts when overtemperature is detected.

For the wiring of the sensor, see chapter Electrical installation, section Al1 and Al2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

## Temperature monitoring using Pt1000 sensors

1... 3 Pt 1000 sensors can be connected in series to an analog input and an analog output.

The analog output feeds a constant excitation current of 0.1 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

For the wiring of the sensor, see chapter Electrical installation, Al1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

## Temperature monitoring using $\mathbf{N i} 1000$ sensors

One Ni1000 sensor can be connected to an analog input and an analog output on the control unit.

The analog output feeds a constant excitation current of 9.1 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

For the wiring of the sensor, see chapter Electrical installation, Al1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

## Temperature monitoring using KTY84 sensors

One KTY84 sensor can be connected to an analog input and an analog output on the control unit.

The analog output feeds a constant excitation current of 2.0 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

The figure and table on page 76 show typical KTY84 sensor resistance values as a function of the motor operating temperature.

For the wiring of the sensor, see chapter Electrical installation, Al1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

## Temperature monitoring using KTY83 sensors

One KTY83 sensor can be connected to an analog input and an analog output on the control unit.

The analog output feeds a constant excitation current of 1.0 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

The figure and table below show typical KTY83 sensor resistance values as a function of the motor operating temperature.


It is possible to adjust the motor temperature supervision limits and select how the drive reacts when overtemperature is detected.

For the wiring of the sensor, see chapter Electrical installation, Al1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

## Settings

- Parameter group 35 Motor thermal protection (page 199).


## Programmable protection functions

## External events (parameters 31.01...31.10)

Five different event signals from the process can be connected to selectable inputs to generate trips and warnings for the driven equipment. When the signal is lost, an
external event (fault, warning, or a mere log entry) is generated. The contents of the messages can be edited on the control panel by selecting Menu - Primary settings Advanced functions - External events.

## Motor phase loss detection (parameter 31.19)

The parameter selects how the drive reacts whenever a motor phase loss is detected.

## Earth (Ground) fault detection (parameter 31.20)

Note that

- an earth fault in the supply cable does not activate the protection
- in a grounded supply, the protection activates within 2 milliseconds
- in an ungrounded supply, the supply capacitance must be 1 microfarad or more
- the capacitive currents caused by shielded motor cables up to 300 meters will not activate the protection
- the protection is deactivated when the drive is stopped.


## Supply phase loss detection (parameter 31.21)

The parameter selects how the drive reacts whenever a supply phase loss is detected.

## Safe torque off detection (parameter 31.22)

The drive monitors the status of the Safe torque off input, and this parameter selects which indications are given when the signals are lost. (The parameter does not affect the operation of the Safe torque off function itself). For more information on the Safe torque off function, see chapter Planning the electrical installation, section Implementing the Safe torque off function in the Hardware manual of the drive.

## Swapped supply and motor cabling (parameter 31.23)

The drive can detect if the supply and motor cables have accidentally been swapped (for example, if the supply is connected to the motor connection of the drive). The parameter selects if a fault is generated or not.

## Stall protection (parameters 31.24...31.28)

The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (current, frequency and time) and choose how the drive reacts to a motor stall condition.

## Overspeed protection (parameter 31.30)

The user can set overspeed limits by specifying a margin that is added to the currently-used maximum and minimum speed limits.

## Local control loss detection (parameter 49.05)

The parameter selects how the drive reacts to a control panel or PC tool communication break.

Al supervision (parameters 12.03...12.04)
The parameters select how the drive reacts when an analog input signal moves out of the minimum and/or maximum limits specified for the input. This can be due to broken I/O wiring or sensor.

## Automatic fault resets

The drive can automatically reset itself after overcurrent, overvoltage, undervoltage and external faults. The user can also specify a fault that is automatically reset.

By default, automatic resets are off and must be specifically activated by the user.

## Settings

- Menu - Primary settings - Advanced functions - Autoreset faults
- Parameters 31.12...31.16 (page 182).


## Diagnostics

## Signal supervision

Six signals can be selected to be supervised by this function. Whenever a supervised signal exceeds or falls below predefined limits, a bit in 32.01 Supervision status is activated, and a warning or fault generated.

The supervised signal is low-pass filtered.

## Settings

Parameter group 32 Supervision (page 186).

## Energy saving calculators

This feature consists of the following functionalities:

- An energy optimizer that adjusts the motor flux in such a way that the total system efficiency is maximized
- A counter that monitors used and saved energy by the motor and displays them in kWh , currency or volume of $\mathrm{CO}_{2}$ emissions, and
- A load analyzer showing the load profile of the drive (see separate section on page 79).

In addition, there are counters that show energy consumption in kWh of the current and previous hour as well as the current and previous day.

Note: The accuracy of the energy savings calculation is directly dependent on the accuracy of the reference motor power given in parameter 45.19 Comparison power.

## Settings

- Menu - Energy efficiency
- Parameter group 45 Energy efficiency (page 227).
- Parameters 01.50 Current hour kWh, 01.51 Previous hour kWh, 01.52 Current day kWh and 01.53 Previous day kWh on page 90.


## Load analyzer

## Peak value logger

The user can select a signal to be monitored by a peak value logger. The logger records the peak value of the signal along with the time the peak occurred, as well as motor current, DC voltage and motor speed at the time of the peak. The peak value is sampled at 2 ms intervals.

## Amplitude loggers

The control program has two amplitude loggers.

For amplitude logger 2, the user can select a signal to be sampled at 200 ms intervals, and specify a value that corresponds to $100 \%$. The collected samples are sorted into 10 read-only parameters according to their amplitude. Each parameter represents an amplitude range 10 age points wide, and displays the age of the collected samples that have fallen within that range.

You can view this graphically with the assistant panel or the Drive composer PC tool.


Amplitude logger 1 is fixed to monitor motor current, and cannot be reset. With amplitude logger 1, 100\% corresponds to the maximum output current of the drive $\left(I_{\max }\right)$. The measured current is logged continuously. The distribution of samples is shown by parameters 36.20...36.29.

## Settings

## - Menu - Diagnostics - Load profile

- Parameter group 36 Load analyzer (page 207).


## Diagnostics menu

The Diagnostics menu provides quick information about active faults, warnings and inhibits in the drive and how to fix and reset them. It also helps you to find out why the drive is not starting, stopping or running at the desired speed.

| Off) | ACH580 | 0.0 Hz |
| :---: | :---: | :---: |
| Diagnostics |  |  |
| Star/stop/reference summary |  |  |
| Limit status किष काल <br>  <br>  |  |  |
| Back | 16:04 | Select |

- Start/stop/reference summary: Use this view to find out where the control comes from if the drive is not starting or stopping as expected, or runs at an undesired speed.
- Limit status: Use this view to find out whether any limitations are active if the drive is running at undesired speed.
- Active faults: Use this view to see currently active faults and how to fix and reset them.
- Active warnings: Use this view to see currently active warnings and how to fix them.
- Active inhibits: Use this view to see the active inhibits and how to fix them. In addition, in the Clock, region, display menu you can disable (Enabled by default) and pop-up views showing information on inhibits when you try to start the drive but it is prevented.


## Settings

- Menu - Diagnostics
- Menu - Primary settings - Clock, region, display - Show inhibit pop-up


## Miscellaneous

## Backup and restore

You can make backups of the settings manually to the assistant panel. The assistant panel also keeps one automatic backup. You can restore a backup to another drive, or a new drive replacing a faulty one. You can make backups and restore on the panel or with the Drive composer PC tool.

## Backup

## Manual backup

Make a backup when necessary, for example, after you have started up the drive or when you want to copy the settings to another drive.

Parameter changes from fieldbus interfaces are ignored unless you have forced parameter saving with parameter 96.07 Parameter save manually.

## Automatic backup

The assistant panel has a dedicated space for one automatic backup. An automatic backup is created two hours after the last parameter change. After completing the backup, the panel waits for 24 hours before checking if there are additional parameter changes. If there are, it creates a new backup overwriting the previous one when two hours have passed after the latest change.

You cannot adjust the delay time or disable the automatic backup function.
Parameter changes from fieldbus interfaces are ignored unless you have forced parameter saving with parameter 96.07 Parameter save manually.

## Restore

The backups are shown on the panel. Automatic backups are marked with icon $\mathbb{A}^{A}$ and manual backups with $\square$. To restore a backup, select it and press $\square$. In the following display you can view backup contents and restore all parameters or select a subset to be restored.

Note: To restore a backup, the drive has to be in Local control.

| Off* | ( ACH580 | 0.0 Hz |
| :---: | :---: | :---: |
| Backups |  |  |
| Creat | kup | - |
| (A) ACH580 21.09 .2015 autobackup * $\square$ ACH580 08.09 .2015 <br> $\square$ ACH580 06.10 .2015 |  |  |
| Back | 20.04 | Select |


| Off) ( ACH580 | 0.0 Hz |
| :---: | :---: |
| ACH580 08.09.2015 |  |
|  | $\stackrel{\rightharpoonup}{*}$ |
| $\checkmark$ Restore all parameters |  |
| Select par restore group | - |
| Select user sets | * |
| Select prod. data items | - |
| Back 20:05 | §elent |

## Settings

- Menu - Backups
- Parameter 96.07 Parameter save manually (page 260).


## User parameter sets

The drive supports four user parameter sets that can be saved to the permanent memory and recalled using drive parameters. It is also possible to use digital inputs to switch between user parameter sets. To change a user parameter set, the drive has to be stopped.

A user parameter set contains all editable values in parameter groups 10... 99 except

- I/O extension module settings (group 15)
- data storage parameters (group 47)
- fieldbus communication settings (groups $50 \ldots 53$ and 58 ).

As the motor settings are included in the user parameter sets, make sure the settings correspond to the motor used in the application before recalling a user set. In an application where different motors are used with the drive, the motor ID run needs to be performed with each motor and the results saved to different user sets. The appropriate set can then be recalled when the motor is switched.

## Settings

## - Menu - Primary settings - Advanced functions - User sets

- Parameters 96.10...96.13 (page 261).


## Data storage parameters

Twelve (eight 32 -bit, four 16-bit) parameters are reserved for data storage. These parameters are unconnected by default and can be used for linking, testing and commissioning purposes. They can be written to and read from using other parameters' source or target selections.

## Settings

Parameter group 47 Data storage (page 232).

## Parameters

## What this chapter contains

The chapter describes the parameters, including actual signals, of the control program. At the end of the chapter, on page 274, there is a separate list of the parameters whose default values are different between 50 Hz and 60 Hz supply frequency settings.

## Terms and abbreviations

| Term | Definition |
| :--- | :--- |
| Actual signal | Type of parameter that is the result of a measurement or calculation by <br> the drive, or contains status information. Most actual signals are read- <br> only, but some (especially counter-type actual signals) can be reset. |
| Def | (In the following table, shown on the same row as the parameter name) <br> The default value of a parameter when used in the Factory macro. For <br> information on other macro-specific parameter values, see chapter <br> Default configuration (page 35). |
| FbEq16 | (In the following table, shown on the same row as the parameter range, <br> or for each selection) <br> 16-bit fieldbus equivalent: The scaling between the value shown on the <br> panel and the integer used in communication when a 16-bit value is <br> selected for transmission to an external system. <br> A dash (-) indicates that the parameter is not accessible in 16-bit format. <br> The corresponding 32-bit scalings are listed in chapter Additional <br> parameter data (page 277). |
| Other | The value is taken from another parameter. <br> Choosing "Other" displays a parameter list in which the user can specify <br> the source parameter. |
| Other [bit] | The value is taken from a specific bit in another parameter. <br> Choosing "Other" displays a parameter list in which the user can specify <br> the source parameter and bit. |
| Parameter | Either a user-adjustable operating instruction for the drive, or an actual <br> signal. |
| p.u. | Per unit |
| [parameter number] | Value of the parameter |

## Summary of parameter groups

| Group | Contents | Page |
| :---: | :---: | :---: |
| 01 Actual values | Basic signals for monitoring the drive. | 89 |
| 03 Input references | Values of references received from various sources. | 91 |
| 04 Warnings and faults | Information on warnings and faults that occurred last. | 92 |
| 05 Diagnostics | Various run-time-type counters and measurements related to drive maintenance. | 93 |
| 06 Control and status words | Drive control and status words. | 95 |
| 07 System info | Drive hardware and firmware information. | 101 |
| 10 Standard DI, RO | Configuration of digital inputs and relay outputs. | 101 |
| 11 Standard DIO, FI, FO | Configuration of the frequency input. | 106 |
| 12 Standard AI | Configuration of standard analog inputs. | 108 |
| 13 Standard AO | Configuration of standard analog outputs. | 112 |
| 15 I/O extension module | Configuration of the I/O extension module installed in slot 2. | 118 |
| 19 Operation mode | Selection of local and external control location sources and operating modes. | 125 |
| 20 Start/stop/direction | Start/stop/direction and run/start/jog enable signal source selection; positive/negative reference enable signal source selection. | 126 |
| 21 Start/stop mode | Start and stop modes; emergency stop mode and signal source selection; DC magnetization settings. | 136 |
| 22 Speed reference selection | Speed reference selection; motor potentiometer settings. | 143 |
| 23 Speed reference ramp | Speed reference ramp settings (programming of the acceleration and deceleration rates for the drive). | 152 |
| 24 Speed reference conditioning | Speed error calculation; speed error window control configuration; speed error step. | 156 |
| 25 Speed control | Speed controller settings. | 156 |
| 26 Torque reference chain | Settings for the torque reference chain. | 161 |
| 28 Frequency reference chain | Settings for the frequency reference chain. | 165 |
| 30 Limits | Drive operation limits. | 175 |
| 31 Fault functions | Configuration of external events; selection of behavior of the drive upon fault situations. | 180 |
| 32 Supervision | Configuration of signal supervision functions 1...6. | 186 |
| 34 Timed functions | Configuration of the timed functions. | 192 |
| 35 Motor thermal protection | Motor thermal protection settings such as temperature measurement configuration, load curve definition and motor fan control configuration. | 199 |
| 36 Load analyzer | Peak value and amplitude logger settings. | 207 |
| 37 User load curve | Settings for user load curve. | 210 |
| 40 Process PID set 1 | Parameter values for process PID control. | 213 |
| 41 Process PID set 2 | A second set of parameter values for process PID control. | 224 |
| 43 Brake chopper | Settings for the internal brake chopper. | 225 |
| 45 Energy efficiency | Settings for the energy saving calculators. | 227 |
| 46 Monitoring/scaling settings | Speed supervision settings; actual signal filtering; general scaling settings. | 230 |


| Group | Contents | Page |
| :--- | :--- | :---: |
| 47 Data storage | Data storage parameters that can be written to and read from <br> using other parameters' source and target settings. | 232 |
| 49 Panel port communication | Communication settings for the control panel port on the drive. | 233 |
| 50 Fieldbus adapter (FBA) | Fieldbus communication configuration. | 234 |
| 51 FBA A settings | Fieldbus adapter A configuration. | 238 |
| 52 FBA A data in | Selection of data to be transferred from drive to fieldbus controller <br> through fieldbus adapter A. | 240 |
| 53 FBA A data out | Selection of data to be transferred from fieldbus controller to drive <br> through fieldbus adapter A. | 240 |
| 58 Embedded fieldbus | Configuration of the embedded fieldbus (EFB) interface. | 241 |
| 70 Override | Enabling/disabling of override function, override activation signal <br> and override speed/frequency. | 247 |
| 71 External PID1 | Configuration of external PID. | 249 |
| 76 PFC configuration | PFC (Pump and fan control) and Autochange configuration <br> parameters. See also section Pump and fan control (PFC) on <br> page 66. | 251 |
| 77 PFC maintenance and | PFC (Pump and fan control) and Autochange configuration <br> parameters. See also section Pump and fan control (PFC) on <br> page 66. | 257 |
| monitoring | Actual flow calculation. | 257 |
| 80 Flow calculation | Various hardware-related settings. | 258 |
| 95 HW configuration | Language selection; access levels; macro selection; parameter <br> save and restore; control unit reboot; user parameter sets; unit <br> selection. | 259 |
| 96 System | Switching frequency; slip gain; voltage reserve; flux braking; anti- <br> cogging (signal injection); IR compensation. | 264 |
| 97 Motor control | Motor values supplied by the user that are used in the motor <br> model. | 267 |
| 98 User motor parameters | 268 |  |
| 99 Motor data | Motor configuration settings. |  |
|  |  |  |

## Parameter listing

| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 01 Actual values |  | Basic signals for monitoring the drive. <br> All parameters in this group are read-only unless otherwise noted. <br> Note: Values of these actual signals are filtered with the filter time defined in group 46 Monitoring/scaling settings. The selection lists for parameters in other groups mean the raw value of the actual signal instead. For example, if a selection is "Output frequency" it does not point to the value of parameter 01.06 Output frequency but to the raw value. |  |
| 01.01 | Motor speed used | Estimated motor speed. A filter time constant for this signal can be defined by parameter 46.11 Filter time motor speed. | - |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Estimated motor speed. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.01 \end{array}$ |
| 01.02 | Motor speed estimated | Estimated motor speed in rpm. A filter time constant for this signal can be defined by parameter 46.11 Filter time motor speed. | - |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Estimated motor speed. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.01 \end{array}$ |
| 01.03 | Motor speed \% | Motor speed in percent of the synchronous motor speed. | - |
|  | $\begin{aligned} & -1000.00 \ldots \\ & 1000.00 \% \end{aligned}$ | Motor speed. | See par. <br> 46.01 |
| 01.06 | Output frequency | Estimated drive output frequency in Hz . A filter time constant for this signal can be defined by parameter 46.12 Filter time output frequency. | - |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Estimated output frequency. | $\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$ |
| 01.07 | Motor current | Measured (absolute) motor current in A. | - |
|  | 0.00...30000.00 A | Motor current. | $1=1 \mathrm{~A}$ |
| 01.08 | Motor current \% of motor nom | Motor current (drive output current) in percent of the nominal motor current. | - |
|  | 0.0...1000.0\% | Motor current. | 1 = 1\% |
| 01.09 | Motor current \% of drive nom | Motor current (drive output current) in percent of the nominal drive current. | - |
|  | 0.0...1000.0\% | Motor current. | 1 = 1\% |
| 01.10 | Motor torque | Motor torque in percent of the nominal motor torque. See also parameter 01.30 Nominal torque scale. <br> A filter time constant for this signal can be defined by parameter 46.13 Filter time motor torque. | - |
|  | -1600.0...1600.0\% | Motor torque. | $\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$ |
| 01.11 | DC voltage | Measured DC link voltage. | - |
|  | 0.00...2000.00 V | DC link voltage. | $10=1 \mathrm{~V}$ |
| 01.13 | Output voltage | Calculated motor voltage in V AC. | - |
|  | $0 . .2000$ V | Motor voltage. | $1=1 \mathrm{~V}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 01.14 | Output power | Drive output power. The unit is selected by parameter 96.16 Unit selection. A filter time constant for this signal can be defined by parameter 46.14 Filter time power. | - |
|  | $\begin{aligned} & \hline-32768.00 \ldots \\ & 32767.00 \mathrm{~kW} \text { or hp } \end{aligned}$ | Output power. | 1 = 1 unit |
| 01.15 | Output power \% of motor nom | Output power in percent of the nominal motor power. | - |
|  | -300.00... 300.00\% | Output power. | 1 = 1\% |
| 01.16 | Output power \% of drive nom | Output power in percent of the nominal drive power. | - |
|  | -300.00... 300.00\% | Output power. | 1 = 1\% |
| 01.17 | Motor shaft power | Estimated mechanical power at motor shaft. | - |
|  | $\begin{aligned} & \hline-32768.00 \ldots \\ & 32767.00 \mathrm{~kW} \text { or hp } \end{aligned}$ | Motor shaft power. | 1 = 1 unit |
| 01.18 | Inverter GWh counter | Amount of energy that has passed through the drive (in either direction) in full gigawatt-hours. The minimum value is zero. | - |
|  | 0... 65535 GWh | Energy in GWh. | 1 = 1 GWh |
| 01.19 | Inverter MWh counter | Amount of energy that has passed through the drive (in either direction) in full megawatt-hours. Whenever the counter rolls over, 01.18 Inverter GWh counter is incremented. The minimum value is zero. | - |
|  | 0... 1000 MWh | Energy in MWh. | 1 = 1 MWh |
| 01.20 | Inverter kWh counter | Amount of energy that has passed through the drive (in either direction) in full kilowatt-hours. Whenever the counter rolls over, 01.19 Inverter MWh counter is incremented. The minimum value is zero. | - |
|  | 0... 1000 kWh | Energy in kWh. | $10=1 \mathrm{kWh}$ |
| 01.24 | Flux actual \% | Used flux reference in percent of nominal flux of motor. | - |
|  | 0...200\% | Flux reference. | 1 = 1\% |
| 01.30 | Nominal torque scale | Torque that corresponds to $100 \%$ of nominal motor torque. The unit is selected by parameter 96.16 Unit selection. Note: This value is copied from parameter 99.12 Motor nominal torque if entered. Otherwise the value is calculated from other motor data. | - |
|  | $\begin{aligned} & 0.000 \ldots . .4000000 \\ & \mathrm{~N} \cdot \mathrm{~m} \text { or lb } \cdot \mathrm{ft} \end{aligned}$ | Nominal torque. | 1 = 100 unit |
|  | Current hour kWh | Current hour energy consumption. This is the energy of the last 60 minutes (not necessarily continuous) the drive has been running, not the energy of a calendar hour. The value is set to the value before the power cycle when the drive is again up and running. | - |
|  | $\begin{aligned} & \hline 0.00 \ldots 1000000.00 \\ & \mathrm{kWh} \end{aligned}$ | Energy. | $1=1 \mathrm{kWh}$ |
| 01.51 | Previous hour kWh | Previous hour energy consumption. The value 01.50 Current hour $k W h$ is stored here when its values has been cumulated for 60 minutes. The value is set to the value before the power cycle when the drive is again up and running. | - |
|  | $\begin{aligned} & 0.00 \ldots 1000000.00 \\ & \text { kWh } \end{aligned}$ | Energy. | $1=1 \mathrm{kWh}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 01.52 | Current day kWh | Current day energy consumption. This is the energy of the last 24 hours (not necessarily continuous) the drive has been running, not the energy of a calendar day. The value is set to the value before the power cycle when the drive is again up and running. | - |
|  | $\begin{aligned} & \hline 0.00 \ldots 1000000.00 \\ & \mathrm{kWh} \end{aligned}$ | Energy. | $1=1 \mathrm{kWh}$ |
| 01.53 | Previous day kWh | Previous day energy consumption. The value 01.52 Current day $k W h$ is stored here when its value has been cumulated for 24 hours. The value is set to the value before the power cycle when the drive is again up and running. | - |
|  | $\begin{aligned} & \hline 0.00 \ldots 1000000.00 \\ & \mathrm{kWh} \end{aligned}$ | Energy. | $1=1 \mathrm{kWh}$ |
| 01.61 | Abs motor speed used | Absolute value of parameter 01.01 Motor speed used. | - |
|  | $\begin{aligned} & 0.00 \ldots 30000.00 \\ & \mathrm{rpm} \end{aligned}$ |  | $1=1 \mathrm{rpm}$ |
| 01.62 | Abs motor speed \% | Absolute value of parameter 01.03 Motor speed \%. | - |
|  | 0.00... 1000.00\% |  | 1 = 1\% |
| 01.63 | Abs output frequency | Absolute value of parameter 01.06 Output frequency. | - |
|  | $0.00 \ldots 500.00 \mathrm{~Hz}$ |  | $1=1 \mathrm{~Hz}$ |
| 01.64 | Abs motor torque | Absolute value of parameter 01.10 Motor torque. | - |
|  | 0.0...1600.0\% |  | 1 = 1\% |
| 01.65 | Abs output power | Absolute value of parameter 01.14 Output power. | - |
|  | $\begin{aligned} & 0.00 \ldots 32767.00 \\ & \text { kW or hp } \end{aligned}$ |  | 1 = 1 kW |
| 01.66 | Abs output power \% mot nom | Absolute value of parameter 01.15 Output power \% of motor nom. | - |
|  | 0.00... 300.00\% |  | 1 = $1 \%$ |
| 01.67 | Abs output power \% drive nom | Absolute value of parameter 01.16 Output power \% of drive nom. | - |
|  | 0.00... 300.00\% |  | 1 = $1 \%$ |
| 01.68 | Abs motor shaft power | Absolute value of parameter 01.17 Motor shaft power. | - |
|  | $\begin{aligned} & 0.00 \ldots 32767.00 \\ & \text { kW or hp } \end{aligned}$ |  | $1=1 \mathrm{~kW}$ |


| 03 Input references | Values of references received from various sources. <br> All parameters in this group are read-only unless otherwise <br> noted. |  |  |
| :--- | :--- | :--- | :--- |
| 03.01 | Panel reference | Reference 1 given from the control panel or PC tool. | - |
| $-100000.00 \ldots$ <br> $100000.00 \mathrm{rpm}, \mathrm{Hz}$ <br> or $\%$ | Control panel or PC tool reference. | $1=10$ unit |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 03.02 | Panel reference <br> remote | Reference 2 given from the control panel or PC tool. | - |
|  | $-100000.00 \ldots$ <br> 100000.00 rpm, Hz <br> or \% | Control panel or PC tool reference. | $1=10$ unit |
| 03.05 | FB A reference 1 | Reference 1 received through fieldbus adapter A. <br> See also chapter Fieldbus control through a fieldbus adapter <br> (page 355). | - |
|  | $-100000.00 \ldots$ <br> 100000.00 | Reference 1 from fieldbus adapter A. | $1=10$ |
| 03.06 | FB A reference 2 | Reference 2 received through fieldbus adapter A. | - |
|  | $-100000.00 \ldots$ <br> 100000.00 | Reference 2 from fieldbus adapter A. | $1=10$ |
| 03.09 | EFB reference 1 | Scaled reference 1 received through the embedded fieldbus <br> interface. | $1=10$ |
| -30000.00... | Scaled reference 1 received through the embedded fieldbus <br> interface. | $1=10$ |  |
| 03.10 | EFB reference 2 | Scaled reference 2 received through the embedded fieldbus <br> interface. | $1=10$ |
|  | $-30000.00 \ldots$ <br> 30000.00 | Scaled reference 2 received through the embedded fieldbus <br> interface. | $1=10$ |


| 04 Warnings and faults |  | Information on warnings and faults that occurred last. For explanations of individual warning and fault codes, see chapter Fault tracing. <br> All parameters in this group are read-only unless otherwise noted. |  |
| :---: | :---: | :---: | :---: |
| 04.01 | Tripping fault | Code of the 1st active fault (the fault that caused the current trip). | - |
|  | 0000h...FFFFh | 1st active fault. | 1 = 1 |
| 04.02 | Active fault 2 | Code of the 2nd active fault. | - |
|  | 0000h...FFFFh | 2nd active fault. | 1 = 1 |
| 04.03 | Active fault 3 | Code of the 3rd active fault. | - |
|  | 0000h...FFFFh | 3rd active fault. | 1 = 1 |
| 04.06 | Active warning 1 | Code of the 1st active warning. | - |
|  | 0000h...FFFFh | 1st active warning. | $1=1$ |
| 04.07 | Active warning 2 | Code of the 2nd active warning. | - |
|  | 0000h...FFFFh | 2nd active warning. | 1 = 1 |
| 04.08 | Active warning 3 | Code of the 3rd active warning. | - |
|  | 0000h...FFFFh | 3rd active warning. | 1 = 1 |
| 04.11 | Latest fault | Code of the 1st stored (non-active) fault. | - |
|  | 0000h...FFFFh | 1st stored fault. | 1 = 1 |
| 04.12 | 2nd latest fault | Code of the 2nd stored (non-active) fault. | - |
|  | 0000h...FFFFh | 2nd stored fault. | $1=1$ |
| 04.13 | 3rd latest fault | Code of the 3rd stored (non-active) fault. | - |
|  | 0000h...FFFFh | 3rd stored fault. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 04.16 | Latest warning | Code of the 1st stored (non-active) warning. | - |
|  | 0000h...FFFFh | 1st stored warning. | $1=1$ |
| 04.17 | 2nd latest warning | Code of the 2nd stored (non-active) warning. | - |
|  | 0000h...FFFFh | 2nd stored warning. | $1=1$ |
| 04.18 | 3rd latest warning | Code of the 3rd stored (non-active) warning. | - |
|  | 0000h...FFFFh | 3rd stored warning. | $1=1$ |


| 05 Diagnostics |  | Various run-time-type counters and measurements related to drive maintenance. <br> All parameters in this group are read-only unless otherwise noted. |  |
| :---: | :---: | :---: | :---: |
| 05.01 | On-time counter | On-time counter. The counter runs when the drive is powered. | - |
|  | 0...65535 d | On-time counter. | 1 = 1 d |
| 05.02 | Run-time counter | Motor run-time counter. The counter runs when the inverter modulates. | - |
|  | 0...65535 d | Motor run-time counter. | 1 = 1 d |
| 05.04 | Fan on-time counter | Running time of the drive cooling fan. Can be reset from the control panel by keeping Reset down for over 3 seconds. | - |
|  | 0...65535 d | Cooling fan run-time counter. | 1 = 1 d |
| 05.10 | Control board temperature | Measured temperature of the control board | - |
|  | $-100 . . .300{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ | Control board temperature in degrees Celsius or Fahrenheit. | 1 = unit |
| 05.11 | Inverter temperature | Estimated drive temperature in percent of fault limit. The fault limit varies according to the type of the drive. $\begin{aligned} & 0.0 \%=0^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right) \\ & 100.0 \%=\text { Fault limit } \end{aligned}$ | - |
|  | -40.0...160.0\% | Drive temperature in percent. | 1 = 1\% |



| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 06 Control and status words |  | Drive control and status words. |  |  |
| 06.01 | Main control word | The main control word of the drive. This parameter shows the control signals as received from the selected sources (such as digital inputs, the fieldbus interfaces and the application program). <br> For the bit descriptions see page 361. The related status word and state diagram are presented on pages 363 and 364 respectively. <br> This parameter is read-only. |  | - |
|  |  | Bit | Name |  |
|  |  | 0 | Off1 control |  |
|  |  | 1 | Off2 control |  |
|  |  | 2 | Off3 control |  |
|  |  | 3 | Run |  |
|  |  | 4 | Ramp out zero |  |
|  |  | 5 | Ramp hold |  |
|  |  | 6 | Ramp in zero |  |
|  |  | 7 | Reset |  |
|  |  | 8 | Inching 1 |  |
|  |  | 9 | Inching 2 |  |
|  |  | 10 | Remote cmd |  |
|  |  | 11 | Ext ctrl loc |  |
|  |  | 12 | User bit 0 |  |
|  |  | 13 | User bit 1 |  |
|  |  | 14 | User bit 2 |  |
|  |  | 15 | User bit 3 |  |
|  | 0000h...FFFFh | Main | ntrol word. | 1 = 1 |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 06.11 | Main status word | Main status word of the drive. <br> For the bit descriptions see page 363. The related control word and state diagram are presented on pages 361 and 364 respectively. <br> This parameter is read-only. |  | - |
|  |  | Bit | Name |  |
|  |  | 0 | Ready to switch ON |  |
|  |  | 1 | Ready run |  |
|  |  | 2 | Ready ref |  |
|  |  | 3 | Tripped |  |
|  |  | 4 | Off 2 inactive |  |
|  |  | 5 | Off 3 inactive |  |
|  |  | 6 | Switch-on inhibited |  |
|  |  | 7 | Warning |  |
|  |  | 8 | At setpoint |  |
|  |  | 9 | Remote |  |
|  |  | 10 | Above limit |  |
|  |  | 11 | User bit 0 |  |
|  |  | 12 | User bit 1 |  |
|  |  | 13 | User bit 2 |  |
|  |  | 14 | User bit 3 |  |
|  |  | 15 | Reserved |  |
|  | 0000h...FFFFh | Main | tus word. | $1=1$ |


| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 06.16 | Drive status word 1 |  | Drive status word 1. This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 1 | Inhibited |  | 1 = Start inhibited. To start the drive, the inhibiting signal (see par. 06.18) must be removed and the start signal cycled. |  |
|  | 2 | DC charged 1 |  | 1 = DC circuit has been charged |  |
|  | 3 | Ready to start 1 |  | 1 = Drive is ready to receive a start command |  |
|  | 4 | Following <br> reference 1 |  | 1 = Drive is ready to follow given reference |  |
|  | 5 | Started 1 |  | 1 = Drive has been started |  |
|  | 6 | Modulating 1 |  | 1 = Drive is modulating (output stage is being controlled) |  |
|  | 7 | Limiting 1 |  | 1 = Any operating limit (speed, torque, etc.) is active |  |
|  | 8 | Local control 1 |  | 1 = Drive is in local control |  |
|  | 9 | Network control 1 |  | 1 = Drive is in network control (see page 11). |  |
|  | 10 | Ext1 active 1 |  | 1 = Control location EXT1 active |  |
|  | 11 | Ext2 active 1 |  | 1 = Control location EXT2 active |  |
|  | 12 | Reserved |  |  |  |
|  | 14...15 | Reserved |  |  |  |
|  | 0000h...FFFFh |  | Drive status word 1. |  | 1 = 1 |
| 06.17 | Drive status word 2 |  | Drive status word 2. This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Identification run done |  | 1 = Motor identification (ID) run has been performed |  |
|  | 1 | Magnetized |  | 1 = The motor has been magnetized |  |
|  | 2 | Torque control |  | 1 = Torque control mode active |  |
|  | 3 | Speed control |  | 1 = Speed control mode active |  |
|  | 4 | Reserved |  |  |  |
|  | 5 | Safe reference active |  | 1 = A "safe" reference is applied by functions such as parameters 49.05 and 50.02 |  |
|  | 6 | Last speed active |  | 1 = A "last speed" reference is applied by functions such as parameters 49.05 and 50.02 |  |
|  | 7 | Loss of reference |  | 1 = Reference signal lost |  |
|  | 8 | Emergency stop failed |  | 1 = Emergency stop failed (see parameters 31.32 and 31.33) |  |
|  | 9 | Jogging active |  | 1 = Jogging enable signal is on |  |
|  | 10 | Above limit |  | 1 = Actual speed, frequency or torque equals or exceeds limit (defined by parameters $46.31 \ldots 46.33$ ). Valid in both directions of rotation. |  |
|  | 11...12 | Reserved |  |  |  |
|  | 13 | Start delay active |  | 1 = Start delay (par. 21.22) active. |  |
|  | 14...15 | Reserved |  |  |  |
|  | 0000h...FFFFh |  | Drive status word 2. |  | 1 = 1 |


| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 06.18 | Start inhibit status word |  | Start inhibit status word. This word specifies the source of the inhibiting signal that is preventing the drive from starting. The conditions marked with an asterisk (*) only require that the start command is cycled. In all other instances, the inhibiting condition must be removed first. <br> See also parameter 06.16 Drive status word 1, bit 1 . This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Not ready run |  | 1 = DC voltage is missing or drive has not been parametrized correctly. Check the parameters in groups 95 and 99. |  |
|  | 1 | Ctrl location changed |  | * 1 = Control location has changed |  |
|  | 2 | SSW inhibit |  | 1 = Control program is keeping itself in inhibited state |  |
|  | 3 | Fault reset |  | * 1 = A fault has been reset |  |
|  | 4 | Lost start enable |  | 1 = Start enable signal missing |  |
|  | 5 | Lost run enable |  | 1 = Run enable signal missing |  |
|  | 6 | Reserved |  |  |  |
|  | 7 | STO |  | 1 = Safe torque off function active |  |
|  | 8 | Current calibration ended |  | * 1 = Current calibration routine has finished |  |
|  | 9 | ID run ended |  | * 1 = Motor identification run has finished |  |
|  | 10 | Reserved |  |  |  |
|  | 11 | Em Off1 |  | 1 = Emergency stop signal (mode off1) |  |
|  | 12 | Em Off2 |  | 1 = Emergency stop signal (mode off2) |  |
|  | 13 | Em Off3 |  | 1 = Emergency stop signal (mode off3) |  |
|  | 14 | Auto reset inhibit |  | 1 = The autoreset function is inhibiting operation |  |
|  | 15 | Jogging active |  | 1 = The jogging enable signal is inhibiting operation |  |
|  | 0000h...FFFFh |  | Start inhibit status word. |  | 1 = 1 |


| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 06.19 | Speed control status word |  | Speed control status word. This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Zero speed |  | 1 = Drive is running at zero speed |  |
|  | 1 | Forward |  | 1 = Drive is running in forward direction above zero speed limit(par. 21.06) (par. 21.06) |  |
|  | 2 | Reverse |  | 1 = Drive is running in reverse direction above zero speed limit (par. 21.06) |  |
|  | 3 | Out of window |  | Not for ACH580. |  |
|  | 4 | Internal speed feedback |  | Not for ACH580. |  |
|  | 5 | Encoder 1 feedback |  | Not for ACH580. |  |
|  | 6 | Encoder 2 feedback |  | Not for ACH580. |  |
|  | 7 | Any constant speed request |  | 1 = A constant speed or frequency has been selected; see par. 06.20. |  |
|  | 8 | Follower speed correction min lim |  | Not for ACH580. |  |
|  | $9$ | Follower speed correction max lim |  | Not for ACH580. |  |
|  | 10... 15 | Reserved |  |  |  |
|  | 0000h...FFFFh |  | Speed control status word. |  | 1 = 1 |
| 06.20 | Constant speed status word |  | Constant speed/frequency status word. Indicates which constant speed or frequency is active (if any). See also parameter 06.19 Speed control status word, bit 7, and section Constant speeds/frequencies (page 50). This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Constant speed 1 |  | 1 = Constant speed or frequency 1 selected |  |
|  | 1 | Constant speed 2 |  | 1 = Constant speed or frequency 2 selected |  |
|  | 2 | Constant speed 3 |  | 1 = Constant speed or frequency 3 selected |  |
|  | 3 | Constant speed 4 |  | 1 = Constant speed or frequency 4 selected |  |
|  | 4 | Constant speed 5 |  | 1 = Constant speed or frequency 5 selected |  |
|  | 5 | Constant speed 6 |  | 1 = Constant speed or frequency 6 selected |  |
|  | 6 | Constant speed 7 |  | 1 = Constant speed or frequency 7 selected |  |
|  | 7...15 | Reserved |  |  |  |
|  | 0000h...FFFFh |  | Constant speed/frequency status word. |  | 1 = 1 |


| No. | Name/Value |  | Description |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 06.21 | Drive status word 3 |  | Drive status word 3. <br> This parameter is read-only. |  |  | - |
|  | Bit | Name |  | Description |  |  |
|  | 0 | DC hold active |  | 1 = DC hold is active |  |  |
|  | 1 | Post-magnetizing active |  | 1 = Post-magnetizing is active |  |  |
|  | 2 | Motor pre-heating active |  | 1 = Motor pre-heating is active |  |  |
|  | $3 \ldots 15$ | Reserved |  |  |  |  |
|  | 0000h...FFFFh |  | Drive status word 1. |  |  | 1 = 1 |
| 06.22 | HVAC status word |  | HVAC specific status word. This parameter is read-only. |  |  | - |
|  | Bit | Name |  |  | Description |  |
|  | 0 | Hand mode |  |  | 0 = Drive is not operated from the panel in hand mode; 1 = Drive is operated from the panel in hand mode |  |
|  | 1 | Off mode |  |  | 0 = Drive is not in off mode; 1 = Drive is in off mode. |  |
|  | 2 | Auto mode |  |  | 0 = Drive is not in auto mode; 1 = Drive is in auto mode. |  |
|  | 3 | Override |  |  | $0=$ Drive is not in override mode; 1 = Drive is in override mode. |  |
|  | 4 | Pre-heating |  |  | $0=$ Motor pre-heating is not active; $1=$ Motor pre-heating is active. |  |
|  | 5... 6 | Reserved |  |  |  |  |
|  | 7 | Run permissive |  |  | $0=$ Run permissive is not present, drive is not allowed to run; $1=$ Run permissive is present, drive is allowed to run. |  |
|  | 8 | Start interlock 1 |  |  | $0=$ Start interlock 1 is not present, drive is not allowed to start; 1 = Start interlock 1 is present, drive is allowed to start. |  |
|  | 9 | Start interlock 2 |  |  | $0=$ Start interlock 2 is not present, drive is not allowed to start; 1 = Start interlock 2 is present, drive is allowed to start. |  |
|  | 10 | Start interlock 3 |  |  | $0=$ Start interlock 3 is not present, drive is not allowed to start; 1 = Start interlock 3 is present, drive is allowed to start. |  |
|  | 11 | Start interlock 4 |  |  | 0 = Start interlock 4 is not present, drive is not allowed to start; <br> 1 = Start interlock 4 is present, drive is allowed to start. |  |
|  | 12... 15 | Reserved |  |  |  |  |
|  | 0000h...FFFFh |  | Start inhibit status word. |  |  | 1 = 1 |
| 06.30 | MSW bit 11 selection |  | Selects a binary source whose status is transmitted as bit 11 (User bit 0) of 06.11 Main status word. |  |  | Ext ctrl loc |
|  | False |  | 0. |  |  | 0 |
|  | True |  | 1. |  |  | 1 |
|  | Ext ctrl loc |  | Bit 11 of 06.01 Main control word (see page 96). |  |  | 2 |
|  | Other [bit] |  | Source selection (see Terms and abbreviations on page 86). |  |  | - |
| 06.31 | MSW bit 12 selection |  | Selects a binary source whose status is transmitted as bit 12 (User bit 1) of 06.11 Main status word. |  |  |  |
|  | False |  | 0. |  |  | 0 |
|  | True |  | 1. |  |  | 1 |
|  | Other [bit] |  | Source selection (see Terms and abbreviations on page 86). |  |  | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 06.32 | MSW bit 13 <br> selection | Selects a binary source whose status is transmitted as bit 13 <br> (User bit 2) of 06.11 Main status word. | False |
| False | 0. | 0 |  |
| True | 1. | 1 |  |
| Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |  |
| 06.33 | MSW bit 14 <br> selection | Selects a binary source whose status is transmitted as bit 14 <br> (User bit 3) of 06.11 Main status word. | False |
| False | 0. | 0 |  |
| True | 1. | 1 |  |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |


| $\mathbf{0 7}$ System info | Drive hardware and firmware information. <br> All parameters in this group are read-only. |  |  |
| :--- | :--- | :--- | :--- |
| 07.03 | Drive rating id | Type of the drive/inverter unit. | - |
| 07.04 | Firmware name | Firmware identification. | - |
| 07.05 | Firmware version | Version number of the firmware. | - |
| 07.06 | Loading package <br> name | Name of the firmware loading package. | - |
| 07.07 | Loading package <br> version | Version number of the firmware loading package. | - |
| 07.11 | Cpu usage | Microprocessor load in percent. | - |
|  | 0...100\% | Microprocessor load. | $1=1 \%$ |
| 07.25 | Customization <br> package name | First five ASCII letters of the name given to the customization <br> package. The full name is visible under System info on the <br> control panel or the Drive composer PC tool. N/A_ = None. | - |
| 07.26 | Customization <br> package version | Customization package version number. Also visible under <br> System info on the control panel or the Drive composer PC <br> tool. | - |


| 10 Standard DI, RO | Configuration of digital inputs and relay outputs. |  |
| :--- | :--- | :--- |
| $10.02 \quad$ DI delayed status | Displays the status of digital inputs DI1...DI6. Bits 0...5 reflect <br> the delayed status of DI1...DI6. <br> This word is updated only after a 2 ms activation/deactivation <br> delay. When the value of a digital input changes, it must <br> remain the same in two consecutive samples, that is for 2 ms, <br> for the new value to be accepted. <br> This parameter is read-only. | - |


| Bit | Name | Description |
| :--- | :--- | :--- |
| 0 | DI1 | $1=$ Digital input 1 is ON. |
| 1 | DI2 | $1=$ Digital input 2 is ON. |
| 2 | DI3 | $1=$ Digital input 3 is ON. |
| 3 | DI4 | $1=$ Digital input 4 is ON. |
| 4 | DI5 | $1=$ Digital input 5 is ON. |
| 5 | DI6 | $1=$ Digital input 6 is ON. |
| $7 \ldots 15$ | Reserved |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 10.03 | DI force selection | The electrical statuses of the digital inputs can be overridden for eg. testing purposes. A bit in parameter 10.04 DI forced data is provided for each digital input, and its value is applied whenever the corresponding bit in this parameter is 1 . <br> Note: Boot and power cycle reset the force selections (parameters 10.03 and 10.04). | 0000h |
|  | Bit Value |  |  |
|  | 1 = Force DI1 to value of bit 0 of parameter 10.04 DI forced data. |  |  |
|  | 1 = Force DI2 to value of bit 1 of parameter 10.04 DI forced data. |  |  |
|  | 1 = Force DI3 to value of bit 2 of parameter 10.04 DI forced data. |  |  |
|  | 1 = Force DI4 to value of bit 3 of parameter 10.04 DI forced data. |  |  |
|  | 1 = Force DI5 to value of bit 4 of parameter 10.04 DI forced data. |  |  |
|  | 1 = Force DI6 to value of bit 5 of parameter 10.04 DI forced data. |  |  |
|  | $6 . .15$ Reserved | Reserved |  |
|  | 0000h...FFFFh | Override selection for digital inputs. | 1 = 1 |
| 10.04 | DI forced data | Allows the data value of a forced digital input to be changed from 0 to 1 . It is only possible to force an input that has been selected in parameter 10.03 DI force selection. <br> Bit 0 is the forced value for DI1; bit 5 is the forced value for the DI6. | 0000h |
|  | Value |  |  |
|  | Force the value of this bit to D1, if so defined in parameter 10.03 DI force selection. |  |  |
|  | Force the value of this bit to D3, if so defined in parameter 10.03 DI force selection. |  |  |
|  | Force the value of this bit to D3, if so defined in parameter 10.03 DI force selection. |  |  |
|  | Force the value of this bit to D4, if so defined in parameter 10.03 DI force selection. |  |  |
|  | Force the value of this bit to D5, if so defined in parameter 10.03 DI force selection. |  |  |
|  | Force the value of this bit to D6, if so defined in parameter 10.03 DI force selection. |  |  |
|  | Reserved |  |  |
|  | 0000h...FFFFh | Forced values of digital inputs. | 1 = 1 |
| 10.21 | RO status | Status of relay outputs RO3...RO1. Example: 00000001b = RO1 is energized, RO2...RO3 are de-energized. | - |
|  | Value |  |  |
|  | 1 = RO1 is energized. |  |  |
|  | 1 = RO2 is energized. |  |  |
|  | 1 = RO3 is energized. |  |  |
|  | Reserved |  |  |
|  | 0000h...FFFFh | Status of relay outputs. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 10.22 | RO force selection | The signals connected to the relay outputs can be overridden <br> for eg. testing purposes. A bit in parameter 10.23 RO forced <br> data is provided for each relay output, and its value is applied <br> whenever the corresponding bit in this parameter is 1. <br> Note: Boot and power cycle reset the force selections <br> (parameters 10.22 and 10.23). |  |
|  | Bit Value  <br> 0 $1=$ Force RO1 to value of bit 0 of parameter 10.23 RO forced data.  <br> 1 1 = Force RO2 to value of bit 1 of parameter 10.23 RO forced data.  <br> 2 1 = Force RO3 to value of bit 2 of parameter 10.23 RO forced data.  <br> $3 \ldots 15$ Reserved  |  |  |


|  | 0000h...FFFFh | Override selection for relay outputs. | $1=1$ |
| :--- | :--- | :--- | :--- |
| 10.23 | $R O$ forced data | Contains the values of relay outputs that are used instead of <br> the connected signals if selected in parameter 10.22 RO <br> force selection. Bit 0 is the forced value for RO1. |  |


| Bit | Value |
| :--- | :--- |
| 0 | Force the value of this bit to RO1, if so defined in parameter 10.22 RO force selection. |
| 1 | Force the value of this bit to RO2, if so defined in parameter 10.22 RO force selection. |
| 2 | Force the value of this bit to RO3, if so defined in parameter 10.22 RO force selection. |
| $3 \ldots 15$ | Reserved |


|  | 0000h...FFFFh | Forced RO values. | 1 = 1 |
| :---: | :---: | :---: | :---: |
| 10.24 | RO1 source | Selects a drive signal to be connected to relay output RO1. | Ready run |
|  | Not energized | Output is not energized. | 0 |
|  | Energized | Output is energized. | 1 |
|  | Ready run | Bit 1 of 06.11 Main status word (see page 96). | 2 |
|  | Enabled | Bit 0 of 06.16 Drive status word 1 (see page 97). | 4 |
|  | Started | Bit 5 of 06.16 Drive status word 1 (see page 97). | 5 |
|  | Magnetized | Bit 1 of 06.17 Drive status word 2 (see page 97). | 6 |
|  | Running | Bit 6 of 06.16 Drive status word 1 (see page 97). | 7 |
|  | Ready ref | Bit 2 of 06.11 Main status word (see page 96). | 8 |
|  | At setpoint | Bit 8 of 06.11 Main status word (see page 96). | 9 |
|  | Reverse | Bit 2 of 06.19 Speed control status word (see page 99). | 10 |
|  | Zero speed | Bit 0 of 06.19 Speed control status word (see page 99). | 11 |
|  | Above limit | Bit 10 of 06.17 Drive status word 2 (see page 97). | 12 |
|  | Warning | Bit 7 of 06.11 Main status word (see page 96). | 13 |
|  | Fault | Bit 3 of 06.11 Main status word (see page 96). | 14 |
|  | Fault (-1) | Inverted bit 3 of 06.11 Main status word (see page 96). | 15 |
|  | Fault/Warning | Bit 3 of 06.11 Main status word OR bit 7 of 06.11 Main status word (see page 96). | 16 |
|  | Overcurrent | Fault 2310 Overcurrent has occurred. | 17 |
|  | Overvoltage | Fault 3210 DC link overvoltage has occurred. | 18 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Drive temp | Fault 2381 IGBT overload or 4110 Control board temperature or 4210 IGBT overtemperature or 4290 Cooling or 42F1 IGBT temperature or 4310 Excess temperature or 4380 Excess temperature difference has occurred. | 19 |
|  | Undervoltage | Fault 3220 DC link undervoltage has occurred. | 20 |
|  | Motor temp | Fault 4981 External temperature 1 or 4982 External temperature 2 has occurred. | 21 |
|  | Ext2 active | Bit 11 of 06.16 Drive status word 1 (see page 97). | 23 |
|  | Remote control | Bit 9 of 06.11 Main status word (see page 96). | 24 |
|  | MCB | Reserved | 25 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 27 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 28 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 29 |
|  | Reserved |  | 30... 32 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 33 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 34 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 35 |
|  | Start delay | Bit 13 of 06.17 Drive status word 2 (see page 97). | 39 |
|  | RO/DIO control word bit0 | Bit 0 of 10.99 RO/DIO control word (see page 106). | 40 |
|  | RO/DIO control word bit1 | Bit 1 of 10.99 RO/DIO control word (see page 106). | 41 |
|  | RO/DIO control word bit2 | Bit 2 of 10.99 RO/DIO control word (see page 106). | 42 |
|  | PFC1 | Bit 0 of 76.01 PFC status (see page 251). | 43 |
|  | PFC2 | Bit 1 of 76.01 PFC status (see page 251). | 44 |
|  | PFC3 | Bit 2 of 76.01 PFC status (see page 251). | 45 |
|  | PFC4 | Bit 3 of 76.01 PFC status (see page 251). | 46 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| Status of selected source <br> RO status |  | Defines the activation delay for relay output RO1. | $\begin{gathered} \hline 0.0 \mathrm{~s} \\ 1 \\ 0 \\ 0 \\ 1 \\ \mathrm{P}_{1} 0 \\ \text { Time } \end{gathered}$ |
|  | $0.0 \ldots 3000.0$ s | Activation delay for RO1. | $10=1 \mathrm{~s}$ |
| 10.26 | R01 OFF delay | Defines the deactivation delay for relay output RO1. See parameter 10.25 RO1 ON delay. | 0.0 s |
|  | $0.0 \ldots 3000.0$ s | Deactivation delay for RO1. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 10.27 | RO2 source | Selects a drive signal to be connected to relay output RO2. For the available selections, see parameter 10.24 RO1 source. | Running |
| 10.28 | RO2 ON delay <br> Status of selected source <br> RO status $\begin{aligned} & t_{\mathrm{On}}=10.28 \mathrm{RO} 2 \mathrm{ONa} \\ & t_{\mathrm{Off}}=10.29 \mathrm{RO} 2 \mathrm{OFF} \end{aligned}$ | Defines the activation delay for relay output RO2. | $\begin{gathered} \hline 0.0 \mathrm{~s} \\ 1 \\ 0 \\ 0 \\ 1 \\ \longrightarrow_{\text {Time }} 0 \end{gathered}$ |
|  | $0.0 \ldots 3000.0 \mathrm{~s}$ | Activation delay for RO2. | $10=1 \mathrm{~s}$ |
| 10.29 | RO2 OFF delay | Defines the deactivation delay for relay output RO2. See parameter 10.28 RO 2 ON delay. | 0.0 s |
|  | 0.0 .. 3000.0 s | Deactivation delay for RO2. | $10=1 \mathrm{~s}$ |
| 10.30 | RO3 source | Selects a drive signal to be connected to relay output RO3. For the available selections, see parameter 10.24 RO1 source. | Fault (-1) |
| 10.31 | RO3 ON delay <br> Status of selected source <br> RO status $\begin{aligned} & t_{\mathrm{On}}=10.31 \mathrm{RO} \mathrm{ONa} \\ & t_{\mathrm{Off}}=10.32 \mathrm{RO} 3 \mathrm{OFF} \end{aligned}$ | Defines the activation delay for relay output RO3. | $\begin{gathered} \hline 0.0 \mathrm{~s} \\ 1 \\ 0 \\ 0 \\ 1 \\ \longrightarrow_{\text {Time }} 0 \end{gathered}$ |
|  | $0.0 \ldots 3000.0$ s | Activation delay for RO3. | $10=1 \mathrm{~s}$ |
| 10.32 | RO3 OFF delay | Defines the deactivation delay for relay output RO3. See parameter 10.31 RO 3 ON delay. | 0.0 s |
|  | $0.0 \ldots 3000.0$ s | Deactivation delay for RO3. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 10.99 | RO/DIO control <br> word | Storage parameter for controlling the relay outputs eg. <br> through the embedded fieldbus interface. To control the relay <br> outputs (RO) of the drive, send a control word with the bit <br> assignments shown below as Modbus I/O data. Set the target <br> selection parameter of that particular data (58.101...58.114) <br> to RO/DIO control word. In the source selection parameter of <br> the desired output, select the appropriate bit of this word. | 0000h |


| Bit | Name | Description |
| :--- | :--- | :--- |
| 0 | RO1 | Source bits for relay outputs RO1...RO3 (see parameters 10.24, 10.27 |
| 1 | RO2 |  |
| 2 | RO3 |  |
| 3 | RO4 |  |
| 4 | RO5 |  |
| $5 \ldots 15$ | Reserved |  |


|  | 0000h...FFFFh | RO control word. | $1=1$ |
| :--- | :--- | :--- | :--- |
| 10.101 | RO1 toggle counter | Displays the number of times relay output RO1 has changed <br> states. | - |
| 10.102 | RO2 toggle counter | Displays the number of times relay output RO2 has changed <br> states. | - |
|  | $0 \ldots 4294967000$ | State change count. | $1=1$ |
| 10.103 | RO3 toggle counter | Displays the number of times relay output RO3 has changed <br> states. | - |
|  | $0 \ldots 4294967000$ | State change count. | $1=1$ |


| 11 Standard DIO, FI, FO |  | Configuration of the frequency input. |  |
| :---: | :---: | :---: | :---: |
| 11.21 | DI5 configuration | Selects how digital input is used. | Digital input |
|  | Digital input | DI is used as a digital input. | 0 |
|  | Frequency input | DI is used as a frequency input. | 1 |
| 11.38 | Freq in 1 actual value | Displays the value of frequency input 1 (via DI5 when it is used as a frequency input) before scaling. See parameter 11.42 Freq in 1 min . <br> This parameter is read-only. | - |
|  | 0... 16000 Hz | Unscaled value of frequency input 1. | 1 = 1 Hz |
| 11.39 | Freq in 1 scaled value | Displays the value of frequency input 1 (via DI5 when it is used as a frequency input) after scaling. See parameter 11.42 Freq in 1 min . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Scaled value of frequency input 1. | $1=1$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 11.42 | Freq in 1 min | Defines the minimum for the frequency actually arriving at frequency input 1 (DI5 when it is used as a frequency input). The incoming frequency signal (11.38 Freq in 1 actual value) is scaled into an internal signal (11.39 Freq in 1 scaled value) by parameters 11.42 ... 11.45 as follows: | 0 Hz |
|  | 0 ... 16000 Hz | Minimum frequency of frequency input 1 (DI5). | $1=1 \mathrm{~Hz}$ |
| 11.43 | Freq in 1 max | Defines the maximum for the frequency actually arriving at frequency input 1 (DI5 when it is used as a frequency input). See parameter 11.42 Freq in 1 min . | 16000 Hz |
|  | 0 ... 16000 Hz | Maximum frequency for frequency input 1 (DI5). | $1=1 \mathrm{~Hz}$ |
| 11.44 | Freq in 1 at scaled min | Defines the value that is required to correspond internally to the minimum input frequency defined by parameter 11.42 Freq in 1 min . See diagram at parameter 11.42 Freq in 1 min . | 0.000 |
|  | $\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Value corresponding to minimum of frequency input 1. | $1=1$ |
| 11.45 | Freq in 1 at scaled max | Defines the value that is required to correspond internally to the maximum input frequency defined by parameter 11.43 Freq in 1 max. See diagram at parameter 11.42 Freq in 1 min . | 1500.000 |
|  | $\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Value corresponding to maximum of frequency input 1. | $1=1$ |


| No. | Name/Value |  | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 12 Standard AI |  |  | Configuration of standard analog inputs. |  |
| 12.02 | Al force selection |  | The true readings of the analog inputs can be overridden for eg. testing purposes. A forced value parameter is provided for each analog input, and its value is applied whenever the corresponding bit in this parameter is 1 . <br> Note: Al filter times (parameters 12.16 Al1 filter time and 12.26 Al2 filter time) have no effect on forced AI values (parameters 12.13 Al1 forced value and 12.23 A/2 forced value). <br> Note: Boot and power cycle reset the force selections (parameters 12.02 and 12.03). | 0000h |
|  | Bit Value |  |  |  |
|  |  | 1 = Force Al1 to value of parameter 12.13 Al1 forced value. |  |  |
|  |  | 1 = Force Al2 to value of parameter 12.23 Al2 forced value. |  |  |
|  | 2...15 | Reserved |  |  |
|  | 0000h...FFFFh |  | Forced values selector for analog inputs Al1 and AI2. | 1 = 1 |
| 12.03 | Al supervision function |  | Selects how the drive reacts when an analog input signal moves out of the minimum and/or maximum limits specified for the input. <br> The inputs and the limits to be observed are selected by parameter 12.04 AI supervision selection. | No action |
|  | No action |  | No action taken. | 0 |
|  | Fault |  | Drive trips on 80A0 AI supervision. | 1 |
|  | Warning |  | Drive generates an A8AO Al supervision warning. | 2 |
|  | Last speed |  | Drive generates a warning (A8AO Al supervision) and freezes the speed (or frequency) to the level the drive was operating at. The speed/frequency is determined on the basis of actual speed using 850 ms low-pass filtering. $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break. | 3 |
|  | Speed ref safe |  | Drive generates a warning (A8AO Al supervision) and sets the speed to the speed defined by parameter 22.41 Speed ref safe (or 28.41 Frequency ref safe when frequency reference is being used). $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break. | 4 |
| 12.04 | AI supervision selection |  | Specifies the analog input limits to be supervised. See parameter 12.03 Al supervision function. | 0000h |
|  | Bit | Name | Description |  |
|  | 0 | Al1 < MIN | 1 = Minimum limit supervision of Al1 active. |  |
|  | 1 | Al1 > MAX | 1 = Maximum limit supervision of Al1 active. |  |
|  | 2 | Al2 < MIN | 1 = Minimum limit supervision of Al2 active. |  |
|  |  | Al2 > MAX | 1 = Maximum limit supervision of Al2 active. |  |
|  | $4 \ldots 15$ | Reserved |  |  |
|  | 0000h...FFFFh |  | Activation of analog input supervision. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 12.11 | Al1 actual value | Displays the value of analog input Al1 in mA or V (depending on whether the input is set to current or voltage by a hardware setting). <br> This parameter is read-only. | - |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Value of analog input Al1. | $1000=1$ unit |
| 12.12 | Al1 scaled value | Displays the value of analog input Al1 after scaling. See parameters 12.19 Al1 scaled at Al1 min and 12.20 Al1 scaled at Al1 max. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Scaled value of analog input Al1. | $1=1$ |
| 12.13 | Al1 forced value | Forced value that can be used instead of the true reading of the input. See parameter 12.02 Al force selection. | - |
|  | $\begin{aligned} & \hline 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Forced value of analog input Al1. | $1000=1$ unit |
| 12.15 | Al1 unit selection | Selects the unit for readings and settings related to analog input Al1. <br> Note: This setting must match the corresponding hardware setting on the drive control unit. See chapter Electrical installation, section Switches in the Hardware manual of the drive and the default control connections for the macro in use in chapter Default configuration (page 35). Control board reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings. | V |
|  | V | Volts. | 2 |
|  | mA | Milliamperes. | 10 |
| 12.16 | Al1 filter time | Defines the filter time constant for analog input AI1. $\begin{aligned} & \text { O Unfiltered signal } \\ & \begin{array}{l} \mathrm{O}=\mathrm{I} \times\left(1-\mathrm{e}^{-t / \mathrm{T}}\right) \\ \mathrm{I}=\text { filter input (step) } \\ \mathrm{O}=\text { filter output } \\ t=\text { time } \\ \mathrm{T}=\text { filter time constant } \end{array} \end{aligned}$ <br> Note: The signal is also filtered due to the signal interface hardware (approximately 0.25 ms time constant). This cannot be changed by any parameter. | 0.100 s |
|  | 0.000...30.000 s | Filter time constant. | $1000=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 12.17 | Al1 min | Defines the minimum site value for analog input Al1. Set the value actually sent to the drive when the analog signal from plant is wound to its minimum setting. | $\begin{aligned} & 4.000 \mathrm{~mA} \text { or } \\ & 0.000 \mathrm{~V} \end{aligned}$ |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Minimum value of AI1. | $1000=1$ unit |
| 12.18 | Al1 max | Defines the maximum site value for analog input AI1. Set the value actually sent to the drive when the analog signal from plant is wound to its maximum setting. | $\begin{aligned} & 20.000 \mathrm{~mA} \text { or } \\ & 10.000 \mathrm{~V} \end{aligned}$ |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Maximum value of Al1. | $1000=1$ unit |
| 12.19 | Al1 scaled at Al1 min | Defines the real internal value that corresponds to the minimum analog input Al1 value defined by parameter 12.17 Al1 min. (Changing the polarity settings of 12.19 and 12.20 can effectively invert the analog input.) | 0.000 |
|  | $\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Real value corresponding to minimum Al1 value. | $1=1$ |
| 12.20 | Al1 scaled at Al1 max | Defines the real internal value that corresponds to the maximum analog input Al1 value defined by parameter 12.18 Al1 max. See the drawing at parameter 12.19 Al1 scaled at Al1 min. | 50.000 |
|  | $\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Real value corresponding to maximum Al1 value. | $1=1$ |
| 12.21 | AI2 actual value | Displays the value of analog input Al2 in mA or V (depending on whether the input is set to current or voltage by a hardware setting). <br> This parameter is read-only. | - |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Value of analog input Al2. | $1000=1$ unit |
| 12.22 | AI2 scaled value | Displays the value of analog input Al2 after scaling. See parameters 12.29 Al2 scaled at A/2 min and 12.101 A/1 percent value. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Scaled value of analog input Al2. | $1=1$ |
| 12.23 | Al2 forced value | Forced value that can be used instead of the true reading of the input. See parameter 12.02 Al force selection. | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Forced value of analog input Al2. | $1000=1$ unit |
| 12.25 | Al2 unit selection | Selects the unit for readings and settings related to analog input AI2. <br> Note: This setting must match the corresponding hardware setting on the drive control unit. chapter Electrical installation, section Switches in the Hardware manual of the drive and the default control connections for the macro in use in chapter Default configuration (page 35). Control board reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings. | $m A$ |
|  | V | Volts. | 2 |
|  | mA | Milliamperes. | 10 |
| 12.26 | AI2 filter time | Defines the filter time constant for analog input AI2. See parameter 12.16 Al1 filter time. | 0.100 s |
|  | 0.000...30.000 s | Filter time constant. | $1000=1 \mathrm{~s}$ |
| 12.27 | Al2 min | Defines the minimum site value for analog input AI2. Set the value actually sent to the drive when the analog signal from plant is wound to its minimum setting. | $\begin{aligned} & 4.000 \mathrm{~mA} \text { or } \\ & 0.000 \mathrm{~V} \end{aligned}$ |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Minimum value of Al2. | $1000=1$ unit |
| 12.28 | AI2 max | Defines the maximum site value for analog input AI2. Set the value actually sent to the drive when the analog signal from plant is wound to its maximum setting. | $\begin{aligned} & 20.000 \mathrm{~mA} \text { or } \\ & 10.000 \mathrm{~V} \end{aligned}$ |
|  | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | Maximum value of Al2. | $1000=1$ unit |
| 12.29 | Al2 scaled at Al2 min | Defines the real value that corresponds to the minimum analog input Al2 value defined by parameter $12.27 \mathrm{~A} / 2 \mathrm{~min}$. (Changing the polarity settings of 12.29 and 12.101 can effectively invert the analog input.) | 0.000 |
|  | $\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Real value corresponding to minimum Al2 value. | $1=1$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 12.30 | Al2 scaled at AI2 max | Defines the real value that corresponds to the minimum analog input Al2 value defined by parameter 12.28 Al2 max. See the drawing at parameter of 12.29 Al2 scaled at AI2 min. | 50.000 |
|  | $\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$ | Real value corresponding to maximum Al 2 value. | $1=1$ |
| 12.101 | Al1 percent value | Value of analog input Al1 in percent of Al1 scaling (12.18 Al1 max - 12.17 Al1 min). | - |
|  | 0.00...100.00\% | Al1 value | $100=1 \%$ |
| 12.102 | Al2 percent value | Value of analog input Al2 in percent of Al2 scaling (12.28 Al2 max - 12.27 A/2 min). | - |
|  | 0.00...100.00\% | $\mathrm{Al2}$ value | $100=1 \%$ |


| 13 Standard AO |  | Configuration of standard analog outputs. |  |
| :---: | :---: | :---: | :---: |
| 13.02 | AO force selection | The source signals of the analog outputs can be overridden for eg. testing purposes. A forced value parameter is provided for each analog output, and its value is applied whenever the corresponding bit in this parameter is 1 . <br> Note: Boot and power cycle reset the force selections (parameters 13.02 and 13.11). | 0000h |
|  | Bit Value |  |  |
|  | 1 = Force AO1 to value of parameter 13.13 AO1 forced value. |  |  |
|  | 1 = Force AO2 to value of parameter 13.23 AO2 forced value. |  |  |
|  | Reserved |  |  |
|  | 0000h...FFFFh | Forced values selector for analog outputs AO 1 and AO 2. | 1 = 1 |
| 13.11 | AO1 actual value | Displays the value of AO1 in mA or V. This parameter is read-only. | - |
|  | $\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} / \\ & 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$ | Value of AO1. | $1=1 \mathrm{~mA}$ |
| 13.12 | AO1 source | Selects a signal to be connected to analog output AO1. | Output frequency |
|  | Zero | None. | 0 |
|  | Motor speed used | 01.01 Motor speed used (page 89). | 1 |
|  | Output frequency | 01.06 Output frequency (page 89). | 3 |
|  | Motor current | 01.07 Motor current (page 89). | 4 |
|  | Motor current \% of motor nominal | 01.08 Motor current \% of motor nom (page 89). | 5 |
|  | Motor torque | 01.10 Motor torque (page 89). | 6 |
|  | DC voltage | 01.11 DC voltage (page 89). | 7 |
|  | Output power | 01.14 Output power (page 90). | 8 |
|  | Speed ref ramp in | 23.01 Speed ref ramp input (page 152). | 10 |
|  | Speed ref ramp out | 23.02 Speed ref ramp output (page 152). | 11 |
|  | Speed ref used | 24.01 Used speed reference (page 156). | 12 |
|  | Freq ref used | 28.02 Frequency ref ramp output (page 165). | 14 |
|  | Process PID out | 40.01 Process PID output actual (page 213). | 16 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Temp sensor 1 excitation | The output is used to feed an excitation current to the temperature sensor 1 , see parameter 35.11 Temperature 1 source. See also section Motor thermal protection (page 73). | 20 |
|  | Temp sensor 2 excitation | The output is used to feed an excitation current to the temperature sensor 2 , see parameter 35.21 Temperature 2 source. See also section Motor thermal protection (page 73). | 21 |
|  | Abs motor speed used | 01.61 Abs motor speed used (page 91). | 26 |
|  | Abs motor speed \% | 01.62 Abs motor speed \% (page 91). | 27 |
|  | Abs output frequency | 01.63 Abs output frequency (page 91). | 28 |
|  | Abs motor torque | 01.64 Abs motor torque (page 91). | 30 |
|  | Abs output power | 01.65 Abs output power (page 91). | 31 |
|  | Abs motor shaft power | 01.68 Abs motor shaft power (page 91). | 32 |
|  | External PID1 out | 71.01 External PID act value ((page 249). | 33 |
|  | AO1 data storage | 13.91 AO1 data storage (page 118). | 37 |
|  | AO2 data storage | 13.92 AO2 data storage (page 118). | 38 |
|  | Other | Source selection (see Terms and abbreviations on page 86). |  |
| 13.13 | AO1 forced value | Forced value that can be used instead of the selected output signal. See parameter 13.02 AO force selection. | 0.000 mA |
|  | $\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} / \\ & 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$ | Forced value for AO1. | $1=1$ unit |
| 13.15 | AO1 unit selection | Selects the unit for readings and settings related to analog input AO1. <br> Note: This setting must match the corresponding hardware setting on the drive control unit. See chapter Electrical installation, section Switches in the Hardware manual of the drive and the default control connections for the macro in use in chapter Default configuration (page 35). Control board reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings. | $m A$ |
|  | V | Volts. | 2 |
|  | mA | Milliamperes. | 10 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 13.16 | AO1 filter time | Defines the filtering time constant for analog output AO1. | 0.100 s |
|  | 0.000 ... 30.000 s | Filter time constant. | $1000=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 13.17 | AO1 source min | Defines the real minimum value of the signal (selected by parameter 13.12 AO1 source) that corresponds to the minimum required AO1 output value (defined by parameter 13.19 AO1 out at AO1 src min). <br> Programming 13.17 as the maximum value and 13.18 as the minimum value inverts the output. | 0.0 |


| No. | AO has automatic scaling. Every time the source for the AO is changed, the scaling range is changed accordingly. User given minimum and maximum values override the automatic values. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 13.12 AO1 source, 13.22 AO2 source | 13.17 AO1 source min, 13.27 AO2 source min | 13.18 AO1 source max, 13.28 AO2 source max |
|  | 0 | Zero | N/A (Output is constant zer |  |
|  | 1 | Motor speed used | 0 | 46.01 Speed scaling |
|  | 3 | Output frequency | 0 | 46.02 Frequency scaling |
|  | 4 | Motor current | 0 | 30.17 Maximum current |
|  | 5 | Motor current \% of motor nominal | 0\% | 100\% |
|  | 6 | Motor torque | 0 | 46.03 Torque scaling |
|  | 7 | DC voltage | Min. value of 01.11 DC voltage | Max. value of 01.11 DC voltage |
|  | 8 | Output power | 0 | 46.04 Power scaling |
|  | 10 | Speed ref ramp in | 0 | 46.01 Speed scaling |
|  | 11 | Speed ref ramp out | 0 | 46.01 Speed scaling |
|  | 12 | Speed ref used | 0 | 46.01 Speed scaling |
|  | 14 | Freq ref used | 0 | 46.02 Frequency scaling |
|  | 16 | Process PID out | Min. value of 40.01 Process PID output actual | Max. value of 40.01 Process PID output actual |
|  | 20 | Temp sensor 1 excitation | N/A (Analog output is not scaled; it is determined by the sensor's triggering voltage.) |  |
|  | 21 | Temp sensor 2 excitation |  |  |
|  | 26 | Abs motor speed used | 0 | 46.01 Speed scaling |
|  | 27 | Abs motor speed \% | 0 | 46.01 Speed scaling |
|  | 28 | Abs output frequency | 0 | 46.02 Frequency scaling |
|  | 30 | Abs motor torque | 0 | 46.03 Torque scaling |
|  | 31 | Abs output power | 0 | 46.04 Power scaling |
|  | 32 | Abs motor shaft power | 0 | 46.04 Power scaling |
|  | 33 | External PID1 out | Min. value of 71.01 External PID act value | Max. value of 71.01 External PID act value |
|  |  | Other | Min. value of the selected parameter | Max. value of the selected parameter |


|  | $-32768.0 \ldots 32767.0$ | Real signal value corresponding to minimum AO1 output <br> value. | $1=1$ |
| :--- | :--- | :--- | :--- |
| 13.18 | AO1 source max | Defines the real maximum value of the signal (selected by <br> parameter 13.12 AO1 source) that corresponds to the <br> maximum required AO1 output value (defined by parameter <br> 13.20 AO1 out at AO1 src max). See parameter 13.17 AO1 <br> source min. | 50.0 |
|  | $-32768.0 \ldots 32767.0$ | Real signal value corresponding to maximum AO1 output <br> value. | $1=1$ |
| 13.19AO1 out at AO1 src <br> $\min$ | Defines the minimum output value for analog output AO1. <br> See also drawing at parameter 13.17 AO1 source min. | 0.000 mA |  |
| $0.000 \ldots 22.000 \mathrm{~mA} /$ <br> $0.000 \ldots 11.000 \mathrm{~V}$ | Minimum AO1 output value. | $1000=1 \mathrm{~mA}$ |  |
| 13.20 | AO1 out at AO1 src <br> $m a x$ | Defines the maximum output value for analog output AO1. <br> See also drawing at parameter 13.17 AO1 source min. | 20.000 mA |
| $0.000 \ldots 22.000 \mathrm{~mA} /$ <br> $0.000 \ldots 11.000 \mathrm{~V}$ | Maximum AO1 output value. | $1000=1 \mathrm{~mA}$ |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 13.21 | AO2 actual value | Displays the value of AO 2 in mA . This parameter is read-only. |  |
|  | 0.000 ... 22.000 mA | Value of AO2. | $1000=1 \mathrm{~mA}$ |
| 13.22 | AO2 source | Selects a signal to be connected to analog output AO2. Alternatively, sets the output to excitation mode to feed a constant current to a temperature sensor. <br> For the selections, see parameter 13.12 AO1 source. | Motor current |
| 13.23 | AO2 forced value | Forced value that can be used instead of the selected output signal. See parameter 13.02 AO force selection. | 0.000 mA |
|  | 0.000 ... 22.000 mA | Forced value for AO2. | $1000=1 \mathrm{~mA}$ |
| 13.26 | AO2 filter time | Defines the filtering time constant for analog output AO2. See parameter 13.16 AO1 filter time. | 0.100 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Filter time constant. | $1000=1 \mathrm{~s}$ |
| 13.27 | AO2 source min | Defines the real minimum value of the signal (selected by parameter 13.22 AO2 source) that corresponds to the minimum required AO2 output value (defined by parameter 13.29 AO2 out at AO2 src min). See parameter 13.17 AO1 source min about the AO automatic scaling. <br> Programming 13.27 as the maximum value and 13.28 as the minimum value inverts the output. | 0.0 |
|  | -32768.0...32767.0 | Real signal value corresponding to minimum AO2 output value. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 13.28 | AO2 source max | Defines the real maximum value of the signal (selected by parameter 13.22 AO2 source) that corresponds to the maximum required AO 2 output value (defined by parameter 13.30 AO2 out at AO2 src max). See parameter 13.27 AO2 source min. See parameter 13.17 AO1 source min about the AO automatic scaling. |  |
|  | -32768.0...32767.0 | Real signal value corresponding to maximum AO2 output value. | $1=1$ |
| 13.29 | AO2 out at AO2 src min | Defines the minimum output value for analog output AO 2 . See also drawing at parameter 13.27 AO2 source min. | 0.000 mA |
|  | $0.000 \ldots 22.000 \mathrm{~mA}$ | Minimum AO2 output value. | $1000=1 \mathrm{~mA}$ |
| 13.30 | AO2 out at AO2 src max | Defines the maximum output value for analog output AO2. See also drawing at parameter 13.27 AO2 source min. | 20.000 mA |
|  | $0.000 \ldots 22.000 \mathrm{~mA}$ | Maximum AO2 output value. | $1000=1 \mathrm{~mA}$ |
| 13.91 | A01 data storage | Storage parameter for controlling analog output AO1 eg. through the embedded fieldbus interface. <br> In parameter 13.12 AO1 source, select AO1 data storage. Then set this parameter as the target of the incoming value data. With the embedded fieldbus interface, simply set the target selection parameter of that particular data (58.101...58.114) to AO1 data storage. | 0.00 |
|  | -327.68...327.67 | Storage parameter for AO1. | $100=1$ |
| 13.92 | AO2 data storage | Storage parameter for controlling analog output AO2 eg. through the embedded fieldbus interface. <br> In parameter 13.22 AO2 source, select AO2 data storage. Then set this parameter as the target of the incoming value data. With the embedded fieldbus interface, simply set the target selection parameter of that particular data (58.101 ...58.114) to AO2 data storage. | 0.00 |
|  | -327.68... 327.67 | Storage parameter for AO2. | $100=1$ |


| 15 I/O extension <br> module | Configuration of the I/O extension module installed in slot 2. <br> See also section Programmable I/O extensions (page 47). <br> Note: The contents of the parameter group vary according to <br> the selected I/O extension module type. |  |
| :--- | :--- | :--- |
| 15.01 | Extension module <br> type | Activates (and specifies the type of) I/O extension module. If <br> the value is None, when an extension module has been <br> installed and the dive is powered, the drive automatically sets <br> the value to the type it has detected (= value of parameter <br> 15.02 Detected extension module); otherwise warning A7AB <br> Extension I/O configuration failure is generated and you have <br> to set the value of this parameter manually. |
| None | Inactive. | CMOD-01. |



| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Zero speed | Bit 0 of 06.19 Speed control status word (see page 99). | 11 |
|  | Above limit | Bit 10 of 06.17 Drive status word 2 (see page 97). | 12 |
|  | Warning | Bit 7 of 06.11 Main status word (see page 96). | 13 |
|  | Fault | Bit 3 of 06.11 Main status word (see page 96). | 14 |
|  | Fault (-1) | Inverted bit 3 of 06.11 Main status word (see page 96). | 15 |
|  | Fault/Warning | Bit 3 of 06.11 Main status word OR bit 7 of 06.11 Main status word (see page 96). | 16 |
|  | Overcurrent | Fault 2310 Overcurrent has occurred. | 17 |
|  | Overvoltage | Fault 3210 DC link overvoltage has occurred. | 18 |
|  | Drive temp | Fault 2381 IGBT overload or 4110 Control board temperature or 4210 IGBT overtemperature or 4290 Cooling or 42F1 IGBT temperature or 4310 Excess temperature or 4380 Excess temperature difference has occurred. | 19 |
|  | Undervoltage | Fault 3220 DC link undervoltage has occurred. | 20 |
|  | Motor temp | Fault 4981 External temperature 1 or 4982 External temperature 2 has occurred. | 21 |
|  | Ext2 active | Bit 11 of 06.16 Drive status word 1 (see page 97). | 23 |
|  | Remote control | Bit 9 of 06.11 Main status word (see page 96). | 24 |
|  | MCB | Reserved | 25 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 27 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 28 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 29 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 33 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 34 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 35 |
|  | Start delay | Bit 13 of 06.17 Drive status word 2 (see page 97). | 39 |
|  | RO/DIO control word bit0 | Bit 0 of 10.99 RO/DIO control word (see page 106). | 40 |
|  | RO/DIO control word bit1 | Bit 1 of 10.99 RO/DIO control word (see page 106). | 41 |
|  | RO/DIO control word bit2 | Bit 2 of 10.99 RO/DIO control word (see page 106). | 42 |
|  | PFC1 | Bit 0 of 76.01 PFC status (see page 251). | 43 |
|  | PFC2 | Bit 1 of 76.01 PFC status (see page 251). | 44 |
|  | PFC3 | Bit 2 of 76.01 PFC status (see page 251). | 45 |
|  | PFC4 | Bit 3 of 76.01 PFC status (see page 251). | 46 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |



| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Running | Bit 6 of 06.16 Drive status word 1 (see page 97). | 7 |
|  | Ready ref | Bit 2 of 06.11 Main status word (see page 96). | 8 |
|  | At setpoint | Bit 8 of 06.11 Main status word (see page 96). | 9 |
|  | Reverse | Bit 2 of 06.19 Speed control status word (see page 99). | 10 |
|  | Zero speed | Bit 0 of 06.19 Speed control status word (see page 99). | 11 |
|  | Above limit | Bit 10 of 06.17 Drive status word 2 (see page 97). | 12 |
|  | Warning | Bit 7 of 06.11 Main status word (see page 96). | 13 |
|  | Fault | Bit 3 of 06.11 Main status word (see page 96). | 14 |
|  | Fault (-1) | Inverted bit 3 of 06.11 Main status word (see page 96). | 15 |
|  | Fault/Warning | Bit 3 of 06.11 Main status word OR bit 7 of 06.11 Main status word (see page 96). | 16 |
|  | Overcurrent | Fault 2310 Overcurrent has occurred. | 17 |
|  | Overvoltage | Fault 3210 DC link overvoltage has occurred. | 18 |
|  | Drive temp | Fault 2381 IGBT overload or 4110 Control board temperature or 4210 IGBT overtemperature or 4290 Cooling or 42F1 IGBT temperature or 4310 Excess temperature or 4380 Excess temperature difference has occurred. | 19 |
|  | Undervoltage | Fault 3220 DC link undervoltage has occurred. | 20 |
|  | Motor temp | Fault 4981 External temperature 1 or 4982 External temperature 2 has occurred. | 21 |
|  | Ext2 active | Bit 11 of 06.16 Drive status word 1 (see page 97). | 23 |
|  | Remote control | Bit 9 of 06.11 Main status word (see page 96). | 24 |
|  | MCB | Reserved | 25 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 27 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 28 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 29 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 33 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 34 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 35 |
|  | Start delay | Bit 13 of 06.17 Drive status word 2 (see page 97). | 39 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 15.24 | DO1 ON delay | Defines the activation delay for digital output DO1 when 15.22 DO1 configuration is set to Digital output. | 0.0 s |
| DO status |  |  |  |
| $\begin{aligned} & t_{\text {On }}=15.24 \text { DO1 ON delay } \\ & t_{\text {Off }}=15.25 \text { DO1 OFF delay } \end{aligned}$ |  |  |  |
|  | $0.0 \ldots 3000.0 \mathrm{~s}$ | Activation delay for DO1. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 15.25 | D01 OFF delay | Defines the deactivation delay for relay output DO1 when 15.22 DO1 configuration is set to Digital output. See parameter 15.24 DO1 ON delay. | 0.0 s |
|  | $0.0 \ldots 3000.0$ s | Deactivation delay for DO1. | $10=1 \mathrm{~s}$ |
| 15.32 | Freq out 1 actual value | Displays the value of frequency output 1 at digital output DO1 when 15.22 DO1 configuration is set to Frequency output. This parameter is read-only. | - |
|  | 0 ... 16000 Hz | Value of frequency output 1. | $1=1 \mathrm{~Hz}$ |
| 15.33 | Freq out 1 source | Selects a signal to be connected to digital output DO1 when 15.22 DO1 configuration is set to Frequency output. Alternatively, sets the output to excitation mode to feed a constant current to a temperature sensor. | Not selected |
|  | Not selected | None. | 0 |
|  | Motor speed used | 01.01 Motor speed used (page 89). | 1 |
|  | Output frequency | 01.06 Output frequency (page 89). | 3 |
|  | Motor current | 01.07 Motor current (page 89). | 4 |
|  | Motor torque | 01.10 Motor torque (page 89). | 6 |
|  | DC voltage | 01.11 DC voltage (page 89). | 7 |
|  | Output power | 01.14 Output power (page 90). | 8 |
|  | Speed ref ramp in | 23.01 Speed ref ramp input (page 152). | 10 |
|  | Speed ref ramp out | 23.02 Speed ref ramp output (page 152). | 11 |
|  | Speed ref used | 24.01 Used speed reference (page 156). | 12 |
|  | Torque ref used | 26.02 Torque reference used (page 161). | 13 |
|  | Freq ref used | 28.02 Frequency ref ramp output (page 165). | 14 |
|  | Process PID out | 40.01 Process PID output actual (page 213). | 16 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- | :--- |
| 15.34 | Freq out 1 src min | Defines the real value of the signal (selected by parameter <br> 15.33 Freq out 1 source) that corresponds to the minimum <br> value of frequency output 1 (defined by parameter 15.36 Freq <br> out 1 at src min). This applies when 15.22 DO1 configuration <br> is set to Frequency output. | 0.000 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 19 Operation mode |  | Selection of local and external control location sources and operating modes. <br> See also section Operating modes of the drive (page 43). |  |
| 19.01 | Actual operation mode | Displays the operating mode currently used. <br> See parameters 19.11...19.14. <br> This parameter is read-only. | - |
|  | Zero | None. | 1 |
|  | Speed | Speed control (in vector motor control mode). | 2 |
|  | Torque | Torque control (in vector motor control mode). | 3 |
|  | Min | The torque selector is comparing the output of the speed controller (25.01 Torque reference speed control) and torque reference ( 26.74 Torque ref ramp out) and the smaller of the two is used (in vector motor control mode). | 4 |
|  | Max | The torque selector is comparing the output of the speed controller (25.01 Torque reference speed control) and torque reference ( 26.74 Torque ref ramp out) and the greater of the two is used (in vector motor control mode). | 5 |
|  | Add | The speed controller output is added to the torque reference (in vector motor control mode). | 6 |
|  | Scalar (Hz) | Frequency control in scalar motor control mode (in scalar motor control mode). | 10 |
|  | Forced magn. | Motor is in magnetizing mode. | 20 |
| 19.11 | Ext1/Ext2 selection | Selects the source for external control location EXT1/EXT2 selection. $\begin{aligned} & 0=\text { EXT1 } \\ & 1=\text { EXT2 } \end{aligned}$ | EXT1 |
|  | EXT1 | EXT1 (permanently selected). | 0 |
|  | EXT2 | EXT2 (permanently selected). | 1 |
|  | FBA A MCW bit 11 | Control word bit 11 received through fieldbus interface A. | 2 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 3 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 4 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 5 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 6 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 7 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 8 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 20 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 21 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 26 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 27 |
|  | EFB MCW bit 11 | Control word bit 11 received through the embedded fieldbus interface. | 32 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 19.12 | Ext1 control mode | Selects the operating mode for external control location EXT1 in vector motor control mode. | Speed |
|  | Zero | None. | 1 |
|  | Speed | Speed control. The torque reference used is 25.01 Torque reference speed control (output of the speed reference chain). | 2 |
|  | Torque | Torque control. The torque reference used is 26.74 Torque ref ramp out (output of the torque reference chain). | 3 |
|  | Minimum | Combination of selections Speed and Torque: the torque selector compares the speed controller output (25.01 Torque reference speed control) and the torque reference (26.74 Torque ref ramp out) and selects the smaller of the two. If speed error becomes negative, the drive follows the speed controller output until speed error becomes positive again. This prevents the drive from accelerating uncontrollably if the load is lost in torque control. | 4 |
|  | Maximum | Combination of selections Speed and Torque: the torque selector compares the speed controller output (25.01 Torque reference speed control) and the torque reference (26.74 Torque ref ramp out) and selects the greater of the two. <br> If speed error becomes positive, the drive follows the speed controller output until speed error becomes negative again. This prevents the drive from accelerating uncontrollably if the load is lost in torque control. | 5 |
| 19.14 | Ext2 control mode | Selects the operating mode for external control location EXT2 in vector motor control mode. <br> For the selections, see parameter 19.12 Ext1 control mode. | Speed |
| 19.16 | Local control mode | Selects the operating mode for local control in vector motor control mode. | Speed |
|  | Speed | Speed control. The torque reference used is 25.01 Torque reference speed control (output of the speed reference chain). | 0 |
|  | Torque | Torque control. The torque reference used is 26.74 Torque ref ramp out (output of the torque reference chain). | 1 |
| 19.17 | Local control disable | Enables/disables local control (start and stop buttons on the control panel, and the local controls on the PC tool). <br> WARNING! Before disabling local control, ensure that the control panel is not needed for stopping the drive. | No |
|  | No | Local control enabled. | 0 |
|  | Yes | Local control disabled. | 1 |


| $\mathbf{2 0}$ Start/stop/direction | Start/stop/direction and run/start/jog enable signal source <br> selection; positive/negative reference enable signal source <br> selection. <br> For information on control locations, see section Local control <br> vs. external control (page 39). |  |
| :--- | :--- | :--- |
| 20.01 | Ext1 commands | Selects the source of start, stop and direction commands for <br> external control location 1 (EXT1). <br> See also parameters 20.02...20.05. See parameter 20.21 for <br> the determination of the actual direction. |
| In1 Start; In2 <br> Dir |  |  |
| Not selected | No start or stop command sources selected. | 0 |






| No. | Name/Value | Description |  |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In1P Start fwd; In2P Start rev; In3 Stop |  | The sources of the start and stop commands are selected by parameters 20.08 Ext2 in1 source, 20.09 Ext2 in2 source and 20.10 Ext2 in 3 source. The source selected by 20.10 Ext2 in 3 source determines the direction. The state transitions of the source bits are interpreted as follows: |  |  |  | 6 |
|  |  | State of source 1 (20.08) | State of source 2 (20.09) | State of source 3 (20.10) | Command |  |
|  |  | 0 -> 1 | Any | 1 | Start forward |  |
|  |  | Any | $0->1$ | 1 | Start reverse |  |
|  |  | Any | Any | 0 | Stop |  |
|  |  | Note: Parameter 20.07 Ext2 start trigger type has no effect with this setting. |  |  |  |  |
|  | Control panel | The start and stop commands are taken from the control panel (or PC connected to the panel connector). |  |  |  | 11 |
|  | Fieldbus A | The start and stop commands are taken from fieldbus adapter A. <br> Note: Set also 20.07 Ext2 start trigger type to Level. |  |  |  | 12 |
|  | Embedded fieldbus | The start and stop commands are taken from the embedded fieldbus interface. <br> Note: Set also 20.07 Ext2 start trigger type to Level. |  |  |  | 14 |
| 20.07 | Ext2 start trigger type | Defines whether the start signal for external control location EXT2 is edge-triggered or level-triggered. <br> Note: This parameter is not effective if a pulse-type start signal is selected. See the descriptions of the selections of parameter 20.06 Ext2 commands. |  |  |  | Level |
|  | Edge | The start signal is edge-triggered. |  |  |  | 0 |
|  | Level | The start signal is level-triggered. |  |  |  | 1 |
| 20.08 | Ext2 in1 source | Selects source 1 for parameter 20.06 Ext2 commands. <br> For the available selections, see parameter 20.03 Ext1 in1 source. |  |  |  | Not selected |
| 20.09 | Ext2 in2 source | Selects source 2 for parameter 20.06 Ext2 commands. For the available selections, see parameter 20.03 Ext1 in1 source. |  |  |  | Not selected |
| 20.10 | Ext2 in3 source | Selects source 3 for parameter 20.06 Ext2 commands. For the available selections, see parameter 20.03 Ext1 in1 source. |  |  |  | Not selected |


| No. | Name/Value D | Description |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20.21 | Direction | Reference direction lock. Defines the direction of the drive rather than the sign of the reference, except in some cases. In the table the actual drive rotation is shown as a function of parameter 20.21 Direction and Direction command (from parameter 20.01 Ext1 commands or 20.06 Ext2 commands). |  |  | Request |
|  |  | Direction command = Forward | Direction command = Reverse | Direction command not defined |  |
|  | Par. 20.21 Direction = Forward | Forward | Forward | Forward |  |
|  | Par. 20.21 Direction = Reverse | Reverse | Reverse | Reverse |  |
|  | Par. 20.21 Direction $=$ Request | Forward, but <br> - If reference from Constant, Motor potentiometer, PID, Fail, Last, Jogging or Panel reference, reference used as is. <br> - If reference from the network, reference used as is. | Reverse, but <br> - If reference from Constant, Motor potentiometer, PID, Fail, Last, Jogging or Panel reference, reference used as is. <br> - If reference from the network, reference multiplied by -1 . | Forward |  |


| Request | In external control the direction is selected by a direction <br> command (parameter 20.01 Ext1 commands or 20.06 Ext2 <br> commands). <br> If the reference comes from Constant (constant <br> speeds/frequencies), Motor potentiometer, PID, Speed ref <br> safe, Last speed reference, Jogging speed or Panel <br> reference, the reference is used as is. <br> If the reference comes from a fieldbus: <br> - if the direction command is forward, the reference is used <br> as is <br> if the direction command is reverse, the reference is <br> multiplied by -1. | 0 |
| :---: | :--- | :--- |
| Forward | Motor rotates forward regardless of the sign of the external <br> reference. (Negative reference values are replaced by zero. <br> Positive reference values are used as is.) | 1 |
| Reverse | Motor rotates reverse regardless of the sign of the external <br> reference. (Negative reference values are replaced by zero. <br> Positive reference values are multiplied by -1.) | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 20.25 | Jogging | Selects the source for a jog enable signal. <br> (The sources for jogging activation signals are selected by parameters 20.26 Jogging 1 start source and 20.27 Jogging 2 <br> start source.) <br> 1 = Jogging is enabled. <br> $0=$ Jogging is disabled. <br> Notes: <br> - Jogging is supported in vector control mode only. <br> - Jogging can be enabled only when no start command from an external control location is active. On the other hand, if jogging is already enabled, the drive cannot be started from an external control location (apart from inching commands through fieldbus). <br> See section Rush control (page 52). | Not selected |
|  | Not selected | 0. | 0 |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 24 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 26 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 20.26 | Jogging 1 start source | If enabled by parameter 20.25 Jogging, selects the source for the activation of jogging function 1. (Jogging function 1 can also be activated through fieldbus regardless of parameter 20.25.) <br> 1 = Jogging 1 active. <br> Notes: <br> - Jogging is supported in vector control mode only. <br> - If both jogging 1 and 2 are activated, the one that was activated first has priority. <br> - This parameter cannot be changed while the drive is running. | Not selected |
|  | Not selected | 0. | 0 |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 24 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 26 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 20.27 | Jogging 2 start source | If enabled by parameter 20.25 Jogging, selects the source for the activation of jogging function 2. (Jogging function 2 can also be activated through fieldbus regardless of parameter 20.25.) <br> 1 = Jogging 2 active. <br> For the selections, see parameter 20.26 Jogging 1 start source. <br> Notes: <br> - Jogging is supported in vector control mode only. <br> - If both jogging 1 and 2 are activated, the one that was activated first has priority. <br> - This parameter cannot be changed while the drive is running. | Not selected |
| 20.40 | Run permissive | Selects the source of the Run permissive signal. Value 0 of the source deactivates the Run permissive and prevents starting. <br> Value 1 of the source activates the Run permissive and permits starting. | Not selected |
|  | Not selected | 0. | 0 |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | -DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 8 |
|  | -DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 9 |
|  | -DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 10 |
|  | -DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 11 |
|  | -DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 12 |
|  | -DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 13 |
|  | Fieldbus adapter | Fieldbus adapter. | 14 |
|  | Embedded fieldbus | Embedded fieldbus. | 15 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 20.41 | Start interlock 1 | Selects the source of the Start interlock 1 signal. Value 0 of the source deactivates the start interlock 1 signal. Value 1 of the source activates the start interlock 1 signal. | Selected |
|  | Not selected | 0. | 0 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | -DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 8 |
|  | -DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 9 |
|  | -DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 10 |
|  | -DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 11 |
|  | -DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 12 |
|  | -DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 13 |
|  | Fieldbus adapter | Fieldbus adapter. | 14 |
|  | Embedded fieldbus | Embedded fieldbus. | 15 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 20.42 | Start interlock 2 | Selects the source of the Start interlock 2 signal. <br> For the selections, see parameter 20.41 Start interlock 1. | Selected |
| 20.43 | Start interlock 3 | Selects the source of the Start interlock 3 signal. For the selections, see parameter 20.41 Start interlock 1. | Selected |
| 20.44 | Start interlock 4 | Selects the source of the Start interlock 4 signal. <br> For the selections, see parameter 20.41 Start interlock 1. | Selected |
| 20.45 | Start interlock stop mode | Selects the method of stopping if a Start interlock signal is lost. Applies to 20.41 Start interlock 1, 20.42 Start interlock 2, 20.43 Start interlock 3 and 20.44 Start interlock 4. | Not used |
|  | Not used | Not in use. | 0 |
|  | Coast | The motor coasts to a stop. | 1 |
|  | Ramp | Stop along the active deceleration ramp. | 2 |
| 20.46 | Run permissive text | Alternative alarm texts for the run permissive. | Run permissive |
|  | Run permissive |  | 0 |
|  | Damper end switch |  | 1 |
|  | Valve opening |  | 2 |
|  | Pre-lube cycle |  | 3 |
|  | Full text editor | Enter your own text in the text editor. Not supported yet. | 4 |
| 20.47 | Start interlock 1 text | Alternative alarm texts for the start interlock 1. | Start interlock 1 |
|  | Start interlock 1 |  | 0 |
|  | Vibration switch |  | 1 |
|  | Firestat |  | 2 |
|  | Freeze stat |  | 3 |
|  | Overpressure |  | 4 |
|  | Vibration trip |  | 5 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Smoke alarm |  | 6 |
|  | Auxiliary open |  | 7 |
|  | Low suction |  | 8 |
|  | Low pressure |  | 9 |
|  | Access door |  | 10 |
|  | Pressure relief |  | 11 |
|  | Motor disconnect open |  | 12 |
|  | Full text editor | Enter your own text in the text editor. Not supported yet. | 13 |
| 20.48 | Start interlock 1 text | Alternative alarm texts for the start interlock 2. See parameter 20.47 Start interlock 1 text. | Start interlock 2 |
|  | Start interlock 2 | For other selections, see parameter 20.47 Start interlock 1 text. | 0 |
| 20.49 | Start interlock 1 text | Alternative alarm texts for the start interlock 3. See parameter 20.47 Start interlock 1 text. | Start <br> interlock 3 |
|  | Start interlock 3 | For other selections, see parameter 20.47 Start interlock 1 text. | 0 |
| 20.50 | Start interlock 4 text | Alternative alarm texts for the start interlock 4. See parameter 20.47 Start interlock 1 text. | Start interlock 4 |
|  | Start interlock 4 | For other selections, see parameter 20.47 Start interlock 1 text. | 0 |


| 21 Start/stop mode | Start and stop modes; emergency stop mode and signal <br> source selection; DC magnetization settings. |  |
| :--- | :--- | :--- |
| 21.01 Vector start mode | Selects the motor start function for the vector motor control <br> mode, ie. when 99.04 Motor control mode is set to Vector. <br> Notes: <br> - The start function for the scalar motor control mode is <br> selected by parameter 21.19 Scalar start mode. <br> - Starting into a rotating motor is not possible when DC <br> magnetizing is selected (Fast or Const time). <br> - With permanent magnet motors, Automatic start mode <br> must be used. <br> This parameter cannot be changed while the drive is <br> running. | Automatic |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
|  | Const time | The drive pre-magnetizes the motor before start. The premagnetizing time is defined by parameter 21.02 Magnetization time. This mode should be selected if constant pre-magnetizing time is required (e.g. if the motor start must be synchronized with the release of a mechanical brake). This setting also guarantees the highest possible break-away torque when the pre-magnetizing time is set long enough. <br> WARNING! The drive will start after the set magnetizing time has passed even if motor magnetization is not completed. In applications where a full break-away torque is essential, ensure that the constant magnetizing time is long enough to allow generation of full magnetization and torque. |  | 1 |
|  | Automatic | Automatic start guarantees optimal motor start in most cases. It includes the flying start function (starting into a rotating motor) and the automatic restart function (a stopped motor can be restarted immediately without waiting the motor flux to die away). The drive motor control program identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions. <br> Note: If parameter 99.04 Motor control mode is set to Scalar, no flying start or automatic restart is possible unless parameter 21.19 Scalar start mode is set to Automatic. |  | 2 |
| 21.02 | Magnetization time | Defines the pre-magnetization time when <br> - parameter 21.01 Vector start mode is set to Const time (in vector motor control mode), or <br> - parameter 21.19 Scalar start mode is set to Const time (in scalar motor control mode). <br> After the start command, the drive automatically premagnetizes the motor for the set time. To ensure full magnetizing, set this parameter to the same value as, or higher than, the rotor time constant. If not known, use the rule-of-thumb value given in the table below: |  | 500 ms |
|  | $0 . .10000 \mathrm{~ms}$ | Constant DC magnetizing time. |  | $1=1 \mathrm{~ms}$ |
| 21.03 | Stop mode | Selects the way the motor is stopped when a stop command is received. <br> Additional braking is possible by selecting flux braking (see parameter 97.05 Flux braking). |  | Coast |
|  | Coast | Stop by switching off the output semiconductors of the drive. The motor coasts to a stop. <br> WARNING! If a mechanical brake is used, ensure it is safe to stop the drive by coasting. |  | 0 |
|  | Ramp | Stop along the active deceleration ramp. See parameter group 23 Speed reference ramp on page 152 or 28 Frequency reference chain on page 165. |  | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Torque limit | Stop according to torque limits (parameters 30.19 and 30.20 ). This mode is only possible in vector motor control mode. | 2 |
| 21.04 | Emergency stop mode | Selects the way the motor is stopped when an emergency stop command is received. <br> The source of the emergency stop signal is selected by parameter 21.05 Emergency stop source. | Ramp stop (Off1) |
|  | Ramp stop (Off1) | With the drive running: <br> - 1 = Normal operation. <br> - $0=$ Normal stop along the standard deceleration ramp defined for the particular reference type (see section Reference ramping [page 49]). After the drive has stopped, it can be restarted by removing the emergency stop signal and switching the start signal from 0 to 1 . <br> With the drive stopped: <br> - 1 = Starting allowed. <br> - $0=$ Starting not allowed. | 0 |
|  | Coast stop (Off2) | With the drive running: <br> - 1 = Normal operation. <br> - $0=$ Stop by coasting. The drive can be restarted by restoring the start interlock signal and switching the start signal from 0 to 1. <br> With the drive stopped: <br> - 1 = Starting allowed. <br> - $0=$ Starting not allowed. | 1 |
|  | Eme ramp stop (Off3) | With the drive running: <br> - 1 = Normal operation <br> - $0=$ Stop by ramping along emergency stop ramp defined by parameter 23.23 Emergency stop time. After the drive has stopped, it can be restarted by removing the emergency stop signal and switching the start signal from 0 to 1. <br> With the drive stopped: <br> - 1 = Starting allowed <br> - $0=$ Starting not allowed | 2 |
| 21.05 | Emergency stop source | Selects the source of the emergency stop signal. The stop mode is selected by parameter 21.04 Emergency stop mode. <br> $0=$ Emergency stop active <br> 1 = Normal operation <br> Note: This parameter cannot be changed while the drive is running. | Inactive (true) |
|  | Active (false) | 0. | 0 |
|  | Inactive (true) | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 3 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 4 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 5 |
|  | D14 | Digital input DI4 (10.02 DI delayed status, bit 3). | 6 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 7 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 8 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 21.06 | Zero speed limit | Defines the zero speed limit. The motor is stopped along a speed ramp (when ramped stop is selected or emergency stop time is used) until the defined zero speed limit is reached. After the zero speed delay, the motor coasts to a stop. | 30.00 rpm |
|  | $\begin{aligned} & \hline 0.00 \ldots . \ldots 30000.00 \\ & \mathrm{rpm} \end{aligned}$ | Zero speed limit. | $\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$ |
| 21.07 | Zero speed delay | Defines the delay for the zero speed delay function. The function is useful in applications where a smooth and quick restarting is essential. During the delay, the drive knows the rotor position accurately. <br> Without zero speed delay: <br> The drive receives a stop command and decelerates along a ramp. When actual motor speed falls below the value of parameter 21.06 Zero speed limit, inverter modulation is stopped and the motor coasts to a standstill. <br> With zero speed delay: <br> The drive receives a stop command and decelerates along a ramp. When actual motor speed falls below the value of parameter 21.06 Zero speed limit, the zero speed delay function activates. During the delay the function keeps the speed controller live: the inverter modulates, motor is magnetized and the drive is ready for a quick restart. Zero speed delay can be used e.g. with the jogging function. <br> Speed | 0 ms |
|  | $0 . . .30000 \mathrm{~ms}$ | Zero speed delay. | $1=1 \mathrm{~ms}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 21.08 | $D C$ current control | Activates/deactivates the DC hold and post-magnetization <br> functions. See section DC magnetization (page 59). <br> Note: DC magnetization causes the motor to heat up. In <br> applications where long DC magnetization times are required, <br> externally ventilated motors should be used. If the DC <br> magnetization period is long, DC magnetization cannot <br> prevent the motor shaft from rotating if a constant load is <br> applied to the motor. | 0000 b |


| Bit | Value |
| :--- | :--- |
| 0 | $1=$ DC hold. See section DC hold (page 60). <br> Note: The DC hold function has no effect if the start signal is switched off. |
| 1 | $1=$ Post-magnetization. See section Settings (page 60). <br> Note: Post-magnetization is only available when ramping is the selected stop mode (see <br> parameter 21.03 Stop mode). |
| $2 \ldots 15$ | Reserved |


|  | 0000b...0011b | DC magnetization selection. | $1=1$ |
| :---: | :---: | :---: | :---: |
| 21.09 | DC hold speed | Defines the DC hold speed in speed control mode. See parameter 21.08 DC current control, and section DC hold (page 60). | 5.00 rpm |
|  | 0.00...1000.00 rpm | DC hold speed. | See par. $46.01$ |
| 21.10 | DC current reference | Defines the DC hold current in percent of the motor nominal current. See parameter 21.08 DC current control, and section DC magnetization (page 59). | 30.0\% |
|  | 0.0...100.0\% | DC hold current. | 1 = 1\% |
| 21.11 | Post magnetization time | Defines the length of time for which post-magnetization is active after stopping the motor. The magnetization current is defined by parameter 21.10 DC current reference. <br> See parameter 21.08 DC current control. | 0 s |
|  | 0...3000 s | Post-magnetization time. | $1=1 \mathrm{~s}$ |
| 21.14 | Pre-heating input source | Selects the source for triggering pre-heating for the motor. The status of the pre-heating is shown as bit 2 of 06.20 Drive status word 3. <br> Notes: <br> - The heating function requires that STO is not triggered. <br> - The heating function requires that the drive is not faulted. <br> - Pre-heating uses DC hold to produce current. | Off |
|  | Off | 0 . Pre-heating is always deactivated. | 0 |
|  | On | 1. Pre-heating is always activated when the drive is stopped. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 8 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 9 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 10 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 11 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 12 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 13 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). |  |
| 21.16 | Pre-heating current | Defines the DC current used to heat motor findings. | 0.0\% |
|  | 0.0...30.0\% | Pre-heating current. | 1 = 1\% |
| 21.18 | Auto restart time | The motor can be automatically started after a short supply power failure using the automatic restart function. See section Automatic restart (page 69). <br> When this parameter is set to 0.0 seconds, automatic restarting is disabled. Otherwise, the parameter defines the maximum duration of the power failure after which restarting is attempted. Note that this time also includes the DC precharging delay. $\qquad$ WARNING! Before you activate the function, make sure that no dangerous situations can occur. The function restarts the drive automatically and continues operation after a supply break. | 10.0 s |
|  | 0.0 s | Automatic restarting disabled. | 0 |
|  | $0.1 \ldots 10.0 \mathrm{~s}$ | Maximum power failure duration. | $1=1 \mathrm{~s}$ |
| 21.19 | Scalar start mode | Selects the motor start function for the scalar motor control mode, ie. when 99.04 Motor control mode is set to Scalar. <br> Notes: <br> - The start function for the vector motor control mode is selected by parameter 21.01 Vector start mode. <br> - With permanent magnet motors, Automatic start mode must be used. <br> - This parameter cannot be changed while the drive is running. <br> See also section DC magnetization (page 59). | Normal |
|  | Normal | Immediate start from zero speed. | 0 |
|  | Const time | The drive pre-magnetizes the motor before start. The premagnetizing time is defined by parameter 21.02 Magnetization time. This mode should be selected if constant pre-magnetizing time is required (e.g. if the motor start must be synchronized with the release of a mechanical brake). This setting also guarantees the highest possible break-away torque when the pre-magnetizing time is set long enough. Note: This mode cannot be used to start into a rotating motor. WARNING! The drive will start after the set premagnetizing time has passed even if motor magnetization is not completed. In applications where a full break-away torque is essential, ensure that the constant magnetizing time is long enough to allow generation of full magnetization and torque. | 1 |
|  | Automatic | The drive automatically selects the correct output frequency to start a rotating motor. This is useful for flying starts: if the motor is already rotating, the drive will start smoothly at the current frequency. <br> Note: Cannot be used in multimotor systems. | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Torque boost | The drive pre-magnetizes the motor before the start. The premagnetizing time is defined by parameter 21.02 <br> Magnetization time. <br> Torque boost is applied at start. Torque boost is stopped when output frequency exceeds 20 Hz or when it is equal to the reference value. See parameter 21.26 Torque boost current. <br> This mode should selected if a high break-away torque is required. <br> Note: This mode cannot be used to start into a rotating motor. WARNING! The drive will start after the set premagnetizing time has passed even if motor magnetization is not completed. In applications where a full break-away torque is essential, ensure that the constant magnetizing time is long enough to allow generation of full magnetization and torque. | 3 |
|  | Flystart + torque boost | Automatic start with torque boost. <br> Automatic start is performed first and the motor is magnetized. If the speed is found to be zero, torque boost is applied. | 4 |
| 21.21 | DC hold frequency | Defines the DC hold frequency, which is used instead of parameter 21.09 DC hold speed when the motor is in scalar frequency mode. See parameter 21.08 DC current control, and section DC hold (page 60). | 5.00 Hz |
|  | 0.00...1000.00 Hz | DC hold frequency. | $1=1 \mathrm{~Hz}$ |
| 21.22 | Start delay | Defines the start delay. After the conditions for start have been fulfilled, the drive waits until the delay has elapsed and then starts the motor. During the delay, warning AFE9 Start delay is shown. <br> Start delay can be used with all start modes. | 0.00 s |
|  | 0.00...60.00 s | Start delay | $1=1 \mathrm{~s}$ |
| 21.23 | Smooth start | Selects the forced current vector rotation mode at low speeds. When the smooth start mode is selected, the rate of acceleration is limited by the acceleration and deceleration ramp times. If the process driven by the permanent magnet synchronous motor has high inertia, slow ramp times are recommended. <br> Can be used for permanent magnet synchronous motors only. | Disabled |
|  | Disabled | Disabled. | 0 |
|  | Enabled always | Enabled always. | 1 |
|  | Start only | Enabled when starting the motor. | 2 |
| 21.24 | Smooth start current | Current used in the current vector rotation at low speeds. Increase the smooth start current if the application requires motor shaft swinging needs to be minimized. Note that accurate torque control is not possible in the current vector rotation mode. <br> Can be used for permanent magnet synchronous motors only. | 50.0\% |
|  | 10.0...100.0\% | Value in percent of the nominal motor current. | 1 = 1\% |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 21.25 | Smooth start speed | Output frequency up to which the current vector rotation is used. See parameter 21.19 Scalar start mode. <br> Can be used for permanent magnet synchronous motors only. | 10.0\% |
|  | 2.0...100.0\% | Value as a percentage of the nominal motor frequency. | 1 = 1\% |
| 21.26 | Torque boost current | Maximum current supplied during torque boost. Can be used for permanent magnet synchronous motors only. | 100.0\% |
|  | 15.0...300.0\% | Value in percent of the nominal motor current. | 1 = 1\% |
| 21.30 | Speed compensated stop mode | Selects the method used to stop the drive. See also section. <br> Speed compensated stop (page 62). <br> Speed compensated stop is active only if <br> - the operation mode is not torque, and <br> - parameter 21.03 Stop mode is Ramp | Off |
|  | Off | Stop according parameter 21.03 Stop mode, no speed compensated stop. | 0 |
|  | Speed comp FWD | If the direction of rotation is forward, speed compensation is used for constant distance braking. Speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. <br> If the direction of rotation is reverse, the drive is stopped along a ramp. | 1 |
|  | Speed comp REV | If the direction of rotation is reverse, speed compensation is used for constant distance braking. Speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. <br> If the direction of rotation is forward, the drive is stopped along a ramp. | 2 |
|  | Speed comp bipolar | Regardless of the direction of rotation, speed compensation is used for constant distance braking. Speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. | 3 |
| 21.31 | Speed delay | This delay adds distance to the total distance traveled during a stop from maximum speed. It is used to adjust the distance to match requirements so that the distance traveled is not solely determined by the deceleration rate. | 0.00 s |
|  | 0.00...1000.00 s | Speed delay. | $1=1 \mathrm{~s}$ |
| 21.32 | Speed comp stop threshold | This parameter sets a speed threshold below which the Speed compensated stop feature is disabled. In this speed region, the speed compensated stop is not attempted and the drive stops as it would, using the ramp option. | 10\% |
|  | 0...100\% | Speed threshold as a percent of the motor nominal speed. | 1 = 1\% |


| 22 Speed reference <br> selection | Speed reference selection; motor potentiometer settings. <br> See the control chain diagrams on pages 370...374. |  |
| :--- | :--- | :--- |
| $22.01 \quad$ Speed ref unlimited | Displays the output of the speed reference selection block. <br> See the control chain diagram on page 373. <br> This parameter is read-only. | - |
| $-30000.00 \ldots$ <br> 30000.00 rpm | Value of the selected speed reference. | See par. <br> 46.01 |



| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Frequency input | 11.38 Freq in 1 actual value (when DI5 is used as a frequency input). | 17 |
|  | Control panel (ref saved) | Panel reference (03.01 Panel reference, see page 91) saved by the control system for the location where the control returns is used as the reference. | 18 |
|  | Control panel (ref copied) | Panel reference (03.01 Panel reference, see page 91) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (eg frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. | 19 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 22.12 | Ext1 speed ref2 | Selects Ext1 speed reference source 2. For the selections, and a diagram of reference source selection, see parameter 22.11 Ext1 speed ref1. | Zero |
| 22.13 | Ext1 speed function | Selects a mathematical function between the reference sources selected by parameters 22.11 Ext1 speed ref1 and 22.12 Ext1 speed ref2. See diagram at 22.11 Ext1 speed ref1. | Ref1 |
|  | Ref1 | Signal selected by 22.11 Ext1 speed ref1 is used as speed reference 1 as such (no function applied). | 0 |
|  | Add (ref1 + ref2) | The sum of the reference sources is used as speed reference 1. | 1 |
|  | Sub (ref1-ref2) | The subtraction ([22.11 Ext1 speed ref1] - [22.12 Ext1 speed ref2]) of the reference sources is used as speed reference 1. | 2 |
|  | Mul (ref1 × ref2) | The multiplication of the reference sources is used as speed reference 1. | 3 |
|  | Min (ref1, ref2) | The smaller of the reference sources is used as speed reference 1. | 4 |
|  | Max (ref1, ref2) | The greater of the reference sources is used as speed reference 1. | 5 |
| 22.18 | Ext2 speed ref1 | Selects Ext2 speed reference source 1. <br> Two signal sources can be defined by this parameter and 22.19 Ext2 speed ref2. A mathematical function (22.20 Ext2 speed function) applied to the two signals creates an Ext2 reference. See diagram at 28.11 Ext1 frequency ref1. | Zero |
|  | Zero | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |
|  | Al2 scaled | 12.22 Al2 scaled value (see page 110). | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | FB A ref1 | 03.05 FB A reference 1 (see page 92). | 4 |
|  | FB A ref2 | 03.06 FB A reference 2 (see page 92). | 5 |
|  | EFB ref1 | 03.09 EFB reference 1 (see page 92). | 8 |
|  | EFB ref2 | 03.10 EFB reference 2 (see page 92). | 9 |
|  | Motor potentiometer | 22.80 Motor potentiometer ref act (output of the motor potentiometer). | 15 |
|  | PID | 40.01 Process PID output actual (output of the process PID controller). | 16 |
|  | Frequency input | 11.38 Freq in 1 actual value (when DI5 is used as a frequency input). | 17 |
|  | Control panel (ref saved) | Panel reference (03.01 Panel reference, see page 91) saved by the control system for the location where the control returns is used as the reference. <br> Reference <br> - Ext1 reference <br> x Ext2 reference <br> - Active reference <br> . . Inactive reference | 18 |
|  | Control panel (ref copied) | Panel reference (03.01 Panel reference, see page 91) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (eg frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. <br> - Ext1 reference <br> x Ext2 reference <br> - Active reference <br> - . Inactive reference | 19 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 22.19 | Ext2 speed ref2 | Selects Ext2 speed reference source 2. <br> For the selections, and a diagram of reference source selection, see parameter 22.18 Ext2 speed ref1. | Zero |
| 22.20 | Ext2 speed function | Selects a mathematical function between the reference sources selected by parameters 22.18 Ext2 speed ref1 and 22.19 Ext2 speed ref2. See diagram at 22.18 Ext2 speed ref1. | Ref1 |
|  | Ref1 | Signal selected by Ext2 speed ref1 is used as speed reference 1 as such (no function applied). | 0 |
|  | Add (ref1 + ref2) | The sum of the reference sources is used as speed reference 1. | 1 |
|  | Sub (ref1 - ref2) | The subtraction ([22.11 Ext1 speed ref1] - [22.12 Ext1 speed ref2]) of the reference sources is used as speed reference 1. | 2 |
|  | Mul (ref1 × ref2) | The multiplication of the reference sources is used as speed reference 1. | 3 |
|  | Min (ref1, ref2) | The smaller of the reference sources is used as speed reference 1. | 4 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Max (ref1, ref2) | The greater of the reference sources is used as speed reference 1. | 5 |
| 22.21 | Constant speed function | Determines how constant speeds are selected, and whether the rotation direction signal is considered or not when applying a constant speed. | 0001b |
|  | Name $\quad$ Information |  |  |
|  | Constantspee mode | 1 = Packed: 7 constant speeds are selectable using the three sources defined by parameters $22.22,22.23$ and 22.24. |  |
|  |  | $0=$ Separate: Constant speeds 1,2 and 3 are separately activated by the sources defined by parameters 22.22, 22.23 and 22.24 respectively. In case of conflict, the constant speed with the smaller number takes priority. |  |
|  | Direction enable | 1 = Start dir: To determine running direction for a constant speed, the sign of the constant speed setting (parameters 22.26...22.32) is multiplied by the direction signal (forward: +1 , reverse: -1 ). This effectively allows the drive to have 14 ( 7 forward, 7 reverse) constant speeds if all values in 22.26...22.32 are positive. <br> $\triangle$ <br> WARNING: If the direction signal is reverse and the active constant speed is negative, the drive will run in the forward direction. |  |
|  |  | $0=$ Accord Par: The running direction for the constant speed is determined by the sign of the constant speed setting (parameters 22.26...22.32). |  |
|  | Reserved |  |  |
|  | 0000b...0001b | Constant speed configuration word. | 1 = 1 |
| 22.22 | Constant speed sel1 | When bit 0 of parameter 22.21 Constant speed function is 0 (Separate), selects a source that activates constant speed 1. When bit 0 of parameter 22.21 Constant speed function is 1 (Packed), this parameter and parameters 22.23 Constant speed sel2 and 22.24 Constant speed sel3 select three sources whose states activate constant speeds as follows: | D/3 |


| Source defined <br> by par. 22.22 | Source defined <br> by par. 22.23 | Source defined <br> by par. 22.24 | Constant speed active |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | None |
| 1 | 0 | 0 | Constant speed 1 |
| 0 | 1 | 0 | Constant speed 2 |
| 1 | 1 | 0 | Constant speed 3 |
| 0 | 0 | 1 | Constant speed 4 |
| 1 | 0 | 1 | Constant speed 5 |
| 0 | 1 | 1 | Constant speed 6 |
| 1 | 1 | 1 | Constant speed 7 |


| Not selected | 0 (always off). | 0 |
| :--- | :--- | :--- |
| Selected | 1 (always on). | 1 |
| DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
| DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
| DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
| DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Supervision 1 | Supervision 2 | Bit 0 of 32.01 Supervision status (see page 186). |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 22.41 | Speed ref safe | Defines a safe speed reference value that is used with supervision functions such as <br> - 12.03 Al supervision function <br> - 49.05 Communication loss action <br> - 50.02 FBA A comm loss func. | 0.00 rpm |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Safe speed reference. | $\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$ |
| 22.42 | Jogging 1 ref | Defines the speed reference for jogging function 1. For more information on jogging, see page 52. | 0.00 rpm |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference for jogging function 1. | See par. 46.01 |
| 22.43 | Jogging 2 ref | Defines the speed reference for jogging function 2. For more information on jogging, see page 52. | 0.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference for jogging function 2. | See par. 46.01 |
| 22.51 | Critical speed function | Enables/disables the critical speeds function. Also determines whether the specified ranges are effective in both rotating directions or not. <br> See also section Critical speeds/frequencies (page 50). | 0000b |
|  | Bit Name <br> 0  | Information |  |
|  | 0 Enable | 1 = Enable: Critical speeds enabled. |  |
|  |  | 0 = Disable: Critical speeds disabled. |  |
|  | $1$ | 1 = Signed: The signs of parameters $22.52 \ldots 22.57$ are tak account. | en into |
|  |  | $0=$ Absolute: Parameters 22.52...22.57 are handled as ab Each range is effective in both directions of rotation. | olute values. |
|  | $2 \ldots 15$ Reserved |  |  |
|  | 0000b...0011b | Critical speeds configuration word. | 1 = 1 |
| 22.52 | Critical speed 1 low | Defines the low limit for critical speed range 1. <br> Note: This value must be less than or equal to the value of 22.53 Critical speed 1 high. | 0.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Low limit for critical speed 1. | See par. 46.01 |
| 22.53 | Critical speed 1 high | Defines the high limit for critical speed range 1. <br> Note: This value must be greater than or equal to the value of 22.52 Critical speed 1 low. | 0.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | High limit for critical speed 1. | See par. <br> 46.01 |
| 22.54 | Critical speed 2 low | Defines the low limit for critical speed range 2. <br> Note: This value must be less than or equal to the value of 22.55 Critical speed 2 high. | 0.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Low limit for critical speed 2. | See par. 46.01 |
| 22.55 | Critical speed 2 high | Defines the high limit for critical speed range 2. <br> Note: This value must be greater than or equal to the value of 22.54 Critical speed 2 low. | 0.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | High limit for critical speed 2. | See par. 46.01 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 22.56 | Critical speed 3 low | Defines the low limit for critical speed range 3. <br> Note: This value must be less than or equal to the value of 22.57 Critical speed 3 high. | 0.00 rpm |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Low limit for critical speed 3. | See par. $46.01$ |
| 22.57 | Critical speed 3 high | Defines the high limit for critical speed range 3. <br> Note: This value must be greater than or equal to the value of 22.56 Critical speed 3 low. | 0.00 rpm |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | High limit for critical speed 3. | See par. $46.01$ |
| 22.71 | Motor potentiometer function | Activates and selects the mode of the motor potentiometer. See section Speed control performance figures (page 55). | Disabled |
|  | Disabled | Motor potentiometer is disabled and its value set to 0 . | 0 |
|  | Enabled (init at stop /power-up) | When enabled, the motor potentiometer first adopts the value defined by parameter 22.72 Motor potentiometer initial value. The value can then be adjusted from the up and down sources defined by parameters 22.73 Motor potentiometer up source and 22.74 Motor potentiometer down source. A power cycle will reset the motor potentiometer to the predefined initial value (22.72). | 1 |
|  | Enabled (resume always) | As Enabled (init at stop /power-up), but the motor potentiometer value is retained over a power cycle. | 2 |
|  | Enabled (init to actual) | Whenever another reference source is selected, the value of the motor potentiometer follows that reference. After the source of reference returns to the motor potentiometer, its value can again be changed by the up and down sources (defined by 22.73 and 22.74). | 3 |
| 22.72 | Motor potentiometer initial value | Defines an initial value (starting point) for the motor potentiometer. See the selections of parameter 22.71 Motor potentiometer function. | 0.00 |
|  | $\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$ | Initial value for motor potentiometer. | $1=1$ |
| 22.73 | Motor potentiometer up source | Selects the source of motor potentiometer up signal. <br> $0=$ No change <br> 1 = Increase motor potentiometer value. (If both the up and down sources are on, the potentiometer value will not change.) | Not selected |
|  | Not selected | 0. | 0 |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 24 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 26 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 22.74 | Motor potentiometer down source | Selects the source of motor potentiometer down signal. <br> $0=$ No change <br> 1 = Decrease motor potentiometer value. (If both the up and down sources are on, the potentiometer value will not change.) <br> For the selections, see parameter 22.73 Motor potentiometer up source. | Not selected |
| 22.75 | Motor potentiometer ramp time | Defines the change rate of the motor potentiometer. This parameter specifies the time required for the motor potentiometer to change from minimum (22.76) to maximum (22.77). The same change rate applies in both directions. | 40.0 s |
|  | 0.0...3600.0 s | Motor potentiometer change time. | $10=1 \mathrm{~s}$ |
| 22.76 | Motor potentiometer min value | Defines the minimum value of the motor potentiometer. <br> Note: If vector control mode is used, value of this parameter must be changed. | 0.00 |
|  | $\begin{aligned} & \hline-32768.00 \ldots \\ & 32767.00 \end{aligned}$ | Motor potentiometer minimum. | $1=1$ |
| 22.77 | Motor potentiometer max value | Defines the maximum value of the motor potentiometer. Note: If vector control mode is used, value of this parameter must be changed. | 50.00 |
|  | $\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$ | Motor potentiometer maximum. | $1=1$ |
| 22.80 | Motor potentiometer ref act | The output of the motor potentiometer function. (The motor potentiometer is configured using parameters 22.71...22.74.) This parameter is read-only. | - |
|  | $\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$ | Value of motor potentiometer. | $1=1$ |
| 22.86 | Speed reference act 6 | Displays the value of the speed reference (Ext1 or Ext2) that has been selected by 19.11 Ext1/Ext2 selection. See diagram at 22.11 Ext1 speed ref1 or the control chain diagram on page 370. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference after additive 2. | $\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$ |
| 22.87 | Speed reference act 7 | Displays the value of speed reference before application of critical speeds. See the control chain diagram on page 373. <br> The value is received from 22.86 Speed reference act 6 unless overridden by <br> - any constant speed <br> - a jogging reference <br> - network control reference <br> - control panel reference <br> - safe speed reference. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference before application of critical speeds. | See par. $46.01$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 23 Speed reference ramp |  | Speed reference ramp settings (programming of the acceleration and deceleration rates for the drive). See the control chain diagram on page 374. |  |
| 23.01 | Speed ref ramp input | Displays the used speed reference (in rpm) before it enters the ramping and shaping functions. See the control chain diagram on page 374 . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference before ramping and shaping. | $\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$ |
| 23.02 | Speed ref ramp output | Displays the ramped and shaped speed reference in rpm. See the control chain diagram on page 374. This parameter is read-only. | - |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference after ramping and shaping. | $\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$ |
| 23.11 | Ramp set selection | Selects the source that switches between the two sets of acceleration/deceleration ramp times defined by parameters 23.12...23.15. <br> $0=$ Acceleration time 1 and deceleration time 1 are active <br> 1 = Acceleration time 2 and deceleration time 2 are active | D/5 |
|  | Acc/Dec time 1 | 0. | 0 |
|  | Acc/Dec time 2 | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 D/ delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | EFB | Only for the DCU profile. DCU control word bit 10 received through the embedded fieldbus interface. | 20 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 23.12 | Acceleration time 1 | Defines acceleration time 1 as the time required for the speed to change from zero to the speed defined by parameter 46.01 Speed scaling (not to parameter 30.12 Maximum speed). If the speed reference increases faster than the set acceleration rate, the motor speed will follow the acceleration rate. <br> If the speed reference increases slower than the set acceleration rate, the motor speed will follow the reference. If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive torque limits. | 20.000 s |
|  | 0.000...1800.000 s | Acceleration time 1. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 23.13 | Deceleration time 1 | Defines deceleration time 1 as the time required for the speed to change from the speed defined by parameter 46.01 Speed scaling (not from parameter 30.12 Maximum speed) to zero. If the speed reference decreases slower than the set deceleration rate, the motor speed will follow the reference. If the reference changes faster than the set deceleration rate, the motor speed will follow the deceleration rate. <br> If the deceleration rate is set too short, the drive will automatically prolong the deceleration in order not to exceed drive torque limits (or not to exceed a safe DC link voltage). If there is any doubt about the deceleration time being too short, ensure that DC overvoltage control is on (parameter 30.30 Overvoltage control). <br> Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with braking equipment such as a brake chopper and brake resistor. | 20.000 s |
|  | 0.000...1800.000 s | Deceleration time 1. | $10=1 \mathrm{~s}$ |
| 23.14 | Acceleration time 2 | Defines acceleration time 2. See parameter 23.12 Acceleration time 1. | 60.000 s |
|  | 0.000...1800.000 s | Acceleration time 2. | $10=1 \mathrm{~s}$ |
| 23.15 | Deceleration time 2 | Defines deceleration time 2. See parameter 23.13 Deceleration time 1. | 60.000 s |
|  | 0.000...1800.000 s | Deceleration time 2. | $10=1 \mathrm{~s}$ |
| 23.20 | Acc time jogging | Defines the acceleration time for the jogging function ie. the time required for the speed to change from zero to the speed value defined by parameter 46.01 Speed scaling. <br> See section Jogging (page 52). | 60.000 s |
|  | 0.000...1800.000 s | Acceleration time for jogging. | $10=1 \mathrm{~s}$ |
| 23.21 | Dec time jogging | Defines the deceleration time for the jogging function ie. the time required for the speed to change from the speed value defined by parameter 46.01 Speed scaling to zero. <br> See section Jogging (page 52). | 60.000 s |
|  | 0.000...1800.000 s | Deceleration time for jogging. | $10=1 \mathrm{~s}$ |
| 23.23 | Emergency stop time | Defines the time inside which the drive is stopped if an emergency stop Off3 is activated (ie. the time required for the speed to change from the speed value defined by parameter 46.01 Speed scaling or 46.02 Frequency scaling to zero). Emergency stop mode and activation source are selected by parameters 21.04 Emergency stop mode and 21.05 Emergency stop source respectively. Emergency stop can also be activated through fieldbus. <br> Note: <br> - Emergency stop Off1 uses the standard deceleration ramp as defined by parameters 23.11...23.15. <br> - The same parameter value is also used in frequency control mode (ramp parameters 28.71...28.75). | 3.000 s |
|  | 0.000...1800.000 s | Emergency stop Off3 deceleration time. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- | :--- |
| 23.28 | Variable slope | Activates the variable slope function, which controls the slope <br> of the speed ramp during a speed reference change. This <br> allows for a constantly variable ramp rate to be generated, <br> instead of just the standard two ramps normally available. <br> If the update interval of the signal from an external control <br> system and the variable slope rate (23.29 Variable slope rate) <br> are equal, speed reference (23.02 Speed ref ramp output) is <br> a straight line. <br> Speed reference <br> R | Off |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 23.32 | Shape time 1 | Defines the shape of the acceleration and deceleration ramps used with the set 1. <br> 0.000 s : Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps. <br> $0.001 \ldots 1000.000 \mathrm{~s}$ : S-curve ramp. S-curve ramps are ideal for lifting applications. The S-curve consists of symmetrical curves at both ends of the ramp and a linear part in between. Acceleration: | 0.100 s |
|  | 0.000...1800.000 s | Ramp shape at start and end of acceleration and deceleration. | $10=1 \mathrm{~s}$ |
| 23.33 | Shape time 2 | Defines the shape of the acceleration and deceleration ramps used with the set 2 . See parameter 23.32 Shape time 1. | 0.100 s |
|  | 0.000...1800.000 s | Ramp shape at start and end of acceleration and deceleration. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 24 Speed reference conditioning |  | Speed error calculation; speed error window control configuration; speed error step. <br> See the control chain diagrams on pages 375 and 376 . |  |
| 24.01 | Used speed reference | Displays the ramped and corrected speed reference (before speed error calculation). See the control chain diagram on page 375 . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed reference used for speed error calculation. | See par. $46.01$ |
| 24.02 | Used speed feedback | Displays the speed feedback used for speed error calculation. See the control chain diagram on page 375 . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Speed feedback used for speed error calculation. | See par. $46.01$ |
| 24.03 | Speed error filtered | Displays the filtered speed error. See the control chain diagram on page 375. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -30000.0 \ldots \\ & 30000.0 \mathrm{rpm} \end{aligned}$ | Filtered speed error. | See par. $46.01$ |
| 24.04 | Speed error inverted | Displays the inverted (unfiltered) speed error. See the control chain diagram on page 375. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -30000.0 \ldots \\ & 30000.0 \mathrm{rpm} \end{aligned}$ | Inverted speed error. | See par. $46.01$ |
| 24.11 | Speed correction | Defines a speed reference correction, ie. a value added to the existing reference between ramping and limitation. This is useful to trim the speed if necessary, for example to adjust draw between sections of a paper machine. <br> See the control chain diagram on page 375. | 0.00 rpm |
|  | $\begin{aligned} & -10000.00 \ldots \\ & 10000.00 \mathrm{rpm} \end{aligned}$ | Speed reference correction. | See par. $46.01$ |
| 24.12 | Speed error filter time | Defines the time constant of the speed error low-pass filter. If the used speed reference changes rapidly, the possible interferences in the speed measurement can be filtered with the speed error filter. Reducing the ripple with this filter may cause speed controller tuning problems. A long filter time constant and fast acceleration time contradict one another. A very long filter time results in unstable control. | 0 ms |
|  | $0 . .10000 \mathrm{~ms}$ | Speed error filtering time constant. $0=$ filtering disabled. | $1=1 \mathrm{~ms}$ |
| 25 Speed control |  | Speed controller settings. <br> See the control chain diagrams on pages 375 and 376. |  |
| 25.01 | Torque reference speed control | Displays the speed controller output that is transferred to the torque controller. See the control chain diagram on page 375. This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Limited speed controller output torque. | See par. 46.03 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 25.02 | Speed proportional gain | Defines the proportional gain $\left(\mathrm{K}_{\mathrm{p}}\right)$ of the speed controller. Too high a gain may cause speed oscillation. The figure below shows the speed controller output after an error step when the error remains constant. | 10.00 |
|  |  | $\begin{aligned} & \text { Gain }=\mathrm{K}_{\mathrm{p}}=1 \\ & T_{1}=\text { Integration time }=0 \end{aligned}$ $T_{\mathrm{D}}=\text { Derivation time }=0$ |  |
|  |  | Error value |  |
|  | Controller output $=K_{p} \times e$ |  | Error value |
|  |  | If gain is set to 1 , a $10 \%$ change in error value (reference actual value) causes the speed controller output to change by $10 \%$, ie. the output value is input $\times$ gain. |  |
|  | 0.00...250.00 | Proportional gain for speed controller. | $100=1$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 25.03 | Speed integration time | Defines the integration time of the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant and the proportional gain of the speed controller is 1 . The shorter the integration time, the faster the continuous error value is corrected. This time constant must be set to the same order of magnitude as the time constant (time to respond) of the actual mechanical system being controlled, otherwise instability will result. <br> Setting the integration time to zero disables the I-part of the controller. This is useful to do when tuning the proportional gain; adjust the proportional gain first, then return the integration time. <br> Anti-windup (the integrator just integrates up to 100\%) stops the integrator if the controller output is limited. <br> The figure below shows the speed controller output after an error step when the error remains constant. | 2.50 s |
|  | 0.00...1000.00 s | Integration time for speed controller. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 25.04 | Speed derivation time | Defines the derivation time of the speed controller. Derivative action boosts the controller output if the error value changes. The longer the derivation time, the more the speed controller output is boosted during the change. If the derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller. The derivation makes the control more responsive for disturbances. For simple applications, derivative time is not normally required and should be left at zero. <br> The speed error derivative must be filtered with a low pass filter to eliminate disturbances. <br> The figure below shows the speed controller output after an error step when the error remains constant. | 0.000 s |
|  | $\mathrm{K}_{\mathrm{p}} \times T_{\mathrm{D}} \times \frac{\Delta \mathrm{e}}{T_{\mathrm{s}}}\left\{\begin{array}{l} \cdots \\ \mathrm{K}_{\mathrm{f}} \end{array}\right.$ |  $\text { in }=K_{p}=1$ <br> $=$ Integration time $>0$ <br> $=$ Derivation time $>0$ <br> Sample time period $=250 \mu \mathrm{~s}$ <br> = Error value change between two samples |  |
|  | 0.000...10.000 s | Derivation time for speed controller. | $1000=1 \mathrm{~s}$ |
| 25.05 | Derivation filter time | Defines the derivation filter time constant. See parameter 25.04 Speed derivation time. | 8 ms |
|  | $0 . . .10000 \mathrm{~ms}$ | Derivation filter time constant. | $1=1 \mathrm{~ms}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 25.06 | Acc comp <br> derivation time | Defines the derivation time for acceleration(/deceleration) <br> compensation. In order to compensate for a high inertia load <br> during acceleration, a derivative of the reference is added to <br> the output of the speed controller. The principle of a derivative <br> action is described under parameter 25.04 Speed derivation <br> time. <br> Note: As a general rule, set this parameter to the value <br> between 50 and 100\% of the sum of the mechanical time <br> constants of the motor and the driven machine. <br> The figure below shows the speed responses when a high <br> inerta load is accelerated along a ramp. <br> No acceleration compensation: |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 25.53 | Torque prop reference | Displays the output of the proportional (P) part of the speed controller. See the control chain diagram on page 375 . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$ | P-part output of speed controller. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.03 \end{array}$ |
| 25.54 | Torque integral reference | Displays the output of the integral (I) part of the speed controller. See the control chain diagram on page 375 . This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$ | I-part output of speed controller. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.03 \end{array}$ |
| 25.55 | Torque deriv reference | Displays the output of the derivative (D) part of the speed controller. See the control chain diagram on page 375. This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$ | D-part output of speed controller. | See par. 46.03 |
| 25.56 | Torque acc compensation | Displays the output of the acceleration compensation function. See the control chain diagram on page 375. This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$ | Output of acceleration compensation function. | $\begin{aligned} & \hline \text { See par. } \\ & 46.03 \end{aligned}$ |
| 26 Torque reference chain |  | Settings for the torque reference chain. See the control chain diagrams on pages 377 and 378 . |  |
| 26.01 | Torque reference to TC | Displays the final torque reference given to the torque controller in percent. This reference is then acted upon by various final limiters, like power, torque, load etc. <br> See the control chain diagrams on pages 378 and 379 . This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Torque reference for torque control. | $\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$ |
| 26.02 | Torque reference used | Displays the final torque reference (in percent of motor nominal torque) given to the torque controller, and comes after frequency, voltage and torque limitation. <br> See the control chain diagram on page 379. <br> This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Torque reference for torque control. | See par. $46.03$ |
| 26.08 | Minimum torque ref | Defines the minimum torque reference. Allows for local limiting of the torque reference before it is passed on to the torque ramp controller. For absolute torque limiting, refer to parameter 30.19 Minimum torque 1. | -300.0\% |
|  | -1000.0...0.0\% | Minimum torque reference. | $\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$ |
| 26.09 | Maximum torque ref | Defines the maximum torque reference. Allows for local limiting of the torque reference before it is passed on to the torque ramp controller. For absolute torque limiting, refer to parameter 30.20 Maximum torque 1. | 300.0\% |
|  | 0.0...1000.0\% | Maximum torque reference. | $\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 26.11 | Torque ref1 source | Selects torque reference source 1. <br> Two signal sources can be defined by this parameter and 26.12 Torque ref2 source. A digital source selected by 26.14 Torque ref1/2 selection can be used to switch between the two sources, or a mathematical function (26.13 Torque ref1 function) applied to the two signals to create the reference. | Zero $26.72$ |
|  | Zero | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |
|  | Al2 scaled | 12.22 Al2 scaled value (see page 110). | 2 |
|  | FB A ref1 | 03.05 FB A reference 1 (see page 92). | 4 |
|  | FB A ref2 | 03.06 FB A reference 2 (see page 92). | 5 |
|  | EFB ref1 | 03.09 EFB reference 1 (see page 92). | 8 |
|  | EFB ref2 | 03.10 EFB reference 2 (see page 92). | 9 |
|  | Motor potentiometer | 22.80 Motor potentiometer ref act (output of the motor potentiometer). | 15 |
|  | PID | 40.01 Process PID output actual (output of the process PID controller). | 16 |
|  | Frequency input | 11.38 Freq in 1 actual value (when DI5 is used as a frequency input). | 17 |
|  | Control panel (ref saved) | Panel reference (03.01 Panel reference, see page 91) saved by the control system for the location where the control returns is used as the reference. <br> - Ext1 reference <br> x Ext2 reference <br> - Active reference <br> - . Inactive reference | 18 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Control panel (ref copied) | Panel reference (03.01 Panel reference, see page 91) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (eg frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. | 19 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 26.12 | Torque ref2 source | Selects torque reference source 2. <br> For the selections, and a diagram of reference source selection, see parameter 26.11 Torque ref1 source. | Zero |
| 26.13 | Torque ref1 function | Selects a mathematical function between the reference sources selected by parameters 26.11 Torque ref1 source and 26.12 Torque ref2 source. See diagram at 26.11 Torque ref1 source. | Ref1 |
|  | Ref1 | Signal selected by 26.11 Torque ref1 source is used as torque reference 1 as such (no function applied). | 0 |
|  | Add (ref1 + ref2) | The sum of the reference sources is used as torque reference 1. | 1 |
|  | Sub (ref1 - ref2) | The subtraction ([26.11 Torque ref1 source] - [26.12 Torque ref2 source]) of the reference sources is used as torque reference 1. | 2 |
|  | Mul (ref1 × ref2) | The multiplication of the reference sources is used as torque reference 1. | 3 |
|  | Min (ref1, ref2) | The smaller of the reference sources is used as torque reference 1 . | 4 |
|  | Max (ref1, ref2) | The greater of the reference sources is used as torque reference 1. | 5 |
| 26.14 | Torque ref1/2 selection | Configures the selection between torque references 1 and 2. See diagram at 26.11 Torque ref1 source. <br> 0 = Torque reference 1 <br> 1 = Torque reference 2 | Torque reference 1 |
|  | Torque reference 1 | 0. | 0 |
|  | Torque reference 2 | 1. | 1 |
|  | Follow Ext1/Ext2 selection | Torque reference 1 is used when external control location EXT1 is active. Torque reference 2 is used when external control location EXT2 is active. <br> See also parameter 19.11 Ext1/Ext2 selection. | 2 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 3 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 4 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 5 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 6 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 7 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 8 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 26.17 | Torque ref filter time | Defines a low-pass filter time constant for the torque reference. | 0.000 s |
|  | 0.000...30.000 s | Filter time constant for torque reference. | $1000=1 \mathrm{~s}$ |
| 26.18 | Torque ramp up time | Defines the torque reference ramp-up time, ie. the time for the reference to increase from zero to nominal motor torque. | 0.000 s |
|  | 0.000...60.000 s | Torque reference ramp-up time. | $100=1 \mathrm{~s}$ |
| 26.19 | Torque ramp down time | Defines the torque reference ramp-down time, ie. the time for the reference to decrease from nominal motor torque to zero. | 0.000 s |
|  | 0.000...60.000 s | Torque reference ramp-down time. | $100=1 \mathrm{~s}$ |
| 26.21 | Torque sel torque in | Selects the source for 26.74 Torque ref ramp out. | Torque ref torq ctrl |
|  | Not selected | None. | 0 |
|  | Torque ref torq ctrl | Torque reference from the torque chain. | 1 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 26.22 | Torque sel speed in | Selects the source for 25.01 Torque reference speed control. | Torque ref speed ctrl |
|  | Not selected | None. | 0 |
|  | Torque ref speed ctrl | Torque reference from the speed chain. | 1 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 26.70 | Torque reference act 1 | Displays the value of torque reference source 1 (selected by parameter 26.11 Torque ref1 source). See the control chain diagram on page 377. <br> This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Value of torque reference source 1. | See par. 46.03 <br> 46.03 |
| 26.71 | Torque reference act 2 | Displays the value of torque reference source 2 (selected by parameter 26.12 Torque ref2 source). See the control chain diagram on page 377. <br> This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Value of torque reference source 2. | $\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$ |
| 26.72 | Torque reference act 3 | Displays the torque reference after the function applied by parameter 26.13 Torque ref1 function (if any), and after selection (26.14 Torque ref1/2 selection). See the control chain diagram on page 377. <br> This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Torque reference after selection. | $\begin{aligned} & \hline \text { See par. } \\ & 46.03 \end{aligned}$ |
| 26.73 | Torque reference act 4 | Displays the torque reference after application of reference additive 1 . See the control chain diagram on page 377 . This parameter is read-only. | - |
|  | -1600.0...1600.0\% | Torque reference after application of reference additive 1. | $\begin{aligned} & \text { See par. } \\ & 4603 \end{aligned}$ $46.03$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 26.74 | Torque ref ramp out | Displays the torque reference after limiting and ramping. See <br> the control chain diagram on page 377. <br> This parameter is read-only. | - |
|  | $-1600.0 \ldots 1600.0 \%$ | Torque reference after limiting and ramping. | See par. <br> 46.03 |
| 26.75 | Torque reference <br> act 5 | Displays the torque reference after control mode selection. <br> See the control chain diagram on page 379. <br> This parameter is read-only. | - |
|  | $-1600.0 \ldots 1600.0 \%$ | Torque reference after control mode selection. | See par. <br> 46.03 |


| 28 Frequency reference chain |  | Settings for the frequency reference chain. <br> See the control chain diagrams on pages 380 and 371 . |  |
| :---: | :---: | :---: | :---: |
| 28.01 | Frequency ref ramp input | Displays the used frequency reference before ramping. See the control chain diagram on page 380 . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Frequency reference before ramping. | See par. <br> 46.02 |
| 28.02 | Frequency ref ramp output | Displays the final frequency reference (after selection, limitation and ramping). See the control chain diagram on page 380 . <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Final frequency reference. | See par. 46.02 |



| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Frequency input | 11.38 Freq in 1 actual value (when DI5 is used as a frequency input). | 17 |
|  | Control panel (ref saved) | Panel reference (03.01 Panel reference, see page 91) saved by the control system for the location where the control returns is used as the reference. <br> - Ext1 reference <br> $x$ Ext2 reference <br> - Active reference <br> . . Inactive reference | 18 |
|  | Control panel (ref copied) | Panel reference (03.01 Panel reference, see page 91) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (eg frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. | 19 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 28.12 | Ext1 frequency ref2 | Selects Ext1 frequency reference source 2. For the selections, and a diagram of reference source selection, see parameter 28.11 Ext1 frequency ref1. | Zero |
| 28.13 | Ext1 frequency function | Selects a mathematical function between the reference sources selected by parameters 28.11 Ext1 frequency ref1 and 28.12 Ext1 frequency ref2. See diagram at 28.11 Ext1 frequency ref1. | Ref1 |
|  | Ref1 | Signal selected by 28.11 Ext1 frequency ref1 is used as frequency reference 1 as such (no function applied). | 0 |
|  | Add (ref1 + ref2) | The sum of the reference sources is used as frequency reference 1. | 1 |
|  | Sub (ref1 - ref2) | The subtraction ([28.11 Ext1 frequency ref1] - [28.12 Ext1 frequency ref2]) of the reference sources is used as frequency reference 1. | 2 |
|  | Mul (ref1 $\times$ ref2) | The multiplication of the reference sources is used as frequency reference 1. | 3 |
|  | Min (ref1, ref2) | The smaller of the reference sources is used as frequency reference 1. | 4 |
|  | Max (ref1, ref2) | The greater of the reference sources is used as frequency reference 1 . | 5 |
| 28.15 | Ext2 frequency ref1 | Selects Ext2 frequency reference source 1 . <br> Two signal sources can be defined by this parameter and 28.16 Ext2 frequency ref2. A mathematical function (28.17 Ext2 frequency function) applied to the two signals creates an Ext2 reference. See diagram at 28.11 Ext1 frequency ref1. | Zero |
|  | Zero | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Al2 scaled | 12.22 AI2 scaled value (see page 110). | 2 |
|  | FB A ref1 | 03.05 FB A reference 1 (see page 92). | 4 |
|  | FB A ref2 | 03.06 FB A reference 2 (see page 92). | 5 |
|  | EFB ref1 | 03.09 EFB reference 1 (see page 92). | 8 |
|  | EFB ref2 | 03.10 EFB reference 2 (see page 92). | 9 |
|  | Motor potentiometer | 22.80 Motor potentiometer ref act (output of the motor potentiometer). | 15 |
|  | PID | 40.01 Process PID output actual (output of the process PID controller). | 16 |
|  | Frequency input | 11.38 Freq in 1 actual value (when DI5 is used as a frequency input). | 17 |
|  | Control panel (ref saved) | Panel reference (03.01 Panel reference, see page 91) saved by the control system for the location where the control returns is used as the reference. <br> Reference <br> - Ext1 reference <br> x Ext2 reference <br> - Active reference <br> . . Inactive reference | 18 |
|  | Control panel (ref copied) | Panel reference (03.01 Panel reference, see page 91) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (eg frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. <br> - Ext1 reference <br> x Ext2 reference <br> - Active reference <br> . . Inactive reference | 19 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 28.16 | Ext2 frequency ref2 | Selects Ext2 frequency reference source 2. <br> For the selections, and a diagram of reference source selection, see parameter 28.15 Ext2 frequency ref1. | Zero |
| 28.17 | Ext2 frequency function | Selects a mathematical function between the reference sources selected by parameters 28.15 Ext2 frequency ref1 and 28.16 Ext2 frequency ref2. See diagram at 28.15 Ext2 frequency ref1. | Ref1 |
|  | Ref1 | Signal selected by 28.15 Ext2 frequency ref1 is used as frequency reference 1 as such (no function applied). | 0 |
|  | Add (ref1 + ref2) | The sum of the reference sources is used as frequency reference 1. | 1 |
|  | Sub (ref1 - ref2) | The subtraction ([28.15 Ext2 frequency ref1] - [28.16 Ext2 frequency ref2]) of the reference sources is used as frequency reference 1. | 2 |
|  | Mul (ref1 × ref2) | The multiplication of the reference sources is used as frequency reference 1. | 3 |


| No. | Name/Value |  | Description |  |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min (ref1, ref2) |  | The smaller of the reference sources is used as frequency reference 1. |  |  |  | 4 |
|  | Max (ref1, ref2) |  | The greater of the reference sources is used as frequency reference 1 . |  |  |  | 5 |
| 28.21 | Constant frequency function |  | Determines how constant frequencies are selected, and whether the rotation direction signal is considered or not when applying a constant frequency. |  |  |  | 0001b |
|  |  | Name | Information |  |  |  |  |
|  |  | Const freq mode | $0=$ Separate: Constant frequencies 1,2 and 3 are separately activated by the sources defined by parameters 28.22, 28.23 and 28.24 respectively. In case of conflict, the constant frequency with the smaller number takes priority. |  |  |  |  |
|  |  | Direction enable | 1 = Start dir: To determine running direction for a constant speed, the sign of the constant speed setting (parameters 22.26...22.32) is multiplied by the direction signal (forward: +1 , reverse: -1 ). This effectively allows the drive to have 14 ( 7 forward, 7 reverse) constant speeds if all values in 22.26...22.32 are positive. <br> WARNING: If the direction signal is reverse and the active constant speed is negative, the drive will run in the forward direction. |  |  |  |  |
|  | $2 \ldots 15$ | Reserved |  |  |  |  |  |
|  | 0000b...0001b |  | Constant frequency configuration word. |  |  |  | 1 = 1 |
| 28.22 | Constant frequency sel1 |  | When bit 0 of parameter 28.21 Constant frequency function is 0 (Separate), selects a source that activates constant frequency 1. <br> When bit 0 of parameter 28.21 Constant frequency function is 1 (Packed), this parameter and parameters 28.23 Constant frequency sel2 and 28.24 Constant frequency se/3 select three sources whose states activate constant frequencies as follows: |  |  |  | DI3 |
|  | Source defined by par. 28.22 |  |  | $\begin{array}{\|c} \hline \begin{array}{c} \text { Source defined } \\ \text { by par. } 28.23 \\ \hline \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Source defined } \\ \text { by par. } 28.24 \\ \hline \end{array}$ | Constant frequen active |  |
|  | 0 |  |  | 0 | 0 | None |  |
|  | 1 |  |  | 0 | 0 | Constant frequenc |  |
|  | 0 |  |  | 1 | 0 | Constant frequenc |  |
|  | 1 |  |  | 1 | 0 | Constant frequenc |  |
|  | 0 |  |  | 0 | 1 | Constant frequenc |  |
|  | 1 |  |  | 0 | 1 | Constant frequenc |  |
|  | 0 |  |  | 1 | 1 | Constant frequenc |  |
|  | 1 |  |  | 1 | 1 | Constant frequency 7 |  |
|  | Not selected |  | 0. |  |  |  | 0 |
|  | Selected |  | 1. |  |  |  | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 24 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 26 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 28.23 | Constant frequency sel2 | When bit 0 of parameter 28.21 Constant frequency function is 0 (Separate), selects a source that activates constant frequency 2. <br> When bit 0 of parameter 28.21 Constant frequency function is 1 (Packed), this parameter and parameters 28.22 Constant frequency sel1 and 28.24 Constant frequency sel3 select three sources that are used to activate constant frequencies. See table at parameter 28.22 Constant frequency sel1. For the selections, see parameter 28.22 Constant frequency sel1. | DI4 |
| 28.24 | Constant frequency sel3 | When bit 0 of parameter 28.21 Constant frequency function is 0 (Separate), selects a source that activates constant frequency 3. <br> When bit 0 of parameter 28.21 Constant frequency function is 1 (Packed), this parameter and parameters 28.22 Constant frequency sel1 and 28.23 Constant frequency sel2 select three sources that are used to activate constant frequencies. See table at parameter 28.22 Constant frequency sel1. For the selections, see parameter 28.22 Constant frequency sel1. | Not selected |
| 28.26 | Constant frequency 1 | Defines constant frequency 1 (the frequency the motor will turn when constant frequency 1 is selected). | 5.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots . .500 .00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 1. | $\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$ |
| 28.27 | Constant frequency 2 | Defines constant frequency 2. | 10.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 2. | See par. $46.02$ |
| 28.28 | Constant frequency 3 | Defines constant frequency 3. | 15.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots . .500 .00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 3. | See par. 46.02 |
| 28.29 | Constant frequency 4 | Defines constant frequency 4. | 20.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 4. | See par. $46.02$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 28.30 | Constant frequency 5 | Defines constant frequency 5. | 25.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 5. | See par. 46.02 |
| 28.31 | Constant frequency <br> 6 | Defines constant frequency 6. | 40.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 6. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.02 \end{array}$ |
| 28.32 | Constant frequency $7$ | Defines constant frequency 7. | 50.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Constant frequency 7. | $\begin{aligned} & \hline \text { See par. } \\ & 46.02 \end{aligned}$ |
| 28.41 | Frequency ref safe | Defines a safe frequency reference value that is used with supervision functions such as <br> - 12.03 Al supervision function <br> - 49.05 Communication loss action <br> - 50.02 FBA A comm loss func. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Safe frequency reference. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.02 \end{array}$ |
| 28.51 | Critical frequency function | Enables/disables the critical frequencies function. Also determines whether the specified ranges are effective in both rotating directions or not. <br> See also section Critical speeds/frequencies (page 50). | 0000b |
|  | Bit Name <br> 0 Crit freq | Information |  |
|  |  | 1 = Enable: Critical frequencies enabled. |  |
|  |  | 0 = Disable: Critical frequencies disabled. |  |
|  | 1 Sign mode | 1 = According to par: The signs of parameters $28.52 \ldots 28.57$ are taken into account. <br> $0=$ Absolute: Parameters $28.52 \ldots 28.57$ are handled as absolute values. Each range is effective in both directions of rotation. |  |
|  | 0000b...0011b | Critical frequencies configuration word. | 1 = 1 |
| 28.52 | $\text { Critical frequency } 1$ Iow | Defines the low limit for critical frequency 1. <br> Note: This value must be less than or equal to the value of 28.53 Critical frequency 1 high. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Low limit for critical frequency 1. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.02 \end{array}$ |
| 28.53 | Critical frequency 1 high | Defines the high limit for critical frequency 1. <br> Note: This value must be greater than or equal to the value of 28.52 Critical frequency 1 low. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | High limit for critical frequency 1. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.02 \end{array}$ |
| 28.54 | Critical frequency 2 low | Defines the low limit for critical frequency 2. <br> Note: This value must be less than or equal to the value of 28.55 Critical frequency 2 high. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \\ & \hline \end{aligned}$ | Low limit for critical frequency 2. | See par. 46.02 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 28.55 | Critical frequency 2 high | Defines the high limit for critical frequency 2. <br> Note: This value must be greater than or equal to the value of 28.54 Critical frequency 2 low. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | High limit for critical frequency 2. | $\begin{aligned} & \hline \text { See par. } \\ & 46.02 \end{aligned}$ |
| 28.56 | Critical frequency 3 Iow | Defines the low limit for critical frequency 3. <br> Note: This value must be less than or equal to the value of 28.57 Critical frequency 3 high. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Low limit for critical frequency 3. | $\begin{array}{\|l} \hline \text { See par. } \\ 46.02 \end{array}$ |
| 28.57 | Critical frequency 3 high | Defines the high limit for critical frequency 3. <br> Note: This value must be greater than or equal to the value of 28.56 Critical frequency 3 low. | 0.00 Hz |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | High limit for critical frequency 3. | $\begin{aligned} & \hline \text { See par. } \\ & 46.02 \end{aligned}$ |
| 28.71 | Freq ramp set selection | Selects a source that switches between the two sets of acceleration/deceleration times defined by parameters 28.72...28.75. <br> $0=$ Acceleration time 1 and deceleration time 1 are in force <br> $1=$ Acceleration time 2 and deceleration time 2 are in force | DI5 |
|  | Acc/Dec time 1 | 0. | 0 |
|  | Acc/Dec time 2 | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | EFB | Only for the DCU profile. DCU control word bit 10 received through the embedded fieldbus interface. | 20 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 28.72 | Freq acceleration time 1 | Defines acceleration time 1 as the time required for the frequency to change from zero to the frequency defined by parameter 46.02 Frequency scaling. After this frequency has been reached, the acceleration continues with the same rate to the value defined by parameter 30.14 Maximum frequency. If the reference increases faster than the set acceleration rate, the motor will follow the acceleration rate. If the reference increases slower than the set acceleration rate, the motor frequency will follow the reference. If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive torque limits. | 20.000 s |
|  | 0.000...1800.000 s | Acceleration time 1. | $10=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 28.73 | Freq deceleration <br> time 1 | Defines deceleration time 1 as the time required for the <br> frequency to change from the frequency defined by <br> parameter 46.02 Frequency scaling (not from parameter <br> 30.14 Maximum frequency) to zero. <br> If there is any doubt about the deceleration time being too <br> short, ensure that DC overvoltage control (30.30 Overvoltage <br> control) is on. <br> Note: If a short deceleration time is needed for a high inertia <br> application, the drive should be equipped with braking <br> equipment such as a brake chopper and brake resistor. | 20.000 s |
|  | 0.000...1800.000 s | Deceleration time 1. | $10=1 \mathrm{~s}$ |
| 28.74 | Freq acceleration <br> time 2 | Defines acceleration time 2. See parameter 28.72 Freq <br> acceleration time 1. | 60.000 s |
|  | 0.000...1800.000 s | Acceleration time 2. | $10=1 \mathrm{~s}$ |
| 28.75 | Freq deceleration <br> time 2 | Defines deceleration time 2. See parameter 28.73 Freq <br> deceleration time 1. | 60.000 s |
| 0.000...1800.000 s | Deceleration time 2. | $10=1 \mathrm{~s}$ |  |
| 28.76 | Freq ramp in zero <br> source | Selects a source that forces the frequency reference to zero. <br> $0=$ Force frequency reference to zero <br> 1 = Normal operation | Inactive |
| Active | 0. | 0 |  |
| Inactive | 1. | 1 |  |
| DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |  |
| DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |  |
| DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |  |
| DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |  |
| DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |  |
| DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |  |
| Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 28.82 | Shape time 1 | Defines the shape of the acceleration and deceleration ramps used with the set 1 . <br> 0.000 s: Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps. <br> $0.001 \ldots 1000.000 \mathrm{~s}$ : S-curve ramp. S-curve ramps are ideal for lifting applications. The S-curve consists of symmetrical curves at both ends of the ramp and a linear part in between. Acceleration: | 0.100 s |
|  | 0.000...1800.000 s | Ramp shape at start and end of acceleration and deceleration. | $10=1 \mathrm{~s}$ |
| 28.83 | Shape time 2 | Defines the shape of the acceleration and deceleration ramps used with the set 2 . See parameter 28.82 Shape time 1. | 0.100 s |
|  | 0.000...1800.000 s | Ramp shape at start and end of acceleration and deceleration. | $10=1 \mathrm{~s}$ |


| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.92 | Frequency ref act 3 |  | Displays the frequency reference after the function applied by parameter 28.13 Ext1 frequency function (if any), and after selection (19.11 Ext1/Ext2 selection). See the control chain diagram on page 380. <br> This parameter is read-only. |  | - |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ |  | Frequency reference after selection. |  | $\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$ |
| 28.96 | Frequency ref act 7 |  | Displays the frequency reference after application of constant frequencies, control panel reference, etc. See the control chain diagram on page 380 . <br> This parameter is read-only. |  | - |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ |  | Frequency reference 7. |  | $\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$ |
| 28.97 | Frequency ref unlimited |  | Displays the frequency reference after application of critical frequencies, but before ramping and limiting. See the control chain diagram on page 371 . <br> This parameter is read-only. |  | - |
|  | $\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ |  | Frequency reference before ramping and limiting. |  | $\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$ |
| 30 Limits |  |  | Drive operation limits. |  |  |
| 30.01 | Limit word 1 |  | Displays limit word 1. <br> This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Torq lim |  | 1 = Drive torque is being limited by the motor control (undervoltage control, current control, load angle control or pull-out control), or by the torque limits defined by parameters. |  |
|  | 1...2 | Reserved |  |  |  |
|  | 3 | Torq ref max |  | 1 = Torque reference is being limited by 26.09 Maximum torque ref or 30.20 Maximum torque 1 |  |
|  | 4 | Torq ref min |  | 1 = Torque reference is being limited by 26.08 Minimum torque ref or 30. 19 Minimum torque 1 |  |
|  | 5 | Tlim max speed |  | 1 = Torque reference is being limited by the rush control because of maximum speed limit (30.12 Maximum speed) |  |
|  | 6 | Tlim min speed |  | 1 = Torque reference is being limited by the rush control because of minimum speed limit (30.11 Minimum speed) |  |
|  | 7 | Max speed ref lim |  | 1 = Speed reference is being limited by 30.12 Maximum speed |  |
|  | 8 | Min speed ref lim |  | 1 = Speed reference is being limited by 30.11 Minimum speed |  |
|  | 9 | Max freq ref lim |  | 1 = Frequency reference is being limited by 30.14 Maximum frequency |  |
|  | 10 | Min freq ref lim |  | 1 = Frequency reference is being limited by 30.13 Minimum frequency |  |
|  | 11...15 | Reserved |  |  |  |
|  | 0000h... | FFFFh | Limit | word 1. | 1 = 1 |


| No. | Name/Value |  | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 30.02 | Torque limit status |  | Displays the torque controller limitation status word. This parameter is read-only. | - |
|  | Bit | Name | Description |  |
|  | 0 | Undervoltage | *1 = Intermediate DC circuit undervoltage |  |
|  | 1 | Overvoltage | *1 = Intermediate DC circuit overvoltage |  |
|  | 2 | Minimum torque | *1 = Torque is being limited by 30.19 Minimum torque 1, 30.26 Power motoring limit or 30.27 Power generating limit |  |
|  | 3 | Maximum torque | *1 = Torque is being limited by 30.20 Maximum torque 1, 30.26 Power motoring limit or 30.27 Power generating limit |  |
|  | 4 | Internal current | 1 = An inverter current limit (identified by bits 8...11) is active |  |
|  | 5 | Load angle | (With permanent magnet motors and reluctance motors only) 1 = Load angle limit is active, ie. the motor cannot produce any more torque |  |
|  | 6 | Motor pullout | (With asynchronous motors only) Motor pull-out limit is active, ie. the motor cannot produce any more torque |  |
|  | 7 | Reserved |  |  |
|  | 8 | Thermal | 1 = Input current is being limited by the main circuit thermal limit |  |
|  | 9 | Max current | *1 = Maximum output current ( $\mathrm{IMAX}^{\text {) }}$ is being limited |  |
|  | 10 | User current | *1 = Output current is being limited by 30.17 Maximum current |  |
|  | 11 | Thermal IGBT | *1 = Output current is being limited by a calculated thermal current value |  |
|  | 12... 15 | Reserved |  |  |
|  | *Only one out of bits $0 \ldots 3$, and one out of bits $9 \ldots 11$ can be on simultaneously. The bit typically indicates the limit that is exceeded first. |  |  |  |


|  | 0000h...FFFFh | Torque limitation status word. | 1 = 1 |
| :---: | :---: | :---: | :---: |
| 30.11 | Minimum speed | Defines the minimum allowed speed. <br> WARNING! This value must not be higher than 30.12 Maximum speed. <br> WARNING! In speed control mode only. In frequency control mode, use frequency limits ( 30.13 and 30.14 ). | -1500.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Minimum allowed speed. | See par. $46.01$ |
| 30.12 | Maximum speed | Defines the maximum allowed speed. <br> WARNING! This value must not be lower than 30.11 Minimum speed. <br> WARNING! In speed control mode only. In frequency control mode, use frequency limits (30.13 and 30.14). | 1500.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Maximum speed. | See par. 46.01 |
| 30.13 | Minimum frequency | Defines the minimum allowed frequency. <br> WARNING! This value must not be higher than 30.14 Maximum frequency. <br> WARNING! in frequency control mode only. | $-50.00 \mathrm{~Hz}$ |
|  | $\begin{aligned} & -500.00 \ldots . .500 .00 \\ & \mathrm{~Hz} \end{aligned}$ | Minimum frequency. | See par. $46.02$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 30.14 | Maximum frequency | Defines the maximum allowed frequency. <br> WARNING! This value must not be lower than 30.13 Minimum frequency. <br> WARNING! in frequency control mode only. | 50.00 Hz |
|  | $\begin{aligned} & \hline-500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$ | Maximum frequency. | See par. $46.02$ |
| 30.17 | Maximum current | Defines the maximum allowed motor current. | 0.00 A |
|  | 0.00...30000.00 A | Maximum motor current. | $1=1 \mathrm{~A}$ |
| 30.18 | Torq lim sel | Selects a source that switches between two different predefined minimum torque limit sets. <br> $0=$ minimum torque limit defined by 30.19 and maximum torque limit defined by 30.20 are active <br> 1 = minimum torque limit selected by 30.21 and maximum torque limit defined by 30.22 are active <br> The user can define two sets of torque limits, and switch between the sets using a binary source such as a digital input. <br> The first set of limits is defined by parameters 30.19 and 30.20. The second set has selector parameters for both the minimum (30.21) and maximum (30.22) limits that allows the use of a selectable analog source (such as an analog input). <br> Note: In addition to the user-defined limits, torque may be limited for other reasons (such as power limitation). Refer to the block diagram on page 379. <br> WARNING! In torque control mode (vector motor control) only. | Torque limit set 1 |
|  | Torque limit set 1 | 0 (minimum torque limit defined by 30.19 and maximum torque limit defined by 30.20 are active). | 0 |
|  | Torque limit set 2 | 1 (minimum torque limit selected by 30.21 and maximum torque limit defined by 30.22 are active). | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | EFB | Only for the DCU profile. DCU control word bit 15 received through the embedded fieldbus interface. | 11 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 30.19 | Minimum torque 1 | Defines a minimum torque limit for the drive (in percent of nominal motor torque). See diagram at parameter 30.18 Torq lim sel. <br> The limit is effective when <br> - the source selected by 30.18 Torq lim sel is 0 , or <br> - 30.18 is set to Torque limit set 1. <br> WARNING! In torque control mode (vector motor control) only. | -300.0\% |
|  | -1600.0...0.0\% | Minimum torque limit 1. | See par. 46.03 |
| 30.20 | Maximum torque 1 | Defines a maximum torque limit for the drive (in percent of nominal motor torque). See diagram at parameter 30.18 Torq lim sel. <br> The limit is effective when <br> - the source selected by 30.18 Torq lim sel is 0 , or <br> - 30.18 is set to Torque limit set 1. <br> WARNING! In torque control mode (vector motor control) only. | 300.0\% |
|  | 0.0...1600.0\% | Maximum torque 1. | See par. $46.03$ |
| 30.21 | Min torque 2 source | Defines the source of the minimum torque limit for the drive (in percent of nominal motor torque) when <br> - the source selected by parameter 30.18 Torq lim sel is 1 , or <br> - 30.18 is set to Torque limit set 2. <br> See diagram at 30.18 Torq lim sel. <br> Note: Any positive values received from the selected source are inverted. <br> WARNING! In torque control mode (vector motor control) only. | Minimum torque 2 |
|  | Zero | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |
|  | AI2 scaled | 12.22 Al2 scaled value (see page 110). | 2 |
|  | PID | 40.01 Process PID output actual (output of the process PID controller). | 15 |
|  | Minimum torque 2 | 30.23 Minimum torque 2. | 16 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 30.22 | Max torque 2 source | Defines the source of the maximum torque limit for the drive (in percent of nominal motor torque) when <br> - the source selected by parameter 30.18 Torq lim sel is 1 , or <br> - 30.18 is set to Torque limit set 2 . <br> See diagram at 30.18 Torq lim sel. <br> Note: Any negative values received from the selected source are inverted. <br> WARNING! In torque control mode (vector motor control) only. | Maximum torque 2 |
|  | Zero | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |
|  | Al2 scaled | 12.22 AI2 scaled value (see page 110). | 2 |
|  | PID | 40.01 Process PID output actual (output of the process PID controller). | 15 |
|  | Maximum torque 2 | 30.24 Maximum torque 2. | 16 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 30.23 | Minimum torque 2 | Defines the minimum torque limit for the drive (in percent of nominal motor torque) when <br> - the source selected by 30.18 Torq lim sel is 1 , or <br> - 30.18 is set to Torque limit set 2 <br> and <br> - 30.21 Min torque 2 source is set to Minimum torque 2. <br> See diagram at 30.18 Torq lim sel. <br> ! <br> WARNING! In torque control mode (vector motor control) only. | -300.0\% |
|  | -1600.0...0.0\% | Minimum torque limit 2. | See par. 46.03 |
| 30.24 | Maximum torque 2 | Defines the maximum torque limit for the drive (in percent of nominal motor torque) when <br> The limit is effective when <br> - the source selected by 30.18 Torq lim sel is 1 , or <br> - 30.18 is set to Torque limit set 2 <br> and <br> - 30.22 Max torque 2 source is set to Maximum torque 2. <br> See diagram at 30.18 Torq lim sel. WARNING! In torque control mode (vector motor control) only. | 300.0\% |
|  | 0.0...1600.0\% | Maximum torque limit 2. | See par. 46.03 |
| 30.26 | Power motoring limit | Defines the maximum allowed power fed by the inverter to the motor in percent of nominal motor power. | 300.00\% |
|  | 0.00...600.00\% | Maximum motoring power. | 1 = 1\% |
| 30.27 | Power generating limit | Defines the maximum allowed power fed by the motor to the inverter in percent of nominal motor power. | -300.00\% |
|  | -600.00...0.00\% | Maximum generating power. | 1 = 1\% |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 30.30 | Overvoltage control | Enables the overvoltage control of the intermediate DC link. <br> Fast braking of a high inertia load causes the voltage to rise <br> to the overvoltage control limit. To prevent the DC voltage <br> from exceeding the limit, the overvoltage controller <br> automatically decreases the braking torque. <br> Note: If the drive is equipped with a brake chopper and <br> resistor, or a regenerative supply unit, the controller must be <br> disabled. | Enable |
| Enable | Overvoltage control disabled. | 0 |  |
| 30.31 | Undervoltage <br> control | Onables the undervoltage control of the intermediate DC link. <br> If the DC voltage drops due to input power cut off, the <br> undervoltage controller will automatically decrease the motor <br> torque in order to keep the voltage above the lower limit. By <br> decreasing the motor torque, the inertia of the load will cause <br> regeneration back to the drive, keeping the DC link charged <br> and preventing an undervoltage trip until the motor coasts to <br> a stop. This will act as a power-loss ride-through functionality <br> in systems with high inertia, such as a centrifuge or a fan. |  |
|  | Disable | Undervoltage control disabled. | 1 |
| Enable | Undervoltage control enabled. | 0 |  |


| 31 Fault functions |  | Configuration of external events; selection of behavior of the drive upon fault situations. |  |
| :---: | :---: | :---: | :---: |
| 31.01 | External event 1 source | Defines the source of external event 1. <br> See also parameter 31.02 External event 1 type. <br> $0=$ Trigger event <br> 1 = Normal operation | Inactive (true) |
|  | Active (false) | 0. | 0 |
|  | Inactive (true) | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 3 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 4 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 5 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 6 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 7 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 8 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 31.02 | External event 1 type | Selects the type of external event 1. | Fault |
|  | Fault | The external event generates a fault. | 0 |
|  | Warning | The external event generates a warning. | 1 |
| 31.03 | External event 2 source | Defines the source of external event 2 . See also parameter 31.04 External event 2 type. <br> For the selections, see parameter 31.01 External event 1 source. | Inactive (true) |
| 31.04 | External event 2 type | Selects the type of external event 2. | Fault |
|  | Fault | The external event generates a fault. | 0 |
|  | Warning | The external event generates a warning. | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 31.05 | External event 3 source | Defines the source of external event 3 . See also parameter 31.06 External event 3 type. <br> For the selections, see parameter 31.01 External event 1 source. | Inactive (true) |
| 31.06 | External event 3 type | Selects the type of external event 3. | Fault |
|  | Fault | The external event generates a fault. | 0 |
|  | Warning | The external event generates a warning. | 1 |
| 31.07 | External event 4 source | Defines the source of external event 4. See also parameter 31.08 External event 4 type. <br> For the selections, see parameter 31.01 External event 1 source. | Inactive (true) |
| 31.08 | External event 4 type | Selects the type of external event 4. | Fault |
|  | Fault | The external event generates a fault. | 0 |
|  | Warning | The external event generates a warning. | 1 |
| 31.09 | External event 5 source | Defines the source of external event 5 . See also parameter 31.10 External event 5 type. <br> For the selections, see parameter 31.01 External event 1 source. | Inactive (true) |
| 31.10 | External event 5 type | Selects the type of external event 5. | Fault |
|  | Fault | The external event generates a fault. | 0 |
|  | Warning | The external event generates a warning. | 1 |
| 31.11 | Fault reset selection | Selects the source of an external fault reset signal. The signal resets the drive after a fault trip if the cause of the fault no longer exists. <br> 0 -> 1 = Reset <br> Note: A fault reset from the fieldbus interface is always observed regardless of this parameter. | Not selected |
|  | Not selected | 0. | 0 |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 24 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 26 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 31.12 | Autoreset selection | Selects faults that are automatically reset. The parameter is a 16-bit word with each bit corresponding to a fault type. Whenever a bit is set to 1 , the corresponding fault is automatically reset. <br> WARNING! Before you activate the function, make sure that no dangerous situations can occur. The function restarts the drive automatically and continues operation after a fault. <br> The bits of this binary number correspond to the following faults: | 0000h |
|  | Fault |  |  |
|  | Overcurrent |  |  |
|  | Overvoltage |  |  |
|  | Undervoltage |  |  |
|  | Al supervision fault |  |  |
|  | Reserved |  |  |
|  | Selectable fault (see parameter 31.13 Selectable fault) |  |  |
|  | External fault 1 (from source selected by parameter 31.01 External event 1 source) |  |  |
|  | External fault 2 (from source selected by parameter 31.03 External event 2 source) |  |  |
|  | External fault 3 (from source selected by parameter 31.05 External event 3 source) |  |  |
|  | External fault 4 (from source selected by parameter 31.07 External event 4 source) |  |  |
|  | External fault 5 (from source selected by parameter 31.09 External event 5 source) |  |  |
|  | 0000h...FFFFh | Automatic reset configuration word. | 1 = 1 |
| 31.13 | Selectable fault | Defines the fault that can be automatically reset using parameter 31.12 Autoreset selection, bit 10. <br> Faults are listed in chapter Fault tracing (page 319). <br> Note: The fault codes are in hexadecimal. The selected code must be converted to decimal for this parameter. | 0000h |
|  | 0000h...FFFFh | Fault code. | $10=1$ |
| 31.14 | Number of trials | Defines the number of automatic fault resets the drive performs within the time defined by parameter 31.15 Total trials time. | 0 |
|  | 0... 5 | Number of automatic resets. | $10=1$ |
| 31.15 | Total trials time | Defines the time the automatic reset function will attempt to reset the drive. During this time, it will perform the number of automatic resets defined by 31.14 Number of trials. | 30.0 s |
|  | 1.0...600.0 s | Time for automatic resets. | $10=1 \mathrm{~s}$ |
| 31.16 | Delay time | Defines the time that the drive will wait after a fault before attempting an automatic reset. See parameter 31.12 Autoreset selection. | 0.0 s |
|  | 0.0...120.0 s | Autoreset delay. | $10=1 \mathrm{~s}$ |
| 31.19 | Motor phase loss | Selects how the drive reacts when a motor phase loss is detected. | Fault |
|  | No action | No action taken. | 0 |
|  | Fault | The drive trips on fault 3381 Output phase loss. | 1 |


| No. | Name/Value | Description |  |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31.20 | Earth fault | Selects how the drive reacts when an earth (ground) fault or current unbalance is detected in the motor or the motor cable. |  |  |  | Fault |
|  | No action | No action taken. |  |  |  | 0 |
|  | Warning | The drive generates an A2B3 Earth leakage warning. |  |  |  | 1 |
|  | Fault | The drive trips on fault 2330 Earth leakage. |  |  |  | 2 |
| 31.21 | Supply phase loss | Selects how the drive reacts when a supply phase loss is detected. |  |  |  | Fault |
|  | No action | No action taken. |  |  |  | 0 |
|  | Fault | The drive trips on fault 3130 Input phase loss. |  |  |  | 1 |
| 31.22 | STO indication run/stop | Selects which indications are given when one or both Safe torque off (STO) signals are switched off or lost. The indications also depend on whether the drive is running or stopped when this occurs. <br> The tables at each selection below show the indications generated with that particular setting. <br> Notes: <br> - This parameter does not affect the operation of the STO function itself. The STO function will operate regardless of the setting of this parameter: a running drive will stop upon removal of one or both STO signals, and will not start until both STO signals are restored and all faults reset. <br> - The loss of only one STO signal always generates a fault as it is interpreted as a malfunction. <br> For more information on the STO, see chapter The Safe torque off function in the Hardware manual of the drive. |  |  |  | Fault/Fault |
|  | Fault/Fault |  |  |  |  | 0 |
|  |  | Inputs |  | Indication (running or stopped) |  |  |
|  |  | IN1 | IN2 |  |  |  |
|  |  | 0 | 0 | Fault 5091 S | Safe torque off |  |
|  |  | 0 | 1 | Fault FA81 Sa | fe torque off 1 |  |
|  |  | 1 | 0 | Fault FA82 Sa | fe torque off 2 |  |
|  |  | 1 | 1 | (Normal | operation) |  |
|  | Fault/Warning |  |  |  |  | 1 |
|  |  | Inputs |  | Indication |  |  |
|  |  | IN1 | IN2 | Running | Stopped |  |
|  |  | 0 | 0 | Fault 5091 Safe torque off | Warning A5AO Safe torque off |  |
|  |  | 0 | 1 | Fault FA81 Safe torque off 1 | Fault FA81 Safe torque off 1 |  |
|  |  | 1 | 0 | Fault FA82 Safe torque off 2 | Fault FA82 Safe torque off 2 |  |
|  |  | 1 | 1 | (Normal | operation) |  |



| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 31.30 | Overspeed trip margin | Defines, together with 30.11 Minimum speed and 30.12 Maximum speed, the maximum allowed speed of the motor (overspeed protection). If the speed (24.02 Used speed feedback) exceeds the speed limit defined by parameter 30.11 or 30.12 by more than the value of this parameter, the drive trips on the 7310 Overspeed fault. <br> WARNING! This function only supervises the speed in vector motor control mode. The function is not effective in scalar motor control mode. <br> Example: If the maximum speed is 1420 rpm and speed trip margin is 300 rpm , the drive trips at 1720 rpm . | 500.00 rpm |
|  | $\begin{aligned} & \text { 0.00... } 10000.00 \\ & \text { rpm } \end{aligned}$ | Overspeed trip margin. | $\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$ |
| 31.32 | Emergency ramp supervision | Parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay, together with the derivative of 24.02 Used speed feedback, provide a supervision function for emergency stop modes Off1 and Off3. <br> The supervision is based on either <br> - observing the time within which the motor stops, or <br> - comparing the actual and expected deceleration rates. If this parameter is set to $0 \%$, the maximum stop time is directly set in parameter 31.33. Otherwise, 31.32 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters $23.11 \ldots 23.15$ (Off1) or 23.23 Emergency stop time (Off3). If the actual deceleration rate (24.02) deviates too much from the expected rate, the drive trips on 73BO Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2, and coasts to a stop. <br> If 31.32 is set to $0 \%$ and 31.33 is set to 0 s , the emergency stop ramp supervision is disabled. <br> See also parameter 21.04 Emergency stop mode. | 0\% |
|  | 0...300\% | Maximum deviation from expected deceleration rate. | 1 = 1\% |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 31.33 | Emergency ramp <br> supervision delay | If parameter 31.32 Emergency ramp supervision is set to 0\%, <br> this parameter defines the maximum time an emergency stop <br> (mode Off1 or Off3) is allowed to take. If the motor has not <br> stopped when the time elapses, the drive trips on 73B0 <br> Emergency ramp failed, sets bit 8 of 06.17 Drive status word <br> 2, and coasts to a stop. <br> If 31.32 is set to a value other than 0\%, this parameter <br> defines a delay between the receipt of the emergency stop <br> command and the activation of the supervision. It is <br> recommended to specify a short delay to allow the speed <br> change rate to stabilize. |  |
|  | 0...100 s | Maximum ramp-down time, or supervision activation delay. | $1=1 \mathrm{~s}$ |
| Aux fan fault <br> bybass | Selects how the drive reacts to an auxiliary fan fault. | Off |  |
| Off | Aux fan supervision generates a fault. | 0 |  |
|  | Aux fan supervision temporarily bypassed. | 1 |  |


| 32 Supervision |  |  | Configuration of signal supervision functions $1 \ldots 6$. Six values can be chosen to be monitored; a warning or fault is generated whenever predefined limits are exceeded. See also section Signal supervision (page 79). |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32.01 | Supervision status |  | Signal supervision status word. <br> Indicates whether the values monitored by the signal supervision functions are within or outside their respective limits. <br> Note: This word is independent of the drive actions defined by parameters $32.06,32.16,32.26,32.36,32.46$ and 32.56 . |  | 0000b |
|  | Bit | Name |  | Description |  |
|  | 0 | Supervision 1 active |  | 1 = Signal selected by 32.07 is outside its limits |  |
|  | 1 | Supervision 2 active |  | 1 = Signal selected by 32.17 is outside its limits |  |
|  | 2 | Supervision 3 active |  | 1 = Signal selected by 32.27 is outside its limits |  |
|  | 3 | Supervision 4 active |  | 1 = Signal selected by 32.37 is outside its limits |  |
|  | 4 | Supervision 5 active |  | 1 = Signal selected by 32.47 is outside its limits |  |
|  | 5 | Supervision 6 active |  | 1 = Signal selected by 32.27 is outside its limits |  |
|  | 6... 1 | Reserved |  |  |  |
|  | 0000...0111b |  | Signal supervision status word. |  | 1 = 1 |
| 32.05 | Supervision 1 function |  | Selects the mode of signal supervision function 1. Determines how the monitored signal (see parameter 32.07) is compared to its lower and upper limits ( 32.09 and 32.10 respectively). The action to be taken when the condition is fulfilled is selected by 32.06. |  | Disabled |
|  | Disabled |  | Signal supervision 1 not in use. |  | 0 |
|  | Low |  | Action is taken whenever the signal falls below its lower limit. |  | 1 |
|  | High |  | Action is taken whenever the signal rises above its upper limit. |  | 2 |
|  | Abs low |  | Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit. |  | 3 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Abs high | Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit. | 4 |
|  | Both | Action is taken whenever the signal falls below its low limit or rises above its high limit. | 5 |
|  | Abs both | Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit. | 6 |
| 32.06 | Supervision 1 action | Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 1 exceeds its limits. <br> Note: This parameter does not affect the status indicated by 32.01 Supervision status. | No action |
|  | No action | No warning or fault generated. | 0 |
|  | Warning | Warning A8B0 Signal supervision is generated. | 1 |
|  | Fault | Drive trips on fault 80B0 Signal supervision. | 2 |
| 32.07 | Supervision 1 signal | Selects the signal to be monitored by signal supervision function 1. | Frequency |
|  | Zero | None. | 0 |
|  | Speed | 01.01 Motor speed used (page 89). | 1 |
|  | Frequency | 01.06 Output frequency (page 89). | 3 |
|  | Current | 01.07 Motor current (page 89). | 4 |
|  | Torque | 01.10 Motor torque (page 89). | 6 |
|  | DC voltage | 01.11 DC voltage (page 89). | 7 |
|  | Output power | 01.14 Output power (page 90). | 8 |
|  | Al1 | 12.11 Al1 actual value (page 109). | 9 |
|  | Al2 | 12.21 Al2 actual value (page 110). | 10 |
|  | Speed ref ramp in | 23.01 Speed ref ramp input (page 152). | 18 |
|  | Speed ref ramp out | 23.02 Speed ref ramp output (page 152). | 19 |
|  | Speed ref used | 24.01 Used speed reference (page 156). | 20 |
|  | Torque ref used | 26.02 Torque reference used (page 161). | 21 |
|  | Freq ref used | 28.02 Frequency ref ramp output (page 165). | 22 |
|  | Inverter temperature | 05.11 Inverter temperature (page 93). | 23 |
|  | Process PID output | 40.01 Process PID output actual (page 213). | 24 |
|  | Process PID feedback | 40.02 Process PID feedback actual (page 214). | 25 |
|  | Process PID setpoint | 40.03 Process PID setpoint actual (page 214). | 26 |
|  | Process PID deviation | 40.04 Process PID deviation actual (page 214). | 27 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 32.08 | Supervision 1 filter time | Defines a filter time constant for the signal monitored by signal supervision 1. | 0.000 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Signal filter time. | $1000=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 32.09 | Supervision 1 low | Defines the lower limit for signal supervision 1. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Low limit. | - |
| 32.10 | Supervision 1 high | Defines the upper limit for signal supervision 1. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Upper limit. | - |
| 32.11 | Supervision 1 hysteresis | Defines the hysteresis for the signal monitored by signal supervision 1. | 0.00 |
|  | 0.00...100000.00 | Hysteresis. | - |
| 32.15 | Supervision 2 function | Selects the mode of signal supervision function 2. Determines how the monitored signal (see parameter 32.17) is compared to its lower and upper limits ( 32.19 and 32.20 respectively). The action to be taken when the condition is fulfilled is selected by 32.16 . | Disabled |
|  | Disabled | Signal supervision 2 not in use. | 0 |
|  | Low | Action is taken whenever the signal falls below its lower limit. | 1 |
|  | High | Action is taken whenever the signal rises above its upper limit. | 2 |
|  | Abs low | Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit. | 3 |
|  | Abs high | Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit. | 4 |
|  | Both | Action is taken whenever the signal falls below its low limit or rises above its high limit. | 5 |
|  | Abs both | Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit. | 6 |
| 32.16 | Supervision 2 action | Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 2 exceeds its limits. <br> Note: This parameter does not affect the status indicated by 32.01 Supervision status. | No action |
|  | No action | No warning or fault generated. | 0 |
|  | Warning | Warning A8B1 Signal supervision is generated. | 1 |
|  | Fault | Drive trips on fault 80B1 Signal supervision. | 2 |
| 32.17 | Supervision 2 signal | Selects the signal to be monitored by signal supervision function 2. <br> For the available selections, see parameter 32.07 Supervision 1 signal. | Current |
| 32.18 | Supervision 2 filter time | Defines a filter time constant for the signal monitored by signal supervision 2. | 0.000 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Signal filter time. | $1000=1 \mathrm{~s}$ |
| 32.19 | Supervision 2 low | Defines the lower limit for signal supervision 2. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Low limit. | - |
| 32.20 | Supervision 2 high | Defines the upper limit for signal supervision 2. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Upper limit. | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 32.21 | Supervision 2 hysteresis | Defines the hysteresis for the signal monitored by signal supervision 2. | 0.00 |
|  | 0.00...100000.00 | Hysteresis. | - |
| 32.25 | Supervision 3 function | Selects the mode of signal supervision function 3. Determines how the monitored signal (see parameter 32.27) is compared to its lower and upper limits ( 32.29 and 32.30 respectively). The action to be taken when the condition is fulfilled is selected by 32.26 . | Disabled |
|  | Disabled | Signal supervision 3 not in use. | 0 |
|  | Low | Action is taken whenever the signal falls below its lower limit. | 1 |
|  | High | Action is taken whenever the signal rises above its upper limit. | 2 |
|  | Abs low | Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit. | 3 |
|  | Abs high | Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit. | 4 |
|  | Both | Action is taken whenever the signal falls below its low limit or rises above its high limit. | 5 |
|  | Abs both | Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit. | 6 |
| 32.26 | Supervision 3 action | Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 3 exceeds its limits. <br> Note: This parameter does not affect the status indicated by 32.01 Supervision status. | No action |
|  | No action | No warning or fault generated. | 0 |
|  | Warning | Warning A8B2 Signal supervision is generated. | 1 |
|  | Fault | Drive trips on fault 80B2 Signal supervision. | 2 |
| 32.27 | Supervision 3 signal | Selects the signal to be monitored by signal supervision function 3. <br> For the available selections, see parameter 32.07 Supervision 1 signal. | Torque |
| 32.28 | Supervision 3 filter time | Defines a filter time constant for the signal monitored by signal supervision 3. | 0.000 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Signal filter time. | $1000=1 \mathrm{~s}$ |
| 32.29 | Supervision 3 low | Defines the lower limit for signal supervision 3. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Low limit. | - |
| 32.30 | Supervision 3 high | Defines the upper limit for signal supervision 3. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Upper limit. | - |
| 32.31 | Supervision 3 hysteresis | Defines the hysteresis for the signal monitored by signal supervision 3. | 0.00 |
|  | 0.00...100000.00 | Hysteresis. | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 32.35 | Supervision 4 function | Selects the mode of signal supervision function 4. Determines how the monitored signal (see parameter 32.37) is compared to its lower and upper limits ( 32.39 and 32.30 respectively). The action to be taken when the condition is fulfilled is selected by 32.36 . | Disabled |
|  | Disabled | Signal supervision 4 not in use. | 0 |
|  | Low | Action is taken whenever the signal falls below its lower limit. | 1 |
|  | High | Action is taken whenever the signal rises above its upper limit. | 2 |
|  | Abs low | Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit. | 3 |
|  | Abs high | Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit. | 4 |
|  | Both | Action is taken whenever the signal falls below its low limit or rises above its high limit. | 5 |
|  | Abs both | Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit. | 6 |
| 32.36 | Supervision 4 action | Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 4 exceeds its limits. <br> Note: This parameter does not affect the status indicated by 32.01 Supervision status. | No action |
|  | No action | No warning or fault generated. | 0 |
|  | Warning | Warning A8B3 Signal supervision is generated. | 1 |
|  | Fault | Drive trips on fault 80B3 Signal supervision. | 2 |
| 32.37 | Supervision 4 signal | Selects the signal to be monitored by signal supervision function 4. <br> For the available selections, see parameter 32.07 Supervision 1 signal. | Zero |
| 32.38 | Supervision 4 filter time | Defines a filter time constant for the signal monitored by signal supervision 4. | 0.000 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Signal filter time. | $1000=1 \mathrm{~s}$ |
| 32.39 | Supervision 4 low | Defines the lower limit for signal supervision 4. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Low limit. | - |
| 32.40 | Supervision 4 high | Defines the upper limit for signal supervision 4. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Upper limit. | - |
| 32.41 | Supervision 4 hysteresis | Defines the hysteresis for the signal monitored by signal supervision 4. | 0.00 |
|  | 0.00... 100000.00 | Hysteresis. | - |
| 32.45 | Supervision 5 function | Selects the mode of signal supervision function 5 . Determines how the monitored signal (see parameter 32.47) is compared to its lower and upper limits ( 32.49 and 32.40 respectively). The action to be taken when the condition is fulfilled is selected by 32.46 . | Disabled |
|  | Disabled | Signal supervision 5 not in use. | 0 |
|  | Low | Action is taken whenever the signal falls below its lower limit. | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | High | Action is taken whenever the signal rises above its upper limit. | 2 |
|  | Abs low | Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit. | 3 |
|  | Abs high | Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit. | 4 |
|  | Both | Action is taken whenever the signal falls below its low limit or rises above its high limit. | 5 |
|  | Abs both | Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit. | 6 |
| 32.46 | Supervision 5 action | Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 5 exceeds its limits. <br> Note: This parameter does not affect the status indicated by 32.01 Supervision status. | No action |
|  | No action | No warning or fault generated. | 0 |
|  | Warning | Warning A8B4 Signal supervision is generated. | 1 |
|  | Fault | Drive trips on fault 80B4 Signal supervision. | 2 |
| 32.47 | Supervision 5 signal | Selects the signal to be monitored by signal supervision function 5 . <br> For the available selections, see parameter 32.07 Supervision 1 signal. | Zero |
| 32.48 | Supervision 5 filter time | Defines a filter time constant for the signal monitored by signal supervision 5 . | 0.000 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Signal filter time. | $1000=1 \mathrm{~s}$ |
| 32.49 | Supervision 5 low | Defines the lower limit for signal supervision 5. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Low limit. | - |
| 32.50 | Supervision 5 high | Defines the upper limit for signal supervision 5. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Upper limit. | - |
| 32.51 | Supervision 5 hysteresis | Defines the hysteresis for the signal monitored by signal supervision 5 . | 0.00 |
|  | 0.00...100000.00 | Hysteresis. | - |
| 32.55 | Supervision 6 function | Selects the mode of signal supervision function 6. Determines how the monitored signal (see parameter 32.57) is compared to its lower and upper limits ( 32.59 and 32.50 respectively). The action to be taken when the condition is fulfilled is selected by 32.56 . | Disabled |
|  | Disabled | Signal supervision 6 not in use. | 0 |
|  | Low | Action is taken whenever the signal falls below its lower limit. | 1 |
|  | High | Action is taken whenever the signal rises above its upper limit. | 2 |
|  | Abs low | Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit. | 3 |
|  | Abs high | Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit. | 4 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Both | Action is taken whenever the signal falls below its low limit or rises above its high limit. | 5 |
|  | Abs both | Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit. | 6 |
| 32.56 | Supervision 6 action | Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 6 exceeds its limits. <br> Note: This parameter does not affect the status indicated by 32.01 Supervision status. | No action |
|  | No action | No warning or fault generated. | 0 |
|  | Warning | Warning A8B5 Signal supervision is generated. | 1 |
|  | Fault | Drive trips on fault 80B5 Signal supervision. | 2 |
| 32.57 | Supervision 6 signal | Selects the signal to be monitored by signal supervision function 6. <br> For the available selections, see parameter 32.07 Supervision 1 signal. | Zero |
| 32.58 | Supervision 6 filter time | Defines a filter time constant for the signal monitored by signal supervision 6. | 0.000 s |
|  | $0.000 \ldots 30.000 \mathrm{~s}$ | Signal filter time. | $1000=1 \mathrm{~s}$ |
| 32.59 | Supervision 6 low | Defines the lower limit for signal supervision 6. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Low limit. | - |
| 32.60 | Supervision 6 high | Defines the upper limit for signal supervision 6. | 0.00 |
|  | $\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$ | Upper limit. | - |
| 32.61 | Supervision 6 hysteresis | Defines the hysteresis for the signal monitored by signal supervision 6. | 0.00 |
|  | 0.00... 100000.00 | Hysteresis. | - |


| 34 Timed functions |  |  | Configuration of the timed functions. See also section Timed functions (page 67). |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34.01 | Timed functions status |  | Status of the combined timers. The status of a combined timer is the logical OR of all timers connected to it. This parameter is read-only. |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Timed function 1 |  | 1 = Active. |  |
|  | 1 | Timed function 2 |  | 1 = Active. |  |
|  | 2 | Timed function 3 |  | 1 = Active. |  |
|  | $3 \ldots 15$ | Reserved |  |  |  |
|  | 0000h...0FFFFh |  | Status of combined timers 1...3. |  | $1=1$ |
| 34.02 | Timer status |  | Status of timers 1... 12. <br> This parameter is read-only. |  | - |



| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34.11 | Timer 1 configuration |  | Defines when timer 1 is active. |  | $\begin{array}{\|l\|} \hline 01111000 \\ 0000 \mathrm{~b} \end{array}$ |
|  | Bit | Name |  | Description |  |
|  | 0 | Monday |  | 1 = Monday is an active start day. |  |
|  | 1 | Tuesday |  | 1 = Tuesday is an active start day. |  |
|  | 2 | Wednesday |  | 1 = Wednesday is an active start day. |  |
|  | 3 | Thursday |  | 1 = Thursday is an active start day. |  |
|  | 4 | Friday |  | 1 = Friday is an active start day. |  |
|  | 5 | Saturday |  | 1 = Saturday is an active start day. |  |
|  | 6 | Sunday |  | 1 = Sunday is an active start day. |  |
|  | 7 | Season 1 |  | 1 = Timer is active in season 1. |  |
|  | 8 | Season 2 |  | 1 = Timer is active in season 2. |  |
|  | 9 | Season 3 |  | 1 = Timer is active in season 3. |  |
|  | 10 | Season 4 |  | 1 = Timer is active in season 4. |  |
|  | 11 | Exceptions |  | $0=$ Exceptions days are disabled. <br> 1 = Exception days are enabled. Bits 12 and 13 are taken into account. |  |
|  | 12 | Holidays |  | $\begin{aligned} & 0=\text { Timer is inactive on exception days configured as } \\ & \text { "Holiday". } \\ & 1=\text { Timer is active on exception days configured as } \\ & \text { "Holiday". } \end{aligned}$ |  |
|  | 13 | Workdays |  | $0=$ Timer is inactive on exception days configured as "Workday". <br> $1=$ Timer is active on exception days configured as "Workday". |  |
|  | $14 . .15$ Reserved |  |  |  |  |
|  | 0000h...FFFFh |  | Configuration of timer 1. |  | 1 = 1 |
| 34.12 | Timer 1 start time |  | Defines the daily start time of timer 1. The time can be changed in second steps. <br> The timer can be started at an other time than the start time. E.g. if the timer's duration is more than one day and the active session starts during the time, the timer is started at 00:00 and stopped when there is no duration left. |  | 00:00:00 |
|  | 00:00:00...23:59:59 |  | Daily start time of the timer. |  | 1 = 1 |
| 34.13 | Timer 1 duration |  | Defines the duration of timer 1. The duration can be changed in minute steps. <br> The duration can extend over the change of the day but if an exception day becomes active, the period is interrupted at midnight. In the same way the period started on an exception day stays active only until the end of the day, even if the duration is longer. The timer will continue after a break if there is duration left. |  | 0000:00 |
|  | 00 00:00...07 00:00 |  | Timer duration. |  | 1 = 1 |
| 34.14 | Timer 2 configuration |  | See 34.11 Timer 1 configuration. |  | $\begin{aligned} & 01111000 \\ & \text { 0000b } \end{aligned}$ |
| 34.15 | Timer 2 start time |  | See 34.12 Timer 1 start time. |  | 00:00:00 |
| 34.16 | Timer 2 duration |  | See 34.13 Timer 1 duration. |  | 0000:00 |
| 34.17 | Timer 3 configuration |  | See 34.11 Timer 1 configuration. |  | $\begin{aligned} & \hline 01111000 \\ & \text { 0000b } \end{aligned}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 34.18 | Timer 3 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.19 | Timer 3 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.20 | Timer 4 configuration | See 34.11 Timer 1 configuration. | $\begin{array}{\|l\|} \hline 01111000 \\ 0000 \mathrm{~b} \end{array}$ |
| 34.21 | Timer 4 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.22 | Timer 4 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.23 | Timer 5 configuration | See 34.11 Timer 1 configuration. | $\begin{array}{\|l\|} \hline 01111000 \\ \text { 0000b } \end{array}$ |
| 34.24 | Timer 5 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.25 | Timer 5 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.26 | Timer 6 configuration | See 34.11 Timer 1 configuration. | $\begin{aligned} & 01111000 \\ & 0000 \mathrm{~b} \end{aligned}$ |
| 34.27 | Timer 6 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.28 | Timer 6 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.29 | Timer 7 configuration | See 34.11 Timer 1 configuration. | $\begin{array}{\|l\|} \hline 01111000 \\ \text { 0000b } \end{array}$ |
| 34.30 | Timer 7 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.31 | Timer 7 duration | See 34.13 Timer 1 duration. | 00 00:00 |
| 34.32 | Timer 8 configuration | See 34.11 Timer 1 configuration. | $\begin{aligned} & 01111000 \\ & 0000 \mathrm{~b} \end{aligned}$ |
| 34.33 | Timer 8 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.34 | Timer 8 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.35 | Timer 9 configuration | See 34.11 Timer 1 configuration. | $\begin{array}{\|l\|} \hline 01111000 \\ 0000 \mathrm{~b} \end{array}$ |
| 34.36 | Timer 9 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.37 | Timer 9 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.38 | Timer 10 configuration | See 34.11 Timer 1 configuration. | $\begin{aligned} & \hline 01111000 \\ & \text { 0000b } \end{aligned}$ |
| 34.39 | Timer 10 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.40 | Timer 10 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.41 | Timer 11 configuration | See 34.11 Timer 1 configuration. | $\begin{array}{\|l\|} \hline 01111000 \\ \text { 0000b } \end{array}$ |
| 34.42 | Timer 11 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.43 | Timer 11 duration | See 34.13 Timer 1 duration. | 0000:00 |
| 34.44 | Timer 12 configuration | See 34.11 Timer 1 configuration. | $\begin{array}{\|l\|} \hline 01111000 \\ \text { 0000b } \end{array}$ |
| 34.45 | Timer 12 start time | See 34.12 Timer 1 start time. | 00:00:00 |
| 34.46 | Timer 12 duration | See 34.13 Timer 1 duration. | 00 00:00 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 34.60 | Season 1 start date | Defines the start date of season 1 in format dd.mm, where dd is the number of the day and mm is the number of the month. The season changes at midnight. One season can be active at a time. Timers are started on exception days even if they are not inside the active season. <br> The season start dates (1...4) must be given in increasing order to use all seasons. The default value is interpreted that the season is not configured. If the season start dates are not in increasing order and the value is something else than the default value, a season configuration warning is given. | 01.01. |
|  | 01.01...31.12 | Season start date. |  |
| 34.61 | Season 2 start date | Defines the start date of season 2. See 34.60 Season 1 start date. | 01.01. |
| 34.62 | Season 3 start date | Defines the start date of season 3. See 34.60 Season 1 start date. | 01.01. |
| 34.63 | Season 4 start date | Defines the start date of season 4. See 34.60 Season 1 start date. | 01.01. |
| 34.70 | Number of active exceptions | Defines how many of the exceptions are active by specifying the last active one. All preceding exceptions are active. <br> Exceptions 1... 3 are periods (duration can be defined) and exceptions $4 \ldots 16$ are days (duration is always 24 hours). <br> Example: If the value is 4 , exceptions $1 \ldots 4$ are active, and exceptions $5 . . .16$ are not active. | 3 |
|  | 0... 16 | Number of active exception periods or days. | - |
| 34.71 | Exception types | Defines the types of exceptions $1 . .16$ as workday or holiday. Exceptions $1 . . .3$ are periods (duration can be defined) and exceptions $4 \ldots 16$ are days (duration is always 24 hours). | 0000b |
|  | Bit Name <br> 0  | Description |  |
|  | 0 Exception 1 <br> 1  | 0 = Workday. 1 = Holiday |  |
|  | 1 Exception 2 <br> 2 Exception | 0 = Workday. 1 = Holiday |  |
|  | 2 Exception 3 <br> 3  | 0 = Workday. 1 = Holiday |  |
|  | 3 Exception 4 <br> 4  | 0 = Workday. 1 = Holiday |  |
|  | Exception 5 | 0 = Workday. 1 = Holiday |  |
|  | Exception 6 | 0 = Workday. 1 = Holiday |  |
|  | Exception 7 | 0 = Workday. 1 = Holiday |  |
|  | Exception 8 | 0 = Workday. 1 = Holiday |  |
|  | Exception 9 | 0 = Workday. 1 = Holiday |  |
|  | Exception 10 | 0 = Workday. 1 = Holiday |  |
|  | Exception 11 | 0 = Workday. 1 = Holiday |  |
|  | Exception 12 | 0 = Workday. 1 = Holiday |  |
|  | Exception 13 | 0 = Workday. 1 = Holiday |  |
|  | Exception 14 | 0 = Workday. 1 = Holiday |  |
|  | Exception 15 | 0 = Workday. 1 = Holiday |  |
|  | Exception 16 | 0 = Workday. 1 = Holiday |  |
|  | 0000h...FFFFh | Types of exception period or days. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 34.72 | Exception 1 start | Defines the start date of the exception period in format <br> dd.mm, where dd is the number of the day and mm is the <br> number of the month. <br> The timer started on an exception day is always stopped at <br> 23:59:59 even if it has duration left. <br> The same date can be configured to be holiday and workday. <br> The date is active if any of exception days are active. | 01.01. |
|  |  | 01.01....31.12. | Start date of exception period 1. |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 34.100 | Timed function 1 | Defines which timers are connected to combined timer 1. <br> $0=$ Not connected. <br> 1 = Connected. <br> See 34.01 Timed functions status. | 0000b |
|  | Bit $\quad$ Name | Description |  |
|  | 0 $\quad$ Timer 1 | 0 = Inactive. 1 = Active. |  |
|  | 1 T Timer 2 | 0 = Inactive. 1 = Active. |  |
|  | 2 T Timer 3 | 0 = Inactive. 1 = Active . |  |
|  | $3 \mathrm{l\mid l}$ | 0 = Inactive. 1 = Active . |  |
|  | 4 Timer 5 | 0 = Inactive. 1 = Active. |  |
|  | 5 Timer 6 | 0 = Inactive. 1 = Active. |  |
|  | 6 Timer 7 | 0 = Inactive. 1 = Active. |  |
|  |  | 0 = Inactive. 1 = Active. |  |
|  | 8 Timer 9 | 0 = Inactive. 1 = Active. |  |
|  | 9 Timer 10 | 0 = Inactive. 1 = Active. |  |
|  | 10 Timer 11 | 0 = Inactive. 1 = Active. |  |
|  | 11 Timer 12 | 0 = Inactive. 1 = Active. |  |
|  | 14...15 Reserved |  |  |
|  | 0000h...FFFFh | Timers connected to combined timer 1. | 1 = 1 |
| 34.101 | Timed function 2 | Defines which timers are connected to combined timer 2. See 34.01 Timed functions status. | 0000b |
| 34.102 | Timed function 3 | Defines which timers are connected to combined timer 3. See 34.01 Timed functions status. | 0000b |
| 34.110 | Boost time function | Defines which combined timers (that is, timers that are connected to the combined timers) are activated with the extra time function. | 0000b |
|  | Bit $\quad$ Name | Description |  |
|  | 0 O Timed func | ion $1 \times 0=$ Inactive. 1 = Active. |  |
|  | 1 T\|l|l | ion $2 \times 0=$ Inactive. $1=$ Active. |  |
|  | 2 Timed func <br> $3 . .15$ Resered | ion 3 O = Inactive. 1 = Active. |  |
|  | 3...15 Reserved |  |  |
|  | 0000h...FFFFh | Combined timers including the extra timer. | 1 = 1 |
| 34.111 | Boost time activation source | Selects the source of extra time activation signal. 0 = Disabled. <br> 1 = Enabled. | Off |
|  | Off | 0. | 0 |
|  | On | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 34.112 | Boost time duration | Defines the time inside which the extra time is deactivated <br> after extra time activation signal is switched off. <br> Example: If parameter 34.111 Boost time activation source is <br> set to DI1 and 34.112 Boost time duration is set to 00 01:30, <br> the extra time is active for 1 hour and 30 minutes after digital <br> input DI is deactivated. | 00000 |
|  | $0000: 00 \ldots 0000: 00$ | Extra time duration. | $1=1$ |


| 35 Motor thermal protection |  | Motor thermal protection settings such as temperature measurement configuration, load curve definition and motor fan control configuration. <br> See also section Motor thermal protection (page 73). |  |
| :---: | :---: | :---: | :---: |
| 35.01 | Motor estimated temperature | Displays the motor temperature as estimated by the internal motor thermal protection model (see parameters $35.50 \ldots 35.55)$. The unit is selected by parameter 96.16 Unit selection. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -60 \ldots 1000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 1832^{\circ} \mathrm{F} \end{aligned}$ | Estimated motor temperature. | $1=1^{\circ}$ |
| 35.02 | Measured temperature 1 | Displays the temperature received through the source defined by parameter 35.11 Temperature 1 source. The unit is selected by parameter 96.16 Unit selection. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -60 \ldots .5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots . .9032^{\circ} \mathrm{F} \end{aligned}$ | Measured temperature 1. | 1 = 1 unit |
| 35.03 | Measured temperature 2 | Displays the temperature received through the source defined by parameter 35.21 Temperature 2 source. The unit is selected by parameter 96.16 Unit selection. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -60 \ldots .5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots . .9032^{\circ} \mathrm{F} \end{aligned}$ | Measured temperature 2. | 1 = 1 unit |
| 35.11 | Temperature 1 source | Selects the source from which measured temperature 1 is read. <br> Usually this source is from a sensor connected to the motor controlled by the drive, but it could be used to measure and monitor a temperature from other parts of the process as long as a suitable sensor is used as per the selection list. | Estimated temperature |
|  | Disabled | None. Temperature monitoring function 1 is disabled. | 0 |
|  | Estimated temperature | Estimated motor temperature (see parameter 35.01 Motor estimated temperature). <br> The temperature is estimated from an internal drive calculation. It is important to set up the ambient temperature of the motor in 35.50 Motor ambient temperature. | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | KTY84 analog I/O | KTY84 sensor connected to the analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 2 |
|  | $\begin{aligned} & 1 \times \mathrm{Pt} 100 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$ | Pt100 sensor connected to a standard analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard AI to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 5 |
|  | $\begin{aligned} & 2 \times \mathrm{Pt} 100 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$ | As selection $1 \times$ Pt100 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 6 |
|  | $\begin{aligned} & 3 \times \mathrm{Pt} 100 \text { analog } \\ & \text { I/O } \end{aligned}$ | As selection $1 \times$ Pt100 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 7 |
|  | PTC DI6 | PTC is connected to DI6. | 8 |
|  | Direct temperature | The temperature is taken from the source selected by parameter 35.14 Temperature 1 Al source. The value of the source is assumed to be degrees Celsius. | 11 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | KTY83 analog I/O | KTY83 sensor connected to the analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard AI to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 12 |
|  | $\begin{aligned} & 1 \times \mathrm{Pt} 1000 \text { analog } \\ & \mathrm{I} / \mathrm{O} \end{aligned}$ | Pt1000 sensor connected to a standard analog input selected by parameter 35.14 Temperature 1 A/ source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 13 |
|  | $\begin{aligned} & 2 \times \mathrm{Pt1000} \text { analog } \\ & \mathrm{I} / \mathrm{O} \end{aligned}$ | As selection $1 \times$ Pt1000 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 14 |
|  | $\begin{aligned} & 3 \times \text { Pt1000 analog } \\ & \text { I/O } \end{aligned}$ | As selection $1 \times$ Pt 1000 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 15 |
|  | Ni1000 | Ni1000 sensor connected to the analog input selected by parameter 35.14 Temperature 1 A/ source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard Al to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 16 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | PTC extension module | PTC is connected to the CMOD-02 multifunction extension module, which is installed in drive slot 2 . See chapter Optional I/O extension modules, section CMOD-02 multifunction extension module (external $24 \vee A C / D C$ and isolated PTC interface) in the Hardware manual of the drive). | 19 |
| 35.12 | Temperature 1 fault limit | Defines the fault limit for temperature supervision function 1. The unit is selected by parameter 96.16 Unit selection. <br> Note: With a PTC sensor, the unit is ohms. | $\begin{aligned} & 130^{\circ} \mathrm{C} \text { or } \\ & 266^{\circ} \mathrm{F} \end{aligned}$ |
|  | $\begin{aligned} & -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots . .9032^{\circ} \mathrm{F} \end{aligned}$ | Fault limit for temperature monitoring function 1. | 1 = 1 unit |
| 35.13 | Temperature 1 warning limit | Defines the warning limit for temperature supervision function 1. The unit is selected by parameter 96.16 Unit selection. <br> Note: With a PTC sensor, the unit is ohms. | $\begin{aligned} & 110^{\circ} \mathrm{C} \text { or } \\ & 230^{\circ} \mathrm{F} \end{aligned}$ |
|  | $\begin{aligned} & -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots . .9032^{\circ} \mathrm{F} \end{aligned}$ | Warning limit for temperature monitoring function 1. | 1 = 1 unit |
| 35.14 | Temperature 1 AI source | Selects the input for parameter 35.11 Temperature 1 source selections KTY84 analog I/O, $1 \times$ Pt100 analog I/O, $2 \times$ Pt100 analog I/O, $3 \times$ Pt100 analog I/O, Direct temperature, KTY83 analog I/O, $1 \times$ Pt1000 analog I/O, $2 \times$ Pt1000 analog I/O, $3 \times$ Pt1000 analog I/O and Ni1000. | Not selected |
|  | Not selected | None. | 0 |
|  | Al1 actual value | Analog input Al1 on the control unit. | 1 |
|  | Al2 actual value | Analog input Al2 on the control unit. | 2 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 35.21 | Temperature 2 source | Selects the source from which measured temperature 2 is read. <br> Usually this source is from a sensor connected to the motor controlled by the drive, but it could be used to measure and monitor a temperature from other parts of the process as long as a suitable sensor is used as per the selection list. | Disabled |
|  | Disabled | None. Temperature monitoring function 2 is disabled. | 0 |
|  | Estimated temperature | Estimated motor temperature (see parameter 35.01 Motor estimated temperature). <br> The temperature is estimated from an internal drive calculation. It is important to set up the ambient temperature of the motor in 35.50 Motor ambient temperature. | 1 |
|  | KTY84 analog I/O | KTY84 sensor connected to the analog input selected by parameter 35.24 Temperature 2 AI source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard $A I$ to $V$ (volt). <br> - In parameter group 13 Standard $A O$, set the source selection parameter of the analog output to Temp sensor 2 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \times \mathrm{Pt} 100 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$ | Pt100 sensor connected to a standard analog input selected by parameter 35.24 Temperature 2 Al source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 5 |
|  | $\begin{aligned} & 2 \times \mathrm{Pt} 100 \text { analog } \\ & \mathrm{I} / \mathrm{O} \end{aligned}$ | As selection $1 \times$ Pt100 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 6 |
|  | $\begin{aligned} & \hline 3 \times \mathrm{Pt} 100 \text { analog } \\ & \text { I/O } \end{aligned}$ | As selection $1 \times$ Pt100 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 7 |
|  | PTC DI6 | PTC is connected to DI6. | 8 |
|  | Direct temperature | The temperature is taken from the source selected by parameter 35.24 Temperature 2 Al source. The value of the source is assumed to be degrees Celsius. | 11 |
|  | KTY83 analog I/O | KTY83 sensor connected to the analog input selected by parameter 35.14 Temperature 1 A/ source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard AI to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 12 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \times \mathrm{Pt} 1000 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$ | Pt1000 sensor connected to a standard analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to $V$ (volt). <br> - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 13 |
|  | $\begin{aligned} & 2 \times \mathrm{Pt} 1000 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$ | As selection $1 \times$ Pt1000 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 14 |
|  | $3 \times \mathrm{Pt} 1000$ analog I/O | As selection $1 \times$ Pt1000 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly. | 15 |
|  | Ni1000 | Ni1000 sensor connected to the analog input selected by parameter 35.14 Temperature 1 A/ source and an analog output. <br> The following settings are required: <br> - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot. <br> - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to $V$ (volt). <br> - In parameter group 13 Standard $A O$, set the source selection parameter of the analog output to Temp sensor 2 excitation. <br> The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees. | 16 |
|  | PTC extension module | PTC is connected to the CMOD-02 multifunction extension module, which is installed in drive slot 2 . See chapter Optional I/O extension modules, section CMOD-02 multifunction extension module (external 24 V AC/DC and isolated PTC interface) in the Hardware manual of the drive). | 19 |
| 35.22 | Temperature 2 fault limit | Defines the fault limit for temperature supervision function 2. The unit is selected by parameter 96.16 Unit selection. <br> Note: With a PTC sensor, the unit is ohms. | $\begin{aligned} & 130^{\circ} \mathrm{C} \text { or } \\ & 266^{\circ} \mathrm{F} \end{aligned}$ |
|  | $\begin{aligned} & -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 9032^{\circ} \mathrm{F} \end{aligned}$ | Fault limit for temperature monitoring function 2. | 1 = 1 unit |
| 35.23 | Temperature 2 warning limit | Defines the warning limit for temperature supervision function 2. The unit is selected by parameter 96.16 Unit selection. <br> Note: With a PTC sensor, the unit is ohms. | $\begin{aligned} & 110^{\circ} \mathrm{C} \text { or } \\ & 230^{\circ} \mathrm{F} \end{aligned}$ |
|  | $\begin{aligned} & -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 9032{ }^{\circ} \mathrm{F} \end{aligned}$ | Warning limit for temperature monitoring function 2. | 1 = 1 unit |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 35.24 | Temperature 2 AI source | Selects the input for parameter 35.21 Temperature 2 source selections KTY84 analog I/O, $1 \times$ Pt100 analog I/O, $2 \times$ Pt100 analog I/O, $3 \times$ Pt100 analog I/O, Direct temperature, KTY83 analog I/O, $1 \times$ Pt1000 analog I/O, $2 \times$ Pt1000 analog I/O, $3 \times$ Pt1000 analog I/O and Ni1000. | Not selected |
|  | Not selected | None. | 0 |
|  | Al1 actual value | Analog input Al1 on the control unit. | 1 |
|  | AI2 actual value | Analog input Al2 on the control unit. | 2 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 35.50 | Motor ambient temperature | Defines the ambient temperature of the motor for the motor thermal protection model. The unit is selected by parameter 96.16 Unit selection. <br> The motor thermal protection model estimates the motor temperature on the basis of parameters $35.50 \ldots 35.55$. The motor temperature increases if it operates in the region above the load curve, and decreases if it operates in the region below the load curve. <br> WARNING! The model cannot protect the motor if the motor does not cool properly because of dust, dirt, etc. | $\begin{aligned} & 20^{\circ} \mathrm{C} \text { or } \\ & 68^{\circ} \mathrm{F} \end{aligned}$ |
|  | $\begin{aligned} & -60 \ldots 100^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 212{ }^{\circ} \mathrm{F} \end{aligned}$ | Ambient temperature. | $1=1^{\circ}$ |
| 35.51 | Motor load curve | Defines the motor load curve together with parameters 35.52 Zero speed load and 35.53 Break point. The load curve is used by the motor thermal protection model to estimate the motor temperature. <br> When the parameter is set to $100 \%$, the maximum load is taken as the value of parameter 99.06 Motor nominal current (higher loads heat up the motor). The load curve level should be adjusted if the ambient temperature differs from the nominal value set in 35.50 Motor ambient temperature. <br> $I=$ Motor current <br> $I_{N}=$ Nominal motor current <br> 35.51 <br> 35.53 | 100\% |
|  | 50...150\% | Maximum load for the motor load curve. | 1 = 1\% |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 35.52 | Zero speed load | Defines the motor load curve together with parameters 35.51 Motor load curve and 35.53 Break point. Defines the maximum motor load at zero speed of the load curve. A higher value can be used if the motor has an external motor fan to boost the cooling. See the motor manufacturer's recommendations. <br> See parameter 35.51 Motor load curve. | 100\% |
|  | 50...150\% | Zero speed load for the motor load curve. | 1 = 1\% |
| 35.53 | Break point | Defines the motor load curve together with parameters 35.51 Motor load curve and 35.52 Zero speed load. Defines the break point frequency of the load curve ie. the point at which the motor load curve begins to decrease from the value of parameter 35.51 Motor load curve towards the value of parameter 35.52 Zero speed load. <br> See parameter 35.51 Motor load curve. | 45.00 Hz |
|  | $1.00 \ldots 500.00 \mathrm{~Hz}$ | Break point for the motor load curve. | $\begin{aligned} & \hline \text { See par. } \\ & 46.02 \end{aligned}$ |
| 35.54 | Motor nominal temperature rise <br> Motor no temperatur | Defines the temperature rise of the motor above ambient when the motor is loaded with nominal current. See the motor manufacturer's recommendations. <br> The unit is selected by parameter 96.16 Unit selection. | $\begin{aligned} & 80^{\circ} \mathrm{C} \text { or } \\ & 176{ }^{\circ} \mathrm{F} \end{aligned}$ |
|  | $\begin{aligned} & 0 \ldots 300^{\circ} \mathrm{C} \text { or } \\ & 32 \ldots . .572{ }^{\circ} \mathrm{F} \end{aligned}$ | Temperature rise. | $1=1^{\circ}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 35.55 | Motor thermal time const | Defines the thermal time constant for use with the motor thermal protection model, defined as the time to reach $63 \%$ of the nominal motor temperature. See the motor manufacturer's recommendations. | 256 s |
|  | 100... 10000 s | Motor thermal time constant. | $1=1 \mathrm{~s}$ |


| 36 Load analyzer |  | Peak value and amplitude logger settings. See also section Load analyzer (page 79). |  |
| :---: | :---: | :---: | :---: |
| 36.01 | PVL signal source | Selects the signal to be monitored by the peak value logger. The signal is filtered using the filtering time specified by parameter 36.02 PVL filter time. <br> The peak value is stored, along with other pre-selected signals at the time, into parameters 36.10...36.15. <br> The peak value logger can be reset using parameter 36.09 Reset loggers. The date and time of the last reset are stored into parameters 36.16 and 36.17 respectively. | Output power |
|  | Not selected | None (peak value logger disabled). | 0 |
|  | Motor speed used | 01.01 Motor speed used (page 89). | 1 |
|  | Output frequency | 01.06 Output frequency (page 89). | 3 |
|  | Motor current | 01.07 Motor current (page 89). | 4 |
|  | Motor torque | 01.10 Motor torque (page 89). | 6 |
|  | DC voltage | 01.11 DC voltage (page 89). | 7 |
|  | Output power | 01.14 Output power (page 90). | 8 |
|  | Speed ref ramp in | 23.01 Speed ref ramp input (page 152). | 10 |
|  | Speed ref ramp out | 23.02 Speed ref ramp output (page 152). | 11 |
|  | Speed ref used | 24.01 Used speed reference (page 156). | 12 |
|  | Torque ref used | 26.02 Torque reference used (page 161). | 13 |
|  | Freq ref used | 28.02 Frequency ref ramp output (page 165). | 14 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Process PID out | 40.01 Process PID output actual (page 213). | 16 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 36.02 | PVL filter time | Peak value logger filtering time. See parameter 36.01 PVL signal source. | 2.00 s |
|  | 0.00... 120.00 s | Peak value logger filtering time. | $100=1 \mathrm{~s}$ |
| 36.06 | AL2 signal source | Selects the signal to be monitored by amplitude logger 2. The signal is sampled at 200 ms intervals. <br> The results are displayed by parameters 36.40...36.49. Each parameter represents an amplitude range, and shows what portion of the samples fall within that range. <br> The signal value corresponding to $100 \%$ is defined by parameter 36.07 AL2 signal scaling. <br> Amplitude logger 2 can be reset using parameter 36.09 Reset loggers. The date and time of the last reset are stored into parameters 36.50 and 36.51 respectively. <br> For the selections, see parameter 36.01 PVL signal source. | Motor torque |
| 36.07 | AL2 signal scaling | Defines the signal value that corresponds to 100\% amplitude. | 100.00 |
|  | 0.00...32767.00 | Signal value corresponding to 100\%. | 1 = 1 |
| 36.09 | Reset loggers | Resets the peak value logger and/or amplitude logger 2. (Amplitude logger 1 cannot be reset.) | Done |
|  | Done | Reset completed or not requested (normal operation). | 0 |
|  | All | Reset both the peak value logger and amplitude logger 2. | 1 |
|  | PVL | Reset the peak value logger. | 2 |
|  | AL2 | Reset amplitude logger 2. | 3 |
| 36.10 | PVL peak value | Peak value recorded by the peak value logger. | 0.00 |
|  | $\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$ | Peak value. | $1=1$ |
| 36.11 | PVL peak date | The date on which the peak value was recorded. | 01.01.1980 |
|  | - | Peak occurrence date. | - |
| 36.12 | PVL peak time | The time at which the peak value was recorded. | 00:00:00 |
|  | - | Peak occurrence time. | - |
| 36.13 | PVL current at peak | Motor current at the moment the peak value was recorded. | 0.00 A |
|  | $\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \mathrm{~A} \end{aligned}$ | Motor current at peak. | $1=1 \mathrm{~A}$ |
| 36.14 | PVL DC voltage at peak | Voltage in the intermediate DC circuit of the drive at the moment the peak value was recorded. | 0.00 V |
|  | 0.00...2000.00 V | DC voltage at peak. | $10=1 \mathrm{~V}$ |
| 36.15 | PVL speed at peak | Motor speed at the moment the peak value was recorded. | 0.00 rpm |
|  | $\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$ | Motor speed at peak. | See par. $46.01$ |
| 36.16 | PVL reset date | The date on which the peak value logger was last reset. | 01.01.1980 |
|  | - | Last reset date of the peak value logger. | - |
| 36.17 | PVL reset time | The time at which the peak value logger was last reset. | 00:00:00 |
|  | - | Last reset time of the peak value logger. | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 36.20 | AL1 0 to 10\% | Percentage of samples recorded by amplitude logger 1 that fall between 0 and $10 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 0 and 10\%. | 1 = 1\% |
| 36.21 | AL1 10 to 20\% | Percentage of samples recorded by amplitude logger 1 that fall between 10 and $20 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 10 and 20\%. | 1 = 1\% |
| 36.22 | AL1 20 to 30\% | Percentage of samples recorded by amplitude logger 1 that fall between 20 and $30 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 20 and 30\%. | 1 = 1\% |
| 36.23 | AL1 30 to 40\% | Percentage of samples recorded by amplitude logger 1 that fall between 30 and $40 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 30 and 40\%. | 1 = 1\% |
| 36.24 | AL1 40 to 50\% | Percentage of samples recorded by amplitude logger 1 that fall between 40 and $50 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 40 and 50\%. | 1 = $1 \%$ |
| 36.25 | AL1 50 to 60\% | Percentage of samples recorded by amplitude logger 1 that fall between 50 and 60\%. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 50 and 60\%. | 1 = 1\% |
| 36.26 | AL1 60 to 70\% | Percentage of samples recorded by amplitude logger 1 that fall between 60 and 70\%. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 60 and $70 \%$. | 1 = 1\% |
| 36.27 | AL1 70 to 80\% | Percentage of samples recorded by amplitude logger 1 that fall between 70 and $80 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 70 and $80 \%$. | 1 = 1\% |
| 36.28 | AL1 80 to 90\% | Percentage of samples recorded by amplitude logger 1 that fall between 80 and $90 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples between 80 and $90 \%$. | 1 = 1\% |
| 36.29 | AL1 over 90\% | Percentage of samples recorded by amplitude logger 1 that exceed $90 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 1 samples over $90 \%$. | 1 = 1\% |
| 36.40 | AL2 0 to 10\% | Percentage of samples recorded by amplitude logger 2 that fall between 0 and $10 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 2 samples between 0 and 10\%. | 1 = 1\% |
| 36.41 | AL2 10 to 20\% | Percentage of samples recorded by amplitude logger 2 that fall between 10 and $20 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 2 samples between 10 and 20\%. | 1 = 1\% |
| 36.42 | AL2 20 to 30\% | Percentage of samples recorded by amplitude logger 2 that fall between 20 and $30 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 2 samples between 20 and $30 \%$. | 1 = 1\% |
| 36.43 | AL2 30 to 40\% | Percentage of samples recorded by amplitude logger 2 that fall between 30 and $40 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 2 samples between 30 and $40 \%$. | 1 = 1\% |
| 36.44 | AL2 40 to 50\% | Percentage of samples recorded by amplitude logger 2 that fall between 40 and $50 \%$. | 0.00\% |
|  | 0.00...100.00\% | Amplitude logger 2 samples between 40 and $50 \%$. | 1 = $1 \%$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 36.45 | AL2 50 to $60 \%$ | Percentage of samples recorded by amplitude logger 2 that <br> fall between 50 and $60 \%$. | $0.00 \%$ |
|  | $0.00 \ldots 100.00 \%$ | Amplitude logger 2 samples between 50 and $60 \%$. | $1=1 \%$ |
| 36.46 | AL2 60 to $70 \%$ | Percentage of samples recorded by amplitude logger 2 that <br> fall between 60 and $70 \%$. | $0.00 \%$ |
|  | $0.00 \ldots 100.00 \%$ | Amplitude logger 2 samples between 60 and $70 \%$. | $1=1 \%$ |
| 36.47 | AL2 70 to 80\% | Percentage of samples recorded by amplitude logger 2 that <br> fall between 70 and $80 \%$. | $0.00 \%$ |
| 36.48 | AL2 80 to $90 \%$ | Percentage of samples recorded by amplitude logger 2 that <br> fall between 80 and $90 \%$. | $0.00 \%$ |
|  | $0.00 \ldots 100.00 \%$ | Amplitude logger 2 samples between 80 and $90 \%$. | $1=1 \%$ |
| 36.49 | AL2 over $90 \%$ | Percentage of samples recorded by amplitude logger 2 that <br> exceed $90 \%$. | $0.00 \%$ |
|  | $0.00 \ldots 100.00 \%$ | Amplitude logger 2 samples over $90 \%$. | $1=1 \%$ |
| 36.50 | AL2 reset date | The date on which amplitude logger 2 was last reset. | 01.01 .1980 |
|  | - | Last reset date of amplitude logger 2. | - |
| 36.51 | AL2 reset time | The time at which amplitude logger 2 was last reset. | $00: 00: 00$ |
|  | - | Last reset time of amplitude logger 2. | - |


| 37 User load curve | Settings for user load curve. <br> See also section User load curve (page 57). |  |
| :--- | :--- | :--- |
| 37.01 | ULC output status <br> word | Displays the status of the monitored signal. |
| $\qquad$Bit Name Description <br> 0 Under load limit 1 = Signal lower than the underload curve. <br> 1 Within load range 1 = Signal between the underload and overload curve. <br> 2 Overload limit 1 = Signal higher than the overload curve. <br> $3 \ldots 15$ Reserved  |  |  |


| 0000h...FFFFh | Status of the monitored signal. | $1=1$ |
| :--- | :--- | :--- |
| 37.02ULC supervision <br> signal | Selects the signal to be supervised. | Motor <br> torque \% |
| Not selected | No signal selected. ULC disabled. | 0 |
| Motor speed \% | 01.03 Motor speed \% (page 89). | 1 |
| Motor current \% | 01.08 Motor current \% of motor nom (page 89). | 2 |
| Motor torque \% | 01.10 Motor torque (page 89). | 3 |
| Output power \% of <br> motor nominal | 01.15 Output power \% of motor nom (page 90). | 4 |
| Output power \% of <br> drive nominal | 01.16 Output power \% of drive nom (page 90). | 5 |
| Other | Source selection (see Terms and abbreviations on page 86). | - |
| ULC overload <br> actions | Selects an action taken if the signal stays over the overload <br> curve for a defined time. | Disabled |
| Disabled | No warnings or fault generated. | 0 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Warning | The drive generates an A8C1 ULC overload warning if the signal has been continuously over the overload curve for a time defined by parameter 37.41 ULC overload timer. | 1 |
|  | Fault | The drive generates an 8002 ULC overload fault if the signal has been continuously over the overload curve for a time defined by parameter 37.41 ULC overload timer. | 2 |
|  | Warning/Fault | The drive generates an A8C1 ULC overload warning if the signal has been continuously over the overload curve for half of the time defined by parameter 37.41 ULC overload timer. The drive generates an 8002 ULC overload fault if the signal has been continuously over the overload curve for a time defined by parameter 37.41 ULC overload timer. | 3 |
| 37.04 | ULC underload actions | Selects an action taken if the signal stays under the underload curve for a defined time. | Disabled |
|  | Disabled | No warnings or fault generated. | 0 |
|  | Warning | The drive generates an A8C4 ULC underload warning if the signal has been continuously under the underload curve for a time defined by parameter 37.42 ULC underload timer. | 1 |
|  | Fault | The drive generates an 8001 ULC underload fault if the signal has been continuously under the underload curve for a time defined by parameter 37.42 ULC underload timer. | 2 |
|  | Warning/Fault | The drive generates an A8C4 ULC underload warning if the signal has been continuously under the underload curve for half of the time defined by parameter 37.42 ULC underload timer. <br> The drive generates an 8001 ULC underload fault if the signal has been continuously under the underload curve for a time defined by parameter 37.42 ULC underload timer. | 3 |
| 37.11 | ULC speed table point 1 | Defines the first of the five speed points on the X-axis of the user load curve. <br> The values of the parameters must satisfy: $-30000.0 \mathrm{rpm} \leq$ 37.11 ULC speed table point $1<37.12$ ULC speed table point $2<37.13$ ULC speed table point $3<37.14$ ULC speed table point $4<37.15$ ULC speed table point $5 \leq 30000.0 \mathrm{rpm}$. <br> Speed points are used if parameter 99.04 Motor control mode is set to Vector or if 99.04 Motor control mode is set to Scalar and the reference unit is rpm. | 150.0 rpm |
|  | $\begin{aligned} & \text {-30000.0...30000.0 } \\ & \text { rpm } \end{aligned}$ | Speed. | 1 = 1 rpm |
| 37.12 | ULC speed table point 2 | Defines the second speed point. See parameter 37.11 ULC speed table point 1. | 750.0 rpm |
|  | $-30000.0 \ldots 30000.0$ rpm | Speed. | 1 = 1 rpm |
| 37.13 | ULC speed table point 3 | Defines the third speed point. See parameter 37.11 ULC speed table point 1. | 1290.0 rpm |
|  | $\begin{aligned} & -30000.0 \ldots 30000.0 \\ & \text { rpm } \end{aligned}$ | Speed. | 1 = 1 rpm |
| 37.14 | ULC speed table point 4 | Defines the fourth speed point. See parameter 37.11 ULC speed table point 1. | 1500.0 rpm |
|  | $-30000.0 \ldots 30000.0$ rpm | Speed. | 1 = 1 rpm |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 37.15 | ULC speed table point 5 | Defines the fifth speed point. <br> See parameter 37.11 ULC speed table point 1. | 1800.0 rpm |
|  | $\begin{aligned} & \text {-30000.0...30000.0 } \\ & \text { rpm } \end{aligned}$ | Speed. | 1 = 1 rpm |
| 37.16 | ULC frequency table point 1 | Defines the first of the five frequency points on the X-axis of the user load curve. <br> The values of the parameters must satisfy: $-500.0 \mathrm{~Hz} \leq 37.16$ ULC frequency table point $1<37.17$ ULC frequency table point $2<37.18$ ULC frequency table point $3<37.19$ ULC frequency table point $4<37.20$ ULC frequency table point $5 \leq$ 500.0 Hz . <br> Frequency points are used if parameter 99.04 Motor control mode is set to Scalar and the reference unit is Hz . | 5.0 Hz |
|  | -500.0...500.0 Hz | Frequency. | $1=1 \mathrm{~Hz}$ |
| 37.17 | ULC frequency table point 2 | Defines the second frequency point. See parameter 37.16 ULC frequency table point 1. | 25.0 Hz |
|  | -500.0...500.0 Hz | Frequency. | $1=1 \mathrm{~Hz}$ |
| 37.18 | ULC frequency table point 3 | Defines the third frequency point. See parameter 37.16 ULC frequency table point 1. | 43.0 Hz |
|  | -500.0...500.0 Hz | Frequency. | $1=1 \mathrm{~Hz}$ |
| 37.19 | ULC frequency table point 4 | Defines the fourth frequency point. See parameter 37.16 ULC frequency table point 1. | 50.0 Hz |
|  | -500.0...500.0 Hz | Frequency. | $1=1 \mathrm{~Hz}$ |
| 37.20 | ULC frequency table point 5 | Defines the fifth frequency point. See parameter 37.16 ULC frequency table point 1. | 60.0 Hz |
|  | -500.0...500.0 Hz | Frequency. | 1 = 1 Hz |
| 37.21 | ULC underload point 1 | Defines the first of the five points on the Y -axis that together with the corresponding point on the X-axis (37.11 ULC speed table point 1..37.15 ULC speed table point 5 or 37.15 ULC speed table point 5...37.20 ULC frequency table point 5) define the underload (lower) curve. <br> The following conditions must be fulfilled: <br> - 37.21 ULC underload point 1 <= 37.31 ULC overload point 1 <br> - 37.22 ULC underload point 2 <= 37.32 ULC overload point 2 <br> - 37.23 ULC underload point $3<=37.33$ ULC overload point 3 <br> - 37.24 ULC underload point 4 <= 37.34 ULC overload point 4 <br> - 37.25 ULC underload point 5 <= 37.35 ULC overload point 5 | 10.0\% |
|  | -1600.0..1600.0\% | Underload point. | 1 = 1\% |
| 37.22 | ULC underload point 2 | Defines the second underload point. See parameter 37.21 ULC underload point 1. | 15.0\% |
|  | -1600.0...1600.0\% | Underload point. | 1 = $1 \%$ |
| 37.23 | ULC underload point 3 | Defines the third underload point. See parameter 37.21 ULC underload point 1 | 25.0\% |
|  | -1600.0..1600.0\% | Underload point. | 1 = 1\% |
| 37.24 | ULC underload point 4 | Defines the fourth underload point. See parameter 37.21 ULC underload point 1 | 30.0\% |
|  | -1600.0..1600.0\% | Underload point. | 1 = $1 \%$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 37.25 | ULC underload point 5 | Defines the fifth underload point. See parameter 37.21 ULC underload point 1 | 30.0\% |
|  | -1600.0...1600.0\% | Underload point. | 1 = 1\% |
| 37.31 | ULC overload point 1 | Defines the first of the five points on the Y -axis that together with the corresponding point on the X -axis (37.11 ULC speed table point 1...37.15 ULC speed table point 5 or 37.15 ULC speed table point 5...37.20 ULC frequency table point 5) define the overload (higher) curve. <br> At each of the five points the value of the underload curve point must be equal to or smaller than the value of the overload curve point. See parameter 37.21 ULC underload point 1. | 300.0\% |
|  | -1600.0...1600.0\% | Overload point. | 1 = 1\% |
| 37.32 | ULC overload point 2 | Defines the second overload point. <br> See parameter 37.31 ULC overload point 1. | 300.0\% |
|  | -1600.0...1600.0\% | Overload point. | 1 = 1\% |
| 37.33 | ULC overload point 3 | Defines the third overload point. <br> See parameter 37.31 ULC overload point 1. | 300.0\% |
|  | -1600.0...1600.0\% | Overload point. | 1 = 1\% |
| 37.34 | ULC overload point 4 | Defines the fourth overload point. See parameter 37.31 ULC overload point 1. | 300.0\% |
|  | -1600.0...1600.0\% | Overload point. | 1 = 1\% |
| 37.35 | ULC overload point 5 | Defines the fifth overload point. <br> See parameter 37.31 ULC overload point 1. | 300.0\% |
|  | -1600.0..1600.0\% | Overload point. | 1 = 1\% |
| 37.41 | ULC overload timer | Defines the time period for which time the monitored signal must remain continuously below the overload curve. | 20.0 s |
|  | 0.0...10000.0 s | Time. | $1=1 \mathrm{~s}$ |
| 37.42 | ULC underload timer | Defines the time period for which time the monitored signal must remain continuously above the underload curve. | 20.0 s |
|  | $0.0 . . .10000 .0 \mathrm{~s}$ | Time. | $1=1 \mathrm{~s}$ |
| 40 Process PID set 1 |  | Parameter values for process PID control. <br> The drive output can be controlled by the process PID. When the process PID control is enabled, the drive controls the process feedback to the reference value. <br> Two different parameter sets can be defined for the process PID. One parameter set is in use at a time. The first set is made up of parameters $40.07 \ldots 40.50$, the second set is defined by the parameters in group 41 Process PID set 2. The binary source that defines which set is used is selected by parameter 40.57 PID set1/set2 selection. <br> See also the control chain diagrams on pages 380 and 381. To set the PID customer unit, select Menu - Primary settings - PID - Unit on the panel. |  |
| 40.01 | Process PID output actual | Displays the output of the process PID controller. See the control chain diagram on page 381. <br> This parameter is read-only. | - |
|  | $\begin{gathered} \hline-100000.00 \ldots \\ 100000.00 \% \end{gathered}$ | Process PID controller output. | 1 = $1 \%$ |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 40.02 | $\begin{aligned} & \text { Process PID } \\ & \text { feedback actual } \end{aligned}$ | Displays the value of process feedback after source selection, mathematical function (parameter 40.10 Set 1 feedback function), and filtering. See the control chain diagram on page 380. <br> This parameter is read-only. |  | - |
|  | -100000.00... 100000.00 PID customer units | Process feedback. |  | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.03 | Process PID setpoint actual | Displays the value of process PID setpoint after source selection, mathematical function (40.18 Set 1 setpoint function), limitation and ramping. See the control chain diagram on page 381. <br> This parameter is read-only. |  | - |
|  | $-100000.00 \ldots$ 100000.00 PID customer units | Setpoint for process PID controller. |  | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.04 | Process PID deviation actual | Displays the process PID deviation. By default, this value equals setpoint - feedback, but deviation can be inverted by parameter 40.31 Set 1 deviation inversion. See the control chain diagram on page 381. This parameter is read-only. |  | - |
|  | -100000.00. 100000.00 PID customer units | PID deviation. |  | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.06 | Process PID status word | Displays status information on process PID control. This parameter is read-only. |  | - |
|  | Bit Name <br> 0  |  | Value |  |
|  | 0 PID active |  | 1 = Process PID control active. |  |
|  | 1 Setpoint frozen |  | 1 = Process PID setpoint frozen. |  |
|  | 2 Output frozen |  | 1 = Process PID controller output frozen. |  |
|  | 3 PID sleep mode |  | 1 = Sleep mode active. |  |
|  | 4 Sleep boost |  | 1 = Sleep boost active. |  |
|  | 5 Reserved |  |  |  |
|  | 6 Tracking mode |  | 1 = Tracking function active. |  |
|  | 7 Output limit high |  | 1 = PID output is being limited by par. 40.37. |  |
|  | 8 Output limit low |  | 1 = PID output is being limited by par. 40.36. |  |
|  | 9 Reserved |  | (0) |  |
|  | 10 PID set |  | $0=$ Parameter set 1 in use. 1 = Parameter set 2 in use. |  |
|  | 11 Reserved |  |  |  |
|  | Internal setpoint active |  | 1 = Internal setpoint active (see par. 40.16...40.16) |  |
|  | $13 \ldots 15$ Reserved |  |  |  |
|  | 0000h...FFFFh | Process PID control status word. |  | 1 = 1 |
| 40.07 | Process PID operation mode | Activates/deactivates process PID control. <br> Note: Process PID control is only available in external control; see section Local control vs. external control (page 39). |  | Off |
|  | Off | Process PID control inactive. |  | 0 |
|  | On | Process PID control active. |  | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | On when drive running | Process PID control is active when the drive is running. | 2 |
| 40.08 | Set 1 feedback 1 source | Selects the primary source of process feedback. See the control chain diagram on page 380. | Al2 percent |
|  | Not selected | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |
|  | Al2 scaled | 12.22 AI2 scaled value (see page 110). | 2 |
|  | Freq in scaled | 11.39 Freq in 1 scaled value (see page 106). | 3 |
|  | Al1 percent | 12.101 Al1 percent value (see page 112) | 8 |
|  | Al2 percent | 12.102 Al2 percent value (see page 112) | 9 |
|  | Feedback storage | 40.91 Feedback data storage (see page 223), | 9 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 40.09 | Set 1 feedback 2 source | Selects the second source of process feedback. The second source is used only if the setpoint function requires two inputs. <br> For the selections, see parameter 40.08 Set 1 feedback 1 source. | Not selected |
| 40.10 | Set 1 feedback function | Defines how process feedback is calculated from the two feedback sources selected by parameters 40.08 Set 1 feedback 1 source and 40.09 Set 1 feedback 2 source. | $\ln 1$ |
|  | $\ln 1$ | Source 1. | 0 |
|  | $\ln 1+\ln 2$ | Sum of sources 1 and 2. | 1 |
|  | $\ln 1-\ln 2$ | Source 2 subtracted from source 1. | 2 |
|  | $\ln 1 * \ln 2$ | Source 1 multiplied by source 2 . | 3 |
|  | $\ln 1 / \mathrm{ln} 2$ | Source 1 divided by source 2. | 4 |
|  | $\mathrm{MIN}(\ln 1, \ln 2)$ | Smaller of the two sources. | 5 |
|  | MAX(ln1, In2) | Greater of the two sources. | 6 |
|  | AVE(ln1, $\ln 2$ ) | Average of the two sources. | 7 |
|  | sqrt(ln1) | Square root of source 1. | 8 |
|  | sqrt(ln1-In2) | Square root of (source 1 - source 2). | 9 |
|  | sqrt(ln1+ln2) | Square root of (source $1+$ source 2). | 10 |
|  | sqrt(ln1)+sqrt(ln2) | Square root of source $1+$ square root of source 2. | 11 |
|  | k*sqrt(ln1) | Square root of source 1 multiplied by factor k | 12 |
|  | k*sqrt(ln1-In2) | Square root of (source 1 - source 2) multiplied by factor k . | 13 |
| 40.11 | Set 1 feedback filter time | Defines the filter time constant for process feedback. | 0.000 s |
|  | 0.000...30.000 s | Feedback filter time. | $1=1 \mathrm{~s}$ |
| 40.16 | Set 1 setpoint 1 source | Selects the primary source of process PID setpoint. See the control chain diagram on page 380. | Al1 percent |
|  | Not selected | None. | 0 |
|  | Internal setpoint | Internal setpoint. See parameter 40.19 Set 1 internal setpoint sel1. | 2 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 3 |
|  | Al2 scaled | 12.22 Al2 scaled value (see page 110). | 4 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Motor potentiometer | 22.80 Motor potentiometer ref act (output of the motor potentiometer). | 8 |
|  | Freq in scaled | 11.39 Freq in 1 scaled value (see page 106). | 10 |
|  | Al1 percent | 12.101 Al1 percent value (see page 112) | 11 |
|  | Al2 percent | 12.102 Al2 percent value (see page 112) | 12 |
|  | Control panel (ref saved) | Panel reference (03.01 Panel reference, see page 91) saved by the control system for the location where the control returns is used as the reference. <br> Reference <br> - Ext1 reference <br> $x$ Ext2 reference <br> - Active reference <br> - . Inactive reference <br> Ext1 -> Ext2 | 13 |
|  | Control panel (ref copied) | Panel reference (03.01 Panel reference, see page 91) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (eg frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. <br> - Ext1 reference <br> x Ext2 reference <br> - Active reference <br> - . Inactive reference | 14 |
|  | FB A ref1 | 03.05 FB A reference 1 (see page 92). | 15 |
|  | FB A ref2 | 03.06 FB A reference 2 (see page 92). | 16 |
|  | EFB ref1 | 03.09 EFB reference 1 (see page 92). | 19 |
|  | EFB ref2 | 03.10 EFB reference 2 (see page 92). | 20 |
|  | Setpoint data storage | 40.92 Setpoint data storage (see page 223) | 24 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 40.17 | Set 1 setpoint 2 source | Selects the second source of process setpoint. The second source is used only if the setpoint function requires two inputs. <br> For the selections, see parameter 40.16 Set 1 setpoint 1 source. | Not selected |
| 40.18 | Set 1 setpoint function | Selects a function between the setpoint sources selected by parameters 40.16 Set 1 setpoint 1 source and 40.17 Set 1 setpoint 2 source. | In1 |
|  | In1 | Source 1. | 0 |
|  | $\ln 1+\ln 2$ | Sum of sources 1 and 2. | 1 |
|  | $\ln 1-\ln 2$ | Source 2 subtracted from source 1. | 2 |
|  | $\ln 1 * \times 1 \mathrm{n} 2$ | Source 1 multiplied by source 2 . | 3 |
|  | $\ln 1 / \mathrm{ln} 2$ | Source 1 divided by source 2. | 4 |
|  | $\mathrm{MIN}(\ln 1, \ln 2)$ | Smaller of the two sources. | 5 |
|  | MAX(ln1, ln 2$)$ | Greater of the two sources. | 6 |


| No. | Name/Value | Description |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | AVE(ln1, In2) | Average of the two sources. |  |  | 7 |
|  | sqrt(ln1) | Square root of source 1. |  |  | 8 |
|  | sqrt(In1-In2) | Square root of (source 1 - source 2). |  |  | 9 |
|  | sqrt(ln1+ln2) | Square root of (source 1 + source 2). |  |  | 10 |
|  | sqrt(ln1)+sqrt(ln2) | Square root of source $1+$ square root of source 2. |  |  | 11 |
| 40.19 | Set 1 internal setpoint sel1 | Selects together with 40.20 Set 1 internal setpoint sel2 the internal setpoint out of the presets defined by parameters 40.21...40.23. <br> Note: Parameters 40.16 Set 1 setpoint 1 source and 40.17 Set 1 setpoint 2 source must be set to Internal setpoint. |  |  | Not selected |
|  |  | Source defined <br> by par. 40.19 | Source defined by par. 40.20 | Setpoint preset active |  |
|  |  | 0 | 0 | Setpoint source |  |
|  |  | 1 | 0 | 1 (par. 40.21) |  |
|  |  | 0 | 1 | 2 (par. 40.22) |  |
|  |  | 1 | 1 | 3 (par. 40.23) |  |
|  | Not selected | 0. |  |  | 0 |
|  | Selected | 1. |  |  | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). |  |  | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). |  |  | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). |  |  | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). |  |  | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). |  |  | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). |  |  | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). |  |  | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). |  |  | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). |  |  | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). |  |  | 21 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). |  |  | 22 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). |  |  | 23 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). |  |  | - |
| 40.20 | Set 1 internal setpoint sel2 | Selects together with 40.19 Set 1 internal setpoint sel1 the internal setpoint used out of the three internal setpoints defined by parameters $40.21 \ldots 40.23$. See table at 40.19 Set 1 internal setpoint sel1. |  |  | Not selected |
|  | Not selected | 0. |  |  | 0 |
|  | Selected | 1. |  |  | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). |  |  | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). |  |  | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). |  |  | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). |  |  | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). |  |  | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). |  |  | 7 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 21 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 22 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 23 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 40.21 | Set 1 internal setpoint 1 | Internal process setpoint 1. See parameter 40.19 Set 1 internal setpoint sel1. | 0.00 PID customer units |
|  | -100000.00... 100000.00 PID customer units | Internal process setpoint 1. | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.22 | Set 1 internal setpoint 2 | Internal process setpoint 2. See parameter 40.19 Set 1 internal setpoint sel1. | 0.00 PID customer units |
|  | -100000.00... 100000.00 PID customer units | Internal process setpoint 2. | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.23 | Set 1 internal setpoint 3 | Internal process setpoint 3. See parameter 40.19 Set 1 internal setpoint sel1. | 0.00 PID customer units |
|  | -100000.00... 100000.00 PID customer units | Internal process setpoint 3. | $\begin{aligned} & \hline \begin{array}{l} 1=1 \text { PID } \\ \text { customer unit } \end{array} \end{aligned}$ |
| 40.26 | Set 1 setpoint min | Defines a minimum limit for the process PID controller setpoint. | 0.00 |
|  | $\begin{aligned} & \hline-100000.00 \ldots \\ & 100000.00 \end{aligned}$ | Minimum limit for process PID controller setpoint. | $1=1$ |
| 40.27 | Set 1 setpoint max | Defines a maximum limit for the process PID controller setpoint. | 32767.00 |
|  | $\begin{aligned} & \hline-100000.00 \ldots \\ & 100000.00 \end{aligned}$ | Maximum limit for process PID controller setpoint. | 1 = 1 |
| 40.28 | Set 1 setpoint increase time | Defines the minimum time it takes for the setpoint to increase from 0\% to 100\%. | 0.0 s |
|  | 0.0...1800.0 s | Setpoint increase time. | 1 = 1 |
| 40.29 | Set 1 setpoint decrease time | Defines the minimum time it takes for the setpoint to decrease from $100 \%$ to 0\%. | 0.0 s |
|  | 0.0...1800.0 s | Setpoint decrease time. | 1 = 1 |
| 40.30 | Set 1 setpoint freeze | Freezes, or defines a source that can be used to freeze, the setpoint of the process PID controller. This feature is useful when the reference is based on a process feedback connected to an analog input, and the sensor must be serviced without stopping the process. <br> 1 = Process PID controller setpoint frozen <br> See also parameter 40.38 Set 1 output freeze. | Not selected |
|  | Not selected | Process PID controller setpoint not frozen. | 0 |
|  | Selected | Process PID controller setpoint frozen. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 21 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 22 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 23 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 40.31 | Set 1 deviation inversion | Inverts the input of the process PID controller. <br> $0=$ Deviation not inverted (Deviation $=$ Setpoint - Feedback) <br> 1 = Deviation inverted (Deviation = Feedback - Setpoint) <br> See also section Sleep and boost functions for process PID control (page 64). | Not inverted (Ref - Fbk) |
|  | Not inverted (Ref - Fbk) | 0. | 0 |
|  | Inverted (Fbk - Ref) | 1. | 1 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 40.32 | Set 1 gain | Defines the gain for the process PID controller. See parameter 40.33 Set 1 integration time. | 1.00 |
|  | 0.10...100.00 | Gain for PID controller. | $100=1$ |
| 40.33 | Set 1 integration time | Defines the integration time for the process PID controller. This time needs to be set to the same order of magnitude as the reaction time of the process being controlled, otherwise instability will result. | 60.0 s |
|  | 0.0...9999.0 s | Integration time. | $1=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 40.34 | Set 1 derivation time | Defines the derivation time of the process PID controller. The derivative component at the controller output is calculated on basis of two consecutive error values ( $\mathrm{E}_{\mathrm{K}-1}$ and $\mathrm{E}_{\mathrm{K}}$ ) according to the following formula: <br> PID DERIV TIME $\times\left(\mathrm{E}_{\mathrm{K}}-\mathrm{E}_{\mathrm{K}-1}\right) / T_{\mathrm{S}}$, in which <br> $T_{\mathrm{S}}=2 \mathrm{~ms}$ sample time <br> $\mathrm{E}=\mathrm{Error}=$ Process reference - process feedback. | 0.000 s |
|  | 0.000...10.000 s | Derivation time. | $1000=1 \mathrm{~s}$ |
| 40.35 | Set 1 derivation filter time | Defines the time constant of the 1-pole filter used to smooth the derivative component of the process PID controller. $\begin{aligned} & \mathrm{O}=\mathrm{I} \times\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{T}}\right) \\ & \mathrm{I}=\text { filter input }(\text { step }) \\ & \mathrm{O}=\text { filter output } \\ & t=\text { time } \\ & \mathrm{T}=\text { filter time constant } \end{aligned}$ | 0.0 s |
|  | 0.0... 10.0 s | Filter time constant. | $10=1 \mathrm{~s}$ |
| 40.36 | Set 1 output min | Defines the minimum limit for the process PID controller output. Using the minimum and maximum limits, it is possible to restrict the operation range. | 0.0 |
|  | $\begin{aligned} & \hline-100000.0 \ldots \\ & 100000.0 \end{aligned}$ | Minimum limit for process PID controller output. | $1=1$ |
| 40.37 | Set 1 output max | Defines the maximum limit for the process PID controller output. See parameter 40.36 Set 1 output min. | 100.0 |
|  | $\begin{aligned} & \hline-100000.0 \ldots \\ & 100000.0 \end{aligned}$ | Maximum limit for process PID controller output. | $1=1$ |
| 40.38 | Set 1 output freeze | Freezes (or defines a source that can be used to freeze) the output of the process PID controller, keeping the output at the value it was before freeze was enabled. This feature can be used when, for example, a sensor providing process feedback must to be serviced without stopping the process. <br> 1 = Process PID controller output frozen <br> See also parameter 40.30 Set 1 setpoint freeze. | Not selected |
|  | Not selected | Process PID controller output not frozen. | 0 |
|  | Selected | Process PID controller output frozen. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 21 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 22 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 23 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 40.43 | Set 1 sleep level | Defines the start limit for the sleep function. If the value is 0.0 , set 1 sleep mode is disabled. <br> The sleep function compares the motor speed to the value of this parameter. If the motor speed remains below this value longer than the sleep delay defined by 40.44 Set 1 sleep delay, the drive enters the sleep mode and stops the motor. | 0.0 |
|  | 0.0...100000.0 | Sleep start level. | 1 = 1 |
| 40.44 | Set 1 sleep delay | Defines a delay before the sleep function actually becomes enabled, to prevent nuisance sleeping. <br> The delay timer starts when the sleep mode is enabled by parameter 40.43 Set 1 sleep level, and resets when the sleep mode is disabled. | 60.0 s |
|  | $0.0 . . .3600 .0 \mathrm{~s}$ | Sleep start delay. | $1=1 \mathrm{~s}$ |
| 40.45 | Set 1 sleep boost time | Defines a boost time for the sleep boost step. See parameter 40.46 Set 1 sleep boost step. | 0.0 s |
|  | 0.0...3600.0 s | Sleep boost time. | $1=1 \mathrm{~s}$ |
| 40.46 | Set 1 sleep boost step | When the drive is entering sleep mode, the process setpoint is increased by this value for the time defined by parameter 40.45 Set 1 sleep boost time. <br> If active, sleep boost is aborted when the drive wakes up. | 0.0 PID customer units |
|  | $0.0 \ldots 100000.0 \text { PID }$ customer units | Sleep boost step. | $\begin{array}{\|l\|} \hline 1=1 \text { PID } \\ \text { customer unit } \end{array}$ |
| 40.47 | Set 1 wake-up deviation | Defines the wake-up level as deviation between process setpoint and feedback. <br> When the deviation exceeds the value of this parameter, and remains there for the duration of the wake-up delay (40.48 Set 1 wake-up delay), the drive wakes up. See also parameter 40.31 Set 1 deviation inversion. | 0.00 PID customer units |
|  | -100000.00.. 100000.00 PID customer units | Wake-up level (as deviation between process setpoint and feedback). | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.48 | Set 1 wake-up delay | Defines a wake-up delay for the sleep function to prevent nuisance wake-ups. See parameter 40.47 Set 1 wake-up deviation. <br> The delay timer starts when the deviation exceeds the wakeup level (40.47 Set 1 wake-up deviation), and resets if the deviation falls below the wake-up level. | 0.50 s |
|  | 0.00...60.00 s | Wake-up delay. | $1=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 40.49 | Set 1 tracking mode | Activates (or selects a source that activates) tracking mode. In tracking mode, the value selected by parameter 40.50 Set 1 tracking ref selection is substituted for the PID controller output. See also section Tracking (page 66). 1 = Tracking mode enabled | Not selected |
|  | Not selected | 0. | 0 |
|  | Selected | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 21 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 22 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 23 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 40.50 | Set 1 tracking ref selection | Selects the value source for tracking mode. See parameter 40.49 Set 1 tracking mode. | Not selected |
|  | Not selected | None. | 0 |
|  | Al1 scaled | 12.12 Al1 scaled value (see page 109). | 1 |
|  | Al2 scaled | 12.22 Al2 scaled value (see page 110). | 2 |
|  | FB A ref1 | 03.05 FB A reference 1 (see page 92). | 3 |
|  | FB A ref2 | 03.06 FB A reference 2 (see page 92). | 4 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |
| 40.57 | PID set1/set2 selection | Selects the source that determines whether process PID parameter set 1 (parameters 40.07... 40.50 ) or set 2 (group 41 Process PID set 2) is used. | PID set 1 |
|  | PID set 1 | 0. Process PID parameter set 1 in use. | 0 |
|  | PID set 2 | 1. Process PID parameter set 2 in use. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 21 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 22 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 23 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 40.58 | Set 1 increase prevention | Prevention of PID integration term increase for PID set 1. | No |
|  | No | Increase prevention not in use. | 0 |
|  | Limiting | The PID integration term is not increased if the maximum value for the PID output is reached. This parameter is valid for the PID set 1. | 1 |
|  | Ext PID min lim | The process PID integration term is not increased when the output of the external PID has reached its minimum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1. | 2 |
|  | Ext PID max lim | The process PID integration term is not increased when the output of the external PID has reached its maximum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1. | 3 |
| 40.59 | Set 1 decrease prevention | Prevention of PID integration term decrease for PID set 1. | No |
|  | No | Decrease prevention not in use. | 0 |
|  | Limiting | The PID integration term is not decreased if the minimum value for the PID output is reached. This parameter is valid for the PID set 1. | 1 |
|  | Ext PID min lim | The process PID integration term is not decreased when the output of the external PID has reached its minimum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1. | 2 |
|  | Ext PID max lim | The process PID integration term is not decreased when the output of the external PID has reached its maximum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1. | 3 |
| 40.62 | PID internal setpoint actual | Displays the value of the internal setpoint. See the control chain diagram on page 381. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & -100000.00 \ldots \\ & 100000.00 \mathrm{PID} \\ & \text { customer units } \end{aligned}$ | Process PID internal setpoint. | $1 \text { = } 1 \text { PID }$ <br> customer unit |
| 40.90 | Set 1 feedback multiplier $k$ | Defines the multiplier used in formulas of parameter 40.10 Set 1 feedback function. | - |
|  | $\begin{aligned} & -100000.00 \ldots \\ & 100000.00 \end{aligned}$ | Multiplier. | $1=1$ |
| 40.91 | Feedback data storage | Storage parameter for receiving a process feedback value eg. through the embedded fieldbus interface. <br> The value can be sent to the drive as Modbus I/O data. Set the target selection parameter of that particular data (58.101...58.114) to Feedback data storage. In 40.08 Set 1 feedback 1 source (or 40.09 Set 1 feedback 2 source), select Feedback storage. | - |
|  | -327.68...327.67 | Storage parameter for process feedback. | $100=1$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 40.92 | Setpoint data <br> storage | Storage parameter for receiving a process setpoint value eg. <br> through the embedded fieldbus interface. <br> The value can be sent to the drive as Modbus I/O data. Set <br> the target selection parameter of that particular data <br> $(58.101 \ldots 58.114)$ ) to Setpoint data storage. In 40.16 Set 1 <br> setpoint 1 source (or 40.17 Set 1 setpoint 2 source), select <br> Setpoint data storage. | - |
|  | $-327.68 \ldots 327.67$ | Storage parameter for process setpoint. | $100=1$ |


| 41 Process PID set 2 |  | A second set of parameter values for process PID control. The selection between this set and first set (parameter group 40 Process PID set 1 ) is made by parameter 40.57 PID set1/set2 selection. <br> See also parameters $40.01 \ldots 40.06$, and the control chain diagrams on pages 380 and 381 . |  |
| :---: | :---: | :---: | :---: |
| 41.08 | Set 2 feedback 1 source | See parameter 40.08 Set 1 feedback 1 source. | Al2 percent |
| 41.09 | Set 2 feedback 2 source | See parameter 40.09 Set 1 feedback 2 source. | Not selected |
| 41.10 | Set 2 feedback function | See parameter 40.10 Set 1 feedback function. | $\ln 1$ |
| 41.11 | Set 2 feedback filter time | See parameter 40.11 Set 1 feedback filter time. | 0.000 s |
| 41.16 | Set 2 setpoint 1 source | See parameter 40.16 Set 1 setpoint 1 source. | Al1 percent |
| 41.17 | Set 2 setpoint 2 source | See parameter 40.17 Set 1 setpoint 2 source. | Not selected |
| 41.18 | Set 2 setpoint function | See parameter 40.18 Set 1 setpoint function. | $\ln 1$ |
| 41.19 | Set 2 internal setpoint sel1 | See parameter 40.19 Set 1 internal setpoint sel1. | Not selected |
| 41.20 | Set 2 internal setpoint sel2 | See parameter 40.20 Set 1 internal setpoint sel2. | Not selected |
| 41.21 | Set 2 internal setpoint 1 | See parameter 40.21 Set 1 internal setpoint 1. | 0.00 PID customer units |
| 41.22 | Set 2 internal setpoint 2 | See parameter 40.22 Set 1 internal setpoint 2. | 0.00 PID customer units |
| 41.23 | Set 2 internal setpoint 3 | See parameter 40.23 Set 1 internal setpoint 3. | 0.00 PID customer units |
| 41.26 | Set 2 setpoint min | See parameter 40.26 Set 1 setpoint min. | 0.00 |
| 41.27 | Set 2 setpoint max | See parameter 40.27 Set 1 setpoint max. | 32767.00 |
| 41.28 | Set 2 setpoint increase time | See parameter 40.28 Set 1 setpoint increase time. | 0.0 s |
| 41.29 | Set 2 setpoint decrease time | See parameter 40.29 Set 1 setpoint decrease time. | 0.0 s |
| 41.30 | Set 2 setpoint freeze | See parameter 40.30 Set 1 setpoint freeze. | Not selected |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 41.31 | Set 2 deviation inversion | See parameter 40.31 Set 1 deviation inversion. | Not inverted (Ref - Fbk) |
| 41.32 | Set 2 gain | See parameter 40.32 Set 1 gain. | 1.00 |
| 41.33 | Set 2 integration time | See parameter 40.33 Set 1 integration time. | 60.0 s |
| 41.34 | Set 2 derivation time | See parameter 40.34 Set 1 derivation time. | 0.000 s |
| 41.35 | Set 2 derivation filter time | See parameter 40.35 Set 1 derivation filter time. | 0.0 s |
| 41.36 | Set 2 output min | See parameter 40.36 Set 1 output min. | 0.0 |
| 41.37 | Set 2 output max | See parameter 40.37 Set 1 output max. | 100.0 |
| 41.38 | Set 2 output freeze | See parameter 40.38 Set 1 output freeze. | Not selected |
| 41.43 | Set 2 sleep level | See parameter 40.43 Set 1 sleep level. | 0.0 |
| 41.44 | Set 2 sleep delay | See parameter 40.44 Set 1 sleep delay. | 60.0 s |
| 41.45 | Set 2 sleep boost time | See parameter 40.45 Set 1 sleep boost time. | 0.0 s |
| 41.46 | Set 2 sleep boost step | See parameter 40.46 Set 1 sleep boost step. | 0.0 PID customer units |
| 41.47 | Set 2 wake-up deviation | See parameter 40.47 Set 1 wake-up deviation. | 0.00 PID customer units |
| 41.48 | Set 2 wake-up delay | See parameter 40.48 Set 1 wake-up delay. | 0.50 s |
| 41.49 | Set 2 tracking mode | See parameter 40.49 Set 1 tracking mode. | Not selected |
| 41.50 | Tracking ref sel | See parameter 40.50 Set 1 tracking ref selection. | Not selected |
| 41.58 | Set 2 increase prevention | See parameter 40.58 Set 1 increase prevention. | No |
| 41.59 | Set 2 decrease prevention | See parameter 40.59 Set 1 decrease prevention. | No |
| 41.90 | Set 2 feedback multiplier k | Defines the multiplier used in formulas of parameter 41.10 Set 2 feedback function. | - |
|  | $\begin{aligned} & \hline-100000.00 \ldots \\ & 100000.00 \end{aligned}$ | Multiplier. | $1=1$ |


| 43 Brake chopper | Settings for the internal brake chopper. |  |
| :--- | :--- | :--- |
| 43.01Braking resistor <br> temperature | Displays the estimated temperature of the brake resistor, or <br> how close the brake resistor is to being too hot. <br> The value is given in percent where 100\% is the temperature <br> the resistor would reach if the maximum continuous braking <br> power (43.09 Brake resistor Pmax cont) is applied to the <br> resistor for 100\% rated time. The thermal time constant <br> (43.08 Brake resistor thermal tc) defines the rated time to <br> achieve 63\% temperature. $100 \%$ would be reached when <br> $100 \%$ time has elapsed. <br> This parameter is read-only. | - |
| $0.0 \ldots 120.0 \%$ | Estimated brake resistor temperature. | $1=1 \%$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 43.06 | Brake chopper | Enables brake chopper control. <br> Note: Before enabling brake chopper control, ensure that <br> - a brake resistor is connected <br> - overvoltage control is switched off (parameter 30.30 Overvoltage control) <br> - the supply voltage range (parameter 95.01 Supply voltage) has been selected correctly. | Disabled |
|  | Disabled | Brake chopper control disabled. | 0 |
|  | Enabled with thermal model | Brake chopper control enabled with resistor overload protection. | 1 |
|  | Enabled without thermal model | Brake chopper control enabled without resistor overload protection. This setting can be used, for example, if the resistor is equipped with a thermal circuit breaker that is wired to stop the drive if the resistor overheats. | 2 |
|  | Overvoltage peak protection | Brake chopper control enabled in an overvoltage condition. <br> This setting is intended for situations where <br> - the braking chopper is not needed for runtime operation, ie. to dissipate the inertial energy of the motor, <br> - the motor is able to store a considerable amount magnetic energy in its windings, and <br> - the motor might, deliberately or inadvertently, be stopped by coasting. <br> In such a situation, the motor would potentially discharge enough magnetic energy towards the drive to cause damage. To protect the drive, the brake chopper can be used with a small resistor dimensioned merely to handle the magnetic energy (not the inertial energy) of the motor. With this setting, the brake chopper is activated only whenever the DC voltage exceeds the overvoltage limit. During normal use, the brake chopper is not operating. | 3 |
| 43.07 | Brake chopper runtime | Selects the source for quick brake chopper on/off control. <br> $0=$ Brake chopper IGBT pulses are cut off <br> $1=$ Normal brake chopper IGBT modulation. <br> This parameter can be used to program the chopper control to function only when the supply is missing from a drive with a regenerative supply unit. | On |
|  | Off | 0. | 0 |
|  | On | 1. | 1 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 43.08 | Brake resistor thermal tc | Defines the thermal time constant of the brake resistor for overload protection. | 0 s |
|  | 0... 10000 s | Brake resistor thermal time constant. | $1=1 \mathrm{~s}$ |
| 43.09 | Brake resistor <br> Pmax cont | Defines the maximum continuous braking power of the resistor (in kW ) which will raise the resistor temperature to the maximum allowed value. The value is used in the overload protection. | 0.00 kW |
|  | $\begin{aligned} & \hline 0.00 \ldots \\ & 10000.00 \mathrm{~kW} \end{aligned}$ | Maximum continuous braking power. | $1=1 \mathrm{~kW}$ |
| 43.10 | Brake resistance | Defines the resistance value of the brake resistor. The value is used for brake chopper protection. | 0.0 ohm |
|  | 0.0...1000.0 ohm | Brake resistor resistance value. | 1 = 1 ohm |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 43.11 | Brake resistor fault limit | Selects the fault limit for the brake resistor temperature protection function. When the limit is exceeded, the drive trips on fault $7183 B R$ excess temperature. <br> The value is given in percent of the temperature the resistor reaches when loaded with the power defined by parameter 43.09 Brake resistor Pmax cont. | 105\% |
|  | 0...150\% | Brake resistor temperature fault limit. | 1 = 1\% |
| 43.12 | Brake resistor warning limit | Selects the warning limit for the brake resistor temperature protection function. When the limit is exceeded, the drive generates a A793 BR excess temperature warning. <br> The value is given in percent of the temperature the resistor reaches when loaded with the power defined by parameter 43.09 Brake resistor Pmax cont. | 95\% |
|  | 0...150\% | Brake resistor temperature warning limit. | 1 = 1\% |


| 45 Energy efficiency |  | Settings for the energy saving calculators. <br> See also section Energy saving calculators (page 79). |  |
| :---: | :---: | :---: | :---: |
| 45.01 | Saved GW hours | Energy saved in GWh compared to direct-on-line motor connection. This parameter is incremented when 45.02 Saved MW hours rolls over. <br> This parameter is read-only (see parameter 45.21 Energy calculations reset). | - |
|  | 0... 65535 GWh | Energy savings in GWh. | 1 = 1 GWh |
| 45.02 | Saved MW hours | Energy saved in MWh compared to direct-on-line motor connection. This parameter is incremented when 45.03 Saved kW hours rolls over. <br> When this parameter rolls over, parameter 45.01 Saved GW hours is incremented. <br> This parameter is read-only (see parameter 45.21 Energy calculations reset). | - |
|  | 0... 999 MWh | Energy savings in MWh. | 1 = 1 MWh |
| 45.03 | Saved kW hours | Energy saved in kWh compared to direct-on-line motor connection. <br> If the internal brake chopper of the drive is enabled, all energy fed by the motor to the drive is assumed to be converted into heat, but the calculation still records savings made by controlling the speed. If the chopper is disabled, then regenerated energy from the motor is also recorded here. When this parameter rolls over, parameter 45.02 Saved MW hours is incremented. <br> This parameter is read-only (see parameter 45.21 Energy calculations reset). | - |
|  | 0.0...999.9 kWh | Energy savings in kWh . | $10=1 \mathrm{kWh}$ |
| 45.04 | Saved energy | Energy saved in kWh compared to direct-on-line motor connection. <br> If the internal brake chopper of the drive is enabled, all energy fed by the motor to the drive is assumed to be converted into heat. <br> This parameter is read-only (see parameter 45.21 Energy calculations reset). | - |
|  | $0.0 \ldots 214748368.0$ <br> kWh | Energy savings in kWh. | $1=1 \mathrm{kWh}$ |

\(\left.$$
\begin{array}{|ll|l|l|}\hline \text { No. } & \text { Name/Value } & \text { Description } & \text { Def/FbEq16 } \\
\hline 45.05 & \begin{array}{l}\text { Saved money } \\
\text { x1000 }\end{array} & \begin{array}{l}\text { Monetary savings in thousands compared to direct-on-line } \\
\text { motor connection. This parameter is incremented when } 45.06 \\
\text { Saved money rolls over. } \\
\text { This parameter is read-only (see parameter 45.21 Energy } \\
\text { calculations reset). }\end{array}
$$ \& - <br>
\hline \& \begin{array}{lll}0 . .4294967295 <br>

thousands\end{array} \& Monetary savings in thousands of units.\end{array}\right]\)| Saved money |
| :--- |
|  |


| No. | Name/Value | Description |
| :--- | :--- | :--- |
| 45.11 | Energy optimizer | Enables/disables the energy optimization function. The <br> function optimizes the motor flux so that total energy <br> consumption and motor noise level are reduced when the <br> drive operates below the nominal load. The total efficiency <br> (motor and drive) can be improved by 1...20\% depending on <br> load torque and speed. <br> Note: With a permanent magnet motor, energy optimization <br> is always enabled regardless of this parameter. |
|  | Disable | Energy optimization disabled. |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 45.21 | Energy calculations <br> reset | Resets the savings counter parameters 45.01..45.10. | Done |
|  | Done | Reset not requested (normal operation), or reset complete. | 0 |
|  | Reset | Reset the savings counter parameters. The value reverts <br> automatically to Done. | 1 |


| 46 Monitoring/scaling settings |  | Speed supervision settings; actual signal filtering; general scaling settings. |  |
| :---: | :---: | :---: | :---: |
| 46.01 | Speed scaling | Defines the maximum speed value used to define the acceleration ramp rate and the initial speed value used to define the deceleration ramp rate (see parameter group 23 Speed reference ramp). The speed acceleration and deceleration ramp times are therefore related to this value (not to parameter 30.12 Maximum speed). <br> Also defines the 16-bit scaling of speed-related parameters. The value of this parameter corresponds to 20000 in eg. fieldbus communication. | 1500.00 rpm |
|  | $\begin{aligned} & 0.10 \ldots 30000.00 \\ & \text { rpm } \end{aligned}$ | Acceleration/deceleration terminal/initial speed. | 1 = 1 rpm |
| 46.02 | Frequency scaling | Defines the maximum frequency value used to define the acceleration ramp rate and the initial frequency value used to define deceleration ramp rate (see parameter group 28 Frequency reference chain). The frequency acceleration and deceleration ramp times are therefore related to this value (not to parameter 30.14 Maximum frequency). <br> Also defines the 16-bit scaling of frequency-related parameters. The value of this parameter corresponds to 20000 in eg. fieldbus communication. | 50.00 Hz |
|  | 0.10...1000.00 Hz | Acceleration/deceleration terminal/initial frequency. | $10=1 \mathrm{~Hz}$ |
| 46.03 | Torque scaling | Defines the 16-bit scaling of torque parameters. The value of this parameter (in percent of nominal motor torque) corresponds to 10000 in eg. fieldbus communication. | 100.0\% |
|  | 0.1...1000.0\% | Torque corresponding to 10000 on fieldbus. | 10 = 1\% |
| 46.04 | Power scaling | Defines the output power value that corresponds to 10000 in eg. fieldbus communication. The unit is selected by parameter 96.16 Unit selection. | $1000.00 \mathrm{~kW}$ or hp |
|  | $\begin{aligned} & \hline 0.1 \ldots 30000.00 \mathrm{~kW} \\ & \text { or } \\ & 0.1 \ldots 40214.48 \mathrm{hp} \\ & \hline \end{aligned}$ | Power corresponding to 10000 on fieldbus. | 1 = 1 unit |
| 46.05 | Current scaling | Defines the 16-bit scaling of current parameters. The value of this parameter corresponds to 10000 in fieldbus communication. | 10000 A |
|  | 0... 30000 A |  |  |
| 46.11 | Filter time motor speed | Defines a filter time for signals 01.01 Motor speed used and 01.02 Motor speed estimated. | 500 ms |
|  | 2... 20000 ms | Motor speed signal filter time. | $1=1 \mathrm{~ms}$ |
| 46.12 | Filter time output frequency | Defines a filter time for signal 01.06 Output frequency. | 500 ms |
|  | 2... 20000 ms | Output frequency signal filter time. | $1=1 \mathrm{~ms}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 46.13 | Filter time motor torque | Defines a filter time for signal 01.10 Motor torque. | 100 ms |
|  | 2... 20000 ms | Motor torque signal filter time. | $1=1 \mathrm{~ms}$ |
| 46.14 | Filter time power | Defines a filter time for signal 01.14 Output power. | 100 ms |
|  | 2... 20000 ms | Output power signal filter time. | $1=1 \mathrm{~ms}$ |
| 46.21 | At speed hysteresis | Defines the "at setpoint" limits for speed control of the drive. When the difference between reference (22.87 Speed reference act 7 ) and the speed ( 24.02 Used speed feedback) is smaller than 46.21 At speed hysteresis, the drive is considered to be "at setpoint". This is indicated by bit 8 of 06.11 Main status word. | 50.00 rpm |
|  | $\begin{aligned} & 0.00 \ldots . .30000 .00 \\ & \text { rpm } \end{aligned}$ | Limit for "at setpoint" indication in speed control. | See par. 46.01 |
| 46.22 | At frequency hysteresis | Defines the "at setpoint" limits for frequency control of the drive. When the absolute difference between reference (28.96 Frequency ref ramp input) and actual frequency (01.06 Output frequency) is smaller than 46.22 At frequency hysteresis, the drive is considered to be "at setpoint". This is indicated by bit 8 of 06.11 Main status word. | 2.00 Hz |
|  | 0.00...1000.00 Hz | Limit for "at setpoint" indication in frequency control. | $\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 46.23 | At torque hysteresis | Defines the "at setpoint" limits for torque control of the drive. When the absolute difference between reference (26.73 Torque reference act 4) and actual torque (01.10 Motor torque) is smaller than 46.23 At torque hysteresis, the drive is considered to be "at setpoint". This is indicated by bit 8 of 06.11 Main status word. | 5.0\% |
|  | 0.0...300.0\% | Limit for "at setpoint" indication in torque control. | See par. $46.03$ |
| 46.31 | Above speed limit | Defines the trigger level for "above limit" indication in speed control. When actual speed exceeds the limit, bit 10 of 06.17 Drive status word 2 is set. | 1500.00 rpm |
|  | $\begin{aligned} & 0.00 \ldots 30000.00 \\ & \mathrm{rpm} \end{aligned}$ | "Above limit" indication trigger level for speed control. | See par. $46.01$ |
| 46.32 | Above frequency limit | Defines the trigger level for "above limit" indication in frequency control. When actual frequency exceeds the limit, bit 10 of 06.17 Drive status word 2 is set. | 50.00 Hz |
|  | 0.00...1000.00 Hz | "Above limit" indication trigger level for frequency control. | See par. 46.02 |
| 46.33 | Above torque limit | Defines the trigger level for "above limit" indication in torque control. When actual torque exceeds the limit, bit 10 of 06.17 Drive status word 2 is set. | 300.0\% |
|  | 0.0...1600.0\% | "Above limit" indication trigger level for torque control. | $\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$ |
| 46.41 | kWh pulse scaling | Defines the trigger level for the "kWh pulse" on for 50 ms . The output of the pulse is bit 9 of 05.22 Diagnostic word 3. | 1.000 kWh |
|  | $\begin{aligned} & 0.001 \ldots \\ & 1000.000 \mathrm{kWh} \end{aligned}$ | "kWh pulse" on trigger level. | $1=1 \mathrm{kWh}$ |


| 47 Data storage | Data storage parameters that can be written to and read from <br> using other parameters' source and target settings. <br> Note that there are different storage parameters for different <br> data types. <br> See also section Data storage parameters (page 83). |  |
| :--- | :--- | :--- |
| 47.01 Data storage 1 <br> real32  | Data storage parameter 1. | 0.000 |
| $-2147483.000 \ldots$ <br> 2147483.000 | 32-bit data. | - |
| 47.02Data storage 2 <br> real32 | Data storage parameter 2. | 0.000 |
| $-2147483.000 \ldots$ <br> 2147483.000 | 32-bit data. | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 47.03 | Data storage 3 real32 | Data storage parameter 3. | 0.000 |
|  | $\begin{aligned} & \hline-2147483.000 \ldots \\ & 2147483.000 \end{aligned}$ | 32-bit data. | - |
| 47.04 | Data storage 4 real32 | Data storage parameter 4. | 0.000 |
|  | $\begin{aligned} & \hline-2147483.000 \ldots \\ & 2147483.000 \end{aligned}$ | 32-bit data. | - |
| 47.11 | Data storage 1 int32 | Data storage parameter 9. | 0 |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | 32-bit data. | - |
| 47.12 | $\begin{aligned} & \text { Data storage } 2 \\ & \text { int32 } \end{aligned}$ | Data storage parameter 10. | 0 |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | 32-bit data. | - |
| 47.13 | Data storage 3 int32 | Data storage parameter 11. | 0 |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | 32-bit data. | - |
| 47.14 | Data storage 4 int32 | Data storage parameter 12. | 0 |
|  | $\begin{aligned} & -2147483648 \ldots \\ & 2147483647 \end{aligned}$ | 32-bit data. | - |
| 47.21 | Data storage 1 int16 | Data storage parameter 17. | 0 |
|  | -32768...32767 | 16-bit data. | 1 = 1 |
| 47.22 | $\begin{aligned} & \text { Data storage } 2 \\ & \text { int16 } \end{aligned}$ | Data storage parameter 18. | 0 |
|  | -32768... 32767 | 16-bit data. | 1 = 1 |
| 47.23 | $\text { Data storage } 3$ int16 | Data storage parameter 19. | 0 |
|  | -32768... 32767 | 16-bit data. | 1 = 1 |
| 47.24 | Data storage 4 int16 | Data storage parameter 20. | 0 |
|  | -32768... 32767 | 16-bit data. | 1 = 1 |


| 49 Panel port <br> communication | Communication settings for the control panel port on the <br> drive. |  |
| :--- | :--- | :--- |
| $49.01 \quad$ Node ID number | Defines the node ID of the drive. All devices connected to the <br> network must have a unique node ID. <br> Note: For networked drives, it is advisable to reserve ID 1 for <br> spare/replacement drives. | 1 |
| $1 \ldots .32$ | Node ID. | $1=1$ |
| $49.03 \quad$ Baud rate | Defines the transfer rate of the link. | 115.2 kbps |
| 38.4 kbps | $38.4 \mathrm{kbit/s}$. | 1 |
| 57.6 kbps | 57.6 kbit s. | 2 |
| 86.4 kbps | $86.4 \mathrm{kbit/s}$. | 3 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | 115.2 kbps | 115.2 kbit/s. | 4 |
|  | 230.4 kbps | 230.4 kbit/s. | 5 |
| 49.04 | Communication loss time | Sets a timeout for control panel (or PC tool) communication. If a communication break lasts longer than the timeout, the action specified by parameter 49.05 Communication loss action is taken. | 10.0 s |
|  | 0.3...3000.0 s | Panel/PC tool communication timeout. | $10=1 \mathrm{~s}$ |
| 49.05 | Communication loss action | Selects how the drive reacts to a control panel (or PC tool) communication break. | Fault |
|  | No action | No action taken. | 0 |
|  | Fault | Drive trips on 7081 Control panel loss. | 1 |
|  | Last speed | Drive generates an A7EE Panel loss warning and freezes the speed to the level the drive was operating at. The speed is determined on the basis of actual speed using 850 ms lowpass filtering. $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break. | 2 |
|  | Speed ref safe | Drive generates an A7EE Panel loss warning and sets the speed to the speed defined by parameter 22.41 Speed ref safe (or 28.41 Frequency ref safe when frequency reference is being used). <br> WARNING! Make sure that it is safe to continue operation in case of a communication break. | 3 |
| 49.06 | Refresh settings | Applies the settings of parameters 49.01...49.05. <br> Note: Refreshing may cause a communication break, so reconnecting the drive may be required. | Done |
|  | Done | Refresh done or not requested. | 0 |
|  | Configure | Refresh parameters 49.01...49.05. The value reverts automatically to Done. | 1 |


| 50 Fieldbus adapter (FBA) |  | Fieldbus communication configuration. <br> See also chapter Fieldbus control through a fieldbus adapter (page 355). |  |
| :---: | :---: | :---: | :---: |
| 50.01 | $F B A A$ | Enables/disables communication between the drive and fieldbus adapter A, and specifies the slot the adapter is installed into. | Disable |
|  | Disable | Communication between drive and fieldbus adapter $A$ disabled. | 0 |
|  | Enable | Communication between drive and fieldbus adapter $A$ enabled. The adapter is in slot 1. | 1 |
| 50.02 | FBA A comm loss func | Selects how the drive reacts upon a fieldbus communication break. The time delay is defined by parameter 50.03 FBA A comm loss tout. | No action |
|  | No action | No action taken. | 0 |
|  | Fault | Communication break detection active. Upon a communication break, the drive trips on a 7510 FBA A communication fault and coasts to a stop. | 1 |


| No. | Name/Value | Description |
| :--- | :--- | :--- |
| Last speed | Communication break detection active. Upon a <br> communication break, the drive generates a warning (A7C1 <br> FBA A communication) and freezes the speed to the level the <br> drive was operating at. The speed is determined on the basis <br> of actual speed using 850 ms low-pass filtering. <br> WARNING! Make sure that it is safe to continue <br> operation in case of a communication break. | 2 |
|  | Speed ref safe | Communication break detection active. Upon a <br> communication break, the drive generates a warning (A7C1 <br> FBA A communication) and sets the speed to the value <br> defined by parameter 22.41 Speed ref safe (or 28.41 <br> Frequency ref safe when frequency reference is being used). <br> WARNING! Make sure that it is safe to continue <br> operation in case of a communication break. |
| Fault always | Drive trips on 7510 FBA A communication. This occurs even <br> though no control is expected from the fieldbus. | 2 |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 50.05 | FBA A ref2 type | Selects the type and scaling of reference 2 received from fieldbus adapter A. The scaling of the reference is defined by parameters 46.01...46.04, depending on which reference type is selected by this parameter. |  | Speed or frequency |
|  | Speed or frequency | Type and scaling is chosen automatically according to the currently active operation mode as follows: |  | 0 |
|  |  | Operation mode (see par. 19.01) | Reference 2 type |  |
|  |  | Speed control | Torque |  |
|  |  | Torque control | Torque |  |
|  |  | Frequency control | Torque |  |
|  | Transparent | No scaling is applied. |  | 1 |
|  | General | Generic reference without | ic unit. | 2 |
|  | Torque | The scaling is defined by | 46.03 Torque scaling. | 3 |
|  | Speed | The scaling is defined by | 46.01 Speed scaling. | 4 |
|  | Frequency | The scaling is defined by p | 46.02 Frequency scaling. | 5 |
| 50.06 | FBA A SW sel | Selects the source of the fieldbus network through | ord to be sent to the adapter A . | Auto |
|  | Auto | Source of the Status word | n automatically. | 0 |
|  | Transparent mode | The source selected by pa transparent source is tran fieldbus network through | 50.09 FBA A SW <br> as the Status word to the adapter A . | 1 |
| 50.07 | FBA A actual 1 type | Selects the type and scali the fieldbus network throu of the value is defined by depending on which actua parameter. | ual value 1 transmitted to us adapter $A$. The scaling rs 46.01...46.04, ype is selected by this | Speed or frequency |
|  | Speed or frequency | Type and scaling is chose currently active operation | atically according to the follows: | 0 |
|  |  | Operation mode (see par. 19.01) | Actual value 1 type |  |
|  |  | Speed control | Speed |  |
|  |  | Torque control | Speed |  |
|  |  | Frequency control | Frequency |  |
|  | Transparent | No scaling is applied. |  | 1 |
|  | General | Generic reference without | ic unit. | 2 |
|  | Torque | The scaling is defined by | 46.03 Torque scaling. | 3 |
|  | Speed | The scaling is defined by | 46.01 Speed scaling. | 4 |
|  | Frequency | The scaling is defined by p | 46.02 Frequency scaling. | 5 |



| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 50.14 | FBA A reference 1 | Displays raw (unmodified) reference REF1 sent by the master (PLC) to fieldbus adapter A if debugging is enabled by parameter 50.12 FBA A debug mode. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | Raw REF1 sent by master to fieldbus adapter $A$. | - |
| 50.15 | FBA A reference 2 | Displays raw (unmodified) reference REF2 sent by the master (PLC) to fieldbus adapter A if debugging is enabled by parameter 50.12 FBA A debug mode. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | Raw REF2 sent by master to fieldbus adapter A . | - |
| 50.16 | FBA A status word | Displays the raw (unmodified) status word sent by fieldbus adapter $A$ to the master (PLC) if debugging is enabled by parameter 50.12 FBA A debug mode. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \text { 00000000h... } \\ & \text { FFFFFFFFFh } \end{aligned}$ | Status word sent by fieldbus adapter A to master. | - |
| 50.17 | FBA A actual value 1 | Displays raw (unmodified) actual value ACT1 sent by fieldbus adapter A to the master (PLC) if debugging is enabled by parameter 50.12 FBA A debug mode. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | Raw ACT1 sent by fieldbus adapter A to master. | - |
| 50.18 | FBA A actual value 2 | Displays raw (unmodified) actual value ACT2 sent by fieldbus adapter A to the master (PLC) if debugging is enabled by parameter 50.12 FBA A debug mode. <br> This parameter is read-only. | - |
|  | $\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$ | Raw ACT2 sent by fieldbus adapter A to master. | - |


| 51 FBA A settings | Fieldbus adapter A configuration. |  |
| :---: | :---: | :---: |
| 51.01 FBA A type | Displays the type of the connected fieldbus adapter module. $\mathbf{0}=$ Module is not found or is not properly connected, or is disabled by parameter 50.01 FBA A; $\mathbf{0}=$ None; 1 = PROFIBUS-DP; 32 = CANopen; 37 = DeviceNet; $128=$ Ethernet; $132=$ PROFInet IO; $135=$ EtherCAT; <br> 136 = ETH Pwrlink; $485=$ RS-485 comm; 101 = ControlNet; $47808=$ BACnet. <br> This parameter is read-only. | - |
| 51.02 FBA A Par2 | Parameters 51.02...51.26 are adapter module-specific. For more information, see the documentation of the fieldbus adapter module. Note that not all of these parameters are necessarily in use. | - |
| 0... 65535 | Fieldbus adapter configuration parameter. | $1=1$ |
| $\cdots \quad$... | ... | ... |
| 51.26 FBA A Par26 | See parameter 51.02 FBA A Par2. | - |
| 0... 65535 | Fieldbus adapter configuration parameter. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 51.27 | FBA A par refresh | Validates any changed fieldbus adapter module configuration settings. After refreshing, the value reverts automatically to Done. <br> Note: This parameter cannot be changed while the drive is running. | Done |
|  | Done | Refreshing done. | 0 |
|  | Configure | Refreshing. | 1 |
| 51.28 | FBA A par table ver | Displays the parameter table revision of the fieldbus adapter module mapping file (stored in the memory of the drive). <br> In format axyz, where ax = major table revision number; yz = minor table revision number. <br> This parameter is read-only. | - |
|  |  | Parameter table revision of adapter module. | - |
| 51.29 | FBA A drive type code | Displays the drive type code in the fieldbus adapter module mapping file (stored in the memory of the drive). <br> This parameter is read-only. | - |
|  | 0... 65535 | Drive type code stored in the mapping file. | 1 = 1 |
| 51.30 | FBA A mapping file ver | Displays the fieldbus adapter module mapping file revision stored in the memory of the drive in decimal format. This parameter is read-only. | - |
|  | 0... 65535 | Mapping file revision. | 1 = 1 |
| 51.31 | D2FBA A comm status | Displays the status of the fieldbus adapter module communication. | Not configured |
|  | Not configured | Adapter is not configured. | 0 |
|  | Initializing | Adapter is initializing. | 1 |
|  | Time out | A timeout has occurred in the communication between the adapter and the drive. | 2 |
|  | Configuration error | Adapter configuration error: mapping file not found in the file system of the drive, or mapping file upload has failed more than three times. | 3 |
|  | Off-line | Fieldbus communication is off-line. | 4 |
|  | On-line | Fieldbus communication is on-line, or fieldbus adapter has been configured not to detect a communication break. For more information, see the documentation of the fieldbus adapter. | 5 |
|  | Reset | Adapter is performing a hardware reset. | 6 |
| 51.32 | FBA A comm SW ver | Displays the common program revision of the adapter module in format axyz, where $\mathrm{a}=$ major revision number, $\mathrm{xy}=$ minor revision number, $z=$ correction number or letter. <br> Example: 190A = revision 1.90A. |  |
|  |  | Common program revision of adapter module. | - |
| 51.33 | FBA A appl SW ver | Displays the application program revision of the adapter module in format axyz, where $a=$ major revision number, $x y=$ minor revision number, $z=$ correction number or letter. <br> Example: 190A = revision 1.90A. |  |
|  |  | Application program version of adapter module. | - |


| No. Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: |
| 52 FBA A data in | Selection of data to be transferred from drive to fieldbus controller through fieldbus adapter A. <br> Note: 32-bit values require two consecutive parameters. Whenever a 32-bit value is selected in a data parameter, the next parameter is automatically reserved. |  |
| 52.01 FBA A data in1 | Parameters 52.01...52.12 select data to be transferred from the drive to the fieldbus controller through fieldbus adapter A . | None |
| None | None. | 0 |
| CW 16bit | Control Word (16 bits) | 1 |
| Ref1 16bit | Reference REF1 (16 bits) | 2 |
| Ref2 16bit | Reference REF2 (16 bits) | 3 |
| SW 16bit | Status Word (16 bits) | 4 |
| Act1 16bit | Actual value ACT1 (16 bits) | 5 |
| Act2 16bit | Actual value ACT2 (16 bits) | 6 |
| CW 32bit | Control Word (32 bits) | 11 |
| Ref1 32bit | Reference REF1 (32 bits) | 12 |
| Ref2 32bit | Reference REF2 (32 bits) | 13 |
| SW 32bit | Status Word (32 bits) | 14 |
| Act1 32bit | Actual value ACT1 (32 bits) | 15 |
| Act2 32bit | Actual value ACT2 (32 bits) | 16 |
| SW2 16bit | Status Word 2 (16 bits) | 24 |
| Other | Source selection (see Terms and abbreviations on page 86). | - |
| $\cdots \quad$... | ... | ... |
| 52.12 FBA A data in12 | See parameter 52.01 FBA A data in1. | None |


| 53 FBA A data out | Selection of data to be transferred from fieldbus controller to drive through fieldbus adapter A. <br> Note: 32-bit values require two consecutive parameters. Whenever a 32-bit value is selected in a data parameter, the next parameter is automatically reserved. |  |
| :---: | :---: | :---: |
| 53.01 FBA A data out1 | Parameters 53.01...53.12 select data to be transferred from the fieldbus controller to the drive through fieldbus adapter A . | None |
| None | None. | 0 |
| CW 16bit | Control Word (16 bits) | 1 |
| Ref1 16bit | Reference REF1 (16 bits) | 2 |
| Ref2 16bit | Reference REF2 (16 bits) | 3 |
| CW 32bit | Control Word (32 bits) | 11 |
| Ref1 32bit | Reference REF1 (32 bits) | 12 |
| Ref2 32bit | Reference REF2 (32 bits) | 13 |
| CW2 16bit | Control Word 2 (16 bits) | 21 |
| Other | Source selection (see Terms and abbreviations on page 86). | - |
| $\cdots \quad$... | $\ldots$ | ... |
| 53.12 FBA A data out12 | See parameter 53.01 FBA A data out1. | None |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 58 Embedded fieldbus |  | Configuration of the embedded fieldbus (EFB) interface. See also chapter Fieldbus control through the embedded fieldbus interface (EFB) (page 327). |  |
| 58.01 | Protocol | Enables/disables the embedded fieldbus interface and selects the protocol to use. | None |
|  | None | None (communication disabled). | 0 |
|  | Modbus RTU | Embedded fieldbus interface is enabled and uses the Modbus RTU protocol. | 1 |
|  | BACnet MSTP | Embedded fieldbus interface is enabled and uses the BACnet MSTP protocol. | 2 |
| 58.02 | Protocol ID | Displays the protocol ID and revision. This parameter is read-only. | - |
|  |  | Protocol ID and revision. | 1 = 1 |
| 58.03 | Node address | Defines the node address of the drive on the fieldbus link. Values $1 . . .247$ are allowable. Two devices with the same address are not allowed on-line. <br> Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). | 1 |
|  | 0... 255 | Node address (values 1... 247 are allowed). | 1 = 1 |
| 58.04 | Baud rate | Selects the transfer rate of the fieldbus link. <br> Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). | 19.2 kbps |
|  | Autodetect | Baud rate detected automatically. | 0 |
|  | 4.8 kbps | 4.8 kbit/s. | 1 |
|  | 9.6 kbps | 9.6 kbit/s. | 2 |
|  | 19.2 kbps | 19.2 kbit/s. | 3 |
|  | 38.4 kbps | 38.4 kbit/s. | 4 |
|  | 57.6 kbps | 57.6 kbit/s. | 5 |
|  | 76.8 kbps | 76.8 kbit/s. | 6 |
|  | 115.2 kbps | $115.2 \mathrm{kbit} / \mathrm{s}$. | 7 |
| 58.05 | Parity | Selects the type of parity bit and number of stop bits. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). | 8 EVEN 1 |
|  | 8 NONE 1 | Eight data bits, no parity bit, one stop bit. | 0 |
|  | 8 NONE 2 | Eight data bits, no parity bit, two stop bits. | 1 |
|  | 8 EVEN 1 | Eight data bits, even parity bit, one stop bit. | 2 |
|  | 8 ODD 1 | Eight data bits, odd parity bit, one stop bit. | 3 |
| 58.06 | Comm control | Takes changed EFB settings in use, or activates silent mode. | Enabled |
|  | Enabled | Normal operation. | 0 |
|  | Refresh settings | Refreshes settings (parameters $58.01 \ldots 58.05,58.14 \ldots 58.17$, $58.25,58.28 \ldots 58.34$ ) and takes changed EFB configuration settings in use. Reverts automatically to Enabled. | 1 |


| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Silent mode |  | Activates silent mode (no messages are transmitted). Silent mode can be terminated by activating the Refresh settings selection of this parameter. |  | 2 |
| 58.07 | Comm diagnostics |  | Displays the status of the EFB communication. <br> This parameter is read-only. <br> Note that the name is only visible when the error is present (bit value is 1 ). |  | - |
|  | Bit | Name |  | Description |  |
|  | 0 | Init failed |  | 1 = EFB initialization failed |  |
|  | 1 | Addr config |  | 1 = Node address not allowed by protocol |  |
|  | 2 | Silent mode |  | 1 = Drive not allowed to transmit |  |
|  |  |  |  | 0 = Drive allowed to transmit |  |
|  | 3 | Reserved |  |  |  |
|  | 4 | Wiring error |  | 1 = Errors detected (A/B wires possibly swapped) |  |
|  | 5 | Parity error |  | 1 = Error detected: check parameters 58.04 and 58.05 |  |
|  | 6 | Baud rate error |  | 1 = Error detected: check parameters 58.05 and 58.04 |  |
|  | 7 | No bus activity |  | 1 = 0 bytes received during last 5 seconds |  |
|  | 8 | No packets |  | 1 = 0 packets (addressed to any device) detected during last 5 seconds |  |
|  | 9 | Noise or addressing error |  | 1 = Errors detected (interference, or another device with the same address on line) |  |
|  | 10 | Comm loss |  | $\begin{aligned} & \text { 1=0 packets addressed to the drive received within timeout } \\ & (58.16) \end{aligned}$ |  |
|  | 11 | CW/Ref loss |  | 1 = No control word or references received within timeout (58.16) |  |
|  | 12 | Not active |  | Reserved |  |
|  | 13...15 | Reserved |  |  |  |


|  | 0000h...FFFFh | EFB communication status. | $1=1$ |
| :--- | :--- | :--- | :--- |
| 58.08 | Received packets | Displays a count of valid packets addressed to the drive. <br> During normal operation, this number increases constantly. <br> Can be reset from the control panel by keeping Reset down <br> for over 3 seconds. | - |
| 0...4294967295 Number of received packets addressed to the drive. $1=1$ <br>  Transmitted packets Displays a count of valid packets transmitted by the drive. <br> During normal operation, this number increases constantly. <br> Can be reset from the control panel by keeping Reset down <br> for over 3 seconds. <br> 58.10 All packets Displays a count of valid packets addressed to any device on <br> the bus. During normal operation, this number increases <br> constantly. <br> Can be reset from the control panel by keeping Reset down <br> for over 3 seconds. <br>  0...4294967295 Number of all received packets. |  |  |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 58.11 | UART errors | Displays a count of character errors received by the drive. An increasing count indicates a configuration problem on the bus. <br> Can be reset from the control panel by keeping Reset down for over 3 seconds. | - |
|  | 0...4294967295 | Number of UART errors. | 1 = 1 |
| 58.12 | CRC errors | Displays a count of packets with a CRC error received by the drive. An increasing count indicates interference on the bus. Can be reset from the control panel by keeping Reset down for over 3 seconds. | - |
|  | 0...4294967295 | Number of CRC errors. | 1 = 1 |
| 58.14 | Communication loss action | Selects how the drive reacts to an EFB communication break. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). <br> See also parameters 58.15 Communication loss mode and 58.16 Communication loss time. | Fault |
|  | No | No action taken (monitoring disabled). | 0 |
|  | Fault | The drive monitors communication loss when start/stop is expected from the EFB on the currently active control location. Drive trips on 6681 EFB comm loss only if control in the currently active control location is expected from the EFB. The drive does not trip if only reference is coming from EFB and the communication is lost. | 1 |
|  | Last speed | Drive generates an A7CE EFB comm loss warning and freezes the speed to the level the drive was operating at. The speed is determined on the basis of actual speed using 850 ms low-pass filtering. This occurs only if control is expected from the EFB. WARNING! Make sure that it is safe to continue operation in case of a communication break. | 2 |
|  | Speed ref safe | Drive generates an A7CE EFB comm loss warning and sets the speed to the speed defined by parameter 22.41 Speed ref safe (or 28.41 Frequency ref safe when frequency reference is being used). This occurs only if control is expected from the EFB. <br> (WARNING! Make sure that it is safe to continue operation in case of a communication break. | 3 |
|  | Fault always | Drive continuously monitors for communication loss. Drive trips on 6681 EFB comm loss. This happens even thought the drive is in a control location where the EFB start/stop or reference is not used. | 4 |
|  | Warning | Drive generates an A7CE EFB comm loss warning. This occurs even though no control is expected from the EFB. $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break. | 5 |
| 58.15 | Communication loss mode | Defines which message types reset the timeout counter for detecting an EFB communication loss. <br> Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). <br> See also parameters 58.14 Communication loss action and 58.16 Communication loss time. | $\begin{aligned} & \hline \text { Cw/Ref1/ } \\ & \text { Ref2 } \end{aligned}$ |
|  | Any message | Any message addressed to the drive resets the timeout. | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
|  | Cw / Ref1 / Ref2 | A write of the control word or a reference resets the timeout. | 2 |
| 58.16 | Communication <br> loss time | Sets a timeout for EFB communication. If a communication <br> break lasts longer than the timeout, the action specified by <br> parameter 58.14 Communication loss action is taken. <br> Changes to this parameter take effect after the control unit is <br> rebooted or the new settings validated by parameter 58.06 <br> Comm control (Refresh settings). <br> See also parameter 58.15 Communication loss mode. |  |
|  | 0.0...6000.0 s | EFB communication timeout. | $1=1$ |
| 58.17 | Transmit delay | Defines a minimum response delay in addition to any fixed <br> delay imposed by the protocol. <br> Changes to this parameter take effect after the control unit is | 0 ms |
| rebooted or the new settings validated by parameter 58.06 |  |  |  |
| Comm control (Refresh settings). |  |  |  |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 58.27 | EFB ref2 type | Selects the type and scaling of reference 2 received through the embedded fieldbus interface. <br> The scaled reference is displayed by 03.10 EFB reference 2 . |  | Torque |
| 58.28 | EFB act1 type | Selects the type of actual value 1. |  | Speed or frequency |
|  | Speed or frequency | Type and scaling is chose currently active operation | ally according to the lows. | 0 |
|  | Transparent | No scaling is applied. |  | 1 |
|  | General | Generic reference without a specific unit. Scaling: 1 $=100$. |  | 2 |
|  | Torque | Scaling is defined by parameter 46.03 Torque scaling. |  | 3 |
|  | Speed | Scaling is defined by parameter 46.01 Speed scaling. |  | 4 |
|  | Frequency | Scaling is defined by parameter 46.02 Frequency scaling. |  | 5 |
| 58.29 | EFB act2 type | Selects the type of actual value 2. <br> For the selections, see parameter 58.28 EFB act1 type. |  | Transparent |
| 58.31 | EFB act1 transparent source | Selects the source of actual value 1 when parameter 58.28 EFB act1 type is set to Transparent. |  | Not selected |
|  | Not selected | None. |  | 0 |
|  | Other | Source selection (see Terms and abbreviations on page 86). |  | - |
| 58.32 | EFB act2 transparent source | Selects the source of actual value 2 when parameter 58.29 EFB act2 type is set to Transparent. |  | Other (par. 01.07 Motor current) |
|  | Not selected | None. |  | 0 |
|  | Other | Source selection (see Terms and abbreviations on page 86). |  |  |
| 58.33 | Addressing mode | Defines the mapping between parameters and holding registers in the 400101... 465535 Modbus register range. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). |  | Mode 0 |
|  | Mode 0 | 16 -bit values (groups 1...99, indexes 1...99): Register address $=400000+100 \times$ parameter group + parameter index. For example, parameter 22.80 would be mapped to register $400000+2200+80=402280$. <br> 32 -bit values (groups $1 \ldots 99$, indexes $1 \ldots 99$ ): <br> Register address $=420000+200 \times$ parameter group + <br> $2 \times$ parameter index. For example, parameter 22.80 would be mapped to register $420000+4400+160=424560$. |  | 0 |
|  | Mode 1 | 16 -bit values (groups $1 \ldots 255$, indexes $1 \ldots 255$ ): Register address $=400000+256 \times$ parameter group + parameter index. For example, parameter 22.80 would be mapped to register $400000+5632+80=405712$. |  | 1 |
|  | Mode 2 | 32-bit values (groups 1...127, indexes 1...255): <br> Register address $=400000+512 \times$ parameter group + <br> $2 \times$ parameter index. For example, parameter 22.80 would be mapped to register $400000+11264+160=411424$. |  | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 58.34 | Word order | Selects in which order 16-bit registers of 32-bit parameters are transferred. <br> For each register, the first byte contains the high order byte and the second byte contains the low order byte. <br> Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Comm control (Refresh settings). | LO-HI |
|  | HI-LO | The first register contains the high order word, the second contains the low order word. | 0 |
|  | LO-HI | The first register contains the low order word, the second contains the high order word. | 1 |
| 58.101 | Data I/O 1 | Defines the address in the drive which the Modbus master accesses when it reads from or writes to the register address corresponding to Modbus register 1 (400001). <br> The master defines the type of the data (input or output). The value is transmitted in a Modbus frame consisting of two 16bit words. If the value is 16 -bit, it is transmitted in the LSW (least significant word). If the value is 32 -bit, the subsequent parameter is also reserved for it and must be set to None. | CW 16bit |
|  | None | No mapping, register is always zero. | 0 |
|  | CW 16bit | $A B B$ Drives profile: 16-bit ABB drives control word; $D C U$ Profile: lower 16 bits of the DCU control word | 1 |
|  | Ref1 16bit | Reference REF1 (16 bits) | 2 |
|  | Ref2 16bit | Reference REF2 (16 bits) | 3 |
|  | SW 16bit | $A B B$ Drives profile: 16-bit ABB drives status word; $D C U$ Profile: lower 16 bits of the DCU status word | 4 |
|  | Act1 16bit | Actual value ACT1 (16 bits) | 5 |
|  | Act2 16bit | Actual value ACT2 (16 bits) | 6 |
|  | CW 32bit | Control Word (32 bits) | 11 |
|  | Ref1 32bit | Reference REF1 (32 bits) | 12 |
|  | Ref2 32bit | Reference REF2 (32 bits) | 13 |
|  | SW 32bit | Status Word (32 bits) | 14 |
|  | Act1 32bit | Actual value ACT1 (32 bits) | 15 |
|  | Act2 32bit | Actual value ACT2 (32 bits) | 16 |
|  | CW2 16bit | ABB Drives profile: not used; DCU Profile: upper 16 bits of the DCU control word | 21 |
|  | SW2 16bit | ABB Drives profile: not used / always zero; DCU Profile: upper 16 bits of the DCU status word | 24 |
|  | RO/DIO control word | Parameter 10.99 RO/DIO control word. | 31 |
|  | AO1 data storage | Parameter 13.91 A01 data storage. | 32 |
|  | AO2 data storage | Parameter 13.92 AO2 data storage. | 33 |
|  | Feedback data storage | Parameter 40.91 Feedback data storage. | 40 |
|  | Setpoint data storage | Parameter 40.92 Setpoint data storage. | 41 |
|  | Other | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 58.102 | Data I/O 2 | Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400002. <br> For the selections, see parameter 58.101 Data I/O 1. | Ref1 16bit |
| 58.103 | Data I/O 3 | Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400003. <br> For the selections, see parameter 58.101 Data I/O 1. | Ref2 16bit |
| 58.104 | Data I/O 4 | Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400004. <br> For the selections, see parameter 58.101 Data I/O 1. | SW 16bit |
| 58.105 | Data I/O 5 | Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400005. <br> For the selections, see parameter 58.101 Data I/O 1. | Act1 16bit |
| 58.106 | Data I/O 6 | Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400006. <br> For the selections, see parameter 58.101 Data I/O 1. | Act2 16bit |
| 58.107 | Data I/O 7 | Parameter selector for Modbus register address 400007. For the selections, see parameter 58.101 Data I/O 1. | None |
| $\cdots$ | ... | ... | ... |
| 58.114 | Data I/O 14 | Parameter selector for Modbus register address 400014. For the selections, see parameter 58.101 Data I/O 1. | None |


| 70 Override |  |  | Enabling/disabling of override function, override activation signal and override speed/frequency. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 70.01 | Override status |  | Shows the override status. This parameter is read-only. |  | - |
|  | Bit | Name ${ }^{\text {a }}$ Description |  |  |  |
|  | 0 | Override enabled |  | $0=$ Override is disabled; 1 = Override is enabled. |  |
|  | 1 | Override active |  | $0=$ Override is inactive; 1 = Drive is active. |  |
|  | 2 | Override direction is forward |  | $0=$ Override direction is not forward; $1=$ Override direction is forward. |  |
|  | 3 | Override direction is reverse |  | $0=$ Override direction is not reverse; 1 = Override direction is reverse. |  |
|  | 4... 6 | Reserved |  |  |  |
|  | 7 | Run permissive |  | $0=$ Run permissive is inactive; $1=$ Run permissive is active. |  |
|  | 8 | Start interlock 1 |  | $0=$ Start interlock 1 is inactive; 1 = Start interlock 1 is active. |  |
|  | 9 | Start interlock 2 |  | $0=$ Start interlock 2 is inactive; 1 = Start interlock 2 is active. |  |
|  | 10 | Start interlock 3 |  | $0=$ Start interlock 3 is inactive; 1 = Start interlock 3 is active. |  |
|  | 11 | Start interlock 4 |  | 0 = Start interlock 4 is inactive; 1 = Start interlock 4 is active. |  |
|  | 12...15 | Reserved |  |  |  |
| 70.02 | Override |  | Enables the override function. |  | Off |
|  | Off |  | Override disabled. |  | 0 |
|  | On |  | Override enabled. |  | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 70.03 | Override activation source | Selects the source of the override activation. Value 0 of the source deactivates the override. Value 1 of the source activates the override. | Not used |
|  | Not used | 0. | 0 |
|  | Used | 1. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | -DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 8 |
|  | -DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 9 |
|  | -DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 10 |
|  | -DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 11 |
|  | -DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 12 |
|  | -DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 13 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 70.04 | Override reference source | Selects the source for the speed used in the override mode. | Constant speed |
|  | Constant speed | Constant speed used as the reference. | 0 |
|  | Override speed/freq | Parameter 70.06 Override frequency or 70.07 Override speed is used as the reference. | 1 |
| 70.05 | Override direction | Selects the source of the motor direction used in the override mode. | Forward |
|  | Forward | Direction is forward. | 0 |
|  | Reverse | Direction is reverse. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | -DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 8 |
|  | -DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 9 |
|  | -DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 10 |
|  | -DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 11 |
|  | -DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 12 |
|  | -DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 13 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 70.06 | Override frequency | Defines the frequency used as reference in the override mode if 70.04 Override reference source is set to Override speed/freq and the drive is in frequency mode. |  | 0.0 Hz |
|  | -500.0...500.0.0 Hz | Override frequency. |  | $1=1 \mathrm{~Hz}$ |
| 70.07 | Override speed | Defines the speed used in as reference the override mode if 70.04 Override reference source is set to Override speed/freq and the drive is in speed mode. |  | 0.0 Hz |
|  | $\begin{aligned} & 30000.0 \ldots 30000.0 \mathrm{r} \\ & \mathrm{pm} \end{aligned}$ | Override speed. |  | 1 = rpm |
| 70.10 | Override enables selection | Selects which start interlock and run permissive input signals configured in the drive parameters will not allow the override function to run the motor or will stop running the motor. The drive remains in override mode nevertheless. motor. |  |  |
|  | Name |  | Description |  |
|  | Run permissive |  | 1 = The override is not allowed to run the motor or the motor will be stopped, if the source defined by parameter 20.40 Run permissive is 0 . |  |
|  | Start interlock 1 |  | 1 = The override is not allowed to start the motor or the motor will be stopped, if the source defined by parameter 20.41 Start interlock 1 is 0. |  |
|  | Start interlock 2 |  | 1 = The override is not allowed to start the motor or the motor will be stopped, if the source defined by parameter 20.42 Start interlock 2 is 0. |  |
|  | Start interlock 3 |  | 1 = The override is not allowed to start the motor or the motor will be stopped, if the source defined by parameter 20.43 Start interlock 3 is 0 . |  |
|  | Start interlock 4 |  | 1 = The override is not allowed to start the motor or the motor will be stopped, if the source defined by parameter 20.44 Start interlock 4 is 0 . |  |
|  | Reserved |  |  |  |
| 71 External PID1 |  | Configuration of external PID. |  |  |
| 71.01 | External PID act value | See parameter 40.01 Process PID output actual. |  | - |
| 71.02 | Feedback act value | See parameter 40.02 Process PID feedback actual. |  | - |
| 71.03 | Setpoint act value | See parameter 40.03 Process PID setpoint actual. |  | - |
| 71.04 | Deviation act value | See parameter 40.04 Process PID deviation actual. |  | - |


| No. | Name/Value |  | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 71.06 | PID status word |  | Displays status information on process external PID control. This parameter is read-only. | - |
|  | Bit | Name $\quad$ Value |  |  |
|  | 0 | PID active | 1 = Process PID control active. |  |
|  | 1 | Reserved |  |  |
|  | 2 | Output frozen | 1 = Process PID controller output frozen. Bit is set if parameter 71.38 Output freeze is TRUE, or the deadband function is active (bit 9 is set). |  |
|  | 3... 6 | Reserved |  |  |
|  | 7 | Output limit high | 1 = PID output is being limited by par. 40.37. |  |
|  | 8 | Output limit low | 1 = PID output is being limited by par. 40.36. |  |
|  | 9 | Deadband active | 1 = Deadband is active. |  |
|  | 10... 11 | Reserved |  |  |
|  | 12 | Internal setpoint active | 1 = Internal setpoint active (see par. 40.16..40.16) |  |
|  | 13... 15 | Reserved |  |  |


|  | 0000h...FFFFh | Process PID control status word. | $1=1$ |
| :---: | :---: | :---: | :---: |
| 71.07 | PID operation mode | See parameter 40.07 Process PID operation mode. | Off |
| 71.08 | Feedback 1 source | See parameter 40.08 Set 1 feedback 1 source. | Al2 percent |
| 71.11 | Feedback filter time | See parameter 40.11 Set 1 feedback filter time. | 0.000 s |
| 71.14 | Setpoint scaling | Defines, together with parameter 71.15 Output scaling, a general scaling factor for the external PID control chain. The scaling can be utilized when, for example, the process setpoint is input in Hz , and the output of the PID controller is used as an rpm value in speed control. In this case, this parameter might be set to 50 , and parameter 71.15 to the nominal motor speed at 50 Hz . <br> In effect, the output of the PID controller [71.15] when deviation (setpoint - feedback) $=[71.14]$ and [71.32] $=1$. <br> Note: The scaling is based on the ratio between 71.14 and 71.15. For example, the values 50 and 1500 would produce the same scaling as 1 and 3. | 1500.00 |
|  | $\begin{aligned} & \hline-100000.00 \ldots \\ & 100000.00 \end{aligned}$ | Process setpoint base. | $1=1$ |
| 71.15 | Output scaling | See parameter 71.14 Setpoint scaling. | 1500.00 |
|  | $\begin{aligned} & \hline-100000.00 \ldots \\ & 100000.00 \end{aligned}$ | Process PID controller output base. | $1=1$ |
| 71.16 | Setpoint 1 source | See parameter 40.16 Set 1 setpoint 1 source. | Al1 percent |
| 71.19 | Internal setpoint sel1 | See parameter 40.19 Set 1 internal setpoint sel1. | Not selected |
| 71.20 | Internal setpoint sel2 | See parameter 40.20 Set 1 internal setpoint sel2. | Not selected |
| 71.21 | Internal setpoint 1 | See parameter 40.21 Set 1 internal setpoint 1. | 0.00 PID customer units |
| 71.22 | Internal setpoint 2 | See parameter 40.22 Set 1 internal setpoint 2. | 0.00 PID customer units |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 71.23 | Internal setpoint 3 | See parameter 40.23 Set 1 internal setpoint 3. | 0.00 PID customer units |
| 71.26 | Setpoint min | See parameter 40.26 Set 1 setpoint min. | 0.00 |
| 71.27 | Setpoint max | See parameter 40.27 Set 1 setpoint max. | 100000.00 |
| 71.31 | Deviation inversion | See parameter 40.31 Set 1 deviation inversion. | Not inverted (Ref - Fbk) |
| 71.32 | Gain | See parameter 40.32 Set 1 gain. | 1.00 |
| 71.33 | Integration time | See parameter 40.33 Set 1 integration time. | 60.0 s |
| 71.34 | Derivation time | See parameter 40.34 Set 1 derivation time. | 0.000 s |
| 71.35 | Derivation filter time | See parameter 40.35 Set 1 derivation filter time. | 0.0 s |
| 71.36 | Output min | See parameter 40.36 Set 1 output min. | 0.0 |
| 71.37 | Output max | See parameter 40.37 Set 1 output max. | 100000.0 |
| 71.38 | Output freeze | See parameter 40.38 Set 1 output freeze. | Not selected |
| 71.39 | Deadband range | The control program compares the absolute value of parameter 71.04 Deviation act value to the deadband range defined by this parameter. If the absolute value is within the deadband range for the time period defined by parameter 71.40 Deadband delay, PID's deadband mode is activated and 71.06 PID status word bit 9 Deadband active is set. Then PID's output is frozen and 71.06 PID status word bit 2 Output frozen is set. <br> If the absolute value is equal or greater than the deadband range, PID's deadband mode is deactivated. | 0.0 |
|  | 0.0...32767.0 | Range | 1 = 1 |
| 71.40 | Deadband delay | Defines the deadband delay for the deadband function. See parameter 71.39 Deadband range. | 0.0 s |
|  | 0.0...3600.0 s | Delay | $1=1 \mathrm{~s}$ |
| 71.58 | Increase prevention | See parameter 40.58 Set 1 increase prevention. | No |
| 71.59 | Decrease prevention | See parameter 40.59 Set 1 decrease prevention. | No |
| 71.62 | Internal setpoint actual | See parameter 40.62 PID internal setpoint actual. | - |


| 76 PFC configuration |  |
| :--- | :--- |
| $76.01 \quad$ PFC status |  |
|  |  |
|  |  |

PFC (Pump and fan control) and Autochange configuration parameters. See also section Pump and fan control (PFC) on page 66.
Displays the running/stopped status of the PFC motors. PFC1, PFC2, PFC3 and PFC4 always correspond to the 1st...4th motor of the PFC system. If 76.74 Autochange auxiliary PFC auxiliary PFC is set to Aux motors only, PFC1 represents the motor connected to the drive and PFC2 the first auxiliary motor (the 2nd motor of the system). If 76.74 is set to All motors, PFC1 is the first motor, PFC2 the 2nd. The drive can be connected to any of these motors depending on the Autochange functionality.

| No. | Name/Value |  | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit | Name |  | Value |  |
|  | 0 | PFC 1 running |  | 0 = Stop, 1 = Start |  |
|  | 1 | PFC 2 running |  | 0 = Stop, 1 = Start |  |
|  | 2 | PFC 3 running |  | 0 = Stop, 1 = Start |  |
|  | 3 | PFC 4 running |  | 0 = Stop, 1 = Start |  |
|  | $4 \ldots 15$ | Reserved |  |  |  |
|  | 0000h...FFFFh |  | Status of the PFC relay outputs. |  | 1 = 1 |
| 76.02 | PFC system status |  | Displays the status of the PFC system in text form. Provides a quick PFC system overview, eg. if the parameter is added to the Home view on the control panel. |  | - |
| 76.11 | Pump/fan status 1 |  | Shows the status of pump or fan 1. |  | - |
|  | Bit | Name |  | Value |  |
|  | 0 | Ready |  | 0 = False, 1 = True |  |
|  | 2 | Running |  | 0 = False, 1 = True |  |
|  | 5 | In PFC control |  | 0 = False, 1 = True |  |
|  | $\begin{aligned} & 1,3 \\ & 4 \ldots 10 \end{aligned}$ | Reserved |  |  |  |
|  |  | Interlocked |  | 0 = False, 1 = True |  |
|  | 12... 15 | Reserved |  |  |  |
|  | 0000h...FFFFh |  | Status of pump or fan 1. |  | 1 = 1 |
| 76.12 | Pump/fan status 2 |  | See parameter 76.11 Pump/fan status 1. |  | - |
| 76.13 | Pump/fan status 3 |  | See parameter 76.11 Pump/fan status 1. |  | - |
| 76.14 | Pump/fan status 4 |  | See parameter 76.11 Pump/fan status 1. |  | - |
| 76.21 | PFC configuration |  | Selects the multi-pump/fan control (PFC) mode. |  | Off |
|  | Off |  | PFC disabled. |  | 0 |
|  | PFC |  | PFC enabled. One pump at a time is controlled by the drive. The remaining pumps are direct-on-line pumps that are started and stopped by the drive logic The frequency (group 28 Frequency reference chain) / speed (group 22 Speed reference selection) reference must be defined as PID for the PFC functionality to work properly. |  | 2 |
|  | SPFC |  | SPFC enabled. See section Soft pump and fan control (SPFC) on page 67. |  | 3 |
| 76.25 | Number of motors |  | Total number of motors used in the application, including the motor connected directly to the drive. |  | 1 |
|  | 1... 4 |  | Number of motors. |  | 1 = 1 |
| 76.26 | Min number of motors allowed |  | Minimum number of motors running simultaneously. |  | 1 |
|  | 0... 4 |  | Minimum number of motors. |  | 1 = 1 |
| 76.27 | Max number of motors allowed |  | Maximum number of motors running simultaneously. |  | 1 |
|  | 1... 4 |  | Maximum number of motors. |  | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 76.30 | Start speed 1 | Defines the start speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the first auxiliary motor. As the motor speed or frequency exceeds the limit defined by this parameter, a new auxiliary motor is started. <br> To avoid nuisance starts of the second auxiliary motor, the speed of the variable speed motor should be higher than the start speed for the duration defined by parameter 76.55 Start delay. If the speed decreases below the start speed, the auxiliary motor is not started. <br> To maintain the process conditions during the start of the second auxiliary motor, a speed hold on time can be defined with parameter 76.57 Speed hold on. Certain pump types do not produce significant flow with low frequencies. The speed hold on time can be used to compensate the time needed to accelerate the second auxiliary motor to a speed where it produces flow. The start of the second auxiliary motor is not aborted if the speed of the first auxiliary motor decreases | Vector: <br> 1300 rpm; <br> Scalar 48 Hz <br> (US: 58 Hz ) |
|  |  |  | ax. speed |
|  | $0 . .32767 \mathrm{rpm} / \mathrm{Hz}$ | Speed/frequency. | 1 = 1 unit |
| 76.31 | Start speed 2 | Defines the start speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the second auxiliary motor. See parameter 76.31 Start speed 1. | Vector: <br> 1300 rpm; <br> Scalar 48 Hz <br> (US: 58 Hz ) |
| 76.32 | Start speed 3 | Defines the start speed (Hz/rpm) for the third auxiliary motor. See parameter 76.31 Start speed 1. | Vector: <br> 1300 rpm; <br> Scalar 48 Hz <br> (US: 58 Hz ) |
| 76.41 | Stop speed 1 | Defines the stop speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the first auxiliary motor. When the speed of the motor connected directly to the drive falls below this value and one auxiliary motor is running, the stop delay defined by parameter 76.56 Stop delay is started. If the speed is still at the same level or lower when the stop delay elapses, the first auxiliary motor stops. <br> The running speed of the drive is increased by [Start speed 1 Stop speed 1] after the auxiliary motor stops | Vector: <br> 800 rpm; <br> Scalar 25 Hz <br> (US: 30 Hz ) |
|  | $0 . . .32767 \mathrm{rpm} / \mathrm{Hz}$ | Speed/frequency | 1 = 1 unit |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 76.42 | Stop speed 2 | Defines the stop speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the second auxiliary motor. See parameter 76.31 Stop speed 1 . | Vector: <br> 800 rpm; <br> Scalar 25 Hz <br> (US: 30 Hz ) |
| 76.43 | Stop speed 3 | Defines the stop speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the third auxiliary motor. See parameter 76.31 Stop speed 1 . | Vector: 800 rpm; Scalar 25 Hz (US: 30 Hz ) |
| 76.55 | Start delay | Defines a start delay for auxiliary motors. See parameter 76.31 Start speed 1 . | 10.00 s |
|  | 0.00...12600.00 s | Time delay. | $1=1 \mathrm{~s}$ |
| 76.56 | Stop delay | Defines a stop delay for auxiliary motors. See parameter 76.31 Stop speed 1 . | 10.00 s |
|  | 0.00...12600.00 s | Time delay. | $1=1 \mathrm{~s}$ |
| 76.57 | Speed hold on | Hold time for auxiliary motor switch-on. See parameter 76.31 Start speed 1. | 0.00 s |
|  | 0.00...1000.00 s | Time. | $1=1 \mathrm{~s}$ |
| 76.58 | Speed hold off | Hold time for auxiliary motor switch-off. See parameter 76.31 Stop speed 1. | 0.00 s |
|  | 0.00...1000.00 s | Time. | $1=1 \mathrm{~s}$ |
| 76.59 | PFC contactor delay | Start delay for the motor that is directly controlled by the drive. This does not affect the starting of the auxiliary motors. $\qquad$ WARNING! There must always be a delay set if the motors are equipped with star-delta starters. The delay must be set longer than the time setting of the starter. After the motor is switched on by the relay output of the drive, there must be enough time for the star-delta starter to first switch to star and then back to delta before the motor is connected to the drive. | 0.50 s |
|  | 0.20...600.00 s | Time delay. | $1=1 \mathrm{~s}$ |
| 76.60 | PFC ramp acceleration time | Defines the acceleration time for the drive motor speed compensation, when an auxiliary motor is stopped. This ramp time is also used for the drive motor to accelerate after an autochange has occurred. <br> The parameter sets the ramp-up time as seconds from zero to maximum frequency (not from the previous reference to the new reference). | 1.00 s |
|  | 0.00...1800.00 s | Time. | $1=1 \mathrm{~s}$ |
| 76.61 | PFC ramp deceleration time | Defines the deceleration time for the drive motor speed compensation, when an auxiliary motor is started. This ramp time is also used for the drive motor to decelerate after an autochange has occurred. <br> The parameter sets the ramp-up time as seconds from maximum to zero frequency (not from the previous reference to the new reference). | 1.00 s |
|  | 0.00...1800.00 s | Time. | $1=1 \mathrm{~s}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 76.70 | Autochange | Defines the way the autochange is triggered. <br> In all cases except Even wear, the start order is moved one step forward each time the autochange occurs. If the start order initially is 1-2-3-4, after the first autochange the order will be 2-3-4-1, etc. <br> For Even wear, the start order will be determined so that the running times of all motors remain within the defined limit. <br> Note: Autochange only occurs when the speed of the drive is below the speed defined by parameter 76.73 Autochange level. <br> See also section The Pump and fan control (PFC) is supported in external control location EXT2 only.Autochange on page 66. | Not selected |
|  | Not selected | Autochange disabled. | 0 |
|  | Selected | Rising edge starts the autochange if autochange conditions are met. | 1 |
|  | DI1 | Autochange triggered by the rising edge of digital input DI1 ( 10.02 DI delayed status, bit 0 ). | 2 |
|  | DI2 | Autochange triggered by the rising edge of digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Autochange triggered by the rising edge of digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Autochange triggered by the rising edge of digital input DI4 ( 10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Autochange triggered by the rising edge of digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Autochange triggered by the rising edge of digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Autochange triggered by timed function 1 (bit 0 of 34.01 Timed functions status (see page 192)). | 8 |
|  | Timed function 2 | Autochange triggered by timed function 2 (bit 1 of 34.01 Timed functions status (see page 192)). | 9 |
|  | Timed function 3 | Autochange triggered by timed function 3 (bit 2 of 34.01 Timed functions status (see page 192)). | 10 |
|  | Fixed interval | Autochange is done when the interval determined in the parameter 76.71 Autochange interval has elapsed. | 11 |
|  | All stop | Autochange is done when all the motors are stopped. The PID sleep feature (parameters 40.43 Set 1 sleep level ... 40.48 Set 1 wake-up delay) must be used for the drive to stop when the process demand is low. | 12 |
|  | Even wear | The running time of the motors are balanced by the drive. When the difference in running time between the motors with the least and most running hours exceeds the time defined by parameter 76.72 Maximum wear imbalance, the autochange occurs. <br> The running hours of the motors can be found in group 77 PFC maintenance and monitoring. | 13 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 76.71 | Autochange interval | Specifies the interval that is used in setting Fixed interval of parameter 76.70 Autochange. | 1.00 h |
|  | $\begin{aligned} & \hline 0.00 \ldots . .42949672 .95 \\ & \mathrm{~h} \end{aligned}$ | Time. | $1=1 \mathrm{~h}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 76.72 | Maximum wear imbalance | Specifies the maximum wear imbalance, or difference in running times between any motor, used by the Even wear setting of parameter 76.70 Autochange. | 10.00 h |
|  | $\begin{aligned} & 0.00 \ldots 1000000.00 \\ & h \end{aligned}$ | Time. | $1=1 \mathrm{~h}$ |
| 76.73 | Autochange level | Upper speed limit for the Autochange to occur. The Autochange occurs when: <br> - the condition defined in 76.70 Autochange is fulfilled and, <br> - the speed of the drive motor 01.03 Motor speed $\%$ is below the speed limit defined in this parameter. <br> Note: When the value is selected as $0 \%$, this speed limit check is disabled. | 100.0\% |
|  | 0.0...300.0\% | Speed/frequency in percentage of the nominal speed or frequency of the drive motor. | 1 = $1 \%$ |
| 76.74 | Autochange auxiliary PFC | Selects whether only auxiliary motors or all motors are included in the Autochange function. | Aux motors only |
|  | All motors | All motors, including the one connected to the drive participates in the autochange. The Autochange logic will connect the drive to each of the motors according to setting of parameter 76.70 Autochangee. <br> Note: The first motor (PFC1) also requires the appropriate hardware contactor connections and PFC1 must be defined in one of the relay output source parameters. | 0 |
|  | Aux motors only | Only auxiliary (direct-on-line) motors are affected by the autochange function. <br> Note: PFC1 refers to the motor that is fixed to the drive and must not be selected in any of the relay output source parameters. Only the starting order of the auxiliary motors will be rotated. | 1 |
| 76.81 | PFC interlock 1 | Defines if the PFC motor 1 can be started. An interlocked PFC motor cannot be started. <br> $0=$ Interlocked (not available), $1=$ Available. | Available. PFC motor is available |
|  | Interlocked. PFC motor is not in use | PFC motor is interlocked and not available. | 0 |
|  | Available. PFC motor is available | PFC motor is available. | 1 |
|  | DI1 | Digital input DI1 (10.02 DI delayed status, bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 DI delayed status, bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 DI delayed status, bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 DI delayed status, bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 DI delayed status, bit 4). | 6 |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 8 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 9 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 10 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 76.82 | PFC interlock 2 | See parameter 76.82 PFC interlock 1. | Available. PFC motor is available |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 76.83 | PFC interlock 3 | See parameter 76.82 PFC interlock 1. | Available. <br> PFC motor is <br> available |
| 76.84 | PFC interlock 4 | See parameter 76.82 PFC interlock 1. | Available. <br> PFC motor is <br> available |
| 76.95 | Regulator bypass <br> control | Defines if direct-on-line pumps are automatically started and <br> stopped. <br> This setting can be used in applications with a low number of <br> sensors and low accuracy requirements. |  |
|  | Disable | Automatic starting and stopping is disabled. | 0 |
| Enable | Automatic starting and stopping is enabled. | 1 |  |
| Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |  |


| 77 PFC maintenance and monitoring |  | PFC (Pump and fan control) maintenance and monitoring parameters. |  |
| :---: | :---: | :---: | :---: |
| 77.10 | Runtime change | Enables the reset, or arbitrary setting, of 77.11 Pump/fan 1 running time ... 77.14 Pump/fan 4 running time. | Done |
|  | Done | The parameter automatically reverts back to this value. | 0 |
|  | Set any PFC run time | Enables the setting of 77.11 Pump/fan 1 running time ... 77.14 Pump/fan 4 running time to an arbitrary value. | 1 |
|  | Reset PFC1 run time | Resets parameter 77.11 Pump/fan 1 running time. | 2 |
|  | Reset PFC2 run time | Resets parameter 77.12 Pump/fan 2 running time. | 3 |
|  | Reset PFC3 run time | Resets parameter 77.13 Pump/fan 3 running time. | 4 |
|  | Reset PFC4 run time | Resets parameter 77.14 Pump/fan 4 running time. | 5 |
| 77.11 | Pump/fan 1 running time | Running time counter of pump/fan 1. Can be set or reset by parameter 77.10 Pump/fan 1 running time. | 0.00 h |
|  | $\begin{aligned} & \text { 0.00_..42949672.95 } \\ & h \end{aligned}$ | Time | 1 = 1 h |
| 77.12 | Pump/fan 2 running time | See parameter 77.11 Pump/fan 1 running time. | 0.00 h |
| 77.13 | Pump/fan 3 running time | See parameter 77.11 Pump/fan 1 running time. | 0.00 h |
| 77.14 | Pump/fan 4 running time | See parameter 77.11 Pump/fan 1 running time. | 0.00 h |


| 80 Flow calculation | Actual flow calculation. |  |
| :--- | :--- | :--- |
| $80.01 \quad$ Actual flow | Shows the calculated flow = the value of parameter 40.02 <br> Process PID feedback actual multiplied by the value of <br> parameter 80.03 Flow compensation factor, if 80.02 Flow <br> calculation mode is set to Process PID. | - |
| $-10000.000 \ldots$ <br> 10000.000 | Calculated flow. | $1=1$ |
| 80.02Flow calculation <br> mode | Selects the mode (source value) for the calculation of the <br> actual flow. | Disabled |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Disabled | Flow calculation disabled. | 0 |
|  | Process PID | Parameter 40.02 Process PID feedback actual is used as the source value, which is multiplied by the value of parameter 80.03 Flow compensation factor. | 1 |
| 80.03 | Flow compensation factor | Scaling factor by which the source value defined by parameter 80.02 Flow calculation mode is multiplied. | 1.000 |
|  | $\begin{aligned} & \hline-10000.000 \ldots \\ & 10000.000 \end{aligned}$ | Scaling factor | 1 = 1 |
| 95 HW configuration |  | Various hardware-related settings. |  |
| 95.01 Supply voltage |  | Selects the supply voltage range. This parameter is used by the drive to determine the nominal voltage of the supply network. The parameter also affects the current ratings and the DC voltage control functions (trip and brake chopper activation limits) of the drive. <br> WARNING! An incorrect setting may cause the motor to rush uncontrollably, or the brake chopper or resistor to overload. <br> Note: The selections shown depend on the hardware of the drive. If only one voltage range is valid for the drive in question, it is selected by default. | Automatic / not selected |
|  | Automatic / not selected | No voltage range selected. The drive will not start modulating before a range is selected, unless parameter 95.02 Adaptive voltage limits is set to Enable, in which case the drive estimates the supply voltage itself. | 0 |
|  | $380 . .415 \mathrm{~V}$ | $380 . .415 \mathrm{~V}$ | 2 |
|  | $440 . . .480 \mathrm{~V}$ | $440 . . .480 \mathrm{~V}$ | 3 |
| 95.02 | Adaptive voltage limits | Enables adaptive voltage limits. <br> Adaptive voltage limits can be used if, for example, an IGBT supply unit is used to raise the DC voltage level. If the communication between the inverter and IGBT supply unit is active, the voltage limits are related to the DC voltage reference from the IGBT supply unit. Otherwise the limits are calculated based on the measured DC voltage at the end of the pre-charging sequence. <br> This function is also useful if the AC supply voltage to the drive is high, as the warning levels are raised accordingly. | Enable |
|  | Disable | Adaptive voltage limits disabled. | 0 |
|  | Enable | Adaptive voltage limits enabled. | 1 |
| 95.03 | Estimated AC supply voltage | AC supply voltage estimated by calculation. Estimation is done every time the drive is powered up and is based on the rise speed of voltage level of the DC bus while the drive charges the DC bus. | - |
|  | $0 . . .65535 \mathrm{~V}$ | Voltage. | $10=1 \mathrm{~V}$ |
| 95.04 | Control board supply | Specifies how the control board of the drive is powered. | Internal 24V |
|  | Internal 24V | The drive control board is powered from the drive power unit it is connected to. | 0 |
|  | External 24V | The drive control board is powered from an external power supply. | 1 |


| No. | Name/Value | Description |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: |
| 95.20 | HW options word 1 | Specifies hardware-related options that require differentiated parameter defaults. <br> This parameter is not affected by a parameter restore. |  | - |
|  | Bit ${ }^{\text {Name }}$ |  | Value |  |
|  | Supply frequency 60 Hz |  | If you change the value of this bit, you have to do a complete reset to the drive after the change. After reset you have to reselect the macro to be used. $0=50 \mathrm{~Hz}$.$1=60 \mathrm{~Hz} .$ |  |
|  | 1... 15 Reserved | Reserved |  |  |
|  | 0000h...FFFFh | Hardware options configuration word. |  | 1 = 1 |
| 96 System |  | Language selection; access levels; macro selection; parameter save and restore; control unit reboot; user parameter sets; unit selection. |  |  |
| 96.01 | Language | Selects the language of the parameter interface and other displayed information when viewed on the control panel. <br> Notes: <br> - Not all languages listed below are necessarily supported. <br> - This parameter does not affect the languages visible in the Drive composer PC tool. (Those are specified under View - Settings - Drive default language.) |  | - |
|  | Not selected | None. |  | 0 |
|  | English | English. |  | 1033 |
|  | Deutsch | German. |  | 1031 |
|  | Italiano | Italian. |  | 1040 |
|  | Español | Spanish. |  | 3082 |
|  | Portugues | Portuguese. |  | 2070 |
|  | Nederlands | Dutch. |  | 1043 |
|  | Français | French. |  | 1036 |
|  | Dansk | Danish. |  | 1030 |
|  | Suomi | Finnish. |  | 1035 |
|  | Svenska | Swedish. |  | 1053 |
|  | Russki | Russian. |  | 1049 |
|  | Polski | Polish. |  | 1045 |
|  | Türkçe | Turkish. |  | 1055 |
|  | Chinese (Simplified, PRC) | Simplified Chinese. |  | 2052 |
| 96.02 | Pass code | Pass codes can be entered into this parameter to activate further access levels, for example additional parameters, parameter lock, etc. See parameter 96.03 Access level status. <br> Entering " 358 " toggles the parameter lock, which prevents the changing of all other parameters. |  | 0 |
|  | 0...99999999 | Pass code. |  |  |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 96.03 | Access level status | Shows which access levels have been activated by pass <br> codes entered into parameter 96.02 Pass code. | 0001b |


| Bit | Name |
| :--- | :--- |
| 0 | End user |
| 1 | Service |
| 2 | Advanced programmer |
| $3 \ldots . .10$ | Reserved |
| 11 | OEM access level 1 |
| 12 | OEM access level 2 |
| 13 | OEM access level 3 |
| 14 | Parameter lock |
| 15 | Reserved |


|  | 0000b...0111b | Active access levels. | - |
| :---: | :---: | :---: | :---: |
| 96.04 | Macro select | Selects the control macro. See chapter Default configuration (page 35) for more information. <br> After a selection is made, the parameter reverts automatically to Done. | Done |
|  | Done | Macro selection complete; normal operation. | 0 |
|  | HVAC default | Factory default (see page 36). For scalar motor control. | 1 |
| 96.05 | Macro active | Shows which control macro is currently selected. See chapter Default configuration (page 35) for more information. To change the macro, use parameter 96.04 Macro select. CHECK ACH | HVAC default |
|  | HVAC default | Factory default (see page 36). For scalar motor control. | 1 |
| 96.06 | Parameter restore | Restores the original settings of the control program, ie. parameter default values. <br> Note: This parameter cannot be changed while the drive is running. | Done |
|  | Done | Restoring is completed. | 0 |
|  | Restore defaults | Restores all editable parameter values to default values, except <br> - motor data and ID run results <br> - I/O extension module settings <br> - end user texts, such as customized warnings and faults, and the drive name <br> - control panel/PC communication settings <br> - fieldbus adapter settings <br> - control macro selection and the parameter defaults implemented by it <br> - parameter 95.20 HW options word 1 and the differentiated defaults implemented by it. | 8 |
|  | Clear all | Restores all editable parameter values to default values, except <br> - end user texts, such as customized warnings and faults, and the drive name <br> - control macro selection and the parameter defaults implemented by it <br> - parameter 95.20 HW options word 1 and the differentiated defaults implemented by it. | 62 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | Reset all fieldbus settings | Restores all fieldbus and communication related settings to default values. <br> Note: Fieldbus, control panel and PC tool communication are interrupted during the restore. | 32 |
|  | Reset home view | Restores the home view layout back to show the values of the default parameters defined by the control macro in use | 512 |
|  | Reset end user texts | Restores all end user texts to default values, including the drive name, contact info, customized fault and warning texts, PID unit and currency unit. | 1024 |
|  | Reset motor data | Restores all motor nominal values and motor ID run results to default values. | 2 |
|  | All to factory defaults | Restores all drive parameters and settings back to initial factory values, except <br> - parameter 95.20 HW options word 1 and the differentiated defaults implemented by it. | 34560 |
| 96.07 | Parameter save manually | Saves the valid parameter values to the permanent memory on the drive control unit to ensure that operation can continue after cycling the power. Save the parameters with this parameter <br> - to store values sent from the fieldbus <br> - when using external +24 V DC power supply to the control unit: to save parameter changes before you power down the control unit. The supply has a very short hold-up time when powered off. <br> Note: A new parameter value is saved automatically when changed from the PC tool or control panel but not when altered through a fieldbus adapter connection. | Done |
|  | Done | Save completed. | 0 |
|  | Save | Save in progress. | 1 |
| 96.08 | Control board boot | Changing the value of this parameter to 1 reboots the control unit (without requiring a power off/on cycle of the complete drive module). <br> The value reverts to 0 automatically. | 0 |
|  | 0... 1 | 1 = Reboot the control unit. | 1 = 1 |
| 96.10 | User set status | Shows the status of the user parameter sets. <br> This parameter is read-only. <br> See also section User parameter sets (page 83). | - |
|  | n/a | No user parameter sets have been saved. | 0 |
|  | Loading | A user set is being loaded. | 1 |
|  | Saving | A user set is being saved. | 2 |
|  | Faulted | Invalid or empty parameter set. | 3 |
|  | User1 IO active | User set 1 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2. | 4 |
|  | User2 IO active | User set 2 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2. | 5 |
|  | User3 IO active | User set 3 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2. | 6 |
|  | User4 IO active | User set 4 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2. | 7 |
|  | User1 backup | User set 1 has been saved or loaded. | 20 |


| No. | Name/Value | Description |  |  | Def/FbEq16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | User2 backup | User set 2 has been saved or loaded. |  |  | 21 |
|  | User3 backup | User set 3 has been saved or loaded. |  |  | 22 |
|  | User4 backup | User set 4 has been saved or loaded. |  |  | 23 |
| 96.11 | User set save/load | Enables the saving and restoring of up to four custom sets of parameter settings. <br> The set that was in use before powering down the drive is in use after the next power-up. <br> Notes: <br> - Some hardware configuration settings, such as I/O extension module and fieldbus configuration parameters (groups $14 \ldots 16,47,50 \ldots 58$ and $92 \ldots 93$ ) are not included in user parameter sets. <br> - Parameter changes made after loading a set are not automatically stored - they must be saved using this parameter. <br> - This parameter cannot be changed while the drive is running |  |  | No action |
|  | No action | Load or save operation complete; normal operation. |  |  | 0 |
|  | User set I/O mode | Load user parameter set using parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2. |  |  | 1 |
|  | Load set 1 | Load user parameter set 1. |  |  | 2 |
|  | Load set 2 | Load user parameter set 2. |  |  | 3 |
|  | Load set 3 | Load user parameter set 3 . |  |  | 4 |
|  | Load set 4 | Load user parameter set 4. |  |  | 5 |
|  | Save to set 1 | Save user parameter set 1. |  |  | 18 |
|  | Save to set 2 | Save user parameter set 2. |  |  | 19 |
|  | Save to set 3 | Save user parameter set 3 . |  |  | 20 |
|  | Save to set 4 | Save user parameter set 4. |  |  | 21 |
| 96.12 | User set I/O mode in1 | When parameter 96.11 User set save/load is set to User set I/O mode, selects the user parameter set together with parameter 96.13 User set I/O mode in2 as follows: |  |  | Not selected |
|  |  | Status of source defined by par. 96.12 | Status of source defined by par. 96.13 | User parameter set selected |  |
|  |  | 0 | 0 | Set 1 |  |
|  |  | 1 | 0 | Set 2 |  |
|  |  | 0 | 1 | Set 3 |  |
|  |  | 1 | 1 | Set 4 |  |
|  | Not selected | 0. |  |  | 0 |
|  | Selected | 1. |  |  | 1 |
|  | DI1 | Digital input DI1 (10.02 | 2 DI delayed status | bit 0). | 2 |
|  | DI2 | Digital input DI2 (10.02 | 2 DI delayed status. | bit 1). | 3 |
|  | DI3 | Digital input DI3 (10.02 | 2 DI delayed status, | bit 2). | 4 |
|  | DI4 | Digital input DI4 (10.02 | 2 DI delayed status. | bit 3). | 5 |
|  | DI5 | Digital input DI5 (10.02 | 2 DI delayed status. | bit 4). | 6 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
|  | DI6 | Digital input DI6 (10.02 DI delayed status, bit 5). | 7 |
|  | Timed function 1 | Bit 0 of 34.01 Timed functions status (see page 192). | 18 |
|  | Timed function 2 | Bit 1 of 34.01 Timed functions status (see page 192). | 19 |
|  | Timed function 3 | Bit 2 of 34.01 Timed functions status (see page 192). | 20 |
|  | Supervision 1 | Bit 0 of 32.01 Supervision status (see page 186). | 24 |
|  | Supervision 2 | Bit 1 of 32.01 Supervision status (see page 186). | 25 |
|  | Supervision 3 | Bit 2 of 32.01 Supervision status (see page 186). | 26 |
|  | Other [bit] | Source selection (see Terms and abbreviations on page 86). | - |
| 96.13 | User set I/O mode in2 | See parameter 96.12 User set I/O mode in1. | Not selected |
| 96.16 | Unit selection | Selects the unit of parameters indicating power, temperature and torque. | 0000b |
|  | Name ${ }^{\text {a }}$ \| Information |  |  |
|  | Power unit | 0 = kW |  |
|  |  | 1 = hp |  |
|  | Reserved |  |  |
|  | Temperature unit | $0={ }^{\circ} \mathrm{C}$ |  |
|  |  | $1=^{\circ} \mathrm{F}$ |  |
|  | Reserved |  |  |
|  | Torque unit | $0=\mathrm{Nm}(\mathrm{N} \cdot \mathrm{m})$ |  |
|  |  | 1 = lbft (lb ft) |  |
|  | Reserved |  |  |
|  | 0000h...FFFFh | Unit selection word. | 1 = 1 |
| 96.51 | Clear fault and event logger | Clears all events from the drive's fault and event logs. | 0 |
|  | 0... 1 | $0=$ No effect; 1 = Clears the logger. | 1 = 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 97 Motor control |  | Switching frequency; slip gain; voltage reserve; flux braking; anti-cogging (signal injection); IR compensation. |  |
| 97.01 | Switching frequency reference | Defines the switching frequency of the drive that is used as long as the drive does not heat too much. See section Switching frequency on page 61. <br> Higher switching frequency results in lower acoustic noise. In multimotor systems, do not change the switching frequency from the default value. | 4 kHz |
|  | 4 kHz | 4 kHz . | 4 |
|  | 8 kHz | 8 kHz . | 8 |
| 97.02 | Minimum switching frequency | Lowest switching frequency that is allowed. Depends on the frame size. | 2 kHz |
|  | 2 kHz | 2 kHz . | 2 |
|  | 4 kHz | 4 kHz . | 4 |
|  | 8 kHz | 8 kHz . | 8 |
| 97.03 | Slip gain | Defines the slip gain which is used to improve the estimated motor slip. $100 \%$ means full slip gain; $0 \%$ means no slip gain. The default value is $100 \%$. Other values can be used if a static speed error is detected despite having the setting at full slip gain. <br> Example (with nominal load and nominal slip of 40 rpm ): A 1000 rpm constant speed reference is given to the drive. Despite having full slip gain (= 100\%), a manual tachometer measurement from the motor axis gives a speed value of 998 rpm . The static speed error is $1000 \mathrm{rpm}-998 \mathrm{rpm}=2 \mathrm{rpm}$. To compensate the error, the slip gain should be increased to 105\% (2 rpm / $40 \mathrm{rpm}=5 \%$ ). | 100\% |
|  | 0...200\% | Slip gain. | 1 = 1\% |
| 97.04 | Voltage reserve | Defines the minimum allowed voltage reserve. When the voltage reserve has decreased to the set value, the drive enters the field weakening area. <br> Note: This is an expert level parameter and should not be adjusted without appropriate skill. <br> If the intermediate circuit DC voltage $U_{\mathrm{dc}}=550 \mathrm{~V}$ and the voltage reserve is $5 \%$, the RMS value of the maximum output voltage in steady-state operation is $0.95 \times 550 \mathrm{~V} / \text { sqrt }(2)=369 \mathrm{~V}$ <br> The dynamic performance of the motor control in the field weakening area can be improved by increasing the voltage reserve value, but the drive enters the field weakening area earlier. | -2\% |
|  | -4...50\% | Voltage reserve. | 1 = 1\% |
| 97.05 | Flux braking | Defines the level of flux braking power. (Other stopping and braking modes can be configured in parameter group 21 Start/stop mode). <br> Note: This is an expert level parameter and should not be adjusted without appropriate skill. | Disabled |
|  | Disabled | Flux braking is disabled. | 0 |
|  | Moderate | Flux level is limited during the braking. Deceleration time is longer compared to full braking. | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| Full | Maximum braking power. Almost all available current is used <br> to convert the mechanical braking energy to thermal energy <br> in the motor. <br> WARNING! Using full flux braking heats up the motor <br> especially in cyclic operation. Make sure that the <br> motor can withstand this if you have a cyclic | 2 |  |
| 97.10 | Signal injection | Enables the anti-cogging function: a high-frequency <br> application. <br> alternating signal is injected to the motor in the low speed <br> region to improve the stability of torque control. This removes <br> the "cogging" that can sometimes be seen as the rotor passes <br> the motor magnetic poles. Anti-cogging can be enabled with <br> different amplitude levels. <br> Notes: <br> This is an expert level parameter and should not be <br> adjusted without appropriate skill. | Disabled |
| - Use as low a level as possible that gives satisfactory |  |  |  |
| performance. |  |  |  |
| Signal injection cannot be applied to asynchronous |  |  |  |
| motors. |  |  |  |$\quad$| Disabled | Anti-cogging disabled. |
| :--- | :--- |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 97.13 | IR compensation | Defines the relative output voltage boost at zero speed (IR compensation). The function is useful in applications with a high break-away torque where vector control cannot be applied. <br> $U / U_{N}$ <br> (\%) <br> See also section IR compensation for scalar motor control on page 56. | 3.50\% |
|  | 0.00...50.00\% | Voltage boost at zero speed in percent of nominal motor voltage. | 1 = 1\% |
| 97.15 | Motor model temperature adaptation | Enables the motor model temperature adaptation. Estimated motor temperature can be used to adapt temperature dependent parameters (e.g. resistances) of motor model. | Disabled |
|  | Disabled | Temperature adaptation disabled. | 0 |
|  | Estimated temperature | Temperature adaptation with motor temperature estimate (parameter 35.01 Motor estimated temperature). | 1 |
| 97.16 | Stator temperature factor | Tunes the motor temperature dependence of stator parameters (stator resistance). | 50\% |
|  | 0...200\% | Tuning factor. | 1 = 1\% |
| 97.17 | Rotor temperature factor | Tunes the motor temperature dependence of rotor parameters (eg. rotor resistance). | 100\% |
|  | 0...200\% | Tuning factor. | 1 = 1\% |
| 97.20 | U/F ratio | Selects the form for the U/f (voltage to frequency) ratio below field weakening point. For scalar control only. | Squared |
|  | Linear | Linear ratio for constant torque applications. | 0 |
|  | Squared | Squared ratio for centrifugal pump and fan applications. With squared U/f ratio the noise level is lower for most operating frequencies. Not recommended for permanent magnet motors. | 1 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 98 User motor parameters |  | Motor values supplied by the user that are used in the motor model. <br> These parameters are useful for non-standard motors, or to just get more accurate motor control of the motor on site. A better motor model always improves the shaft performance. |  |
| 98.01 | User motor model mode | Activates the motor model parameters 98.02...98.12 and 98.14. <br> Notes: <br> - Parameter value is automatically set to zero when ID run is selected by parameter 99.13 ID run requested. The values of parameters $98.02 \ldots 98.12$ are then updated according to the motor characteristics identified during the ID run. <br> - Measurements made directly from the motor terminals during the ID run are likely to produce slightly different values than those on a data sheet from a motor manufacturer. <br> - This parameter cannot be changed while the drive is running. | Not selected |
|  | Not selected | Parameters 98.02..98.12 inactive. | 0 |
|  | Motor parameters | The values of parameters 98.02... 98.12 are used as the motor model. | 1 |
| 98.02 | Rs user | Defines the stator resistance $R_{\mathrm{S}}$ of the motor model. With a star-connected motor, $R_{\mathrm{S}}$ is the resistance of one winding. With a delta-connected motor, $R_{\mathrm{S}}$ is one-third of the resistance of one winding. | 0.00000 p.u. |
|  | $\begin{aligned} & \text { 0.00000... } 0.50000 \\ & \text { p.u. } \end{aligned}$ | Stator resistance in per unit. |  |
| 98.03 | Rruser | Defines the rotor resistance $R_{\mathrm{R}}$ of the motor model. <br> Note: This parameter is valid only for asynchronous motors. | 0.00000 p.u. |
|  | $\begin{aligned} & \text { 0.00000... } 0.50000 \\ & \text { p.u. } \end{aligned}$ | Rotor resistance in per unit. | - |
| 98.04 | Lm user | Defines the main inductance $L_{M}$ of the motor model. Note: This parameter is valid only for asynchronous motors. | 0.00000 p.u. |
|  | $\begin{aligned} & 0.00000 \ldots 10.00000 \\ & \text { p.u. } \end{aligned}$ | Main inductance in per unit. | - |
| 98.05 | SigmaL user | Defines the leakage inductance $\sigma L_{s}$. <br> Note: This parameter is valid only for asynchronous motors. | 0.00000 p.u. |
|  | $\begin{aligned} & \text { 0.00000...1.00000 } \\ & \text { p.u. } \end{aligned}$ | Leakage inductance in per unit. | - |
| 98.06 | Ld user | Defines the direct axis (synchronous) inductance. Note: This parameter is valid only for permanent magnet motors. | 0.00000 p.u. |
|  | $\begin{aligned} & 0.00000 \ldots 10.00000 \\ & \text { p.u } \end{aligned}$ | Direct axis inductance in per unit. | - |
| 98.07 | Lq user | Defines the quadrature axis (synchronous) inductance. Note: This parameter is valid only for permanent magnet motors. | 0.00000 p.u. |
|  | $\begin{aligned} & 0.00000 \ldots 10.00000 \\ & \text { p.u } \end{aligned}$ | Quadrature axis inductance in per unit. | - |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 98.08 | PM flux user | Defines the permanent magnet flux. <br> Note: This parameter is valid only for permanent magnet motors. | 0.00000 p.u. |
|  | $\begin{aligned} & 0.00000 \ldots 2.00000 \\ & \text { p.u } \end{aligned}$ | Permanent magnet flux in per unit. | - |
| 98.09 | Rs user SI | Defines the stator resistance $R_{\mathrm{S}}$ of the motor model. | 0.00000 ohm |
|  | $\begin{aligned} & 0.00000 \ldots 100.0000 \\ & 0 \text { ohm } \end{aligned}$ | Stator resistance. | - |
| 98.10 | Rr user SI | Defines the rotor resistance $R_{R}$ of the motor model. <br> Note: This parameter is valid only for asynchronous motors. | 0.00000 ohm |
|  | $\begin{aligned} & 0.00000 \ldots 100.0000 \\ & 0 \text { ohm } \end{aligned}$ | Rotor resistance. | - |
| 98.11 | Lm user SI | Defines the main inductance $L_{M}$ of the motor model. Note: This parameter is valid only for asynchronous motors. | 0.00 mH |
|  | $\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$ | Main inductance. | $\begin{aligned} & \hline 1=10000 \\ & \mathrm{mH} \end{aligned}$ |
| 98.12 | SigmaL user SI | Defines the leakage inductance $\sigma L_{\mathrm{s}}$. <br> Note: This parameter is valid only for asynchronous motors. | 0.00 mH |
|  | $\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$ | Leakage inductance. | $\begin{aligned} & 1=10000 \\ & \mathrm{mH} \end{aligned}$ |
| 98.13 | Ld user SI | Defines the direct axis (synchronous) inductance. <br> Note: This parameter is valid only for permanent magnet motors. | 0.00 mH |
|  | $\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$ | Direct axis inductance. | $\begin{aligned} & 1=10000 \\ & \mathrm{mH} \end{aligned}$ |
| 98.14 | Lq user SI | Defines the quadrature axis (synchronous) inductance. Note: This parameter is valid only for permanent magnet motors. | 0.00 mH |
|  | $\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$ | Quadrature axis inductance. | $\begin{aligned} & 1=10000 \\ & \mathrm{mH} \end{aligned}$ |


| 99 Motor data | Motor configuration settings. |  |
| :---: | :--- | :--- |
| 99.03 Motor type | Selects the motor type. <br> Note: This parameter cannot be changed while the drive is <br> running. | Asynchro- <br> nous motor |
| Asynchronous <br> motor | Standard squirrel cage AC induction motor (asynchronous <br> induction motor). | 0 |
| Permanent magnet <br> motor | Permanent magnet motor. Three-phase AC synchronous <br> motor with permanent magnet rotor and sinusoidal BackEMF <br> voltage. <br> Note: With permanent magnet motors special attention must <br> be paid on setting the motor nominal values correctly in <br> parameter group 99 Motor data. You must use vector control. <br> If the nominal BackEMF voltage of the motor is not available, <br> a full ID run should be performed for improving performance. <br> Supported from firmware version 1.70.x. | 1 |
| SynRM | Synchronous reluctance motor. Three-phase AC <br> synchronous motor with salient pole rotor without permanent <br> magnets. | 2 |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 99.04 | Motor control mode | Selects the motor control mode. | Scalar |
|  | Vector | Vector control. Vector control has better accuracy than scalar control but cannot be used in all situations (see selection Scalar below). <br> Requires motor identification run (ID run). See parameter 99.13 ID run requested. <br> Note: In vector control the drive performs a standstill ID run at the first start if ID run has not been previously performed. A new start command is required after standstill ID run. <br> Note: To achieve a better motor control performance, you can perform a normal ID run without load. <br> See also section Operating modes of the drive (page 43). | 0 |
|  | Scalar | Scalar control. Suitable for most applications, if top performance is not required. <br> Motor identification run is not required. <br> Note: Scalar control must be used in the following situations: <br> - with multimotor applications 1 ) if the load is not equally shared between the motors, 2 ) if the motors are of different sizes, or 3 ) if the motors are going to be changed after the motor identification (ID run) <br> - if the nominal current of the motor is less than $1 / 6$ of the nominal output current of the drive <br> - if the drive is used with no motor connected (for example, for test purposes). <br> Note: Correct motor operation requires that the magnetizing current of the motor does not exceed $90 \%$ of the nominal current of the inverter. <br> See also section Speed control performance figures (page 55), and section Operating modes of the drive (page 43). | 1 |
| 99.06 | Motor nominal current | Defines the nominal motor current. Must be equal to the value on the motor rating plate. If multiple motors are connected to the drive, enter the total current of the motors. <br> Notes: <br> - Correct motor operation requires that the magnetizing current of the motor does not exceed $90 \%$ of the nominal current of the drive. <br> - This parameter cannot be changed while the drive is running. | 0.0 A |
|  | 0.0...6400.0 A | Nominal current of the motor. The allowable range is $1 / 6 \ldots 2 \times$ $I_{N}$ of the drive $\left(0 \ldots 2 \times I_{N}\right.$ with scalar control mode $)$. | $1=1 \mathrm{~A}$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 99.07 | Motor nominal voltage | Defines the nominal motor voltage supplied to the motor. This setting must match the value on the rating plate of the motor. <br> Notes: <br> - With permanent magnet motors, the nominal voltage is the BackEMF voltage at nominal speed of the motor. If the voltage is given as voltage per rpm, e.g. 60 V per 1000 rpm , the voltage for a nominal speed of 3000 rpm is $3 \times 60 \mathrm{~V}=180 \mathrm{~V}$. Note that the nominal voltage is not equal to the equivalent DC motor voltage (EDCM) specified by some motor manufacturers. The nominal voltage can be calculated by dividing the EDCM voltage by 1.7 (or square root of 3 ). <br> - The stress on the motor insulation is always dependent on the drive supply voltage. This also applies to the case where the motor voltage rating is lower than that of the drive and the supply. <br> - This parameter cannot be changed while the drive is running. | 0.0 V |
|  | 0.0...800.0 | Nominal voltage of the motor. | $10=1 \mathrm{~V}$ |
| 99.08 | Motor nominal frequency | Defines the nominal motor frequency. This setting must match the value on the rating plate of the motor. <br> Note: This parameter cannot be changed while the drive is running. | 50.0 Hz |
|  | 0.0...500.0 Hz | Nominal frequency of the motor. | $10=1 \mathrm{~Hz}$ |
| 99.09 | Motor nominal speed | Defines the nominal motor speed. The setting must match the value on the rating plate of the motor. <br> Note: This parameter cannot be changed while the drive is running. | 0 rpm |
|  | 0... 30000 rpm | Nominal speed of the motor. | $1=1 \mathrm{rpm}$ |
| 99.10 | Motor nominal power | Defines the nominal motor power. The setting must match the value on the rating plate of the motor. If multiple motors are connected to the drive, enter the total power of the motors. The unit is selected by parameter 96.16 Unit selection. <br> Note: This parameter cannot be changed while the drive is running. | $\begin{aligned} & 0.00 \mathrm{~kW} \text { or } \\ & \mathrm{hp} \end{aligned}$ |
|  | $\begin{aligned} & \hline-10000.00 \ldots \\ & 10000.00 \mathrm{~kW} \text { or } \\ & -13404.83 \ldots \\ & 13404.83 \mathrm{hp} \end{aligned}$ | Nominal power of the motor. | $1=1$ unit |
| 99.11 | Motor nominal cos $\Phi$ | Defines the cosphi of the motor for a more accurate motor model. (Not applicable to permanent magnet motors.) Not obligatory; if set, should match the value on the rating plate of the motor. <br> Note: This parameter cannot be changed while the drive is running. | 0.00 |
|  | 0.00...1.00 | Cosphi of the motor. | $100=1$ |


| No. | Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: | :---: |
| 99.12 | Motor nominal torque | Defines the nominal motor shaft torque for a more accurate motor model. Not obligatory. The unit is selected by parameter 96.16 Unit selection. <br> Note: This parameter cannot be changed while the drive is running. | $\begin{aligned} & 0.000 \\ & \mathrm{~N} \cdot \mathrm{~m} \text { or } \mathrm{lb} \cdot \mathrm{ft} \end{aligned}$ |
|  | $\begin{aligned} & \hline 0.000 \ldots . .4000000 .000 \\ & \mathrm{~N} \cdot \mathrm{~m} \text { or } \\ & 0.000 \ldots 2950248.597 \\ & \mathrm{lb} \cdot \mathrm{ft} \end{aligned}$ | Nominal motor torque. | 1 = 100 unit |
| 99.13 | ID run requested | Selects the type of the motor identification routine (ID run) performed at the next start of the drive. During the ID run, the drive will identify the characteristics of the motor for optimum motor control. <br> If no ID run has been performed yet (or if default parameter values have been restored using parameter 96.06 Parameter restore), this parameter is automatically set to Standstill, signifying that an ID run must be performed. <br> After the ID run, the drive stops and this parameter is automatically set to None. <br> Notes: <br> - To ensure that the ID run can work properly, the drive limits in group 30 (maximum speed and minimum speed, and maximum torque and minimum torque) must to be large enough (the range specified by the limits must be wide enough. If eg. speed limits are less than the motor nominal speed, the ID run cannot be completed. <br> - For the Advanced ID run, the machinery must always be de-coupled from the motor. <br> - With a permanent magnet or synchronous reluctance motor, a Normal, Reduced or Standstill ID run requires that the motor shaft is NOT locked and the load torque is less than $10 \%$. <br> - Once the ID run is activated, it can be canceled by stopping the drive. <br> - The ID run must be performed every time any of the motor parameters (99.04, 99.06...99.12) have been changed. <br> - Ensure that the Safe Torque Off and emergency stop circuits (if any) are closed during the ID run. <br> - Mechanical brake (if present) is not opened by the logic for the ID run. <br> - This parameter cannot be changed while the drive is running. | None |
|  | None | No motor ID run is requested. This mode can be selected only if the ID run (NormallReduced/Standstill/Advanced) has already been performed once. | 0 |


| No. Name/Value | Description | Def/FbEq16 |
| :---: | :---: | :---: |
| Normal | Normal ID run. Guarantees good control accuracy for all cases. The ID run takes about 90 seconds. This mode should be selected whenever it is possible. <br> Notes: <br> - If the load torque will be higher than $20 \%$ of motor nominal torque, or if the machinery is not able to withstand the nominal torque transient during the ID run, then the driven machinery must be de-coupled from the motor during a Normal ID run. <br> - Check the direction of rotation of the motor before starting the ID run. During the run, the motor will rotate in the forward direction. $\qquad$ WARNING! The motor will run at up to approximately $50 \ldots 100 \%$ of the nominal speed during the ID run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN! | 1 |
| Reduced | Reduced ID run. This mode should be selected instead of the Normal or Advanced ID Run if <br> - mechanical losses are higher than $20 \%$ (ie. the motor cannot be de-coupled from the driven equipment), or if <br> - flux reduction is not allowed while the motor is running (ie. in case of a motor with an integrated brake supplied from the motor terminals). <br> With this ID run mode, the resultant motor control in the field weakening area or at high torques is not necessarily as accurate as motor control following a Normal ID run. Reduced ID run is completed faster than the Normal ID Run (<90 seconds). <br> Note: Check the direction of rotation of the motor before starting the ID run. During the run, the motor will rotate in the forward direction. $\qquad$ WARNING! The motor will run at up to approximately $50 \ldots 100 \%$ of the nominal speed during the ID run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN! | 2 |
| Standstill | Standstill ID run. The motor is injected with DC current. With an $A C$ induction (asynchronous) motor, the motor shaft is not rotated. With a permanent magnet motor, the shaft can rotate up to half a revolution. <br> Note: This mode should be selected only if the Normal, Reduced or Advanced ID run is not possible due to the restrictions caused by the connected mechanics (e.g. with lift or crane applications). | 3 |
| Advanced | Advanced ID run. Only for frames R4...R9. <br> Guarantees the best possible control accuracy. The ID run takes a very long time to complete. This mode should be selected when top performance is needed across the whole operating area. <br> Note: The driven machinery must be de-coupled from the motor because of high torque and speed transients that are applied. <br> WARNING! The motor may run at up to the maximum (positive) and minimum (negative) allowed speed during the ID run. Several accelerations and decelerations are done. The maximum torque, current and speed allowed by the limit parameters may be utilized. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN! | 6 |


| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- |
| 99.14 | Last ID run <br> performed | Shows the type of ID run that was performed last. For more <br> information about the different modes, see the selections of <br> parameter 99.13 ID run requested. | None |
| None | No ID run has been performed. | 0 |  |
| Normal | Normal ID run. | 1 |  |
| Reduced | Reduced ID run. | 2 |  |
| Standstill | Standstill ID run. | 3 |  |
| Advanced | Advanced ID run. | 6 |  |
| 99.15 | Motor polepairs <br> calculated | Calculated number of pole pairs in the motor. | 0 |
| 0...1000 | Number of pole pairs. | $1=1$ |  |
| Motor phase order | Switches the rotation direction of motor. This parameter can <br> be used if the motor turns in the wrong direction (for example, <br> because of the wrong phase order in the motor cable), and <br> correcting the cabling is considered impractical. <br> Notes: <br> - Changing this parameter does not affect speed reference <br> polarities, so positive speed reference will rotate the motor <br> forward. The phase order selection just ensures that <br> "forward" is in fact the correct direction. |  |  |
|  | U V W | Normal. | 0 |
| U W V | Reversed rotation direction. | 1 |  |

## Differences in the default values between 50 Hz and 60 Hz supply frequency settings

Parameter 95.20 HW options word 1 bit 0 Supply frequency 60 Hz changes the drive parameter default values according to the supply frequency, 50 Hz or 60 Hz . The bit is set according to the market before the drive is delivered.

If you need to change from 50 Hz to 60 Hz , or vice versa, change the value of the bit and then do a complete reset to the drive. After that you have to reselect the macro to be used.

The table below shows the parameters whose default values depend on the supply frequency setting. The supply frequency setting, with the type designation of the drive, also affects Group 99 Motor data parameter values though these parameters are not listed in the table.

| No | Name | $95.20 ~ H W ~ o p t i o n s ~ w o r d ~ 1 ~ b i t ~$ <br> Supply frequency 60 Hz $=$ <br> $\mathbf{5 0 ~ H z}$ | 95.20 HW options word 1 <br> bit Supply frequency 60 Hz $=$ <br> $\mathbf{6 0 ~ H z}$ |
| :--- | :--- | :---: | :---: |
| 11.45 | Freq in 1 at scaled max | 1500.000 | 1800.000 |
| 15.35 | Freq out 1 src max | 1500.000 | 1800.000 |
| 12.20 | Al1 scaled at Al1 max | 1500.000 | 1800.000 |
| 13.18 | AO1 source max | 1500.0 | 1800.0 |
| 22.26 | Constant speed 1 | 300.00 rpm | 360.00 rpm |
| 22.27 | Constant speed 2 | 600.00 rpm | 720.00 rpm |
| 22.28 | Constant speed 3 | 900.00 rpm | 1080.00 rpm |
| 22.29 | Constant speed 4 | 1200.00 rpm | 1440.00 rpm |
| 22.30 | Constant speed 5 | 1500.00 rpm | 1800.00 rpm |
| 22.30 | Constant speed 6 | 2400.00 rpm | 2880.00 rpm |
| 22.31 | Constant speed 7 | 3000.00 rpm | 3600.00 rpm |
| 28.26 | Constant frequency 1 | 5.00 Hz | 6.00 Hz |
| 28.27 | Constant frequency 2 | 10.00 Hz | 12.00 Hz |
| 28.28 | Constant frequency 3 | 15.00 Hz | 18.00 Hz |
| 28.29 | Constant frequency 4 | 20.00 Hz | 24.00 Hz |
| 28.30 | Constant frequency 5 | 25.00 Hz | 30.00 Hz |
| 28.31 | Constant frequency 6 | 40.00 Hz | 48.00 Hz |
| 28.32 | Constant frequency 7 | 50.00 Hz | 60.00 Hz |
|  |  |  |  |


| No | Name | $95.20 ~ H W$ options word 1 bit <br> Supply frequency 60 Hz = <br> $\mathbf{5 0 ~ H z}$ | 95.20 HW options word 1 <br> bit Supply frequency 60 Hz = <br> $\mathbf{6 0 ~ H z}$ |
| :--- | :--- | :---: | :---: |
| 30.11 | Minimum speed | -1500.00 rpm | -1800.00 rpm |
| 30.12 | Maximum speed | 1500.00 rpm | 1800.00 rpm |
| 30.13 | Minimum frequency | -50.00 Hz | -60.00 Hz |
| 30.14 | Maximum frequency | 50.00 Hz | 60.00 Hz |
| 31.26 | Stall speed limit | 150.00 rpm | 180.00 rpm |
| 31.27 | Stall frequency limit | 15.00 Hz | 18.00 Hz |
| 31.30 | Overspeed trip margin | 500.00 rpm | 500.00 rpm |
| 46.01 | Speed scaling | 1500.00 rpm | 1800.00 rpm |
| 46.02 | Frequency scaling | 50.00 Hz | 60.00 Hz |

## Additional parameter data

## What this chapter contains

This chapter lists the parameters with some additional data such as their ranges and 32-bit fieldbus scaling. For parameter descriptions, see chapter Parameters (page 85).

## Terms and abbreviations

| Term | Definition |
| :--- | :--- |
| Actual signal | Signal measured or calculated by the drive. Usually can only be monitored <br> but not adjusted; some counter-type signals can however be reset. |
| Analog src | Analog source: the parameter can be set to the value of another parameter <br> by choosing "Other", and selecting the source parameter from a list. <br> In addition to the "Other" selection, the parameter may offer other pre- <br> selected settings. |
| Binary src | Binary source: the value of the parameter can be taken from a specific bit <br> in another parameter value ("Other"). Sometimes the value can be fixed to <br> 0 (false) or 1 (true). In addition, the parameter may offer other pre-selected <br> settings. |
| Data | Data parameter |
| FbEq32 | 32-bit fieldbus equivalent: The scaling between the value shown on the <br> panel and the integer used in communication when a 32-bit value is <br> selected for transmission to an external system. <br> The corresponding 16-bit scalings are listed in chapter Parameters (page <br> 85). |
| List | Selection list. |


| Term | Definition |
| :--- | :--- |
| No. | Parameter number. |
| PB | Packed Boolean (bit list). |
| Real | Real number. |
| Type | Parameter type. See Analog src, Binary src, List, PB, Real. |

## Fieldbus addresses

Refer to the User's manual of the fieldbus adapter.

## Parameter groups 1... 9

| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 Actual values |  |  |  |  |  |
| 01.01 | Motor speed used | Real | -30000.00...30000.00 | rpm | 100 = 1 rpm |
| 01.02 | Motor speed estimated | Real | -30000.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 01.03 | Motor speed \% | Real | -1000.00...1000.00 | \% | 100 = 1\% |
| 01.06 | Output frequency | Real | -500.00...500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 01.07 | Motor current | Real | 0.00... 30000.00 | A | $100=1 \mathrm{~A}$ |
| 01.08 | Motor current \% of motor nom | Real | 0.0... 1000.0 | \% | 10 = 1\% |
| 01.09 | Motor current \% of drive nom | Real | 0.0... 1000.0 | \% | 10 = 1\% |
| 01.10 | Motor torque | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 01.11 | DC voltage | Real | 0.00... 2000.00 | V | $100=1 \mathrm{~V}$ |
| 01.13 | Output voltage | Real | 0... 2000 | V | $1=1 \mathrm{~V}$ |
| 01.14 | Output power | Real | -32768.00...32767.00 | kW or hp | $100=1$ unit |
| 01.15 | Output power \% of motor nom | Real | -300.00...300.00 | \% | $100=1 \%$ |
| 01.16 | Output power \% of drive nom | Real | -300.00...300.00 | \% | $100=1 \%$ |
| 01.17 | Motor shaft power | Real | -32768.00...32767.00 | kW or hp | $100=1$ unit |
| 01.18 | Inverter GWh counter | Real | 0... 65535 | GWh | $1=1 \mathrm{GWh}$ |
| 01.19 | Inverter MWh counter | Real | 0... 1000 | MWh | $1=1 \mathrm{MWh}$ |
| 01.20 | Inverter kWh counter | Real | 0... 1000 | kWh | 1 = 1 kWh |
| 01.24 | Flux actual \% | Real | 0... 200 | \% | 1 = 1\% |
| 01.30 | Nominal torque scale | Real | 0.000... 4000000 | $\mathrm{N} \cdot \mathrm{m}$ or $\mathrm{lb} \cdot \mathrm{ft}$ | $1000=1$ unit |
| 01.50 | Current hour kWh | Real | 0.00... 1000000.00 | kWh | $100=1 \mathrm{kWh}$ |
| 01.51 | Previous hour kWh | Real | 0.00... 1000000.00 | kWh | $100=1 \mathrm{kWh}$ |
| 01.52 | Current day kWh | Real | 0.00... 1000000.00 | kWh | $100=1 \mathrm{kWh}$ |
| 01.53 | Previous day kWh | Real | 0.00... 1000000.00 | kWh | $100=1 \mathrm{kWh}$ |
| 01.61 | Abs motor speed used |  | 0.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 01.62 | Abs motor speed \% |  | 0.00...1000.00\% | \% | $100=1 \%$ |
| 01.63 | Abs output frequency |  | 0.00.. 500.00 Hz | Hz | $100=1 \mathrm{~Hz}$ |
| 01.64 | Abs motor torque |  | 0.0.. 1600.0 | \% | 10 = 1\% |
| 01.65 | Abs output power |  | 0.00... 32767.00 | kW | $100=1 \mathrm{~kW}$ |
| 01.66 | Abs output power \% mot nom |  | 0.00... 300.00 | \% | $100=1 \%$ |
| 01.67 | Abs output power \% drive nom |  | 0.00... 300.00 | \% | $100=1 \%$ |
| 01.68 | Abs motor shaft power |  | 0.00... 32767.00 | kW | $100=1 \mathrm{~kW}$ |
| 03 Input references |  |  |  |  |  |
| 03.01 | Panel reference | Real | -100000.00.. 100000.00 | $\begin{aligned} & \text { rpm, } \mathrm{Hz} \\ & \text { or } \% \end{aligned}$ | $100=1$ unit |
| 03.02 | Panel reference remote | Real | -100000.00.. 100000.00 | $\begin{aligned} & \text { rpm, Hz } \\ & \text { or \% } \end{aligned}$ | $100=1$ unit |
| 03.05 | FB A reference 1 | Real | -100000.00.. 100000.00 | - | $100=1$ |
| 03.06 | FB A reference 2 | Real | -100000.00.. 100000.00 | - | $100=1$ |
| 03.09 | EFB reference 1 | Real | -30000.00...30000.00 | - | $100=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 03.10 | EFB reference 2 | Real | -30000.00...30000.00 | - | $100=1$ |
| 04 Warnings and faults |  |  |  |  |  |
| 04.01 | Tripping fault | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.02 | Active fault 2 | Data | 0000h...FFFFh | - | $1=1$ |
| 04.03 | Active fault 3 | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.06 | Active warning 1 | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.07 | Active warning 2 | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.08 | Active warning 3 | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.11 | Latest fault | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.12 | 2nd latest fault | Data | 0000h...FFFFh | - | $1=1$ |
| 04.13 | 3rd latest fault | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.16 | Latest warning | Data | 0000h...FFFFh | - | $1=1$ |
| 04.17 | 2nd latest warning | Data | 0000h...FFFFh | - | 1 = 1 |
| 04.18 | 3rd latest warning | Data | 0000h...FFFFh | - | $1=1$ |
| 05 Diagnostics |  |  |  |  |  |
| 05.01 | On-time counter | Real | 0... 65535 | d | 1 = 1 d |
| 05.02 | Run-time counter | Real | 0... 65535 | d | 1 = 1 d |
| 05.04 | Fan on-time counter | Real | 0... 65535 | d | 1 = 1 d |
| 05.10 | Control board temperature | Real | -100... 300 | ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ | $10=1^{\circ}$ |
| 05.11 | Inverter temperature | Real | -40.0... 160.0 | \% | $10=1 \%$ |
| 05.22 | Diagnostic word 3 | PB | 0000h...FFFFh | - |  |
| 06 Control and status words |  |  |  |  |  |
| 06.01 | Main control word | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 06.11 | Main status word | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 06.16 | Drive status word 1 | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 06.17 | Drive status word 2 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 06.18 | Start inhibit status word | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 06.19 | Speed control status word | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 06.20 | Constant speed status word | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 06.21 | Drive status word 3 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 06.22 | HVAC status word | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 06.30 | MSW bit 11 selection | Binary src | - | - | $1=1$ |
| 06.31 | MSW bit 12 selection | Binary src | - | - | 1 = 1 |
| 06.32 | MSW bit 13 selection | Binary src | - | - | $1=1$ |
| 06.33 | MSW bit 14 selection | Binary src | - | - | $1=1$ |
| 07 System info |  |  |  |  |  |
| 07.03 | Drive rating id | List | 0... 999 | - | 1 = 1 |
| 07.04 | Firmware name | List | - | - | 1 = 1 |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 07.05 | Firmware version | Data | - | - | $1=1$ |
| 07.06 | Loading package name | List | - | - | $1=1$ |
| 07.07 | Loading package version | Data | - | - | $1=1$ |
| 07.11 | Cpu usage | Real | $0 \ldots 100$ | $\%$ | $1=1 \%$ |
| 07.25 | Customization package name | Data | - | - | $1=1$ |
| 07.26 | Customization package <br> version | Data | - | - | $1=1$ |

## Parameter groups 10... 99

| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 Standard DI, RO |  |  |  |  |  |
| 10.02 | DI delayed status | PB | 0000h...FFFFh | - | $1=1$ |
| 10.03 | DI force selection | PB | 0000h...FFFFh | - | $1=1$ |
| 10.04 | DI forced data | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 10.21 | RO status | PB | 0000h...FFFFh | - | $1=1$ |
| 10.22 | RO force selection | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 10.23 | RO forced data | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 10.24 | RO1 source | Binary src | - | - | $1=1$ |
| 10.25 | RO1 ON delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 10.26 | RO1 OFF delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 10.27 | RO2 source | Binary src | - | - | $1=1$ |
| 10.28 | RO2 ON delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 10.29 | RO2 OFF delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 10.30 | RO3 source | Binary src | - | - | $1=1$ |
| 10.31 | RO3 ON delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 10.32 | RO3 OFF delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 10.99 | RO/DIO control word | PB | 0000h...FFFFh | - | 1 = 1 |
| 10.101 | RO1 toggle counter | Real | 0...4294967000 | - | $1=1$ |
| 10.102 | RO2 toggle counter | Real | 0... 4294967000 | - | $1=1$ |
| 10.103 | RO3 toggle counter | Real | 0...4294967000 | - | $1=1$ |
| 11 Standard DIO, FI, FO |  |  |  |  |  |
| 11.21 | DI5 configuration | List | 0...1 | - | 1 = 1 |
| 11.38 | Freq in 1 actual value | Real | 0... 16000 | Hz | $1=1 \mathrm{~Hz}$ |
| 11.39 | Freq in 1 scaled value | Real | -32768.000...32767.000 | - | $1000=1$ |
| 11.42 | Freq in 1 min | Real | 0... 16000 | Hz | $1=1 \mathrm{~Hz}$ |
| 11.43 | Freq in 1 max | Real | 0... 16000 | Hz | $1=1 \mathrm{~Hz}$ |
| 11.44 | Freq in 1 at scaled min | Real | -32768.000...32767.000 | - | $1000=1$ |
| 11.45 | Freq in 1 at scaled max | Real | -32768.000...32767.000 | - | $1000=1$ |
| 12 Standard AI |  |  |  |  |  |
| 12.02 | Al force selection | PB | 0000h...FFFFh | - | $1=1$ |
| 12.03 | Al supervision function | List | 0... 4 | - | $1=1$ |
| 12.04 | Al supervision selection | PB | 0000h...FFFFh | - | $1=1$ |
| 12.11 | Al1 actual value | Real | $\begin{aligned} & 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ & 0.000 \ldots 10.000 \mathrm{~V} \end{aligned}$ | mA or V | $1000=1$ unit |
| 12.12 | Al1 scaled value | Real | -32768.000...32767.000 | - | $1000=1$ |
| 12.13 | Al1 forced value | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.15 | Al1 unit selection | List | 2, 10 | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12.16 | Al1 filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 12.17 | Al1 min | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.18 | Al1 max | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.19 | Al1 scaled at Al1 min | Real | -32768.000..32767.000 | - | $1000=1$ |
| 12.20 | Al1 scaled at Al1 max | Real | -32768.000..32767.000 | - | $1000=1$ |
| 12.21 | Al2 actual value | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.22 | Al2 scaled value | Real | -32768.000..32767.000 | - | $1000=1$ |
| 12.23 | Al2 forced value | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.25 | Al2 unit selection | List | 2, 10 | - | 1 = 1 |
| 12.26 | Al2 filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 12.27 | Al2 min | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.28 | Al2 max | Real | $\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$ | mA or V | $1000=1$ unit |
| 12.29 | Al 2 scaled at Al 2 min | Real | -32768.000...32767.000 | - | $1000=1$ |
| 12.30 | Al2 scaled at Al2 max | Real | -32768.000..32767.000 | - | $1000=1$ |
| 12.101 | Al1 percent value | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 12.102 | Al2 percent value | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 13 Standard AO |  |  |  |  |  |
| 13.02 | AO force selection | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 13.11 | AO1 actual value | Real | $\begin{gathered} 0.000 \ldots 22.000 \text { or } \\ 0.000 \ldots 11000 \mathrm{~V} \end{gathered}$ | mA | $1000=1 \mathrm{~mA}$ |
| 13.12 | AO1 source | Analog src | - | - | 1 = 1 |
| 13.13 | AO1 forced value | Real | 0.000...22.000 | mA | $1000=1 \mathrm{~mA}$ |
| 13.15 | AO1 unit selection | List | 2, 10 | - | 1 = 1 |
| 13.16 | AO1 filter time | Real | 0.000...30.000 | S | $1000=1 \mathrm{~s}$ |
| 13.17 | AO1 source min | Real | -32768.0...32767.0 | - | $10=1$ |
| 13.18 | AO1 source max | Real | -32768.0...32767.0 | - | $10=1$ |
| 13.19 | AO1 out at AO1 src min | Real | 0.000...22.000 | mA | $1000=1 \mathrm{~mA}$ |
| 13.20 | AO1 out at AO1 src max | Real | 0.000.. 22.000 | mA | $1000=1 \mathrm{~mA}$ |
| 13.21 | AO2 actual value | Real | 0.000...22.000 | mA | $1000=1 \mathrm{~mA}$ |
| 13.22 | AO2 source | Analog src | - | - | $1=1$ |
| 13.23 | AO2 forced value | Real | 0.000.. 22.000 | mA | $1000=1 \mathrm{~mA}$ |
| 13.26 | AO2 filter time | Real | 0.000... 30.000 | s | $1000=1 \mathrm{~s}$ |
| 13.27 | AO2 source min | Real | -32768.0...32767.0 | - | $10=1$ |
| 13.28 | AO2 source max | Real | -32768.0...32767.0 | - | $10=1$ |
| 13.29 | AO2 out at AO2 src min | Real | 0.000...22.000 | mA | $1000=1 \mathrm{~mA}$ |
| 13.30 | AO2 out at AO2 src max | Real | 0.000...22.000 | mA | $1000=1 \mathrm{~mA}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13.91 | AO1 data storage | Real | -327.68... 327.67 | - | 100 = 1 |
| 13.92 | AO2 data storage | Real | -327.68... 327.67 | - | 100 = 1 |
| 15 I/O extension module |  |  |  |  |  |
| 15.01 | Extension module type | List | 0... 3 | - | 1 = 1 |
| 15.02 | Detected extension module | List | 0... 3 | - | $1=1$ |
| 15.03 | DI status | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 15.04 | RO/DO status | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 15.05 | RO/DO force selection | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 15.06 | RO/DO forced data | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 15.07 | RO4 source | Binary SrC | - | - | $1=1$ |
| 15.08 | RO4 ON delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 15.09 | RO4 OFF delay | Real | 0.0...3000.0 | S | $10=1 \mathrm{~s}$ |
| 15.10 | RO5 source | Binary $s r c$ | - | - | $1=1$ |
| 15.11 | RO5 ON delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 15.12 | RO5 OFF delay | Real | 0.0...3000.0 | S | $10=1 \mathrm{~s}$ |
| 15.22 | DO1 configuration | List | 0... 1 | - | $1=1$ |
| 15.23 | DO1 source | Binary SrC | - | - | $1=1$ |
| 15.24 | DO1 ON delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 15.25 | DO1 OFF delay | Real | 0.0...3000.0 | s | $10=1 \mathrm{~s}$ |
| 15.32 | Freq out 1 actual value | Real | 0... 16000 | Hz | 1 = 1 Hz |
| 15.33 | Freq out 1 source | Analog src | - | - | 1 = 1 |
| 15.34 | Freq out 1 src min | Real | -32768.0..32767.0 | - | $1000=1$ |
| 15.35 | Freq out 1 src max | Real | -32768.0..32767.0 | - | $1000=1$ |
| 15.36 | Freq out 1 at src min | Real | 0... 16000 | Hz | $1=1 \mathrm{~Hz}$ |
| 15.37 | Freq out 1 at src max | Real | 0... 16000 | Hz | 1 = 1 Hz |
| 19 Operation mode |  |  |  |  |  |
| 19.01 | Actual operation mode | List | 1...6, 10... 20 | - | 1 = 1 |
| 19.11 | Ext1/Ext2 selection | Binary Src | - | - | 1 = 1 |
| 19.12 | Ext1 control mode | List | 1... 5 | - | 1 = 1 |
| 19.14 | Ext2 control mode | List | 1... 5 | - | $1=1$ |
| 19.16 | Local control mode | List | 0... 1 | - | 1 = 1 |
| 19.17 | Local control disable | List | 0... 1 | - | $1=1$ |
| 20 Start/stop/direction |  |  |  |  |  |
| 20.01 | Ext1 commands | List | 0...6, 11...12, 14 | - | 1 = 1 |
| 20.02 | Ext1 start trigger type | List | 0... 1 | - | 1 = 1 |
| 20.03 | Ext1 in1 source | Binary $s r c$ | - | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20.04 | Ext1 in2 source | Binary src | - | - | 1 = 1 |
| 20.05 | Ext1 in3 source | Binary src | - | - | $1=1$ |
| 20.06 | Ext2 commands | List | 0...6, 11...12, 14 | - | 1 = 1 |
| 20.07 | Ext2 start trigger type | List | 0...1 | - | 1 = 1 |
| 20.08 | Ext2 in1 source | Binary src | - | - | $1=1$ |
| 20.09 | Ext2 in2 source | Binary src | - | - | 1 = 1 |
| 20.10 | Ext2 in3 source | Binary src | - | - | $1=1$ |
| 20.21 | Direction | List | 0... 2 | - | 1 = 1 |
| 20.25 | Jogging | Binary src | - | - | 1 = 1 |
| 20.26 | Jogging 1 start source | Binary src | - | - | 1 = 1 |
| 20.27 | Jogging 2 start source | Binary src | - | - | 1 = 1 |
| 20.40 | Run permissive | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | 1 = 1 |
| 20.41 | Start interlock 1 | Binary src | - | - | $1=1$ |
| 20.42 | Start interlock 2 | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ src | - | - | $1=1$ |
| 20.43 | Start interlock 3 | Binary src | - | - | $1=1$ |
| 20.44 | Start interlock 4 | Binary src | - | - | 1 = 1 |
| 20.45 | Start interlock stop mode | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | 1 = 1 |
| 20.46 | Run permissive text | Binary src | - | - | 1 = 1 |
| 20.47 | Start interlock 1 text | Binary $s r c$ | - | - | 1 = 1 |
| 20.48 | Start interlock 2 text | Binary src | - | - | 1 = 1 |
| 20.49 | Start interlock 3 text | Binary src | - | - | 1 = 1 |
| 20.50 | Start interlock 4 text | Binary src | - | - | 1 = 1 |
| 21 Start/stop mode |  |  |  |  |  |
| 21.01 | Vector start mode | List | 0... 2 | - | 1 = 1 |
| 21.02 | Magnetization time | Real | 0... 10000 | ms | $1=1 \mathrm{~ms}$ |
| 21.03 | Stop mode | List | 0... 2 | - | 1 = 1 |
| 21.04 | Emergency stop mode | List | 0... 3 | - | 1 = 1 |
| 21.05 | Emergency stop source | Binary src | - | - | 1 = 1 |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21.06 | Zero speed limit | Real | 0.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 21.07 | Zero speed delay | Real | 0... 30000 | ms | $1=1 \mathrm{~ms}$ |
| 21.08 | DC current control | PB | 0000b...0011b | - | 1 = 1 |
| 21.09 | DC hold speed | Real | 0.00... 1000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 21.10 | DC current reference | Real | 0.0... 100.0 | \% | 10 = 1\% |
| 21.11 | Post magnetization time | Real | 0... 3000 | S | $1=1 \mathrm{~s}$ |
| 21.14 | Pre-heating input source | Binary src | - | - | $1=1$ |
| 21.16 | Pre-heating current | Real | 0.0... 30.0 | \% | 10 = 1\% |
| 21.18 | Auto restart time | Real | 0.0, 0.1..10.0 | S | $10=1 \mathrm{~s}$ |
| 21.19 | Scalar start mode | List | 0... 4 | - | $1=1$ |
| 21.21 | DC hold frequency | Real | 0.00... 1000.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 21.22 | Start delay | Real | 0.00...60.00 | S | $100=1 \mathrm{~s}$ |
| 21.23 | Smooth start | Real | 0... 2 | - | $1=1$ |
| 21.24 | Smooth start current | Real | 10.0...100.0 | \% | $100=1 \%$ |
| 21.25 | Smooth start speed | Real | 2.0... 100.0 | \% | $100=1 \%$ |
| 21.26 | Torque boost current | Real | 15.0...300.0 | \% | $100=1 \%$ |
| 21.30 | Speed compensated stop mode | Real | 0... 3 | - | $1=1$ |
| 21.31 | Speed delay | Real | 0.00... 1000.00 | S | $100=1 \mathrm{~s}$ |
| 21.32 | Speed comp stop threshold | Real | 0... 100 | \% | 1 = 1\% |
| 22 Speed reference selection |  |  |  |  |  |
| 22.01 | Speed ref unlimited | Real | -30000.00..30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.11 | Ext1 speed ref1 | Analog src | - | - | 1 = 1 |
| 22.12 | Ext1 speed ref2 | Analog src | - | - | $1=1$ |
| 22.13 | Ext1 speed function | List | 0... 5 | - | 1 = 1 |
| 22.18 | Ext2 speed ref1 | Analog src | - | - | $1=1$ |
| 22.19 | Ext2 speed ref2 | Analog src | - | - | $1=1$ |
| 22.20 | Ext2 speed function | List | 0... 5 | - | $1=1$ |
| 22.21 | Constant speed function | PB | 00b...11b | - | $1=1$ |
| 22.22 | Constant speed sel1 | Binary src | - | - | $1=1$ |
| 22.23 | Constant speed sel2 | Binary src | - | - | $1=1$ |
| 22.24 | Constant speed sel3 | Binary src | - | - | $1=1$ |
| 22.26 | Constant speed 1 | Real | -30000.00..30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.27 | Constant speed 2 | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.28 | Constant speed 3 | Real | -30000.00..30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.29 | Constant speed 4 | Real | -30000.00..30000.00 | rpm | 100 = 1 rpm |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 22.30 | Constant speed 5 | Real | -30000.00...30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.31 | Constant speed 6 | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.32 | Constant speed 7 | Real | -30000.00_.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.41 | Speed ref safe | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.42 | Jogging 1 ref | Real | -30000.00_.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.43 | Jogging 2 ref | Real | -30000.00.. 30000.00 | rpm | 100 = 1 rpm |
| 22.51 | Critical speed function | PB | 00b...11b | - | $1=1$ |
| 22.52 | Critical speed 1 low | Real | -30000.00..30000.00 | rpm | 100 = 1 rpm |
| 22.53 | Critical speed 1 high | Real | -30000.00.. 30000.00 | rpm | 100 = 1 rpm |
| 22.54 | Critical speed 2 low | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.55 | Critical speed 2 high | Real | -30000.00.. 30000.00 | rpm | 100 = 1 rpm |
| 22.56 | Critical speed 3 low | Real | -30000.00_.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.57 | Critical speed 3 high | Real | -30000.00..30000.00 | rpm | 100 = 1 rpm |
| 22.71 | Motor potentiometer function | List | 0... 3 | - | 1 = 1 |
| 22.72 | Motor potentiometer initial value | Real | -32768.00...32767.00 | - | $100=1$ |
| 22.73 | Motor potentiometer up source | Binary src | - | - | 1 = 1 |
| 22.74 | Motor potentiometer down source | Binary src | - | - | $1=1$ |
| 22.75 | Motor potentiometer ramp time | Real | 0.0...3600.0 | s | $10=1 \mathrm{~s}$ |
| 22.76 | Motor potentiometer min value | Real | -32768.00..32767.00 | - | $100=1$ |
| 22.77 | Motor potentiometer max value | Real | -32768.00.. 32767.00 | - | $100=1$ |
| 22.80 | Motor potentiometer ref act | Real | -32768.00.. 32767.00 | - | $100=1$ |
| 22.86 | Speed reference act 6 | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 22.87 | Speed reference act 7 | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 23 Speed reference ramp |  |  |  |  |  |
| 23.01 | Speed ref ramp input | Real | -30000.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 23.02 | Speed ref ramp output | Real | -30000.00.. 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 23.11 | Ramp set selection | Binary src | - | - | 1 = 1 |
| 23.12 | Acceleration time 1 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.13 | Deceleration time 1 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.14 | Acceleration time 2 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.15 | Deceleration time 2 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.20 | Acc time jogging | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.21 | Dec time jogging | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.23 | Emergency stop time | Real | 0.000...1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.28 | Variable slope | List | 0... 1 | - | 1 = 1 |
| 23.29 | Variable slope rate | Real | 2... 30000 | ms | $1=1 \mathrm{~ms}$ |
| 23.32 | Shape time 1 | Real | 0.000...1800.000 | S | $1000=1 \mathrm{~s}$ |
| 23.33 | Shape time 2 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 24 Speed reference conditioning |  |  |  |  |  |
| 24.01 | Used speed reference | Real | -30000.00...30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 24.02 | Used speed feedback | Real | -30000.00...30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 24.03 | Speed error filtered | Real | -30000.0...30000.0 | rpm | $100=1 \mathrm{rpm}$ |
| 24.04 | Speed error inverted | Real | -30000.0...30000.0 | rpm | $100=1 \mathrm{rpm}$ |
| 24.11 | Speed correction | Real | -10000.00...10000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 24.12 | Speed error filter time | Real | 0... 10000 | ms | $1=1 \mathrm{~ms}$ |
| 25 Speed control |  |  |  |  |  |
| 25.01 | Torque reference speed control | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 25.02 | Speed proportional gain | Real | 0.00...250.00 | - | $100=1$ |
| 25.03 | Speed integration time | Real | 0.00...1000.00 | s | $100=1 \mathrm{~s}$ |
| 25.04 | Speed derivation time | Real | 0.000...10.000 | s | $1000=1 \mathrm{~s}$ |
| 25.05 | Derivation filter time | Real | 0... 10000 | ms | $1=1 \mathrm{~ms}$ |
| 25.06 | Acc comp derivation time | Real | 0.00...1000.00 | s | $100=1 \mathrm{~s}$ |
| 25.07 | Acc comp filter time | Real | 0.0... 1000.0 | ms | $10=1 \mathrm{~ms}$ |
| 25.15 | Proportional gain em stop | Real | 1.00...250.00 | - | $100=1$ |
| 25.53 | Torque prop reference | Real | -30000.0...30000.0 | \% | $10=1 \%$ |
| 25.54 | Torque integral reference | Real | -30000.0...30000.0 | \% | $10=1 \%$ |
| 25.55 | Torque deriv reference | Real | -30000.0...30000.0 | \% | $10=1 \%$ |
| 25.56 | Torque acc compensation | Real | -30000.0...30000.0 | \% | $10=1 \%$ |
| 26 Torque reference chain |  |  |  |  |  |
| 26.01 | Torque reference to TC | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 26.02 | Torque reference used | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 26.08 | Minimum torque ref | Real | -1000.0...0.0 | \% | $10=1 \%$ |
| 26.09 | Maximum torque ref | Real | 0.0...1000.0 | \% | $10=1 \%$ |
| 26.11 | Torque ref1 source | Analog src | - | - | $1=1$ |
| 26.12 | Torque ref2 source | Analog src | - | - | $1=1$ |
| 26.13 | Torque ref1 function | List | 0... 5 | - | $1=1$ |
| 26.14 | Torque ref1/2 selection | Binary src | - | - | $1=1$ |
| 26.17 | Torque ref filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 26.18 | Torque ramp up time | Real | 0.000...60.000 | s | $1000=1 \mathrm{~s}$ |
| 26.19 | Torque ramp down time | Real | 0.000...60.000 | s | $1000=1 \mathrm{~s}$ |
| 26.21 | Torque sel torque in | Binary src | - | - | $1=1$ |
| 26.22 | Torque sel speed in | Binary src | - | - | $1=1$ |
| 26.70 | Torque reference act 1 | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 26.71 | Torque reference act 2 | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 26.72 | Torque reference act 3 | Real | -1600.0...1600.0 | \% | $10=1 \%$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26.73 | Torque reference act 4 | Real | -1600.0.. 1600.0 | \% | 10 = 1\% |
| 26.74 | Torque ref ramp out | Real | -1600.0.. 1600.0 | \% | 10 = 1\% |
| 26.75 | Torque reference act 5 | Real | -1600.0..1600.0 | \% | $10=1 \%$ |
| 28 Frequency reference chain |  |  |  |  |  |
| 28.01 | Frequency ref ramp input | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.02 | Frequency ref ramp output | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.11 | Ext1 frequency ref1 | Analog src | - | - | $1=1$ |
| 28.12 | Ext1 frequency ref2 | Analog src | - | - | $1=1$ |
| 28.13 | Ext1 frequency function | List | 0... 5 | - | 1 = 1 |
| 28.15 | Ext2 frequency ref1 | Analog src | - | - | $1=1$ |
| 28.16 | Ext2 frequency ref2 | Analog src | - | - | 1 = 1 |
| 28.17 | Ext2 frequency function | List | 0... 5 | - | $1=1$ |
| 28.21 | Constant frequency function | $P B$ | 0000b...0001b | - | $1=1$ |
| 28.22 | Constant frequency sel1 | Binary src | - | - | $1=1$ |
| 28.23 | Constant frequency sel2 | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | 1 = 1 |
| 28.24 | Constant frequency sel3 | Binary src | - | - | 1 = 1 |
| 28.26 | Constant frequency 1 | Real | -500.00.. 500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.27 | Constant frequency 2 | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.28 | Constant frequency 3 | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.29 | Constant frequency 4 | Real | -500.00...500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.30 | Constant frequency 5 | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.31 | Constant frequency 6 | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.32 | Constant frequency 7 | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.41 | Frequency ref safe | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.51 | Critical frequency function | PB | 00b...11b | - | $1=1$ |
| 28.52 | Critical frequency 1 low | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.53 | Critical frequency 1 high | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.54 | Critical frequency 2 low | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.55 | Critical frequency 2 high | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.56 | Critical frequency 3 low | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.57 | Critical frequency 3 high | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.71 | Freq ramp set selection | Binary src | - | - | $1=1$ |
| 28.72 | Freq acceleration time 1 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 28.73 | Freq deceleration time 1 | Real | 0.000... 1800.000 | s | $1000=1 \mathrm{~s}$ |
| 28.74 | Freq acceleration time 2 | Real | 0.000... 1800.000 | S | $1000=1 \mathrm{~s}$ |
| 28.75 | Freq deceleration time 2 | Real | 0.000... 1800.000 | s | $1000=1 \mathrm{~s}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.76 | Freq ramp in zero source | Binary src | - | - | $1=1$ |
| 28.82 | Shape time 1 | Real | 0.000... 1800.000 | s | $1000=1 \mathrm{~s}$ |
| 28.83 | Shape time 2 | Real | 0.000...1800.000 | S | $1000=1 \mathrm{~s}$ |
| 28.92 | Frequency ref act 3 | Real | -500.00.. 500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.96 | Frequency ref act 7 | Real | -500.00...500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 28.97 | Frequency ref unlimited | Real | -500.00...500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 30 Limits |  |  |  |  |  |
| 30.01 | Limit word 1 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 30.02 | Torque limit status | PB | 0000h...FFFFh | - | $1=1$ |
| 30.11 | Minimum speed | Real | -30000.00..30000.00 | rpm | 100 = 1 rpm |
| 30.12 | Maximum speed | Real | -30000.00..30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 30.13 | Minimum frequency | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 30.14 | Maximum frequency | Real | -500.00..500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 30.17 | Maximum current | Real | 0.00... 30000.00 | A | $100=1 \mathrm{~A}$ |
| 30.18 | Torq lim sel | Binary src | - | - | $1=1$ |
| 30.19 | Minimum torque 1 | Real | -1600.0...0.0 | \% | 10 = 1\% |
| 30.20 | Maximum torque 1 | Real | 0.0...1600.0 | \% | $10=1 \%$ |
| 30.21 | Min torque 2 source | Analog src | - | - | $1=1$ |
| 30.22 | Max torque 2 source | Analog src | - | - | $1=1$ |
| 30.23 | Minimum torque 2 | Real | -1600.0...0.0 | \% | 10 = 1\% |
| 30.24 | Maximum torque 2 | Real | 0.0...1600.0 | \% | 10 = 1\% |
| 30.26 | Power motoring limit | Real | 0.00...600.00 | \% | $100=1 \%$ |
| 30.27 | Power generating limit | Real | -600.00...0.00 | \% | $100=1 \%$ |
| 30.30 | Overvoltage control | List | 0... 1 | - | $1=1$ |
| 30.31 | Undervoltage control | List | 0... 1 | - | $1=1$ |
| 31 Fault functions |  |  |  |  |  |
| 31.01 | External event 1 source | Binary src | - | - | $1=1$ |
| 31.02 | External event 1 type | List | 0... 1 | - | 1 = 1 |
| 31.03 | External event 2 source | Binary src sic | - | - | $1=1$ |
| 31.04 | External event 2 type | List | 0... 1 | - | $1=1$ |
| 31.05 | External event 3 source | Binary src | - | - | $1=1$ |
| 31.06 | External event 3 type | List | 0... 1 | - | $1=1$ |
| 31.07 | External event 4 source | Binary src | - | - | $1=1$ |
| 31.08 | External event 4 type | List | 0... 1 | - | $1=1$ |
| 31.09 | External event 5 source | Binary src | - | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31.10 | External event 5 type | List | 0... 1 | - | 1 = 1 |
| 31.11 | Fault reset selection | Binary src | - | - | $1=1$ |
| 31.12 | Autoreset selection | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 31.13 | Selectable fault | Real | 0000h...FFFFh | - | 1 = 1 |
| 31.14 | Number of trials | Real | 0... 5 | - | 1 = 1 |
| 31.15 | Total trials time | Real | 1.0...600.0 | S | $10=1 \mathrm{~s}$ |
| 31.16 | Delay time | Real | 0.0...120.0 | s | $10=1 \mathrm{~s}$ |
| 31.19 | Motor phase loss | List | 0... 1 | - | 1 = 1 |
| 31.20 | Earth fault | List | 0... 2 | - | 1 = 1 |
| 31.21 | Supply phase loss | List | 0... 1 | - | 1 = 1 |
| 31.22 | STO indication run/stop | List | 0... 3 | - | $1=1$ |
| 31.23 | Wiring or earth fault | List | 0... 1 | - | 1 = 1 |
| 31.24 | Stall function | List | 0... 2 | - | 1 = 1 |
| 31.25 | Stall current limit | Real | 0.0... 1600.0 | \% | $10=1 \%$ |
| 31.26 | Stall speed limit | Real | 0.00... 10000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 31.27 | Stall frequency limit | Real | 0.00... 1000.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 31.28 | Stall time | Real | 0... 3600 | s | $1=1 \mathrm{~s}$ |
| 31.30 | Overspeed trip margin | Real | 0.00... 10000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 31.32 | Emergency ramp supervision | Real | 0... 300 | \% | 1 = 1\% |
| 31.33 | Emergency ramp supervision delay | Real | 0... 100 | S | $1=1 \mathrm{~s}$ |
| 31.36 | Aux fan fault bybass | List | 0... 1 | - | 1 = 1 |
| 32 Supervision |  |  |  |  |  |
| 32.01 | Supervision status | PB | 0000...0111b | - | 1 = 1 |
| 32.05 | Supervision 1 function | List | $0 . . .6$ | - | 1 = 1 |
| 32.06 | Supervision 1 action | List | 0... 2 | - | 1 = 1 |
| 32.07 | Supervision 1 signal | Analog src | - | - | 1 = 1 |
| 32.08 | Supervision 1 filter time | Real | 0.000...30.000 | S | $1000=1 \mathrm{~s}$ |
| 32.09 | Supervision 1 low | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.10 | Supervision 1 high | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.11 | Supervision 1 hysteresis | Real | 0.00... 100000.00 | - | $100=1$ |
| 32.15 | Supervision 2 function | List | 0... 6 | - | $1=1$ |
| 32.16 | Supervision 2 action | List | 0... 2 | - | $1=1$ |
| 32.17 | Supervision 2 signal | Analog src | - | - | 1 = 1 |
| 32.18 | Supervision 2 filter time | Real | 0.000...30.000 | S | $1000=1 \mathrm{~s}$ |
| 32.19 | Supervision 2 low | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.20 | Supervision 2 high | Real | $\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32.21 | Supervision 2 hysteresis | Real | 0.00...100000.00 | - | $100=1$ |
| 32.25 | Supervision 3 function | List | 0... 6 | - | $1=1$ |
| 32.26 | Supervision 3 action | List | 0... 2 | - | $1=1$ |
| 32.27 | Supervision 3 signal | Analog src | - | - | $1=1$ |
| 32.28 | Supervision 3 filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 32.29 | Supervision 3 low | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.30 | Supervision 3 high | Real | $\begin{gathered} -21474836.00 \ldots 0 \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.31 | Supervision 3 hysteresis | Real | 0.00...100000.00 | - | $100=1$ |
| 32.35 | Supervision 4 function | List | 0... 6 | - | $1=1$ |
| 32.36 | Supervision 4 action | List | 0...2 | - | $1=1$ |
| 32.37 | Supervision 4 signal | Analog src | - | - | $1=1$ |
| 32.38 | Supervision 4 filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 32.39 | Supervision 4 low | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.40 | Supervision 4 high | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.41 | Supervision 4 hysteresis | Real | 0.00...100000.00 | - | $100=1$ |
| 32.45 | Supervision 5 function | List | 0... 6 | - | $1=1$ |
| 32.46 | Supervision 5 action | List | 0...2 | - | $1=1$ |
| 32.47 | Supervision 5 signal | Analog src | - | - | $1=1$ |
| 32.48 | Supervision 5 filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 32.49 | Supervision 5 low | Real | $\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.50 | Supervision 5 high | Real | $\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.51 | Supervision 5 hysteresis | Real | 0.00...100000.00 | - | $100=1$ |
| 32.55 | Supervision 6 function | List | 0... 6 | - | 1 = 1 |
| 32.56 | Supervision 6 action | List | 0... 2 | - | 1 = 1 |
| 32.57 | Supervision 6 signal | Analog src | - | - | $1=1$ |
| 32.58 | Supervision 6 filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 32.59 | Supervision 6 low | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.60 | Supervision 6 high | Real | $\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$ | - | $100=1$ |
| 32.61 | Supervision 6 hysteresis | Real | 0.00...100000.00 | - | $100=1$ |
| 34 Timed functions |  |  |  |  |  |
| 34.01 | Timed functions status | PB | 0000h...FFFFh | - | $1=1$ |
| 34.02 | Timer status | PB | 0000h...FFFFh | - | $1=1$ |
| 34.04 | Season/exception day status | $P B$ | 0000h...FFFFh | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34.10 | Timed functions | Binary src | - | - | 1 = 1 |
| 34.11 | Timer 1 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.12 | Timer 1 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.13 | Timer 1 duration | Duration | 00 00:00... 07 00:00 | min | 1 = 1 min |
| 34.14 | Timer 2 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.15 | Timer 2 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.16 | Timer 2 duration | Duration | 00 00:00... 07 00:00 | min | 1 = 1 min |
| 34.17 | Timer 3 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.18 | Timer 3 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.19 | Timer 3 duration | Duration | 00 00:00... 07 00:00 | min | 1 = 1 min |
| 34.20 | Timer 4 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.21 | Timer 4 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.22 | Timer 4 duration | Duration | 00 00:00... 07 00:00 | min | 1 = 1 min |
| 34.23 | Timer 5 configuration | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 34.24 | Timer 5 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.25 | Timer 5 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.26 | Timer 6 configuration | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 34.27 | Timer 6 start time | Time | 00:00:00...23:59:59 | $s$ | $1=1 \mathrm{~s}$ |
| 34.28 | Timer 6 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.29 | Timer 7 configuration | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 34.30 | Timer 7 start time | Time | 00:00:00...23:59:59 | S | $1=1 \mathrm{~s}$ |
| 34.31 | Timer 7 duration | Duration | 00 00:00... 07 00:00 | min | 1 = 1 min |
| 34.32 | Timer 8 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.33 | Timer 8 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.34 | Timer 8 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.35 | Timer 9 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.36 | Timer 9 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.37 | Timer 9 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.38 | Timer 10 configuration | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 34.39 | Timer 10 start time | Time | 00:00:00...23:59:59 | $s$ | $1=1 \mathrm{~s}$ |
| 34.40 | Timer 10 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.41 | Timer 11 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.42 | Timer 11 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.43 | Timer 11 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.44 | Timer 12 configuration | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.45 | Timer 12 start time | Time | 00:00:00...23:59:59 | s | $1=1 \mathrm{~s}$ |
| 34.46 | Timer 12 duration | Duration | 00 00:00... 07 00:00 | min | $1=1 \mathrm{~min}$ |
| 34.60 | Season 1 start date | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.61 | Season 2 start date | Date | 01.01..31.12 | d | $1=1 \mathrm{~d}$ |
| 34.62 | Season 3 start date | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34.63 | Season 4 start date | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.70 | Number of active exceptions | Real | 0... 16 | - | $1=1$ |
| 34.71 | Exception types | PB | 0000h...FFFFh | - | 1 = 1 |
| 34.72 | Exception 1 start | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.73 | Exception 1 length | Real | 0... 60 | d | $1=1 \mathrm{~d}$ |
| 34.74 | Exception 2 start | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.75 | Exception 2 length | Real | 0... 60 | d | 1 = 1 d |
| 34.76 | Exception 3 start | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.77 | Exception 3 length | Real | 0... 60 | d | $1=1 \mathrm{~d}$ |
| 34.78 | Exception day 4 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.79 | Exception day 5 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.80 | Exception day 6 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.81 | Exception day 7 | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.82 | Exception day 8 | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.83 | Exception day 9 | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.84 | Exception day 10 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.85 | Exception day 11 | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.86 | Exception day 12 | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.87 | Exception day 13 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.88 | Exception day 14 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.89 | Exception day 15 | Date | 01.01...31.12 | d | 1 = 1 d |
| 34.90 | Exception day 16 | Date | 01.01...31.12 | d | $1=1 \mathrm{~d}$ |
| 34.100 | Timed function 1 | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 34.101 | Timed function 2 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 34.102 | Timed function 3 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 34.110 | Boost time function | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 34.111 | Boost time activation source | Binary src | - | - | $1=1$ |
| 34.112 | Boost time duration | Duration | 00 00:00... 07 00:00 | min | 1 = 1 min |
| 35 Motor thermal protection |  |  |  |  |  |
| 35.01 | Motor estimated temperature | Real | $\begin{gathered} -60 \ldots 1000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 1832{ }^{\circ} \mathrm{F} \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ | $1=1^{\circ}$ |
| 35.02 | Measured temperature 1 | Real | $\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 903{ }^{\circ} \mathrm{F} \end{gathered}$ | ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F} \text { or }$ ohm | 1 = 1 unit |
| 35.03 | Measured temperature 2 | Real | $\begin{gathered} -60 \ldots 5000{ }^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 903{ }^{\circ} \mathrm{F} \end{gathered}$ | $\begin{aligned} & { }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F} \text { or } \\ & \text { ohm } \end{aligned}$ | 1 = 1 unit |
| 35.11 | Temperature 1 source | List | $0 \ldots . .2,5 \ldots 8,11 . .16,19 \ldots 22$ | - | 1 = 1 |
| 35.12 | Temperature 1 fault limit | Real | $\begin{gathered} -60 \ldots . \ldots 000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots . .9032^{\circ} \mathrm{F} \end{gathered}$ | $\begin{array}{\|l} \hline{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F} \text { or } \\ \text { ohm } \end{array}$ | 1 = 1 unit |
| 35.13 | Temperature 1 warning limit | Real | $\begin{gathered} -60 \ldots 5000{ }^{\circ} \mathrm{C} \text { or } \\ -76 \ldots . \ldots 032^{\circ} \mathrm{F} \end{gathered}$ | ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F} \text { or }$ ohm | 1 = 1 unit |
| 35.14 | Temperature 1 Al source | Analog src | - | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35.21 | Temperature 2 source | List | 0...2, 5...8, 11...16, 19... 22 | - | 1 = 1 |
| 35.22 | Temperature 2 fault limit | Real | $\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots . .9032^{\circ} \mathrm{F} \end{gathered}$ | ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F} \text { or }$ ohm | 1 = 1 unit |
| 35.23 | Temperature 2 warning limit | Real | $\begin{gathered} -60 \ldots 5000{ }^{\circ} \mathrm{C} \text { or } \\ -76 \ldots . .9032^{\circ} \mathrm{F} \end{gathered}$ | $\begin{gathered} { }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F} \text { or } \\ \text { ohm } \end{gathered}$ | 1 = 1 unit |
| 35.24 | Temperature 2 AI source | Analog src | - | - | 1 = 1 |
| 35.50 | Motor ambient temperature | Real | $\begin{aligned} & -60 \ldots 100^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 212^{\circ} \mathrm{F} \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ | $1=1^{\circ}$ |
| 35.51 | Motor load curve | Real | 50... 150 | \% | 1 = 1\% |
| 35.52 | Zero speed load | Real | 50... 150 | \% | 1 = 1\% |
| 35.53 | Break point | Real | 1.00 ... 500.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 35.54 | Motor nominal temperature rise | Real | $0 \ldots 300{ }^{\circ} \mathrm{C}$ or $32 \ldots . .572{ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ | $1=1^{\circ}$ |
| 35.55 | Motor thermal time const | Real | 100... 10000 | s | $1=1 \mathrm{~s}$ |
| 36 Load analyzer |  |  |  |  |  |
| 36.01 | PVL signal source | Analog src | - | - | $1=1$ |
| 36.02 | PVL filter time | Real | 0.00...120.00 | s | $100=1 \mathrm{~s}$ |
| 36.06 | AL2 signal source | Analog src | - | - | 1 = 1 |
| 36.07 | AL2 signal scaling | Real | 0.00...32767.00 | - | $100=1$ |
| 36.09 | Reset loggers | List | 0... 3 | - | $1=1$ |
| 36.10 | PVL peak value | Real | -32768.00...32767.00 | - | $100=1$ |
| 36.11 | PVL peak date | Data | - | - | 1 =1 |
| 36.12 | PVL peak time | Data | - | - | $1=1$ |
| 36.13 | PVL current at peak | Real | -32768.00...32767.00 | A | $100=1 \mathrm{~A}$ |
| 36.14 | PVL DC voltage at peak | Real | 0.00... 2000.00 | V | $100=1 \mathrm{~V}$ |
| 36.15 | PVL speed at peak | Real | -30000.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 36.16 | PVL reset date | Data | - | - | $1=1$ |
| 36.17 | PVL reset time | Data | - | - | $1=1$ |
| 36.20 | AL1 0 to 10\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.21 | AL1 10 to 20\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.22 | AL1 20 to 30\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.23 | AL1 30 to 40\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.24 | AL1 40 to 50\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.25 | AL1 50 to 60\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.26 | AL1 60 to 70\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.27 | AL1 70 to 80\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.28 | AL1 80 to 90\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.29 | AL1 over 90\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.40 | AL2 0 to 10\% | Real | 0.00...100.00 | \% | $100=1 \%$ |
| 36.41 | AL2 10 to 20\% | Real | 0.00...100.00 | \% | $100=1 \%$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 36.42 | AL2 20 to 30\% | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 36.43 | AL2 30 to 40\% | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 36.44 | AL2 40 to 50\% | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 36.45 | AL2 50 to 60\% | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 36.46 | AL2 60 to 70\% | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 36.47 | AL2 70 to 80\% | Real | 0.00... 100.00 | \% | 100 = 1\% |
| 36.48 | AL2 80 to 90\% | Real | 0.00... 100.00 | \% | $100=1 \%$ |
| 36.49 | AL2 over 90\% | Real | 0.00... 100.00 | \% | 100 = 1\% |
| 36.50 | AL2 reset date | Data | - | - | $1=1$ |
| 36.51 | AL2 reset time | Data | - | - | $1=1$ |
| 37 User load curve |  |  |  |  |  |
| 37.01 | ULC output status word | PB | 0000h...FFFFh | - | $1=1$ |
| 37.02 | ULC supervision signal | Analog src | - | - | $1=1$ |
| 37.03 | ULC overload actions | List | 0... 3 | - | $1=1$ |
| 37.04 | ULC underload actions | List | 0... 3 | - | 1 = 1 |
| 37.11 | ULC speed table point 1 | Real | -30000.0...30000.0 | rpm | $10=1 \mathrm{rpm}$ |
| 37.12 | ULC speed table point 2 | Real | -30000.0...30000.0 | rpm | $10=1 \mathrm{rpm}$ |
| 37.13 | ULC speed table point 3 | Real | -30000.0... 30000.0 | rpm | $10=1 \mathrm{rpm}$ |
| 37.14 | ULC speed table point 4 | Real | -30000.0...30000.0 | rpm | $10=1 \mathrm{rpm}$ |
| 37.15 | ULC speed table point 5 | Real | -30000.0...30000.0 | rpm | $10=1 \mathrm{rpm}$ |
| 37.16 | ULC frequency table point 1 | Real | -500.0.. 500.0 | Hz | $10=1 \mathrm{~Hz}$ |
| 37.17 | ULC frequency table point 2 | Real | -500.0..500.0 | Hz | $10=1 \mathrm{~Hz}$ |
| 37.18 | ULC frequency table point 3 | Real | -500.0..500.0 | Hz | $10=1 \mathrm{~Hz}$ |
| 37.19 | ULC frequency table point 4 | Real | -500.0..500.0 | Hz | $10=1 \mathrm{~Hz}$ |
| 37.20 | ULC frequency table point 5 | Real | -500.0..500.0 | Hz | $10=1 \mathrm{~Hz}$ |
| 37.21 | ULC underload point 1 | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 37.22 | ULC underload point 2 | Real | -1600.0.. 1600.0 | \% | 10 = 1\% |
| 37.23 | ULC underload point 3 | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 37.24 | ULC underload point 4 | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 37.25 | ULC underload point 5 | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 37.31 | ULC overload point 1 | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 37.32 | ULC overload point 2 | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 37.33 | ULC overload point 3 | Real | -1600.0...1600.0 | \% | $10=1 \%$ |
| 37.34 | ULC overload point 4 | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 37.35 | ULC overload point 5 | Real | -1600.0...1600.0 | \% | 10 = 1\% |
| 37.41 | ULC overload timer | Real | 0.0... 10000.0 | S | $10=1 \mathrm{~s}$ |
| 37.42 | ULC underload timer | Real | 0.0... 10000.0 | S | $10=1 \mathrm{~s}$ |
| 40 Process PID set 1 |  |  |  |  |  |
| 40.01 | Process PID output actual | Real | -100000.00... 100000.00 | \% | $100=1 \%$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40.02 | Process PID feedback actual | Real | -100000.00...100000.00 | $\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ <br> customer unit |
| 40.03 | Process PID setpoint actual | Real | -100000.00...100000.00 | $\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ <br> customer unit |
| 40.04 | Process PID deviation actual | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ customer unit |
| 40.06 | Process PID status word | PB | 0000h...FFFFh | - | $1=1$ |
| 40.07 | Process PID operation mode | List | 0... 2 | - | $1=1$ |
| 40.08 | Set 1 feedback 1 source | Analog src | - | - | $1=1$ |
| 40.09 | Set 1 feedback 2 source | Analog src | - | - | $1=1$ |
| 40.10 | Set 1 feedback function | List | 0...13 | - | $1=1$ |
| 40.11 | Set 1 feedback filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 40.16 | Set 1 setpoint 1 source | Analog src | - | - | $1=1$ |
| 40.17 | Set 1 setpoint 2 source | Analog src | - | - | $1=1$ |
| 40.18 | Set 1 setpoint function | List | 0...11 | - | $1=1$ |
| 40.19 | Set 1 internal setpoint sel1 | Binary src | - | - | $1=1$ |
| 40.20 | Set 1 internal setpoint sel2 | Binary src | - | - | $1=1$ |
| 40.21 | Set 1 internal setpoint 1 | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ customer unit |
| 40.22 | Set 1 internal setpoint 2 | Real | -100000.00...100000.00 | PID customer units | $100=1 \text { PID }$ <br> customer unit |
| 40.23 | Set 1 internal setpoint 3 | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \mathrm{PID}$ <br> customer unit |
| 40.26 | Set 1 setpoint min | Real | -100000.00...100000.00 | - | $100=1$ |
| 40.27 | Set 1 setpoint max | Real | -100000.00...100000.00 | - | $100=1$ |
| 40.28 | Set 1 setpoint increase time | Real | 0.0...1800.0 | s | $10=1 \mathrm{~s}$ |
| 40.29 | Set 1 setpoint decrease time | Real | 0.0...1800.0 | s | $10=1 \mathrm{~s}$ |
| 40.30 | Set 1 setpoint freeze | Binary src | - | - | $1=1$ |
| 40.31 | Set 1 deviation inversion | Binary src | - | - | $1=1$ |
| 40.32 | Set 1 gain | Real | 0.10...100.00 | - | $100=1$ |
| 40.33 | Set 1 integration time | Real | 0.0...9999.0 | s | $10=1 \mathrm{~s}$ |
| 40.34 | Set 1 derivation time | Real | 0.000...10.000 | s | $1000=1 \mathrm{~s}$ |
| 40.35 | Set 1 derivation filter time | Real | 0.0..10.0 | s | $10=1 \mathrm{~s}$ |
| 40.36 | Set 1 output min | Real | -100000.0...100000.0 | - | $10=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40.37 | Set 1 output max | Real | -100000.0...100000.0 | - | $10=1$ |
| 40.38 | Set 1 output freeze | Binary src | - | - | $1=1$ |
| 40.43 | Set 1 sleep level | Real | 0.0...100000.0 | - | $10=1$ |
| 40.44 | Set 1 sleep delay | Real | 0.0...3600.0 | s | $10=1 \mathrm{~s}$ |
| 40.45 | Set 1 sleep boost time | Real | 0.0...3600.0 | s | $10=1 \mathrm{~s}$ |
| 40.46 | Set 1 sleep boost step | Real | 0.0...100000.0 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $10=1 \mathrm{PID}$ <br> customer unit |
| 40.47 | Set 1 wake-up deviation | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ <br> customer unit |
| 40.48 | Set 1 wake-up delay | Real | 0.00...60.00 | s | $100=1 \mathrm{~s}$ |
| 40.49 | Set 1 tracking mode | Binary src | - | - | $1=1$ |
| 40.50 | Set 1 tracking ref selection | Analog src | - | - | $1=1$ |
| 40.57 | PID set1/set2 selection | Binary src | - | - | $1=1$ |
| 40.58 | Set 1 increase prevention | List | 0...3 | - | 1 = 1 |
| 40.59 | Set 1 decrease prevention | List | 0... 3 | - | $1=1$ |
| 40.62 | PID internal setpoint actual | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ <br> customer unit |
| 40.90 | Set 1 feedback multiplier k | Real | -100000.00...100000.00 | - | $100=1$ |
| 40.91 | Feedback data storage | Real | -327.68...327.67 | - | $100=1$ |
| 40.92 | Setpoint data storage | Real | -327.68...327.67 | - | $100=1$ |

## 41 Process PID set 2

| 41.08 | Set 2 feedback 1 source | Analog <br> src | - | - | $1=1$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 41.09 | Set 2 feedback 2 source | Analog <br> src | - | - | $1=1$ |
| 41.10 | Set 2 feedback function | List | $0 \ldots 13$ | - | $1=1$ |
| 41.11 | Set 2 feedback filter time | Real | $0.000 \ldots 30.000$ | s | $1000=1 \mathrm{~s}$ |
| 41.16 | Set 2 setpoint 1 source | Analog <br> src | - | - | $1=1$ |
| 41.17 | Set 2 setpoint 2 source | Analog <br> src | - | - | $1=1$ |
| 41.18 | Set 2 setpoint function | List | $0 \ldots 11$ | - | $1=1$ |
| 41.19 | Set 2 internal setpoint sel1 | Binary <br> src | - | - | $1=1$ |
| 41.20 | Set 2 internal setpoint sel2 | Binary <br> src | - | - | $1=1$ |
| 41.21 | Set 2 internal setpoint 1 | Real | $-32768.0 \ldots 32767.0$ | PID <br> customer <br> unit | $100=1$ PID <br> customer unit |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 41.22 | Set 2 internal setpoint 2 | Real | -32768.0...32767.0 | PID customer units | $100=1 \text { PID }$ customer unit |
| 41.23 | Set 2 internal setpoint 3 | Real | -32768.0...32767.0 | PID customer units | $100=1 \text { PID }$ customer unit |
| 41.26 | Set 2 setpoint min | Real | -32768.0...32767.0 | - | $100=1$ |
| 41.27 | Set 2 setpoint max | Real | -32768.0...32767.0 | - | $100=1$ |
| 41.28 | Set 2 setpoint increase time | Real | 0.0...1800.0 | s | $10=1 \mathrm{~s}$ |
| 41.29 | Set 2 setpoint decrease time | Real | 0.0...1800.0 | S | $10=1 \mathrm{~s}$ |
| 41.30 | Set 2 setpoint freeze | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | $1=1$ |
| 41.31 | Set 2 deviation inversion | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | 1 = 1 |
| 41.32 | Set 2 gain | Real | 0.10... 100.00 | - | $100=1$ |
| 41.33 | Set 2 integration time | Real | 0.0...9999.0 | S | $10=1 \mathrm{~s}$ |
| 41.34 | Set 2 derivation time | Real | 0.000... 10.000 | S | $1000=1 \mathrm{~s}$ |
| 41.35 | Set 2 derivation filter time | Real | 0.0... 10.0 | s | $10=1 \mathrm{~s}$ |
| 41.36 | Set 2 output min | Real | -32768.0.. 32767.0 | - | $10=1$ |
| 41.37 | Set 2 output max | Real | -32768.0...32767.0 | - | $10=1$ |
| 41.38 | Set 2 output freeze | Binary src | - | - | $1=1$ |
| 41.43 | Set 2 sleep level | Real | 0.0... 32767.0 | - | $10=1$ |
| 41.44 | Set 2 sleep delay | Real | 0.0...3600.0 | S | $10=1 \mathrm{~s}$ |
| 41.45 | Set 2 sleep boost time | Real | 0.0...3600.0 | s | $10=1 \mathrm{~s}$ |
| 41.46 | Set 2 sleep boost step | Real | 0.0...32767.0 | PID customer units | $10=1 \text { PID }$ <br> customer unit |
| 41.47 | Set 2 wake-up deviation | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | PID customer units | $100=1 \mathrm{PID}$ customer unit |
| 41.48 | Set 2 wake-up delay | Real | 0.00...60.00 | S | $100=1 \mathrm{~s}$ |
| 41.49 | Set 2 tracking mode | Binary src | - | - | $1=1$ |
| 41.50 | Tracking ref sel | Analog src | - | - | $1=1$ |
| 41.58 | Set 2 increase prevention | List | 0... 3 | - | 1 = 1 |
| 41.59 | Set 2 decrease prevention | List | 0... 3 | - | $1=1$ |
| 41.90 | Set 2 feedback multiplier k | Real | -100000.00...100000.00 | - | $100=1$ |
| 43 Brake chopper |  |  |  |  |  |
| 43.01 | Braking resistor temperature | Real | 0.0...120.0 | \% | 10 = 1\% |
| 43.06 | Brake chopper | List | 0... 2 | - | $1=1$ |
| 43.07 | Brake chopper runtime | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | $1=1$ |
| 43.08 | Brake resistor thermal tc | Real | 0... 10000 | s | $1=1 \mathrm{~s}$ |
| 43.09 | Brake resistor Pmax cont | Real | 0.00...10000.00 | kW | $100=1 \mathrm{~kW}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 43.10 | Brake resistance | Real | 0.0...1000.0 | ohm | $10=1$ ohm |
| 43.11 | Brake resistor fault limit | Real | 0... 150 | \% | 1 = 1\% |
| 43.12 | Brake resistor warning limit | Real | 0... 150 | \% | 1 = 1\% |
| 45 Energy efficiency |  |  |  |  |  |
| 45.01 | Saved GW hours | Real | 0... 65535 | GWh | 1 = 1 GWh |
| 45.02 | Saved MW hours | Real | 0... 999 | MWh | 1 = 1 MWh |
| 45.03 | Saved kW hours | Real | 0.0...999.9 | kWh | $10=1 \mathrm{kWh}$ |
| 45.04 | Saved energy | Real | 0.0...214748368.0 | kWh | $10=1 \mathrm{kWh}$ |
| 45.05 | Saved money x1000 | Real | 0...4294967295 thousands | (selectable) | 1 = 1 unit |
| 45.06 | Saved money | Real | 0.00...999.99 | (selectable) | $100=1$ unit |
| 45.07 | Saved amount | Real | 0.00...21474830.08 | (selectable) | $100=1$ unit |
| 45.08 | CO2 reduction in kilotons | Real | 0... 65535 | metric kiloton | $1 \text { = } 1 \text { metric }$ kiloton |
| 45.09 | CO2 reduction in tons | Real | 0.0...999.9 | metric ton | $\begin{gathered} 10=1 \text { metric } \\ \text { ton } \end{gathered}$ |
| 45.10 | Total saved CO2 | Real | 0.0...214748300.8 | metric ton | $\begin{gathered} 10=1 \text { metric } \\ \text { ton } \end{gathered}$ |
| 45.11 | Energy optimizer | List | 0... 1 | - | $1=1$ |
| 45.12 | Energy tariff 1 | Real | 0.000...4294966.296 | (selectable) | $1000=1$ unit |
| 45.13 | Energy tariff 2 | Real | 0.000...4294966.296 | (selectable) | $1000=1$ unit |
| 45.14 | Tariff selection | Binary src | - | - | $1=1$ |
| 45.18 | CO 2 conversion factor | Real | 0.000...65.535 | metric ton/ MWh | $\begin{gathered} 1000=1 \\ \text { metric } \\ \text { ton/MWh } \end{gathered}$ |
| 45.19 | Comparison power | Real | 0.00...10000000.00 | kW | $10=1 \mathrm{~kW}$ |
| 45.21 | Energy calculations reset | List | 0... 1 | - | 1 = 1 |
| 46 Monitoring/scaling settings |  |  |  |  |  |
| 46.01 | Speed scaling | Real | 0.00...30000.00 | rpm | 100 = 1 rpm |
| 46.02 | Frequency scaling | Real | 0.10... 1000.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 46.03 | Torque scaling | Real | 0.1..1000.0 | \% | 10 = 1\% |
| 46.04 | Power scaling | Real | $\begin{aligned} & 0.10 \ldots 30000.00 \mathrm{~kW} \text { or } \\ & 0.10 \ldots 40214.48 \mathrm{hp} \end{aligned}$ | kW or hp | $10=1$ unit |
| 46.05 | Current scaling | Real | 0... 30000 | A | $1=1 \mathrm{~A}$ |
| 46.11 | Filter time motor speed | Real | 2... 20000 | ms | $1=1 \mathrm{~ms}$ |
| 46.12 | Filter time output frequency | Real | 2... 20000 | ms | $1=1 \mathrm{~ms}$ |
| 46.13 | Filter time motor torque | Real | 2... 20000 | ms | $1=1 \mathrm{~ms}$ |
| 46.14 | Filter time power | Real | 2... 20000 | ms | $1=1 \mathrm{~ms}$ |
| 46.21 | At speed hysteresis | Real | 0.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 46.22 | At frequency hysteresis | Real | 0.00... 1000.00 | Hz | $100=1 \mathrm{~Hz}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 46.23 | At torque hysteresis | Real | 0.0...300.0 | \% | 1 = 1\% |
| 46.31 | Above speed limit | Real | 0.00... 30000.00 | rpm | $100=1 \mathrm{rpm}$ |
| 46.32 | Above frequency limit | Real | 0.00... 1000.00 | Hz | $100=1 \mathrm{~Hz}$ |
| 46.33 | Above torque limit | Real | 0.0... 1600.0 | \% | 10 = 1\% |
| 46.41 | kWh pulse scaling | Real | 0.001... 1000.000 | kWh | $1000=1 \mathrm{kWh}$ |
| 47 Data storage |  |  |  |  |  |
| 47.01 | Data storage 1 real32 | Real | $\begin{gathered} \hline-2147483.000 \ldots \\ 2147483.000 \end{gathered}$ | - | $1000=1$ |
| 47.02 | Data storage 2 real32 | Real | $\begin{gathered} \hline-2147483.000 \ldots \\ 2147483.000 \end{gathered}$ | - | $1000=1$ |
| 47.03 | Data storage 3 real32 | Real | $\begin{gathered} -2147483.000 \ldots \\ 2147483.000 \end{gathered}$ | - | $1000=1$ |
| 47.04 | Data storage 4 real32 | Real | $\begin{gathered} -2147483.000 \ldots \\ 2147483.000 \end{gathered}$ | - | $1000=1$ |
| 47.11 | Data storage 1 int32 | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 47.12 | Data storage 2 int32 | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 47.13 | Data storage 3 int32 | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 47.14 | Data storage 4 int32 | Real | $\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 47.21 | Data storage 1 int16 | Real | -32768... 32767 | - | 1 = 1 |
| 47.22 | Data storage 2 int16 | Real | -32768... 32767 | - | $1=1$ |
| 47.23 | Data storage 3 int16 | Real | -32768... 32767 | - | 1 = 1 |
| 47.24 | Data storage 4 int16 | Real | -32768... 32767 | - | 1 = 1 |
| 49 Panel port communication |  |  |  |  |  |
| 49.01 | Node ID number | Real | 1... 32 | - | 1 = 1 |
| 49.03 | Baud rate | List | 1... 5 | - | $1=1$ |
| 49.04 | Communication loss time | Real | 0.3...3000.0 | S | $10=1 \mathrm{~s}$ |
| 49.05 | Communication loss action | List | 0... 3 | - | $1=1$ |
| 49.06 | Refresh settings | List | 0... 1 | - | 1 = 1 |
| 50 Fieldbus adapter (FBA) |  |  |  |  |  |
| 50.01 | FBA A | List | 0... 1 | - | $1=1$ |
| 50.02 | FBA A comm loss func | List | 0... 5 | - | 1 = 1 |
| 50.03 | FBA A comm loss t out | Real | 0.3...6553.5 | s | $10=1 \mathrm{~s}$ |
| 50.04 | FBA A ref1 type | List | 0... 5 | - | $1=1$ |
| 50.05 | FBA A ref2 type | List | 0... 5 | - | 1 = 1 |
| 50.06 | FBA A SW sel | List | 0... 1 | - | $1=1$ |
| 50.07 | FBA A actual 1 type | List | 0... 5 | - | $1=1$ |
| 50.08 | FBA A actual 2 type | List | 0... 5 | - | $1=1$ |
| 50.09 | FBA A SW transparent source | Analog src | - | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50.10 | FBA A act1 transparent source | Analog src | - | - | 1 = 1 |
| 50.11 | FBA A act2 transparent source | Analog src | - | - | $1=1$ |
| 50.12 | FBA A debug mode | List | 0... 2 | - | $1=1$ |
| 50.13 | FBA A control word | Data | 00000000h...FFFFFFFFh | - | 1 = 1 |
| 50.14 | FBA A reference 1 | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 50.15 | FBA A reference 2 | Real | $\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 50.16 | FBA A status word | Data | 00000000h...FFFFFFFFh | - | 1 = 1 |
| 50.17 | FBA A actual value 1 | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 50.18 | FBA A actual value 2 | Real | $\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$ | - | $1=1$ |
| 51 FBA A settings |  |  |  |  |  |
| 51.01 | FBA A type | List | - | - | 1 = 1 |
| 51.02 | FBA A Par2 | Real | 0... 65535 | - | $1=1$ |
| $\ldots$ | ... | $\ldots$ | ... | $\ldots$ |  |
| 51.26 | FBA A Par26 | Real | 0... 65535 | - | $1=1$ |
| 51.27 | FBA A par refresh | List | 0... 1 | - | $1=1$ |
| 51.28 | FBA A par table ver | Data | - | - | $1=1$ |
| 51.29 | FBA A drive type code | Real | 0... 65535 | - | $1=1$ |
| 51.30 | FBA A mapping file ver | Real | 0... 65535 | - | $1=1$ |
| 51.31 | D2FBA A comm status | List | 0... 6 | - | $1=1$ |
| 51.32 | FBA A comm SW ver | Data | - | - | $1=1$ |
| 51.33 | FBA A appl SW ver | Data | - | - | 1 = 1 |
| 52 FBA A data in |  |  |  |  |  |
| 52.01 | FBA A data in1 | List | - | - | 1 = 1 |
| $\ldots$ | ... | $\ldots$ | $\ldots$ | $\ldots$ |  |
| 52.12 | FBA A data in12 | List | - | - | $1=1$ |
| 53 FBA A data out |  |  |  |  |  |
| 53.01 | FBA A data out1 | List | - | - | 1 = 1 |
| $\ldots$ | ... | ... | $\ldots$ | $\ldots$ |  |
| 53.12 | FBA A data out12 | List | - | - | $1=1$ |
| 58 Embedded fieldbus |  |  |  |  |  |
| 58.01 | Protocol | List | 0... 2 | - | $1=1$ |
| 58.02 | Protocol ID | Real | 0... 65535 | - | $1=1$ |
| 58.03 | Node address | Real | 0... 255 | - | $1=1$ |
| 58.04 | Baud rate | List | 0...7 | - | $1=1$ |
| 58.05 | Parity | List | 0... 3 | - | $1=1$ |
| 58.06 | Comm control | List | 0... 2 | - | $1=1$ |
| 58.07 | Comm diagnostics | PB | 0000h...FFFFh | - | $1=1$ |

## ac.maher.co.ilr

| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 58.08 | Received packets | Real | 0... 4294967295 | - | 1 = 1 |
| 58.09 | Transmitted packets | Real | 0... 4294967295 | - | $1=1$ |
| 58.10 | All packets | Real | 0...4294967295 | - | $1=1$ |
| 58.11 | UART errors | Real | 0... 4294967295 | - | 1 = 1 |
| 58.12 | CRC errors | Real | 0... 4294967295 | - | $1=1$ |
| 58.14 | Communication loss action | List | 0... 5 | - | 1 = 1 |
| 58.15 | Communication loss mode | List | 1... 2 | - | $1=1$ |
| 58.16 | Communication loss time | Real | 0.0...6000.0 | s | $10=1 \mathrm{~s}$ |
| 58.17 | Transmit delay | Real | 0... 65535 | ms | $1=1 \mathrm{~ms}$ |
| 58.18 | EFB control word | PB | 0000h...FFFFh | - | 1 = 1 |
| 58.19 | EFB status word | PB | 0000h...FFFFh | - | $1=1$ |
| 58.25 | Control profile | List | 0, 5 | - | 1 = 1 |
| 58.26 | EFB ref1 type | List | 0... 5 | - | $1=1$ |
| 58.27 | EFB ref2 type | List | 0... 5 | - | $1=1$ |
| 58.28 | EFB act1 type | List | 0... 5 | - | 1 = 1 |
| 58.29 | EFB act2 type | List | $0 . . .5$ | - | $1=1$ |
| 58.31 | EFB act1 transparent source | Analog src | - | - | $1=1$ |
| 58.32 | EFB act2 transparent source | Analog src | - | - | 1 = 1 |
| 58.33 | Addressing mode | List | 0... 2 | - | 1 = 1 |
| 58.34 | Word order | List | 0... 1 | - | 1 = 1 |
| 58.101 | Data I/O 1 | Analog src | - | - | 1 = 1 |
| 58.102 | Data I/O 2 | Analog src | - | - | 1 = 1 |
| 58.103 | Data I/O 3 | Analog src | - | - | 1 = 1 |
| 58.104 | Data I/O 4 | Analog src | - | - | 1 = 1 |
| 58.105 | Data I/O 5 | Analog src | - | - | 1 = 1 |
| 58.106 | Data I/O 6 | Analog src | - | - | 1 = 1 |
| 58.107 | Data I/O 7 | Analog src | - | - | 1 = 1 |
| $\ldots$ | ... | ... | $\cdots$ | $\ldots$ |  |
| 58.114 | Data I/O 14 | Analog src | - | - | $1=1$ |
| 70 Override |  |  |  |  |  |
| 70.01 | Override status | $P B$ | 0000h...FFFFh | - | 1 = 1 |
| 70.02 | Override | Binary src | - | - | $1=1$ |
| 70.03 | Override activation source | Binary src | - | - | 1 = 1 |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 70.04 | Override reference source | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | 1 = 1 |
| 70.05 | Override direction | $\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$ | - | - | $1=1$ |
| 70.06 | Override frequency | Real | -500.0...500.0 | Hz | $100=1 \mathrm{~Hz}$ |
| 70.07 | Override speed | Real | -30000.0...30000.0 | rpm | $100=1 \mathrm{rpm}$ |
| 70.10 | Override enables selection | PB | 0000h...FFFFh | - | $1=1$ |
| 71 External PID1 |  |  |  |  |  |
| 71.01 | External PID act value | Real | -32768.00...32767.00 | \% | 100 = 1 \% |
| 71.02 | Feedback act value | Real | -32768.00...32767.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ customer unit |
| 71.03 | Setpoint act value | Real | -32768.00...32767.00 | PID <br> $\begin{array}{c}\text { customer } \\ \text { units }\end{array}$ | $100=1 \text { PID }$ <br> customer unit |
| 71.04 | Deviation act value | Real | -32768.00...32767.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100=1 \text { PID }$ customer unit |
| 71.06 | PID status word | PB | 0000h...FFFFh | - | $1=1$ |
| 71.07 | PID operation mode | List | 0... 2 | - | $1=1$ |
| 71.08 | Feedback 1 source | Analog src | - | - | $1=1$ |
| 71.11 | Feedback filter time | Real | 0.000...30.000 | s | $1000=1 \mathrm{~s}$ |
| 71.14 | Setpoint scaling | Real | -100000.00...100000.00 | - | $100=1$ |
| 71.15 | Output scaling | Real | -100000.00...100000.00 | - | $100=1$ |
| 71.16 | Setpoint 1 source | Analog src | - | - | $1=1$ |
| 71.19 | Internal setpoint sel1 | Binary src | - | - | $1=1$ |
| 71.20 | Internal setpoint sel2 | Binary src | - | - | $1=1$ |
| 71.21 | Internal setpoint 1 | Real | -100000.00...100000.00 | PID customer units | $100=1 \mathrm{PID}$ customer unit |
| 71.22 | Internal setpoint 2 | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100 \text { = } 1 \text { PID }$ customer unit |
| 71.23 | Internal setpoint 3 | Real | -100000.00...100000.00 | $\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$ | $100 \text { = } 1 \text { PID }$ customer unit |
| 71.26 | Setpoint min | Real | -100000.00...100000.00 | - | $100=1$ |
| 71.27 | Setpoint max | Real | -100000.00...100000.00 | - | $100=1$ |
| 71.31 | Deviation inversion | Binary src | - | - | $1=1$ |
| 71.32 | Gain | Real | 0.10...100.00 | - | $100=1$ |
| 71.33 | Integration time | Real | 0.0...9999.0 | s | $10=1 \mathrm{~s}$ |
| 71.34 | Derivation time | Real | 0.000...10.000 | s | $1000=1 \mathrm{~s}$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 71.35 | Derivation filter time | Real | 0.0...10.0 | S | $10=1 \mathrm{~s}$ |
| 71.36 | Output min | Real | -32768.0...32767.0 | - | $10=1$ |
| 71.37 | Output max | Real | -32768.0...32767.0 | - | $10=1$ |
| 71.38 | Output freeze | Binary src | - | - | $1=1$ |
| 71.39 | Deadband range | Real | 0.0... 32767.0 | - | $10=1$ |
| 71.40 | Deadband delay | Real | 0.0...3600.0 | S | $10=1 \mathrm{~s}$ |
| 71.58 | Increase prevention | List | 0... 3 | - | $1=1$ |
| 71.59 | Decrease prevention | List | 0... 3 | - | $1=1$ |
| 71.62 | Internal setpoint actual | Real | -32768.00..32767.00 | PID customer units | $100=1 \text { PID }$ customer unit |
| 76 PFC configuration |  |  |  |  |  |
| 76.01 | PFC status | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 76.02 | PFC system status | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 76.11 | Pump/fan status 1 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 76.12 | Pump/fan status 2 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 76.13 | Pump/fan status 3 | $P B$ | 0000h...FFFFh | - | $1=1$ |
| 76.14 | Pump/fan status 4 | PB | 0000h...FFFFh | - | 1 = 1 |
| 76.21 | PFC configuration | List | 0, 2... 3 | - | 1 = 1 |
| 76.25 | Number of motors | Real | 1... 4 | - | $1=1$ |
| 76.26 | Min number of motors allowed | Real | 0... 4 | - | 1 = 1 |
| 76.27 | Max number of motors allowed | Real | 1... 4 | - | 1 = 1 |
| 76.30 | Start speed 1 | Real | 0... 32767 | rpm/Hz | 1 = 1 unit |
| 76.31 | Start speed 2 | Real | 0... 32767 | rpm/Hz | 1 = 1 unit |
| 76.32 | Start speed 3 | Real | 0... 32767 | rpm/Hz | 1 = 1 unit |
| 76.41 | Stop speed 1 | Real | 0... 32767 | rpm/Hz | 1 = 1 unit |
| 76.42 | Stop speed 2 | Real | 0... 32767 | rpm/Hz | 1 = 1 unit |
| 76.43 | Stop speed 3 | Real | 0... 32767 | rpm/Hz | 1 = 1 unit |
| 76.55 | Start delay | Real | 0.00... 12600.00 | S | $100=1 \mathrm{~s}$ |
| 76.56 | Stop delay | Real | 0.00... 12600.00 | S | $100=1 \mathrm{~s}$ |
| 76.57 | Speed hold on | Real | 0.00... 1000.00 | S | $100=1 \mathrm{~s}$ |
| 76.58 | Speed hold off | Real | 0.00... 1000.00 | s | $100=1 \mathrm{~s}$ |
| 76.59 | PFC contactor delay | Real | 0.20...600.00 | S | $100=1 \mathrm{~s}$ |
| 76.60 | PFC ramp acceleration time | Real | 0.00... 1800.00 | S | $100=1 \mathrm{~s}$ |
| 76.61 | PFC ramp deceleration time | Real | 0.00... 1800.00 | S | $100=1 \mathrm{~s}$ |
| 76.70 | Autochange | List | 0... 13 | - | 1 = 1 |
| 76.71 | Autochange interval | Real | 0.00...42949672.95 | h | $100=1 \mathrm{~h}$ |
| 76.72 | Maximum wear imbalance | Real | 0.00... 1000000.00 | h | $100=1 \mathrm{~h}$ |
| 76.73 | Autochange level | Real | 0.0... 300.0 | \% | $10=1 \%$ |
| 76.74 | Autochange auxiliary PFC | List | 0... 1 | - | $1=1$ |
| 76.81 | PFC interlock 1 | List | 0... 10 | - | $1=1$ |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 76.82 | PFC interlock 2 | List | 0... 10 | - | 1 = 1 |
| 76.83 | PFC interlock 3 | List | 0... 10 | - | $1=1$ |
| 76.84 | PFC interlock 4 | List | 0... 10 | - | 1 = 1 |
| 76.95 | Regulator bypass control | Binary src | - | - | - |
| 77 PFC maintenance and monitoring |  |  |  |  |  |
| 77.10 | Runtime change | List | 0... 5 | - | $1=1$ |
| 77.11 | Pump/fan 1 running time | Real | 0.00...42949672.95 | h | $100=1 \mathrm{~h}$ |
| 77.12 | Pump/fan 2 running time | Real | 0.00...42949672.95 | h | $100=1 \mathrm{~h}$ |
| 77.13 | Pump/fan 3 running time | Real | 0.00...42949672.95 | h | $100=1 \mathrm{~h}$ |
| 77.14 | Pump/fan 4 running time | Real | 0.00...42949672.95 | h | $100=1 \mathrm{~h}$ |
| 80 Flow calculation |  |  |  |  |  |
| 80.01 | Actual flow | Real | -10000.00...10000.00 | - | $100=1$ |
| 80.02 | Flow calculation mode | Binary src | - | - | - |
| 80.03 | Flow compensation factor |  | -10000.00...10000.00 | - | $100=1$ |
| 95 HW configuration |  |  |  |  |  |
| 95.01 | Supply voltage | List | 0, 2... 3 | - | $1=1$ |
| 95.02 | Adaptive voltage limits | List | 0... 1 | - | $1=1$ |
| 95.03 | Estimated AC supply voltage | Real | 0... 65535 | V | $1=1 \mathrm{~V}$ |
| 95.04 | Control board supply | List | 0... 1 | - | $1=1$ |
| 95.20 | HW options word 1 | PB | 0000h...FFFFh | - | 1 = 1 |
| 96 System |  |  |  |  |  |
| 96.01 | Language | List | - | - | $1=1$ |
| 96.02 | Pass code | Data | 0...99999999 | - | $1=1$ |
| 96.03 | Access level status | PB | 000b...111b | - | $1=1$ |
| 96.04 | Macro select | List | 0,1 | - | $1=1$ |
| 96.05 | Macro active | List | 1 | - | $1=1$ |
| 96.06 | Parameter restore | List | $\begin{gathered} 0,2,8,32,62,512,1024, \\ 34560 \end{gathered}$ | - | $1=1$ |
| 96.07 | Parameter save manually | List | 0... 1 | - | $1=1$ |
| 96.08 | Control board boot | Real | 0... 1 | - | $1=1$ |
| 96.10 | User set status | List | 0...7, 20... 23 | - | 1 = 1 |
| 96.11 | User set save/load | List | 0...5, 18... 21 | - | $1=1$ |
| 96.12 | User set I/O mode in1 | Binary src | - | - | - |
| 96.13 | User set I/O mode in2 | Binary src | - | - | - |
| 96.16 | Unit selection | PB | 000h...FFFFh |  | 1 = 1 |
| 96.51 | Clear fault and event logger | Real | 0... 1 | - | $1=1$ |
| 97 Motor control |  |  |  |  |  |
| 97.01 | Switching frequency reference | List | 4, 8 | kHz | 1 = 1 kHz |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 97.02 | Minimum switching frequency | List | 2, 4, 8 | kHz | 1 = 1 kHz |
| 97.03 | Slip gain | Real | 0... 200 | \% | 1 = 1\% |
| 97.04 | Voltage reserve | Real | -4...50 | \% | 1 = 1\% |
| 97.05 | Flux braking | List | 0... 2 | - | 1 = 1 |
| 97.10 | Signal injection | List | 0... 4 | - | 1 = 1 |
| 97.11 | TR tuning | Real | 25... 400 | \% | 1 = 1\% |
| 97.13 | IR compensation | Real | 0.00...50.00 | \% | $100=1 \%$ |
| 97.15 | Motor model temperature adaptation | List | 0... 1 | - | $1=1$ |
| 97.16 | Stator temperature factor | Real | 0... 200 | \% | 1 = 1\% |
| 97.17 | Rotor temperature factor | Real | 0... 200 | \% | 1 = 1\% |
| 97.20 | U/F ratio | List | 0... 1 | - | 1 = 1 |
| 98 User motor parameters |  |  |  |  |  |
| 98.01 | User motor model mode | List | 0... 1 | - | 1 = 1 |
| 98.02 | Rs user | Real | 0.0000...0.50000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.03 | Rr user | Real | 0.0000...0.50000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.04 | Lm user | Real | 0.00000...10.00000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.05 | SigmaL user | Real | 0.00000...1.00000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.06 | Ld user | Real | 0.00000...10.00000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.07 | Lq user | Real | 0.00000...10.00000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.08 | PM flux user | Real | 0.00000...2.00000 | p.u. | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.09 | Rs user SI | Real | 0.00000...100.00000 | ohm | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.10 | Rr user SI | Real | 0.00000...100.00000 | ohm | $\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$ |
| 98.11 | Lm user SI | Real | 0.00...100000.00 | mH | $100=1 \mathrm{mH}$ |
| 98.12 | SigmaL user SI | Real | 0.00...100000.00 | mH | $100=1 \mathrm{mH}$ |
| 98.13 | Ld user SI | Real | 0.00...100000.00 | mH | $100=1 \mathrm{mH}$ |
| 98.14 | Lq user SI | Real | 0.00...100000.00 | mH | $100=1 \mathrm{mH}$ |
| 99 Motor data |  |  |  |  |  |
| 99.03 | Motor type | List | 0, 2 | - | $1=1$ |
| 99.04 | Motor control mode | List | 0...1 | - | 1 = 1 |
| 99.06 | Motor nominal current | Real | 0.0...6400.0 | A | $10=1 \mathrm{~A}$ |
| 99.07 | Motor nominal voltage | Real | 0.0...800.0 | V | $10=1 \mathrm{~V}$ |
| 99.08 | Motor nominal frequency | Real | $0.0 \ldots 500.0$ | Hz | $10=1 \mathrm{~Hz}$ |
| 99.09 | Motor nominal speed | Real | 0 ... 30000 | rpm | 1 = 1 rpm |


| No. | Name | Type | Range | Unit | FbEq32 |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 99.10 | Motor nominal power | Real | $-10000.00 \ldots 10000.00 \mathrm{~kW}$ <br> or <br> $-13404.83 \ldots 13404.83 \mathrm{hp}$ | kW or hp | $100=1 \mathrm{unit}$ |
| 99.11 | Motor nominal cos $\Phi$ | Real | $0.00 \ldots 1.00$ | - | $100=1$ |
| 99.12 | Motor nominal torque | Real | $0.000 \ldots 4000000.000 \mathrm{~N} \cdot \mathrm{~m}$ or <br> $0.000 . .2950248 .597 \mathrm{lb} \cdot \mathrm{ft}$ | $\mathrm{N} \cdot \mathrm{m}$ or <br> $\mathrm{lb} \cdot \mathrm{ft}$ | $1000=1 \mathrm{unit}$ |
| 99.13 | ID run requested | List | $0 \ldots 3,6$ | - | $1=1$ |
| 99.14 | Last ID run performed | List | $0 \ldots 3,6$ | - | $1=1$ |
| 99.15 | Motor polepairs calculated | Real | $0 \ldots 1000$ | - | $1=1$ |
| 99.16 | Motor phase order | List | $0 \ldots 1$ | - | $1=1$ |

## Fault tracing

## What this chapter contains

The chapter lists the warning and fault messages including possible causes and corrective actions. The causes of most warnings and faults can be identified and corrected using the information in this chapter. If not, contact an ABB service representative. If you have a possibility to use the Drive composer PC tool, send the Support package created by the Drive composer to the ABB service representative.

Warnings and faults are listed below in separate tables. Each table is sorted by warning/fault code.

## Safety

WARNING! Only qualified electricians are allowed to service the drive. Read the instructions in chapter Safety instructions at the beginning of the Hardware manual of the drive before working on the drive.

## Indications

## Warnings and faults

Warnings and faults indicate an abnormal drive status. The codes and names of active warnings and faults are displayed on the control panel of the drive as well as in the Drive composer PC tool. Only the codes of warnings and faults are available over fieldbus.

Warnings do not need to be reset; they stop showing when the cause of the warning ceases. Warnings do not latch and the drive will continue to operate the motor.

Faults latch inside the drive and cause the drive to trip, and the motor stops. After the cause of a fault has been removed, the fault can be reset from the panel or from a selectable source (parameter 31.11 Fault reset selection) such as the digital inputs of the drive. Reseting the fault creates an event 64FF Fault reset. After the reset, the drive can be restarted.

Note that some faults require a reboot of the control unit either by switching the power off and on, or using parameter 96.08 Control board boot - this is mentioned in the fault listing wherever appropriate.

## Pure events

In addition to warnings and faults, there are pure events that are only recorded in the event log of the drive. The codes of these events are included in the Warning messages table on page (312).

## Editable messages

For external events, the action (fault or warning), name and the message text can be edited. To specify external events, select Menu - Primary settings - Advanced functions - External events.

Contact information can also be included and the text edited. To specify contact information, select Menu - Primary settings - Clock, region, display - Contact info view.

## Warning/fault history

## Event log

All indications are stored in the event log with a time stamp and other information.
The event log stores information on

- the last 8 fault recordings, that is, faults that tripped the drive or fault resets
- the last 10 warnings or pure events that occurred.

See section Viewing warning/fault information on page 310.

## Auxiliary codes

Some events generate an auxiliary code that often helps in pinpointing the problem. On the control panel, the auxiliary code is stored as part of the details of the event; in the Drive composer PC tool, the auxiliary code is shown in the event listing.

## Viewing warning/fault information

The drive is able to store a list of the active faults actually causing the drive to trip at the present time. The drive also stores a list of faults and warnings that have previously occurred.

For active faults and warnings, see

- Menu - Diagnostics - Active faults
- Menu - Diagnostics - Active warnings
- parameters in group 04 Warnings and faults (page 92).

For previously occurred faults and warnings, see

- Menu - Diagnostics - Fault \& event log
- parameters in group 04 Warnings and faults (page 92).

The event log can also be accessed (and reset) using the Drive composer PC tool. See Drive composer PC tool user's manual (3AUA0000094606 [English]).

## QR code generation for mobile service application

A QR code (or a series of QR codes) can be generated by the drive for display on the control panel. The QR code contains drive identification data, information on the latest events, and values of status and counter parameters. The code can be read with a mobile device containing the ABB service application, which then sends the data to ABB for analysis. For more information on the application, contact your local $A B B$ service representative.

To generate the QR code, select Menu - System info - QR code.

## Warning messages

Note: The list also contains events that only appear in the Event log.

| Code <br> (hex) | Warning / Aux. code | Cause | What to do |
| :--- | :--- | :--- | :--- |
| 64FF | Fault reset | A fault has been reset from the <br> panel, Drive composer PC tool, <br> fieldbus or I/O. | Event. Informative only. <br> A2A1 |
|  | Current calibration | Current offset and gain <br> measurement calibration will <br> occur at next start. | Informative warning. (See parameter <br> 99.13 ID run requested.) |
| A2B1 | Overcurrent | Output current has exceeded <br> internal fault limit. <br> In addition to an actual <br> overcurrent situation, this <br> warning may also be caused <br> by an earth fault or supply <br> phase loss. | Check motor load. <br> Check acceleration times in parameter <br> group 23 Speed reference ramp (speed <br> control), 26 Torque reference chain <br> (torque control) or 28 Frequency <br> reference chain (frequency control). Also <br> check parameters 46.01 Speed scaling, <br> 46.02 Frequency scaling and 46.03 <br> Torque scaling. <br> Check motor and motor cable (including <br> phasing and delta/star connection). <br> Check for an earth fault in motor or motor <br> cables by measuring the insulation <br> resistances of motor and motor cable. <br> See chapter Electrical installation, <br> section Checking the insulation of the <br> assembly in the Hardware manual of the <br> drive. <br> Check there are no contactors opening <br> and closing in motor cable. <br> Check that the start-up data in parameter <br> group 99 Motor data corresponds to the <br> motor rating plate. <br> Check that there are no power factor <br> correction capacitors or surge absorbers <br> in motor cable. |
| A2B3 | Earth leakage |  | Check there are no power factor <br> correction capacitors or surge absorbers <br> in motor cable. <br> Check for an earth fault in motor or motor <br> cables by measuring the insulation <br> resistances of motor and motor cable. <br> See chapter Electrical installation, <br> section Checking the insulation of the <br> assembly in the Hardware manual of the <br> drive. If an earth fault is found, fix or <br> change the motor cable and/or motor. <br> If no earth fault can be detected, contact <br> your local ABB representative. |


| Code (hex) | Warning / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| A2B4 | Short circuit | Short-circuit in motor cable(s) or motor. | Check motor and motor cable for cabling errors. <br> Check motor and motor cable (including phasing and delta/star connection). Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. See chapter Electrical installation, section Checking the insulation of the assembly in the Hardware manual of the drive. <br> Check there are no power factor correction capacitors or surge absorbers in motor cable. |
| A2BA | IGBT overload | Excessive IGBT junction to case temperature. This warning protects the IGBT(s) and can be activated by a short circuit in the motor cable. | Check motor cable. Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power. |
| A3A1 | DC link overvoltage | Intermediate circuit DC voltage too high (when the drive is stopped). | Check the supply voltage setting (parameter 95.01 Supply voltage). Note that the wrong setting of the parameter may cause the motor to rush uncontrollably, or may overload the brake chopper or resistor. <br> Check the supply voltage. <br> If the problem persists, contact your local ABB representative. |
| A3A2 | DC link undervoltage | Intermediate circuit DC voltage too low (when the drive is stopped). |  |
| A3AA | DC not charged | The voltage of the intermediate DC circuit has not yet risen to operating level. |  |
| A491 | External temperature <br> 1 <br> (Editable message text) | Measured temperature 1 has exceeded warning limit. | Check the value of parameter 35.02 Measured temperature 1. <br> Check the cooling of the motor (or other equipment whose temperature is being measured). |
| A492 | External temperature <br> 2 <br> (Editable message text) | Measured temperature 2 has exceeded warning limit. | Check the value of parameter 35.03 Measured temperature 2. <br> Check the cooling of the motor (or other equipment whose temperature is being measured). |
| A4A1 | IGBT overtemperature | Estimated drive IGBT temperature is excessive. | Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power. |
| A4A9 | Cooling | Drive module temperature is excessive. | Check ambient temperature. If it exceeds $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$ (frames R5...R9) or if it exceeds $50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$ (frames R0...R9), ensure that load current does not exceed derated load capacity of drive. See chapter Technical data, section Derating in the Hardware manual of the drive. Check drive module cooling air flow and fan operation. <br> Check inside of cabinet and heatsink of drive module for dust pick-up. Clean whenever necessary. |


| Code (hex) | Warning / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| A4B0 | Excess temperature | Power unit module temperature is excessive. | Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power. |
| A4B1 | Excess temperature difference | High temperature difference between the IGBTs of different phases. | Check the motor cabling. Check cooling of drive module(s). |
| A4F6 | IGBT temperature | Drive IGBT temperature is excessive. | Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power. |
| A580 | PU communication | Communication errors detected between the drive control unit and the power unit. | Check the connections between the drive control unit and the power unit. Check the value of parameter 95.04 Control board supply. |
| A5A0 | Safe torque off Programmable warning: 31.22 STO indication run/stop | Safe torque off function is active, ie safety circuit signal(s) connected to connector STO is lost. | Check safety circuit connections. For more information, chapter The Safe torque off function in the Hardware manual of the drive and description of parameter 31.22 STO indication run/stop (page 183). <br> Check the value of parameter 95.04 Control board supply. |
| A5EA | Measurement circuit temperature | Problem with internal temperature measurement of the drive. | Contact your local ABB representative. |
| A5EB | PU board powerfail | Power unit power supply failure. | Contact your local ABB representative. |
| A5ED | Measurement circuit ADC | Measurement circuit fault. | Contact your local ABB representative. |
| A5EE | Measurement circuit DFF | Measurement circuit fault. | Contact your local ABB representative. |
| A5EF | PU state feedback | State feedback from output phases does not match control signals. | Contact your local ABB representative. |
| A5F0 | Charging feedback | Charging feedback signal missing. | Check the feedback signal coming from the charging system. |
| A6A4 | Motor nominal value | The motor parameters are set incorrectly. | Check the settings of the motor configuration parameters in group 99. |
|  |  | The drive is not dimensioned correctly. | Check that the drive is sized correctly for the motor. |
| A6A5 | No motor data | Parameters in group 99 have not been set. | Check that all the required parameters in group 99 have been set. <br> Note: It is normal for this warning to appear during the start-up and continue until the motor data is entered. |
| A6A6 | Voltage category unselected | The voltage category has not been defined. | Set voltage category in parameter 95.01 Supply voltage. |
| A6D1 | FBA A parameter conflict | The drive does not have a functionality requested by a PLC, or requested functionality has not been activated. | Check PLC programming. <br> Check settings of parameter groups 50 Fieldbus adapter (FBA). |


| Code (hex) | Warning / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| A6E5 | Al parametrization | The current/voltage hardware setting of an analog input does not correspond to parameter settings. | Check the event log for an auxiliary code. The code identifies the analog input whose settings are in conflict. <br> Adjust either the hardware setting (on the drive control unit) or parameter 12.15/12.25. <br> Note: Control board reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings. |
| A780 | Motor stall <br> Programmable warning: <br> 31.24 Stall function | Motor is operating in stall region because of e.g. excessive load or insufficient motor power. | Check motor load and drive ratings. Check fault function parameters. |
| A791 | Brake resistor | Brake resistor broken or not connected. | Check that a brake resistor has been connected. <br> Check the condition of the brake resistor. |
| A793 | BR excess temperature | Brake resistor temperature has exceeded warning limit defined by parameter 43.12 Brake resistor warning limit. | Stop drive. Let resistor cool down. Check resistor overload protection function settings (parameter group 43 Brake chopper). <br> Check warning limit setting, parameter 43.12 Brake resistor warning limit. <br> Check that the resistor has been dimensioned correctly. <br> Check that braking cycle meets allowed limits. |
| A794 | BR data | Brake resistor data has not been given. | Check the resistor data settings (parameters 43.08...43.10). |
| A79C | BC IGBT excess temperature | Brake chopper IGBT temperature has exceeded internal warning limit. | Let chopper cool down. <br> Check for excessive ambient temperature. <br> Check for cooling fan failure. <br> Check for obstructions in the air flow. <br> Check the dimensioning and cooling of the cabinet. <br> Check resistor overload protection function settings (parameters 43.06...43.10). <br> Check minimum allowed resistor value for the chopper being used. <br> Check that braking cycle meets allowed limits. <br> Check that drive supply AC voltage is not excessive. |
| A7AB | Extension I/O configuration failure | Installed CMOD module is not the same as configured. | Check that the installed module (shown by parameter 15.02 Detected extension module) is the same as selected by parameter 15.01 Extension module type. |


| Code <br> (hex) | Warning / Aux. code | Cause | What to do |
| :--- | :--- | :--- | :--- |
| A7C1 | FBA A communication <br> Programmable warning: <br> 50.02 FBA A comm loss <br> func | Cyclical communication <br> between drive and fieldbus <br> adapter module A or between <br> PLC and fieldbus adapter <br> module A is lost. | Check status of fieldbus communication. <br> See user documentation of fieldbus <br> interface. <br> Check settings of parameter groups 50 <br> Fieldbus adapter (FBA), 51 FBA A <br> settings, 52 FBA A data in and 53 FBA A <br> data out. <br> Check cable connections. <br> Check if communication master is able to <br> communicate. |
| A7CE | EFB comm loss <br> Programmable warning: <br> 58.14Communicationloss <br> action | Communication break in <br> embedded fieldbus (EFB) <br> communication. | Check the status of the fieldbus master <br> (online/offline/error etc.). <br> Check cable connections to the <br> EIA-485//5 terminals 29, 30 and 31 on <br> the control unit. |
| A7EE | Panel loss <br> Programmable warning: <br> 49.05Communication loss <br> action | Control panel or PC tool <br> selected as active control <br> location for drive has ceased <br> communicating. | Check PC tool or control panel <br> connection. <br> Check control panel connector. <br> Check mounting platform if being used. <br> Disconnect and reconnect the control <br> panel. |
| A8A0 | Al supervision <br> Programmable warning: <br> 12.03 Al supervision <br> function | An analog signal is outside the <br> limits specified for the analog <br> input. | Check signal level at the analog input. <br> Check the wiring connected to the input. <br> Check the minimum and maximum limits |
| of the input in parameter group 12 |  |  |  |
| Standard Al. |  |  |  |


| $\begin{array}{\|l} \hline \text { Code } \\ \text { (hex) } \end{array}$ | Warning / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| A8B1 | Signal supervision (Editable message text) Programmable warning: 32.16 Supervision 2 action | Warning generated by the signal supervision function 2. | Check the source of the warning (parameter 32.17 Supervision 2 signal). |
| A8B2 | Signal supervision (Editable message text) Programmable warning: 32.26 Supervision 3 action | Warning generated by the signal supervision function 3. | Check the source of the warning (parameter 32.27 Supervision 3 signal). |
| A8B3 | Signal supervision (Editable message text) Programmable warning: 32.36 Supervision 4 action | Warning generated by the signal supervision function 4. | Check the source of the warning (parameter 32.37 Supervision 4 signal). |
| A8B4 | Signal supervision (Editable message text) Programmable warning: 32.46 Supervision 5 action | Warning generated by the signal supervision function 5 . | Check the source of the warning (parameter 32.47 Supervision 5 signal). |
| A8B5 | Signal supervision (Editable message text) Programmable warning: 32.56 Supervision 6 action | Warning generated by the signal supervision function 6. | Check the source of the warning (parameter 32.57 Supervision 6 signal). |
| A8C0 | ULC invalid speed table | User load curve: X-axis points (speed) are not valid. | Check that points fulfill conditions. See parameter 37.11 ULC speed table point 1. |
| A8C1 | ULC overload warning | User load curve: Signal has been too long over the overload curve. | See parameter 37.03 ULC overload actions. |
| A8C4 | ULC underload warning | User load curve: Signal has been too long under the underload curve. | See parameter 37.04 ULC underload actions. |
| A8C5 | ULC invalid underload table | User load curve: Underload curve points are not valid. | Check that points fulfill conditions. See parameter 37.21 ULC underload point 1. |
| A8C6 | ULC invalid overload table | User load curve: Overload curve points are not valid. | Check that points fulfill conditions. See parameter 37.31 ULC overload point 1. |
| A8C8 | ULC invalid frequency table | User load curve: X-axis points (frequency) are not valid. | Check that points fulfill conditions. $500.0 \mathrm{~Hz} \leq 37.16<37.17<37.18<$ $37.19<37.20 \leq 500.0 \mathrm{~Hz}$. See parameter 37.16 ULC frequency table point 1. |
| A981 | External warning 1 <br> (Editable message text) <br> Programmable warning: <br> 31.01 External event 1 source <br> 31.02 External event 1 <br> type | Fault in external device 1. | Check the external device. Check setting of parameter 31.01 External event 1 source. |
| A982 | External warning 2 <br> (Editable message text) Programmable warning: 31.03 External event 2 source <br> 31.04 External event 2 type | Fault in external device 2. | Check the external device. <br> Check setting of parameter 31.03 <br> External event 2 source. |


| Code (hex) | Warning / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| A983 | External warning 3 (Editable message text) Programmable warning: 31.05 External event 3 source <br> 31.06 External event 3 type | Fault in external device 3. | Check the external device. <br> Check setting of parameter 31.05 <br> External event 3 source. |
| A984 | External warning 4 (Editable message text) Programmable warning: 31.07 External event 4 source <br> 31.08 External event 4 type | Fault in external device 4. | Check the external device. <br> Check setting of parameter 31.07 <br> External event 4 source. |
| A985 | External warning 5 <br> (Editable message text) Programmable warning: 31.09 External event 5 source <br> 31.10 External event 5 type | Fault in external device 5. | Check the external device. <br> Check setting of parameter 31.09 External event 5 source. |
| AF88 | Season configuration warning | You have configured a season which starts before the previous season. | Configure the seasons with increasing start dates, see parameters 34.60 Season 1 start date...34.63 Season 4 start date. |
| AF8C | Process PID sleep mode | The drive is entering sleep mode. | Informative warning. See section Sleep and boost functions for process PID control (page 64), and parameters 40.43...40.48. |
| AFAA | Autoreset | A fault is about to be autoreset. | Informative warning. See the settings in parameter group 31 Fault functions. |
| AFE1 | Emergency stop (off2) | Drive has received an emergency stop (mode selection off2) command. | Check that it is safe to continue operation. Then return emergency stop push button to normal position. Restart |
| AFE2 | Emergency stop (off1 or off3) | Drive has received an emergency stop (mode selection off1 or off3) command. | drive. <br> If the emergency stop was unintentional, check the source selected by parameter 21.05 Emergency stop source. |
| AFE9 | Start delay | The start delay is active and the drive will start the motor after a predefined delay. | Informative warning. See parameter 21.22 Start delay. |
| AFEC | External power signal missing | 95.04 Control board supply is set to External 24 V but no voltage is connected to the control unit. | Check the external 24 V DC power supply to the control unit, or change the setting of parameter 95.04. |
| AFF6 | Identification run | Motor ID run will occur at next start. | Informative warning. |
| B5A0 | STO event <br> Programmable event: 31.22 STO indication run/stop | Safe torque off function is active, ie. safety circuit signal(s) connected to connector STO is lost. | Check safety circuit connections. For more information, see chapter The Safe torque off function in the Hardware manual of the drive and description of parameter 31.22 STO indication run/stop (page 183). |

## Fault messages

| Code (hex) | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 1080 | Backup/Restore timeout | Panel or PC tool has failed to communicate with the drive when backup was being made or restored. | Request backup or restore again. |
| 1081 | Rating ID fault | Drive software has not been able to read the rating ID of the drive. | Reset the fault to make the drive try to reread the rating ID. <br> If the fault reappears, cycle the power to the drive. You may have to be repeat this. If the fault persists, contact your local ABB representative. |
| 2310 | Overcurrent | Output current has exceeded internal fault limit. <br> In addition to an actual overcurrent situation, this fault may also be caused by an earth fault or supply phase loss. | Check motor load. <br> Check acceleration times in parameter group 23 Speed reference ramp (speed control), 26 Torque reference chain (torque control) or 28 Frequency reference chain (frequency control). Also check parameters 46.01 Speed scaling, 46.02 Frequency scaling and 46.03 Torque scaling. <br> Check motor and motor cable (including phasing and delta/star connection). Check there are no contactors opening and closing in motor cable. <br> Check that the start-up data in parameter group 99 corresponds to the motor rating plate. <br> Check that there are no power factor correction capacitors or surge absorbers in motor cable. <br> Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. See chapter Electrical installation, section Checking the insulation of the assembly in the Hardware manual of the drive. |
| 2330 | Earth leakage <br> Programmable fault: 31.20 <br> Earth fault | Drive has detected load unbalance typically due to earth fault in motor or motor cable. | Check there are no power factor correction capacitors or surge absorbers in motor cable. <br> Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. Try running the motor in scalar control mode if allowed. (See parameter 99.04 Motor control mode.) If no earth fault can be detected, contact your local ABB representative. |
| 2340 | Short circuit | Short-circuit in motor cable(s) or motor | Check motor and motor cable for cabling errors. <br> Check there are no power factor correction capacitors or surge absorbers in motor cable. <br> Cycle the power to the drive. |


| Code (hex) | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 2381 | IGBT overload | Excessive IGBT junction to case temperature. This fault protects the IGBT(s) and can be activated by a short circuit in the motor cable. | Check motor cable. <br> Check ambient conditions. <br> Check air flow and fan operation. <br> Check heatsink fins for dust pick-up. <br> Check motor power against drive power. |
| 3130 | Input phase loss <br> Programmable fault: 31.21 Supply phase loss | Intermediate circuit DC voltage is oscillating due to missing input power line phase or blown fuse. | Check input power line fuses. Check for loose power cable connections. <br> Check for input power supply imbalance. |
| 3181 | Wiring or earth fault Programmable fault: 31.23 Wiring or earth fault | Incorrect input power and motor cable connection (ie. input power cable is connected to drive motor connection). | Check input power connections. |
| 3210 | DC link overvoltage | Excessive intermediate circuit DC voltage. | Check that overvoltage control is on (parameter 30.30 Overvoltage control). Check that the supply voltage matches the nominal input voltage of the drive. <br> Check the supply line for static or transient overvoltage. <br> Check brake chopper and resistor (if present). <br> Check deceleration time. <br> Use coast-to-stop function (if applicable). <br> Retrofit drive with brake chopper and brake resistor. <br> Check that the brake resistor is dimensioned properly and the resistance is between acceptable range for the drive. |
| 3220 | DC link undervoltage | Intermediate circuit DC voltage is not sufficient because of a missing supply phase, blown fuse or fault in the rectifier bridge. | Check supply cabling, fuses and switchgear. |
| 3381 | Output phase loss <br> Programmable fault: 31.19 <br> Motor phase loss | Motor circuit fault due to missing motor connection (all three phases are not connected). | Connect motor cable. |
| 4110 | Control board temperature | Control board temperature is too high. | Check proper cooling of the drive. Check the auxiliary cooling fan. |
| 4210 | IGBT overtemperature | Estimated drive IGBT temperature is excessive. | Check ambient conditions. <br> Check air flow and fan operation. <br> Check heatsink fins for dust pick-up. <br> Check motor power against drive power. |


| Code (hex) | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 4290 | Cooling | Drive module temperature is excessive. | Check ambient temperature. If it exceeds $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$ (frames R5...R9) or if it exceeds $50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$ (frames R0...R9), ensure that load current does not exceed derated load capacity of drive. See chapter Technical data, section Derating in the Hardware manual of the drive. Check drive module cooling air flow and fan operation. <br> Check inside of cabinet and heatsink of drive module for dust pick-up. Clean whenever necessary. |
| 42F1 | IGBT temperature | Drive IGBT temperature is excessive. | Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power. |
| 4310 | Excess temperature | Power unit module temperature is excessive. | Check ambient conditions. <br> Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power. |
| 4380 | Excess temperature difference | High temperature difference between the IGBTs of different phases. | Check the motor cabling. Check cooling of drive module(s). |
| 4981 | External temperature 1 (Editable message text) | Measured temperature 1 has exceeded fault limit. | Check the value of parameter 35.02 Measured temperature 1. <br> Check the cooling of the motor (or other equipment whose temperature is being measured). |
| 4982 | External temperature 2 (Editable message text) | Measured temperature 2 has exceeded fault limit. | Check the value of parameter 35.03 Measured temperature 2. <br> Check the cooling of the motor (or other equipment whose temperature is being measured). |
| 5081 | Auxiliary fan broken | An auxiliary cooling fan (connected to the fan connectors on the control unit) is stuck or disconnected. | Check auxiliary fan(s) and connection(s). Replace fan if faulty. <br> Make sure the front cover of the drive module is in place and tightened. <br> Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. |
| 5090 | STO hardware failure | STO hardware diagnostics has detected hardware failure. | Contact your local ABB representative for hardware replacement. |
| 5091 | Safe torque off Programmable fault: 31.22 STO indication run/stop | Safe torque off function is active, ie. safety circuit signal(s) connected to connector STO is broken during start or run. | Check safety circuit connections. For more information, see chapter The Safe torque off function in the Hardware manual of the drive and description of parameter 31.22 STO indication run/stop (page 183). <br> Check the value of parameter 95.04 Control board supply. |
| 5092 | PU logic error | Power unit memory has cleared. | Contact your local ABB representative. |


| $\begin{array}{\|l} \hline \text { Code } \\ \text { (hex) } \end{array}$ | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 5093 | Rating ID mismatch | The hardware of the drive does not match the information stored in the memory. This may occur eg. after a firmware update. | Cycle the power to the drive. You may have to be repeat this. |
| 5094 | Measurement circuit temperature | Problem with internal temperature measurement of the drive. | Contact your local ABB representative. |
| 50A0 | Fan | Cooling fan stuck or disconnected. | Check fan operation and connection. Replace fan if faulty. |
| 5681 | PU communication | Communication errors detected between the drive control unit and the power unit. | Check the connection between the drive control unit and the power unit. Check the value of parameter 95.04 Control board supply. |
| 5682 | Power unit lost | Connection between the drive control unit and the power unit is lost. | Check the connection between the control unit and the power unit. |
| 5690 | PU communication internal | Internal communication error. | Contact your local ABB representative. |
| 5691 | Measurement circuit ADC | Measurement circuit fault. | Contact your local ABB representative. |
| 5692 | PU board powerfail | Power unit power supply failure. | Contact your local ABB representative. |
| 5693 | Measurement circuit DFF | Measurement circuit fault. | Contact your local ABB representative. |
| 5696 | PU state feedback | State feedback from output phases does not match control signals. | Contact your local ABB representative. |
| 5697 | Charging feedback | Charging feedback signal missing. | Check the feedback signal coming from the charging system |
| 6181 | FPGA version incompatible | Firmware and FPGA versions are incompatible. | Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative |
| 6306 | FBA A mapping file | Fieldbus adapter A mapping file read error. | Contact your local ABB representative. |
| 6481 | Task overload | Internal fault. | Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative |
| 6487 | Stack overflow | Internal fault. | Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative |
| 64A1 | Internal file load | File read error. | Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative |


| $\begin{aligned} & \text { Code } \\ & \text { (hex) } \end{aligned}$ | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 64B2 | User set fault | Loading of user parameter set failed because <br> - requested set does not exist <br> - set is not compatible with control program <br> - drive was switched off during loading. | Ensure that a valid user parameter set exists. Reload if uncertain. |
| 64E1 | Kernel overload | Operating system error. | Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative |
| 6581 | Parameter system | Parameter load or save failed. | Try forcing a save using parameter 96.07 Parameter save manually. Retry. |
| 65A1 | FBA A parameter conflict | The drive does not have a functionality requested by PLC, or requested functionality has not been activated. | Check PLC programming. Check settings of parameter groups 50 Fieldbus adapter (FBA) and 51 FBA A settings. |
| 6681 | EFB comm loss Programmable fault: 58.14 Communication loss action | Communication break in embedded fieldbus (EFB) communication. | Check the status of the fieldbus master (online/offline/error etc.). <br> Check cable connections to the EIA-485/X5 terminals 29, 30 and 31 on the control unit. |
| 6682 | EFB config file | Embedded fieldbus (EFB) configuration file could not be read. | Contact your local ABB representative. |
| 6683 | EFB invalid parameterization | ```Embedded fieldbus (EFB) parameter settings inconsistent or not compatible with selected protocol.``` | Check the settings in parameter group 58 Embedded fieldbus. |
| 6684 | EFB load fault | Embedded fieldbus (EFB) protocol firmware could not be loaded. <br> Version mismatch between EFB protocol firmware and drive firmware. | Contact your local ABB representative. |
| 6685 | EFB fault 2 | Fault reserved for the EFB protocol application. | Check the documentation of the protocol. |
| 6686 | EFB fault 3 | Fault reserved for the EFB protocol application. | Check the documentation of the protocol. |
| 6882 | Text 32-bit table overflow | Internal fault. | Reset the fault. Contact your local ABB representative if the fault persists. |
| 6885 | Text file overflow | Internal fault. | Reset the fault. Contact your local ABB representative if the fault persists. |
| 7081 | Control panel loss <br> Programmable fault: 49.05 Communication loss action | Control panel or PC tool selected as active control location for drive has ceased communicating. | Check PC tool or control panel connection. <br> Check control panel connector. Disconnect and reconnect the control panel. |
| 7121 | Motor stall <br> Programmable fault: 31.24 <br> Stall function | Motor is operating in stall region because of e.g. excessive load or insufficient motor power. | Check motor load and drive ratings. Check fault function parameters. |


| Code (hex) | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 7181 | Brake resistor | Brake resistor broken or not connected. | Check that a brake resistor has been connected. <br> Check the condition of the brake resistor. Check the dimensioning of the brake resistor. |
| 7183 | BR excess temperature | Brake resistor temperature has exceeded fault limit defined by parameter 43.11 Brake resistor fault limit. | Stop drive. Let resistor cool down. <br> Check resistor overload protection function settings (parameter group 43 Brake chopper). <br> Check fault limit setting, parameter 43.11 Brake resistor fault limit. <br> Check that braking cycle meets allowed limits. |
| 7184 | Brake resistor wiring | Brake resistor short circuit or brake chopper control fault. | Check brake chopper and brake resistor connection. <br> Ensure brake resistor is not damaged. |
| 7191 | BC short circuit | Short circuit in brake chopper IGBT. | Ensure brake resistor is connected and not damaged. <br> Check the electrical specifications of the brake resistor against chapter Resistor braking in the Hardware manual of the drive. <br> Replace brake chopper (if replaceable). |
| 7192 | BC IGBT excess temperature | Brake chopper IGBT temperature has exceeded internal fault limit. | Let chopper cool down. <br> Check for excessive ambient temperature. <br> Check for cooling fan failure. <br> Check for obstructions in the air flow. <br> Check resistor overload protection <br> function settings (parameter group 43 <br> Brake chopper). <br> Check that braking cycle meets allowed limits. <br> Check that drive supply AC voltage is not excessive. |
| 7310 | Overspeed | Motor is turning faster than highest allowed speed due to incorrectly set minimum/maximum speed, insufficient braking torque or changes in load when using torque reference. | Check minimum/maximum speed settings, parameters 30.11 Minimum speed and 30.12 Maximum speed. Check adequacy of motor braking torque. Check applicability of torque control. Check need for brake chopper and resistor(s). |
| 73B0 | Emergency ramp failed | Emergency stop did not finish within expected time. | Check the settings of parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay. Check the predefined ramp times (23.11...23.15 for mode Off1, 23.23 for mode Off3). |


| Code (hex) | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 7510 | FBA A communication Programmable fault: 50.02 FBA A comm loss func | Cyclical communication between drive and fieldbus adapter module A or between PLC and fieldbus adapter module $A$ is lost. | Check status of fieldbus communication. See user documentation of fieldbus interface. <br> Check settings of parameter groups 50 Fieldbus adapter (FBA), 51 FBA A settings, 52 FBA A data in and 53 FBA A data out. <br> Check cable connections. <br> Check if communication master is able to communicate. |
| 8001 | ULC underload fault | User load curve: Signal has been too long under the underload curve. | See parameter 37.04 ULC underload actions. |
| 8002 | ULC overload fault | User load curve: Signal has been too long over the overload curve. | See parameter 37.03 ULC overload actions. |
| 80A0 | Al supervision Programmable fault: 12.03 A/ supervision function | An analog signal is outside the limits specified for the analog input. | Check signal level at the analog input. Check the wiring connected to the input. Check the minimum and maximum limits of the input in parameter group 12 Standard AI. |
| 80B0 | Signal supervision (Editable message text) Programmable fault: 32.06 Supervision 1 action | Fault generated by the signal supervision function 1. | Check the source of the fault (parameter 32.07 Supervision 1 signal). |
| 80B1 | Signal supervision (Editable message text) Programmable fault: 32.16 Supervision 2 action | Fault generated by the signal supervision function 2. | Check the source of the fault (parameter 32.17 Supervision 2 signal). |
| 80B2 | Signal supervision (Editable message text) Programmable fault: 32.26 Supervision 3 action | Fault generated by the signal supervision function 4. | Check the source of the fault (parameter 32.27 Supervision 3 signal). |
| 80B3 | Signal supervision (Editable message text) Programmable fault: 32.36 Supervision 4 action | Fault generated by the signal supervision function 4. | Check the source of the fault (parameter 32.37 Supervision 4 signal). |
| 80B4 | Signal supervision <br> (Editable message text) <br> Programmable fault: <br> 32.46 Supervision 5 action | Fault generated by the signal supervision function 5 . | Check the source of the fault (parameter 32.47 Supervision 5 signal). |
| 80B5 | Signal supervision (Editable message text) Programmable fault: 32.56 Supervision 6 action | Fault generated by the signal supervision function66. | Check the source of the fault (parameter 32.57 Supervision 6 signal). |
| 9081 | External fault 1 <br> (Editable message text) Programmable fault: 31.01 External event 1 source 31.02 External event 1 type | Fault in external device 1. | Check the external device. <br> Check setting of parameter 31.01 <br> External event 1 source. |
| 9082 | External fault 2 <br> (Editable message text) <br> Programmable fault: 31.03 <br> External event 2 source <br> 31.04 External event 2 <br> type | Fault in external device 2. | Check the external device. <br> Check setting of parameter 31.03 <br> External event 2 source. |


| $\begin{aligned} & \hline \text { Code } \\ & \text { (hex) } \end{aligned}$ | Fault / Aux. code | Cause | What to do |
| :---: | :---: | :---: | :---: |
| 9083 | External fault 3 <br> (Editable message text) <br> Programmable fault: 31.05 <br> External event 3 source <br> 31.06 External event 3 <br> type | Fault in external device 3. | Check the external device. <br> Check setting of parameter 31.05 <br> External event 3 source. |
| 9084 | External fault 4 <br> (Editable message text) Programmable fault: 31.07 External event 4 source 31.08 External event 4 type | Fault in external device 4. | Check the external device. Check setting of parameter 31.07 External event 4 source. |
| 9085 | External fault 5 <br> (Editable message text) Programmable fault: 31.09 External event 5 source 31.10 External event 5 type | Fault in external device 5. | Check the external device. <br> Check setting of parameter 31.09 <br> External event 5 source. |
| FA81 | Safe torque off 1 | Safe torque off function is active, ie. STO circuit 1 is broken. | Check safety circuit connections. For more information, see chapter The Safe torque off function in the Hardware manual of the drive and description of parameter 31.22 STO indication run/stop (page 183). <br> Check the value of parameter 95.04 Control board supply. |
| FA82 | Safe torque off 2 | Safe torque off function is active, ie. STO circuit 2 is broken. |  |
| FF61 | ID run | Motor ID run was not completed successfully. | Check the nominal motor values in parameter group 99 Motor data. <br> Check that no external control system is connected to the drive. <br> Cycle the power to the drive (and its control unit, if powered separately). <br> Check that no operation limits prevent the completion of the ID run. Restore parameters to default settings and try again. <br> Check that the motor shaft is not locked. |
| FF81 | FB A force trip | A fault trip command has been received through fieldbus adapter A. | Check the fault information provided by the PLC. |
| FF8E | EFB force trip | A fault trip command has been received through the embedded fieldbus interface. | Check the fault information provided by the PLC. |

## Fieldbus control through the embedded fieldbus interface (EFB)

## What this chapter contains

The chapter describes how the drive can be controlled by external devices over a communication network (fieldbus) using the embedded fieldbus interface.

## System overview

The drive can be connected to an external control system through a communication link using either a fieldbus adapter or the embedded fieldbus interface.

The embedded fieldbus interface supports the Modbus RTU protocol. The drive control program can handle 10 Modbus registers in a 10 -millisecond time level. For example, if the drive receives a request to read 20 registers, it will start its response within 22 ms of receiving the request -20 ms for processing the request and 2 ms overhead for handling the bus. The actual response time depends on other factors as well, such as the baud rate (a parameter setting in the drive).

The drive can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the embedded fieldbus interface and other available sources, for example, digital and analog inputs.


## Connecting the fieldbus to the drive

Connect the fieldbus to terminal X5 on the CEIA-01, which is attached on the control unit of the drive. The connection diagram is shown below.

To be added

## Setting up the embedded fieldbus interface

Set the drive up for the embedded fieldbus communication with the parameters shown in the table below. The Setting for fieldbus control column gives either the value to use or the default value. The Function/Information column gives a description of the parameter.

| Parameter | Setting for fieldbus control | Function/Information |
| :---: | :---: | :---: |
| COMMUNICATION INITIALIZATION |  |  |
| 58.01 Protocol | Modbus RTU | Initializes embedded fieldbus communication. |
| EMBEDDED MODBUS CONFIGURATION |  |  |
| 58.03 Node address | 1 (default) | Node address. There must be no two nodes with the same node address online. |
| 58.04 Baud rate | 19.2 kbps (default) | Defines the communication speed of the link. Use the same setting as in the master station. |
| 58.05 Parity | 8 EVEN 1 (default) | Selects the parity and stop bit setting. Use the same setting as in the master station. |
| 58.14Communication <br> loss action | Fault (default) | Defines the action taken when a communication loss is detected. |
| 58.15Communication <br> loss mode | Cw / Ref1 / Ref2 (default) | s/disables communication loss monitoring and defines the means for resetting the counter of the communication loss delay. |
| $58.16 \begin{aligned} & \text { Communication } \\ & \text { loss time }\end{aligned}$ | 3.0 s (default) | Defines the timeout limit for the communication monitoring. |
| 58.17 Transmit delay | 0 ms (default) | Defines a response delay for the drive. |
| 58.25 Control profile | ABB Drives (default) | Selects the control profile used by the drive. See section Basics of the embedded fieldbus interface (page 332). |
| 58.26 EFB ref1 type <br> 58.27 EFB ref2 type | Speed or frequency (default for 58.26), Transparent, General, Torque (default for 58.27), Speed, Frequency | Defines the types of fieldbus references 1 and 2. The scaling for each reference type is defined by parameters 46.01...46.03. With the Speed or frequency setting, the type is selected automatically according to the currently active drive control mode. |
|   <br> 58.28 EFB act1 type <br> 58.29 EFB act2 type | Speed or frequency (default for 58.28), Transparent (default for 58.29), General, Torque, Speed, Frequency | Defines the types of actual values 1 and 2 . The scaling for each actual value type is defined by parameters 46.01...46.03. With the Speed or frequency setting, the type is selected automatically according to the currently active drive control mode. |


| Parameter | Setting for <br> fieldbus control | Function/Information |  |
| :--- | :--- | :--- | :--- |
| 58.31  <br> 58.32 EFB act1 <br> transparent <br> source <br> EFB act2 <br> transparent <br> source | Other | Defines the source of actual values 1 and 2 <br> when the 58.26 EFB ref1 type (58.27 EFB <br> ref2 type) is set to Transparent. |  |
| 58.33 | Addressing <br> mode | Mode 0 (default) | Defines the mapping between parameters <br> and holding registers in the 400001...465536 <br> (100...65535) Modbus register range. |
| 58.34 | Word order | LO-HI (default) | Defines the order of the data words in the <br> Modbus message frame. |
| 58.101 | Data I/O 1 |  |  |
| $\ldots$ | Data I/O 14 | For example, the <br> default settings <br> (I/Os 1...6 contain <br> the control word, <br> the status word, <br> two references and <br> two actual values) <br> RO/DIO control <br> word, AO1 data <br> storage, AO2 data <br> storage, Feedback <br> data storage, <br> Setpoint data <br> storage | Defines the address of the drive parameter <br> which the Modbus master accesses when it <br> reads from or writes to the register address <br> corresponding to Modbus In/Out parameters. <br> Select the parameters that you want to read <br> or write through the Modbus I/O words. <br> These settings write the incoming data into <br> storage parameters 10.99 RO/DIO control <br> word, 13.91 AO1 data storage, 13.92 AO2 <br> data storage, 40.91 Feedback data storage or <br> 40.92 Setpoint data storage. |
| 58.06 | Comm control | Refresh settings | Validates the settings of the configuration <br> parameters. |

The new settings will take effect when the drive is powered up the next time, or when they are validated by parameter 58.06 Comm control (Refresh settings).

## Setting the drive control parameters

After the embedded fieldbus interface has been set up, check and adjust the drive control parameters listed in the table below. The Setting for fieldbus control column gives the value or values to use when the embedded fieldbus signal is the desired source or destination for that particular drive control signal. The Function/Information column gives a description of the parameter.

| Parameter |
| :--- |
| CONTROL COMMAND SOURCE SELECTION   <br> 20.01 Ext1 <br> fielding for <br> commands Embedded fieldbus Selects fieldbus as the source for the start <br> and stop commands when EXT1 is selected <br> as the active control location. |


| Parameter | Setting for <br> fieldbus control | Function/Information |
| :--- | :--- | :--- |
| 20.02 Ext2 <br> commands | Embedded fieldbus | Selects fieldbus as the source for the start <br> and stop commands when EXT2 is selected <br> as the active control location. |


| SPEED REFERENCE SELECTION |  | Selects a reference received through the <br> embedded fieldbus interface as speed <br> reference 1. |
| :--- | :--- | :--- |
| 22.11 Ext1 speed ref1 | EFB ref1 | Selects a reference received through the <br> embedded fieldbus interface as speed <br> reference 2. |
| 22.18 Ext2 speed ref1 | EFB ref1 |  |


| TORQUE REFERENCE SELECTION |  |  |
| :--- | :--- | :--- |
| 26.11 Torque ref1 <br> source | EFB ref1 | Selects a reference received through the <br> embedded fieldbus interface as torque <br> reference 1. |
| 26.12 Torque ref2 <br> source | EFB ref1 | Selects a reference received through the <br> embedded fieldbus interface as torque <br> reference 2. |


| FREQUENCY REFERENCE SELECTION |  |  |
| :--- | :--- | :--- |
| 28.11 Ext1 frequency <br> ref1 | EFB ref1 | Selects a reference received through the <br> embedded fieldbus interface as frequency <br> reference 1. |
| 28.15 Ext2 frequency <br> ref1 | EFB ref1 | Selects a reference received through the <br> embedded fieldbus interface as frequency <br> reference 2. |

## OTHER SELECTIONS

EFB references can be selected as the source at virtually any signal selector parameter by selecting Other, then either 03.09 EFB reference 1 or 03.10 EFB reference 2.

| SYSTEM CONTROL INPUTS |  |  |
| :--- | :--- | :--- |
| 96.07 Parameter save <br> manually | Save (reverts to <br> Done) | Saves parameter value changes (including <br> those made through fieldbus control) to <br> permanent memory. |

## Basics of the embedded fieldbus interface

The cyclic communication between a fieldbus system and the drive consists of 16-bit data words or 32-bit data words (with a transparent control profile).

The diagram below illustrates the operation of the embedded fieldbus interface. The signals transferred in the cyclic communication are explained further below the diagram.

Fieldbus network


1. See also other parameters which can be controlled through fieldbus.
2. Data conversion if parameter 58.25 Control profile is set to $A B B$ Drives. See section About the control profiles (page 335).

## Control word and Status word

The Control Word (CW) is a 16 -bit or 32-bit packed boolean word. It is the principal means of controlling the drive from a fieldbus system. The CW is sent by the fieldbus controller to the drive. With drive parameters, the user selects the EFB CW as the source of drive control commands (such as start/stop, emergency stop, selection between external control locations $1 / 2$, or fault reset). The drive switches between its states according to the bit-coded instructions of the CW.

The fieldbus CW is either written to the drive as it is or the data is converted. See section About the control profiles (page 335).

The fieldbus Status Word (SW) is a 16-bit or 32-bit packed boolean word. It contains status information from the drive to the fieldbus controller. The drive SW is either written to the fieldbus SW as it is or the data is converted. See section About the control profiles (page 335).

## References

EFB references 1 and 2 are 16-bit or 32-bit signed integers. The contents of each reference word can be used as the source of virtually any signal, such as the speed, frequency, torque or process reference. In embedded fieldbus communication, references 1 and 2 are displayed by 03.09 EFB reference 1 and 03.10 EFB reference 2 respectively. Whether the references are scaled or not depends on the settings of 58.26 EFB ref1 type and 58.27 EFB ref2 type. See section About the control profiles (page 335).

## Actual values

Fieldbus actual signals (ACT1 and ACT2) are 16-bit or 32-bit signed integers. They convey selected drive parameter values from the drive to the master. Whether the actual values are scaled or not depends on the settings of 58.28 EFB act1 type and 58.29 EFB act2 type. See section About the control profiles (page 335).

## Data input/outputs

Data input/outputs are 16-bit or 32-bit words containing selected drive parameter values. Parameters 58.101 Data I/O 1 ... 58.114 Data I/O 14 define the addresses from which the master either reads data (input) or to which it writes data (output).

## Register addressing

The address field of Modbus requests for accessing holding registers is 16 bits. This allows the Modbus protocol to support addressing of 65536 holding registers.

Historically, Modbus master devices used 5-digit decimal addresses from 40001 to 49999 to represent holding register addresses. The 5 -digit decimal addressing limited to 9999 the number of holding registers that could be addressed.

Modern Modbus master devices typically provide a means to access the full range of 65536 Modbus holding registers. One of these methods is to use 6-digit decimal addresses from 400001 to 465536 . This manual uses 6 -digit decimal addressing to represent Modbus holding register addresses.

Modbus master devices that are limited to the 5-digit decimal addressing may still access registers 400001 to 409999 by using 5-digit decimal addresses 40001 to 49999. Registers 410000-465536 are inaccessible to these masters.

Note: Register addresses of 32-bit parameters cannot be accessed by using 5-digit register numbers.

## About the control profiles

A control profile defines the rules for data transfer between the drive and the fieldbus master, for example:

- if packed boolean words are converted and how
- if signal values are scaled and how
- how drive register addresses are mapped for the fieldbus master.

You can configure the drive to receive and send messages according to one of the two profiles:

- ABB Drives
- DCU Profile.

For the ABB Drives profile, the embedded fieldbus interface of the drive converts the fieldbus data to and from the native data used in the drive. The DCU Profile involves no data conversion or scaling. The figure below illustrates the effect of the profile selection.


Control profile selection with parameter 58.25 Control profile is:

- (0) ABB Drives
- (5) DCU Profile.


## Control Word

## Control Word for the ABB Drives profile

The table below shows the contents of the fieldbus Control Word for the ABB Drives control profile. The embedded fieldbus interface converts this word to the form in which it is used in the drive. The upper case boldface text refers to the states shown in State transition diagram for the ABB Drives profile on page 343.

| Bit | Name | Value | STATE/Description |
| :---: | :---: | :---: | :---: |
| 0 | OFF1 CONTROL | 1 | Proceed to READY TO OPERATE. |
|  |  | 0 | Stop along currently active deceleration ramp. Proceed to OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active. |
| 1 | OFF2 CONTROL | 1 | Continue operation (OFF2 inactive). |
|  |  | 0 | Emergency OFF, coast to stop. Proceed to OFF2 ACTIVE, proceed to SWITCH-ON INHIBITED. |
| 2 | $\begin{aligned} & \text { OFF3 } \\ & \text { CONTROL } \end{aligned}$ | 1 | Continue operation (OFF3 inactive). |
|  |  | 0 | Emergency stop, stop within time defined by drive parameter. Proceed to OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED. <br> Warning: Ensure that the motor and driven machine can be stopped using this stop mode. |
| 3 | INHIBIT OPERATION | 1 | Proceed to OPERATION D. <br> Note: Run enable signal must be active; see the drive documentation. If the drive is set to receive the Run enable signal from the fieldbus, this bit activates the signal. |
|  |  | 0 | Inhibit operation. Proceed to OPERATION INHIBITED. |
| 4 | $\begin{aligned} & \text { RAMP_OUT_- } \\ & \text { ZERO } \end{aligned}$ | 1 | Normal operation. Proceed to RAMP FUNCTION GENERATOR: OUTPUT D. |
|  |  | 0 | Force Ramp Function Generator output to zero. Drive ramps to stop (current and DC voltage limits in force). |
| 5 | RAMP_HOLD | 1 | ramp function. Proceed to RAMP FUNCTION GENERATOR: ACCELERATOR D. |
|  |  | 0 | Halt ramping (Ramp Function Generator output held). |
| 6 | $\begin{aligned} & \text { RAMP_IN_ } \\ & \text { ZERO } \end{aligned}$ | 1 | Normal operation. Proceed to OPERATING. <br> Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters. |
|  |  | 0 | Force Ramp Function Generator input to zero. |
| 7 | RESET | $0=>1$ | Fault reset if an active fault exists. Proceed to SWITCHON INHIBITED. <br> Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters. |
|  |  | 0 | Continue normal operation. |


| Bit | Name | Value | STATE/Description |
| :---: | :---: | :---: | :---: |
| 8 | JOGGING_1 | 1 | Request running at Jogging 1 speed. <br> Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters. |
|  |  | 0 | Continue normal operation. |
| 9 | JOGGING_2 | 1 | Request running at Jogging 2 speed. <br> Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters. |
|  |  | 0 | Continue normal operation. |
| 10 | $\begin{aligned} & \text { REMOTE_- } \\ & \text { CMD } \end{aligned}$ | 1 | Fieldbus control d. |
|  |  | 0 | Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference. <br> Control Word $=0$ and Reference $=0$ : Fieldbus control d. Reference and deceleration/acceleration ramp are locked. |
| 11 | $\begin{aligned} & \text { EXT_CTRL_ } \\ & \text { LOC } \end{aligned}$ | 1 | Select External Control Location EXT2. Effective if the control location is parameterized to be selected from the fieldbus. |
|  |  | 0 | Select External Control Location EXT1. Effective if the control location is parameterized to be selected from the fieldbus. |
| 12 | USER_0 |  | Writable control bits that can be combined with drive logic for application-specific functionality. |
| 13 | USER_1 |  |  |
| 14 | USER_2 |  |  |
| 15 | USER_3 |  |  |

## Control Word for the DCU Profile

The embedded fieldbus interface writes the fieldbus Control Word as is to the drive Control Word bits 0 to 15 . Bits 16 to 32 of the drive Control Word are not in use.

| Bit | Name | Value | State/Description |
| :--- | :--- | :--- | :--- |
| 0 | STOP | 1 | Stop according to the Stop Mode parameter or the stop <br> mode request bits (bits 7...9). |
|  |  | 0 | (no op) |
| 1 | START | 1 | Start the drive. |
|  |  | 0 | (no op) |


| Bit | Name | Value | State/Description |
| :--- | :--- | :--- | :--- | :--- |
|  | REVERSE | 1 | Reverse direction of motor rotation. See in the table <br> below how this bit and sign of the reference effect the <br> direction of the motor direction. |


| Bit | Name | Value | State/Description |
| :---: | :---: | :---: | :---: |
| 14 | $\begin{aligned} & \text { REQ_LOCAL_LO } \\ & \text { CK } \end{aligned}$ | 1 | Drive does not switch to local control mode (see parameter 19.17 Local control disable). |
|  |  | 0 | Drive can switch between local and external control modes. |
| 15 | $\begin{aligned} & \text { TORQ_LIM_PAIR } \\ & \text { _2 } \end{aligned}$ | 1 | Select torque limit set 2 (Minimum torque 2 / Maximum torque 2) when parameter 30.18 Torq lim sel is set to EFB. |
|  |  | 0 | Select torque limit set 1 (Minimum torque 1 / Maximum torque 1) when parameter 30.18 Torq lim sel is set to EFB. |
| 16 | FB_LOCAL_CTL | 1 | Local mode for control from the fieldbus is requested. Steal control from the active source. |
|  |  | 0 | (no op) |
| 17 | FB_LOCAL_REF | 1 | Local mode for reference from the fieldbus is requested. Steal reference from the active source. |
|  |  | 0 | (no op) |
| 18 | Reserved for RUN_DISABLE_1 |  | Not yet implemented. |
| 19 | Reserved |  |  |
| 20 | Reserved |  |  |
| 21 | Reserved |  |  |
| 22 | USER_0 |  | Writable control bits that can be combined with drive logic |
| 23 | USER_1 |  | for application-specific functionality. |
| 24 | USER_2 |  |  |
| 25 | USER_3 |  |  |
| $\begin{aligned} & \hline 26 \ldots \\ & 31 \end{aligned}$ | Reserved |  |  |

## Status Word

## Status Word for the ABB Drives profile

The table below shows the fieldbus Status Word for the ABB Drives control profile. The embedded fieldbus interface converts the drive Status Word into this form for the fieldbus. The upper case boldface text refers to the states shown in State transition diagram for the ABB Drives profile on page 343.

| Bit | Name | Value | STATE/Description |
| :---: | :---: | :---: | :---: |
| 0 | RDY_ON | 1 | READY TO SWITCH ON. |
|  |  | 0 | NOT READY TO SWITCH ON. |
| 1 | RDY_RUN | 1 | READY TO OPERATE. |
|  |  | 0 | OFF1 ACTIVE. |
| 2 | RDY_REF | 1 | OPERATION D. |
|  |  | 0 | OPERATION INHIBITED. |
| 3 | TRIPPED | 1 | FAULT. |
|  |  | 0 | No fault. |
| 4 | OFF_2_STATUS | 1 | OFF2 inactive. |
|  |  | 0 | OFF2 ACTIVE. |
| 5 | OFF_3_STATUS | 1 | OFF3 inactive. |
|  |  | 0 | OFF3 ACTIVE. |
| 6 | $\begin{aligned} & \hline \text { SWC_ON_ } \\ & \text { INHIB } \end{aligned}$ | 1 | SWITCH-ON INHIBITED. |
|  |  | 0 | - |
| 7 | ALARM | 1 | Warning/Alarm. |
|  |  | 0 | No warning/alarm. |
| 8 | AT SETPOINT | 1 | OPERATING. Actual value equals Reference (is within tolerance limits, e.g. in speed control, speed error is $10 \%$ max. of nominal motor speed). |
|  |  | 0 | Actual value differs from Reference (is outside tolerance limits). |
| 9 | REMOTE | 1 | Drive control location: REMOTE (EXT1 or EXT2). |
|  |  | 0 | Drive control location: LOCAL. |
| 10 | $\begin{aligned} & \begin{array}{l} \text { ABOVE_ } \\ \text { LIMIT } \end{array} \end{aligned}$ | 1 | Actual frequency or speed equals or exceeds supervision limit (set by drive parameter). Valid in both directions of rotation. |
|  |  | 0 | Actual frequency or speed within supervision limit. |
| 11 | USER_0 |  | Status bits that can be combined with drive logic for |
| 12 | USER_1 |  | application-specific functionality. |
| 13 | USER_2 |  |  |
| 14 | USER_3 |  |  |
| 15 | Reserved |  |  |

## Status Word for the DCU Profile

The embedded fieldbus interface writes the drive Status Word bits 0 to 15 to the fieldbus Status Word as is. Bits 16 to 32 of the drive Status Word are not in use.

| Bit | Name | Value | State/Description |
| :---: | :---: | :---: | :---: |
| 0 | READY | 1 | Drive is ready to receive the start command. |
|  |  | 0 | Drive is not ready. |
| 1 | D | 1 | External run enable signal is active. |
|  |  | 0 | External run enable signal is not active. |
| 2 | Reserved for D_TO_ROTATE |  | Not yet implemented. |
| 3 | RUNNING | 1 | Drive is modulating. |
|  |  | 0 | Drive is not modulating. |
| 4 | ZERO_SPEED | 1 | Drive is at zero speed. |
|  |  | 0 | Drive is not at zero speed. |
| 5 | ACCELERATING | 1 | Drive speed is increasing. |
|  |  | 0 | Drive speed is not increasing. |
| 6 | DECELERATING | 1 | Drive speed is decreasing. |
|  |  | 0 | Drive speed is not decreasing. |
| 7 | AT_SETPOINT | 1 | Drive is at setpoint. |
|  |  | 0 | Drive is not at setpoint. |
| 8 | LIMIT | 1 | Drive operation is limited. |
|  |  | 0 | Drive operation is not limited. |
| 9 | SUPERVISION | 1 | Actual value (speed, frequency or torque) is above a limit. Limit is set with parameters $46.31 \ldots 46.33$ |
|  |  | 0 | Actual value (speed, frequency or torque) is within limits. |
| 10 | REVERSE_REF | 1 | Drive reference is in the reverse direction. |
|  |  | 0 | Drive reference is in the forward direction |
| 11 | REVERSE_ACT | 1 | Drive is running in the reverse direction |
|  |  | 0 | Drive is running in the forward direction |
| 12 | PANEL_LOCAL | 1 | Panel/keypad (or PC tool) is in local control mode. |
|  |  | 0 | Panel/keypad (or PC tool) is not in local control mode. |
| 13 | $\begin{aligned} & \text { FIELDBUS_LOC } \\ & \text { AL } \end{aligned}$ | 1 | Fieldbus is in local control mode. |
|  |  | 0 | Fieldbus is not in local control mode. |
| 14 | EXT2_ACT | 1 | External control location EXT2 is active. |
|  |  | 0 | External control location EXT1 is active. |
| 15 | FAULT | 1 | Drive is faulted. |
|  |  | 0 | Drive is not faulted. |

342 Fieldbus control through the embedded fieldbus interface (EFB)

| Bit | Name | Value | State/Description |
| :--- | :--- | :--- | :--- |
| 16 | ALARM | 1 | Warning/Alarm is active. |
|  |  | 0 | No warning/alarm. |
| 17 | Reserved |  |  |
| 18 | Reserved for <br> DIRECTION_LO <br> CK |  | Not yet implemented. |
| 19 | Reserved |  |  |
| 20 | Reserved |  |  |
| 21 | Reserved |  |  |
| 22 | USER_0 |  | Status bits that can be combined with drive logic for |
| 23 | USER_1 |  | application-specific functionality. |
| 24 | USER_2 |  |  |
| 25 | USER_3 |  |  |
| 26 | REQ_CTL | 1 | Control is requested in this channel. |
|  |  | 0 | Control is not requested in this channel. |
| $27 \ldots$ | Reserved |  |  |
| 31 |  |  |  |

## State transition diagrams

## State transition diagram for the ABB Drives profile

The diagram below shows the state transitions in the drive when the drive is using the ABB Drives profile and the drive is configured to follow the commands of the control word from the embedded fieldbus interface. The upper case texts refer to the states which are used in the tables representing the fieldbus Control and Status words. See sections Control Word for the ABB Drives profile on page 336 and Status Word for the $A B B$ Drives profile on page 340.


## References

## References for the ABB Drives profile and DCU Profile

The ABB Drives profile supports the use of two references, EFB reference 1 and EFB reference 2. The references are 16-bit words each containing a sign bit and a 15-bit integer. A negative reference is formed by calculating the two's complement from the corresponding positive reference.

The references are scaled as defined by parameters $46.01 \ldots 46.04$; which scaling is in use depends on the setting of 58.26 EFB ref1 type and 58.27 EFB ref2 type (see page 244).


The scaled references are shown by parameters 03.09 EFB reference 1 and 03.10 EFB reference 2.

## Actual values

## Actual values for the ABB Drives profile and DCU Profile

The ABB Drives profile supports the use of two fieldbus actual values, ACT1 and ACT2. The actual values are 16 -bit words each containing a sign bit and a 15 -bit integer. A negative value is formed by calculating the two's complement from the corresponding positive value.
The actual values are scaled as defined by parameters 46.01 ... 46.04 ; which scaling is in use depends on the setting of parameters 58.28 EFB act1 type and 58.29 EFB act2 type (see page 245).

Fieldbus Drive


## Modbus holding register addresses

## Modbus holding register addresses for the ABB Drives profile and DCU Profile

The table below shows the default Modbus holding register addresses for the drive data with the ABB Drives profile. This profile provides a converted 16-bit access to the drive data.

Note: Only the 16 least significant bits of the drive's 32-bit Control and Status Words can be accessed.

Note: Bits 16 through 32 of the DCU Control/Status word are not in use if 16-bit control/status word is used with the DCU Profile.

| Register address | Register data (16-bit words) |
| :--- | :--- |
| 400001 | Default: Control word (CW 16bit). See sections Control Word for the <br> ABB Drives profile (page 336) and Control Word for the DCU Profile <br> (page 337). <br> The selection can be changed using parameter 58.101 Data I/O 1. |
| 400002 | Default: Reference 1 (Ref1 16bit). <br> The selection can be changed using parameter 58.102 Data I/O 2. |
| 400003 | Default: Reference 2 (Ref2 16bit). <br> The selection can be changed using parameter 58.102 Data I/O 2. |
| 400004 | Default: Status Word (SW 16bit). See sections Status Word for the <br> ABB Drives profile (page 340) and Status Word for the DCU Profile <br> (page 341). <br> The selection can be changed using parameter 58.102 Data I/O 2. |
| 400005 | Default: Actual value 1 (Act1 16bit). <br> The selection can be changed using parameter 58.105 Data I/O 5. |
| 400006 | Actual value 2 (Act2 16bit). <br> The selection can be changed using parameter 58.106 Data I/O 6. |
| $400007 \ldots 400014$ | Data in/out 7...14. <br> Selected by parameters 58.107 Data I/O $7 \ldots 58.114$ Data I/O 14. |
| $400015 \ldots 400089$ | Unused |
| $400090 \ldots 400100$ | Error code access. See section Error code registers (holding registers <br> $400090 \ldots 400100$ ) (page 354). |
| $400101 \ldots 465536$ | Parameter read/write. <br> Parameters are mapped to register addresses according to parameter <br> 58.33 Addressing mode. |

## Modbus function codes

The table below shows the Modbus function codes supported by the embedded fieldbus interface.

| Code | Function name | Description |
| :---: | :---: | :---: |
| 01h | Read Coils | Reads the 0/1 status of coils (0X references). |
| 02h | Read Discrete Inputs | Reads the 0/1 status of discrete inputs (1X references). |
| 03h | Read Holding Registers | Reads the binary contents of holding registers (4X references). |
| 05h | Write Single Coil | Forces a single coil (0X reference) to 0 or 1. |
| 06h | Write Single Register | Writes a single holding register (4X reference). |
| 08h | Diagnostics | Provides a series of tests for checking the communication, or for checking various internal error conditions. <br> Supported subcodes: <br> - OOh Return Query Data: Echo/loopback test. <br> - 01h Restart Comm Option: Restarts and initializes the EFB, clears communications event counters. <br> - 04h Force Listen Only Mode <br> - OAh Clear Counters and Diagnostic Register <br> - OBh Return Bus Message Count <br> - OCh Return Bus Comm. Error Count <br> - ODh Return Bus Exception Error Count <br> - OEh Return Slave Message Count <br> - OFh Return Slave No Response Count <br> - 10h Return Slave NAK (negative acknowledge) Count <br> - 11h Return Slave Busy Count <br> - 12h Return Bus Character Overrun Count <br> - 14h Clear Overrun Counter and Flag |
| 0Bh | Get Comm Event Counter | Returns a status word and an event count. |
| 0Fh | Write Multiple Coils | Forces a sequence of coils (0X references) to 0 or 1. |
| 10h | Write Multiple Registers | Writes the contents of a contiguous block of holding registers (4X references). |
| 16h | Mask Write Register | Modifies the contents of a 4 X register using a combination of an AND mask, an OR mask, and the register's current contents. |
| 17h | Read/Write Multiple Registers | Writes the contents of a contiguous block of 4 X registers, then reads the contents of another group of registers (the same or different than those written) in a server device. |


| Code | Function name | Description |
| :---: | :---: | :---: |
| 2Bh / 0Eh | Encapsulated Interface Transport | Supported subcodes: <br> - OEh Read Device Identification: Allows reading the identification and other information. <br> Supported ID codes (access type): <br> - OOh: Request to get the basic device identification (stream access) <br> - 04h: Request to get one specific identification object (individual access) <br> Supported Object IDs: <br> - OOh: Vendor Name ("ABB") <br> - 01h: Product Code (for example, "AHVKx") <br> - 02h: Major Minor Revision (combination of contents of parameters 07.05 Firmware version and 58.02 Protocol ID). <br> - 03h: Vendor URL ("www.abb.com") <br> - 04h: Product name: ("ACH580"). |

## Exception codes

The table below shows the Modbus exception codes supported by the embedded fieldbus interface.

| Code | Name | Description |
| :--- | :--- | :--- |
| 01h | ILLEGAL FUNCTION | The function code received in the query is not an <br> allowable action for the server. |
| 02h | ILLEGAL ADDRESS | The data address received in the query is not an <br> allowable address for the server. |
| 03h | ILLEGAL VALUE | The requested quantity of registers is larger than the <br> device can handle. This error does not mean that a <br> value written to the device is outside of the valid <br> range. |
| 04h | DEVICE FAILURE | An unrecoverable error occurred while the server was <br> attempting to perform the requested action. See <br> section Error code registers (holding registers <br> 400090...400100) on page 354. |

## Coils (0xxxx reference set)

Coils are 1-bit read/write values. Control Word bits are exposed with this data type. The table below summarizes the Modbus coils (0xxxx reference set). Note that the references are 1-based index which match the address transmitted on the wire.

| Reference | ABB Drives profile | DCU Profile |
| :---: | :---: | :---: |
| 000001 | OFF1_CONTROL | STOP |
| 000002 | OFF2_CONTROL | START |
| 000003 | OFF3_CONTROL | Reserved |
| 000004 | INHIBIT_OPERATION | Reserved |
| 000005 | RAMP_OUT_ZERO | RESET |
| 000006 | RAMP_HOLD | EXT2 |
| 000007 | RAMP_IN_ZERO | RUN_DISABLE |
| 000008 | RESET | STOPMODE_RAMP |
| 000009 | JOGGING_1 | STOPMODE_EMERGENCY_RAMP |
| 000010 | JOGGING_2 | STOPMODE_COAST |
| 000011 | REMOTE_CMD | Reserved |
| 000012 | EXT_CTRL_LOC | RAMP_OUT_ZERO |
| 000013 | USER_0 | RAMP_HOLD |
| 000014 | USER_1 | RAMP_IN_ZERO |
| 000015 | USER_2 | Reserved |
| 000016 | USER_3 | Reserved |
| 000017 | Reserved | FB_LOCAL_CTL |
| 000018 | Reserved | FB_LOCAL_REF |
| 000019 | Reserved | Reserved |
| 000020 | Reserved | Reserved |
| 000021 | Reserved | Reserved |
| 000022 | Reserved | Reserved |
| 000023 | Reserved | USER_0 |
| 000024 | Reserved | USER_1 |
| 000025 | Reserved | USER_2 |
| 000026 | Reserved | USER_3 |
| 000027 | Reserved | Reserved |
| 000028 | Reserved | Reserved |
| 000029 | Reserved | Reserved |
| 000030 | Reserved | Reserved |
| 000031 | Reserved | Reserved |
| 000032 | Reserved | Reserved |


| Reference | ABB Drives profile | DCU Profile |
| :---: | :--- | :--- |
| 000033 | Control for relay output RO1 <br> (parameter 10.99 RO/DIO control <br> word, bit 0) | Control for relay output RO1 <br> (parameter 10.99 RO/DIO control <br> word, bit 0) |
| 000034 | Control for relay output RO2 <br> (parameter 10.99 RO/DIO control <br> word, bit 1) | Control for relay output RO2 <br> (parameter 10.99 RO/DIO control <br> word, bit 1) |
| 000035 | Control for relay output RO3 <br> (parameter 10.99 RO/DIO control <br> word, bit 2) | Control for relay output RO3 <br> (parameter 10.99 RO/DIO control <br> word, bit 2) |
| 000036 | Control for relay output RO4 <br> (parameter 10.99 RO/DIO control <br> word, bit 3) | Control for relay output RO4 <br> (parameter 10.99 RO/DIO control <br> word, bit 3) |
| 000037 | Control for relay output RO5 <br> (parameter 10.99 RO/DIO control <br> word, bit 4) | Control for relay output RO5 <br> (parameter 10.99 RO/DIO control <br> word, bit 4) |

## Discrete inputs (1xxxx reference set)

Discrete inputs are 1-bit read-only values. Status Word bits are exposed with this data type. The table below summarizes the Modbus discrete inputs (1xxxx reference set). Note that the references are 1-based index which match the address transmitted on the wire.

| Reference | ABB Drives profile | DCU Profile |
| :---: | :---: | :---: |
| 100001 | RDY_ON | READY |
| 100002 | RDY_RUN | D |
| 100003 | RDY_REF | Reserved |
| 100004 | TRIPPED | RUNNING |
| 100005 | OFF_2_STATUS | ZERO_SPEED |
| 100006 | OFF_3_STATUS | Reserved |
| 100007 | SWC_ON_INHIB | Reserved |
| 100008 | ALARM | AT_SETPOINT |
| 100009 | AT_SETPOINT | LIMIT |
| 100010 | REMOTE | SUPERVISION |
| 100011 | ABOVE_LIMIT | Reserved |
| 100012 | USER_0 | Reserved |
| 100013 | USER_1 | PANEL_LOCAL |
| 100014 | USER_2 | FIELDBUS_LOCAL |
| 100015 | USER_3 | EXT2_ACT |
| 100016 | Reserved | FAULT |
| 100017 | Reserved | ALARM |
| 100018 | Reserved | Reserved |
| 100019 | Reserved | Reserved |
| 100020 | Reserved | Reserved |
| 100021 | Reserved | Reserved |
| 100022 | Reserved | Reserved |
| 100023 | Reserved | USER_0 |
| 100024 | Reserved | USER_1 |
| 100025 | Reserved | USER_2 |
| 100026 | Reserved | USER_3 |
| 100027 | Reserved | REQ_CTL |
| 100028 | Reserved | Reserved |
| 100029 | Reserved | Reserved |
| 100030 | Reserved | Reserved |
| 100031 | Reserved | Reserved |
| 100032 | Reserved | Reserved |


| Reference | ABB Drives profile | DCU Profile |
| :---: | :--- | :--- |
| 100033 | Delayed status of digital input <br> DI1 (parameter 10.02 DI <br> delayed status, bit 0) | Delayed status of digital input <br> DI1 (parameter 10.02 DI <br> delayed status, bit 0) |
| 100034 | Delayed status of digital input <br> DI2 (parameter 10.02 DI <br> delayed status, bit 1) | Delayed status of digital input <br> DI2 (parameter 10.02 DI <br> delayed status, bit 1) |
| 100035 | Delayed status of digital input <br> DI3 (parameter 10.02 DI <br> delayed status, bit 2) | Delayed status of digital input <br> DI3 (parameter 10.02 DI <br> delayed status, bit 2) |
| 100036 | Delayed status of digital input <br> Dl4 (parameter 10.02 DI <br> delayed status, bit 3) | Delayed status of digital input <br> Dl4 (parameter 10.02 DI <br> delayed status, bit 3) |
| 100037 | Delayed status of digital input <br> DI5 (parameter 10.02 DI <br> delayed status, bit 4) | Delayed status of digital input <br> DI5 (parameter 10.02 DI <br> delayed status, bit 4) |
| 100038 | Delayed status of digital input <br> DI6 (parameter 10.02 DI <br> delayed status, bit 5) | Delayed status of digital input <br> DI6 (parameter 10.02 DI <br> delayed status, bit 5) |

## Error code registers (holding registers 400090...400100)

These registers contain information about the last query. The error register is cleared when a query has finished successfully.

| Reference | Name | Description |
| :--- | :--- | :--- |
| 400090 | Reset Error Registers | $1=$ Reset internal error registers (91...95). 0 = Do <br> nothing. |
| 400091 | Error Function Code | Function code of the failed query. |
| 400092 | Error Code | Set when exception code 04h is generated (see table <br> above). <br> - 00h No error <br> - 02h Low/High limit exceeded <br> - 03h Faulty Index: Unavailable index of an array <br> parameter <br> 05h Incorrect Data Type: Value does not match the <br> data type of the parameter <br> - 65h General Error: Undefined error when handling <br> query |
| 400093 | Failed Register | The last register (discrete input, coil, input register or <br> holding register) that failed to be read or written. |
| 400094 | Last Register Written <br> Successfully | The last register (discrete input, coil, input register or <br> holding register) that was written successfully. |
| 400095 | Last Register Read <br> Successfully | The last register (discrete input, coil, input register or <br> holding register) that was read successfully. |

## 10

## Fieldbus control through a fieldbus adapter

## What this chapter contains

This chapter describes how the drive can be controlled by external devices over a communication network (fieldbus) through an optional fieldbus adapter module.

The fieldbus control interface of the drive is described first, followed by a configuration example.

## System overview

The drive can be connected to an external control system through an optional fieldbus adapter ("fieldbus adapter A" = FBA A) mounted onto the control unit of the drive. The drive can be configured to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources such as digital and analog inputs, depending on how control locations EXT1 and EXT2 are configured.

Fieldbus adapters are available for various communication systems and protocols, for example

- PROFIBUS DP (FPBA-01 adapter)
- CANopen (FCAN-01 adapter)
- DeviceNet ${ }^{\text {TM }}$ (FDNA-01 adapter)
- EtherNet/IP ${ }^{\text {TM }}$ (FENA-11 adapter)

Note: The text and examples in this chapter describe the configuration of one fieldbus adapter (FBA A) by parameters $50.01 \ldots 50.18$ and parameter groups 51 FBA A settings... 53 FBA A data out


## Basics of the fieldbus control interface

The cyclic communication between a fieldbus system and the drive consists of 16- or 32 -bit input and output data words. The drive is able to support a maximum of 12 data words (16 bits) in each direction.

Data transmitted from the drive to the fieldbus controller is defined by parameters 52.01 FBA A data in1 ... 52.12 FBA A data in12. The data transmitted from the fieldbus controller to the drive is defined by parameters 53.01 FBA A data out1 ... 53.12 FBA A data out12.

Fieldbus network


1) See also other parameters which can be controlled from fieldbus.
2) The maximum number of data words used is protocol-dependent.
3) Profile/instance selection parameters. Fieldbus module specific parameters. For more information, see the User's manual of the appropriate fieldbus adapter module.
4) With DeviceNet, the control part is transmitted directly.
5) With DeviceNet, the actual value part is transmitted directly.

## Control word and Status word

The Control word is the principal means for controlling the drive from a fieldbus system. It is sent by the fieldbus master station to the drive through the adapter module. The drive switches between its states according to the bit-coded instructions in the Control word, and returns status information to the master in the Status word.

The contents of the Control word and the Status word are detailed on pages 361 and 363 respectively. The drive states are presented in the state diagram (page 364).

## Debugging the network words

If parameter 50.12 FBA A debug mode is set to Fast, the Control word received from the fieldbus is shown by parameter 50.13 FBA A control word, and the Status word transmitted to the fieldbus network by 50.16 FBA A status word. This "raw" data is very useful to determine if the fieldbus master is transmitting the correct data before handing control to the fieldbus network.

## References

References are 16 -bit words containing a sign bit and a 15 -bit integer. A negative reference (indicating reversed direction of rotation) is formed by calculating the two's complement from the corresponding positive reference.

ABB drives can receive control information from multiple sources including analog and digital inputs, the drive control panel and a fieldbus adapter module. In order to have the drive controlled through the fieldbus, the module must be defined as the source for control information such as reference. This is done using the source selection parameters in groups 22 Speed reference selection, 26 Torque reference chain and 28 Frequency reference chain.

## Debugging the network words

If parameter 50.12 FBA $A$ debug mode is set to Fast, the references received from the fieldbus are displayed by 50.14 FBA A reference 1 and 50.15 FBA A reference 2.

## Scaling of references

The references are scaled as defined by parameters $46.01 \ldots 46.04$; which scaling is in use depends on the setting of 50.04 FBA A ref1 type and 50.05 FBA A ref2 type.


The scaled references are shown by parameters 03.05 FB A reference 1 and 03.06 FB A reference 2.

## Actual values

Actual values are 16-bit words containing information on the operation of the drive. The types of the monitored signals are selected by parameters 50.07 FBA A actual 1 type and 50.08 FBA A actual 2 type.

## Debugging the network words

If parameter 50.12 FBA A debug mode is set to Fast, the actual values sent to the fieldbus are displayed by 50.17 FBA A actual value 1 and 50.18 FBA $A$ actual value 2.

## Scaling of actual values

The actual values are scaled as defined by parameters $46.01 \ldots 46.04$; which scaling is in use depends on the setting of parameters 50.07 FBA A actual 1 type and 50.08 FBA A actual 2 type.


## Contents of the fieldbus Control word

The upper case boldface text refers to the states shown in the state diagram (page 364).

| Bit | Name | Value | STATE/Description |
| :---: | :---: | :---: | :---: |
| 0 | Off1 control | 1 | Proceed to READY TO OPERATE. |
|  |  | 0 | Stop along currently active deceleration ramp. Proceed to OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active. |
| 1 | Off2 control | 1 | Continue operation (OFF2 inactive). |
|  |  | 0 | Emergency OFF, coast to a stop. Proceed to OFF2 ACTIVE, proceed to SWITCH-ON INHIBITED. |
| 2 | Off3 control | 1 | Continue operation (OFF3 inactive). |
|  |  | 0 | Emergency stop, stop within time defined by drive parameter. Proceed to OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED. $\qquad$ WARNING: Ensure motor and driven machine can be stopped using this stop mode. |
| 3 | Run | 1 | Proceed to OPERATION D. <br> Note: Run enable signal must be active; see drive documentation. If the drive is set to receive the Run enable signal from the fieldbus, this bit activates the signal. |
|  |  | 0 | Inhibit operation. Proceed to OPERATION INHIBITED. |
| 4 | Ramp out zero | 1 | Normal operation. Proceed to RAMP FUNCTION GENERATOR: OUTPUT D. |
|  |  | 0 | Force Ramp function generator output to zero. The drive will immediately decelerate to zero speed (observing the torque limits). |
| 5 | Ramp hold | 1 | ramp function. Proceed to RAMP FUNCTION GENERATOR: ACCELERATOR D. |
|  |  | 0 | Halt ramping (Ramp Function Generator output held). |
| 6 | Ramp in zero | 1 | Normal operation. Proceed to OPERATING. <br> Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters. |
|  |  | 0 | Force Ramp function generator input to zero. |
| 7 | Reset | 0=>1 | Fault reset if an active fault exists. Proceed to SWITCH-ON INHIBITED. <br> Note: This bit is effective only if the fieldbus interface is set as the source of the reset signal by drive parameters. |
|  |  | 0 | Continue normal operation. |
| 8 | Inching 1 | 1 | Accelerate to inching (jogging) setpoint 1. <br> Notes: <br> - Bits $4 \ldots 6$ must be 0 . <br> - See also section Rush control (page 52). |
|  |  | 0 | Inching (jogging) 1 disabled. |
| 9 | Inching 2 | 1 | Accelerate to inching (jogging) setpoint 2. See notes at bit 8. |
|  |  | 0 | Inching (jogging) 2 disabled. |
| 10 | Remote cmd | 1 | Fieldbus control d. |
|  |  | 0 | Control word and reference not getting through to the drive, except for bits 0... 2 . |
| 11 | Ext ctrl loc | 1 | Select External Control Location EXT2. Effective if control location is parameterized to be selected from fieldbus. |
|  |  | 0 | Select External Control Location EXT1. Effective if control location is parameterized to be selected from fieldbus. |

362 Fieldbus control through a fieldbus adapter

| Bit | Name | Value | STATE/Description |
| :--- | :--- | :--- | :--- |
| 12 | User bit 0 | 1 | User configurable |
|  |  | 0 |  |
| 13 | User bit 1 | 1 |  |
|  |  |  |  |
| 14 | User bit 2 | 1 |  |
|  |  |  |  |
| 15 | User bit 3 | 1 |  |
|  |  |  |  |

## Contents of the fieldbus Status word

The upper case boldface text refers to the states shown in the state diagram (page 364).

| Bit | Name | Value | STATE/Description |
| :---: | :---: | :---: | :---: |
| 0 | Ready to switch ON | 1 | READY TO SWITCH ON. |
|  |  | 0 | NOT READY TO SWITCH ON. |
| 1 | Ready run | 1 | READY TO OPERATE. |
|  |  | 0 | OFF1 ACTIVE. |
| 2 | Ready ref | 1 | OPERATION D. |
|  |  | 0 | OPERATION INHIBITED. |
| 3 | Tripped | 1 | FAULT. |
|  |  | 0 | No fault. |
| 4 | Off 2 inactive | 1 | OFF2 inactive. |
|  |  | 0 | OFF2 ACTIVE. |
| 5 | Off 3 inactive | 1 | OFF3 inactive. |
|  |  | 0 | OFF3 ACTIVE. |
| 6 | Switch-on inhibited | 1 | SWITCH-ON INHIBITED. |
|  |  | 0 | - |
| 7 | Warning | 1 | Warning active. |
|  |  | 0 | No warning active. |
| 8 | At setpoint | 1 | OPERATING. Actual value equals reference $=$ is within tolerance limits (see parameters 46.21...46.23). |
|  |  | 0 | Actual value differs from reference $=$ is outside tolerance limits. |
| 9 | Remote | 1 | Drive control location: REMOTE (EXT1 or EXT2). |
|  |  | 0 | Drive control location: LOCAL. |
| 10 | Above limit | - | See bit 10 of 06.17 Drive status word 2. |
| 11 | User bit 0 | - | See parameter 06.30 MSW bit 11 selection. |
| 12 | User bit 1 | - | See parameter 06.31 MSW bit 12 selection. |
| 13 | User bit 2 | - | See parameter 06.32 MSW bit 13 selection. |
| 14 | User bit 3 | - | See parameter 06.33 MSW bit 14 selection. |
| 15 | Reserved |  |  |

The state diagram

| CW | $=$ Control word |
| :--- | :--- |
| SW | $=$ Status word |
| bx | $=$ bit $x$ |
| n | $=$ Speed |
| l | $=$ Input Current |
| RFG | $=$ Ramp Function |
| Generator |  |
| f | $=$ Frequency |



## STATE



## Setting up the drive for fieldbus control

1. Install the fieldbus adapter module mechanically and electrically according to the instructions given in the User's manual of the module.
2. Power up the drive.
3. the communication between the drive and the fieldbus adapter module with parameter 50.01 FBA A.
4. With 50.02 FBA A comm loss func, select how the drive should react to a fieldbus communication break.
Note: This function monitors both the communication between the fieldbus master and the adapter module and the communication between the adapter module and the drive.
5. With 50.03 FBA A comm loss tout, define the time between communication break detection and the selected action.
6. Select application-specific values for the rest of the parameters in group 50 Fieldbus adapter (FBA), starting from 50.04. Examples of appropriate values are shown in the tables below.
7. Set the fieldbus adapter module configuration parameters in group 51 FBA A settings. As a minimum, set the required node address and the communication profile.
8. Define the process data transferred to and from the drive in parameter groups 52 FBA A data in and 53 FBA A data out.
Note: Depending on the communication protocol and profile being used, the Control word and Status word may already be configured to be sent/received by the communication system.
9. Save the valid parameter values to permanent memory by setting parameter 96.07 Parameter save manually to Save.
10. Validate the settings made in parameter groups 51,52 and 53 by setting parameter 51.27 FBA A par refresh to Configure.
11. Configure control locations EXT1 and EXT2 to allow control and reference signals to come from the fieldbus. Examples of appropriate values are shown in the tables below.

## Parameter setting example: FPBA (PROFIBUS DP)

This example shows how to configure a basic speed control application that uses the PROFIdrive communication profile with PPO Type 2. The start/stop commands and reference are according to the PROFIdrive profile, speed control mode.

The reference values sent over the fieldbus have to be scaled within the drive so they have the desired effect. The reference value $\pm 16384$ ( 4000 h ) corresponds to the range of speed set in parameter 46.01 Speed scaling (both forward and reverse directions). For example, if 46.01 is set to 480 rpm , then 4000 h sent over fieldbus will request 480 rpm .

| Direction | PZD1 | PZD2 | PZD3 | PZD4 | PZD5 | PZD6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Out | Control word | Speed reference | Acc time 1 | Dec time 1 |  |  |
| In | Status word | Speed actual value | Motor current | DC voltage |  |  |

The table below gives the recommended drive parameter settings.

| Drive parameter | Setting for ACS580 drives | Description |
| :---: | :---: | :---: |
| 50.01 FBA A | 1 = [slot number] | s communication between the drive and the fieldbus adapter module. |
| 50.04 FBA A ref1 type | 4 = Speed | Selects the fieldbus A reference 1 type and scaling. |
| 50.07 FBA A actual 1 type | $\begin{aligned} & \mathbf{0}=\text { Speed or } \\ & \text { frequency } \end{aligned}$ | Selects the actual value type and scaling according to the currently active Ref1 mode defined in parameter 50.04 . |
| 51.01 FBA A type | 1 = $\mathrm{FPBA}^{1)}$ | Displays the type of the fieldbus adapter module. |
| 51.02 Node address | $3^{2)}$ | Defines the PROFIBUS node address of the fieldbus adapter module. |
| 51.03 Baud rate | $12000^{1)}$ | Displays the current baud rate on the PROFIBUS network in kbit/s. |
| 51.04 MSG type | $1=\mathrm{PPO}^{(1)}$ | Displays the telegram type selected by the PLC configuration tool. |
| 51.05 Profile | 0 = PROFIdrive | Selects the Control word according to the PROFIdrive profile (speed control mode). |
| 51.07 RPBA mode | 0 = Disabled | Disables the RPBA emulation mode. |
| 52.01 FBA data in 1 | 4 = SW 16bit ${ }^{11}$ | Status word |
| 52.02 FBA data in2 | 5 = Act1 16bit | Actual value 1 |
| 52.03 FBA data in3 | $01.07^{2}$ ) | Motor current |
| 52.05 FBA data in5 | $01.11^{2}$ | DC voltage |
| 53.01 FBA data out1 | 1 = CW 16bit ${ }^{1}$ ) | Control word |
| 53.02 FBA data out2 | 2 = Ref1 16bit | Reference 1 (speed) |
| 53.03 FBA data out3 | $23.12^{2)}$ | Acceleration time 1 |


| Drive parameter | Setting for ACS580 <br> drives | Description |
| :--- | :--- | :--- |
| 53.05 FBA data out5 | $23.13^{2)}$ | Deceleration time 1 |
| 51.27 FBA A par refresh | $\mathbf{1}=$ Configure | Validates the configuration parameter <br> settings. |
| 19.12 Ext1 control mode | $\mathbf{2}=$ Speed | Selects speed control as the control <br> mode 1 for external control location <br> EXT1. |
| 20.01 Ext1 commands | $\mathbf{1 2}=$ Fieldbus A | Selects fieldbus adapter A as the source <br> of the start and stop commands for <br> external control location EXT1. |
| 20.02 Ext1 start trigger type | $\mathbf{1}=$ Level | Selects a level-triggered start signal for <br> external control location EXT1. |
| 22.11 Ext1 speed ref1 | $\mathbf{4}=$ FB A ref1 | Selects fieldbus A reference 1 as the <br> source for speed reference 1. |

${ }^{1)}$ Read-only or automatically detected/set
${ }^{2)}$ Example
The start sequence for the parameter example above is given below.
Control word:

- 477h (1143 decimal) -> READY TO SWITCH ON
- 47Fh (1151 decimal) -> OPERATING (Speed mode)


## Control chain diagrams

## Contents of this chapter

The chapter presents the reference chains of the drive. The control chain diagrams can be used to trace how parameters interact and where parameters have an effect within the drive parameter system.

For a more general diagram, see section Operating modes of the drive (page 43).

Frequency reference selection


## Frequency reference modification


ac.maher.co.ir

## Speed reference source selection I



## Speed reference source selection II



## Speed reference ramping and shaping



## Speed error calculation


ac.maher.co.ir'

## Speed controller


ac.maher.co.ir

Torque reference source selection and modification


## Reference selection for torque controller



## Torque limitation


ac.maher.co.ilr

## Process PID setpoint and feedback source selection


ac.maher.co.ilr

## Process PID controller

PROCESS PID FUNCTION
(40.03 Process PID setpoint actual Value


## External PID setpoint and feedback source selection


ac.maher.co.ir'

## External PID controller


ac.maher.co.ir

## Further information

Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of $A B B$ sales, support and service contacts can be found by navigating to www.abb.com/searchchannels.

Product training
For information on ABB product training, navigate to new.abb.com/service/training.
Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet at www.abb.com/drives/documents.

## Contact us

www.abb.com/drives<br>www.abb.com/drivespartners

3AXD50000027537 Rev B (EN) 2016-02-02


3AXD50000027537B

