Industrial Automation Headquarters
Delta Electronics, Inc.
Taoyuan Technology Center
No. 18, Xinglong Rd., Taoyuan District,
Taoyuan City 33068, Taiwan
TEL: $886--362-6301$ / FAX: 886--3-371-6301
Asia
Delta Electronics (Shanghai) Co., Ltd.
No. 182 Minyu Rd. Pudong Shanghai PR.C.
No. 182 Minyu Rd.. Pudong Shanghai, P.R.C.
Post code 201209
TEL: 86-21-6872-3988 / FAX: 86-21-6872-3996
Customer Service: 400-820-9595
Delta Electronics (Japan), Inc.
Tokyo Office
Industrial Automation Sales Department
2-1-14 Shibadaimon, Minato-ku
2-1-14 Shibadaimon,
Tokyo, Japan 105-012
TEL: 81-3-5733-1155/ /FAX: 81-3-5733-1255
Delta Electronics (Korea), Inc.
1511, 219, Gasan Digital 1-Ro., Geumcheon-g
Seoul, 08501 South Korea
TEL: 82--515--5305 / FAX: $82-2-515-5302$
Delta Energy Systems (Singapore) Pte Ltd.
TEL: 65-6747-5155 / FAX: 65-67444-9228
Delta Electronics (India) Pvt. Lto.
Plot No. 43 , Sector 35, HSIIDC Gurgao
PIN 122001, Haryana, India
Delta Electronics (Thailand) PCL.
909 Soi 9 , Moo 4 , Bangooo Ind strial Es
909 Soi 9, Moo 4, Bangpoo Industrial Estate (E.P. PZ)
Samutprakarn 10280, Thailand
Samutprakarn 10280, Thailand
TEL: 66-709-2800 / FAX: $: 662-709-2827$
Delta Energy Systems (Australia) Pty Ltd. Unit 20-21745 Normanby Ra., Notting Hill Vic 3168, Austra

Americas
Delta Electronics (Americas) Ltd.
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-1 $19-767-3813$ / FAX: 1-919-767-3969
Delta Greentech (Brasil) S/A
São Paulo Office
Rua latapeva, $26-3^{\circ}$ Andar - Bela Vista
CEP: $01332-000-$ São Patlon
CEP: $01332-000-$ São Paulo - SP - Bras
TEL: $55-11-3530-8642$ / $55-11-3530-8640$
Delta Electronics International Mexico S.A. de C.v.
Via Dr. Gustavo Baz No. 2160 , Colonia La Loma, 54060 Tlalnepantla Estado de Mexico

EMEA
Headquarters: Delta Electronics (Netherlands) B.V
Sales: Sales. IA.EMEA@deltaww.com
Marketing: Maketing.IA.EMEA@deltaww.com
Technical Support: iatechnicalsuppor!@deltaww.cor
Customer Support: Customer-Support@deltaww.co
eerice: Service.IA.emea@deltaww.com
BENELUX: Delta Electronics (Netherlands) B.V.
e Witbogt 20,5652 AG Eindhoven, The
Wail: Sales.AA.Benelux@deltaww.com
Mail: Sales.IA. Benelux@de
EL: $+31(0) 408003800$
DACH: Delta Electronics (Netherlands) B.V
Cesterweg 45, D-59494 soest, Gerr
Mail: Sales.|A.DAACH@C
TEL: $+49(0) 29219870$
France: Delta Electronics (France) S.A.
du bois Challand 2,15 rue des Pyreinees
isses, 91090 Evry Cdedex, France
TEL:
beria: Delta Electronics Solutions (Spain) S.LU
Cra. De Villaverde a Vallecas, $2651^{10}$ Dha E .
ormigueras - P.I. de Vallecas 28031 Madrid
EL. +34 (0) 1912237420 . 28 .
CLLIIII, 321-329 (Edifici CINC)। 22 @Barcrelona, 08019 Barcelona
Mail: Sales.A.A.Iberia@deltaww.com
|taly: Delta Electronics (Italy) S.r.l.
fificio di Milano Via Senigaliia 18/2 20161 Milano (M)
Piazza Grazioli 1800186 Roma Italy
Mail: Sales. IA. Italy@delf
TEL: +390264672538
Russia: Delta Energy System LLC
Vereyskaya Plaza III, office
1721357 Moscow
Russia
ail: Sales.IA.RU@deltaww.co
745644324
urkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)
erifali Mah. Hendem Cad. Kule Sok. No:16-A
Mail: Sales. A. Turkey@deltaw
Mail: Sales. IA. Turkey@de
TEL: +902164999910
GCC: Delta Energy Systems AG (Dubai BR)
O. Box 185668, Gate 7., rrd Floor, Hamarain Cen
pubai, United Arab Emirates
Mail: Sales.IA.MEA@deltaww.co
LL: +971(0)4 269014
Egypt + North Africa: Delta Electronics
New Cairo, Cairo, Egypt


## Delta Vector Control Drive C2000 Series User Manual



## Copyright notice

©Delta Electronics, Inc. All rights reserved.
All information contained in this user manual is the exclusive property of Delta Electronics Inc.
(hereinafter referred to as "Delta ") and is protected by copyright law and all other laws. Delta retains the exclusive rights of this user manual in accordance with the copyright law and all other laws. No parts in this manual may be reproduced, transmitted, transcribed, translated or used in any other ways without the prior consent of Delta.

## Limitation of Liability

The contents of this user manual are only for the use of the AC motor drives manufactured by Delta. Except as defined in special mandatory laws, Delta provides this user manual "as is" and does not offer any kind of warranty through this user manual for using the product, either express or implied, including but not limited to the following: (i) this product will meet your needs or expectations; (ii) the information contained in the product is current and correct; (iii) the product does not infringe any rights of any other person. You shall bear your own risk to use this product.

In no event shall Delta, its subsidiaries, affiliates, managers, employees, agents, partners and licensors be liable for any direct, indirect, incidental, special, derivative or consequential damages (including but not limited to the damages for loss of profits, goodwill, use or other intangible losses) unless the laws contains special mandatory provisions to the contrary.

Delta reserves the right to make changes to the user manual and the products described in the user manual without prior notice and afterwards.

## PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

$\square$ Disconnect AC input power before connecting any wiring to the AC motor drive.
$\boxtimes$ Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Do NOT touch the internal circuits and components.
$\boxtimes$ There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Take anti-static measure before touching these components or the circuit boards.
$\square$ Never modify the internal components or wiring.
$\square$ Ground the AC motor drive by using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
$\boxtimes$ Do NOT install the AC motor drive in a location with high temperature, direct sunlight or inflammable materials or gases.
$\nabla$ Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
$\boxtimes$ After finishing the wiring of the $A C$ motor drive, check if $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$ are short-circuited to ground with a multimeter. Do NOT power the drive if short circuits occur. Eliminate the short circuits before the drive is powered.
$\square$ The rated voltage of power system to install motor drives is listed below. Ensure that the installation voltage is in the correct range when installing a motor drive.

1. For 230 V models, the range is between $170-264 \mathrm{~V}$.
2. For 460 V models, the range is between $323-528 \mathrm{~V}$.

3 . For 575 V models, the range is between $446-660 \mathrm{~V}$.
4. For 690 V models, the range is between $446-759 \mathrm{~V}$.
$\nabla$ Refer to the table below for short circuit rating:

| Model (Power) | Short circuit rating |
| :--- | :---: |
| $230 \mathrm{~V} / 460 \mathrm{~V}$ | 100 kA |
| $575 \mathrm{~V}(2-20 \mathrm{HP})$ | 5 kA |
| $690 \mathrm{~V}(25-50 \mathrm{HP})$ | 5 kA |
| $690 \mathrm{~V}(60-175 \mathrm{HP})$ | 10 kA |
| $690 \mathrm{~V}(215-335 \mathrm{HP})$ | 18 kA |
| $690 \mathrm{~V}(425-600 \mathrm{HP})$ | 30 kA |
| $690 \mathrm{~V}(745-850 \mathrm{HP})$ | 42 kA |

$\square$ Only qualified persons are allowed to install, wire and maintain the AC motor drives.
$\square$ Even if the three-phase AC motor is stopped, a charge with hazardous voltages may still remain in the main circuit terminals of the AC motor drive.
$\square$ The performance of electrolytic capacitor will degrade if it is not charged for a long time. It is recommended to charge the drive which is stored in no charge condition every 2 years for $3 \sim 4$ hours to restore the performance of electrolytic capacitor in the motor drive. Note: When power up the motor drive, use adjustable AC power source (ex. AC autotransformer) to charge the drive at $70 \% \sim 80 \%$ of rated voltage for 30 minutes (do not run the motor drive). Then charge the drive at $100 \%$ of rated voltage for an hour (do not run the motor drive). By doing these, restore the performance of electrolytic capacitor before starting to run the motor drive. Do NOT run the motor drive at $100 \%$ rated voltage right away.
$\square$ Pay attention to the following precautions when transporting and installing this package (including wooden crate and wood stave)

1. If you need to deworm the wooden crate, do NOT use fumigation or you will damage the drive. Any damage to the drive caused by using fumigation voids the warranty.
2. Use other methods, such as heat treatment or any other non-fumigation treatment, to deworm the wood packaging material.
3. If you use heat treatment to deworm, leave the packaging materials in an environment of over $56^{\circ} \mathrm{C}$ for a minimum of thirty minutes.
$\nabla$ Connect the drive to a three-phase three-wire or three-phase four-wire Wye system to comply with UL standards.
■ If the motor drive generates leakage current over AC 3.5 mA or over DC 10 mA on a grounding conductor, compliance with local grounding regulations or IEC61800-5-1 standard is the minimum requirement for grounding.

## 曰, NOTE

The content of this manual may be revised without prior notice. Please consult our distributors or download the latest version at http://www.deltaww.com/iadownload acmotordrive

## Table of Contents

CHAPTER 1 INTRODUCTION ..... 1-1
1-1 Nameplate Information ..... 1-2
1-2 Model Name ..... 1-3
1-3 Serial Number. ..... 1-4
1-4 Apply After Service by Mobile Device. ..... 1-5
1-5 RFI Jumper ..... 1-6
1-6 Dimensions ..... 1-9
CHAPTER 2 INSTALLATION ..... 2-1
2-1 Mounting Clearance ..... 2-2
2-2 Air Flow and Power Dissipation ..... 2-5
CHAPTER 3 UNPACKING ..... 3-1
3-1 Unpacking ..... 3-2
3-2 The Lifting Hook. ..... 3-25
CHAPTER 4 WIRING ..... 4-1
4-1 System Wiring Diagram. ..... 4-3
4-2 Wiring ..... 4-4
CHAPTER 5 MAIN CIRCUIT TERMINALS ..... 5-1
5-1 Main Circuit Diagram ..... 5-4
5-2 Specifications of Main Circuit Terminals ..... 5-7
CHPATER 6 CONTROL TERMINALS ..... 6-1
6-1 Remove the Cover for Wiring ..... 6-4
6-2 Specifications of Control Terminal. ..... 6-7
6-3 Remove the Terminal Block. ..... 6-10
CHAPTER 7 OPTIONAL ACCESSORIES ..... 7-1
7-1 All Brake Resistors and Brake Units Used in AC Motor Drives ..... 7-2
7-2 Non-fuse Circuit Breaker ..... 7-7
7-3 Fuse Specification Chart ..... 7-8
7-4 AC / DC Reactor ..... 7-10
7-5 Zero Phase Reactor. ..... 7-44
7-6 EMC Filter. ..... 7-50
7-7 Digital Keypad ..... 7-70
7-8 Panel Mounting ..... 7-72
7-9 Conduit Box Kit ..... 7-89
7-10 Fan Kit ..... 7-105
7-11 Flange Mounting Kit ..... 7-120
7-12 USB/RS-485 Communication Interface IFD6530 ..... 7-122
CHAPTER 8 OPTION CARDS ..... 8-1
8-1 Option Card Installation ..... 8-2
8-2 EMC-D42A -- Extension card for 4-point digital input / 2-point digital input. ..... 8-14
8-3 EMC-D611A -- Extension card for 6 -point digital input ( $110 \mathrm{~V}_{\mathrm{AC}}$ input voltage) ..... 8-14
8-4 EMC-R6AA -- Relay output extension card (6-point N.O. output contact). ..... 8-14
8-5 EMC-A22A -- Extension card for 2-point analog input/ 2-point analog output. ..... 8-15
8-6 EMC-BPS01 -- +24V power card ..... 8-15
8-7 EMC-PG01/02L -- PG card (Line driver) ..... 8-16
8-8 EMC-PG01/02O -- PG card (Open collector). ..... 8-19
8-9 EMC-PG01/02U -- PG card (ABZ Incremental encoder signal/ UVW Hall position signal input). ..... 8-22
8-10 EMC-PG01R -- PG card (Resolver) ..... 8-24
8-11 CMC-MOD01 -- Communication card, Modbus TCP. ..... 8-26
8-12 CMC-PD01 -- Communication card, PROFIBUS DP ..... 8-29
8-13 CMC-DN01 -- Communication card, DeviceNet. ..... 8-31
8-14 CMC-EIP01 -- Communication card, EtherNet/IP ..... 8-34
8-15 CMC-EC01 -- Communication card, EtherCAT. ..... 8-38
8-16 CMC-PN01 -- Communication card, PROFINET. ..... 8-41
8-17 EMC-COP01 -- Communication card, CANopen ..... 8-45
8-18 Delta Standard Fieldbus Cables ..... 8-46
CHAPTER 9 SPECIFICATION ..... 9-1
9-1 230V Series ..... 9-2
9-2 460V Series ..... 9-3
9-3 575V Series ..... 9-5
9-4 690V Series ..... 9-6
9-5 Environment for Operation, Storage and Transportation. ..... 9-10
9-6 Specification for Operation Temperature and Protection Level ..... 9-11
9-7 Derating Curve of Ambient Temperature ..... 9-12
9-8 Efficiency Curve ..... 9-17
CHAPTER 10 DIGITAL KEYPAD ..... 10-1
10-1 Descriptions of Digital Keypad ..... 10-2
10-2 Function of Digital Keypad KPC-CC01 ..... 10-5
10-3 TPEditor Installation Instruction ..... 10-26
10-4 Fault Code Description of Digital Keypad KPC-CC01 ..... 10-34
10-5 Unsupported Functions when using TPEditor on KPC-CC01 Keypad ..... 10-38
CHAPTER 11 SUMMARY OF PARAMETERS ..... 11-1
00 Drive Parameters ..... 11-1
01 Basic Parameters ..... 11-10
02 Digital Input / Output Parameters ..... 11-14
03 Analog Input / Output Parameters ..... 11-20
04 Multi-stage Speed Parameters ..... 11-24
05 Motor Parameters ..... 11-27
06 Protection Parameters ..... 11-30
07 Special Parameters ..... 11-37
08 High-function PID Parameters ..... 11-40
09 Communication Parameters ..... 11-42
10 Feedback Control Parameters ..... 11-47
11 Advanced Parameters ..... 11-50
13 Application Parameters by Industry ..... 11-53
14 Extension Card Parameter ..... 11-54
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS ..... 12-1
12-1 Description of Parameter Settings ..... 12.1-00-1
00 Drive Parameters ..... 12.1-00-1
01 Basic Parameters ..... 12.1-01-1
02 Digital Input / Output Parameters ..... 12.1-02-1
03 Analog Input / Output Parameters ..... 12.1-03-1
04 Multi-stage Speed Parameters ..... 12.1-04-1
05 Motor Parameters ..... 12.1-05-1
06 Protection Parameters ..... 12.1-06-1
07 Special Parameters ..... 12.1-07-1
08 High-function PID Parameters ..... 12.1-08-1
09 Communication Parameters ..... 12.1-09-1
10 Feedback Control Parameters ..... 12.1-10-1
11 Advanced Parameters ..... 12.1-11-1
13 Application Parameters by Industry ..... 12.1-13-1
14 Extension Card Parameter. ..... 12.1-14-1
12-2 Adjustment \& Application ..... 12.2-00-1
CHAPTER 13 WARNING CODES ..... 13-1
CHAPTER 14 FAULT CODES AND DESCRIPTIONS ..... 14-1
CHAPTER 15 CANOPEN OVERVIEW ..... 15-1
15-1 CANopen Overview ..... 15-3
15-2 Wiring for CANopen ..... 15-6
15-3 CANopen Communication Interface Description. ..... 15-7
15-4 CANopen Supporting Index ..... 15-19
15-5 CANopen Fault Codes ..... 15-26
15-6 CANopen LED Function. ..... 15-34
CHAPTER 16 PLC FUNCTION APPLICATIONS ..... 16-1
16-1 PLC Summary ..... 16-2
16-2 Notes Before PLC Use ..... 16-3
16-3 Turn On ..... 16-5
16-4 Basic Principles of PLC Ladder Diagrams ..... 16-15
16-5 Various PLC Device Functions. ..... 16-26
16-6 Introduction To The Command Window. ..... 16-41
16-7 Error Display And Handling ..... 16-131
16-8 CANopen Master Control Applications. ..... 16-132
16-9 Explanation Of Various PLC Mode Controls (speed, torque, homing, and position) ..... 16-145
16-10 Internal Communications Main Node Control ..... 16-151
16-11 Count Function Using MI8 ..... 16-155
16-12 Modbus Remote IO Control Applications (use MODRW) ..... 16-156
16-13 Calendar Function ..... 16-163
CHAPTER 17 SAFE TORQUE OFF FUNCTION ..... 17-1
17-1 The Drive Safety Function Failure Rate ..... 17-2
17-2 Safe Torque Off Terminal Function Description. ..... 17-2
17-3 Wiring Diagram ..... 17-3
17-4 Parameters ..... 17-5
17-5 Operating Sequence Description ..... 17-6
17-6 New Error Code for STO Function ..... 17-8
APPENDIX A. REVISION HISTORY ..... A-1
Issued Edition: 01
Firmware Version: V2.05
(Refer to Parameter 00-06 on the product to get the firmware version.)
Issued Date: 2019/02

## Chapter 1 Introduction

1-1 Nameplate Information
1-2 Model Name
1-3 Serial Number
1-4 Apply After Service by Mobile Device
1-5 RFI Jumper
1-6 Dimensions

## Receiving and Inspection

After receiving the AC motor drive, please check for the following:

1. Please inspect the unit after unpacking to assure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
2. Make sure that the voltage for the wiring lies within the range as indicated on the nameplate. Please install the AC motor drive according to this manual.
3. Before applying the power, please make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
4. When wiring the $A C$ motor drive, please make sure that the wiring of input terminals "R/L1, $S / L 2, T / L 3$ " and output terminals " $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$ " is correct to prevent drive damage.
5. When power is applied, select the language and set parameter groups via the digital keypad (KPC-CC01). When executes trial run, please begin with a low speed and then gradually increases the speed until the desired speed is reached.

## 1-1 Nameplate Information

## 230V/460V Model



Figure 1-1

## 575V/690V Model



Figure 1-2

## 1-2 Model Name

230V/460V Model


## 575V/690V Model



## 1-3 Serial Number

230V/460V Model


575V/690V Model


## 1-4 Apply After Service by Mobile Device

## 1-4-1 Location of Service Link Label

## Frame A-H

Service link label (Service Label) will be pasted on the upper-right corner of the side where keypad is installed on the case body, as below drawing shown:


Figure 1-3

## 1-4-2 Service Link Label



Figure 1-4
Scan QR Code to apply

1. Find out the QR code sticker (as above shown).
2. Using a Smartphone to run a QR Code reader APP.
3. Point your camera to the QR Code. Hold your camera steady so that the QR code comes into focus.
4. Access the Delta after Service website.
5. Fill your information into the column marked with an orange star.
6. Enter the CAPTCHA and click "Submit" to complete the application.

## Cannot find out the QR Code?

1. Open a web browser on your computer or smart phone.
2. Key in https://service.deltaww.com/ia/repair in address bar and press enter
3. Fill your information into the columns marked with an orange star.
4. Enter the CAPTCHA and click "Submit" to complete the application.

## 1-5 RFI Jumper

(1) In the drive there are Varistor / MOVs, which are connected from phase to phase and from phase to ground, to protect the drive against mains surges or voltage spikes.
Because the Varistors / MOVs from phase to ground are connected to ground via the RFI jumper, the protection will be ineffective when the RFI jumper is removed.
(2) In the models with built-in EMC filter the RFI jumper connects the filter capacitors to ground from a return path for high frequency noise to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter. Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filter can trigger the RCD. Removing the RFI jumper helps, but the EMC performance of each drive would be no longer guaranteed.

Frame A-C Screw Torque: $8-10 \mathrm{~kg}-\mathrm{cm} /[6.9-8.7 \mathrm{lb}-\mathrm{in}] /.[0.8-1.0 \mathrm{Nm}]$
Loosen the screws and remove the MOV-PLATE. Fasten the screws back to the original position after MOV-PLATE is removed.


Figure 1-5


Figure 1-6

## Frame D0-H

Remove the MOV-PLATE by hands, no screws need to be loosen.


Figure 1-7

## Isolating main power from ground:

When the power distribution system of the drive is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI jumper. Removing the RFI jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

## Important points regarding ground connection

$\square$ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the drive during installation.
$\square$ The diameter of the cables must comply with the local safety regulations.
$\nabla$ The shield of shielded cables must be connected to the ground of the drive to meet safety regulations.
$\boxtimes$ The shield of shielded power cables can only be used as the ground for equipment when the aforementioned points are met.

V When installing more drives, do not connect the grounds of the drives in series but connect each drive to ground. The following pictures show the correct and wrong ways to connect the grounds.


Figure 1-8
Pay particular attention to the following points:
■ Do not remove the RFI jumper while the power is on.
$\boxtimes$ Removing the RFI jumper also disconnects the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
च Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
$\boxtimes$ Do not remove the RFI jumper while conducting high voltage tests. When conducting a high voltage test to the entire facility, you must disconnect the mains power and the motor if the leakage current is too high.

## Floating Ground System (IT Systems)

A floating ground system is also called IT system, ungrounded system, or high impedance/resistance (greater than $30 \Omega$ ) grounding system.
$\square$ Disconnect the ground cable from the internal EMC filter.
च In situations where EMC is required, check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.
च Do not install an external RFI/EMC filter, the EMC filter will pass through a filter capacitor, thus connecting power input to ground. This is very dangerous and can easily damage the Power Regenerative Unit.

## Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not remove the RFI jumper while the input terminal of the Power Regenerative Unit carries power.
In the following four situations, the RFI jumper must be removed. This is to prevent the system from grounding through the RFI capacitor and damaging the Power Regenerative Unit.

## RFI jumper must be removed

1. Grounding at a corner in a triangle configuration


Figure 1-10
3. Grounding at one end in a single-phase configuration


Figure 1-12
2. Grounding at a midpoint in a polygonal configuration


Figure 1-11
4. No stable neutral grounding in a three-phase autotransformer configuration


Figure 1-13

RFI jumper can be used
Internal grounding through RFI capacitor, which reduces electromagnetic radiation. In a situation with higher requirements for electromagnetic compatibility, and using a symmetrical grounding power system, an EMC filter can be installed. As a reference, the diagram on the right is a symmetrical grounding power system.


Figure 1-14

## 1-6 Dimensions

## Frame A

VFD007C23A; VFD007C43A/E; VFD015C23A; VFD015C43A/E; VFD022C23A; VFD022C43A/E;
VFD037C23A; VFD037C43A/E; VFD040C43A/E; VFD055C43A/E; VFD015C53A-21; VFD022C53A-21;
VFD037C53A-21


See Detail B

3



Detail A (Mounting Hole)


Detail B (Mounting Hole)
Figure 1-15

| Frame | W | H | D | W1 | H1 | D1* | S1 | Ф1 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | $\begin{aligned} & 130.0 \\ & {[5.12]} \\ & \hline \end{aligned}$ | $\begin{aligned} & 250.0 \\ & {[9.84]} \end{aligned}$ | $\begin{aligned} & 170.0 \\ & {[6.69]} \end{aligned}$ | $\begin{aligned} & 116.0 \\ & {[4.57]} \end{aligned}$ | $\begin{aligned} & \hline 236.0 \\ & {[9.29]} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 45.8 \\ & {[1.80]} \end{aligned}$ | $\begin{gathered} 6.2 \\ {[0.24]} \end{gathered}$ | $\begin{gathered} 22.2 \\ {[0.87]} \end{gathered}$ | $\begin{gathered} \hline 34.0 \\ {[1.34]} \end{gathered}$ | $\begin{gathered} \hline 28.0 \\ {[1.10]} \end{gathered}$ |

## Frame B

VFD055C23A; VFD075C23A; VFD075C43A/E; VFD110C23A; VFD110C43A/E; VFD150C43A/E; VFD055C53A-21; VFD075C53A-21; VFD110C53A-21; VFD150C53A-21


See Detail B


Figure 1-16
Unit: mm [inch]

| Frame | W | H | D | W 1 | H 1 | $\mathrm{D} 1^{*}$ | S 1 | 11 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1 | 190.0 | 320.0 | 190.0 | 173.0 | 303.0 | 77.9 | 8.5 | 22.2 | 34.0 | 43.8 |
|  | $[7.48]$ | $[12.60]$ | $[7.48]$ | $[6.81]$ | $[11.93]$ | $[3.07]$ | $[0.33]$ | $[0.87]$ | $[1.34]$ | $[1.72]$ |

D1*: Flange mounting

## Frame C

VFD150C23A; VFD185C23A; VFD185C43A/E; VFD220C23A; VFD220C43A/E; VFD300C43A/E; VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21


## See Detail B



Figure 1-17

| Frame | W | H | D | W 1 | H 1 | $\mathrm{D} 1^{*}$ | S 1 | $\Phi 1$ | $\Phi 2$ | $\Phi 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C 1 | 250.0 | 400.0 | 210.0 | 231.0 | 381.0 | 92.9 | 8.5 | 22.2 | 34.0 | 50.0 |
|  | $[9.84]$ | $[15.75]$ | $[8.27]$ | $[9.09]$ | $[15.00]$ | $[3.66]$ | $[0.33]$ | $[0.87]$ | $[1.34]$ | $[1.97]$ |

D1*: Flange mounting

## Frame D0

D0-1: VFD370C43S; VFD450C43S


Figure 1-18
Unit: mm [inch]

| Frame | W | H1 | D | W1 | H2 | H3 | D1* | D2 | S1 | S2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0-1 | 280.0 | 500.0 | 255.0 | 235.0 | 475.0 | 442.0 | 94.2 | 16.0 | 11.0 | 18.0 |
|  | $[11.02]$ | $[19.69]$ | $[10.04]$ | $[9.25]$ | $[18.70]$ | $[17.40]$ | $[3.71]$ | $[0.63]$ | $[0.43]$ | $[0.71]$ |

D1*: Flange mounting

## Frame D0

D0-2: VFD370C43U; VFD450C43U

$2-\quad 3$

- 3
$\phi 1-$


Figure 1-19 Unit: mm [inch]

| Frame | W | H | D | W1 | H1 | H2 | H3 | D1* | D2 | S1 | S2 | Ф1 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0-2 | 280.0 | 614.4 | 255.0 | 235.0 | 500.0 | 475.0 | 442.0 | 94.2 | 16.0 | 11.0 | 18.0 | 62.7 | 34.0 | 22.0 |
| D0-2 | [11.02] | [24.19] | [10.04] | [9.25] | [19.69] | [18.70] | [17.40] | [3.71] | [0.63] | [0.43] | [0.71] | [2.47] | [1.34] | [0.87] |

Frame D
D1: VFD300C23A; VFD370C23A; VFD550C43A; VFD750C43A; VFD450C63B-00; VFD550C63B-00


Figure 1-20
Unit: mm [inch]

| Frame | W | H | D | W1 | H1 | H2 | H3 | D1* | D2 | S1 | S2 | Ф1 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | $\begin{array}{\|c\|} \hline 330.0 \\ {[12.99]} \end{array}$ | - | $\begin{array}{c\|} \hline 275.0 \\ {[10.83]} \end{array}$ | $\begin{array}{c\|} \hline 285.0 \\ {[11.22]} \end{array}$ | $\begin{array}{\|c\|} \hline 550.0 \\ {[21.65]} \end{array}$ | $\begin{array}{\|c\|} \hline 525.0 \\ {[20.67]} \end{array}$ | $\begin{array}{\|c\|} \hline 492.0 \\ {[19.37]} \end{array}$ | $\begin{aligned} & \hline 107.2 \\ & {[4.22]} \end{aligned}$ | $\begin{gathered} \hline 16.0 \\ {[0.63]} \end{gathered}$ | $\begin{gathered} 11.0 \\ {[0.43]} \end{gathered}$ | $\begin{gathered} 18.0 \\ {[0.71]} \end{gathered}$ | - | - | - |

D1*: Flange mounting

## Frame D

D2: VFD300C23E; VFD370C23E; VFD550C43E; VFD750C43E; VFD450C63B-21; VFD550C63B-21


Figure 1-21
Unit: mm [inch]

| Frame | W | H | D | W 1 | H 1 | H 2 | H 3 | $\mathrm{D} 1^{*}$ | D 2 | S 1 | S 2 | Ф1 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D2 | 330.0 | 688.3 | 275.0 | 285.0 | 550.0 | 525.0 | 492.0 | 107.2 | 16.0 | 11.0 | 18.0 | 76.2 | 34.0 | 22.0 |
| $[12.99]$ | $[27.10]$ | $[10.83]$ | $[11.22]$ | $[21.65]$ | $[20.67]$ | $[19.37]$ | $[4.22]$ | $[0.63]$ | $[0.43]$ | $[0.71]$ | $[3.00]$ | $[1.34]$ | $[0.87]$ |  |

D1*: Flange mounting

## Frame E

E1: VFD450C23A; VFD550C23A; VFD750C23A; VFD900C43A; VFD1100C43A; VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00


Figure 1-22

D1*: Flange mounting

## Frame E

E2: VFD450C23E; VFD550C23E; VFD750C23E; VFD900C43E; VFD1100C43E; VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21



Detail A
(Mounting Hole)


Detail B (Mounting Hole)

Figure 1-23

| Frame | W | H | D | W1 | H1 | H2 | H3 | D1* | D2 | S1, S2 | S3 | Ф1 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E2 | $\begin{array}{\|c\|} \hline 370.0 \\ {[14.57]} \end{array}$ | $\begin{array}{\|c} \hline 715.8 \\ {[28.18]} \end{array}$ | $\begin{gathered} 300.0 \\ {[11.81]} \end{gathered}$ | $\begin{gathered} 335.0 \\ {[13.19} \end{gathered}$ | $\begin{gathered} 589 \\ {[23.19]} \end{gathered}$ | $\begin{gathered} 560.0 \\ {[22.05]} \end{gathered}$ | $\begin{gathered} 528.0 \\ {[20.80]} \end{gathered}$ | $\begin{aligned} & 143.0 \\ & {[5.63]} \\ & \hline \end{aligned}$ | $\begin{gathered} 18.0 \\ {[0.71]} \end{gathered}$ | $\begin{gathered} 13.0 \\ {[0.51]} \end{gathered}$ | $\begin{gathered} 18.0 \\ {[0.71]} \end{gathered}$ | $\begin{gathered} \hline 22.0 \\ {[0.87]} \end{gathered}$ | $\begin{gathered} 34.0 \\ {[1.34]} \end{gathered}$ | $\begin{array}{r} 92.0 \\ {[3.62]} \end{array}$ |

D1*: Flange mounting

## Frame F

F1: VFD900C23A; VFD1320C43A; VFD1600C43A; VFD1600C63B-00; VFD2000C63B-00


Figure 1-24

| Frame | W | H | D | W 1 | H 1 | H 2 | H 3 | $\mathrm{D} 1^{*}$ | D 2 | S 1 | S2 | S3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F1 | 420.0 | - | 300.0 | 380.0 | 800.0 | 770.0 | 717.0 | 124.0 | 18.0 | 13.0 | 25.0 | 18.0 |
|  | $[16.54]$ | - | $[11.81]$ | $[14.96]$ | $[31.50]$ | $[30.32]$ | $[28.23]$ | $[4.88]$ | $[0.71]$ | $[0.51]$ | $[0.98]$ | $[0.71]$ |

D1*: Flange mounting

## Frame F

F2: VFD900C23E; VFD1320C43E; VFD1600C43E; VFD1600C63B-21; VFD2000C63B-21


S1

S2
Detail A (Mounting Hole)


Detail B (Mounting Hole)
Figure 1-25

| Frame | W | H | D | W 1 | H 1 | H 2 | H 3 | $\mathrm{D} 1^{*}$ | D 2 | S 1 | S 2 | S3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F2 | 420.0 | 940.0 | 300.0 | 380.0 | 800.0 | 770.0 | 717.0 | 124.0 | 18.0 | 13.0 | 25.0 | 18.0 |
|  | $[16.54]$ | $[37.00]$ | $[11.81]$ | $[14.96]$ | $[31.50]$ | $[30.32]$ | $[28.23]$ | $[4.88]$ | $[0.71]$ | $[0.51]$ | $[0.98]$ | $[0.71]$ |


| Frame | Ф1 | Ф2 | Ф3 |
| :---: | :---: | :---: | :---: |
| F2 | 92.0 | 35.0 | 22.0 |
|  | $[3.62]$ | $[1.38]$ | $[0.87]$ |

## Frame G

G1: VFD1850C43A; VFD2200C43A; VFD2500C63B-00; VFD3150C63B-00


Figure 1-26

| Frame | W | H | D | W1 | H1 | H2 | H3 | S1 | S2 | S3 | 14 | $\Phi 2$ | $\Phi 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G1 | 500.0 | - | 397.0 | 440.0 | 1000.0 | 963.0 | 913.6 | 13.0 | 26.5 | 27.0 | - | - | - |
| $[19.69]$ | - | $[15.63]$ | $[217.32]$ | $[39.37]$ | $[37.91]$ | $[35.97]$ | $[0.51]$ | $[1.04]$ | $[1.06]$ | - | - | - |  |

## Frame G

G2: VFD1850C43E; VFD2200C43E; VFD2500C63B-21; VFD3150C63B-21


Figure 1-27

| Frame | W | H | D | W1 | H1 | H2 | H3 | S1 | S2 | S3 | $\Phi 1$ | $\Phi 2$ | $\Phi 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G2 | 500.0 | 1240.2 | 397.0 | 440.0 | 1000.0 | 963.0 | 913.6 | 13.0 | 26.5 | 27.0 | 22.0 | 34.0 | 117.5 |
|  | $[19.69]$ | $[48.83]$ | $[15.63]$ | $[217.32]$ | $[39.37]$ | $[37.91]$ | $[35.97]$ | $[0.51]$ | $[1.04]$ | $[1.06]$ | $[0.87]$ | $[1.34]$ | $[4.63]$ |

Frame H
H1: VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A; VFD4000C63B-00; VFD4500C63B-00; VFD5600C63B-00; VFD6300C63B-00



Detail A
(Mounting Hole)


Detail B (Mounting Hole)

Figure 1-28

| Frame | W | H | D | W1 | W2 | W3 | W4 | W5 | W6 | H1 | H2 | H3 | H4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H1 | $\begin{gathered} 700.0 \\ {[27.56]} \end{gathered}$ | $\begin{aligned} & 1435.0 \\ & {[56.5]} \end{aligned}$ | $\begin{array}{\|c} \hline 398.0 \\ {[15.67]} \end{array}$ | $\begin{aligned} & 630.0 \\ & {[24.8]} \end{aligned}$ | $\begin{gathered} 290.0 \\ {[11.42]} \end{gathered}$ | - | - | - | - | $\begin{aligned} & 1403.0 \\ & {[55.24]} \end{aligned}$ | $\begin{aligned} & 1346.6 \\ & {[53.02]} \end{aligned}$ | - | - |
| Frame | H5 | D1 | D2 | D3 | D4 | D5 | D6 | S1 | S2 | S3 | ¢1 | Ф2 | Ф3 |
| H1 |  | $\begin{gathered} 45.0 \\ {[1.77]} \\ \hline \end{gathered}$ | - | - | - | - |  | $\begin{gathered} \hline 13.0 \\ {[0.51]} \end{gathered}$ | $\begin{gathered} 26.5 \\ {[1.04]} \end{gathered}$ | $\begin{gathered} 25.0 \\ {[0.98]} \\ \hline \end{gathered}$ | - | - |  |

Frame H
H2: VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1


Side fixing baffle plate
Side fixing baffle plate


Figure 1-29

| Frame | W | H | D | W1 | W2 | W3 | W4 | W5 |  | H1 | H2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 700.0 | 1745.0 |  | 630.0 |  |  |  |  |  |  |  |  |  |
| H2 | [27.56] | 1785.0] | [15.91] | [24.8] | 500.0 [19.69] | 630.0 [24.8] | [29.92] | $\begin{aligned} & 800.0 \\ & {[31.5]} \end{aligned}$ | - | $\begin{gathered} 1729.0 \\ {[68.07]} \end{gathered}$ | $\left.\begin{array}{l} 1701.6 \\ {[66.99]} \end{array}\right]$ | - | - |
| Frame | H5 | D1 | D2 | D3 | D4 | D5 | D6 | S1 | S2 | S3 | Ф1 | Ф2 | Ф3 |
| H2 | - | $\begin{gathered} 51.0 \\ {[2.01]} \end{gathered}$ | $\begin{array}{\|c} \hline 38.0 \\ {[1.50]} \\ \hline \end{array}$ | $\begin{gathered} 65.0 \\ {[2.56]} \end{gathered}$ | $\begin{aligned} & 224.0 \\ & {[8.03]} \end{aligned}$ | $\begin{array}{r} 68.0 \\ {[2.68]} \\ \hline \end{array}$ | $\begin{aligned} & \hline 137.0 \\ & {[5.39]} \\ & \hline \end{aligned}$ | $\begin{gathered} 13.0 \\ {[0.51]} \end{gathered}$ | $\begin{gathered} 26.5 \\ {[1.04]} \end{gathered}$ | $\begin{gathered} 25.0 \\ {[0.98]} \\ \hline \end{gathered}$ | - | - | - |

## Frame H

H3: VFD2800C43E; VFD3150C43E; VFD3550C43E


Side fixing


Figure 1-30


## 690V Frame H

H2: VFD4000C63B-21; VFD4500C63B-21; VFD5600C63B-21; VFD6300C63B-21


Figure 1-31

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | , | W6 | H1 | H2 | H3 | H4 |
| H2 | $\begin{gathered} 700.0 \\ {[27.56]} \end{gathered}$ | $\begin{aligned} & \hline 1745.0 \\ & {[68.70]} \end{aligned}$ | $\begin{array}{c\|} \hline 404.0 \\ {[15.91]} \end{array}$ | $\begin{aligned} & 630.0 \\ & {[24.8]} \end{aligned}$ | $\begin{gathered} 500.0 \\ {[19.69]} \end{gathered}$ | $\begin{aligned} & 630.0 \\ & {[24.8]} \end{aligned}$ | $\begin{gathered} 760.0 \\ {[29.92]} \end{gathered}$ | $\begin{aligned} & 800.0 \\ & {[31.5]} \end{aligned}$ | - | $\begin{gathered} 1729.0 \\ {[68.071} \end{gathered}$ | $\begin{aligned} & 1701.6 \\ & {[66.99]} \end{aligned}$ |  |  |
| Frame | H5 | D1 | D2 | D3 | D4 | D5 | D6 | S1 | S2 | S3 | Ф1 | Ф2 | Ф3 |
| H2 |  | $\begin{gathered} 51.0 \\ {[2.01]} \\ \hline \end{gathered}$ | $\begin{array}{c\|} \hline 38.0 \\ {[1.50]} \end{array}$ | $\begin{gathered} 65.0 \\ {[2.56]} \end{gathered}$ | $\begin{gathered} 204.0 \\ {[8.03]} \\ \hline \end{gathered}$ | $\begin{gathered} 68.0 \\ {[2.68]} \end{gathered}$ | $\begin{aligned} & 137.0 \\ & {[5.39]} \\ & \hline \end{aligned}$ | $\begin{gathered} 13.0 \\ {[0.51]} \\ \hline \end{gathered}$ | $\begin{gathered} 26.5 \\ {[1.04]} \\ \hline \end{gathered}$ | $\begin{gathered} 25.0 \\ {[0.98]} \end{gathered}$ | $\begin{gathered} 22.0 \\ {[0.87]} \end{gathered}$ | $\begin{gathered} 34.0 \\ {[1.34]} \end{gathered}$ | $\begin{aligned} & 117.5 \\ & {[4.63]} \end{aligned}$ |

KPC-CC01


Figure 1-32

# Chapter 2 Installation 

## 2-1 Mounting Clearance

## 2-2 Air Flow and Power Dissipation

## 2-1 Mounting Clearance

$\square$ Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhering to the heat sink
Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.
Install the AC motor drive in Pollution Degree 2 environments only:
Normally only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.
The appearances shown in the following figures are for reference only.
Airflow direction: $\leftarrow==$ (Blue arrow) inflow $\longleftarrow$ (Red arrow) outflow $\longleftrightarrow$ Distance



| Frame | $\mathrm{A}[\mathrm{mm}]$ | $\mathrm{B}[\mathrm{mm}]$ | $\mathrm{C}[\mathrm{mm}]$ | $\mathrm{D}[\mathrm{mm}]$ |
| :---: | :---: | :---: | :---: | :---: |
| A-C | 60 | 30 | 10 | 0 |
| D0-F | 100 | 50 | - | 0 |
| G | 200 | 100 | - | 0 |
| H | 350 | 0 | 0 | $200\left(100, \mathrm{Ta}=\mathrm{Ta}^{*}=50^{\circ} \mathrm{C}\right)$ |


| Frame A | VFD007C23A; VFD007C43A/E; VFD015C23A; VFD015C43A/E; VFD022C23A; <br> VFD022C43A/E; VFD037C23A; VFD037C43A/E; VFD040C43A/E; VFD055C43A/E; VFD015C53A-21; <br> VFD022C53A-21; VFD037C53A-21 |
| :---: | :--- |
| Frame B | VFD055C23A; VFD75C23A; VFD075C43A/E; VFD110C23A; VFD110C43A/E; <br> VFD150C43A/E; VFD055C53A-21; VFD075C53A-21; VFD110C53A-21; VFD150C53A-21 |
| Frame C | VFD150C23A; VFD185C23A; VFD185C43A/E; VFD220C23A; VFD220C43A/E; <br> VFD300C43A/E; VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21 |
| Frame D0 | VFD370C43S; VFD450C43S; VFD370C43U; VFD450C43U |
| Frame D | VFD300C23A/E; VFD370C23A/E; VFD550C43A/E; VFD750C43A/E; VFD450C63B-00; <br> VFD550C63B-00; VFD450C63B-21; VFD550C63B-21 |
| Frame E | VFD450C23A/E; VFD550C23A/E; VFD750C23A/E; VFD900C43A/E; VFD1100C43A/E; <br> VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD750C63B-21; <br> VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21 |
| Frame F | VFD900C23A/E; VFD1320C43A/E; VFD1600C43A/E; VFD1600C63B-00; VFD2000C63B-00; <br> VFD1600C63B-21; VFD2000C63B-21 |
| Frame G | VFD1850C43A; VFD2200C43A; VFD1850C43E; VFD2200C43E; VFD2500C63B-00; <br> VFD3150C63B-00; VFD2500C63B-21; VFD3150C63B-21 |
| Frame H | VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A; VFD2800C43E-1; VFD3150C43E-1; <br> VFD3550C43E-1; VFD4500C43E-1; VFD2800C43E; VFD3150C43E; VFD3550C43E; VFD4500C43E; <br> VFD4000C63B-00; VFD4500C63B-00; VFD5600C63B-00; VFD6300C63B-00; VFD4000C63B-21; <br> VFD4500C63B-21; VFD5600C63B-21; VFD6300C63B-21 |

## $\square$ NOTE

1. The minimum mounting clearances stated in the table above applies to $A C$ motor drives frame $A$ to $D$. A drive fails to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problem.


## 2-2 Air Flow and Power Dissipation

| Air flow rate for cooling |  |  |  |  |  |  | Power dissipation of AC motor drive <br> Power Dissipation [W] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | Flow Rate [cfm] |  |  | Flow Rate [m³/hr] |  |  |  |  |  |
|  | External | Internal | Total | External | Internal | Total | Loss External <br> (Heat sink) | Internal | Total |
| VFD007C23A | - | - | - | - | - | - | 33 | 27 | 61 |
| VFD015C23A | 14 | - | 14 | 24 | - | 24 | 56 | 31 | 88 |
| VFD022C23A | 14 | - | 14 | 24 | - | 24 | 79 | 36 | 115 |
| VFD037C23A | 10 | - | 10 | 17 | - | 17 | 113 | 46 | 159 |
| VFD055C23A | 40 | 14 | 54 | 68 | 24 | 92 | 197 | 67 | 264 |
| VFD075C23A | 66 | 14 | 80 | 112 | 24 | 136 | 249 | 86 | 335 |
| VFD110C23A | 58 | 14 | 73 | 99 | 24 | 124 | 409 | 121 | 529 |
| VFD150C23A | 166 | 12 | 178 | 282 | 20 | 302 | 455 | 161 | 616 |
| VFD185C23A | 166 | 12 | 178 | 282 | 20 | 302 | 549 | 184 | 733 |
| VFD220C23A | 166 | 12 | 178 | 282 | 20 | 302 | 649 | 216 | 865 |
| VFD300C23A/E | 179 | 30 | 209 | 304 | 51 | 355 | 913 | 186 | 1099 |
| VFD370C23A/E | 179 | 30 | 209 | 304 | 51 | 355 | 1091 | 220 | 1311 |
| VFD450C23A/E | 228 | 73 | 301 | 387 | 124 | 511 | 1251 | 267 | 1518 |
| VFD550C23A/E | 228 | 73 | 301 | 387 | 124 | 511 | 1401 | 308 | 1709 |
| VFD750C23A/E | 246 | 73 | 319 | 418 | 124 | 542 | 1770 | 369 | 2139 |
| VFD900C23A/E | 224 | 112 | 336 | 381 | 190 | 571 | 2304 | 484 | 2788 |
| VFD007C43A/E | - | - | - | - | - | - | 33 | 25 | 59 |
| VFD015C43A/E | - | - | - | - | - | - | 45 | 29 | 74 |
| VFD022C43A/E | 14 | - | 14 | 24 | - | 24 | 71 | 33 | 104 |
| VFD037C43A/E | 10 | - | 10 | 17 | - | 17 | 103 | 38 | 141 |
| VFD040C43A/E | 10 | - | 10 | 17 | - | 17 | 116 | 42 | 158 |
| VFD055C43A/E | 10 | - | 10 | 17 | - | 17 | 134 | 46 | 180 |
| VFD075C43A/E | 40 | 14 | 54 | 68 | 24 | 92 | 216 | 76 | 292 |
| VFD110C43A/E | 66 | 14 | 80 | 112 | 24 | 136 | 287 | 93 | 380 |
| VFD150C43A/E | 58 | 14 | 73 | 99 | 24 | 124 | 396 | 122 | 518 |
| VFD185C43A/E | 99 | 21 | 120 | 168 | 36 | 204 | 369 | 138 | 507 |
| VFD220C43A/E | 99 | 21 | 120 | 168 | 36 | 204 | 476 | 158 | 635 |
| VFD300C43A/E | 126 | 21 | 147 | 214 | 36 | 250 | 655 | 211 | 866 |
| VFD370C43S/U | 179 | 30 | 209 | 304 | 51 | 355 | 809 | 184 | 993 |
| VFD450C43S/U | 179 | 30 | 209 | 304 | 51 | 355 | 929 | 218 | 1147 |
| VFD550C43A/E | 179 | 30 | 209 | 304 | 51 | 355 | 1156 | 257 | 1413 |
| VFD750C43A/E | 186 | 30 | 216 | 316 | 51 | 367 | 1408 | 334 | 1742 |
| VFD900C43A/E | 257 | 73 | 330 | 437 | 124 | 561 | 1693 | 399 | 2092 |
| VFD1100C43A/E | 223 | 73 | 296 | 379 | 124 | 503 | 2107 | 491 | 2599 |
| VFD1320C43A/E | 224 | 112 | 336 | 381 | 190 | 571 | 2502 | 579 | 3081 |
| VFD1600C43A/E | 289 | 112 | 401 | 491 | 190 | 681 | 3096 | 687 | 3783 |
| VFD1850C43A/E |  |  | 454 |  |  | 771 |  |  | 4589 |
| VFD2200C43A/E |  |  | 454 |  |  | 771 |  |  | 5772 |
| VFD2800C43A/E |  |  | 769 |  |  | 1307 |  |  | 6381 |
| VFD3150C43A/E |  |  | 769 |  |  | 1307 |  |  | 7156 |
| VFD3550C43A/E |  |  | 769 |  |  | 1307 |  |  | 8007 |
| VFD4500C43A/E |  |  | 769 |  |  | 1307 |  |  | 11894 |
| VFD015C53A-21 | - | - | - | - | - | - | 39.5 | 13.0 | 53 |
| VFD022C53A-21 | - | - | - | - | - | - | 55.0 | 22.0 | 77 |
| VFD037C53A-21 | 0.006 | - | 0.006 | 13.6 | - | 13.6 | 86.8 | 42.7 | 130 |
| VFD055C53A-21 | 0.019 | 0.007 | 0.026 | 40.0 | 14.5 | 54.5 | 124.6 | 67.9 | 193 |
| VFD075C53A-21 | 0.019 | 0.007 | 0.026 | 40.0 | 14.5 | 54.5 | 143.5 | 119.0 | 263 |
| VFD110C53A-21 | 0.019 | 0.007 | 0.026 | 40.0 | 14.5 | 54.5 | 222.2 | 162.8 | 385 |
| VFD150C53A-21 | 0.019 | 0.007 | 0.026 | 40.0 | 14.5 | 54.5 | 308.5 | 216.5 | 525 |
| VFD185C63B-21 | 90.0 | 21.3 | 111.4 | 153.0 | 36.2 | 189.2 | 317.5 | 145.0 | 462.5 |
| VFD220C63B-21 | 90.0 | 21.3 | 111.4 | 153.0 | 36.2 | 189.2 | 408.2 | 141.8 | 550.0 |
| VFD300C63B-21 | 90.0 | 21.3 | 111.4 | 153.0 | 36.2 | 189.2 | 492.7 | 257.3 | 750.0 |


| Air flow rate for cooling |  |  |  |  |  |  | Power dissipation of AC motor drive |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | Flow Rate [cfm] |  |  | Flow Rate [ ${ }^{3} / \mathrm{hr}$ ] |  |  | Power Dissipation [W] |  |  |
|  | External | Internal | Total | External | Internal | Total | Loss External (Heat sink) | Internal | Total |
| VFD370C63B-21 | 89.0 | 21.3 | 110.3 | 151.2 | 36.2 | 187.5 | 641.6 | 283.4 | 925.0 |
| VFD450C63B-00/21 | 175.9 | 36.4 | 212.3 | 298.8 | 61.8 | 360.6 | 718.2 | 406.8 | 1125.0 |
| VFD550C63B-00/21 | 175.9 | 36.4 | 212.3 | 298.8 | 61.8 | 360.6 | 890.1 | 484.9 | 1375.0 |
| VFD750C63B-00/21 | 264.6 | 90.6 | 355.2 | 449.6 | 153.9 | 603.5 | 1356.0 | 519.0 | 1875.0 |
| VFD900C63B-00/21 | 264.6 | 90.6 | 355.2 | 449.6 | 153.9 | 603.5 | 1652.8 | 597.2 | 2250.0 |
| VFD1100C63B-00/21 | 264.6 | 90.6 | 355.2 | 449.6 | 153.9 | 603.5 | 1960.3 | 789.7 | 2750.0 |
| VFD1320C63B-00/21 | 264.6 | 90.6 | 355.2 | 449.6 | 153.9 | 603.5 | 2230.8 | 1069.2 | 3300.0 |
| VFD1600C63B-00/21 | 248.1 | 135.3 | 383.4 | 421.6 | 229.9 | 651.4 | 2627.3 | 1372.7 | 4000.0 |
| VFD2000C63B-00/21 | 248.1 | 135.3 | 383.4 | 421.6 | 229.9 | 651.4 | 3415.0 | 1585.0 | 5000.0 |
| VFD2500C63B-00/21 |  |  | 409.7 |  |  | 696.0 | 4751.7 | 1498.3 | 6250.0 |
| VFD3150C63B-00/21 |  |  | 409.7 |  |  | 696.0 | 5695.4 | 2179.6 | 7875.0 |
| VFD4000C63B-00/21 |  |  | 563.0 |  |  | 956.4 | 6796.2 | 3203.8 | 10000.0 |
| VFD4500C63B-00/21 |  |  | 952.9 |  |  | 1618.9 | 7313.6 | 3936.4 | 11250.0 |
| VFD5600C63B-00/21 |  |  | 952.9 |  |  | 1618.9 | 9553.4 | 4446.6 | 14000.0 |
| VFD6300C63B-00 VFD6300C63B-21 |  |  | 952.9 |  |  | 1618.9 | 11042.4 | 4707.6 | 15750.0 |
| \% The required airflow shown in chart is for installing single drive in a confined space. <br> * When installing the multiple drives, the required air volume should be the required air volume for single drive X the number of the drives. |  |  |  |  |  |  | ※ The heat dissipation shown in the chart is for installing single drive in a confined space. <br> ※ When installing the multiple drives, volume of heat dissipation should be the heat dissipated for single drive $X$ the number of the drives. <br> ※ Heat dissipation for each model is calculated by rated voltage, current and default carrier. |  |  |

## Chapter 3 Unpacking

## 3-1 Unpacking

## 3-2 The Lifting Hook

The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time.

## 3-1 Unpacking

Follow these steps to unpack the AC motor drive:

## Frame D (carton version)

| Unpacking 1 (VFDXXXCXXA, VFDXXXC63B-00) | Unpacking 2 (VFDXXXCXXE, VFDXXXC <br> Cut the three pieces of packaging strap off. |
| :--- | :--- |
| Cut the three pieces of packaging strap |  |

Figure 3-4

Remove the top cover, take out the EPEs and the manual, and then loosen the four screws.


Figure 3-2

Remove the top cover, take out the EPEs, rubber and the manual, and then loosen the six screws.


Figure 3-5

Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-3

Lift the drive by hooking the lifting hole. It is now ready for installation.


## Frame D (crate version)

Unpacking 1 (VFDXXXCXXA, VFDXXXC63B-00)
Loosen the 12 screws to open the top cover of the crate.


Figure 3-7
Take out the EPEs and the manual.

Figure 3-8

Loosen the eight screws fasten the drive on the pallet, and then remove the wood plate.


Figure 3-9

Unpacking 2 (VFDXXXCXXE, VFDXXXC63B-21)
Loosen the 16 screws at the four corners of the crate, and then remove the iron plates.


Figure 3-11
Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-12

Lift the drive by hooking the lifting hole. It is now ready for installation.

Figure 3-10

Loosen the ten screws fasten the drive on the pallet, and then remove the wood plate.


Figure 3-13

Lift the drive by hooking the lifting hole. It is now ready for installation.


## Frame E

Unpacking 1 (VFDXXXCXXA, VFDXXXC63B-00)
Loosen the 16 screws at the four corners of the crate, and then remove the iron plates.
 manual.

Unpacking 2 (VFDXXXCXXE, VFDXXXC63B-21)
Loosen the 16 screws at the four corners of the crate, and then remove the iron plates.

Figure 3-19
Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-20
Loosen the ten screws fasten the drive on the pallet, and then remove the wood plates.


Figure 3-21

Figure 3-17
Loosen the eight screws fasten the drive on the pallet, and then remove the wood plate.


Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-18

Lift the drive by hooking the lifting hole. It is now ready for installation.


## Frame F

Unpacking 1 (VFDXXXCXXA, VFDXXXC63B-00)
Remove the six buckles fixed on the crate with a flat-head screwdriver, see the figure below.


3

5
4

Figure 3-23

Unpacking 2 (VFDXXXCXXE, VFDXXXC63B-21)
Remove the six buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-27

Remove the top cover, take out the EPEs and the manual.


Loosen the five screws fasten the drive on the pallet, see the figure below.

## 5

Figure 3-25

Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-28
Loosen the five screws fasten the drive on the pallet, and then remove the wood plates.


Lift the drive by hooking the lifting hole. It is now
ready for installation


Figure 3-26

Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-30

## Frame G

Unpacking 1 (VFDXXXCXXA, VFDXXXC63B-00)
Remove the six buckles fixed on the crate with a flat-head screwdriver, see the figure below. 4

5
6

Figure 3-31
Remove the top cover, take out the EPEs and the manual.

Unpacking 2 (VFDXXXCXXE, VFDXXXC63B-21)
Remove the six buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-35
Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-36
Loosen the 12 screws fasten the drive on the pallet, and then remove the wood plates.


Loosen the five screws fasten the drive on the pallet, see the figure below.

3


Lift the drive by hooking the lifting hole. It is now
ready for installation.


Figure 3-34

Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-38

## Frame H

Unpacking 1 (VFDXXXC43A)
Remove the eight buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-39
Remove the top cover, take out the EPEs and the manual.


Figure 3-40
Loosen the six screws fasten the drive on the pallet, and then remove six metal washers and six plastic washers. See the figure below.


Unpacking 2 (VFDXXXC43E-1)
Remove the eight buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-43
Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-44
Loosen the six screws fasten the drive on the pallet, and then remove six metal washers and six plastic washers. See the figure below.


Lift the drive by hooking the lifting hole. It is now ready for installation


Figure 3-42

Loosen the six M6 screws and the iron plates (see the figure below). You can use the removed screws and iron plates to fix the drive from outside.


Figure 3-46
This description is how to fix the drive from the outside. You can skip to the next step if it's not necessary.
Loosen the eight M8 screws, and then use these eight M8 screws to fix the iron plates (removed at the last step) to the drive, see the figure below.
Torque: $150-180 \mathrm{~kg}-\mathrm{cm} /[130.20-156.24 \mathrm{lb}-\mathrm{in}$.$] /$ [14.7-17.6 Nm]


Figure 3-47
Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-48

## Frame H

Unpacking 3 (VFDXXXC43E)
Remove the eight buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-49
Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-50
Loosen the six screws fasten the drive on the pallet, and then remove six metal washers and six plastic washers. See the figure below.


Figure 3-51

Loosen the six M6 screws and the iron plates (see the figure below). You can use the removed screws and iron plates to fix the drive from the outside.


Figure 3-52

## Fix the drive from the inside

Loosen the 18 M6 screws and remove the covers (see the figure 3-54). After fixing the drive and the cover for cables (see the figure 3-53), fasten the other covers back (see the figure 3-54)

Torque: $35-45 \mathrm{~kg}-\mathrm{cm} /[30.38-39.06 \mathrm{lb}-\mathrm{in}$. [3.4-4.4 Nm]


Figure 3-53
Cover for cables (use M12 screws)


Figure 3-54

## Fix the drive from the outside

Loosen the eight M8 screws, and then use these eight M8 screws to fix the iron plates (removed at the last step) to the drive, see the figure below.

Torque: 150-180 kg-cm / [130.20-156.24 lb-in.]/ [14.7-17.6 Nm]


Figure 3-56

| Fasten the six M6 screws back, see the figure | Fasten the six M6 screws back, see the figure |
| :--- | :--- | :--- |

below.


Figure 3-55
below.
Torque: $35-45 \mathrm{~kg}-\mathrm{cm} /[30.8-39.06 \mathrm{lb}-\mathrm{in}] /$
[3.4-4.4 Nm]


Figure 3-57

Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-58

690V Frame H
Unpacking 1 (VFDXXXC63B-00)
Remove the eight buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-59

Remove the top cover, take out the EPEs and the manual.


Loosen the six screws fasten the drive on the pallet, and then remove six metal washers and six plastic washers. See the figure below.


Figure 3-61

Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-62

690V Frame H
Unpacking 2 (VFDXXXC63B-21)
Remove the eight buckles fixed on the crate with a flat-head screwdriver, see the figure below.


Figure 3-63
Remove the top cover, take out the EPEs, rubber and the manual.


Figure 3-64
Loosen the six screws fasten the drive on the pallet, and then remove six metal washers and six plastic washers. See the figure below.


Loosen the six M6 screws and the iron plates (see the figure below). You can use the removed screws and iron plates to fix the drive from the outside.


Figure 3-66

## Fix the drive from the inside.

Loosen the 18 M6 screws and remove the covers (see the figure 3-68). After fixing the drive and the cover for cables (see the figure 3-67), fasten the other covers back (see the figure 3-68)
Torque: $35-45 \mathrm{~kg}-\mathrm{cm} /[30.38-39.06 \mathrm{lb}-\mathrm{in}$. [3.4-4.4 Nm]


Figure 3-68

## Fix the drive from the outside.

Loosen the eight M8 screws, and then use these eight M8 screws to fix the iron plates (removed at the last step) to the drive, see the figure below.
Torque: $150-180 \mathrm{~kg}-\mathrm{cm} /[130.20-156.24 \mathrm{lb}-\mathrm{in}$. [14.7-17.6 Nm]


Figure 3-70


Lift the drive by hooking the lifting hole. It is now ready for installation.


Figure 3-72

Frame H: Fix the drive
VFDXXXC43A
Screw: M12*6
Torque: $340-420 \mathrm{~kg}-\mathrm{cm} /[295.1-364.6 \mathrm{lb}-\mathrm{in}$.$] / [ 33.3-41.2 \mathrm{Nm}$ ]


Figure 3-73
VFDXXXC43E \& VFDXXXC43E-1


Fix the drive from the inside.
Screw: M12*8
Torque: 340-420 kg-cm / [295.1-364.6 lb-in.]/ [33.3-41.2 Nm]

Figure 3-74


Fix the drive from the outside.
Screw: M12*8
Torque: 340-420 kg-cm / [295.1-364.6 lb-in.] / [33.3-41.2 Nm]

Figure 3-75

## VFDXXXC63B

## Screw M 12*6

Torque: $340-420 \mathrm{~kg}-\mathrm{cm} /[295.1-364.6 \mathrm{lb}-\mathrm{in}$.$] / [33.32-41.16 Nm]$


Figure 3-76


Fix the drive from the outside.
Screw: M12*8
Torque: $340-420 \mathrm{~kg}-\mathrm{cm} /[295.1-364.6 \mathrm{lb}-\mathrm{in}$. [33.32-41.16 Nm]

## 3-2 The Lifting Hook

The arrows indicate the location of the lifting holes of frame D to H , as shown in figure below:
Frame D0

Applicable models:
VFD370C43S; VFD450C43S; VFD370C43U;
VFD450C43U


## Frame D

Applicable models:
VFD300C23A; VFD370C23A; VFD550C43A; VFD300C23E; VFD370C23E; VFD550C43E;
VFD750C43E; VFD450C63B-00; VFD550C63B-00;
VFD450C63B-21; VFD550C63B-21


## Frame E

Applicable models:
VFD450C23A; VFD550C23A; VFD750C23A; VFD900C43A; VFD1100C43A; VFD450C23E;
VFD550C23E; VFD750C23E; VFD900C43E; VFD1100C43E; VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21


Figure 3-80

## Frame F

Applicable models:
VFD900C23A; VFD1320C43A; VFD1600C43A;
VFD900C23E; VFD1320C43E; VFD1600C43E;
VFD1600C63B-00; VFD2000C63B-00;
VFD1600C63B-21; VFD2000C63B-21


Figure 3-81

## Frame G

Applicable models:
VFD1850C43A; VFD2200C43A; VFD1850C43E;
VFD2200C43E; VFD2500C63B-00; VFD3150C63B-00;
VFD2500C63B-21; VFD3150C63B-21


Figure 3-82

## Frame H

Applicable models:
VFD2800C43A; VFD3150C43A; VFD3550C43A;
VFD4500C43A; VFD2800C43E-1; VFD3150C43E-1;
VFD3550C43E-1; VFD4500C43E-1; VFD2800C43E;
VFD3150C43E; VFD3550C43E; VFD4500C43E;
VFD4000C63B-00; VFD4500C63B-00;
VFD5600C63B-00; VFD6300C63B-00


690V Frame H3
Applicable models:
VFD4000C63B-21; VFD4500C63B-21;
VFD5600C63B-21; VFD6300C63B-21


Figure 3-84

Ensure the lifting hook properly goes through the lifting hole, as shown in the following diagram.

Applicable to Frame D0-E


Figure 3-85
Applicable to Frame F-H


Figure 3-86

Ensure the angle between the lifting holes and the lifting device is within the specification, as shown in the following figure.

Applicable to Frame D0-E


Figure 3-87
Applicable to Frame F-H, 690V Frame H3
Following drawing is only for demonstration, it may be slightly different with the machine you have.


Figure 3-88

VFDXXXXCXXA: 27kg / [59.5 lbs]


Figure 3-89
VFDXXXXCXXA: 37.6kg / [82.9 lbs] VFDXXXC63B-00: 39.0kg / [86.0 lbs]


Figure 3-91
VFDXXXXCXXA: 63.6kg / [140.2 lbs] VFDXXXC63B-00: $61.0 \mathrm{~kg} /[134.5 \mathrm{lbs}]$

E


Figure 3-93
VFDXXXXCXXA: 85kg / [187.2 lbs]
VFDXXXC63B-00: 88.0kg / [194.0 lbs]

## F



Figure 3-95
VFDXXXXCXXA: 130kg / [286.5 lbs] VFDXXXC63B-00: 135.0kg / [297.6 lbs]


Figure 3-97

VFDXXXXCXXE: 29kg / [63.9 lbs]


Figure 3-90
VFDXXXXCXXE: 40kg / [88.2 lbs] VFDXXXC63B-21: 41.1kg / [91.3 lbs]


Figure 3-92
VFDXXXXCXXE: 66kg / [145.5 lbs] VFDXXXC63B-21: $63.4 \mathrm{~kg} /[139.8 \mathrm{lbs}]$


Figure 3-94
VFDXXXXCXXE: 88kg / [193.8 lbs] VFDXXXC63B-21: 91.0kg / [200.7 lbs]


Figure 3-96
VFDXXXXCXXE: 138kg / [303.9 lbs] VFDXXXC63B-21: 143.0kg / [315.3 lbs]


Figure 3-98

VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A: 235kg / [518.1 lbs] VFDXXXC63B-00: 243.0kg / [535.7 lbs]


Figure 3-99

VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1: 257kg / [566.6 lbs]

H2


Figure 3-100

VFDXXXC63B-21: 251.0 kg / [553.5 lbs]


Figure 3-101

VFD2800C43E; VFD3150C43E; VFD3550C43E; VFD4500C43E: 257kg / [566.6 lbs]

H3


Figure 3-102

## Chapter 4 Wiring

## 4-1 System Wiring Diagram

4-2 Wiring

After removing the front cover, examine if the power and control terminals are clearly noted. Please read following precautions before wiring.
$\square$ It is crucial to cut off the AC motor drive power before any wiring installation are made. A charge may still remain in the DCBUS capacitors with hazardous voltages even if the power has been turned off. Therefore, it is suggested for users to measure the remaining voltage by DC voltage meter before wiring. For your personnel safety, please do not perform any wiring before the voltage drops to a safe level < $25 \mathrm{~V}_{\mathrm{Dc}}$. Wiring installation with remaining voltage condition may cause sparks and short circuit.
$\nabla$ Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.
$\square$ Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1 Nameplate Information).
$\square$ All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
$\square$ Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration.
$\nabla$ When wiring, please choose the wires with specification that complies with local regulation for your personnel safety.
$\square$ Check following items after finishing the wiring:

1. Are all connections correct?
2. Any loosen wires?
3. Any short-circuits between the terminals or to ground?

## 4-1 System Wiring Diagram



Figure 4-1
Note: Please refer to Chapter 4-2 Wiring Diagram for detailed wiring information.

| Power input <br> terminal | Please refer to Chapter 9 Specification Table in <br> user manual for detail. |
| :---: | :--- |
| NFB or fuse | There may be a large inrush current during power <br> on. Refer to 7-2 NFB to select a suitable NFB or <br> 7-3 Fuse Specification Chart. |
| Electromagnetic <br> contactor | Switching the power ON/OFF before the <br> magnetic contactor more than 1 x per hour can <br> cause damage to the drive. |
| AC reactor <br> (input terminal) | When the mains power capacity is > 500kVA or <br> when the drive is preceded by a capacitor bank, <br> the instantaneous peaks voltages and current may <br> destroy the drive. In that case it is recommended <br> to install an AC input reactor which will also <br> improve the power factor and harmonics. The <br> cable between reactor and drive should be < 10m. <br> Please refer to Chapter 7-4. |
| Zero-phase <br> reactor | Used to reduce radiated emission, especially in <br> environments with audio devices, and reduce <br> input and output side interference. <br> The effective range is AM band to 10MHz. <br> Please refer to Chapter 7-5. |
| EMC filter | Can be used to reduce electromagnetic <br> interference. <br> Please refer to Chapter 7-6. |
| AC reactor <br> (output <br> terminal) | The wiring length of the motor will affect switching <br> current peaks. It is recommended to install an AC <br> output reactor when the motor wiring length <br> exceeds the value listed in Chapter 7-4. <br> a |
| Table 4-1 |  |
| (BR) |  |$\quad$| Used to shorten the deceleration time of the |
| :--- |
| motor. |
| Please refer to Chapter 7-1. |

Table 4-1

## 4-2 Wiring

Wiring Diagram for Frame A~C
Input: 3-phase power
DC choke (optional)


Figure 4-2

Wiring Diagram for Frame D~F Input: 3-phase power


Figure 4-3
*1 Please refer to Chapter 7-1 for brake units and resistors selection

Wiring Diagram for Frame G~H


Figure 4-4
*1 Please refer to Chapter 7-1 for brake units and resistors selection.
Note: When wiring for 12 Pulse Input, please strictly follow above wiring diagram, or it may cause the fan stop unexpectedly. Any questions, please contact Delta Electronics, Inc.

## Chapter 4 Wiring | C2000

## Wiring Diagram for Frame A~H

Input: 3-phase power


Figure 4-5

## 4-2-1 SINK (NPN) / SOURCE (PNP) Mode



Figure 4-6
(3) Sink Mode with external power


Figure 4-8
(2) Source Mode with internal power ( +24 VDC )


Figure 4-7
(4) Source Mode with external power


Figure 4-9
[The page intentionally left blank]

# Chapter 5 Main Circuit Terminals 

5-1 Main Circuit Diagram
5-2 Specifications of Main Circuit Terminals
$\boxtimes$ Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
$\square$ When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
च DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.

च DO NOT connect [+1, -], [+2, -], [+1/DC+, -/DC-] or brake resistor directly to prevent drive damage.
$\square$ Ensure the insulation of the main circuit wiring in accordance with the relevant safety regulations.

## Main power terminals

च Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phase-sequence requirement, it can be used upon random selection.
$\nabla \quad$ It is recommended to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the AC motor drive. Both ends of the MC should have an R-C surge absorber.

च Please use voltage and current within the specification.
च When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1 -second operation time to avoid nuisance tripping.
$\square \quad$ Please use the shielded wire or tube for the power wiring and ground the two ends of the shield wire or tube.

च Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.
च Connect the drive to a 3-phase three-wire or 3-phase four-wire Wye system to comply with UL standards.

## Output terminals for main circuit

$\square$ Use well-insulated motor, suitable for inverter operation.
च When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$ respectively, the motor will rotate counterclockwise (as viewed on the shaft end of the motor, see the figure below) upon a forward operation command is received. To permanently reverse the direction of motor rotation, switch over any of the two motor leads.


Figure 5-1

Terminals for connecting DC reactor, external brake resistor, external brake resistor and DC circuit

च This is the terminals used to connect the DC reactor to improve the power factor. For the factory setting, it connects the short-circuit object. Please remove this short-circuit object before connecting to the DC reactor.


Figure 5-2
Ø Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short deceleration time, too low brake torque or requiring increased brake torque.


Figure 5-3
$\square \quad$ The external brake resistor of Frame $A, B$ and $C$ should connect to the terminals (B1, B2) of AC motor drives.

च For those models without built-in brake resistor, please connect external brake unit and brake resistor (both of them are optional) to increase brake torque.
$\boxtimes$ When the terminals $+1,+2$ and - are not used, please leave the terminals open.
■ DC+ and DC- are connected by common DCBUS, please refer to Chapter 5-1 (Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.
$\square$ Please refer to the VFDB manual for more information on wire gauge when installing the brake unit.

## 5-1 Main Circuit Diagram

Wiring Diagram for Frame A~C
Input: 3-phase power


Figure 5-4

Wiring Diagram for Frame A~C
Input: 3-phase power


Figure 5-5

## Wiring Diagram for Frame D~F

Input: 3-phase power


Figure 5-6
*1 Please refer to Section 7-1 for more details of brake units.

Wiring Diagram for Frame G~H
Input: 3-phase power


Figure 5-7
*1 Please refer to Section 7-1 for brake units and resistors selection.
Note: When wiring for 12 Pulse Input, please strictly follow above wiring diagram, or it may cause the fan stop unexpectedly. Any questions, please contact Delta Electronics, Inc.

## NOTE

- If the wiring between motor drive and motor is over 75 meters, please refer to Chapter 7-4 Specifications of limits for motor cable length.
■ Please remove short circuit plate of Frame G and H if 12 pulse is implemented


Figure 5-8

| Terminals | Descriptions |
| :---: | :--- |
| R/L1, S/L2, T/L3 | AC line input terminals 3-phase |
| U/T1, V/T2, W/T3 | AC drive output terminals for connecting 3-phase induction motor |
| $+1 / D C+,+2 / D C+$ | Applicable to frame A-C <br> Connections for DC reactor to improve the power factor. It needs to remove the <br> jumper for installation. |
| $+1 / D C+,-/ D C-$ | Connections for brake module (VFDB series) <br> (for 230V models: $\leq 22 \mathrm{~kW}$, built-in brake module) <br> (for 460V models: $\leq 30 \mathrm{~kW}$, built-in brake module) <br> Common DC BUS |
| B1, B2 | Connections for brake resistor (optional) |
| $\Theta$ | Earth connection, please comply with local regulations. |

## 5-2 Specifications of Main Circuit Terminals

- Use the specified ring lug for main circuit terminal wiring. See figure 5-9 and figure 5-10 for ring lug specifications. For other types of wiring use the wires that comply with the local regulations.
- After crimping the wire to the ring lug (must be UL approved), UL and CSA approved recognized component (YDPU2), install heat shrink tube rated at a minimum of $600 \mathrm{~V}_{\mathrm{AC}}$ insulation over the live part. Refer to figure 5-10 below.


Figure 5-9


Figure 5-10

Terminal specification
The part number of the ring lugs (produced by K.S. Terminals Inc.) in the table below are for reference only. You can buy the ring lugs of your choice to match with different frame sizes.

| Frame | AWG | Kit P/N | $\begin{gathered} \text { A } \\ \text { (MAX) } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \text { (MAX) } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \text { (MIN) } \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ \text { (MAX) } \end{gathered}$ | $\begin{gathered} \text { d2 } \\ \text { (MIN) } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ (\mathrm{MIN}) \end{gathered}$ | $\begin{gathered} \text { F } \\ (\mathrm{MIN}) \end{gathered}$ | $\begin{gathered} W \\ (\text { MAX }) \end{gathered}$ | $\begin{gathered} \mathrm{t} \\ \text { (MAX) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 16 | RNBL2-4 | 20.0 | 5.0 | 5.5 | 9.0 | 4.3 | 8.0 | 5.5 | 10.0 | 1.5 |
|  | 14 | RNBL2-4 |  |  |  |  |  |  |  |  |  |
|  | 12 | RNBL5-4 |  |  |  |  |  |  |  |  |  |
|  | 10 | RNBL5-4 |  |  |  |  |  |  |  |  |  |
|  | 8 | RNBS8-4 |  |  |  |  |  |  |  |  |  |
| B | 8 | RNBM8-5 | 28.0 | 7.0 | 7.5 | 14.0 | 5.2 | 13.0 | 12.0 | 14.0 | 1.5 |
|  | 6 | RNB14-5 |  |  |  |  |  |  |  |  |  |
|  | 4 | RNBS22-5 |  |  |  |  |  |  |  |  |  |
| C | 6 | RNB14-8 | 40.0 | 12.0 | 12.5 | 22.0 | 8.3 | 13.0 | 12.5 | 24.0 | 2.5 |
|  | 4 | RNB22-8 |  |  |  |  |  |  |  |  |  |
|  | 2 | RNBS38-8 |  |  |  |  |  |  |  |  |  |
|  | 1/0 | RNB60-8 |  |  |  |  |  |  |  |  |  |
| D0 | 4 | RNB22-8 | 44.0 | 13.0 | 10.0 | 15.0 | 8.3 | 13.0 | 17.0 | 26.0 | 3.0 |
|  | 2 | RNBS38-8 |  |  |  |  |  |  |  |  |  |
|  | 1/0 | SQNBS60-8 | 40.0 | 11.0 | 10.0 | 23.0 | 8.3 | 13.0 | $14.0{ }^{* 1}$ | 24.0 | 4.5 |
|  | 2/0 | SQNBS80-8 |  |  |  |  |  |  |  |  |  |
| D | 4 | RNB22-8 | 50.0 | 16.0 | 10.0 | 27.0 | 8.3 | 13.0 | 14.0 | 28.0 | 6.0 |
|  | 2 | RNBS38-8 |  |  |  |  |  |  |  |  |  |
|  | 1/0 | RNB60-8 |  |  |  |  |  |  |  |  |  |
|  | 2/0 | RNB70-8 |  |  |  |  |  |  |  |  |  |
|  | 3/0 | RNB80-8 |  |  |  |  |  |  |  |  |  |
|  | 4/0 | SQNBS100-8 |  |  |  |  |  |  |  |  |  |
|  | 250MCM | SQNBS150-8 |  |  |  |  |  |  |  |  |  |
|  | 300MCM | SQNBS150-8 |  |  |  |  |  |  |  |  |  |

Chapter 5 Main Circuit Terminals | C2000

| Frame | AWG | Kit P/N | $\begin{gathered} \mathrm{A} \\ \text { (MAX) } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ (\mathrm{MAX}) \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ (\mathrm{MIN}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ (\mathrm{MAX}) \end{gathered}$ | $\begin{gathered} \mathrm{d} 2 \\ (\mathrm{MIN}) \end{gathered}$ | $\begin{gathered} E \\ (\mathrm{MIN}) \end{gathered}$ | $\begin{gathered} \mathrm{F} \\ (\mathrm{MIN}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { W } \\ \text { (MAX) } \end{gathered}$ | $\begin{gathered} \mathrm{t} \\ (\mathrm{MAX}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 1/0 | RNB60-8 | 53.0 | 16.0 | 17.0 | 26.5 | 8.4 | 13.0 | 17.0 | 31.0 | 5.0 |
|  | 2/0 | RNB70-8 |  |  |  |  |  |  |  |  |  |
|  | 3/0 | RNB80-8 |  |  |  |  |  |  |  |  |  |
|  | 4/0 | RNB100-8 |  |  |  |  |  |  |  |  |  |
| F | 3/0 | RNB80-8 | 55.0 | 15.0 | 10.0 | 27.0 | 8.3 | 13.0 | 17.5 | 31.0 | 6.0 |
|  | 4/0 | SQNBS100-8 |  |  |  |  |  |  |  |  |  |
|  | 300MCM | SQNBS150-8 |  |  |  |  |  |  |  |  |  |
| G | 1/0 | SQNBS60-8 | 54.0 | 15.5 | 18.0 | 26.5 | 8.2 | 13.0 | 18.0 | 31.0 | 3.5 |
|  | 2/0 | SQNBS80-8 |  |  |  |  |  |  |  |  |  |
|  | 3/0 | SQNBS80-8 |  |  |  |  |  |  |  |  |  |
|  | 4/0 | SQNBS100-8 |  |  |  |  |  |  |  |  |  |
|  | 250MCM | SQNBS150-8 |  |  |  |  |  |  |  |  |  |
|  | 300MCM | SQNBS180-12 | 70.0 | 21.0 | 27.0 | 32.7 | 12.2 | 13.0 | 27.0 | 42.0 | 4.0 |
|  | 400MCM | SQNBS200-12 |  |  |  |  |  |  |  |  |  |
|  | 500MCM | SQNBS200-12 |  |  |  |  |  |  |  |  |  |
| H | 3/0 | SQNBS80-8 | 54.0 | 15.5 | 18.0 | 26.5 | 8.2 | 13.0 | 18.0 | 31.0 | 3.5 |
|  | 4/0 | SQNBS100-8 |  |  |  |  |  |  |  |  |  |
|  | 250 | SQNBS150-8 |  |  |  |  |  |  |  |  |  |
|  | 300 | SQNBS150-8 |  |  |  |  |  |  |  |  |  |
|  | 350 | SQNBS150-8 |  |  |  |  |  |  |  |  |  |

*1: $F(M A X)=16.5$
Unit: mm

Frame A
$-/ D C-+2 D C++1$ DC + B1 B2

( $)$ R/L1 S/L2 T/L3 U/T1 V/T2 W/T3

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, please select copper wire with voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC, <br> B1, B2 |  |  | Terminal $\left.{ }^{( }\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD007C23A | $\begin{gathered} 10 \mathrm{~mm}^{2} \\ {[8 \mathrm{AWG}]} \end{gathered}$ | $2.5 \mathrm{~mm}^{2}$ [14 AWG] | $\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{~kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$ | $2.5 \mathrm{~mm}^{2}$ [14 AWG] | $2.5 \mathrm{~mm}^{2}$ [14 AWG] | $\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{~kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$ |
| VFD015C23A |  | $4.0 \mathrm{~mm}^{2}$ [12 AWG] |  | $4.0 \mathrm{~mm}^{2}$ [12 AWG] | $4.0 \mathrm{~mm}^{2}$ [12 AWG] |  |
| VFD022C23A |  | $6.0 \mathrm{~mm}^{2}$ [10 AWG] |  | $6.0 \mathrm{~mm}^{2}$ [10 AWG] | $6.0 \mathrm{~mm}^{2}$ [10 AWG] |  |
| VFD037C23A |  | $10.0 \mathrm{~mm}^{2}$ [8 AWG] |  | $10.0 \mathrm{~mm}^{2}$ [8 AWG] | $10.0 \mathrm{~mm}^{2}$ [8 AWG] |  |
| VFD007C43A |  |  |  | 2.5 mm² [14 AWG] | $2.5 \mathrm{~mm}^{2}$ [14 AWG] |  |
| VFD015C43A |  | 1.5 mm² [16 AWG] |  |  |  |  |
| VFD022C43A |  | $2.5 \mathrm{~mm}^{2}$ [14 AWG] |  |  |  |  |
| VFD037C43A |  | 6.0 mm² [10 AWG] |  | 6.0 mm² [10 AWG] | 6.0 mm² [10 AWG] |  |
| VFD040C43A |  |  |  |  |  |  |
| VFD055C43A |  |  |  |  |  |  |
| VFD007C43E |  | mm² [16 AWG] |  | $2.5 \mathrm{~mm}^{2}$ [14 AWG] | 2.5 mm² [14 AWG] |  |
| VFD015C43E |  | mm² [16 AWG] |  |  |  |  |
| VFD022C43E |  | $2.5 \mathrm{~mm}^{2}$ [14 AWG] |  |  |  |  |
| VFD037C43E |  | 6.0 mm² [10 AWG] |  | 6.0 mm² [10 AWG] | 6.0 mm² [10 AWG] |  |
| VFD040C43E |  |  |  |  |  |  |
| VFD055C43E |  |  |  |  |  |  |
| VFD015C53A-21 |  | $2.5 \mathrm{~mm}^{2}$ [14 AWG] |  | 2.5 mm² [14 AWG] | $2.5 \mathrm{~mm}^{2}$ [14 AWG] |  |
| VFD022C53A-21 |  |  |  |  |  |  |
| VFD037C53A-21 |  |  |  |  |  |  |

## Frame B

-/DC- +2/DC+ +1/DC+ B1 B2


## 

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, please select copper wire with voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For VFD110C23A, if you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wrie.
- Wire fix to pole $+2 / \mathrm{DC}+$ and $+1 / \mathrm{DC}+$ with $45 \mathrm{~kg}-\mathrm{cm} /[39.0 \mathrm{lb}-\mathrm{in}] /[4.42 \mathrm{Nm}]( \pm 10 \%)$

| Model Name | Main Circuit Terminals <br> R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, -/DC-, <br> +1/DC+, +2/DC+, B1, B2 |  |  | Terminal ${ }^{(1)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque $( \pm 10 \%)$ |
| VFD055C23A | $\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & \text { [4 AWG] } \end{aligned}$ | $10 \mathrm{~mm}^{2}$ [8 AWG] | $\begin{gathered} \text { M5 } \\ 35 \mathrm{~kg}-\mathrm{cm} \\ {[30.4 \mathrm{lb}-\mathrm{in} .]} \\ {[3.43 \mathrm{Nm}]} \end{gathered}$ | $10 \mathrm{~mm}^{2}$ [8 AWG] | $10 \mathrm{~mm}^{2}$ [8 AWG] | $\begin{gathered} \mathrm{M} 5 \\ 35 \mathrm{~kg}-\mathrm{cm} \\ {[30.4 \mathrm{lb}-\mathrm{in} .]} \\ {[3.43 \mathrm{Nm}]} \end{gathered}$ |
| VFD075C23A |  | $16 \mathrm{~mm}^{2}$ [6 AWG] |  | $16 \mathrm{~mm}^{2}$ [6 AWG] | $16 \mathrm{~mm}^{2}$ [6 AWG] |  |
| VFD110C23A |  | $25 \mathrm{~mm}^{2}$ [4 AWG] |  | $25 \mathrm{~mm}^{2}$ [4 AWG] | $16 \mathrm{~mm}^{2}$ [6 AWG] |  |
| VFD075C43A |  |  |  |  |  |  |
| VFD075C43E |  |  |  |  |  |  |
| VFD110C43A |  | $10 \mathrm{~mm}^{2}$ [8 AWG] |  | $10 \mathrm{~mm}^{2}$ [8 AWG] | $10 \mathrm{~mm}^{2}$ [8 AWG] |  |
| VFD110C43E |  |  |  |  |  |  |
| VFD150C43A |  | $16 \mathrm{~mm}^{2}$ [6 AWG] |  | $16 \mathrm{~mm}^{2}$ [6 AWG] | $16 \mathrm{~mm}^{2}$ [6 AWG] |  |
| VFD055C53A-21 |  | $6 \mathrm{~mm}^{2}$ [10 AWG] |  | $6 \mathrm{~mm}^{2}$ [10 AWG] | $6 \mathrm{~mm}^{2}$ [10 AWG] |  |
| VFD075C53A-21 |  |  |  |  |  |  |
| $\begin{array}{\|l\|} \hline \text { VFD110C53A-21 } \\ \hline \text { VFD150C53A-21 } \end{array}$ |  | $10 \mathrm{~mm}^{2}$ [8 AWG] |  | $10 \mathrm{~mm}^{2}$ [8 AWG] | $10 \mathrm{~mm}^{2}$ [8 AWG] |  |

Frame C
-/DC- +2/DC+ +1/DC+ B1 B2


## (1) <br> R/L1 S/L2 <br> T/L3 <br> U/T1 <br> V/T2 W/T3

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, please select copper wire with voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For VFD220C23A, if you insall at Ta $40^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wrie.
- Wire fix to pole $+2 / \mathrm{DC}+$ and $+1 / \mathrm{DC}+$ with $90 \mathrm{~kg}-\mathrm{cm} /[78.2 \mathrm{lb}-\mathrm{in}] /[8.83 \mathrm{Nm}]( \pm 10 \%)$



## Frame D0



- If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ (for model names with last digit U) $/ 50^{\circ} \mathrm{C}$ (for model names with last digit S ) environment, please select copper wire with voltage rating 600 V and temperature resistant at $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ (for model names with last digit U ) $/ 50^{\circ} \mathrm{C}$ (for model names with last digit S ) above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC- |  |  | Terminal ${ }^{( }$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque $( \pm 10 \%)$ | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD370C43U | $70 \mathrm{~mm}^{2}$ <br> [2/0 AWG] | $50 \mathrm{~mm}^{2}$ [1/0 AWG] | $\begin{gathered} \mathrm{M} 8 \\ 80 \mathrm{~kg}-\mathrm{cm} \\ {[69.4 \mathrm{lb}-\mathrm{in} .]} \\ {[7.84 \mathrm{Nm}]} \end{gathered}$ | $35 \mathrm{~mm}^{2}$ [2 AWG] | $25 \mathrm{~mm}^{2}$ [4 AWG] | M8 80kg-cm [69.4 lb-in.] [7.84Nm] |
| VFD450C43U |  |  |  |  |  |  |
| VFD370C43S |  |  |  |  |  |  |
| VFD450C43S |  | $70 \mathrm{~mm}^{2}$ [2/0 AWG] |  |  |  |  |

Frame D
(1) R/L1 S/L2 T/L3 +1/DC+ -/DC- U/T1 V/T2 W/T3


- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) environment, please select copper wire with voltage rating 600 V and temperature resistant at $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) above environmnet, please select copper wire with voltage rating 600 V and temperatrue resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistnat at $75^{\circ} \mathrm{C}$, which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC- |  |  | Terminal ${ }^{( }$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | $\begin{gathered} \hline \text { Screw Spec. } \\ \text { and Torque } \\ ( \pm 10 \%) \end{gathered}$ | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD300C23A | $\begin{gathered} 150 \mathrm{~mm}^{2} \\ {[300 \mathrm{MCM}]} \end{gathered}$ | $120 \mathrm{~mm}^{2}$ [4/0 AWG] | $\begin{gathered} \text { M8 } \\ 180 \mathrm{~kg}-\mathrm{cm} \\ {[156.2 \mathrm{lb}-\mathrm{in} .]} \\ {[17.65 \mathrm{Nm}]} \end{gathered}$ | $120 \mathrm{~mm}^{2}$ [4/0 AWG] | $70 \mathrm{~mm}^{2}$ [2/0 AWG] | $\begin{gathered} \mathrm{M} 8 \\ 180 \mathrm{~kg}-\mathrm{cm} \\ {[156.2 \mathrm{lb}-\mathrm{in} .]} \\ {[17.65 \mathrm{Nm}]} \end{gathered}$ |
| VFD370C23A |  | $120 \mathrm{~mm}^{2}$ [250MCM] |  | $120 \mathrm{~mm}^{2}$ [250MCM] |  |  |
| VFD370C43A |  | $50 \mathrm{~mm}^{2}$ [1/0 AWG] |  | $50 \mathrm{~mm}^{2}$ [1/0 AWG] | $25 \mathrm{~mm}^{2}$ [4 AWG] |  |
| VFD450C43A |  | $70 \mathrm{~mm}^{2}$ [2/0 AWG] |  | $70 \mathrm{~mm}^{2}$ [2/0 AWG] | $35 \mathrm{~mm}^{2}$ [2 AWG] |  |
| VFD550C43A |  | $95 \mathrm{~mm}^{2}$ [3/0 AWG] |  | $95 \mathrm{~mm}^{2}$ [3/0 AWG] | $50 \mathrm{~mm}^{2}$ [1/0 AWG] |  |
| VFD750C43A |  | $150 \mathrm{~mm}^{2}$ [300MCM] |  | $150 \mathrm{~mm}^{2}$ [300MCM] | $95 \mathrm{~mm}^{2}$ [3/0 AWG] |  |
| VFD300C23E | $\begin{gathered} 120 \mathrm{~mm}^{2} \\ {[4 / 0 \mathrm{AWG}]} \end{gathered}$ | $95 \mathrm{~mm}^{2}$ [3/0 AWG] |  | $95 \mathrm{~mm}^{2}$ [3/0 AWG] | $50 \mathrm{~mm}^{2}$ [1/0 AWG] |  |
| VFD370C23E |  | $120 \mathrm{~mm}^{2}$ [4/0 AWG] |  | $120 \mathrm{~mm}^{2}$ [4/0 AWG] | $70 \mathrm{~mm}^{2}$ [2/0 AWG] |  |
| VFD370C43E |  | $50 \mathrm{~mm}^{2}$ [1/0 AWG] |  | $50 \mathrm{~mm}^{2}$ [1/0 AWG] | $25 \mathrm{~mm}^{2}$ [4 AWG] |  |
| VFD450C43E |  | $50 \mathrm{~mm}^{2}$ [1/0 AWG] |  | $50 \mathrm{~mm}^{2}$ [1/0 AWV] | $25 \mathrm{~mm}^{2}$ [ 4 AWG ] |  |
| VFD550C43E |  | $70 \mathrm{~mm}^{2}$ [2/0 AWG] |  | $70 \mathrm{~mm}^{2}$ [2/0 AWG] | $35 \mathrm{~mm}^{2}$ [2 AWG] |  |
| VFD750C43E |  | $120 \mathrm{~mm}^{2}$ [4/0 AWG] |  | $120 \mathrm{~mm}^{2}$ [4/0 AWG] | $70 \mathrm{~mm}^{2}$ [2/0 AWG] |  |
| VFD450C63B-00 | $\begin{gathered} 150 \mathrm{~mm}^{2} \\ {[300 \mathrm{MCM}]} \end{gathered}$ | $35 \mathrm{~mm}^{2}$ [2 AWG] |  | $35 \mathrm{~mm}^{2}$ [2 AWG] | $16 \mathrm{~mm}^{2}$ [6 AWG] |  |
| VFD550C63B-00 |  |  |  |  |  |  |
| VFD450C63B-21 |  |  |  |  |  |  |
| VFD550C63B-21 |  |  |  |  |  |  |

Frame E


- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) environment, please select copper wire with voltage rating 600 V and temperature resistant at $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, -/DC-, +1/DC+ |  |  | Terminal |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD450C23A | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 2 \\ {\left[4 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | 50 mm²*2 [1/0 AWG*2] | M8 $180 \mathrm{~kg}-\mathrm{cm}$ [156.2 lb-in.][17.65 Nm] | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 2 \\ {[1 / 0 \mathrm{AWG} \text { 2] }} \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 *} 1$ [1/0 AWG*1] | M8 $180 \mathrm{~kg}-\mathrm{cm}$ [156.2 lb-in.] [17.65Nm] |
| VFD550C23A |  | 95 mm²*2 [3/0 AWG*2] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 2 \\ {\left[3 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 * 1}$ [3/0 AWG*1] |  |
| VFD750C23A |  | $120 \mathrm{~mm}{ }^{2 *} 2$ [4/0 AWG*2] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 2 \\ {\left[4 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $120 \mathrm{~mm}{ }^{2 * 1}$ [4/0 AWG*1] |  |
| VFD900C43A |  | 50 mm²*2 [1/0 AWG*2] |  | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 2 \\ {\left[1 / 0 \mathrm{AWG}^{*} 2\right]} \\ \hline \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 *} 1$ [1/0 AWG*1] |  |
| VFD1100C43A |  | $95 \mathrm{~mm}{ }^{2 *} 2$ [3/0 AWG*2] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *}{ }^{2} \\ {[3 / 0 \mathrm{AWG} * 2]} \\ \hline \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 1$ [3/0 AWG*1] |  |
| VFD450C23E |  | $50 \mathrm{~mm}{ }^{2 *} 2$ [1/0 AWG*2] |  | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 2 \\ {\left[1 / 0 \mathrm{AWG}^{*} 2\right]} \\ \hline \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 * 1}$ [1/0 AWG*1] |  |
| VFD550C23E |  | $70 \mathrm{~mm}{ }^{2 *} 2$ [2/0 AWG*2] |  | $\begin{gathered} 70 \mathrm{~mm}^{2 *} 2 \\ {\left[2 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | 70 mm ${ }^{2 * 1}$ [2/0 AWG*1] |  |
| VFD750C23E |  | 95 mm²*2 [3/0 AWG*2] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 2 \\ {\left[3 / 0 \mathrm{AWG}^{*} 2\right]} \\ \hline \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 1$ [3/0 AWG*1] |  |
| VFD900C43E |  | $50 \mathrm{~mm}{ }^{2 *} 2$ [1/0 AWG*2] |  | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 2 \\ {\left[1 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 *} 1$ [1/0 AWG*1] |  |
| VFD1100C43E |  | 70 mm²*2 [2/0 AWG*2] |  | $\begin{gathered} 70 \mathrm{~mm}^{2 *} 2 \\ {\left[2 / 0 \mathrm{AWG}^{*} 2\right]} \\ \hline \end{gathered}$ | 70 mm ${ }^{2 * 1}$ [2/0 AWG*1] |  |
| VFD750C63B-00 |  | $25 \mathrm{~mm}{ }^{2 *} 2$ [4 AWG*2] |  | $\begin{aligned} & 25 \mathrm{~mm}^{2 *} 2 \\ & {\left[4 \mathrm{AWG}^{*} 2\right]} \end{aligned}$ | $25 \mathrm{~mm}{ }^{2 *} 1$ [4 AWG*1] |  |
| VFD900C63B-00 |  | 35 mm ${ }^{\text {* }} 2$ [2 AWG*2] |  | $\begin{aligned} & 35 \mathrm{~mm}^{2 *} 2 \\ & {\left[2 \mathrm{AWG}^{*} 2\right]} \end{aligned}$ | $35 \mathrm{~mm}^{2}$ *1 [2 AWG*1] |  |
| VFD1320C63B-00 |  | $50 \mathrm{~mm}{ }^{2 *} 2$ [1/0 AWG*2] |  | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 2 \\ {\left[1 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 *} 1$ [1/0 AWG*1] |  |
| VFD750C63B-21 |  | $25 \mathrm{~mm}{ }^{2 *} 2$ [4 AWG*2] |  | $\begin{aligned} & 25 \mathrm{~mm}^{2 *} 2 \\ & {\left[4 \mathrm{AWG}^{*} 2\right]} \\ & \hline \end{aligned}$ | $25 \mathrm{~mm}{ }^{2 *} 1$ [4 AWG*1] |  |
| VFD900C63B-21 |  | $35 \mathrm{~mm}{ }^{2 *} 2$ [2 AWG*2] |  | $\begin{gathered} 35 \mathrm{~mm}^{2 *} 2 \\ {\left[2 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $35 \mathrm{~mm}{ }^{2 * 1}$ [2 AWG*1] |  |
| VFD1320C63B-21 |  | 50 mm²*2 [1/0 AWG*2] |  | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 2 \\ {[1 / 0 \mathrm{AWG} \text { *2] }} \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 *} 1$ [1/0 AWG*1] |  |

## Frame F



- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) environment, please selet copper wire with voltage rating 600 V and temperature resistant at $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-00) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A; for 690 V model names end with 63B-21) above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For VFD900C23A, if you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For VFD900C23E, if you install at Ta $35^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC+, DC- |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD900C23A | $\left[\begin{array}{c} 150 \mathrm{~mm}^{2 *} 2 \\ {\left[300 \mathrm{MCM}^{*} 2\right]} \end{array}\right.$ | $150 \mathrm{~mm}^{2 *} 2$ [300MCM*2] |  | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 2 \\ {\left[300 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $150 \mathrm{~mm}^{2}$ [300MCM] |  |
| VFD1320C43A |  | $120 \mathrm{~mm}^{2 *} 2$ [4/0AWG*2] |  | $\begin{aligned} & 120 \mathrm{~mm}^{2 *} 2 \\ & {\left[4 / 0 \mathrm{AWG}^{*} 2\right]} \end{aligned}$ | $120 \mathrm{~mm}^{2}$ [4/0AWG] |  |
| VFD1600C43A |  | $150 \mathrm{~mm}^{2 *} 2$ [300MCM*2] |  | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 2 \\ {\left[300 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $150 \mathrm{~mm}^{2}$ [300MCM] |  |
| VFD900C23E | $\begin{array}{\|c} 120 \mathrm{~mm}^{2 *} 2 \\ {[4 / 0 \mathrm{AWG} * 2]} \end{array}$ | $120 \mathrm{~mm}^{2 *} 2$ [4/0AWG*2] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 2 \\ {[4 / 0 \mathrm{AWG} 2]} \end{gathered}$ | $120 \mathrm{~mm}^{2}$ [4/0AWG] |  |
| VFD1320C43E |  | $95 \mathrm{~mm}{ }^{2 *} 2$ [3/0 AWG*2] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 2 \\ {\left[3 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $95 \mathrm{~mm}^{2}$ [3/0 AWG] |  |
| VFD1600C43E |  | $120 \mathrm{~mm}^{2 *} 2$ [4/0AWG*2] |  | $\begin{aligned} & 120 \mathrm{~mm}^{2 *} 2 \\ & {\left[4 / 0 \mathrm{AWG}^{*} 2\right]} \end{aligned}$ | $120 \mathrm{~mm}^{2}$ [4/OAWG] |  |
| VFD1600C63B-00 | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 2 \\ {\left[300 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $70 \mathrm{~mm}{ }^{2 *} 2$ [2/0 AWG*2] |  | $\begin{gathered} 70 \mathrm{~mm}^{2 *} 2 \\ {\left[2 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $70 \mathrm{~mm}{ }^{2 *} 1$ [2/0 AWG*1] |  |
| VFD2000C63B-00 |  | $95 \mathrm{~mm}{ }^{2 *} 2$ [3/0 AWG*2] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 2 \\ {\left[3 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 1$ [3/0 AWG*1] |  |
| VFD1600C63B-21 |  | $70 \mathrm{~mm}^{2 *} 2$ [2/0 AWG*2] |  | $\begin{gathered} 70 \mathrm{~mm}^{2 *} 2 \\ {\left[2 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $70 \mathrm{~mm}^{2 *} 1$ [2/0 AWG*1] |  |
| VFD2000C63B-21 |  | 95 mm²*2 [3/0 AWG*2] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 2 \\ {\left[3 / 0 \mathrm{AWG}^{*} 2\right]} \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 1$ [3/0 AWG*1] |  |

## Frame G



- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) / $40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-21$ ) environment, please select copper wire with voltage rating 600 V and temperature resistant at $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-21$ ) above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For VFD2200C43A, if you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L11, R/L12, S/L21, S/L22, T/L31, T/L32 |  |  | Terminal |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD1850C43A | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {\left[250 \mathrm{MCM}^{*} 4\right]} \end{gathered}$ | 70 mm ${ }^{2 *} 4$ [2/0AWG*4] | $\begin{gathered} \mathrm{M} 8 \\ 180 \mathrm{~kg}-\mathrm{cm} \\ {[156.2 \mathrm{lb}-\mathrm{in} .]} \\ {[17.65 \mathrm{Nm}]} \end{gathered}$ | $\begin{gathered} 70 \mathrm{~mm}^{2 *} 4 \\ {\left[2 / 0 \mathrm{AWG}^{*} 4\right]} \end{gathered}$ | 70 mm ${ }^{2 *} 2$ [2/0AWG*2] | $\begin{gathered} \text { M8 } \\ \text { 180kg-cm } \\ {[156.2 \mathrm{lb}-\mathrm{in} .]} \\ {[17.65 \mathrm{Nm}]} \end{gathered}$ |
| VFD2200C43A |  | $95 \mathrm{~mm}^{2 *} 4$ [3/0AWG*4] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 * 4} \\ {\left[3 / 0 \mathrm{AWG}^{*} 4\right]} \end{gathered}$ | $95 \mathrm{~mm}^{2 *} 2$ [3/0AWG*2] |  |
| VFD1850C43E |  | $50 \mathrm{~mm}{ }^{2 *} 4$ [1/0AWG $\left.{ }^{*} 4\right]$ |  | $\begin{gathered} 50 \mathrm{~mm}^{2 *} 4 \\ {\left[1 / \mathrm{AWG}^{*} 4\right]} \end{gathered}$ | $50 \mathrm{~mm}{ }^{2 *} 2$ [1/0AWG*2] |  |
| VFD2200C43E |  | $70 \mathrm{~mm}^{2 *} 4$ [2/0AWG*4] |  | $\begin{gathered} 70 \mathrm{~mm}^{2 *} 4 \\ {[2 / 0 \mathrm{AWG} * 4]} \end{gathered}$ | $70 \mathrm{~mm}^{2 *} 2$ [2/0AWG*2] |  |
| VFD2500C63B-00 | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 4 \\ {[300 \mathrm{MCM} 4]} \end{gathered}$ | 50 mm²* [1/0 AWG*4] |  | $\begin{gathered} 50 \mathrm{~mm}^{2^{*} 4} 4 \\ {[1 / 0 \mathrm{AWG} 4]} \end{gathered}$ | 50 mm²*2 [1/0 AWG*2] |  |
| VFD3150C63B-00 |  |  |  |  |  |  |
| VFD2500C63B-21 |  |  |  |  |  |  |
| VFD3150C63B-21 |  |  |  |  |  |  |


| Model Name | Main Circuit Terminals U/T1, V/T2, W/T3, +1/DC+, -/DC- |  |  | Terminal |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec and Torque ( $\pm 10 \%$ ) |
| VFD1850C43A | $\begin{gathered} 240 \mathrm{~mm}^{2 *} 2 \\ {\left[500 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $240 \mathrm{~mm}^{2 *} 2$ [400MCM*2] | $\begin{gathered} \mathrm{M} 12 \\ 408 \mathrm{~kg}-\mathrm{cm} \\ {[354.1 \mathrm{lb}-\mathrm{in} .]} \\ {[39.98 \mathrm{Nm}]} \end{gathered}$ | $\begin{gathered} 240 \mathrm{~mm}^{2 *} 2 \\ {\left[400 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $240 \mathrm{~mm}^{2 *} 1$ [400MCM*1] | $\begin{gathered} \mathrm{M} 8 \\ 180 \mathrm{~kg}-\mathrm{cm} \\ {[156.2 \mathrm{lb}-\mathrm{in} .]} \\ {[17.65 \mathrm{Nm}]} \end{gathered}$ |
| VFD2200C43A |  | $240 \mathrm{~mm}^{2 *} 2$ [500MCM*2] |  | $\begin{gathered} 240 \mathrm{~mm}^{2} * 2 \\ {\left[500 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $240 \mathrm{~mm}^{2 *} 1$ [500MCM*1] |  |
| VFD1850C43E |  | $150 \mathrm{~mm}^{2 *} 2$ [300MCM*2] |  | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 2 \\ {\left[300 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $150 \mathrm{~mm}^{2 *} 1$ [300MCM $\left.{ }^{*} 2\right]$ |  |
| VFD2200C43E |  | $240 \mathrm{~mm}^{2 *} 2$ [400MCM*2] |  | $\begin{gathered} 240 \mathrm{~mm}^{2 *} 2 \\ {\left[400 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $240 \mathrm{~mm}^{2 *} 1$ [400MCM*1] |  |
| VFD2500C63B-00 |  | $120 \mathrm{~mm}^{2 *} 2$ [250MCM*2] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 2 \\ {\left[250 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 1$ [250MCM*1] |  |
| VFD3150C63B-00 |  | $150 \mathrm{~mm}^{2 *} 2$ [350MCM*2] |  | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 2 \\ {\left[350 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $150 \mathrm{~mm}^{2 *} 1$ [350MCM*1] |  |
| VFD2500C63B-21 |  | $120 \mathrm{~mm}^{2 *} 2$ [250MCM*2] |  | $\begin{gathered} 120 \mathrm{~mm}^{2} * 2 \\ {\left[250 \mathrm{MCM}^{*} 2\right]} \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 1$ [250MCM*1] |  |
| VFD3150C63B-21 |  | $150 \mathrm{~mm}^{2 *} 2$ [350MCM*2] |  | $\begin{aligned} & 150 \mathrm{~mm}^{2 *} 2 \\ & {\left[350 \mathrm{MCM}^{*} 2\right]} \end{aligned}$ | $150 \mathrm{~mm}^{2 * 1}$ [350MCM*1] |  |

Frame H


- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) environment, please select copper wire with voltage rating 600 V and temperature resistant at $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with $63 \mathrm{~B}-00$ ) $/ 40^{\circ} \mathrm{C}$ (for $230 \mathrm{~V} / 460 \mathrm{~V}$ model names with last digit A ; for 690 V model names end with 63B-21) above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For VFD4500C43A, VFD4500C43E-1, if you install at Ta $40^{\circ} \mathrm{C}$ above environment, please select copper wire with voltage rating 600 V and temperature resistant at $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliant, please use copper wires for installation, the wire gauge is based on temperature resistant at $75^{\circ} \mathrm{C}$ which is requested and recommended from UL. Do not reduce the wire gauge when using higher temperature wire.

| Model Name | Main Circuit Terminals <br> R/L11, R/L12, S/L21, S/L22, T/L31, T/L32, U/T1, <br> V/T2, W/T3, +1/DC+, -/DC- |  |  | Terminal |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) | Max. Wire Gauge | Min. Wire Gauge | Screw Spec. and Torque ( $\pm 10 \%$ ) |
| VFD2800C43A | $\begin{gathered} 185 \mathrm{~mm}^{2 *} 4 \\ {[350 \mathrm{MCM} * 4]} \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 4$ [4/0AWG*4] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {\left[4 / 0 \mathrm{AWG}^{*} 4\right]} \\ \hline \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 2$ [4/0AWG*2] | M 8$180 \mathrm{~kg}-\mathrm{cm}$$[156.2 \mathrm{lb}-\mathrm{in}$.$[17.65 \mathrm{Nm}]$ |
| VFD3150C43A |  | $150 \mathrm{~mm}^{2 *} 4$ [300MCM*4] |  | $150 \mathrm{~mm}^{2 *} 4$ | $150 \mathrm{~mm}{ }^{2 *} 2$ [300MCM*2] |  |
| VFD3550C43A |  | $150 \mathrm{~mm}{ }^{2} 4$ [300MCM ${ }^{4}$ ] |  | [300MCM*4] | $150 \mathrm{~mm}{ }^{2} 2$ [300MCM ${ }^{\text {2] }}$ |  |
| VFD4500C43A |  | $185 \mathrm{~mm}^{2 *} 4$ [350MCM*4] |  | $\begin{gathered} 185 \mathrm{~mm}^{2 *} 4 \\ {\left[350 \mathrm{MCM}^{*} 4\right]} \end{gathered}$ | $185 \mathrm{~mm}{ }^{2 *} 2$ [350MCM*2] |  |
| VFD2800C43E-1 |  | $120 \mathrm{~mm}^{2 *} 4$ [4/0AGW**] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {[4 / 0 \mathrm{AGW} 4]} \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 2$ [4/0AGW*2] |  |
| VFD3150C43E-1 |  | $150 \mathrm{~mm}^{2 *} 4$ [300MCM*4] |  | $150 \mathrm{~mm}^{2 *} 4$ | $150 \mathrm{~mm}{ }^{2 *} 2$ [300MCM*2] |  |
| VFD3550C43E-1 |  | 150 mm 4 [300MCM 4] |  |  |  |  |
| VFD4500C43E-1 |  | $185 \mathrm{~mm}^{2 *} 4$ [350MCM*4] |  | $\begin{gathered} \hline 185 \mathrm{~mm}^{2 *} 4 \\ {\left[350 \mathrm{MCM}^{*} 4\right]} \end{gathered}$ | $185 \mathrm{~mm}{ }^{2 *} 2$ [350MCM*2] |  |
| VFD2800C43E |  | $95 \mathrm{~mm}{ }^{2 *} 4$ [3/0AWG*4] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 4 \\ {\left[3 / 0 \mathrm{AWG}^{*} 4\right]} \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 2$ [3/0AWG*2] |  |
| VFD3150C43E |  | $120 \mathrm{~mm}^{2 *} 4$ [4/0AGW*4] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {\left[4 / 0 \mathrm{AGW}^{*} 4\right]} \\ \hline \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 2$ [4/OAGW*2] |  |
| VFD3550C43E |  | $120 \mathrm{~mm}^{2 *} 4$ [250MCM*4] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {\left[250 \mathrm{MCM}^{*} 4\right]} \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 2$ [250MCM*2] |  |
| VFD4500C43E |  | $185 \mathrm{~mm}^{2 *} 4$ [350MCM*4] |  | $\begin{gathered} 185 \mathrm{~mm}^{2 *} 4 \\ {\left[350 \mathrm{MCM}^{*} 4\right]} \end{gathered}$ | $185 \mathrm{~mm}^{2 *} 2$ [350MCM*2] |  |
| \| VFD4000C63B-00 |  | $95 \mathrm{~mm}{ }^{2 *} 4$ [3/0AWG*4] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 4 \\ {\left[3 / 0 \mathrm{AWG}^{*} 4\right]} \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 2$ [3/0AWG*2] |  |
| VFD5600C63B-00 |  | $120 \mathrm{~mm}^{2 *} 4$ [250MCM*4] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {\left[250 \mathrm{MCM}^{*} 4\right]} \\ \hline \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 2$ [250MCM*2] |  |
| VFD6300C63B-00 |  | $150 \mathrm{~mm}^{2 *} 4$ [300MCM*4] |  | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 4 \\ {\left[300 \mathrm{MCM}^{*} 4\right]} \\ \hline \end{gathered}$ | $150 \mathrm{~mm}^{2 *} 2$ [300MCM*2] |  |
| VFD4000C63B-21 |  | $95 \mathrm{~mm}{ }^{2 *} 4$ [3/0AWG*4] |  | $\begin{gathered} 95 \mathrm{~mm}^{2 *} 4 \\ {\left[3 / 0 \mathrm{AWG}^{*} 4\right]} \end{gathered}$ | $95 \mathrm{~mm}{ }^{2 *} 2$ [3/0AWG*2] |  |
| VFD5600C63B-21 |  | $120 \mathrm{~mm}^{2 *} 4$ [250MCM*4] |  | $\begin{gathered} 120 \mathrm{~mm}^{2 *} 4 \\ {\left[250 \mathrm{MCM}^{*} 4\right]} \\ \hline \end{gathered}$ | $120 \mathrm{~mm}^{2 *} 2$ [250MCM*2] |  |
| VFD6300C63B-21 |  | $150 \mathrm{~mm}^{2 *} 4$ [300MCM*4] |  | $\begin{gathered} 150 \mathrm{~mm}^{2 *} 4 \\ {\left[300 \mathrm{MCM}^{*} 4\right]} \\ \hline \end{gathered}$ | $150 \mathrm{~mm}^{2 *} 2$ [300MCM*2] |  |

[The page intentionally left blank]

## Chapter 6 Control Terminals

6-1 Remove the Cover for Wiring
6-2 Specifications of Control Terminal
6-3 Remove the Terminal Block

## Analog input terminals (AVI, ACI, AUI, ACM)

$\boxtimes$ Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.

च When using analog input signal in the circuit, twisted pair is suggested to use for dealing with weak signal.

च If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagram.

Wind each wires 3 times or more around the core


Figure 6-1

## Digital inputs (FWD, REV, MI1-MI8, COM)

$\square$ The "COM" terminal is the common side of the photo-coupler. Any of wiring method, the "common point" of all photo-coupler must be the "COM".


Figure 6-2


Figure 6-4


Figure 6-3


Figure 6-5
$\square$ When the photo-coupler is using internal power supply, the switch connection for Sink and Source as below:

MI-DCM: Sink mode
MI-+24V: Source mode
$\boxtimes \quad$ When the photo-coupler is using external power supply, please remove the short circuit cable between the +24 V and COM terminals. The connection mode is Sink mode or Source mode according to the below:
The " + " of 24 V connecting to "COM: Sink mode
The "-" of 24 V connecting to COM: Source mode

## Transistor outputs (MO1, MO2, MCM)

$\square$ Make sure to connect the digital outputs to the right polarity.
$\boxtimes \quad$ When connecting a relay to the digital outputs connect a surge absorber across the coil and check the polarity.

## 6-1 Remove the Cover for Wiring

Please remove the top cover before wiring the multi-function input and output terminals.
П, ПотE The drive appearances shown in the figures are for reference only, a real drive may look different.

## Frame A \& B

Applicable models: VFD007C23A; VFD007C43A/E; VFD015C23A; VFD015C43A/E; VFD022C23A; VFD022C43A/E; VFD037C23A; VFD037C43A/E; VFD040C43A/E; VFD055C43A/E; VFD015C53A-21; VFD022C53A-21; VFD037C53A-21; VFD055C23A; VFD075C23A; VFD075C43A/E; VFD110C23A; VFD110C43A/E; VFD150C43A/E; VFD055C53A-21; VFD075C53A-21; VFD110C53A-21; VFD150C53A-21 Screw torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.5 Nm]$ Loosen the screws and press the tabs on both sides to remove the cover.


Figure 6-6

## Frame C

Applicable models: VFD150C23A; VFD185C23A; VFD185C43A/E; VFD220C23A; VFD220C43A/E; VFD300C43A/E; VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21

Screw torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.5 Nm]$ Loosen the screws and press the tabs on both sides to remove the cover.


Figure 6-7

## Frame D0 \& D

Applicable models: VFD370C43S; VFD450C43S; VFD370C43U; VFD450C43U; VFD300C23A; VFD370C23A; VFD550C43A; VFD750C43A; VFD300C23E; VFD370C23E; VFD550C43E; VFD750C43E; VFD450C63B-00;
VFD550C63B-00; VFD450C63B-21; VFD550C63B-21
Screw torque: $12-15 \mathrm{~kg}-\mathrm{cm} /$ [ $10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.5 Nm]$
To remove the cover, lift it slightly and pull outward.
Loosen the screws and press the tabs on both sides to remove the cover.


Figure 6-8

## Frame E

Applicable models: VFD450C23A; VFD550C23A; VFD750C23A; VFD900C43A; VFD1100C43A; VFD450C23E; VFD550C23E; VFD750C23E; VFD900C43E; VFD1100C43E; VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21

Screw torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.5 Nm]$
To remove the cover, lift it slightly and pull outward.

(3)


Figure 6-9
Frame F
Applicable models: VFD900C23A; VFD1320C43A; VFD1600C43A; VFD900C23E; VFD1320C43E;
VFD1600C43E; VFD1600C63B-00; VFD2000C63B-00; VFD1600C63B-21; VFD2000C63B-21
Screw torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}] /.[1.2-1.5 \mathrm{Nm}]$
To remove the cover, lift it slightly and pull outward.


Figure 6-10

Frame G
Applicable models: VFD1850C43A; VFD2200C43A; VFD1850C43E; VFD2200C43E; VFD2500C63B-00; VFD3150C63B-00; VFD2500C63B-21; VFD3150C63B-21
Screw torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.5 Nm]$
To remove the cover, lift it slightly and pull outward.


Figure 6-11
Frame H
Applicable models: VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A; VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1; VFD2800C43E; VFD3150C43E; VFD3550C43E;
VFD4500C43E; VFD4000C63B-00; VFD4500C63B-00; VFD5600C63B-00; VFD6300C63B-00
Screw torque: 14-16 kg-cm / [12.15-13.89 lb-in.] / [1.4-1.6 Nm]
To remove the cover, lift it slightly and pull outward.


Figure 6-12

## 690V Frame H3

Applicable models: VFD4000C63B-21; VFD4500C63B-21; VFD5600C63B-21; VFD6300C63B-21
Screw torque: $14-16 \mathrm{~kg}-\mathrm{cm}$ [12.15-13.89 lb-in.] [1.37-1.57 Nm]
To remove the cover, lift it slightly and pull outward.


Figure 6-13

## 6-2 Specifications of Control Terminal



Figure 6-14. Removable Terminal Block

| Function name | Area | Conductor | Stripping length (mm) | Maximum Wire Gauge | Minimum Wire Gauge | Tightening torque $( \pm 10)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RELAY <br> Terminals | (A) | Conductor cross <br> section solid wire <br> Conductor cross <br> section stranded wire | 4-5 | $\begin{gathered} 1.5 \mathrm{~mm}^{2} \\ \text { [16 AWG] } \end{gathered}$ | $\begin{gathered} 0.2 \mathrm{~mm}^{2} \\ \text { [26 AWG] } \end{gathered}$ | $\begin{gathered} 5 \mathrm{~kg}-\mathrm{cm} \\ {[4.3 \mathrm{lb}-\mathrm{in} .]} \\ {[0.49 \mathrm{Nm}]} \end{gathered}$ |
| Control Terminals | (B) | Conductor cross <br> section solid wire <br> Conductor cross <br> section stranded wire | 6-7 |  |  | $8 \mathrm{~kg}-\mathrm{cm}$ [6.9 lb-in.] [0.78 Nm] |
| Control Terminals | (C) | Conductor cross <br> section solid wire <br> Conductor cross <br> section stranded wire |  |  |  | $\begin{gathered} 2 \mathrm{~kg}-\mathrm{cm} \\ {[1.7 \mathrm{lb}-\mathrm{in} .]} \\ {[0.20 \mathrm{Nm}]} \end{gathered}$ |

Wiring precautions:
■ In the figure above, the factory setting for STO1, STO2, +24V and SCM1, SCM2, DCM are short circuit. The +24 V from section (C) of above figure is for STO only, and cannot be used for other purposes. The factory setting for +24V-COM is short circuit and SINK mode (NPN); please refer to Chapter 4 Wiring for more detail.
■ Tighten the wiring with slotted screwdriver:
(A) (B) is 3.5 mm (wide) $\times 0.6 \mathrm{~mm}$ (thick);
(C) is 2.5 mm (wide) $\times 0.4 \mathrm{~mm}$ (thick)

■ When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

| Terminals | Terminal Function | Factory Setting (NPN mode) |
| :---: | :--- | :--- |
| +24 V | Digital control signal common <br> (Source) | $+24 \mathrm{~V} \pm 5 \% 200 \mathrm{~mA}$ |
| COM | Digital control signal common (Sink) | Common for multi-function input terminals |
| FWD | Forward-Stop command | FWD-DCM: <br> ON $\rightarrow$ forward running <br> OFF $\rightarrow$ deceleration to stop |
| REV | Reverse-Stop command | REV-DCM: <br> ON $\rightarrow$ reverse running <br> OFF $\rightarrow$ deceleration to stop |


| Terminals | Terminal Function | Factory Setting (NPN mode) |
| :---: | :---: | :---: |
| MI1 <br> MI8 | Multi-function input 1-8 | Refer to parameters 02-01-02-08 to program the multi-function inputs MI1-MI8. <br> Source mode <br> ON : the activation current is $3.3 \mathrm{~mA} \geq 11 \mathrm{VDC}$ <br> OFF: cut-off voltage $\leq 5 \mathrm{VDC}$ <br> Sink Mode <br> ON : the activation current is $3.3 \mathrm{~mA} \leq 13 \mathrm{VDC}$ <br> OFF: cut-off voltage $\geq 19 \mathrm{~V} D$ |
| DFM | Digital frequency meter | Regard the pulse voltage as the output monitor signal; Duty-cycle: 50 \% <br> Min. load impedance: $1 \mathrm{k} \Omega / 100 \mathrm{pf}$ |
| DCM | Digital frequency signal common | Max. voltage: 30 V D |
| MO1 | Multi-function output 1 (photocoupler) <br> Multi-function output 2 (photocoupler) | The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector). <br> Figure 6-16 |
| MCM | Multi-function output common | Max 48 Vdc 50 mA |
| RA1 | Multi-function relay output 1 (N.O.) a | Resistive Load |
| RB1 | Multi-function relay output 1 (N.C.) b |  |
| RC1 | Multi-function relay common | Inductive Load (COS 0.4) |
| RA2 | Multi-function relay output 2 (N.O.) a | 2.0A (N.O.) / 1.2A (N.C.) 30 VDC |
| RB2 | Multi-function relay output 2 (N.C.) b | It is used to output each monitor signal, such as |
| RC 2 | Multi-function relay common |  |
| +10V | Potentiometer power supply | Analog frequency setting: +10V ${ }_{\text {DC }} 20 \mathrm{~mA}$ |
| -10V | Potentiometer power supply | Analog frequency setting: -10VDC 20 mA |
| AVI | Analog voltage input <br> Figure 6-17 | Impedance: $20 \mathrm{k} \Omega$ <br> Range: 0-20 mA / 4-20 mA / 0-10 V = 0-Max. <br> Output Frequency (Pr.01-00) <br> AVI switch, factory setting is $0-10 \mathrm{~V}$ |


| Terminals | Terminal Function | Factory Setting (NPN mode) |
| :---: | :---: | :---: |
| ACI | Analog current input <br> Figure 6-18 | Impedance: $250 \Omega$ <br> Range: $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA} / 0-10 \mathrm{~V}=0-\mathrm{Max}$. <br> Output Frequency (Pr. 01-00) <br> ACI Switch, factory setting is $4-20 \mathrm{~mA}$ |
| AUI | Auxiliary analog voltage input <br> Figure 6-19 | ```Impedance: 20k\Omega Range: -10-+10VDC=0-Max. Output Frequency (Pr. 01-00)``` |
| AFM1 | Multi-function analog voltage output | $0-10 \mathrm{~V}$ Max. output current 2 mA , Max. load $5 \mathrm{k} \Omega$ $-10-10 \mathrm{~V}$ maximum output current 2 mA , maximum load $5 \mathrm{k} \Omega$ <br> Output current: 2mA max <br> Resolution: 0-10V corresponds to Max. operation frequency <br> Range: $0-10 \mathrm{~V} \rightarrow-10-+10 \mathrm{~V}$ <br> AFM1 Switch, factory setting is $0-10 \mathrm{~V}$ |
| AFM2 | Figure 6-20 | $0-10 \mathrm{~V}$ Max. output current 2 mA , Max. load $5 \mathrm{k} \Omega$ 0-20mA Max. load $500 \Omega$ <br> Output current: 20mA max <br> Resolution: 0-10V corresponds to Max. operation frequency <br> Range: $0-10 \mathrm{~V} \rightarrow 4-20 \mathrm{~mA}$ <br> AFM2 Switch, factory setting is $0-10 \mathrm{~V}$ |
| ACM | Analog signal common | Common for analog terminals |
| STO1 | Default setting is shorted <br> Power removal safety function for EN954-1 and IEC/EN61508 <br> When STO1-SCM1; STO2-SCM2 is activated, the activation current is $3.3 \mathrm{~mA} \geq 11 \mathrm{VDC}$ <br> Note: Please refer to CH 17 Safe Torque off Function. |  |
| SCM1 |  |  |
| STO2 |  |  |
| SCM2 |  |  |
| SG+ | MODBUS RS-485 <br> Note: Please refer to CH12 DESCRIPTION OF PARAMETER SETTINGS group 09 Communication Parameters for more information. |  |
| SG- |  |  |
| SGND |  |  |
| RJ-45 | PIN 1, 2, 7, 8: Reserved PIN 3, 6: SGND <br> PIN 4: SG- PIN 5: SG+ |  |

Table 6-1
NOTE: Wire size of analog control signals: $0.75 \mathrm{~mm}^{2}$ [18 AWG] with shielded wire

## 6-3 Remove the Terminal Block

1. Loosen the screws by screwdriver. (As shown in figure below).


Figure 6-21
2. Remove the control board by pulling it out for a distance $6-8 \mathrm{~cm}$ (as 1 in the figure) then lift the control board upward (as 2 in the figure).


Figure 6-22

## Chapter 7 Optional Accessories

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives
7-2 Non-fuse Circuit Breaker

7-3 Fuse Specification Chart
7-4 AC / DC Reactor

7-5 Zero Phase Reactors
7-6 EMC Filter

7-7 Panel Mounting (MKC-KPPK)
7-8 Conduit Box Kit

7-9 Fan Kit

7-10 Flange Mounting Kit
7-11 Power Terminal Kit

7-12 USB / RS-485 Communication Interface IFD6530

The optional accessories listed in this chapter are available upon request．Installing additional accessories to your drive would substantially improve the drive＇s performance．Please select an applicable accessory according to your need or contact the local distributor for suggestion．

## 7－1 All Brake Resistors and Brake Units Used in AC Motor Drives

230 V

| Appli |  | ＊1 125\％Braking Torque 10\％ED |  |  |  |  |  | ＊2 Max．Braking Torque |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HP | kW | Braking Torque ［kg－m］ | Brake Unit ${ }^{* 4}$ VFDB | ＊3Braking Resist Brake U | for each | Resistor value spec．for each AC motor Drive | Total Braking Current［A］ | Min Resistor Value［ $\Omega$ ］ | Max．Total Braking Current［A］ | Peak Power <br> ［kW］ |
| 1 | 0.7 | 0.5 | － | BR080W2 | ＊＊ | 80W $200 \Omega$ | 1.9 | 63.3 | 6 | 2.3 |
| 2 | 1.5 | 1.0 | － | BR200W0 | 1＊1 | 200W 91ת | 4.2 | 47.5 | 8 | 3.0 |
| 3 | 2.2 | 1.5 | － | BR300W0 | 0＊1 | 300W 70ת | 5.4 | 38.0 | 10 | 3.8 |
| 5 | 3.7 | 2.5 | － | BR400W0 | ＊＊ | 400W 40ת | 9.5 | 19.0 | 20 | 7.6 |
| 7.5 | 5.5 | 3.7 | － | BR1K0W0 | 0＊1 | 1000W $20 \Omega$ | 19 | 14.6 | 26 | 9.9 |
| 10 | 7.5 | 5.1 | － | BR1K0W0 | 0＊1 | 1000W 20ת | 19 | 14.6 | 26 | 9.9 |
| 15 | 11 | 7.5 | － | BR1K5W0 | 3＊1 | 1500W $13 \Omega$ | 29 | 12.6 | 29 | 10.6 |
| 20 | 15 | 10.2 | － | BR1K0W4P3＊2 | 2 series | 2000W $8.6 \Omega$ | 44 | 8.3 | 46 | 17.5 |
| 25 | 18 | 12.2 | － | BR1K0W4P3＊2 | 2 series | 2000W 8．6ת | 44 | 8.3 | 46 | 17.5 |
| 30 | 22 | 14.9 | － | BR1K5W3P3＊2 | 2 series | 3000W 6．6ת | 58 | 5.8 | 66 | 25.1 |
| 40 | 30 | 20.3 | 2015＊2 | BR1K0W5P1＊2 | 2 series |  | 75 | 4.8 | 80 | 30.4 |
| 50 | 37 | 25.1 | 2022＊2 | BR1K2W3P9＊2 | 2 series | 4800W 3．9』 | 97 | 3.2 | 120 | 45.6 |
| 60 | 45 | 30.5 | 2022＊2 | BR1K5W3P3＊2 | 2 series | 6000W 3．3ת | 118 | 3.2 | 120 | 45.6 |
| 75 | 55 | 37.2 | 2022＊3 | BR1K2W3P9＊2 | 2 series | 7200W 2．6ת | 145 | 2.1 | 180 | 68.4 |
| 100 | 75 | 50.8 | 2022＊4 | BR1K2W3P9＊2 | 2 series | 9600W $2 \Omega$ | 190 | 1.6 | 240 | 91.2 |
| 125 | 90 | 60.9 | 2022＊4 | BR1K5W3P3＊2 | 2 series | 12000W 1．65ת | 230 | 1.6 | 240 | 91.2 |

Table 7－1
460 V

| $\begin{array}{r} \text { Appl } \\ \text { M } \end{array}$ | cable tor | ＊1 125\％Braking Torque 10\％ED |  |  |  |  |  | ＊2 Max．Braking Torque |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HP | kW | Braking Torque ［kg－m］ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Brake } \\ \text { Unit } \end{array} \\ \hline{ }^{* 4} \text { VFDB } \\ \hline \end{array}$ | ＊3Braking Resistor for each Brake Unit |  | Resistor value spec．for each AC motor Drive | Total Braking Current［A］ | Min． Resistor Value［ $\Omega$ ］ | Max．Total Braking Current［A］ | Peak Power ［kW］ |
| 1 | 0.7 | 0.5 | － | BR080W750＊1 |  | 80W 750』 | 1 | 190.0 | 4 | 3.0 |
| 2 | 1.5 | 1.0 | － | BR200W360＊1 |  | 200W 360ת | 2.1 | 126.7 | 6 | 4.6 |
| 3 | 2.2 | 1.5 | － | BR300W250＊1 |  | 300W 250』 | 3 | 108.6 | 7 | 5.3 |
| 5 | 3.7 | 2.5 | － | BR400W150＊1 |  | 400W 150 | 5.1 | 84.4 | 9 | 6.8 |
| 5.5 | 4.0 | 2.7 | － | BR1K0W075＊1 |  | 1000W 75＠ | 10.2 | 54.3 | 14 | 10.6 |
| 7.5 | 5.5 | 3.7 |  |  |  | 1000W 75， | 10.2 | 54.3 | 14 | 10.6 |
| 10 | 7.5 | 5.1 | － | BR1K0W075＊1 |  | 1000W 75 | 10.2 | 47.5 | 16 | 12.2 |
| 15 | 11 | 7.5 | － | BR1K5W043＊1 |  | 1500W 43ת | 17.6 | 42.2 | 18 | 13.7 |
| 20 | 15 | 10.2 | － | BR1K0W016＊2 | 2 series | 2000W 32ת | 24 | 26.2 | 29 | 22.0 |
| 25 | 18 | 12.2 | － | BR1K0W016＊2 | 2 series | 2000W $32 \Omega$ | 24 | 23.0 | 33 | 25.1 |
| 30 | 22 | 14.9 | － | BR1K5W013＊2 | 2 series | 3000W 26， | 29 | 23.0 | 33 | 25.1 |
| 40 | 30 | 20.3 | － | BR1K0W016＊4 | 2 parallel， 2 series | 4000W 16ת | 47.5 | 14.1 | 54 | 41.0 |
| 50 | 37 | 25.1 | 4045＊1 | BR1K2W015＊4 | 2 parallel， 2 series | 4800W 15』 | 50 | 12.7 | 60 | 45.6 |
| 60 | 45 | 30.5 | 4045＊1 | BR1K5W013＊4 | 2 parallel， 2 series | 6000W 13， | 59 | 12.7 | 60 | 45.6 |
| 75 | 55 | 37.2 | 4030＊2 | BR1K0W5P1＊4 | 4 series | 8000W $10.2 \Omega$ | 76 | 9.5 | 80 | 60.8 |
| 100 | 75 | 50.8 | 4045＊2 | BR1K2W015＊4 | 2 parallel， 2 series | 9600W 7．5』 | 100 | 6.3 | 120 | 91.2 |
| 125 | 90 | 60.9 | 4045＊2 | BR1K5W013＊4 | 2 parallel， 2 series | 12000W 6．5ת | 117 | 6.3 | 120 | 91.2 |
| 150 | 110 | 74.5 | 4110＊1 | BR1K2W015＊10 | 5 parallel， 2 series | 12000W 6ת | 126 | 6.0 | 126 | 95.8 |
| 175 | 132 | 89.4 | 4160＊1 | BR1K5W012＊12 | 6 parallel， 2 series | 18000W $4 \Omega$ | 190 | 4.0 | 190 | 144.4 |
| 215 | 160 | 108.3 | 4160＊1 | BR1K5W012＊12 | 6 parallel， 2 series | 18000W $4 \Omega$ | 190 | 4.0 | 190 | 144.4 |
| 250 | 185 | 125.3 | 4185＊1 | BR1K5W012＊14 | 7 parallel， 2 series | 21000W 3．4ת | 225 | 3.4 | 225 | 172.1 |


| Appl M | ble | ＊1 125\％Braking Torque 10\％ED |  |  |  |  |  | ＊2 Max．Braking Torque |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HP | kW | Braking Torque ［kg－m］ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Brake } \\ \text { Unit } \end{array} \\ \hline{ }^{* 4} \text { VFDB } \end{array}$ | ＊3Braking Resistor for each Brake Unit |  | Resistor value spec．for each AC motor Drive | Total Braking Current［A］ | Min． Resistor Value［ $\Omega$ ］ | Max．Total Braking Current［A］ | Peak Power ［kW］ |
| 300 | 220 | 148.9 | 4110＊2 | BR1K2W015＊10 | 5 parallel， 2 series | 24000W 3 | 252 | 3.0 | 252 | 190.5 |
| 375 | 280 | 189.6 | 4160＊2 | BR1K5W012＊12 | 6 parallel， 2 series | 36000W $2 \Omega$ | 380 | 2.0 | 380 | 288.8 |
| 425 | 315 | 213.3 | 4160＊2 | BR1K5W012＊12 | 6 parallel， 2 series | 36000W $2 \Omega$ | 380 | 2.0 | 380 | 288.8 |
| 475 | 355 | 240.3 | 4185＊2 | BR1K5W012＊14 | 7 parallel， 2 series | 42000W 1．7 | 450 | 1.7 | 450 | 344.2 |
| 600 | 450 | 304.7 | 4185＊3 | BR1K5W012＊12 | 6 parallel， 2 series | 54000W 1．3ת | 600 | 1.1 | 675 | 513.0 |

Table 7－2
575V

|  | plicab <br> tor（k |  | ＊ 1 125\％Braking Torque／10\％ED |  |  |  |  | ＊${ }^{\text {M Max．Braking Torque }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LD | ND | HD | Braking Torque ［kg－m］ | Brake Unit VFDB | ＊${ }^{3}$ Braking Resistor for each Brake Unit | Resistor value spec． for each AC motor drive | Total Braking Current［A］ | Min． Resistor Value［ $\Omega$ ］ | Max．Total Braking Current［A］ | Peak Power ［kW］ |
| 1.5 | 0.75 | 0.75 | 0.5 | － | BR080W750＊1 | 80W $750 \Omega$ | 1.2 | 280.0 | 4 | 4.5 |
| 2.2 | 1.5 | 1.5 | 1 | － | BR200W360＊1 | 200W $360 \Omega$ | 2.6 | 186.7 | 6 | 6.7 |
| 3.7 | 2.2 | 2.2 | 1.5 | － | BR300W400＊1 | 300W 400 | 2.3 | 160.0 | 7 | 7.8 |
| 5.5 | 3.7 | 3.7 | 2.5 | － | BR500W100＊1 | 500W 100 | 9.2 | 93.3 | 12 | 13.4 |
| 7.5 | 5.5 | 3.7 | 3.7 | － | BR750W140＊1 | 750W 140 | 6.6 | 80.0 | 14 | 15.7 |
| 11 | 7.5 | 7.5 | 5.1 | － | BR1K0W075＊1 | 1000W $75 \Omega$ | 12.3 | 70.0 | 16 | 17.9 |
| 15 | 11 | 7.5 | 7.4 | － | BR1K1W091＊1 | 1100W $91 \Omega$ | 10.1 | 62.2 | 18 | 20.2 |

Table 7－3
690V

|  | plica tor |  | ＊ 1 125\％Braking Torque／10\％ED |  |  |  |  |  | ＊${ }^{2}$ Max．Braking Torque |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LD | ND | HD | Braking Torque ［kg－m］ | Brake Unit VFDB | ＊${ }^{3}$ Braking Res each Bra | series for Unit | Resistor value spec．for each AC motor drive | Total Braking Current ［A］ | Min． Resistor Value ［ $\Omega$ | Max． <br> Total Braking Current <br> ［A］ | Peak Power ［kW］ |
| 18.5 | 15 | 11 | 10.2 | － | BR1K0W039＊2 | 2 series | 2000W 78， | 14.4 | 58.9 | 19 | 21.3 |
| 22 | 18.5 | 15 | 12.5 | － | BR1K2W033＊2 | 2 series | 2400W 66ת | 17.0 | 58.9 | 19 | 21.3 |
| 30 | 22 | 18.5 | 14.9 | － | BR1K5W027＊2 | 2 series | 3000W 54 | 20.7 | 43.1 | 26 | 29.1 |
| 37 | 30 | 22 | 20.3 | － | BR1K2W015＊3 | 3 series | 3600W 45ת | 24.9 | 43.1 | 26 | 29.1 |
| 45 | 37 | 30 | 25 | 6055＊1 | BR1K2W033＊4 | 2 series， 2 parallel | 4800W $33 \Omega$ | 33.9 | 24.3 | 46 | 51.5 |
| 55 | 45 | 37 | 30.5 | 6055＊1 | BR1K5W027＊4 | 2 series， 2 parallel | 6000W 27 | 41.5 | 24.3 | 46 | 51.5 |
| 75 | 55 | 45 | 37.2 | 6110＊1 | BR1K2W033＊6 | 2 series， 3 parallel | 7200W $22 \Omega$ | 50.9 | 12.2 | 92 | 103.0 |
| 90 | 75 | 55 | 50.8 | 6110＊1 | BR1K5W027＊6 | 2 series， 3 parallel | 9000W 18， | 62.2 | 12.2 | 92 | 103.0 |
| 110 | 90 | 75 | 60.9 | 6110＊1 | BR1K5W027＊8 | 2 series， 4 parallel | 12000W 13．5』 | 83.0 | 12.2 | 92 | 103.0 |
| 132 | 110 | 90 | 74.5 | 6160＊1 | BR1K2W015＊12 | 3 series， 4 parallel | 14400W 11．3』 | 99.6 | 8.2 | 136 | 152.3 |
| 160 | 132 | 110 | 89.4 | 6160＊1 | BR1K5W027＊10 | 2 series， 5 parallel | 15000W 10．8 | 103.7 | 8.2 | 136 | 152.3 |
| 200 | 160 | 132 | 108.3 | 6200＊1 | BR1K5W027＊12 | 2 series， 6 parallel | 18000W 9．0』 | 124.4 | 6.9 | 162 | 181.4 |
| 250 | 200 | 160 | 135.4 | 6110＊2 | BR1K5W027＊8 | 2 series， 4 parallel | 24000W 6．8』 | 165.9 | 6.1 | 184 | 206.1 |
| 315 | 250 | 200 | 169.3 | 6160＊2 | BR1K5W027＊10 | 2 series， 5 parallel | 30000W 5．4』 | 207.4 | 4.1 | 272 | 304.6 |
| 400 | 315 | 250 | 213.3 | 6200＊2 | BR1K5W027＊12 | 2 series， 6 parallel | 36000W 4．5ת | 248.9 | 3.5 | 324 | 362.9 |


|  | $\begin{aligned} & \text { licak } \\ & \text { or (k } \end{aligned}$ |  | * 1 125\% Braking Torque / 10\%ED |  |  |  |  |  | * ${ }^{2}$ Max. Braking Torque |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LD | ND | HD | Braking Torque [kg-m] | $\begin{gathered} \text { Brake } \\ \text { Unit } \\ \text { VFDB } \end{gathered}$ | * ${ }^{3}$ Braking Res each Bra | series for Unit | Resistor value spec. for each AC motor drive | Total Braking Current [A] | Min. Resistor Value [ $\Omega$ | Max. <br> Total Braking Current [A] | Peak Power [kW] |
| 450 | 355 | 315 | 240.3 | 6200*2 | BR1K5W027*14 | 2 series, <br> 7 parallel | 42000W 3.9 | 290.4 | 3.5 | 324 | 362.9 |
| 560 | 450 | 355 | 304.7 | 6200*3 | BR1K5W027*12 | 2 series, <br> 6 parallel | 54000W 3.0』 | 373.3 | 2.3 | 486 | 544.3 |
| 630 | 630 | 630 | 426.5 | 6200*4 | BR1K5W027*12 | 2 series, <br> 6 parallel | 72000W $2.3 \Omega$ | 497.8 | 1.7 | 648 | 725.8 |

*1. Calculation for $125 \%$ brake toque: (kW) * $125 \%$ * 0.8 ; where 0.8 is motor efficiency.
Because of the limited resistor power, the longest operation time for $10 \%$ ED is 10 seconds (on: 10 seconds / off: 90 seconds).
*2. Refer to Chapter 7 "Brake Module and Brake Resistors" in application manual for "Operation Duration \& ED" vs. "Braking Current".
*3. For heat dissipation, a resistor of 400 W or lower should be fixed to the frame and maintain the surface temperature below $250^{\circ} \mathrm{C}$; a resistor of 1000 W and above should maintain the surface temperature below $350^{\circ} \mathrm{C}$.
*4. Please refer to VFDB series Braking Module Instruction for more detail on braking resistor.

## NOTE

1. Specification and appearance of brake resistors

1-1 Wirewound resistor: for 1000W and above. Refer to the following appearance of wirewound resistor (Figure7-1) and its model and specification comparison table (Table 7-5) for details.



Table 7-5

1-2 Aluminum housed resistor: for below 1000W. Refer to the following appearance of aluminum-housed resistor (Figure 7-2) and its model and specification comparison table (Table 7-6) for details.

2. Select the resistance value, power and brake usage (ED \%) according to Delta rules.

$E D \%=T 1 / T 0 \times 100$ (\%)
Explanation:
ED (\%) is defined to allow enough time for the brake unit and brake resistor to dissipate the heat generated by braking. Recommended cycle time TO is one minute.

Figure 7-3
For safety, install a thermal overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) before the drive for additional protection. The thermal overload relay protects the brake resistor from damage due to frequent or continuous braking. Under such circumstances, turn off the power to prevent damage to the brake resistor, brake unit and drive.


- When AC Drive is equipped with a DC reactor, please read user manual for the correct wiring for the brake unit input circuit +(P).
- DO NOT connect input circuit - $(\mathrm{N})$ to the neutral point of the power system.

3. Any damage to the drive or other equipment caused by using brake resistors and brake modules that are not provided by Delta voids the warranty.
4. Consider environmental safety factors when installing the brake resistors. If you use the minimum resistance value, consult local dealers for the power calculation.
5. When using more than two brake units, the equivalent resistor value of the parallel brake unit cannot be less than the value in the column "Minimum Resistor Value ( $\Omega$ )". Read the wiring information in the brake unit user manual thoroughly prior to operation.
6. This chart is for normal usage; if the AC motor drive is applied for frequent braking, it is suggested to enlarge 2~3 times of the Watts.
7. Thermal Overload Relay (TOR), for $230 \mathrm{~V} / 460 \mathrm{~V} / 690 \mathrm{~V}$ models: Choosing a thermal overload relay is based on whether its overload capacity is appropriate for the C2000. The standard braking capacity of the C 2000 is $10 \%$ ED (Tripping time=10 s). As shown in the figure below, the thermal overload relay continuously operates for 10 seconds and it can withstand a $260 \%$ overload (Host starting). For example, a $460 \mathrm{~V}, 110 \mathrm{~kW}$ C2000 has a braking current of 126 A (refer to the tables in this section), so it can use the thermal overload relay with a rated current of 50 A . The property of each thermal relay may vary among different manufacturer, please carefully read specification.


Figure 7-5

## 7-2 Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a.
The rated current of the breaker shall be 1.6~2.6 times ( $575 \mathrm{~V} / 690 \mathrm{~V}$ models: $2 \sim 4$ times) of the maximum rated input current of $A C$ motor drive.

| 3-phase 230V |  |  |  |
| :---: | :---: | :---: | :---: |
| Model | Recommended non-fuse <br> breaker [A] |  |  |
| VFD007C23A | 15 |  |  |
| VFD015C23A | 20 |  |  |
| VFD022C23A | 30 |  |  |
| VFD037C23A | 40 |  |  |
| VFD055C23A | 50 |  |  |
| VFD075C23A | 60 |  |  |
| VFD110C23A | 100 |  |  |
| VFD150C23A | 125 |  |  |
| VFD185C23A | 150 |  |  |
| VFD220C23A | 200 |  |  |
| VFD300C23A/E | 225 |  |  |
| VFD370C23A/E | 250 |  |  |
| VFD450C23A/E | 300 |  |  |
| VFD550C23A/E | 400 |  |  |
| VFD750C23A/E | 450 |  |  |
| VFD900C23A/E | 600 |  |  |
| Table 7-7 |  |  |  |


| 3-phase 460V |  |
| :---: | :---: |
| Model | Recommended non-fuse <br> breaker [A] |
| VFD007C43A/E | 5 |
| VFD015C43A/E | 10 |
| VFD022C43A/E | 15 |
| VFD040C43A/E | 20 |
| VFD037C43A/E | 20 |
| VFD055C43A/E | 30 |
| VFD075C43A/E | 40 |
| VFD110C43A/E | 50 |
| VFD150C43A/E | 60 |
| VFD185C43A/E | 75 |
| VFD220C43A/E | 100 |
| VFD300C43A/E | 125 |
| VFD370C43S/U | 150 |
| VFD450C43S/U | 175 |
| VFD550C43A/E | 250 |
| VFD750C43A/E | 300 |
| VFD900C43A/E | 300 |
| VFD1100C43A/E | 400 |
| VFD1320C43A/E | 500 |
| VFD1600C43A/E | 600 |
| VFD1850C43A/E | 600 |
| VFD2200C43A/E | 800 |
| VFD2800C43A/E | 1000 |
| VFD3150C43A/E | 1200 |
| VFD3550C43A/E | 1350 |
| VFD4500C43A/E | 1467 |
|  |  |
|  | Table 7-8 |


| 3-phase 575V |  |  |  |
| :---: | :---: | :---: | :---: |
| Model | Recommended <br> non-fuse breaker [A] |  |  |
| VFD015C53A-21 | 5 |  |  |
| VFD022C53A-21 | 10 |  |  |
| VFD037C53A-21 | 15 |  |  |
| VFD055C53A-21 | 20 |  |  |
| VFD075C53A-21 | 25 |  |  |
| VFD110C53A-21 | 40 |  |  |
| VFD150C53A-21 | 50 |  |  |
| Table 7-9 |  |  |  |


| 3-phase 690V |  |
| :---: | :---: |
| VFD185C63B-21 | Recommended non-fuse <br> breaker [A] |
| VFD220C63B-21 | 50 |
| VFD300C63B-21 | 60 |
| VFD370C63B-21 | 60 |
| VFD450C63B-00 / 63B-21 | 80 |
| VFD550C63B-00 / 63B-21 | 100 |
| VFD750C63B-00 / 63B-21 | 125 |
| VFD900C63B-00 / 63B-21 | 150 |
| VFD1100C63B-00 / 63B-21 | 200 |
| VFD1320C63B-00 / 63B-21 | 225 |
| VFD1600C63B-00 / 63B-21 | 300 |
| VFD2000C63B-00 / 63B-21 | 350 |
| VFD2500C63B-00 / 63B-21 | 400 |
| VFD3150C63B-00 / 63B-21 | 500 |
| VFD4000C63B-00 / 63B-21 | 650 |
| VFD4500C63B-00 / 63B-21 | 800 |
| VFD5600C63B-00 / 63B-21 | 850 |
| VFD6300C63B-00 / 63B-21 | 1200 |
|  | 1400 |

## 7-3 Fuse Specification Chart

$\square \quad$ Fuse specifications lower than the table below are allowed.
च For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. Use UL classified fuses to fulfill this requirement.
$\square$ For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. Use UL classified fuses to fulfill this requirement.

| 230V Model | Input Current I [A] |  | Line Fuse |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Heavy Duty | Normal Duty | 1 [A] | Bussmann P/N |
| VFD007C23A | 6.1 | 6.4 | 15 | JJN-15 / JJS-15 |
| VFD015C23A | 11 | 12 | 25 | JJN-25 / JJS-25 |
| VFD022C23A | 15 | 16 | 35 | JJN-35 / JJS-35 |
| VFD037C23A | 18.5 | 20 | 45 | JJN-45 / JJS-45 |
| VFD055C23A | 26 | 28 | 60 | JJN-60 / JJS-60 |
| VFD075C23A | 34 | 36 | 80 | JJN-80 / JJS-80 |
| VFD110C23A | 50 | 52 | 110 | JJN-110 / JJS-110 |
| VFD150C23A | 68 | 72 | 150 | JJN-150 / JJS-150 |
| VFD185C23A | 78 | 83 | 175 | JJN-175 / JJS-175 |
| VFD220C23A | 95 | 99 | 225 | JJN-225 / JJS-225 |
| VFD300C23A/E | 118 | 124 | 250 | JJN-250 / JJS-250 |
| VFD370C23A/E | 136 | 143 | 300 | JJN-300 / JJS-300 |
| VFD450C23A/E | 162 | 171 | 400 | JJN-400 / JJS-400 |
| VFD550C23A/E | 196 | 206 | 450 | JJN-450 / JJS-450 |
| VFD750C23A/E | 233 | 245 | 500 | JJN-500 / JJS-500 |
| VFD900C23A/E | 315 | 331 | 700 | JJN-700 / JJS-700 |


| 460VModel | Input Current I [A] |  | Line Fuse |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Heavy Duty | Normal Duty | I [A] | Bussmann P/N |
| VFD007C43A/E | 4.1 | 4.3 | 10 | JJS-10 |
| VFD015C43A/E | 5.6 | 5.9 | 15 | JJS-15 |
| VFD022C43A/E | 8.3 | 8.7 | 20 | JJS-20 |
| VFD037C43A/E | 13 | 14 | 30 | JJS-30 |
| VFD040C43A/E | 14.5 | 15.5 | 35 | JJS-35 |
| VFD055C43A/E | 16 | 17 | 40 | JJS-40 |
| VFD075C43A/E | 19 | 20 | 45 | JJS-45 |
| VFD110C43A/E | 25 | 26 | 60 | JJS-60 |
| VFD150C43A/E | 33 | 35 | 80 | JJS-80 |
| VFD185C43A/E | 38 | 40 | 90 | JJS-90 |
| VFD220C43A/E | 45 | 47 | 110 | JJS-110 |
| VFD300C43A/E | 60 | 63 | 150 | JJS-150 |
| VFD370C43/S/U | 70 | 74 | 175 | JJS-175 |
| VFD450C43/S/U | 96 | 101 | 225 | JJS-225 |
| VFD550C43A/E | 108 | 114 | 250 | JJS-250 |
| VFD750C43A/E | 149 | 157 | 350 | JJS-350 |
| VFD900C43A/E | 159 | 167 | 350 | JJN-350 |
| VFD1100C43A/E | 197 | 207 | 450 | JJS-450 |
| VFD1320C43A/E | 228 | 240 | 500 | JJS-500 |
| VFD1600C43A/E | 285 | 300 | 700 | KTU-700 |
| VFD1850C43A/E | 361 | 380 | 800 | KTU-800 |
| VFD2200C43A/E | 380 | 400 | 800 | KTU-800 |
| VFD2800C43A/E | 469 | 494 | 1000 | KTU-1000 |
| VFD3150C43A/E | 527 | 555 | 1200 | KTU-1200 |
| VFD3550C43A/E | 594 | 625 | 1400 | KTU-1400 |
| VFD4500C43A/E | 815 | 866 | 1600 | 170M6019 |


| 575V Model | Input Current I [A] |  |  | Line Fuse |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Light Duty | Normal <br> Duty | Heavy <br> Duty | I [A] | Model No. | Supplier |
| VFD015C53A-21 | 3.8 | 3.1 | 2.6 | 7 | KLKD007.T | Littelfuse |
| VFD022C53A-21 | 5.4 | 4.5 | 3.8 | 10 | KLKD010.T | Littelfuse |
| VFD037C53A-21 | 10.4 | 7.2 | 5.8 | 15 | KLKD015.T | Littelfuse |
| VFD055C53A-21 | 14.9 | 12.3 | 10.7 | 25 | 25ET | Bussmann |
| VFD075C53A-21 | 16.9 | 15 | 12.5 | 32 | 32ET | Bussmann |
| VFD110C53A-21 | 21.3 | 18 | 16.9 | 50 | 50FE | Bussmann |
| VFD150C53A-21 | 26.3 | 22.8 | 19.7 | 63 | 63FE | Bussmann |

Table 7-13

| 690V Model | Input Current I [A] |  |  | Line Fuse |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Light Duty | Normal <br> Duty | Heavy Duty | I [A] | Bussmann P/N |
| VFD185C63B-21 | 29 | 24 | 20 | 60 | JJS-60 |
| VFD220C63B-21 | 36 | 29 | 24 | 70 | JJS-70 |
| VFD300C63B-21 | 43 | 36 | 29 | 80 | JJS-80 |
| VFD370C63B-21 | 54 | 43 | 36 | 100 | JJS-100 |
| VFD450C63B-00 / 63B-21 | 54 | 45 | 36 | 100 | JJS-100 |
| VFD550C63B-00 / 63B-21 | 67 | 54 | 45 | 125 | JJS-125 |
| VFD750C63B-00 / 63B-21 | 84 | 66 | 53 | 175 | JJS-175 |
| VFD900C63B-00 / 63B-21 | 102 | 84 | 66 | 200 | JJS-200 |
| VFD1100C63B-00 / 63B-21 | 122 | 102 | 84 | 250 | JJS-250 |
| VFD1320C63B-00 / 63B-21 | 147 | 122 | 102 | 300 | JJS-300 |
| VFD1600C63B-00 / 63B-21 | 178 | 148 | 123 | 350 | JJS-350 |
| VFD2000C63B-00 / 63B-21 | 217 | 178 | 148 | 400 | JJS-400 |
| VFD2500C63B-00 / 63B-21 | 292 | 222 | 181 | 450 | 170M4063 |
| VFD3150C63B-00 / 63B-21 | 353 | 292 | 222 | 500 | 170M6058 |
| VFD4000C63B-00 / 63B-21 | 454 | 353 | 292 | 700 | $170 M 6061$ |
| VFD4500C63B-00 / 63B-21 | 469 | 388 | 313 | 800 | $170 M 6062$ |
| VFD5600C63B-00 / 63B-21 | 595 | 504 | 423 | 1250 | $170 M 6066$ |
| VFD6300C63B-00 / 63B-21 | 681 | 681 | 681 | 1400 | $170 M 6067$ |
|  |  |  |  |  |  |

Table 7-14

## 7-4 AC / DC Reactor

## AC Input Reactor

Installing an AC reactor on the input side of an AC motor drive can increase line impedance, improve the power factor, reduce input current, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes. For example, when the main power capacity is higher than 500 kVA , or when using a switching capacitor bank, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor on the input side of the AC motor drive protects it by suppressing surges.

## Installation

Install an AC input reactor in series with the main power to the three input phases R S T as shown below:


Wiring of $A C$ input reactor
Figure 7-6

Following table shows the standard AC reactors specification of Delta C2000
200V~230V/ 50~60Hz

| Model | HP | Rated Current <br> (Arms) | Saturation current <br> (Arms) | $3 \%$ <br> impedance <br> $(\mathrm{mH})$ | $5 \%$ <br> impedance <br> $(\mathrm{mH})$ | Built-in <br> DC reactor | Input AC reactor <br> Delta part \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C23A | 1 | 5 | 8.64 | 2.536 | 4.227 | No | DR005A0254 |
| VFD015C23A | 2 | 8 | 12.78 | 1.585 | 2.642 | No | DR008A0159 |
| VFD022C23A | 3 | 11 | 18 | 1.152 | 1.922 | No | DR011A0115 |
| VFD037C23A | 5 | 17 | 28.8 | 0.746 | 1.243 | No | DR017AP746 |
| VFD055C23A | 7.5 | 25 | 43.2 | 0.507 | 0.845 | No | DR025AP507 |
| VFD075C23A | 10 | 33 | 55.8 | 0.32 | 0.534 | No | DR033AP320 |
| VFD110C23A | 15 | 49 | 84.6 | 0.216 | 0.359 | No | DR049AP215 |
| VFD150C23A | 20 | 65 | 111.6 | 0.163 | 0.271 | No | DR065AP163 |
| VFD185C23A | 25 | 75 | 127.8 | 0.169 | 0.282 | No | DR075AP170 |
| VFD220C23A | 30 | 90 | 154.8 | 0.141 | 0.235 | No | DR090AP141 |
| VFD300C23A | 40 | 120 | 205.2 | 0.106 | 0.176 | Yes | DR146AP087 |
| VFD370C23A | 50 | 146 | 250.2 | 0.087 | 0.145 | Yes | DR146AP087 |
| VFD450C23A | 60 | 180 | 307.8 | 0.070 | 0.117 | Yes | DR180AP070 |
| VFD550C23A | 75 | 215 | 367.2 | 0.059 | 0.098 | Yes | DR215AP059 |
| VFD750C23A | 100 | 255 | 435.6 | 0.049 | 0.083 | Yes | DR276AP049 |
| VFD900C23A | 125 | 346 | 592.2 | 0.037 | 0.061 | Yes | DR349AP037 |

380V~460V/ 50~60Hz

| Model | HP | Rated Current (Arms) | Saturation current (Arms) | $\begin{gathered} 3 \% \\ \text { impedance } \\ (\mathrm{mH}) \end{gathered}$ | $\begin{array}{\|c\|} \hline 5 \% \\ \text { impedance } \\ (\mathrm{mH}) \end{array}$ | Built-in DC reactor | Input AC reactor Delta part \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C43A | 1 | 3 | 5.22 | 8.102 | 13.502 | No | DR003A0810 |
| VFD015C43A | 2 | 4 | 6.84 | 6.077 | 10.127 | No | DR004A0607 |
| VFD022C43A | 3 | 6 | 10.26 | 4.050 | 6.752 | No | DR006A0405 |
| VFD037C43A | 5 | 9 | 14.58 | 2.700 | 4.501 | No | DR009A0270 |
| VFD040C43A | 5 | 10.5 | 17.1 | 2.315 | 3.858 | No | DR010A0231 |
| VFD055C43A | 7.5 | 12 | 19.8 | 2.025 | 3.375 | No | DR012A0202 |
| VFD075C43A | 10 | 18 | 30.6 | 1.174 | 1.957 | No | DR018A0117 |
| VFD110C43A | 15 | 24 | 41.4 | 0.881 | 1.468 | No | DR024AP881 |
| VFD150C43A | 20 | 32 | 54 | 0.66 | 1.101 | No | DR032AP660 |
| VFD185C43A | 25 | 38 | 64.8 | 0.639 | 1.066 | No | DR038AP639 |
| VFD220C43A | 30 | 45 | 77.4 | 0.541 | 0.900 | No | DR045AP541 |
| VFD300C43A | 40 | 60 | 102.6 | 0.405 | 0.675 | Yes | DR060AP405 |
| VFD370C43S/U | 50 | 73 | 124.2 | 0.334 | 0.555 | Yes | DR073AP334 |
| VFD450C43S/U | 60 | 91 | 154.8 | 0.267 | 0.445 | Yes | DR091AP267 |
| VFD550C43A | 75 | 110 | 189 | 0.221 | 0.368 | Yes | DR110AP221 |
| VFD750C43A | 100 | 150 | 257.4 | 0.162 | 0.270 | Yes | DR150AP162 |
| VFD900C43A | 125 | 180 | 307.8 | 0.135 | 0.225 | Yes | DR180AP135 |
| VFD1100C43A | 150 | 220 | 376.2 | 0.110 | 0.184 | Yes | DR220AP110 |
| VFD1320C43A | 175 | 260 | 444.6 | 0.098 | 0.162 | Yes | DR260AP098 |
| VFD1600C43A | 215 | 310 | 531 | 0.078 | 0.131 | Yes | DR310AP078 |
| VFD1850C43A | 250 | 370 | 633.6 | 0.066 | 0.109 | Yes | DR370AP066 |
| VFD2200C43A | 300 | 460 | 786.6 | 0.054 | 0.090 | Yes | DR460AP054 |
| VFD2800C43A | 375 | 550 | 941.4 | 0.044 | 0.074 | Yes | DR550AP044 |
| VFD3150C43A | 420 | 616 | 1053 | 0.039 | 0.066 | Yes | DR616AP039 |
| VFD3550C43A | 475 | 683 | 1168.2 | 0.036 | 0.060 | Yes | DR683AP036 |
| VFD4500C43A | 600 | 866 | 1468.8 | 0.028 | 0.047 | Yes | DR866AP028 |

Table 7-16
$575 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3-$ phase

| kW | HP | Rated current (Arms) |  |  | Saturation Current (Arms) | 3\% impedance (mH) |  |  | 5\% impedance (mH) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Light Duty | Norma Duty | Heavy Duty |  | Light Duty | Normal Duty | Heavy Duty | Light Duty | Normal Duty | Heavy Duty |
| VFD015C53A-21 | 2 | 3 | 2.5 | 2.1 | 4.2 | 8.806 | 10.567 | 12.580 | 14.677 | 17.612 | 20.967 |
| VFD022C531-21 | 3 | 4.3 | 3.6 | 3 | 5.9 | 6.144 | 7.338 | 8.806 | 10.239 | 12.230 | 14.677 |
| VFD037C53A-21 | 5 | 6.7 | 5.5 | 4.6 | 9.1 | 3.943 | 4.803 | 5.743 | 6.572 | 8.005 | 9.572 |
| VFD055C53A-21 | 7.5 | 9.9 | 8.2 | 6.9 | 13.7 | 2.668 | 3.222 | 3.829 | 4.447 | 5.369 | 6.381 |
| VFD075C53A-21 | 10 | 12.1 | 10 | 8.3 | 16.5 | 2.183 | 2.642 | 3.183 | 3.639 | 4.403 | 5.305 |
| VFD110C53A-21 | 15 | 18.7 | 15.5 | 13 | 25.7 | 1.413 | 1.704 | 2.032 | 2.355 | 2.841 | 3.387 |
| VFD150C53A-21 | 20 | 24.2 | 20 | 16.8 | 33.3 | 1.092 | 1.321 | 1.572 | 1.819 | 2.201 | 2.621 |

Table 7-17
$690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3$-phase

| kW | HP | Rated current |  |  | Saturation Current |  |  | 3\% Impedance |  |  | 5\% Impedance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (Arms) |  |  | (Arms) |  |  | (mH) |  |  | (mH) |  |  |
|  |  | Light <br> Duty | Normal Duty | Heavy Duty | Light Duty | Normal Duty | Heavy Duty | Light Duty | Normal Duty | Heavy Duty | Light Duty | Normal Duty | Heavy Duty |
| VFD185C63B-21 | 25 | 24 | 20 | 14 | 28.8 | 30.0 | 25.2 | 1.585 | 1.902 | 2.717 | 2.642 | 3.170 | 4.529 |
| VFD220C63B-21 | 30 | 30 | 24 | 20 | 36.0 | 36.0 | 36.0 | 1.268 | 1.585 | 1.902 | 2.113 | 2.642 | 3.170 |
| VFD300C63B-21 | 40 | 36 | 30 | 24 | 43.2 | 45.0 | 43.2 | 1.057 | 1.268 | 1.585 | 1.761 | 2.113 | 2.642 |
| VFD370C63B-21 | 50 | 45 | 36 | 30 | 54.0 | 54.0 | 54.0 | 0.845 | 1.057 | 1.268 | 1.409 | 1.761 | 2.113 |
| VFD450C63B-00/21 | 60 | 54 | 45 | 36 | 64.8 | 67.5 | 64.8 | 0.704 | 0.845 | 1.057 | 1.174 | 1.409 | 1.761 |
| VFD550C63B-00/21 | 75 | 67 | 54 | 45 | 80.4 | 81.0 | 81.0 | 0.568 | 0.704 | 0.845 | 0.946 | 1.174 | 1.409 |
| VFD750C63B-00/21 | 100 | 86 | 67 | 54 | 103.2 | 100.5 | 97.2 | 0.442 | 0.568 | 0.704 | 0.737 | 0.946 | 1.174 |
| VFD900C63B-00/21 | 125 | 104 | 86 | 67 | 124.8 | 129.0 | 120.6 | 0.366 | 0.442 | 0.568 | 0.610 | 0.737 | 0.946 |
| VFD1100C63B-00/21 | 150 | 125 | 104 | 86 | 150.0 | 156.0 | 154.8 | 0.304 | 0.366 | 0.442 | 0.507 | 0.610 | 0.737 |
| VFD1320C63B-00/21 | 175 | 150 | 125 | 104 | 180.0 | 187.5 | 187.2 | 0.254 | 0.304 | 0.366 | 0.423 | 0.507 | 0.610 |
| VFD1600C63B-00/21 | 215 | 180 | 150 | 125 | 216.0 | 225.0 | 225.0 | 0.211 | 0.254 | 0.304 | 0.352 | 0.423 | 0.507 |
| VFD2000C63B-00/21 | 270 | 220 | 180 | 150 | 264.0 | 270.0 | 270.0 | 0.173 | 0.211 | 0.254 | 0.288 | 0.352 | 0.423 |
| VFD2500C63B-00/21 | 335 | 290 | 220 | 180 | 348.0 | 330.0 | 324.0 | 0.131 | 0.173 | 0.211 | 0.219 | 0.288 | 0.352 |
| VFD3150C63B-00/21 | 425 | 350 | 290 | 220 | 420.0 | 435.0 | 396.0 | 0.109 | 0.131 | 0.173 | 0.181 | 0.219 | 0.288 |
| VFD4000C63B-00/21 | 530 | 430 | 350 | 290 | 516.0 | 525.0 | 522.0 | 0.088 | 0.109 | 0.131 | 0.147 | 0.181 | 0.219 |
| VFD4500C63B-00/21 | 600 | 465 | 385 | 310 | 558.0 | 577.5 | 558.0 | 0.082 | 0.099 | 0.123 | 0.136 | 0.165 | 0.205 |
| VFD5600C63B-00/21 | 745 | 590 | 465 | 420 | 708.0 | 697.5 | 756.0 | 0.064 | 0.082 | 0.091 | 0.107 | 0.136 | 0.151 |
| VFD6300C63B-00/21 | 850 | 675 | 675 | 675 | 810.0 | 1012.5 | 1215.0 | 0.056 | 0.056 | 0.056 | 0.094 | 0.094 | 0.094 |

Table 7-18

AC input reactor dimension and specifications:


Tightening torque: $10.2 \sim 12.3 \mathrm{~kg}-\mathrm{cm} /[8.9 \sim 10.6 \mathrm{lb}-\mathrm{in}$. [1.0~1.2 Nm]

Tightening torque: $6.1 \sim 8.2 \mathrm{~kg}-\mathrm{cm} /[5.3 \sim 7.1 \mathrm{lb}-\mathrm{in}] /.[0.6 \sim 0.8 \mathrm{Nm}]$


| Model | Input AC reactor <br> Delta part \# | A | B | C | D1*D2 | E | G1 | G2 | PE D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C23A | DR005A0254 | 96 | 100 | 60 | $6 * 9$ | 42 | 60 | 40 | M4 |
| VFD015C23A | DR008A0159 | 120 | 120 | 88 | $6^{* 12}$ | 60 | 80.5 | 60 | M4 |
| VFD022C23A | DR011A0115 | 120 | 120 | 88 | $6 * 12$ | 60 | 80.5 | 60 | M4 |
| VFD037C23A | DR017AP746 | 120 | 120 | 93 | $6^{* 12}$ | 65 | 80.5 | 60 | M4 |
| VFD055C23A | DR025AP507 | 150 | 150 | 112 | $6^{* 12}$ | 88 | 107 | 75 | M4 |
| VFD075C23A | DR033AP320 | 150 | 150 | 112 | $6 * 12$ | 88 | 107 | 75 | M4 |

Table 7-19


Terminals Q mm²
Tightening torque M Nm


| Model | Input AC reactor <br> Delta part \# | A | B | C | D1*D2 | H | G | G1 | Q | M | PE D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD110C23A | DR049AP215 | 180 | 195 | 160 | $6 * 12$ | 115 | 85 | 122 | 16 | $1.2 \sim 1.4$ | M4 |
| VFD150C23A | DR065AP163 | 180 | 205 | 160 | $6 * 12$ | 115 | 85 | 122 | 35 | $2.5 \sim 3.0$ | M4 |

Table 7-20


Unit: mm

| Model | Input AC reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M*T | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD185C23A | DR075AP170 | 240 | 220 | 205 | 42 | 165 | 151 | 95 | $7 * 13$ | 152 | 176 | 85 | $20^{*} 3$ | M8 |
| VFD220C23A | DR090AP141 | 240 | 225 | 210 | 44 | 170 | 151 | 95 | $7 * 13$ | 152 | 176 | 85 | $20 * 3$ | M8 |
| VFD300C23A <br> VFD370C23A | DR146AP087 | 240 | 225 | 240 | 44 | 200 | 163 | 100 | $7 * 13$ | 152 | 176 | 97 | $20^{*} 3$ | M8 |
| VFD450C23A | DR180AP070 | 250 | 235 | 250 | 49 | 206 | 175 | 105 | $11 * 18$ | 160 | 190 | 124 | $30 * 3$ | M8 |
| VFD550C23A | DR215AP059 | 250 | 235 | 275 | 51 | 226 | 180 | 110 | $11^{*} 18$ | 160 | 190 | 124 | $30 * 5$ | M8 |

Table 7-21


| Unit: mm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Input AC reactor Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M*T | PE |
| VFD750C23A | DR276AP049 | 270 | 255 | 310 | 50 | 265 | 200 | 130 | 10*18 | 176 | 200 | 106 | 30*5 | M8 |
| VFD900C23A | DR349AP037 | 270 | 260 | 333 | 50 | 285 | 200 | 130 | 10*18 | 176 | 200 | 106 | 30*5 | M8 |



Tightening torque: $10.2 \sim 12.3 \mathrm{~kg}-\mathrm{cm} /[8.9 \sim 10.6 \mathrm{lb}-\mathrm{in}$.
[1.0~1.2 Nm]
Tightening torque: $6.1 \sim 8.2 \mathrm{kg-cm} /[5.3 \sim 7.1 \mathrm{lb}-\mathrm{in}] /.[0.6 \sim 0.8 \mathrm{Nm}]$


| Model | Input AC reactor Delta part \# | A | B | C | D1*D2 | E | G1 | G2 | PE D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C43A | DR003A0810 | 96 | 100 | 60 | 6*9 | 42 | 60 | 40 | M4 |
| VFD015C43A | DR004A0607 | 120 | 120 | 88 | 6*12 | 60 | 80.5 | 60 | M4 |
| VFD022C43A | DR006A0405 | 120 | 120 | 88 | 6*12 | 60 | 805 | 60 | M4 |
| VFD037C43A | DR009A0270 | 150 | 150 | 88 | 6*12 | 74 | 107 | 75 | M4 |
| VFD040C43A | DR010A0231 | 150 | 150 | 112 | 6*12 | 88 | 107 | 75 | M4 |
| VFD055C43A | DR012A0202 | 150 | 150 | 112 | 6*12 | 88 | 107 | 75 | M4 |
| VFD075C43A | DR018A0117 | 150 | 155 | 112 | 6*12 | 88 | 107 | 75 | M4 |
| VFD110C43A | DR024AP881 | 150 | 155 | 112 | 6*12 | 88 | 107 | 75 | M4 |
| VFD150C43A | DR032AP660 | 180 | 175 | 138 | 6*12 | 114 | 122 | 85 | M6 |



Terminals $Q \mathrm{~mm}^{2}$
Tightening torque M Nm


Unit: mm

| Model | Input AC reactor <br> Delta part \# | A | B | C | D1*D2 | H | G | G1 | Q | M | PE D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD185C43A | DR038AP639 | 180 | 195 | 160 | $6 * 12$ | 115 | 85 | 122 | 16 | $1.2 \sim 1.4$ | M4 |
| VFD220C43A | DR045AP541 | 235 | 235 | 145 | $7 * 13$ | 85 | $/$ | 176 | 16 | $1.2 \sim 1.4$ | M6 |

Table 7-24


| Model | Input AC <br> reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M*T | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD300C43A | DR060AP405 | 240 | 225 | 210 | 44 | 170 | 163 | 100 | $7 * 13$ | 152 | 176 | 97 | $20 * 3$ | M8 |
| VFD370C43S/U | DR073AP334 | 250 | 230 | 225 | 44 | 186 | 174 | 105 | $11 * 18$ | 160 | 190 | 124 | $20 * 3$ | M8 |
| VFD450C43S/U | DR091AP267 | 250 | 235 | 225 | 44 | 186 | 174 | 105 | $11 * 18$ | 160 | 190 | 124 | $20 * 3$ | M8 |
| VFD550C43A | DR110AP221 | 270 | 255 | 235 | 50 | 192 | 175 | 105 | $10 * 18$ | 176 | 200 | 106 | $20 * 3$ | M8 |

Table 7-25


Unit: mm

| Model | Input AC reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | G2 | H | M*T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD750C43A | DR150AP162 | 270 | 260 | 260 | 51 | 208 | 195 | 120 | 10*18 | 176 | 200 | 1 | 118 | 30*3 |
| VFD900C43A | DR180AP135 | 300 | 290 | 300 | 55 | 246 | 195 | 115 | 11*22 | 200 | 230 | 190 | 142 | 30*3 |
| VFD1100C43A | DR220AP110 | 300 | 295 | 300 | 57 | 248 | 210 | 130 | 11*22 | 200 | 230 | 190 | 142 | 30*5 |
| VFD1320C43A | DR260AP098 | 300 | 290 | 330 | 56 | 270 | 227 | 140 | 11*22 | 200 | 230 | 190 | 160 | 30*5 |
| VFD1600C43A | DR310AP078 | 300 | 295 | 340 | 54 | 288 | 233 | 145 | 11*22 | 200 | 230 | 190 | 160 | 30*5 |
| VFD1850C43A | DR370AP066 | 300 | 295 | 340 | 54 | 289 | 268 | 168 | 11*22 | 200 | 230 | 190 | 185 | 40*3 |

Table 7-26


Unit: mm

| Model | Input AC reactor Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M*T | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD2200C43A | DR460AP054 | 360 | 350 | 490 | 106 | 401 | 346 | 205 | 12*20 | 240 | 240 | 240 | 50*5 | M8 |
| VFD2800C43A | DR550AP044 | 360 | 350 | 490 | 106 | 401 | 358 | 210 | 12*20 | 240 | 240 | 250 | 50*5 | M8 |
| VFD3150C43A | DR616AP039 | 360 | 350 | 490 | 110 | 401 | 376 | 225 | 12*20 | 240 | 240 | 270 | 50*8 | M8 |
| VFD3550C43A | DR683AP036 | 360 | 350 | 490 | 110 | 404 | 396 | 232 | 12*20 | 240 | 240 | 290 | 50*8 | M8 |
| VFD4500C43A | DR866AP028 | 410 | 415 | 562 | 120 | 464 | 402 | 232 | 12*20 | 280 | 280 | 290 | 50*8 | M8 |

Table 7-27

## DC reactor

A DC reactor can also improve the power factor, reduce input current, and reduce interference generated from the motor drive. A DC reactor stabilizes the DC BUS voltage. Compared to an AC input reactor, the advantages are smaller size, lower price, and lower voltage drop (lower power dissipation).

## Installation

Install the DC reactor between terminals +2/DC+ and $+1 / D C+$. Remove the jumper (shown below) before installing the DC reactor.


Wiring of DC reactor
Figure 7-7

DC reactor dimension and specifications:


200V~230V/ 50~60Hz

| Model | HP | Rated Current <br> (Arms) | Saturation current <br> (Arms) | DC reactor <br> $(\mathrm{mH})$ | DC reactor <br> Delta Part \# | A <br> $[\mathrm{mm}]$ | B <br> $[\mathrm{mm}]$ | $C$ <br> $[\mathrm{~mm}]$ | D <br> $[\mathrm{mm}]$ | E <br> $[\mathrm{mm}]$ | $R$ <br> $[\mathrm{~mm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C23A | 1 | 5 | 8.64 | 5.857 | DR005D0585 | 79 | 78 | 112 | $64 \pm 2$ | $56 \pm 2$ | $9.5^{*} 5.5$ |
| VFD015C23A | 2 | 8 | 12.78 | 3.660 | DR008D0366 | 79 | 78 | 112 | $64 \pm 2$ | $56 \pm 2$ | $9.5^{*} 5.5$ |
| VFD022C23A | 3 | 11 | 18 | 2.662 | DR011D0266 | 79 | 92 | 112 | $64 \pm 2$ | $69.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD037C23A | 5 | 17 | 28.8 | 1.722 | DR017D0172 | 79 | 112 | 112 | $64 \pm 2$ | $89.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD055C23A | 7.5 | 25 | 43.2 | 1.172 | DR025D0117 | 99 | 105 | 128 | $79 \pm 2$ | $82.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD075C23A | 10 | 33 | 55.8 | 0.851 | DR033DP851 | 117 | 110 | 156 | $95 \pm 2$ | $87 \pm 2$ | $10^{*} 6.5$ |
| VFD110C23A | 15 | 49 | 84.6 | 0.574 | DR049DP574 | 117 | 120 | 157 | $95 \pm 2$ | $97 \pm 2$ | $10^{*} 6.5$ |
| VFD150C23A | 20 | 65 | 111.6 | 0.432 | DR065DP432 | 117 | 140 | 157 | $95 \pm 2$ | $116.5 \pm 2$ | $10^{*} 6.5$ |
| VFD185C23A | 25 | 75 | 127.8 | 0.391 | DR075DP391 | 136 | 135 | 178 | $111 \pm 2$ | $112 \pm 2$ | $10^{*} 6.5$ |
| VFD220C23A | 30 | 90 | 154.8 | 0.325 | DR090DP325 | 136 | 135 | 179 | $111 \pm 2$ | $112 \pm 2$ | $10^{*} 6.5$ |

## $380 \mathrm{~V} \sim 460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$

| Model | HP | Rated Current <br> (Arms) | Saturation current <br> (Arms) | DC reactor <br> $(\mathrm{mH})$ | DC reactor <br> Delta Part \# | A <br> $[\mathrm{mm}]$ | B <br> $[\mathrm{mm}]$ | C <br> $[\mathrm{mm}]$ | D <br> $[\mathrm{mm}]$ | E <br> $[\mathrm{mm}]$ | $R$ <br> $[\mathrm{~mm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C43A | 1 | 3 | 5.22 | 18.709 | DR003D1870 | 79 | 78 | 112 | $64 \pm 2$ | $56 \pm 2$ | $9.5^{*} 5.5$ |
| VFD015C43A | 2 | 4 | 6.84 | 14.031 | DR004D1403 | 79 | 92 | 112 | $64 \pm 2$ | $69.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD022C43A | 3 | 6 | 10.26 | 9.355 | DR006D0935 | 79 | 92 | 112 | $64 \pm 2$ | $69.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD037C43A | 5 | 9 | 14.58 | 6.236 | DR009D0623 | 79 | 112 | 112 | $64 \pm 2$ | $89.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD040C43A | 5 | 10.5 | 17.1 | 5.345 | DR010D0534 | 99 | 93 | 128 | $79 \pm 2$ | $70 \pm 2$ | $9.5^{*} 5.5$ |
| VFD055C43A | 7.5 | 12 | 19.8 | 4.677 | DR012D0467 | 99 | 105 | 128 | $79 \pm 2$ | $82.5 \pm 2$ | $9.5^{*} 5.5$ |
| VFD075C43A | 10 | 18 | 30.6 | 3.119 | DR018D0311 | 117 | 110 | 144 | $95 \pm 2$ | $87 \pm 2$ | $10^{*} 6.5$ |
| VFD110C43A | 15 | 24 | 41.4 | 2.338 | DR024D0233 | 117 | 120 | 144 | $95 \pm 2$ | $97 \pm 2$ | $10^{*} 6.5$ |
| VFD150C43A | 20 | 32 | 54 | 1.754 | DR032D0175 | 117 | 140 | 157 | $95 \pm 2$ | $116.5 \pm 2$ | $10^{*} 6.5$ |
| VFD185C43A | 25 | 38 | 64.8 | 1.477 | DR038D0147 | 136 | 135 | 172 | $111 \pm 2$ | $112 \pm 2$ | $10^{*} 6.5$ |
| VFD220C43A | 30 | 45 | 77.4 | 1.247 | DR045D0124 | 136 | 135 | 173 | $111 \pm 2$ | $112 \pm 2$ | $10^{*} 6.5$ |
| VFD300C43A | 40 | 60 | 102.6 | 0.935 | DR060DP935 | 136 | 150 | 173 | $111 \pm 2$ | $127 \pm 2$ | $10^{*} 6.5$ |

575V DC Choke

| kW | HP | Rated Current |  |  | Saturation Current (Arms) | 4\%DC Impedance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (Arms) |  |  |  | (mH) |  |  |
|  |  | Light Duty | Normal Duty | Heavy Duty |  | Light Duty | Normal Duty | Heavy Duty |
| VFD015C53A-21 | 2 | 3 | 2.5 | 2.1 | 4.2 | 20.336 | 24.404 | 29.052 |
| VFD022C531-21 | 3 | 4.3 | 3.6 | 3 | 5.9 | 14.188 | 16.947 | 20.336 |
| VFD037C53A-21 | 5 | 6.7 | 5.5 | 4.6 | 9.1 | 9.106 | 11.093 | 13.263 |
| VFD055C53A-21 | 7.5 | 9.9 | 8.2 | 6.9 | 13.7 | 6.163 | 7.440 | 8.842 |
| VFD075C53A-21 | 10 | 12.1 | 10 | 8.3 | 16.5 | 5.042 | 6.101 | 7.351 |
| VFD110C53A-21 | 15 | 18.7 | 15.5 | 13 | 25.7 | 3.263 | 3.936 | 4.693 |
| VFD150C53A-21 | 20 | 24.2 | 20 | 16.8 | 33.3 | 2.521 | 3.050 | 3.632 |

690V DC Choke

| kW | HP | Rated Current |  |  | Saturation Current |  |  | $\frac{4 \% \mathrm{DC} \text { Impedance }}{(\mathrm{mH})}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (Arms) |  |  | (Arms) |  |  |  |  |  |
|  |  | $\begin{aligned} & \text { Light } \\ & \text { Duty } \end{aligned}$ | Normal Duty | Heavy Duty | $\begin{aligned} & \text { Light } \\ & \text { Duty } \end{aligned}$ | Normal Duty | Heavy Duty | $\begin{aligned} & \text { Light } \\ & \text { Duty } \\ & \hline \end{aligned}$ | Normal Duty | Heavy Duty |
| VFD185C63B-21 | 25 | 24 | 20 | 14 | 28.8 | 30.0 | 25.2 | 3.661 | 4.393 | 6.275 |
| VFD220C63B-21 | 30 | 30 | 24 | 20 | 36.0 | 36.0 | 36.0 | 2.928 | 3.661 | 4.393 |
| VFD300C63B-21 | 40 | 36 | 30 | 24 | 43.2 | 45.0 | 43.2 | 2.440 | 2.928 | 3.661 |
| VFD370C63B-21 | 50 | 45 | 36 | 30 | 54.0 | 54.0 | 54.0 | 1.952 | 2.440 | 2.928 |

Following models are built-in DC impedance:

| Frame D | VFD450C63B-00; VFD550C63B-00; VFD450C63B-21; VFD550C63B-21 |
| :---: | :--- |
| Frame E | VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00 <br> VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21 |
| Frame F | VFD1600C63B-00; VFD2000C63B-00; VFD1600C63B-21; VFD2000C63B-21 |
| Frame G | VFD2500C63B-00; VFD3150C63B-00; VFD2500C63B-21; VFD3150C63B-21 |
| Frame H | VFD4000C63B-00; VFD4500C63B-00; VFD5600C63B-00; VFD6300C63B-00 <br> VFD4000C63B-21; VFD4500C63B-21; VFD5600C63B-21; VFD6300C63B-21 |

Following table is the THDi value of Delta motor drive matching AC/DC reactor:

| Drive Spec. | Models without built-in DC reactor |  |  |  | Models with built-in DC reactor |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reactor <br> Spec. | No AC/DC <br> reactor | $3 \%$ input AC <br> reactor | $5 \%$ input AC <br> reactor | $4 \%$ DC reactor | No AC/DC <br> reactor | $3 \%$ input AC <br> reactor | $5 \%$ input AC <br> reactor |  |
| 5 th | $73.3 \%$ | $38.5 \%$ | $30.8 \%$ | $25.5 \%$ | $31.16 \%$ | $27.01 \%$ | $25.5 \%$ |  |
| 7 th | $52.74 \%$ | $15.3 \%$ | $9.4 \%$ | $18.6 \%$ | $23.18 \%$ | $9.54 \%$ | $8.75 \%$ |  |
| 11th | $7.28 \%$ | $7.1 \%$ | $6.13 \%$ | $7.14 \%$ | $8.6 \%$ | $4.5 \%$ | $4.2 \%$ |  |
| 13th | $0.4 \%$ | $3.75 \%$ | $3.15 \%$ | $0.48 \%$ | $7.9 \%$ | $0.22 \%$ | $0.17 \%$ |  |
| THDi | $91 \%$ | $43.6 \%$ | $34.33 \%$ | $38.2 \%$ | $42.28 \%$ | $30.5 \%$ | $28.4 \%$ |  |
| Note: | THDi may have some difference due to different installation conditions (like wires or motors) and environment. |  |  |  |  |  |  |  |

Table 7-33

## AC Output reactor

Installing an AC reactor on the input side of an AC motor drive can increase line impedance, improve the power factor, reduce input current, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes. For example, when the main power capacity is higher than 500 kVA , or when using a switching capacitor bank, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor on the input side of the AC motor drive protects it by suppressing surges.

## Installation

Install an AC input reactor in series with the three output phases $\mathrm{U} V \mathrm{~W}$ to Motor as shown below:


Wiring of AC output reactor
Figure 7-8

Following table shows the standard AC output reactors specification of Delta C2000
200V~230V/ 50~60Hz

| Model | HP | Rated Current <br> (Arms) | Saturation <br> current (Arms) | $3 \%$ <br> impedance <br> $(\mathrm{mH})$ | $5 \%$ <br> impedance <br> $(\mathrm{mH})$ | Built-in DC <br> reactor | Input AC reactor Delta <br> part \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C23A | 1 | 5 | 8.64 | 2.536 | 4.227 | No | DR005L0254 |
| VFD015C23A | 2 | 8 | 12.78 | 1.585 | 2.642 | No | DR008L0159 |
| VFD022C23A | 3 | 11 | 18 | 1.152 | 1.922 | No | DR011L0115 |
| VFD037C23A | 5 | 17 | 28.8 | 0.746 | 1.243 | No | DR017LP746 |
| VFD055C23A | 7.5 | 25 | 43.2 | 0.507 | 0.845 | No | DR025LP507 |
| VFD075C23A | 10 | 33 | 55.8 | 0.32 | 0.534 | No | DR033LP320 |
| VFD110C23A | 15 | 49 | 84.6 | 0.216 | 0.359 | No | DR049LP215 |
| VFD150C23A | 20 | 65 | 111.6 | 0.163 | 0.271 | No | DR065LP162 |
| VFD185C23A | 25 | 75 | 127.8 | 0.169 | 0.282 | No | DR075LP170 |
| VFD220C23A | 30 | 90 | 154.8 | 0.141 | 0.235 | No | DR090LP141 |
| VFD300C23A | 40 | 120 | 205.2 | 0.106 | 0.176 | Yes | DR146LP087 |
| VFD370C23A | 50 | 146 | 250.2 | 0.087 | 0.145 | Yes | DR146LP087 |
| VFD450C23A | 60 | 180 | 307.8 | 0.070 | 0.117 | Yes | DR180LP070 |
| VFD550C23A | 75 | 215 | 367.2 | 0.059 | 0.098 | Yes | DR215LP059 |
| VFD750C23A | 100 | 255 | 435.6 | 0.049 | 0.083 | Yes | DR276LP049 |
| VFD900C23A | 125 | 346 | 592.2 | 0.037 | 0.061 | Yes | DR346LP037 |

Table 7-34
$380 \mathrm{~V} \sim 460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$

| Model | HP | Rated Current <br> (Arms) | Saturation <br> current <br> $($ Arms $)$ | $3 \%$ <br> impedance <br> $(\mathrm{mH})$ | $5 \%$ <br> impedance <br> $(\mathrm{mH})$ | Built-in <br> DC reactor | Delta part \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C43A | 1 | 3 | 5.22 | 8.102 | 13.502 | No | DR003L0810 |
| VFD015C43A | 2 | 4 | 6.84 | 6.077 | 10.127 | No | DR004L0607 |
| VFD022C43A | 3 | 6 | 10.26 | 4.050 | 6.752 | No | DR006L0405 |
| VFD037C43A | 5 | 9 | 14.58 | 2.700 | 4.501 | No | DR009L0270 |
| VFD040C43A | 5 | 10.5 | 17.1 | 2.315 | 3.858 | No | DR010L0231 |
| VFD055C43A | 7.5 | 12 | 19.8 | 2.025 | 3.375 | No | DR012L0202 |
| VFD075C43A | 10 | 18 | 30.6 | 1.174 | 1.957 | No | DR018L0117 |
| VFD110C43A | 15 | 24 | 41.4 | 0.881 | 1.468 | No | DR024LP881 |
| VFD150C43A | 20 | 32 | 54 | 0.66 | 1.101 | No | DR032LP660 |
| VFD185C43A | 25 | 38 | 64.8 | 0.639 | 1.066 | No | DR038LP639 |
| VFD220C43A | 30 | 45 | 77.4 | 0.541 | 0.900 | No | DR045LP541 |
| VFD300C43A | 40 | 60 | 102.6 | 0.405 | 0.675 | No | DR060LP405 |
| VFD370C43S/U | 50 | 73 | 124.2 | 0.334 | 0.555 | Yes | DR073LP334 |
| VFD450C43S/U | 60 | 91 | 154.8 | 0.267 | 0.445 | Yes | DR091LP267 |
| VFD550C43A | 75 | 110 | 189 | 0.221 | 0.368 | Yes | DR110LP221 |
| VFD750C43A | 100 | 150 | 257.4 | 0.162 | 0.270 | Yes | DR150LP162 |
| VFD900C43A | 125 | 180 | 307.8 | 0.135 | 0.225 | Yes | DR180LP135 |

Chapter 7 Optional Accessories | C2000

| Model | HP | Rated Current <br> (Arms) | Saturation <br> current <br> $($ Arms $)$ | $3 \%$ <br> impedance <br> $(\mathrm{mH})$ | $5 \%$ <br> impedance <br> $(\mathrm{mH})$ | Built-in <br> DC reactor | Delta part \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD1100C43A | 150 | 220 | 376.2 | 0.110 | 0.184 | Yes | DR220LP110 |
| VFD1320C43A | 175 | 260 | 444.6 | 0.098 | 0.162 | Yes | DR260LP098 |
| VFD1600C43A | 215 | 310 | 531 | 0.078 | 0.131 | Yes | DR310LP078 |
| VFD1850C43A | 250 | 370 | 633.6 | 0.066 | 0.109 | Yes | DR370LP066 |
| VFD2200C43A | 300 | 460 | 786.6 | 0.054 | 0.090 | Yes | DR460LP054 |
| VFD2800C43A | 375 | 550 | 941.4 | 0.044 | 0.074 | Yes | DR550LP044 |
| VFD3150C43A | 420 | 616 | 1053 | 0.039 | 0.066 | Yes | DR616LP039 |
| VFD3550C43A | 475 | 683 | 1168.2 | 0.036 | 0.060 | Yes | DR683LP036 |
| VFD4500C43A | 600 | 866 | 1468.8 | 0.028 | 0.047 | Yes | DR866LP028 |

Table 7-35

## Chapter 7 Optional Accessories | C2000

$A C$ output reactor dimensions and specification:


Tightening torque $1.0-1.2 \mathrm{Nm}$
Tightening torque $0.6-0.8 \mathrm{Nm}$


| Model | Output AC reactor <br> Delta part \# | A | B | C | $\mathrm{D} 1 * \mathrm{D} 2$ | H | H 1 | H 2 | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C23A | DR005A0254 | 96 | 110 | 70 | $6 * 9$ | 42 | 60 | 40 | M 4 |
| VFD015C23A | DR008A0159 | 120 | 135 | 96 | $6 * 12$ | 60 | 80.5 | 60 | M 4 |
| VFD022C23A | DR011A0115 | 120 | 135 | 96 | $6 * 12$ | 60 | 80.5 | 60 | M 4 |
| VFD037C23A | DR017AP746 | 120 | 135 | 105 | $6 * 12$ | 65 | 80.5 | 60 | M 4 |
| VFD055C23A | DR025AP507 | 150 | 160 | 120 | $6 * 12$ | 88 | 107 | 75 | M 4 |
| VFD075C23A | DR033AP320 | 150 | 160 | 120 | $6 * 12$ | 88 | 107 | 75 | M 4 |

Table 7-36


Terminals $16 \mathrm{~mm}^{2}$
Tightening torque 1.2-1.4


| Model | Output AC reactor <br> Delta part \# | A | B | C | D1*D2 | H | G | G1 | Q | M | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD110C23A | DR049AP215 | 180 | 205 | 175 | $6 * 12$ | 115 | 85 | 122 | 16 | $1.2-1.4$ | M4 |
| VFD150C23A | DR065AP162 | 180 | 215 | 185 | $6 * 12$ | 115 | 85 | 122 | 35 | $2.5-3.0$ | M4 |

Table 7-37


UL Label


| Model | Output AC reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M*T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD185C23A | DR075AP170 | 240 | 228 | 210 | 44 | 170 | 151 | 95 | $7 * 13$ | 152 | 176 | 85 | $20 * 3$ |
| VFD220C23A | DR090AP141 | 240 | 228 | 220 | 44 | 170 | 151 | 100 | $7 * 13$ | 152 | 176 | 85 | $20 * 3$ |
| VFD300C23A <br> VFD370C23A | DR146AP087 | 240 | 228 | 250 | 45 | 202 | 162 | 110 | $7 * 13$ | 152 | 176 | 97 | $30 * 3$ |
| VFD450C23A | DR180AP070 | 250 | 240 | 260 | 46 | 203 | 175 | 115 | $11 * 18$ | 160 | 190 | 124 | $30 * 5$ |
| VFD550C23A | DR215AP059 | 250 | 240 | 285 | 51 | 226 | 180 | 120 | $11 * 18$ | 160 | 190 | 124 | $30 * 5$ |

D1 11


UL Label


| Model | Output AC reactor Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | H | M ${ }^{*}$ T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD750C23A | DR276AP049 | 270 | 260 | 320 | 50 | 265 | 200 | 140 | 10*18 | 176 | 106 | $30 * 5$ |
| VFD900C23A | DR276AP050 | 270 | 264 | 350 | 50 | 285 | 200 | 140 | 10*18 | 176 | 106 | $30 * 5$ |



Tightening torque $1.0-1.2 \mathrm{Nm}$
Tightening torque $0.6-0.8 \mathrm{Nm}$


| Model | Output AC reactor <br> Delta part \# | A | B | C | D1*D2 | H | G1 | G2 | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD007C43A | DR003A0810 | 96 | 115 | 60 | $6 * 9$ | 42 | 60 | 40 | M4 |
| VFD015C43A | DR004A0607 | 120 | 135 | 88 | $6 * 12$ | 60 | 81 | 60 | M4 |
| VFD022C43A | DR006A0405 | 120 | 135 | 88 | $6 * 12$ | 60 | 81 | 60 | M4 |
| VFD037C43A | DR009A0270 | 150 | 160 | 98 | $6 * 12$ | 74 | 107 | 75 | M4 |
| VFD040C43A | DR010A0231 | 150 | 160 | 112 | $6 * 12$ | 88 | 107 | 75 | M4 |
| VFD055C43A | DR012A0202 | 150 | 160 | 112 | $6 * 12$ | 88 | 107 | 75 | M4 |
| VFD075C43A | DR018A0117 | 150 | 160 | 112 | $6 * 12$ | 88 | 107 | 75 | M4 |
| VFD110C43A | DR024AP881 | 150 | 160 | 112 | $6 * 12$ | 88 | 107 | 75 | M4 |
| VFD150C43A | DR032AP660 | 180 | 190 | 138 | $6 * 12$ | 114 | 122 | 85 | M6 |

Table 7-40


Terminals $16 \mathrm{~mm}^{2}$
Tightening torque 1.2-1.4


| Model | Output AC reactor <br> Delta part \# | A | B | C | D1*D2 | H | G1 | G2 | PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD185C43A | DR038AP639 | 180 | 205 | 165 | $6 * 12$ | 115 | 85 | 122 | M4 |
| VFD220C43A | DR045AP541 | 235 | 245 | 150 | $7 * 13$ | 85 | $/$ | 176 | M6 |



PE bolt


| Model | Output AC reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M ${ }^{*}$ T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD300C43A | DR060AP405 | 240 | 228 | 215 | 44 | 170 | 163 | 110 | $7 * 13$ | 152 | 176 | 97 | $20^{*} 3$ |
| VFD370C43S/U | DR073AP334 | 250 | 235 | 235 | 44 | 186 | 174 | 115 | $11 * 18$ | 160 | 190 | 124 | $20^{*} 3$ |
| VFD450C43S/U | DR091AP267 | 250 | 240 | 235 | 44 | 186 | 174 | 115 | $11 * 18$ | 160 | 190 | 124 | $20 * 3$ |
| VFD550C43A | DR110AP221 | 270 | 260 | 245 | 50 | 192 | 175 | 115 | $10 * 18$ | 176 | 200 | 106 | $20 * 3$ |

Table 7-42


| Model | Output AC reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | G2 | H | M*T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD750C43A | DR150LP162 | 270 | 264 | 265 | 51 | 208 | 192 | 125 | $10 * 18$ | 176 | 200 | $/$ | 118 | $30 * 3$ |
| VFD900C43A | DR180LP135 | 300 | 295 | 310 | 55 | 246 | 195 | 125 | $11^{*} 22$ | 200 | 230 | 190 | 142 | $30^{*} 3$ |
| VFD1100C43A | DR220LP110 | 300 | 298 | 310 | 57 | 248 | 210 | 140 | $11^{*} 22$ | 200 | 230 | 190 | 142 | $30 * 5$ |
| VFD1320C43A | DR260LP098 | 300 | 295 | 330 | 56 | 270 | 227 | 140 | $11^{*} 22$ | 200 | 230 | 190 | 160 | $30 * 5$ |
| VFD1600C43A | DR310LP078 | 300 | 298 | 350 | 54 | 288 | 233 | 145 | $11^{*} 22$ | 200 | 230 | 190 | 160 | $30 * 5$ |
| VFD1850C43A | DR370LP066 | 300 | 298 | 350 | 54 | 289 | 268 | 170 | $11^{*} 22$ | 200 | 230 | 190 | 185 | $40 * 5$ |



| Model | Output AC reactor <br> Delta part \# | A | A1 | B | B1 | B2 | C | C1 | D1*D2 | E | G1 | H | M*T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VFD2200C43A | DR460AP054 | 360 | 355 | 510 | 106 | 401 | 346 | 215 | $12 * 20$ | 240 | 240 | 240 | $50 * 5$ |
| VFD2800C43A | DR550AP044 | 360 | 355 | 510 | 106 | 401 | 358 | 220 | $12 * 20$ | 240 | 240 | 250 | $50 * 5$ |
| VFD3150C43A | DR616AP039 | 360 | 355 | 510 | 110 | 401 | 376 | 230 | $12 * 20$ | 240 | 240 | 270 | $50 * 8$ |
| VFD3550C43A | DR683AP036 | 360 | 355 | 510 | 110 | 401 | 396 | 240 | $12 * 20$ | 240 | 240 | 290 | $50 * 8$ |
| VFD4500C43A | DR866AP028 | 410 | 418 | 570 | 120 | 464 | 402 | 245 | $12 * 20$ | 280 | 280 | 290 | $50 * 8$ |

## Motor Cable Length

1. Leakage current to affect the motor and counter measurement

If the cable length is too long, the parasitic capacitance between cables will enlarge and may increase leakage current. It will activate the protection of over current, and increased leakage current will not ensure the correction of current value in display. The worst case is that AC motor drive may damage.

If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from AC motor drive to each motor.

For the 460 V series AC motor drive, when an overload relay is installed between the drive and the motor to protect motor from overheating, the connecting cable must be shorter than 50 m . However, an overload relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (Pr. 00-17).

## 2. Surge voltage to affect the motor and counter measurement

When motor is driven by a PWM signal of AC motor drive, the motor terminals will experience surge voltages (dv/dt) easily due to power transistors conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages (dv/dt) may reduce insulation quality. To prevent this situation, please follow the rules below:
a. Use a motor with enhanced insulation
b. Connect an output reactor (optional) to the output terminals of the AC motor drive
c. Reduce the motor cable length to suggested value

The suggested motor shielded cable length in the following table complies with IEC 60034-17, which is suitable for the motor with rated voltage under 500 VAC , and the insulation level of peak-to-peak over (including) 1.35kV

| 230V Model | Rated current <br> (ND) (Arms) | Without AC reactor <br> (meter] |  | Non-shielded <br> cable [meter] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| VFD007C23A | 5 | 50 | 75 | 75 | 115 |
| VFD015C23A | 8 | 50 | 75 | 75 | 115 |
| VFD022C23A | 11 | 50 | 75 | 75 | 115 |
| VFD037C23A | 17 | 50 | 75 | 75 | 115 |
| VFD055C23A | 25 | 50 | 75 | 75 | 115 |
| VFD075C23A | 33 | 100 | 150 | 150 | 225 |
| VFD110C23A | 49 | 100 | 150 | 150 | 225 |
| VFD150C23A | 65 | 100 | 150 | 150 | 225 |
| VFD185C23A | 75 | 100 | 150 | 150 | 225 |
| VFD220C23A | 90 | 100 | 150 | 150 | 225 |
| VFD300C23A/E | 120 | 100 | 150 | 150 | 225 |
| VFD370C23A/E | 146 | 100 | 150 | 150 | 225 |
| VFD450C23A/E | 180 | 150 | 225 | 225 | 325 |
| VFD550C23A/E | 215 | 150 | 225 | 225 | 325 |
| VFD750C23A/E | 255 | 150 | 225 | 225 | 325 |
| VFD900C23A/E | 346 | 150 | 225 | 225 | 325 |


| 460V Model | Rated current (ND) (Arms) | Without AC reactor |  | With AC reactor |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Shielded Cable [meter] | Non-shielded cable [meter] | Shielded Cable [meter] | Non-shielded cable [meter] |
| VFD007C43A | 3 | 50 | 75 | 75 | 115 |
| VFD015C43A | 4 | 50 | 75 | 75 | 115 |
| VFD022C43A | 6 | 50 | 75 | 75 | 115 |
| VFD037C43A | 9 | 50 | 75 | 75 | 115 |
| VFD040C43A | 10.5 | 50 | 75 | 75 | 115 |
| VFD055C43A | 12 | 50 | 75 | 75 | 115 |
| VFD075C43A | 18 | 100 | 150 | 150 | 225 |
| VFD110C43A | 24 | 100 | 150 | 150 | 225 |
| VFD150C43A | 32 | 100 | 150 | 150 | 225 |
| VFD185C43A | 38 | 100 | 150 | 150 | 225 |
| VFD220C43A | 45 | 100 | 150 | 150 | 225 |
| VFD300C43A | 60 | 100 | 150 | 150 | 225 |
| VFD370C43S/U | 73 | 100 | 150 | 150 | 225 |
| VFD450C43S/U | 91 | 150 | 225 | 225 | 325 |
| VFD550C43A/E | 110 | 150 | 225 | 225 | 325 |
| VFD750C43A/E | 150 | 150 | 225 | 225 | 325 |
| VFD900C43A/E | 180 | 150 | 225 | 225 | 325 |
| VFD1100C43A/E | 220 | 150 | 225 | 225 | 325 |
| VFD1320C43A/E | 260 | 150 | 225 | 225 | 325 |
| VFD1600C43A/E | 310 | 150 | 225 | 225 | 325 |
| VFD1850C43A/E | 370 | 150 | 225 | 225 | 325 |
| VFD2200C43A/E | 460 | 150 | 225 | 225 | 325 |
| VFD2800C43A | 550 | 150 | 225 | 225 | 325 |
| VFD3150C43A | 616 | 150 | 225 | 225 | 325 |
| VFD3550C43A | 683 | 150 | 225 | 225 | 325 |
| VFD4500C43A | 866 | 150 | 225 | 225 | 325 |

Table 7-46

| 460V | Without AC reactor |  | With AC reactor |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EMC Filter built-in model | Rated current <br> (ND) (Arms) | Shielded Cable <br> [meter] | Non-shielded <br> cable [meter] | Shielded Cable <br> [meter] | Non-shielded <br> cable [meter] |
| VFD007C43E | 3 | 30 | 75 | 30 | 115 |
| VFD015C43E | 4 | 30 | 75 | 30 | 115 |
| VFD022C43E | 6 | 30 | 75 | 30 | 115 |
| VFD037C43E | 9 | 30 | 75 | 30 | 115 |
| VFD040C43E | 10.5 | 30 | 75 | 30 | 115 |
| VFD055C43E | 12 | 30 | 75 | 30 | 115 |
| VFD075C43E | 18 | 50 | 150 | 50 | 225 |
| VFD110C43E | 24 | 50 | 150 | 50 | 225 |
| VFD150C43E | 32 | 50 | 150 | 50 | 225 |
| VFD185C43E | 38 | 50 | 150 | 50 | 225 |
| VFD220C43E | 45 | 50 | 150 | 50 | 225 |
| VFD300C43E | 60 | 50 | 150 | 50 | 225 |

Table 7-47

| 575V | Model | kW | HP | Rated <br> Current | Without AC reactor |  | With AC reactor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Non-shielded <br> Cable [meter] | Shielded <br> Cable <br> [meter] | Non-shielded <br> Cable [meter] |  |  |
| VFD015C53A-21 | 0.75 | 1 | 2.5 | 35 | 30 | 45 | 20 |  |
| VFD022C531-21 | 1.5 | 2 | 3.6 | 35 | 30 | 45 | 20 |  |
| VFD037C53A-21 | 2.2 | 3 | 5.5 | 35 | 30 | 45 | 20 |  |
| VFD055C53A-21 | 3.7 | 5 | 8.2 | 35 | 30 | 45 | 20 |  |
| VFD075C53A-21 | 5.5 | 7.5 | 10 | 35 | 30 | 45 | 20 |  |
| VFD110C53A-21 | 7.5 | 10 | 15.5 | 35 | 30 | 45 | 20 |  |
| VFD150C53A-21 | 11 | 15 | 20 | 35 | 30 | 45 | 20 |  |

Table 7-48

| 690V | Model |  | Rated <br> Current |  | Without AC reactor |  | With AC reactor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Normal <br> Duty <br> (Arms) | Shielded <br> Cable <br> [meter] | Non-shield <br> ed Cable <br> [meter] | Shielded <br> Cable <br> [meter] | Non-shield <br> ed Cable <br> [meter] |  |
| VFD185C63B-21 | 18.5 | 25 | 20 | 20 | 35 | 30 | 45 |  |
| VFD220C63B-21 | 22 | 30 | 24 | 20 | 35 | 30 | 45 |  |
| VFD300C63B-21 | 30 | 40 | 30 | 20 | 35 | 45 | 60 |  |
| VFD370C63B-21 | 37 | 50 | 36 | 20 | 45 | 60 | 75 |  |
| VFD450C63B-00/21 | 45 | 60 | 45 | 20 | 45 | 60 | 75 |  |
| VFD550C63B-00/21 | 55 | 75 | 54 | 20 | 45 | 60 | 100 |  |
| VFD750C63B-00/21 | 75 | 100 | 67 | 20 | 45 | 60 | 100 |  |
| VFD900C63B-00/21 | 90 | 125 | 86 | 20 | 45 | 75 | 100 |  |
| VFD1100C63B-00/21 | 110 | 150 | 104 | 20 | 45 | 75 | 100 |  |
| VFD1320C63B-00/21 | 132 | 175 | 125 | 20 | 45 | 75 | 100 |  |
| VFD1600C63B-00/21 | 160 | 215 | 150 | 20 | 45 | 90 | 100 |  |
| VFD2000C63B-00/21 | 200 | 270 | 180 | 20 | 45 | 90 | 100 |  |
| VFD2500C63B-00/21 | 250 | 335 | 220 | 20 | 45 | 90 | 100 |  |
| VFD3150C63B-00/21 | 315 | 425 | 290 | 20 | 45 | 90 | 100 |  |
| VFD4000C63B-00/21 | 400 | 530 | 350 | 20 | 45 | 90 | 100 |  |
| VFD4500C63B-00/21 | 450 | 600 | 385 | 20 | 45 | 90 | 100 |  |
| VFD5600C63B-00/21 | 560 | 745 | 465 | 20 | 45 | 75 | 90 |  |
| VFD6300C63B-00/21 | 630 | 850 | 675 | 20 | 45 | 75 | 90 |  |

Table 7-49

* The table above is the suggested cable length of EMC built-in models operating under surge voltage influencing. To pass the noise emission and Electromagnetic interference certification, the cable length should follow chapter 7-7 instruction.
* 690 V output motor cable length needs to comply with IEC 60034-25

Requirements on insulation level of Curve $B$ motor


Figure 7-9

Key
A Without filters for motors up to 500 V a.c.

B Without filters for motors up to 690 V a.c.

* Examples of measured results at 415 V supply, for different lengths of steel armoured cable

Figure 14 - Limiting curves of impulse voltage $U_{\mathrm{pk}}$, measured between two motor phase terminals, as a function of the peak rise time $t_{r}$

The $t_{r}$ is defined as:


Figure 7-10
Sine-wave filter

When there is longer cable length connected between motor drive and motor, the damping will lead to high frequency resonator, and make impedance matching poor to enlarge the voltage reflection. This phenomenon will generate twice-input voltage in motor side, which will easily make motor voltage overshoot to damage insulation.

To prevent this phenomenon, installing sine-wave filter can transform PWM output voltage to smooth and low-ripple sin wave, and motor cable length can longer than 1000 meters.

## Installation

Sine-wave filter is serially connected between motor drive UVW output side and motor, which is shown as below:


Wiring of non-shielded cable


Following table shows the sin-wave filter specification of Delta C2000

200V~230V/ 50~60Hz

| kW | HP | Rated current (Arms) | Suggested sine-wave filter part \# | Output cable length [m] (Shielded or non-shielded) |
| :---: | :---: | :---: | :---: | :---: |
| 0.75 | 1 | 5 | B84143V0006R227 | 1000 |
| 1.5 | 2 | 8 |  |  |
| 2.2 | 3 | 11 | B84143V001R227 |  |
| 3.7 | 5 | 17 |  |  |
| 5.5 | 7.5 | 25 | B84143V0025R227 |  |
| 7.5 | 10 | 33 | B84143V0033R227 |  |
| 11 | 15 | 49 | B84143V0050R227 |  |
| 15 | 20 | 65 | B84143V0066R227 |  |
| 18.5 | 25 | 75 | B84143V0075R227 |  |
| 22 | 30 | 90 | B84143V0095R227 |  |
| 30 | 40 | 120 | B84143V0132R227 |  |
| 37 | 50 | 146 |  |  |
| 45 | 60 | 180 | B84143V0180R227 |  |
| 55 | 75 | 215 | B84143V0250R227 |  |
| 75 | 100 | 255 | B84143V0320R227 |  |
| 90 | 125 | 346 | Please contact supplier EPCOS |  |

Table 7-50

380V~460V/ 50~60Hz

| kW | HP | Rated current (Arms) | Suggested sine-wave filter part \# | Output cable length [m] (Shielded or non-shielded) |
| :---: | :---: | :---: | :---: | :---: |
| 0.75 | 1 | 3 | B84143V0004R227 | 1000 |
| 1.5 | 2 | 4 |  |  |
| 2.2 | 3 | 6 | B84143V0006R227 |  |
| 3.7 | 5 | 9 | B84143V0011R227 |  |
| 4 | 5 | 10.5 |  |  |
| 5.5 | 7.5 | 12 | B84143V0016R227 |  |
| 7.5 | 10 | 18 | B84143V0025R227 |  |
| 11 | 15 | 24 |  |  |
| 15 | 20 | 32 | B84143V0033R227 |  |
| 18.5 | 25 | 38 | B84143V0050R227 |  |
| 22 | 30 | 45 |  |  |
| 30 | 40 | 60 | B84143V0066R227 |  |
| 37 | 50 | 73 | B84143V0075R227 |  |
| 45 | 60 | 91 | B84143V0095R227 |  |
| 55 | 75 | 110 | B84143V0132R227 |  |
| 75 | 100 | 150 | B84143V0180R227 |  |
| 90 | 125 | 180 | B84143V0180R227 | 1000 |
| 110 | 150 | 220 | B84143V0250R227 |  |
| 132 | 175 | 260 | B84143V0320R227 |  |
| 160 | 215 | 310 | B8413V0320R227 |  |
| 185 | 250 | 370 | Please contact supplier EPCOS |  |
| 220 | 300 | 460 |  |  |
| 280 | 375 | 550 |  |  |
| 315 | 420 | 616 |  |  |
| 355 | 475 | 683 |  |  |
| 450 | 600 | 866 |  |  |

Table 7-51

| Sine wave filter part \# | Please refer to website: <br> http://en.tdk.eu/inf/30/db/emc 2014/B84143V R227.pdf |
| :--- | :--- |
| B84143V0004R227 | $I_{R}: 4 A$, Sine-wave output filters for 3-phase systems |
| B84143V0006R227 | $I_{R}: 6 A$, Sine-wave output filters for 3-phase systems |
| B84143V0011R227 | $I_{R}: 11 A$, Sine-wave output filters for 3-phase systems |
| B84143V0016R227 | $I_{R}: 16 A$, Sine-wave output filters for 3-phase systems |
| B84143V0025R227 | $I_{R}: 25 A$, Sine-wave output filters for 3-phase systems |
| B84143V0033R227 | $I_{R}: 33 A$, Sine-wave output filters for 3-phase systems |
| B84143V0050R227 | $I_{R}: 50 A$, Sine-wave output filters for 3-phase systems |
| B84143V0066R227 | $I_{R}: 66 A$, Sine-wave output filters for 3-phase systems |


| Sine wave filter part \# | Please refer to website: <br> http://en.tdk.eu/inf/30/db/emc 2014/B84143V R227.pdf |
| :--- | :--- |
| B84143V0075R227 | $I_{R}: 75 A$, Sine-wave output filters for 3-phase systems |
| B84143V0095R227 | $I_{R}: 95 A$, Sine-wave output filters for 3-phase systems |
| B84143V0132R227 | $I_{R}: 132 A$, Sine-wave output filters for 3-phase systems |
| B84143V0180R227 | $I_{R}: 180 A$, Sine-wave output filters for 3-phase systems |
| B84143V0250R227 | $I_{R}: 250 A$, Sine-wave output filters for 3-phase systems |
| B84143V0320R227 | $I_{R}: 320 A$, Sine-wave output filters for 3-phase systems |

Table 7-52

## 7-5 Zero Phase Reactors

| Reactor model (Note) | Recommend | ed Wire Size | Wiring Method | Qty | Corresponding motor drives |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RF008X00A | $\leq 8 \mathrm{AWG}$ | $\leq 8.37 \mathrm{~mm}^{2}$ | Diagram A | $\begin{gathered} 1 C^{*} 3 \\ \text { or } \\ 4 C^{* 1} \end{gathered}$ | $\begin{aligned} & \text { VFD007C23A; VFD015C23A; VFD022C23A; } \\ & \text { VFD037C23A; VFD007C43A; VFD015C43; } \\ & \text { VFD022C43A; VFD037C43A; VFD040C43; } \\ & \text { VFD055C43A; VFD015C53A-21; } \\ & \text { VFD022C53A-21; VFD037C53A-21; } \\ & \text { VFD055C53A-21; VFD075C53A-21, } \\ & \text { VFD110C53A-21; VFD150C53A-21 } \end{aligned}$ |
| T60006L2040W453 | $\leq 8 \mathrm{AWG}$ | $\leq 8.37 \mathrm{~mm}^{2}$ | Diagram B |  |  |
| RF004X00A | $\leq 1$ AWG | $\leq 42.41 \mathrm{~mm}^{2}$ | Diagram A | $\begin{gathered} 1 C * 3 \\ \text { or } \\ 4 C * 1 \end{gathered}$ | VFD055C23A; VFD075C23A; VFD110C23A; <br> VFD110C43A; VFD150C43A; VFD075C43A; <br> VFD110C43A; VFD150C43A |
| T60006L2050W565 | $\leq 1$ AWG | $\leq 42.41 \mathrm{~mm}^{2}$ | Diagram B |  |  |
| RF002X00A | $\leq 600 \mathrm{MCM}$ | $\leq 304 \mathrm{~mm}^{2}$ | Diagram A | $\begin{gathered} 1 C^{*} 3 \\ \text { or } \\ 4 C^{* 1} \end{gathered}$ | VFD150C23A; VFD185C23A; |
|  |  |  |  |  | VFD220C23A; VFD300C23A; |
|  |  |  |  |  | VFD370C23A; VFD450C23A; |
|  |  |  |  |  | VFD550C23A; VFD750C23A; |
|  |  |  |  |  | VFD900C23A; VFD185C43A; |
|  |  |  |  |  | VFD220C43A; VFD300C43A; |
|  |  | $\leq 304 \mathrm{~mm}^{2}$ |  |  | VFD550C43A; VFD750C43A; |
| T60006L2050W565 | $\leq 600 \mathrm{MCM}$ |  | Diagram B |  | VFD900C43A; VFD1100C43A; |
|  |  |  |  |  | VFD1320C43A; VFD1600C43A; |
|  |  |  |  |  | VFD185C63B-21; VFD220C63B-21; |
|  |  |  |  |  | VFD300C63B-21; VFD370C63B-21; |
|  |  |  |  |  | VFD450C63B-XX; VFD550C63B-XX |
| RF300X00A | $\leq 300 \mathrm{MCM}$ | $\leq 152 \mathrm{~mm}^{2}$ | Diagram A | $\begin{gathered} 1 \mathrm{C} * 12 \\ \text { or } \\ 4 \mathrm{C} * 3 \end{gathered}$ | VFD1850C43A; VFD2200C43A; |
|  |  |  |  |  | VFD2800C43A; VFD3150C43A; |
|  |  |  |  |  | VFD3550C43A; VFD4500C43A; |
|  |  |  |  |  | VFD750C63B-XX; VFD900C63B-XX; |
|  |  |  |  |  | VFD1100C63B-XX; VFD1320C63B-XX; |
|  |  |  |  |  | VFD1600C63B-XX; VFD2000C63B-XX; |
|  |  |  |  |  | VFD2500C63B-XX; VFD3150C63B-XX; |
|  |  |  |  |  | VFD4000C63B-XX; VFD4500C63B-XX; |
|  |  |  |  |  | VFD5600C63B-XX; VFD6300C63B-XX; |

Note 1: *600V insulated cable wire
Table 7-53
Note 2: Above table only considers the motor wire size
Note 3: For max. wiring quantity, please refer to Chapter 5 Main Circuit Terminal.

## Diagram A

Please put all wires through at least one core without winding.

Zero Phase Reactor


Diagram B


Diagram C

## Zero Phase Reactor



Diagram D

## Zero Phase Reactor



## Diagram E

## Zero Phase Reactor



Note 1: The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted, i.e. the cable must fit through the center hole of zero phase reactors.

Note 2: Only the phase conductors should pass through, not the earth core or screen.
Note 3: For the zero phase reactor used for signal cables, it is recommended to install near to the driver and well fixed, as to prevent vibration and pulling of the cable.

| Model* | Recommended wire <br> size | Wiring <br> method | Q'ty | Applicable cables |
| :---: | :---: | :---: | :---: | :---: |
| T60006L2050W565 | $\leqq 1$ AWG | Diagram D | 1 | D-sub |
| T60006L2040W453 | $\leqq 8$ AWG | Diagram C | 1 | Category 5e shielding ${ }^{*}$ Shielded twisted pair <br> cable $\cdot$ CAN standard cable <br> (TAP-CB05, TAP-CB10) |
| T60004L2025W622 | $\leqq 10$ AWG | Diagram E | 1 | PG card signal cable |
| T60004L2016W620 | $\leqq 12 A W G$ | Diagram E | 1 | PG card signal cable |

Table 7-54
Note 1: *The table above is for reference only, please choose the zero phase reactor based on the actual wire size that you are using.
Note 2: Some of the cables are recommended to choose bigger zero phase reactor due to its corresponded mechanical size.

Recommended max. motor wire size of zero phase reactor (included LUG width and temp. tolerance of motor cable)

| Zero phase reactor | Available max. wire size/ LUG width | Available max. AGW (1C*3) |  | Available max. AWG (4C*1) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 75C | 90C | 75C | 90C |
| RF008X00A | 13MM | 3AWG | 1AWG | 3AWG | 1AWG |
| RF004X00A | 16MM | 1AWG | 2/0AWG | 1AWG | 1/OAWG |
| RF002X00A | 36MM | 600MCM | 600MCM | 1AWG | 1/OAWG |
| RF300X00A | 73MM | 650MCM | 650MCM | 300MCM | 300MCM |
| T60006L2040W453 | 11MM | 9AWG | 4AWG | 6AWG | 6AWG |
| T60006L2050W565 | 16MM | 1AWG | 2/0AWG | 1AWG | 1/OAWG |
| T60006L2160V066 | 57MM | 600MCM | 600MCM | 300MCM | 300MCM |

Table 7-55


Unit: mm [inch]

| Model | A | B | C | D | E | F | G(Ø) | Torque |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RF008X00A | 98 | 73 | 36.5 | 29 | 56.5 | 86 | 5.5 | $<10 \mathrm{kgf} / \mathrm{cm}^{2}$ |
|  | $[3.858]$ | $[2.874]$ | $[1.437]$ | $[1.142]$ | $[2.224]$ | $[3.386]$ | $[0.217]$ |  |
| RF004X00A | 110 | 87.5 | 43.5 | 36 | 53 | 96 | 5.5 | $<10 \mathrm{kgf} / \mathrm{cm}^{2}$ |

Table 7-56


Unit: mm [inch]

| Model | A | B | C | D | E | F | G(Ø) | H | Torque |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RF002X00A | 200 | 172.5 | 90 | 78 | 55.5 | 184 | 5.5 | 22 | $<45 \mathrm{kgf}^{2} / \mathrm{cm}^{2}$ |
|  | $[7.874]$ | $[6.791]$ | $[3.543]$ | $[3.071]$ | $[2.185]$ | $[7.244]$ | $[0.217]$ | $[0.866]$ |  |

Table 7-57


Unit: mm [inch]

| Model | A | B | C | D | E | F | $\mathbf{G}(\boldsymbol{\varnothing})$ | $\mathbf{H}$ | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RF300X00A | 241 | 217 | 114 | 155 | 42 | 220 | 6.5 | 7.0 | 20 |
|  | $[9.488]$ | $[8.543]$ | $[4.488]$ | $[6.102]$ | $[1.654]$ | $[8.661]$ | $[0.256]$ | $[0.276]$ | $[0.787]$ |

## Magnetic Ring

Model number: T60006-L2040-W453


Model number: T60006-L2050-W565


Model number: T60006-L2160-V066


Model number: T60004-L2016-W620


Model number: T60004-L2025-W622


## 7-6 EMC Filter

Following table is the external EMC filter of C2000 series, user can choose corresponding zero phase reactor and suitable shielded cable length in accord to required noise emission and electromagnetic interference level to have the best configuration to suppress the electromagnetic interference. When the application does not consider RE and only needs CE to comply with C2 or C1, there is no need to install zero phase reactor in input side.

230 V model

| C2000 |  |  | Filter model name | Zero phase reactor |  | Fc | Conducted Emission |  | Radiation Emission |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | Model | Rated input current [A] |  | Input side (R/S/T) | Output side <br> (U/V/W) |  | Output shielded cable length |  | EN61800-3 |
|  |  |  |  |  |  |  | C2 | C1 |  |
| A | VFD007C23A | 6.4 | EMF021A23A | $\begin{array}{\|c\|} \text { RF008X00A } \\ \text { or } \\ \text { T60006L2040W453 } \end{array}$ | $\begin{array}{\|c\|c\|} \hline \text { RF008X00A } \\ \text { or } \\ 3 \text { T60006L2040W453 } \\ \hline \end{array}$ | $\leq 8 \mathrm{kHz}$ | 100m | 50 m | C2 |
|  | VFD015C23A | 12 |  |  |  |  |  |  |  |
|  | VFD022C23A | 16 |  |  |  |  |  |  |  |
|  | VFD037C23A | 20 |  |  |  |  |  |  |  |
| B | VFD055C23A | 28 | EMF056A23A | $\begin{array}{\|c\|} \text { RF004X00A } \\ \text { or } \\ \text { T60006L2050W565 } \end{array}$ | $\begin{array}{\|c\|} \text { RF004X00A } \\ \text { or } \\ \text { T60006L2050W565 } \\ \hline \end{array}$ |  |  |  |  |
|  | VFD075C23A | 36 |  |  |  |  |  |  |  |
|  | VFD110C23A | 52 |  |  |  |  |  |  |  |
| C | VFD150C23A | 72 | KMF3100A | $\begin{array}{\|c\|} \text { RF002X00A } \\ \text { or } \\ \text { T60006L2160V066 } \end{array}$ | $\begin{array}{\|c\|} \text { RF002X00A } \\ \text { or } \\ \text { T60006L2160V066 } \end{array}$ | $\leq 6 \mathrm{kHz}$ |  |  |  |
|  | VFD185C23A | 83 |  |  |  |  |  |  |  |
|  | VFD220C23A | 99 |  |  |  |  |  |  |  |
| D | VFD300C23A | 124 | B84143D0150R127 | N/A |  |  |  |  |  |
|  | VFD370C23A | 143 |  |  |  |  |  |  |  |
| E | VFD450C23A | 171 | B84143B0250S020 | N/A | $\begin{array}{\|c\|} \text { RF300X00A } \\ \text { or } \\ \text { T60006L2160V066 } \end{array}$ | $\leq 4 \mathrm{kHz}$ |  |  |  |
|  | VFD550C23A | 206 |  |  |  |  |  |  |  |
|  | VFD750C23A | 245 |  |  |  |  |  |  |  |
| F | VFD900C23A | 331 | B84143B0400S020 |  |  |  |  |  |  |

460 V model

| C2000 |  |  | Filter model name (U/V/W) | Zero phase reactor |  | Fc | Conducted Emission |  | Radiation Emission |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | Model | Rated input current [A] |  | Input side (R/S/T) | Output side (U/V/W) |  | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Output } \\ \text { shielded } \end{array} \\ \text { cable length } \end{array}$ |  | EN61800-3 |
|  |  |  |  |  |  |  | C2 | C1 |  |
| A | VFD007C43A | 4.3 | EMF014A43A | $\begin{gathered} \text { RF008X00A } \\ \text { or } \\ \text { T6000L2040W453 } \end{gathered}$ | $\begin{array}{\|c\|} \text { RF008X00A } \\ \text { or } \\ \text { T60006L2040W453 } \end{array}$ | $\leq 8 \mathrm{kHz}$ | 100m | 50 m | C2 |
|  | VFD015C43A | 5.9 |  |  |  |  |  |  |  |
|  | VFD022C43A | 8.7 |  |  |  |  |  |  |  |
|  | VFD037C43A | 14 | EMF018A43A |  |  |  |  |  |  |
|  | VFD040C43A | 15.5 |  |  |  |  |  |  |  |
|  | VFD055C43A | 17 |  |  |  |  |  |  |  |
| B | VFD075C43A | 20 | EMF039A43A | RF004X00AorT60006L2050W565 | $\begin{array}{\|c\|} \text { RF004X00A } \\ \text { or } \\ \text { T60006L2050W565 } \\ \hline \end{array}$ |  |  |  |  |
|  | VFD110C43A | 26 |  |  |  |  |  |  |  |
|  | VFD150C43A | 35 |  |  |  |  |  |  |  |
| C | VFD185C43A | 40 | KMF370A | $\begin{array}{\|c\|} \text { RF002X00A } \\ \text { or } \\ \text { T60006L2160V066 } \\ \hline \end{array}$ | $\begin{gathered} \text { RF002X00A } \\ \text { or } \\ \text { T60006L2160V066 } \end{gathered}$ | $\leq 6 \mathrm{kHz}$ |  |  |  |
|  | VFD220C43A | 47 |  |  |  |  |  |  |  |
|  | VFD300C43A | 63 |  |  |  |  |  |  |  |
| D0 | VFD370C43S/U | 74 |  |  |  |  |  |  |  |
| D0 | VFD450C43S/U | 101 | 4143D0150R127 |  |  |  |  |  |  |
| D | VFD550C43A | 114 | 退 | N/A |  |  |  |  |  |
| D | VFD750C43A | 157 |  |  |  | $\leq 4 \mathrm{kHz}$ |  |  |  |
| E | VFD900C43A | 167 | B84143D0200R127 | N/A | $\begin{array}{\|c\|} \text { RF300X00A } \\ \text { or } \\ \text { T60006L2160V066 } \end{array}$ |  |  |  |  |
|  | VFD1100C43A | 207 | B84143D0200R127 |  |  |  |  |  |  |
| F | VFD1320C43A | 240 | MIF3400B |  |  |  |  |  |  |
|  | VFD1600C43A | 300 |  |  |  |  |  |  |  |
| G | VFD1850C43A | 380 |  |  |  |  |  |  |  |
|  | VFD2200C43A | 400 |  |  |  |  |  |  |  |
| H | VFD2800C43A | 494 | MIF3800 |  |  |  |  |  |  |
|  | VFD3150C43A | 555 |  |  |  |  |  |  |  |
|  | VFD3550C43A | 625 |  |  |  |  |  |  |  |
|  | VFD4500C43A | 866 | B84143B1000S020 |  |  |  |  |  |  |

Table 7-60

| C2000 |  |  | Filter model name (U/V/W) | Zero phase reactor |  | Carrier Frequency | Conducted Emission | Radiation <br> Emission |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | Model | Rated Input Current <br> [A] |  | $\left\|\begin{array}{c} \text { Input } \\ \text { side } \\ (\mathrm{R} / \mathrm{S} / \mathrm{T}) \end{array}\right\|$ | Output side <br> (U/V/W) |  | Output shielded cable length | EN61800-3 |
|  |  |  |  |  |  |  | EN618000-3 C2 |  |
| D0 | VFD370C43S/U | 74 | B84143B0120R110 | N/A |  | <6kHz | 25m | *C2 |
|  | VFD450C43S/U | 101 |  |  |  |  |  |  |  |
| D | VFD550C43A | 114 | B84143B0180S020 | N/A | $\begin{gathered} \text { RF300X00A } \\ \text { or } \\ \text { T60006L2160V066 } \end{gathered}$ | $\leq 4 \mathrm{kHz}$ | 13m | *C3 |
|  | VFD750C43A | 157 |  |  |  |  |  |  |
| E | VFD900C43A | 167 | B84143B0250S020 |  |  |  |  |  |
|  | VFD1100C43A | 207 |  |  |  |  |  |  |
| F | VFD1320C43A | 240 | B84143B0400S020 |  |  |  |  |  |
|  | VFD1600C43A | 300 |  |  |  |  |  | C2 |
| G | VFD1850C43A | 380 | B84143B0600S020 |  |  | $\leq 2 \mathrm{kHz}$ |  |  |
|  | VFD2200C43A | 400 |  |  |  |  |  |  |
| H | VFD2800C43A | 494 | B84143B1000S020 |  |  |  |  | *C3 |
|  | VFD3150C43A | 555 |  |  |  |  |  |  |
|  | VFD3550C43A | 625 |  |  |  |  |  |  |
|  | VFD4500C43A | 866 |  |  |  |  |  |  |

*For Radiated Emission, the drive needs to be placed inside a cabinet.

| C2000 |  |  | Filter model name (U/V/W) | Zero phase reactor |  | Carrier Frequency | Conducted Emission | Radiation Emission |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | Model | Rated Input Current [A] |  | Input side <br> (R/S/T) | Output side (U/V/W) |  | Output shielded cable length | EN61800-3 |
|  |  |  |  |  |  |  | EN618000-3 C2 |  |
| D0 | VFD370C43S/U | 74 | B84143A0120R105 | N/A | $\leq 6 \mathrm{kHz}$ |  | 150m |  |
|  | VFD450C43S/U | 101 |  |  |  |  |  |  |
| D | VFD550C43A | 114 | B84143B0180S080 |  |  |  |  |  |
|  | VFD750C43A | 157 |  |  |  |  | C3 |  |
| E | VFD900C43A | 167 | B84143B0250S080 |  | N/A | $\leq 4 \mathrm{kHz}$ |  | C3 |
|  | VFD1100C43A | 207 |  |  |  |  |  |  |
| F | VFD1320C43A | 240 | B84143B0400S080 |  |  |  |  |  |
|  | VFD1600C43A | 300 |  |  |  |  |  |  |
| G | VFD1850C43A | 380 | B84143B0600S080 |  |  |  |  |  |
|  | VFD2200C43A | 400 |  |  |  |  |  |  |
| H | VFD2800C43A | 494 | B84143B1000S080 |  |  |  |  |  | 100m |
|  | VFD3150C43A | 555 |  |  |  |  |  |  |  |
|  | VFD3550C43A | 625 |  |  |  |  |  |  |  |
|  | VFD4500C43A | 866 |  |  |  |  |  |  |  |

*For Radiated Emission, the drive needs to be placed inside a cabinet.
Table 7-62

690 V models

| Frame | Model | Filter model name | Zero phase reactor | conducted and radiated emission |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | C2-motor cable length-50m |  |  | C3-motor cable length-100m |  |  |
|  |  |  |  | Location of zero phase reactor (Refer to below figure shown) |  |  |  |  |  |
|  |  |  |  | 1* | 2* | 3* | 1* | 2* | 3* |
| A | VFD015C53A-21 | EMF014A63A | T60006L2040W453 |  |  | 1 |  |  | 1 |
|  | VFD022C53A-21 |  |  |  |  | 1 |  |  | 1 |
|  | VFD037C53A-21 |  |  |  |  | 1 |  |  | 1 |
| B | VFD055C53A-21 | EMF027A63A |  |  | 1 | 1 |  | 1 | 1 |
|  | VFD075C53A-21 |  |  |  | 1 | 1 |  | 1 | 1 |
|  | VFD110C53A-21 |  |  |  | 1 | 1 |  | 1 | 1 |
|  | VFD150C53A-21 |  |  |  | 1 | 1 |  | 1 | 1 |
| C | VFD185C63B-21 | B84143A0050R021 | T60006L2050W565 |  |  |  |  |  |  |
|  | VFD220C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD300C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD370C63B-21 |  |  |  |  |  |  |  |  |
| D | VFD450C63B-00 | B84143A0080R021 |  |  |  |  |  | 1 | 2 |
|  | VFD550C63B-00 |  |  |  |  |  |  | 1 | 2 |
|  | VFD450C63B-21 |  |  |  |  |  |  | 1 | 2 |
|  | VFD550C63B-21 |  |  |  |  |  |  | 1 | 2 |
| E | VFD750C63B-00 | B84143B0150S021 | T60006L2160V066 |  |  |  |  |  |  |
|  | VFD900C63B-00 |  |  |  |  |  |  |  |  |
|  | VFD1100C63B-00 |  |  |  |  |  |  |  |  |
|  | VFD1320C63B-00 |  |  |  |  |  |  |  |  |
|  | VFD750C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD900C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD1100C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD1320C63B-21 |  |  |  |  |  |  |  |  |
| F | VFD1600C63B-00 | B84143B0250S021 |  |  |  |  |  |  |  |
|  | VFD2000C63B-00 |  |  |  |  |  |  |  |  |
|  | VFD1600C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD2000C63B-21 |  |  |  |  |  |  |  |  |
| G | VFD2500C63B-00 | B84143B0400S021 |  |  |  |  |  |  |  |
|  | VFD3150C63B-00 |  |  |  |  |  |  |  |  |
|  | VFD2500C63B-21 |  |  |  |  |  |  |  |  |
|  | VFD3150C63B-21 |  |  |  |  |  |  |  |  |
| H | VFD4000C63B-00 | B84143B1000S021 |  |  |  |  |  | 1 | 1 |
|  | VFD4500C63B-00 |  |  |  |  |  |  | 1 | 1 |
|  | VFD5600C63B-00 |  |  |  |  |  |  | 1 | 1 |
|  | VFD6300C63B-00 |  |  |  |  |  |  | 1 | 1 |
|  | VFD4000C63B-21 |  |  |  |  |  |  | 1 | 1 |
|  | VFD4500C63B-21 |  |  |  |  |  |  | 1 | 1 |
|  | VFD5600C63B-21 |  |  |  |  |  |  | 1 | 1 |
|  | VFD6300C63B-21 |  |  |  |  |  |  | 1 | 1 |

$※ \quad$ The number represents quantity of zero phase reactor, all the motor cable are shielded cables.
Table 7-63


## EMC Filter Dimension

EMC filter model name: EMF021A23A, EMF014A43A


EMC filter model name: EMF018A43A


EMC filter model name: EMF056A23A, EMF039A43A


EMC filter model name: KMF370A, KMF3100A


EMC filter model name: B84143D0150R127

www.maher.ir


EMC filter model name: B84143D0200R127



EMC filter model name: B84143B0250S020


SSB2143-F

EMC filter model name: B84143B0400S020


EMC filter model name: B84143B1000S020


EMC filter model name: EMF014A63A


Unit: mm [inch]

EMC filter model name: EMF027A63A


Unit: mm [inch]

EMC filter model name: B84143A0050R021


Unit: mm

EMC filter model name: B84143A0080R021


Unit: mm

EMC filter model name: B84143B0150S021


EMC filter model name: B84143B0250S021


## Chapter 7 Optional Accessories | C2000

EMC filter model name: B84143B0400S021


Unit: mm

## SSB2144-N

EMC filter model name: B84143B1000S021


Unit: mm

Following table is the suggested shielded cable length of EMC built-in models. User can choose corresponding shielded cable length in accord to required noise emission and electromagnetic interference level.

| EMC built-in model |  | Rated current (ND) | Comply with EMC (IEC 61800-3)Class C3 |  | Comply with EMC (IEC 61800-3)Class C2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | Model |  | Shielded cable length | Fc | Shielded cable length | Fc |
| A | VFD007C43E | 4.3 | 30 m | $\leq 8 \mathrm{kHz}$ | 10m | $\leq 8 \mathrm{kHz}$ |
|  | VFD015C43E | 5.9 |  |  |  |  |
|  | VFD022C43E | 8.7 |  |  |  |  |
|  | VFD037C43E | 14 |  |  |  |  |
|  | VFD040C43E | 15.5 |  |  |  |  |
|  | VFD055C43E | 17 |  |  |  |  |
| B | VFD075C43E | 20 |  |  |  |  |
|  | VFD110C43E | 26 |  |  |  |  |
|  | VFD150C43E | 35 |  |  |  |  |
| C | VFD185C43E | 40 |  | $\leq 6 \mathrm{kHz}$ |  | $\leq 6 \mathrm{kHz}$ |
|  | VFD220C43E | 47 |  |  |  |  |
|  | VFD300C43E | 63 |  |  |  |  |

Table 7-64

* Shielded cable length of Frame A should be no longer than 30 m and Frame B, C no longer than 50 m to prevent cable length from being too long, which may cause built-in EMC filter malfunction due to overheat resulting from leakage current and larger wires parasitic capacitance.


## EMC Filter Installation

All electrical equipment, including AC motor drives, will generate high frequency/ low frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMC filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMC filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMC filter are installed and wired according to user manual:

1. EN61000-6-4
2. EN61800-3: 1996
3. EN55011 (1991) Class A Group 1

## General precaution

To ensure EMC filter can maximize the effect of suppressing the interference of AC motor drive, the installation and wiring of AC motor drive should follow the user manual. In addition, be sure to observe the following precautions:

1. EMC filter and AC motor drive should be installed on the same metal plate.
2. Please install $A C$ motor drive on footprint EMC filter or install EMC filter as close as possible to the $A C$ motor drive.
3. Please wire as short as possible.
4. Metal plate should be grounded.
5. The cover of EMC filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

## Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMC filter. Be sure to observe the following precautions when selecting motor cable.

1. Use the cable with shielding (double shielding is the best).
2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
3. Remove any paint on metal saddle for good ground contact with the plate and shielding.


Figure 1


Figure 2

## Capacitor Filter

Capacitor Filter is a simple filter accessory, installed to provide simple filtering and eliminating interference.

## Installation

Installed on the input side, connect each cable on terminal R, S, T and PE. As shown in the figure below. (Please do NOT install the capacitor filter on the output side.)


Model / Specification

| Model | Capacitance of the capacitor | Temperature |
| :---: | :---: | :---: |
| CXY101-43A | $\mathrm{Cx}: 1 \mathrm{uF} \pm 20 \%$ | $-40 \sim+85^{\circ} \mathrm{C}$ |



## 7-7 Panel Mounting (MKC-KPPK)

For MKC-KPPK model, user can choose wall mounting or embedded mounting, protection level is IP66.
Applicable to the digital keypads (KPC-CC01 \& KPC-CE01)

Wall Mounting

## 7－8 Conduit Box Kit

## －Appearance

Conduit box kit is optional for VFDXXXCXXA（Frame D and above）and VFDXXXC43S，the protection will be IP20／NEMA1／UL TYPE1 after installation．

Frame D0
Applicable models
VFD370C43S／43U；VFD450SC43S／43U
Model number ${ }^{\text {『 }}$ MKC－DON1CB』

| ITEM | Description | Qty． |
| :---: | :--- | :---: |
| 1 | Screw M5 $5^{*} 0.8^{*} 10 \mathrm{~L}$ | 4 |
| 2 | Bushing Rubber 28 | 2 |
| 3 | Bushing Rubber 44 | 2 |
| 4 | Bushing Rubber 73 | 2 |
| 5 | Conduit box cover | 1 |
| 6 | Conduit box base | 1 |

Table 7－67


Frame D
Applicable models
VFD300C23A／23E；VFD370C23A／23E；VFD550C43A／43E；VFD750C43A／43E；VFD450C63B－00；
VFD550C63B－00；VFD450C63B－21；VFD550C63B－21
Model number 『 MKC－DN1CB

| ITEM | Description | Qty． |
| :---: | :--- | :---: |
| 1 | Screw M5 ${ }^{*} 0.8^{*} 10 \mathrm{~L}$ | 4 |
| 2 | Bushing Rubber 28 | 2 |
| 3 | Bushing Rubber 44 | 2 |
| 4 | Bushing Rubber 88 | 2 |
| 5 | Conduit box cover | 1 |
| 6 | Conduit box base | 1 |
| Table 7－68 |  |  |



ITEM 4

## Frame E

Applicable models
VFD450C23A／23E；VFD550C23A／23E；VFD750C23A／23E；VFD900C43A／43E；VFD1100C43A／43E；
VFD750C63B－00；VFD900C63B－00；VFD1100C63B－00；VFD1320C63B－00；VFD750C63B－21；VFD900C63B－21；
VFD1100C63B－21；VFD1320C63B－21
Model number 『MKC－EN1CB

| ITEM | Description | Qty． |
| :---: | :--- | :---: |
| 1 | Screw M5 ${ }^{*} 0.8^{*} 10 \mathrm{~L}$ | 6 |
| 2 | Bushing Rubber 28 | 2 |
| 3 | Bushing Rubber 44 | 4 |
| 4 | Bushing Rubber 100 | 2 |
| 5 | Conduit box cover | 1 |
| 6 | Conduit box base | 1 |
| Table 7－69 |  |  |



ITEM 5

Frame F
Applicable models
VFD900C23A／23E；VFD1320C43A／43E；VFD1600C43A／43E；VFD1600C63B－00；VFD2000C63B－00； VFD1600C63B－21；VFD2000C63B－21
Model number『 MKC－FN1CB 』


Frame G
Applicable models
VFD1850C43A／43E；VFD2200C43A／43E；VFD2500C63B－00；VFD3150C63B－00；VFD2500C63B－21；
VFD3150C63B－21
Model number 『 MKC－GN1CB』

| ITEM | Description | Qty． |
| :---: | :--- | :---: |
| 1 | Screw M5＊0．8＊10L | 12 |
| 2 | Bushing Rubber 28 | 2 |
| 3 | Bushing Rubber 44 | 2 |
| 4 | Bushing Rubber 130 | 3 |
| 5 | Conduit box cover | 1 |
| 6 | Conduit box base | 1 |
| Table 7－71 |  |  |



Frame H
Applicable models
VFD2800C43A; VFD3150C43A; VFD3550C43A; VFD4500C43A; VFD2800C43E; VFD3150C43E;
VFD3550C43E; VFD4500C43E; VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1
Model number 『MKC-HN1CB』

| ITEM | Description | Qty. |
| :---: | :--- | :---: |
| 1 | Screw M6 ${ }^{*} 1.0^{*} 25 \mathrm{~L}$ | 8 |
| 2 | Screw M8* ${ }^{*} 1.25^{*} 30 \mathrm{~L}$ | 3 |
| 3 | NUT M8 | 4 |
| 4 | NUT M10 | 4 |
| 5 | Bushing Rubber 28 | 4 |
| 6 | Bushing Rubber 44 | 2 |
| 7 | Bushing Rubber 130 | 4 |
| 8 | Conduit box cover 1 | 1 |
| 9 | Conduit box cover 2 | 2 |
| 10 | Conduit box cover 3 | 2 |
| 11 | Conduit box cover 4 | 2 |
| 12 | Conduit box base | 1 |
| 13 | Accessories 1 | 2 |
| 14 | Accessories 2 | 1 |
| Table 7-72 |  |  |



Conduit Box Installation

## Frame DO

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure.
Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /$ [10.4~13 lb-in.] / [1.2~1.5 Nm]

2. Remove the 5 screws shown in the following figure.

Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Install the conduit box by fasten the 5 screws shown in the following figure.

Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}] /.[2.4 \sim 2.5 \mathrm{Nm}]$

4. Fasten the 2 screws shown in the following figure.

Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$


## Frame D

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure.
Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$

2. Remove the 5 screws shown in the following figure.

Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Install the conduit box by fasten the 5 screws shown in the following figure.

Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

4. Fasten the 2 screws shown in the following figure. Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$


## Frame E

1. Loosen the 4 cover screws and lift the cover; Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$

2. Fasten the 6 screws shown in the following figure and place the cover back to the original position. Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Fasten the 4 screws shown in the following figure.

Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$


## Frame F

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure.
Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$

2. Install the conduit box by fastens the 4 screws, as shown in the following figure.

Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Install the conduit box by fasten all the screws shown in the following figure

Screw 9~12 torque: 12~15 kg-cm / [10.4~13 lb-in.] / [1.2~1.5 Nm]
Screw 13~16 torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]


## Frame G

1. On the conduit box, loosen 7 of the cover screws and remove the cover Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$.$] / [2.4~2.5 Nm]$
2. On the drive, loosen 4 of the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure.
Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.5 \mathrm{Nm}]$

3. Remove the top cover and loosen the screws.

M5 Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /$ [20.8~22.6 lb-in.] / [2.4~2.5 Nm]
M8 Screw torque: $100 \sim 120 \mathrm{~kg}-\mathrm{cm} /[86.7 \sim 104.1 \mathrm{lb}-\mathrm{in}] /.[9.8 \sim 11.8 \mathrm{Nm}]$

4. Install the conduit box by fastening all the screws shown in the following figure.

M5 Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}] /.[2.4 \sim 2.5 \mathrm{Nm}]$
M8 Screw torque: $100 \sim 120 \mathrm{~kg}-\mathrm{cm} /[86.7 \sim 104.1 \mathrm{lb}-\mathrm{in}] /.[9.8 \sim 11.8 \mathrm{Nm}]$

5. Fasten all the screws.

Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

6. Place the cover back to the top and fasten the screws (as shown in the figure). Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /$ [10.4~13 lb-in.] / [1.2~1.5 Nm]


## Frame H

Assembly for Frame H3 (Conduit Box)

1. Loosen the 3 screws and remove the cover of conduit box H 3 as preparation.

2. Loosen the screws as below figure shown.

3. Fasten the M6 screws to locations shown in the following figure.

Screw Torque: 35~45 kg-cm / [30.3~39 lb-in.] / [3.4~4.4 Nm]

4. Install the conduit box by fasten all the screws shown in the following figure.

Screw 1~6: M6 screw torque: $55 \sim 65 \mathrm{~kg}-\mathrm{cm} /[47.7 \sim 56.4 \mathrm{lb}-\mathrm{in}]$ / [5.4~6.4 Nm]
Screw 7~9: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]
Screw 10~13: M10 screw torque: $250 \sim 300 \mathrm{~kg}-\mathrm{cm} /[216.9 \sim 260.3 \mathrm{lb}-\mathrm{in}] /[24.5 \sim 29.4 \mathrm{Nm}]$
Screw 14~17: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]

5. Fasten the 3 covers and screws, which were loosen from step 1, to the original location. Screw Torque: $35 \sim 45 \mathrm{~kg}-\mathrm{cm} /[30.3 \sim 39 \mathrm{lb}-\mathrm{in}] /.[3.4 \sim 4.4 \mathrm{Nm}]$

6. Installation complete.


Assembly for Frame H2 (Straight Stand)

1. Loosen the 3 screws and remove the cover of conduit box.

2. Remove the 4 covers of conduit box, and fasten the loosen screws back to the original location.

Screw Torque: $100 \sim 110 \mathrm{~kg}-\mathrm{cm} /[86.7 \sim 95.4 \mathrm{lb}-\mathrm{in}]$ / [9.8~10.8 Nm]

3. Remove the parts and screws as below figure shown.

4. Fasten the M6 screws to locations shown in below figure.

Screw Torque: 35~45 kg-cm / [30.3~39 lb-in.] / [3.4~4.4 Nm]

5. Install conduit box and accessories by fasten all the screws shown in the following figure.

Screw 1~6: M6 screw torque: $55 \sim 65 \mathrm{~kg}-\mathrm{cm} /[47.7 \sim 56.4 \mathrm{lb}-\mathrm{in}]$ / [5.4~6.4 Nm]
Screw 7~9: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]
Screw 10~13: M10 screw torque: 250~300 kg-cm / [216.9~260.3 lb-in] / [24.5~29.4 Nm]
Screw 14~17: M8 screw torque: 100~110 kg-cm / [86.7~95.4 lb-in] / [9.8~10.8 Nm]

6. Installation complete.


## 7-9 Fan Kit

Frames of the fan kit
NOTE: The fan does not support hot swap function. For replacement, turn the power off before replacing the fan.
Frame A
Applicable Model
VFD015C23A; VFD022C23A; VFD037C23A;
VFD022C33A/43E; VFD037C43A/43E;
VFD040C43A/43E; VFD055C43A/43E;
VFD015C53A-21; VFD022C53A-21; VFD037C53A-21
Frame B
Applicable Model
VFD055C23A; VFD075C43A/43E; VFD055C53A-21;
VFD075C53A-21; VFD110C53A-21; VFD150C53A-21
Frame B
Applicable Model
VFD075C23A; VFD110C23A; VFD110C43A/43E;
VFD150C43A/43E

| Frame C | Capacitor Fan Model "MKC-CFKB1" |
| :---: | :---: |
| Applicable Model <br> VFD150C23A; VFD185C23A; VFD220C23A |  |
| Frame C | Capacitor Fan Model "MKC-CFKB2" |
| Applicable Model <br> VFD185C43A/43E; VFD220C43A/43E; VFD300C43A/43E |  |
| Frame C | Heat sink Fan "MKC-CFKM" |
| Following Model use one set of MKC-CFKM: VFD185C43A/E; VFD220C43A/E; VFD300C43A <br> Following Model use two sets of MKC-CFKM: VFD150C23A; VFD185C23A; VFD220C23A; VFD300C43E |  |
| Frame C | Heat sink Fan Capacitor Fan <br> 'MKC-CFKM1" "MKC-CFKB3" |
| Applicable Model <br> VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21 |  |
| Frame D0 | Heat sink Fan Model Capacitor Fan Model <br> "MKC-D0FKM" "MKC-DFKB" |
| Applicable Model <br> VFD370C43S/43U; VFD450C43S/43U; |  |


| Frame D | Heat sink Fan Model"MKC-DFKM" $\quad$Capacitor Fan Model <br> "MKC-DFKB" |
| :---: | :---: |
| Applicable Model <br> VFD300C23A/23E; VFD370C23A/23E; VFD550C43A/43E; VFD750C43A/43E; VFD450C63B-00; VFD550C63B-00; VFD450C63B-21; VFD550C63B-21 |  |
| Frame E <br> Applicable Model <br> VFD450C23A/23E; VFD550C23A/23E | Heat sink Fan Model "MKC-EFKM1" |
| Frame E <br> Applicable Model <br> VFD750C23A/23E; VFD900C43A/43E; <br> VFD1100C43A/43E | Heat sink Fan Model "MKC-EFKM2" |
| Frame E | Heat Sink Fan Model "MKC-EFKM3" |
| Applicable Model <br> VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21 |  |


| Frame E | Capacitor Fan Model "MKC-EFKB" |
| :---: | :---: |
| Applicable Model VFD450C23A/23E; VFD550C23A/23E; VFD750C23A/23E; VFD900C43A/43E; VFD1100C43A/43E; VFD750C63B-00; VFD750C63B-21; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21 |  |
| ```Frame F Applicable Model VFD900C23A/23E; VFD1320C43A/43E; VFD1600C43A/43E; VFD1600C63B-00; VFD2000C63B-00; VFD1600C63B-21; VFD2000C63B-21``` | Heat sink Fan Model "MKC-FFKM" |
| ```Frame F Applicable Model VFD900C23A/23E; VFD1320C43A/43E; VFD1600C43A/43E; VFD1600C63B-00; VFD2000C63B-00; VFD1600C63B-21; VFD2000C63B-21``` | Capacitor Fan Model "MKC-FFKB" |
| ```Frame G Applicable Model VFD1850C43A/43E; VFD2200C43A/43E VFD2500C63B-00; VFD3150C63B-00; VFD2500C63B-21; VFD3150C63B-21``` | Heat sink Fan Model "MKC-GFKM" |

Frame H

Applicable Model
Following models use 2 sets of MKC-HFKM fan kit.
VFD2800C43A/43E; VFD3150C43A/43E; VFD3550C43A/43E; VFD4500C43A/43E; VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1

Heat sink Fan Model "MKC-HFKM"

Frame H

Applicable Model
Following models use two sets of MKC-HFKM1:
VFD4000C63B-00; VFD4000C63B-21

Following models use three sets of MKC-HFKM1:
VFD4500C63B-00; VFD4500C63B-21;
VFD5600C63B-00; VFD5600C63B-21;
VFD6300C63B-00; VFD6300C63B-21

Heat sink Fan Model "MKC-HFKM1"


Fan Removal
Frame A
Model "MKC-AFKM" : Heat Sink Fan
Applicable model
VFD015C23A; VFD022C23A; VFD037C23A; VFD022C43A/43E; VFD037C43A/43E; VFD040C43A/43E; VFD055C43A/43E; VFD015C53A-21; VFD022C53A-21; VFD037C53A-21

1. Refer to Figure 1, press the tabs on both side of the fan to successfully remove the fan.


Figure 1
2. Disconnect the power terminal before removing the fan. (As shown below.)


Figure 2

## Frame B

Model "MKC-BFKM1" Heat Sink Fan
Applicable model
VFD055C23A; VFD075C43A/43E; VFD055C53A-21; VFD075C53A-21; VFD110C53A-21; VFD150C53A-21

1. Refer to Figure 1, press the tab on both side of the fan to successfully remove the fan.


Figure 1
2. Disconnect the power terminal before removing the fan. (As shown below.)


Figure 2

## Frame B

Model "MKC-BFKM2" Heat Sink Fan
Applicable model
VFD075C23A; VFD110C23A; VFD110C43A/43E; VFD150C43A/43E

1. Refer to Figure 1, press the tab on both side of the fan to successfully remove the fan.


Figure 1
2. Disconnect the power terminal before removing the fan. (As shown below.)


Figure 2

## Frame B

Model "MKC-BFKB" Capacitor Fan
Applicable model
VFD055C23A; VFD075C23A; VFD110C23A; VFD075C43A/43E; VFD110C43A/43E; VFD150C43A/43E; VFD055C53A-21; VFD075C53A-21; VFD110C53A-21; VFD150C53A-21

Disconnect fan power and pull out the fan by using flathead screwdriver. (As shown in the larger picture)
Disconnect fan power and pull out the fan by flathead screwdriver

Pay attention to direction of the latch during the installation


## Frame C

Model "MKC-CFKM / MKC-CFKM1" Heat Sink Fan

## Applicable model

Single fan kit applicable models (only fan kit 1 is required to be installed):
VFD185C43A/E; VFD220C43A/E; VFD300C43A; VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21
Duo fan kit applicable models (both fan kit 1 and 2 are required to be installed):
VFD150C23A; VFD185C23A; VFD220C23A; VFD300C43E

1. (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver.


Figure 1
2. (As shown in Figure 2), remove the power connector, loosen the screw and remove the fan kit. When installing the fan kit, have the label on the fan kit facing inside of the motor drive.
Screw's torque force: $10 \sim 12 \mathrm{~kg}-\mathrm{cm} /[8.7 \sim 10.4 \mathrm{lb}-\mathrm{in}] /.[1.0 \sim 1.2 \mathrm{Nm}]$


Figure 2

## Frame C

Model "MKC-CFKB1" Capacitor Fan
Applicable model
VFD150C23A; VFD185C23A; VFD220C23A
Model "MKC-CFKB2" Capacitor Fan
Applicable model
VFD185C43A/43E; VFD220C43A/43E; VFD300C43A/43E

## Model "MKC-CFKB3" Capacitor Fan

Applicable model
VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21
Disconnect fan power and pull out the fan by using flathead screwdriver. (As shown in the larger picture)
Disconnect fan power and pull out the fan by flathead screwdriver.

Pay attention to direction of the latch during the installation.


Figure 1

Frame D0
Model "MKC-DFKB" Capacitor Fan
Applicable model

## VFD370C43S/43U; VFD450C43S/43U

1. Loosen screw 1 and screw 2 , press the tab on the right and left to remove the cover, follow the direction the arrows indicate. Press on top of digital keypad to properly remove it. Screw 1, 2 Torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /$ [10.4~13 lb-in.] / [1.2~1.5 Nm]


Figure 1
3. Loosen screw 4 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw 4 Torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm} /[8.7 \sim 10.4 \mathrm{lb}-\mathrm{in}$. [1.0~1.2 Nm]


Figure 3
Frame D0
Model "MKC-DOFKM" Heat Sink Fan
Applicable model
VFD370C43S/43U; VFD450C43S/43U

1. Loosen the screw and remove the fan kit. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in} . /[2.4 \sim 2.5 \mathrm{Nm}]$
2. (As shown Figure 1) Before pulling out the fan, make sure the fan power is disconnected.


Figure 1

Frame D
Model "MKC-DFKB" Capacitor Fan
Applicable model
VFD300C23A/23E; VFD370C23A/23E; VFD550C43A/43E; VFD750C43A/43E; VFD450C63B-00; VFD550C63B-00;
VFD450C63B-21; VFD550C63B-21

1. (Figure 1) Loosen screw 1 and screw 2, press the tab on the right and the left to remove the cover, follow the direction the arrows indicate in the following figure. Press on the top of digital keypad to properly remove it. Screw 1, 2 Torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}$. [1.2~1.5 Nm]

2. (Figure 2) Loosen screw 3 \& 4, press the tab on the right and the left to remove the cover. Screw 3, 4 Torque: 6~8 $\mathrm{kg}-\mathrm{cm} /[5.2 \sim 6.9 \mathrm{lb}-\mathrm{in}] /.[0.6 \sim 0.8 \mathrm{Nm}]$


Figure 2
Figure 1
3. Loosen screw 5 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw 5 Torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm} /[8.6 \sim 10.4 \mathrm{lb}-\mathrm{in}] /.[1.0 \sim 1.2 \mathrm{Nm}]$


Figure 3
Frame D
Model "MKC-DFKM" Heat Sink Fan
Applicable model
VFD300C23A/23E; VFD370C23A/23E; VFD550C43A/43E; VFD750C43A/43E; VFD450C63B-00; VFD550C63B-00; VFD450C63B-21; VFD550C63B-21

1. Loosen the screw and remove the fan kit. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}] /.[2.4 \sim 2.5 \mathrm{Nm}]$
2. (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver.


Figure 1

## Frame E

Applicable model
Applicable for MKC-EFKM1: VFD450C23A/23E; VFD550C23A/23E
Applicable for MKC-EFKM2: VFD750C23A/23E; VFD900C43A/43E; VFD1100C43A/43E
Applicable for MKC-EFKM3: VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21
Applicable for MKC-EFKB: VFD450C23A/23E; VFD550C23A/23E; VFD750C23A/23E; VFD900C43A/43E; VFD1100C43A/43E; VFD750C63B-00; VFD750C63B-21; VFD900C63B-00; VFD900C63B-21; VFD1100C63B-00; VFD1100C63B-21; VFD1320C63B-00; VFD1320C63B-21

## Model "MKC-EFKM1" Heat Sink Fan

1. Loosen screw 1~4 (figure 1) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw1~4 Torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$. [2.4~2.5 Nm]

Figure 1

Model "MKC-EFKM2" / "MKC-EFKM3" Heat Sink Fan

1. Loosen screw 1~4 (figure 2) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw1~4 Torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$. [2.4~2.5 Nm]


Figure 2

## Model "MKC-EFKB" Capacitor Fan

1. Loosen screw 1~2 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw1~2 Torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]


Figure 3

Frame F
Applicable model
VFD900C23A/23E; VFD1320C43A/43E; VFD1600C43A/43E; VFD1600C63B-00; VFD2000C63B-00; VFD1600C63B-21; VFD2000C63B-21

Fan model "MKC-FFKM" Heat Sink Fan
Loosen the screws and plug out the power of fan before removing (figure 1).
Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$.$] / [2.4~2.5 Nm]$


Figure 1

## Fan model "MKC-FFKB" Capacitor Fan

1. Loosen the screw (figure 1) and removes the cover. Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}$.
[1.2~1.5 Nm]


Figure 1
2. Loosen the screw (figure 2) and removes the cover. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$.
[2.4~2.5 Nm]


Figure 2
3. Loosen the screws and remove the fan. (figure 3 and figure 4) Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}] /.[2.4 \sim 2.5 \mathrm{Nm}]$


Figure 3


Figure 4

Frame G
Applicable model
VFD1850C43A/43E; VFD2200C43A/43; VFD2500C63B-00; VFD3150C63B-00; VFD2500C63B-21; VFD3150C63B-21

## Fan model "MKC-GFKM" Heat Sink Fan

1. Loosen the screw (figure 1) and remove the cover. Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13.1 \mathrm{lb}-\mathrm{in}$.
[1.2~1.5 Nm]


Figure 1
4. Loosen screw 1, 2, 3 and remove the protective ring (as shown in figure 3) Screw torque: 14~16 kg-cm / [12.2~13.9 lb-in.] / [1.4~1.6 Nm]


Figure 3
6. For old drivers switching new fans, please follow below steps:
Loosen screws 1~5, remove the cover (as below figure shown) M4 screw torque: $14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.9 \mathrm{lb}-\mathrm{in}] /$ [1.4~1.6 Nm]


Figure 5
2. For 1~8 shown in the figure 2: Loosen the screws Screw torque: $35 \sim 40 \mathrm{~kg}-\mathrm{cm} /[30.4 \sim 34.7 \mathrm{lb}-\mathrm{in}$.
[3.4~3.9 Nm]
3. For 9~11 shown in the figure 2: Loosen the screws and removes the cover. Screw M4 torque: $14 \sim 16 \mathrm{~kg}-\mathrm{cm} /$
[12.2~13.9 lb-in.] / [1.4~1.6 Nm]


Figure 2
5. Lift the fan by putting your finger through the protective holes, as indicates in 1 and 2 on the figure 4.


Figure 4
7. Add cable model 3864483201 to connect the power board and fan connector. (The cable 3864483201 goes with the fan as accessory)


Figure 6

Frame H
Applicable model
VFD2800C43A/43E; VFD3150C43A/43E; VFD3550C43A/43E; VD4500C43A/43E; VFD2800C43E-1; VFD3150C43E-1; VFD3550C43E-1; VFD4500C43E-1

## Fan model "MKC-HFKM" Heat Sink Fan

1. Loosen the screw 1~4 and remove the top cover (figure 1) Screw torque: $14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.9 \mathrm{lb}-\mathrm{in}$.
[1.4~1.6 Nm]


Figure 1
3. Press the latch to disconnect fan power (figure 3).


Figure 3
2. Loosen the screw $5 \sim 12$ and remove the top cover (figure 2). Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$. [2.4~2.5 Nm]


Figure 2
4. Loosen the screw 13~18 and remove the fan. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}] /.[2.4 \sim 2.5 \mathrm{Nm}]$ (figure 4)


Figure 4

1. Loosen the screw 1~4 and remove the top cover (figure 1) Screw torque: $14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.9 \mathrm{lb}-\mathrm{in}$.
[1.4~1.6 Nm]


Figure 1
3. Disconnect the fan connector (figure 3).


Figure 3
2. Loosen the screw 1~8 and remove the top cover (figure 2). Screw torque: 24~26kg-cm / [20.8~22.6 lb-in.]/
[2.4~2.5 Nm]


Figure 2
4. Loosen screws 1~4 (as shown below) and remove the fan. Make sure the fan is disconnected when removing. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}] /.[2.4 \sim 2.5 \mathrm{Nm}]$ (figure 4)


Figure 4

Frame H
Applicable model
VFD4500C63B-00; VFD5600C63B-00; VFD6300C63B-00; VFD4500C63B-21; VFD5600C63B-21; VFD6300C63B-21

## Fan model "MKC-HFKM1" Heat Sink Fan

1. Loosen the screw 1~4 and remove the top cover (figure 1) Screw torque: $14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.9 \mathrm{lb}-\mathrm{in}$.
[1.4~1.6 Nm]


Figure 1
3. Disconnect the fan connector (figure 3).


Figure 3
2. Loosen the screw 1~8 and remove the top cover (figure 2). Screw torque: 24~26kg-cm / [20.8~22.6 lb-in.]/
[2.4~2.5 Nm]


Figure 2
4. Loosen screws 1~6 (as shown below) and remove the fan. Make sure the fan is disconnected when removing. Screw torque: 24~26kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm] (figure 4)


Figure 4

## 7－10 Flange Mounting Kit

Applicable Models，Frame A～F Frame A
${ }^{\text {『 }}$ MKC－AFM1』

Applicable model
VFD015C23A；VFD022C23A；VFD022C43A／43E；VFD015C53A－21；VFD022C53A－21；VFD037C53A－21


Accessories 1＊1


Accessories 2＊2

Screw 1 ＊4 M3＊P 0．5；L＝6mm

Screw 2＊8 M6＊P 1．0；L＝16mm
${ }^{『}$ MKC－AFM』
Applicable model
VFD007C23A；VFD007C43A／43E；VFD015C43A／43E；VFD037C23A；VFD037C43A／43E；VFD040C43A／43E；

## VFD055C43A／43E



Accessory 2＊2

Screw＊8
M6＊P 1．0；L＝16mm

Accessory t 3＊2

Cutout dimension



## ${ }^{『}$ MKC-AFM1』Installation

1. Install accessory 1 by fastening 4 of the screw 1 (M3) (figure 1). Screw torque: $6 \sim 8 \mathrm{~kg}-\mathrm{cm} /[5.21 \sim 6.94 \mathrm{lb}-\mathrm{in}$. [0.6~0.8 Nm]


Figure 1
2. Install accessory $2 \& 3$ by fastening 2 of the screw 2 (M6) (figure 2 ). Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /$ [21.7~26 Ib-in.]/ [2.5~2.9 Nm]


Figure 2
3. Install accessory 2 \& 3 by fastening 2 of the screw 2 (M6) (figure 3 ). Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26$ lb-in.] / [2.5~2.9 Nm]


Figure 3
4. Plate installation, place 4 of the screw 2 (M6) (figure 4) through accessory $2 \& 3$ and the plate then fasten the screws. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26 \mathrm{lb}-\mathrm{in}] /.[2.5 \sim 2.9 \mathrm{Nm}]$


Figure 4

## ${ }^{『}$ MKC-AFM』 Installation

1. Fasten screw*2 (M6) and accessory 2 \& 3. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26 \mathrm{lb}-\mathrm{in}] /.[2.5 \sim 2.9 \mathrm{Nm}]$ (figure 1)


Figure 1
2. Fasten screw*2 (M6) and accessory 2 \& 3 . Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26 \mathrm{lb}-\mathrm{in}] /.[2.5 \sim 2.9 \mathrm{Nm}]$ (figure 2)


Figure 2
3. Plate installation, place 4 of the screw * 4 (M6) through accessory $2 \& 3$ and the plate then fasten the screws. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26 \mathrm{lb}-\mathrm{in}] /.[2.5 \sim 2.9 \mathrm{Nm}]$ (figure 3)


Figure 3

## Frame B

${ }^{\text {『 }}$ MKC-BFM』
Applicable model
VFD055C23A; VFD075C23A; VFD110C23A; VFD075C43A/43E; VFD110C43A/43E; VFD150C43A/43E; VFD055C53A-21; VFD075C53A-21; VFD110C53A-21; VFD150C53A-21


Accessory $1^{* 2}$


Accessory 2*2

Cutout dimension



## 『MKC-BFM』 Installation

1. Install accessory $1 \& 2$ by fastening 4 of the screw 1 (M8). Screw torque: $40 \sim 45 \mathrm{~kg}-\mathrm{cm} /[34.7 \sim 39.0 \mathrm{lb}-\mathrm{in}$. [3.9~4.4 Nm] (As shown in the following figure)

2. Plate installation, place 6 of the screw 2 (M6) through accessory $1 \& 2$ and the plate then fasten the screws. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26 \mathrm{lb}-\mathrm{in}] /.[2.5 \sim 2.9 \mathrm{Nm}]$ (As shown in the following figure)


Frame C
『MKC-CFM』
Applicable model
VFD150C23A; VFD185C23A; VFD220C23A; VFD185C43A/43E; VFD220C43A/43E; VFD300C43A/43E; VFD185C63B-21; VFD220C63B-21; VFD300C63B-21; VFD370C63B-21



Accessory 2*2

Screw 1*4~M8*P 1.25;
Screw 2*8~M6*P 1.0

Cutout dimension Unit: mm [inch]


${ }^{『}$ MKC-CFM』 Installation

1. Install accessory $1 \& 2$ by fastening 4 of the screw $1(\mathrm{M} 8)$. Screw torque: $50 \sim 55 \mathrm{~kg}-\mathrm{cm} /[43.4 \sim 47.7 \mathrm{lb}-\mathrm{in}$. [4.9~5.4 Nm] (As shown in the following figure)

2. Plate installation, place 8 of the screw 2 (M6) through Accessory $1 \& 2$ and the plate then fasten the screws. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm} /[21.7 \sim 26 \mathrm{lb}-\mathrm{in}] /.[2.5 \sim 2.9 \mathrm{Nm}]$ (As shown in the following figure)


## Frame D0

## Applicable model

VFD370C43S/U; VFD450C43S/U
Cutout dimension
Unit: mm [inch]


Frame D
Applicable model
VFD300C23A/23E; VFD370C23A/23E; VFD550C43A/43E; VFD750C43A/43E; VFD450C63B-00; VFD550C63B-00;
VFD450C63B-21; VFD550C63B-21
Cutout dimension Unit: mm [inch]


## Frame E

Applicable model
VFD450C23A/23E; VFD550C23A/23E; VFD750C23A/23E; VFD900C43A/43E; VFD1100C43A/43E; VFD750C63B-00; VFD900C63B-00; VFD1100C63B-00; VFD1320C63B-00; VFD750C63B-21; VFD900C63B-21; VFD1100C63B-21; VFD1320C63B-21

Cutout dimension Unit: mm [inch]


## Frame D0 \& D \& E

1. Loosen 8 screws and remove Fixture 2 (as shown in the following figure).

2. Fasten 4 screws (as shown in the following figure). Screw torque: 24~26 kg-cm / [20.8~22.6 lb-in.] / [2.4~2.5 Nm]

3. Loosen 10 screws and remove Fixture 1 (as shown in the following figure).

4. Fasten 4 screws (as shown in the following figure). Screw torque: $30 \sim 32 \mathrm{~kg}-\mathrm{cm} /$ [ $26.0 \sim 27.8 \mathrm{lb}-\mathrm{in}.] /$ [2.9~3.1 Nm].

5. Fasten 5 screws (as shown in the following figure). Screw torque: $30 \sim 32 \mathrm{~kg}-\mathrm{cm} /[26.0 \sim 27.8 \mathrm{lb}-\mathrm{in}$. [2.9~3.1 Nm]

6. Fasten 5 screws (as shown in the following figure). Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm} /[20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}$. [2.4~2.5 Nm]

7. Place 4 screws (M10) through Fixture $1 \& 2$ and the plate then fasten the screws. (as shown in the following figure)
Frame D0/D M10*4
Screw torque: 200~240 kg-cm / [173.6~208.3 lb-in.] / [19.6~235 Nm]
Frame E M12*4
Screw torque: $300 \sim 400 \mathrm{~kg}-\mathrm{cm} /[260 \sim 347$ lb-in.] / [29.4~39.2 Nm]


## Frame F

Applicable model
VFD900C23A/23E; VFD1320C43A/43E; VFD1600C43A/43E; VFD1600C63B-00; VFD2000C63B-00; VFD1600C63B-21; VFD2000C63B-21

## Cutout dimension

Unit: mm [inch]


Frame F

5. Place 4 of the M12 screws through Fixture 1\&2 and plate then fasten the screws.
Screw torque: 300~400 kg-cm / [260~347 lb-in.]/ [29.4~39.2 Nm]


## 7－11 Power Terminal Kit

${ }^{\text {『 MKC－PTCG』（Applicable for Frame G models－VFDXXXCXXA）}}$
Applicable model
VFD1850C43A；VFD2200C43A
（The MKC－PTCG is optional for the above models，after installation，the 12 plus will be 6 plus．）


## 『MKC－PTCG』Installation

1．Loosen the 4 screws on the cover，as shown in the following figure．Screw Torque：12～15 kg－cm／［10．4～13 $\mathrm{lb}-\mathrm{in}] /[1.2 \sim 1.5 \mathrm{Nm}]$


2．Remove the 5 screws from the FR4 board，as shown in the following figure．（The FR4 board is not needed after the installation of the power terminal kit）．Screw Torque： $12 \sim 15 \mathrm{~kg}-\mathrm{cm} /[10.4 \sim 13 \mathrm{lb}-\mathrm{in}] /[1.2 \sim 1.5 \mathrm{Nm}]$

3. Loosen the upper M8 nuts (1~6) with a sleeve wrench ( 12 mm of the sleeve). M8 Torque: $90 \mathrm{~kg} /[78.1 \mathrm{lb}-\mathrm{in}]$ / [8.8 Nm]

4. Install the 3pcs copper assy., as shown in the following figure 1. Fasten the upper M8 nuts (1~6) with a sleeve wrench ( 12 mm of the sleeve), as shown in the figure 2 below.

M8 Torque: 180 kg-cm / [156.2 lb-in] / [17.65 Nm]


Figure 1

5. Put the cover back and fasten the screws as shown in the figure below. Screw Torque: 12~15 kg-cm / [10.4~13 lb-in] / [1.2~1.5 Nm]


## 7-12 USB/RS-485 Communication Interface IFD6530

## . Warning

$\checkmark \quad$ Please thoroughly read this instruction sheet before installation and putting it into use.
$\checkmark \quad$ The content of this instruction sheet and the driver file may be revised without prior notice.
Please consult our distributors or download the most updated instruction/ driver version at http://www.delta.com.tw/product/em/control/cm/control cm main.asp

## 1. Introduction

IFD6530 is a convenient RS485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 Kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABG products to your PC.

Applicable Models: All DELTA IABG products.
(Application \& Dimension)


## 2. Specifications

| Power supply | No external power is needed |
| :--- | :--- |
| Power consumption | 1.5 W |
| Isolated voltage | $2,500 \mathrm{~V}$ Dc |
| Baud rate | $75 \mathrm{Kbps}, 150 \mathrm{Kbps}, 300 \mathrm{Kbps}, 600 \mathrm{Kbps}, 1,200 \mathrm{Kbps}, 2,400 \mathrm{Kbps}, 4,800 \mathrm{Kbps}, 9,600 \mathrm{Kbps}$, <br> $19,200 \mathrm{Kbps}, 38,400 \mathrm{Kbps}, 57,600 \mathrm{Kbps}, 115,200 \mathrm{Kbps}$ |
| RS-485 connector | RJ-45 |
| USB connector | A type (plug) |
| Compatibility | Full compliance with USB V2.0 specification |
| Max. cable length | RS-485 Communication Port: 100 m |
| Support RS-485 half-duplex transmission |  |


|  |  | PIN | Description |
| :---: | :---: | :---: | :---: |
|  |  | 1 | Reserved |
|  |  | 2 | Reserved |
|  |  | 3 | GND |
|  |  | 4 | SG- |


| PIN | Description |
| :---: | :---: |
| 5 | SG+ |
| 6 | GND |
| 7 | Reserved |
| 8 | +9 V |

## 3. Preparations before Driver Installation

Please extract the driver file (IFD6530_Drivers.exe) by following steps.
You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.
Note: DO NOT connect IFD6530 to PC before extracting the driver file.

## STEP 1



## STEP 3



STEP 2


STEP 4


## STEP 5

You should have a folder marked SiLabs under drive C. $\mathrm{c}: \backslash$ SiLabs

## 4. Driver Installation

After connecting IFD6530 to PC, please install driver by following steps.
STEP 1


STEP 2




STEP 4


STEP 5
Repeat Step 1 to Step 4 to complete COM PORT setting.

## 5. LED Display

1. Steady Green LED ON: power is ON.
2. Blinking orange LED: data is transmitting.
[This page intentionally left blank]

## Chapter 8 Option Cards

8-1 Option Card Installation

8-2 EMC-D42A -- Extension card for 4-point digital input/ 2-point digital input

8-3 EMC-D611A -- Extension card for 6-point digital input (110VAC input voltage)

8-4 EMC-R6AA -- Relay output extension card (6-point N.O. output contact)

8-5 EMC-A22A -- Extension card for 2-point analog input/ 2-point analog output

8-6 EMC-BPS01 -- +24V power card

8-7 EMC-PG01L / EMC-PG02L -- PG card (Line driver)
8-8 EMC-PG01O / EMC-PG02O -- PG card (Open collector)
8-9 EMC-PG01U / EMC-PG02U -- PG card (ABZ Incremental encoder signal/ UVW
Hall position signal input)

8-10 EMC-PG01R -- PG card (Resolver)
8-11 CMC-MOD01 -- Communication card, Modbus TCP
8-12 CMC-PD01 -- Communication card, PROFIBUS DP
8-13 CMC-DN01 -- Communication card, DeviceNet
8-14 CMC-EIP01 -- Communication card, EtherNet/IP
8-15 CMC-EC01 -- Communication card, EtherCAT

8-16 CMC-PN01 -- Communication card, PROFINET
8-17 EMC-COP01 -- Communication card, CANopen
8-18 Delta Standard Fieldbus Cables

Please select applicable option cards for your drive or contact local distributor for suggestion.
To prevent drive damage during installation, please remove the digital keypad and the cover before wiring. Refer to the following instruction.

## 8-1 Option Card Installation

## 8-1-1 Remove covers

Frame A-C
Screw Torque: 8-10 kg-cm / [6.9-8.7 lb-in.] / [0.8-1.0 Nm]


Frame D0
Screw Torque: 8-10 kg-cm / [6.9-8.7 lb-in.] / [0.8-1.0 Nm]


Frame D
Screw Torque: 8-10 kg-cm / [6.9-8.7 lb-in.] / [0.8-1.0 Nm]


## Frame E

Screw Torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [ 1.2-1.5 \mathrm{Nm}$ ]


## Frame F

Screw Torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [ 1.2-1.5 \mathrm{Nm}$ ]


Frame G
Screw Torque: $12-15 \mathrm{~kg}-\mathrm{cm} /[10.4-13 \mathrm{lb}-\mathrm{in}$.$] / [1.2-1.5 Nm]$


Frame H
Screw Torque: 14-16 kg-cm / [12.15-13.89 lb-in.] / [1.4-1.6 Nm]


8-1-2 Option Card Installation Location
(3)
(4)


1 RJ45 (Socket) for digital keypad KPC-CC01 Please refer to CH 10 Digital Keypad for more details on KPC-CC01.

Please refer to CH 10 Digital Keypad for more details on optional accessory RJ45 extension cable.

2 Communication extension card (Slot 1) CMC-MOD01; CMC-PD01; CMC-DN01; CMC-EIP01; EMC-COP01; CMC-EC01; CMC-PN01

3 I/O \& Relay extension card (Slot 3)
EMC-D42A; EMC-D611A; EMC-R6AA;
EMC-BPS01; EMC-A22A
4 PG Card (Slot 2)
EMC-PG01L; EMC-PG02L; EMC-PG01O; EMC-PG02O;
EMC-PG01U; EMC-PG02U; EMC-PG01R;

Screws Specification for option card terminals:

| EMC-D42A; EMC-D611A; | Wire gauge | $0.2-0.5 \mathrm{~mm}^{2}[26-20 \mathrm{AWG}]$ |
| :---: | :--- | :--- |
|  | Torque | $5 \mathrm{~kg}-\mathrm{cm} /[4.4 \mathrm{lb}-\mathrm{in}] /[0.5 \mathrm{Nm}]$ |
| EMC-BPS01 | Wire gauge | $0.2-0.5 \mathrm{~mm}^{2}[26-20 \mathrm{AWG}]$ |
|  | Torque | $8 \mathrm{~kg}-\mathrm{cm} /[7 \mathrm{lb}-\mathrm{in}] /[0.8 \mathrm{Nm}]$ |
| EMC-PG01L; EMC-PG01O <br> EMC-PG01R; EMC-PG01U | Wire gauge | $0.2-0.5 \mathrm{~mm}^{2}[26-20 \mathrm{AWG}]$ |
|  | Torque | $2 \mathrm{~kg}-\mathrm{cm} /[1.73 \mathrm{lb}-\mathrm{in}] /[0.2 \mathrm{Nm}]$ |

I/O \& Relay extension card (Slot 3)


PG card (Slot 2)

EMC-PG01O / EMC-PG02O


EMC-PG01U / EMC-PG02U


EMC-PG01L / EMC-PG02L


EMC-PG01R


Communication extension card (Slot 1)


## 8-1-3 Installation and Disconnection of Extension Card

## 8-1-3-1 Installation

Communication card: EMC-COP01, CMC-MOD01, CMC-EIP01, CMC-DN01, CMC-PD01, CMC-EC01, CMC-PN01


As shown in the figure on the left.
Put the isolation sheet into the positioning pin.
Aim the two holes at the positioning pin.
Press the pin to clip the holes with the PCB.


As shown in the figure on the left, installation is completed.


As shown in the figure on the left.
Put the isolation sheet into the positioning pin.
Aim the two holes at the positioning pin.
Press the pin to clip the holes with the PCB.


As shown in the figure on the left, installation is completed.

PG Card: EMC-PG01U, EMC-PG01R, EMC-PG01L, EMC-PG01O


As shown in the figure on the left.
Aim the two holes at the positioning pin. Press the pin to clip the holes with the PCB.


As shown in the figure on the left, installation is completed.

## 8-1-3-2 Disconnecting the extension card

Communication card: EMC-COP01, CMC-MOD01, CMC-EIP01, CMC-DN01, CMC-PD01, CMC-EC01, CMC-PN01


Remove the two screws as shown in the figure on the left.


As shown in the figure on the left. Twist to open the clip. Insert a slot type screwdriver into the hollow to prize the PCB off the clip.


As shown in the figure on the left. Twist to open the other clip to remove the PCB.

## Chapter 8 Option Cards | C2000

I/O \& Relay card: EMC-D42A, EMC-D611A, EMC-R6AA, EMC-BPS01, EMC-A22A


Remove the two screws as shown in the figure on the left.


As shown in the figure on the left. Twist to open the clip. Insert a slot type screwdriver into the hollow to prize the PCB off the clip.


As shown in the figure on the left. Twist to open the other clip to remove the PCB.

PG card: EMC-PG01U, EMC-PG01R, EMC-PG01L, EMC-PG01O


Remove the two screws as shown in the figure on the left.


As shown in the figure on the left.
Twist to open the clip.
Insert a slot type screwdriver into the hollow to prize the PCB off the clip.


As shown in the figure on the left. Twist to open the other clip to remove the PCB.

## 8-2 EMC-D42A -- Extension card for 4-point digital input/ 2-point digital input

| I/O Extension Card | Terminals | Descriptions |
| :---: | :---: | :---: |
|  | COM | Common for Multi-function input terminals <br> Select SINK (NPN) / SOURCE (PNP) in J1 jumper / external power supply |
|  | MI10-MI13 | Refer to parameters 02-26-02-29 to program the multi-function inputs MI10-MI13. <br> Internal power is applied from terminal E24: +24 V DC $\pm 5 \% 200 \mathrm{~mA}$, 5W <br> External power +24 V dc: max. voltage 30 V dc , min. voltage 19 V dc, 30W <br> ON : the activation current is 6.5 mA <br> OFF: leakage current tolerance is $10 \mu \mathrm{~A}$ |
|  | MO10-MO11 | Multi-function output terminals (photocoupler) <br> The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector). |
|  | MXM | Common for multi-function output terminals MO10, MO11 (photocoupler) <br> Max 48V ${ }_{\text {DC }} 50 \mathrm{~mA}$ |

## 8-3 EMC-D611A -- Extension card for 6-point digital input ( $110 \mathrm{~V}_{\mathrm{AC}}$ input voltage)

| I/O ExtensionCard | Terminals | Descriptions |
| :---: | :---: | :---: |
|  | AC | AC power Common for multi-function input terminal (Neutral) |
|  | MI10-MI15 | Refer to Pr. 02-26-Pr. 02-31 for multi-function input selection Input voltage: $100-130 \mathrm{~V}_{\mathrm{AC}}$ <br> Input frequency: $47-63 \mathrm{~Hz}$ <br> Input impedance: 27Kohm <br> Terminal response time: <br> ON: 10 ms <br> OFF: 20 ms |

## 8-4 EMC-R6AA -- Relay output extension card (6-point N.O. output contact)

|  | Terminals | Descriptions |
| :---: | :---: | :---: |
| Relay Extension Card | $\begin{aligned} & \text { RA10-RA15 } \\ & \text { RC10-RC15 } \end{aligned}$ | Refer to Pr. 02-36- Pr. 02-41 for multi-function output selection Resistive load: $\begin{aligned} & 3 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 250 \mathrm{~V}_{\mathrm{AC}} \\ & 5 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 30 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$ <br> Inductive load (COS 0.4) $\begin{aligned} & 1.2 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 250 \mathrm{~V}_{\mathrm{AC}} \\ & 2.0 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 30 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$ <br> It is used to output each monitor signal, such as drive is in operation, frequency attained or overload indication. |

8-5 EMC-A22A -- Extension card for 2-point analog input/ 2-point analog output

| Analog I/O Extension Card | Terminals | Descriptions |
| :---: | :---: | :---: |
|  | Al10, Al11 | Refer to Pr. 14-00-Pr. 14-01 for function selection (input), and Pr. 14-18-Pr. 14-19 for mode selection. <br> There are two sets of Al port, SSW3 (Al10) and SSW4 (Al11), which can be switched to Voltage or Current mode. <br> Voltage mode: Input 0-10V <br> Current mode: Input $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA}$ |
|  | AO10, AO11 | Refer to Pr. 14-12-Pr. 14-13 for function selection (output), and Pr. 14-36-Pr. 14-37 for mode selection. <br> There are two sets of AO port, SSW1 (AO10) and SSW2 (AO11), which can be switched to Voltage or Current mode. <br> Voltage mode: Output 0-10V <br> Current mode: Output $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA}$ |
|  | ACM | Analog signal common terminal |

## 8-6 EMC-BPS01 -- +24V power card

| External Power Supply | Terminals | Descriptions |
| :---: | :---: | :---: |
|  | $\begin{gathered} 24 \mathrm{~V} \\ \text { GND } \end{gathered}$ | Input power: $24 \mathrm{~V} \pm 5 \%$ <br> Maximum input current: 0.5A <br> Note: <br> 1) Do not connect drive control terminal GND directly to the EMC-BPS01 input terminal GND. |
|  |  | Function: When the drive is only powered by EMC-BPS01, the communication can be assured and support all communication cards and following functions: <br> Parameters read and write <br> Keypad can be displayed <br> Keypad button can be operated (except RUN) <br> Analog input is effective <br> Multi-input (FWD, REV, MI1-MI8) needs external power supply to operate <br> Following functions are not supported : <br> Relay output (including extension card), PG card, PLC function |

Note: Refer to I/O \& Relay extension card installation/ disconnecting method for PG Card installation/ disconnecting.

## 8-7 EMC-PG01L / EMC-PG02L -- PG card (Line driver)

## 8-7-1 Terminal description

Set by Pr. 10-00-10-02, Pr. 10-16-10-18

| Terminals |  | Descriptions |
| :---: | :---: | :---: |
| PG1 | VP | Output voltage for power: $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ (use FSW3 to switch $+5 \mathrm{~V} /+12 \mathrm{~V}$ ) <br> Max. output current: 200 mA |
|  | DCM | Common for power and signal |
|  | A1, IA1, B1, /B1, Z1, /Z1 | Encoder input signal (Line Driver or Open Collector) <br> Open Collector input voltage: $+5-+24 \mathrm{~V}$ (Note 1) <br> It can be 1-phase or 2-phase input. <br> EMC-PG01L: Max. input frequency: 300 kHz <br> EMC-PG02L: Max. input frequency: 30 kHz (Note 2) |
| PG2 | $\begin{aligned} & \mathrm{A} 2, \text { IA2, } \\ & \mathrm{B} 2, ~ / \mathrm{B} 2 \end{aligned}$ | Pulse Input signal (Line Driver or Open Collector) <br> Open Collector input voltage: +5-+24V (Note1) <br> It can be 1-phase or 2-phase input. <br> EMC-PG01L: Max. input frequency: 300 kHz <br> EMC-PG02L: Max. input frequency: 30 kHz (Note 2) |
| PG OUT | $\begin{gathered} \mathrm{AO}, / \mathrm{AO}, \\ \mathrm{BO}, / \mathrm{BO}, \\ \mathrm{ZO}, \mathrm{ZZO}, \\ \mathrm{SG} \end{gathered}$ | PG Card Output signals. It has division frequency function: 1-255 times <br> Max. output voltage for Line driver: 5VDC <br> Max. output current: 15 mA <br> EMC-PG01L Max. output frequency: 300 kHz <br> EMC-PG02L Max. output frequency: 30 kHz <br> SG is the GND of PG card. It is also the GND of position machine or PLC to make the output signal to be the common pivot point. |

Note 1: Open Collector application, input current 5-15mA to each set then each set needs one pull-up resistor. If input voltage of open collector is 24 V , the power of encoder needs to be connected externally. Please refer to diagram 2 of PG1.

| 5 V | Recommended pull-up resistor: above $100-220 \Omega, 1 / 2 \mathrm{~W}$ |
| :---: | :--- |
| 12 V | Recommended pull-up resistor: above $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |
| 24 V | Recommended pull-up resistor: above $1.8 \mathrm{k}-3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |

Note 2: If the required bandwidth is not over 30 kHz at the application, it is recommended to use EMC-PG02O/L (bandwidth 30kHz) to avoid interference.

PG1 card wiring diagram (the image 1 and 2 below are wiring diagrams of Open Collector encoder)
(1)


PG card Open Collector


PG2 Wiring Diagram


## 8-7-2 EMC-PG01L / EMC-PG02L Wiring Diagram

$\square \quad$ Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage $A C$ power line ( $200 \mathrm{~V}_{\mathrm{AC}}$ and above).
$\square$ Recommended wire size $0.21-0.81 \mathrm{~mm}^{2}$ [AWG24-AWG18].
$\boxtimes$ Cable length: Single-phase input, less than $30 \mathrm{~m} / 2$-phase input, less than 100 m


## 8-8 EMC-PG010 / EMC-PG02O -- PG card (Open collector)

## 8-8-1 Terminal descriptions

Set by Pr. 10-00-10-02, Pr. 10-16-10-18

| Terminals |  | Descriptions |
| :---: | :---: | :---: |
| PG1 | VP | Output voltage for power: $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ (use FSW3 to switch $+5 \mathrm{~V} /+12 \mathrm{~V}$ ) Max. output current: 200mA |
|  | DCM | Common for power and signal |
|  | $\begin{aligned} & \mathrm{A} 1, / \mathrm{A} 1, \mathrm{~B} 1, \\ & / \mathrm{B} 1, \mathrm{Z1}, / \mathrm{Z} 1 \end{aligned}$ | Encoder Input signal (Line Driver or Open Collector) Open Collector Input Voltage: +5V-+24V (Note 1) It can be 1-phase or 2-phase input. <br> EMC-PG01O Max. input frequency: 300 kHz <br> EMC-PG02O Max. input frequency: 30 kHz (Note 2) |
| PG2 | $\begin{aligned} & \text { A2, /A2, } \\ & \text { B2, /B2 } \end{aligned}$ | Pulse Input Signal (Line Driver or Open Collector) <br> Open Collector Input Voltage: +5-+24V (Note 1) <br> It can be 1-phase or 2-phase input. <br> EMC-PG01O Max. input frequency: 300 kHz <br> EMC-PG02O Max. input frequency: 30 kHz (Note 2) |
| PG OUT | V+, V+ | Needs external power source for PG OUT circuit. Input voltage of power: $+7 \mathrm{~V}-+24 \mathrm{~V}$ |
|  | V- | Input voltage for the negative side |
|  | A/O, B/O, Z/O | PG Card Output signals has division frequency function: 1-255 times. On the open collector's output signal, add a high-pull resistor on the external power $\mathrm{V}+-\mathrm{V}$ - (e.g. power of PLC) to prevent the interference of the receiving signal. Max. [Three pull-up resistor are included in the package (1.8k $/ / 1 \mathrm{~W}$ )] (Note 1) <br> EMC-PG010 Max. input frequency: 300 kHz <br> EMC-PG02O Max. input frequency: 30 kHz |

Note 1: Open Collector application, input current 5-15mA to each set then each set needs one pull-up resistor. If input voltage of open collector is 24 V , the power of encoder needs to be connected externally. Please refer to diagram 2 of PG1.

| 5 V | Recommended pull-up resistor: above $100-220 \Omega, 1 / 2 \mathrm{~W}$ |
| :---: | :--- |
| 12 V | Recommended pull-up resistor: above $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |
| 24 V | Recommended pull-up resistor: above $1.8 \mathrm{k}-3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |

Note 2: If the required bandwidth is not over 30 kHz at the application, it is recommended to use EMC-PG02O/L (bandwidth 30kHz) to avoid interference.

PG1 card wiring diagram (the image 1 and 2 below are wiring diagrams of Open Collector encoder)
(1)
(2)

(3)


When wiring in this way, if there is a signal on EMC-PG01O's $\mathrm{A} 1, \mathrm{~B} 1$ and Z 1 , LED lights is OFF.
If $\mathrm{A} 1, \mathrm{~B} 1$ and Z 1 have no signals, LED lights is ON .

## PG2 Wiring Diagram



## 8-8-2 EMC-PG010 / EMC-PG02O Wiring Diagram

$\square \quad$ Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage $A C$ power line ( $200 \mathrm{~V}_{\mathrm{AC}}$ and above).
$\square$ Recommended wire size $0.21-0.81 \mathrm{~mm}^{2}$ [AWG24-AWG18].
$\boxtimes$ Cable length: Single-phase input, less than $30 \mathrm{~m} / 2$-phase input, less than 100 m


## 8-9 EMC-PG01U / EMC-PG02U

## -- PG card (ABZ Incremental encoder signal/ UVW Hall position signal input)

1. FSW1 S: Standard UVW Output Encoder; D: Delta Encoder
2. When using the Delta Encoder, wait for at least 250 ms after powering up to receive signals from UVW. If a running command is received before UVW signals finish, a PGF5 error message will be given. So wait for 250 ms before sending a running command.
3. EMC-PG02U has encoder disconnection detection function.

## 8-9-1 Terminal descriptions

Set by Pr. 10-00-10-02, Pr. 10-16-10-18

| Terminals |  | Descriptions |
| :---: | :---: | :---: |
| PG1 | VP | Output voltage for power: $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ (use FSW 3 to switch $+5 \mathrm{~V} /+12 \mathrm{~V}$ ) <br> Max. output current: 200 mA |
|  | DCM | Common for power and signal |
|  | A1, /A1, B1, /B1, Z1, /Z1 | Encoder input signal (Line Driver) It can be 1-phase or 2-phase input. Max. output frequency: 300 kHz |
|  | U1, /U1, V1, /V1, W1, /W1 | Encoder input signal |
| PG2 | $\begin{aligned} & \text { A2, /A2, } \\ & \text { B2, /B2 } \end{aligned}$ | Pulse Input signal (Line Driver or Open Collector) Open Collector Input Voltage: +5-+24V (Note1) It can be 1-phase or 2-phase input. <br> Max. output frequency: 300 kHz . |
| PG OUT | $\begin{gathered} \mathrm{AO}, \mathrm{IAO}, \mathrm{BO}, / \mathrm{BO}, \mathrm{ZO}, \\ \text { IZO, SG } \end{gathered}$ | PG Card Output signals. <br> It has division frequency function: 1-255 times <br> Max. output voltage for Line driver: 5VDC <br> Max. output current: 15 mA <br> Max. output frequency: 300 kHz <br> SG is the GND of PG card. It is also the GND of position machine or PLC to make the output signal to be the common pivot point. |

Note 1: Open Collector application, input current 5-15mA to each set then each set needs one pull-up resistor.

| 5 V | Recommended pull-up resistor: above100-220, $1 / 2 \mathrm{~W}$ |
| :---: | :--- |
| 12 V | Recommended pull-up resistor: above $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |
| 24 V | Recommended pull-up resistor: above1.8k-3.3k $\Omega, 1 / 2 \mathrm{~W}$ |

PG2 Wiring Diagram


## 8-9-2 EMC-PG01U / EMC-PG02U Wiring Diagram

■ Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage $A C$ power line ( $200 \mathrm{~V}_{\mathrm{AC}}$ and above).
$\square$ Recommended wire size $0.21-0.81 \mathrm{~mm}^{2}$ [AWG24-AWG18].
■ Cable length: Single-phase input, less than $30 \mathrm{~m} / 2$-phase input, less than 100 m


## 8-10 EMC-PG01R -- PG card (Resolver)

## 8-10-1 Terminal Descriptions

Set by Pr.10-00-10-02 and Pr.10-30 Resolver. (Pr.10-00=3, Pr.10-01=1024)

| Terminals |  | Descriptions |
| :---: | :---: | :---: |
| PG1 | R1- R2 | Resolver Output Power <br> 7 Vrms , 10kHz |
|  | $\begin{aligned} & \text { S1, /S3, } \\ & \text { S2, /S4, } \end{aligned}$ | Resolver Input Signal (S2, /S4=Sin; S1, /S3=Cos) $3.5 \pm 0.175 \mathrm{Vrms}, 10 \mathrm{kHz}$ |
| PG2 | $\begin{aligned} & \text { A2, /A2, } \\ & \text { B2, /B2 } \end{aligned}$ | Pulse Input signal (Line Driver or Open Collector) Open Collector Input Voltage: +5-+24V (Note1) It can be 1-phase or 2-phase input. Max. output frequency: 300 kHz |
| PG OUT | $\begin{gathered} \mathrm{AO}, / \mathrm{AO}, \\ \mathrm{BO}, / \mathrm{BO}, \\ \mathrm{ZO}, \mathrm{ZO}, \\ \mathrm{SG}, \end{gathered}$ | PG Card Output signals. It has division frequency function: 1-255 times <br> Max. output voltage for Line driver: 5VDC <br> Max. output current: 15mA <br> Max. output frequency: 300 kHz <br> SG is the GND of PG card. It is also the GND of position machine or PLC to make the output signal to be the common pivot point. |

Note 1: Open Collector application, input current 5-15mA to each set then each set needs one pull-up resistor.

| 5 V | Recommended pull-up resistor: above $100-220 \Omega, 1 / 2 \mathrm{~W}$ |
| :---: | :--- |
| 12 V | Recommended pull-up resistor: above $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |
| 24 V | Recommended pull-up resistor: above $1.8 \mathrm{k}-3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ |

PG2 Wiring Diagram

[a DOS (Degradation of Signal) : If the amplitude of the sine wave input of the S1-/S3/ S2-/S4 is lower than or higher than the encoder IC's specification, a red light will be on. The possible reasons which cause this problem are the following.

1. The turns ratio of the resolver encoder is not 1:0.5 which makes the sine wave input of the S1-/S3/S2-/S4 not equal to $3.5 \pm 0.175 \mathrm{~V}$ rms.
2. While motor is running, motor creates common mode noise which makes accumulated voltage to be more than $3.5 \pm 0.175 \mathrm{Vrms}$
[a] LOT (Loss of Tracking): Compare the angle of S1-/S3/S2-/S4 sine wave input to the R1-R2 cosine wave. If their difference is more than 5 degree, a red light will be on. Here are the possible reasons why that happens:
3. The output frequency of the PG card is incorrect.
4. The specification of Resolver's encoder is not 10 kHz
5. The motor creates common mode noise while it is running. That causes a big difference, while the motor is rotating, between main winding's cosine wave angle and the sine wave angle of second and third windings.

## 8-10-2 EMC-PG01R Wiring Diagram

$\square$ Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage $A C$ power line ( $200 \mathrm{~V}_{\mathrm{AC}}$ and above).
$\boxtimes$ Recommended wire size $0.21-0.81 \mathrm{~mm}^{2}$ [AWG24-AWG18].
$\square$ Cable length: PG1 input, less than 30m; PG2 single-phase input, less than $30 \mathrm{~m} / 2$-phase input, less than 100 m


## 8-11 CMC-MOD01 -- Communication card, Modbus TCP

## 8-11-1 Features

1. Supports Modbus TCP protocol
2. MDI/MDI-X auto-detect
3. Baud rate: $10 / 100 \mathrm{Mbps}$ auto-detect
4. E-mail alarm
5. AC motor drive keypad/ Ethernet configuration
6. Virtual serial port.

## 8-11-2 Product File



## 8-11-3 Specifications

Network Interface

| Interface | RJ-45 with Auto MDI/MDIX |
| :---: | :--- |
| Number of ports | 1 Port |
| Transmission method | IEEE 802.3, IEEE 802.3u |
| Transmission cable | Category 5e shielding 100M |
| Transmission speed | $10 / 100$ Mbps Auto-Detect |
| Network protocol | ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP, <br> Delta Configuration |

Electrical Specification

| Power supply voltage | $5 \mathrm{~V}_{\mathrm{DC}}$ (supply by the AC motor drive) |
| :--- | :--- |
| Insulation voltage | $500 \mathrm{~V}_{\mathrm{DC}}$ |
| Power consumption | 0.8 W |
| Weight | 25 g |

## Environment

| Noise immunity | ESD (IEC 61800-5-1, IEC 61000-4-2) <br> EFT (IEC 61800-5-1, IEC 61000-4-4) <br> Surge Test (IEC 61800-5-1, IEC 61000-4-5) <br> Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6) |
| :--- | :--- |
| Operation/ storage | Operation: $-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), $90 \%$ (humidity) <br> Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity) |
| Vibration/ shock immunity | International standard: IEC 61800-5-1, IEC 60068-2-6/ IEC <br> $61800-5-1$, IEC 60068-2-27 |

## 8-11-4 Communication Parameters for VFD-C2000 Connected to Ethernet

When VFD-C2000 is linked to Ethernet, please set up the communication parameters based on the table below. Ethernet master will be able to read/write the frequency word and control word of VFD-C2000 after communication parameters setup.

| Parameter | Function | Set value (Dec) | Explanation |
| :---: | :---: | :---: | :--- |
| Pr. 00-20 | Source of frequency <br> command setting | 8 | The frequency command is controlled by <br> communication card. |
| Pr. 00-21 | Source of operation <br> command setting | 5 | The operation command is controlled by <br> communication card. |
| Pr. 09-30 | Decoding method for <br> communication | 0 | Decoding method for Delta AC motor drive |
| Pr. 09-75 | IP setting | 0 | Static IP(0) / Dynamic distribution IP(1) |
| Pr. 09-76 | IP address -1 | 192 | IP address 192.168.1.5 |
| Pr. 09-77 | IP address -2 | 168 | IP address 192.168.1.5 |
| Pr. 09-78 | IP address -3 | 1 | IP address 192.168.1.5 |
| Pr. 09-79 | IP address -4 | 5 | IP address 192.168.1.5 |
| Pr. 09-80 | Netmask -1 | 255 | Netmask 255.255.255.0 |
| Pr. 09-81 | Netmask -2 | 255 | Netmask 255.255.255.0 |
| Pr. 09-82 | Netmask -3 | 255 | Netmask 255.255.255.0 |
| Pr. 09-83 | Netmask -4 | 0 | Netmask 255.255.255.0 |
| Pr. 09-84 | Default gateway -1 | 192 | Default gateway 192.168.1.1 |
| Pr. 09-85 | Default gateway -2 | 168 | Default gateway 192.168.1.1 |
| Pr. 09-86 | Default gateway -3 | 1 | Default gateway 192.168.1.1 |
| Pr. 09-87 | Default gateway -4 | 1 | Default gateway 192.168.1.1 |

## 8-11-5 Basic Registers

| BR\# | R/W | Content | Explanation |
| :---: | :---: | :--- | :--- |
| \#0 | R | Model name | Set up by the system; read only. The model code of <br> CMC-MOD01=H'0203 |
| \#1 | R | Firmware <br> version | Displaying the current firmware version in hex, e.g. H'0100 indicates the <br> firmware version V1.00. |
| \#2 | R | Release date of <br> the version | Displaying the data in decimal form. 10,000s digit and 1,000s digit are for <br> "month"; 100s digit and 10s digit are for "day". <br> For 1 digit: 0 = morning; 1 = afternoon. |
| \#11 | R/W | Modbus Timeout | Pre-defined setting: 500 (ms) |
| \#13 | R/W | Keep Alive Time | Pre-defined setting: 30 (s) |

## Chapter 8 Option Cards | C2000

## 8-11-6 LED Indicator \& Troubleshooting

LED Indicators

| LED | Status |  | Indication | How to correct it? |
| :--- | :---: | :---: | :--- | :--- |
| POWER | Green | On | Power supply in normal status | -- |
|  |  | Off | No power supply | Check the power supply |
|  | Green | On | Network connection in normal status | -- |
|  |  | Off | Network in operation | -- |

Troubleshooting

| Abnormality | Cause | How to correct it? |
| :---: | :---: | :---: |
| POWER LED off | AC motor drive not powered | Check if AC motor drive is powered, and if the power supply is normal. |
|  | CMC-MOD01 not connected to AC motor drive | Make sure CMC-MOD01 is connected to AC motor drive. |
| LINK LED off | CMC-MOD01 not connected to network | Make sure the network cable is correctly connected to network. |
|  | Poor contact to RJ-45 connector | Make sure RJ-45 connector is connected to Ethernet port. |
| No module found | CMC-MOD01 not connected to network | Make sure CMC-MOD01 is connected to network. |
|  | PC and CMC-MOD01 in different networks and blocked by network firewall. | Search by IP or set up relevant settings by AC motor drive keypad. |
| Fail to open CMC-MOD01 setup page | CMC-MOD01 not connected to network | Make sure CMC-MOD01 is connected to the network. |
|  | Incorrect communication setting in DCISoft | Make sure the communication setting in DCISoft is set to Ethernet. |
|  | PC and CMC-MOD01 in different networks and blocked by network firewall. | Conduct the setup by AC motor drive keypad. |
| Able to open CMC-MOD01 setup page but fail to utilize webpage monitoring | Incorrect network setting in CMC-MOD01 | Check if the network setting for CMC-MOD01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP. |
| Fail to send e-mail | Incorrect network setting in CMC-MOD01 | Check if the network setting for CMC-MOD01 is correct. |
|  | Incorrect mail server setting | Please confirm the IP address for SMTP-Server. |

## 8-12 CMC-PD01

## 8-12-1 Features

1. Supports PZD control data exchange.
2. Supports PKW polling AC motor drive parameters.
3. Supports user diagnosis function.
4. Auto-detects baud rates; supports Max. 12Mbps.

## 8-12-2 Product Profile



## 8-12-3 Specifications

PROFIBUS DP Connector

| Interface | DB9 connector |
| :--- | :--- |
| Transmission method | High-speed RS-485 |
| Transmission cable | Shielded twisted pair cable |
| Electrical isolation | $500 V_{\text {DC }}$ |

Communication

| Message type | Cyclic data exchange |
| :--- | :--- |
| Module name | CMC-PD01 |
| GSD document | DELA08DB.GSD |
| Company ID | 08DB (HEX) |
| Serial transmission <br> speed supported <br> (auto-detection) | 9.6Kbps; $19.2 \mathrm{Kbps} ; 93.75 \mathrm{Kbps} ; 187.5 \mathrm{Kbps} ; 500 \mathrm{Kbps} ; 1.5 \mathrm{Mbps} ; 3 \mathrm{Mbps} ; 6 \mathrm{Mbps} ;$ |

Electrical Specification

| Power supply | $5 \mathrm{~V}_{\mathrm{DC}}$ (supplied by AC motor drive) |
| :--- | :--- |
| Insulation voltage | $500 \mathrm{~V}_{\mathrm{DC}}$ |
| Power consumption | 1 W |
| Weight | 28 g |

Environment

|  | ESD(IEC 61800-5-1, IEC 61000-4-2) |
| :--- | :--- |
| Noise immunity | EFT(IEC 61800-5-1, IEC 61000-4-4) <br> Surge Teat(IEC 61800-5-1, IEC 61000-4-5) <br> Conducted Susceptibility Test(IEC 61800-5-1, IEC 61000-4-6) |
| Operation /storage | Operation: $-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) <br> Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity) |
| Shock / vibration <br> resistance | International standards: IEC61131-2, IEC60068-2-6 (TEST Fc) / IEC61131-2 \& IEC <br> $60068-2-27 ~(T E S T ~ E a) ~$ |

## 8-12-4 Installation

PROFIBUS DP Connector

| PIN | PIN name | Definition |
| :---: | :---: | :---: |
| 1 | - | Not defined |
| 2 | - | Not defined |
| 3 | Rxd/Txd-P | Sending / receiving data P(B) |
| 4 | - | Not defined |
| 5 | DGND | Data reference ground |
| 6 | VP | Power voltage - positive |
| 7 | - | Not defined |
| 8 | Rxd/Txd-N | Sending/receiving data N(A) |
| 9 | - | Not defined |



## 8-12-5 LED Indicator \& Troubleshooting

There are 2 LED indicators on CMC-PD01: POWER LED and NET LED. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

## POWER LED

| LED status | Indication | How to correct it? |
| :--- | :--- | :--- |
| Green light on | Power supply in normal status. | -- |
| Off | No power | Check if the connection between CMC-PD01 and AC <br> motor drive is normal. |

## NET LED

| LED status | Indication | How to correct it? |
| :--- | :--- | :--- |
| Green light on | Normal status | -- |
| Red light on | CMC-PD01 is not connected to <br> PROFIBUS DP bus. | Connect CMC-PD01 to PROFIBUS DP bus. |
| Red light <br> flashes | Invalid PROFIBUS communication <br> address | Set the PROFIBUS address of CMC-PD01 between <br> $1-125$ (decimal) |
| Orange light <br> flashes | CMC-PD01 fails to communication <br> with AC motor drive. | Switch off the power and check whether CMC-PD01 is <br> correctly and normally connected to AC motor drive. |

## 8-13 CMC-DN01 -- Communication card, DeviceNet

## 8-13-1 Functions

1. Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control to AC motor drive.
2. Supports Group 2 only connection and polling I/O data exchange.
3. For I/O mapping, supports Max. 32 words of input and 32 words of output.
4. Supports EDS file configuration in DeviceNet configuration software.
5. Supports all baud rates on DeviceNet bus: $125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ and extendable serial transmission speed mode.
6. Node address and serial transmission speed can be set up on AC motor drive.
7. Power supplied from AC motor drive.

## 8-13-2 Product Profile



| 1. NS indicator |
| :--- |
| 2. MS indicator |
| 3. POWER indicator |
| 4. Positioning hole |
| 5. DeviceNet connection port |
| 6. Screw fixing hole |
| 7. Fool-proof groove |
| 8. AC motor drive connection |
| port |

## 8-13-3 Specifications

DeviceNet Connector

| Interface | 5-PIN open removable connector of 5.08 mm PIN interval |
| :--- | :--- |
| Transmission | CAN |
| Transmission cable | Shielded twisted pair cable (with 2 power cables) |
| Transmission speed | $125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ and extendable serial transmission speed |
| Network protocol | DeviceNet protocol |

AC Motor Drive Connection Port

| Interface | 50 PIN communication terminal |
| :--- | :--- |
| Transmission method | SPI communication |
| Terminal function | 1. Communicating with AC motor drive <br> 2. Transmitting power supply from AC motor drive |
| Communication | Delta HSSP protocol |

Electrical Specification

| Power supply voltage | $5 \mathrm{~V}_{\mathrm{DC}}$ (supplied by AC motor drive) |
| :--- | :--- |
| Insulation voltage | $500 \mathrm{~V}_{\mathrm{DC}}$ |
| Communication wire <br> power consumption | 0.85 W |
| Power consumption | 1 W |
| Weight | 23 g |

Environment

| Noise immunity | ESD (IEC 61800-5-1, IEC 61000-4-2) <br> EFT (IEC 61800-5-1, IEC 61000-4-4) <br> Surge Teat(IEC 61800-5-1, IEC 61000-4-5) <br> Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6) |
| :--- | :--- |
| Operation /storage | Operation: $-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) <br> Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity) |
| Shock / vibration <br> resistance | International standards: IEC61800-5-1, IEC60068-2-6 (TEST Fc) / <br> IEC61800-5-1 \& IEC60068-2-27 (TEST Ea) |

## 8-13-4 Installation

DeviceNet Connector

| PIN | Signal | Color | Definition |
| :---: | :---: | :---: | :---: |
| 1 | V+ | Red | DC24V |
| 2 | H | White | Signal+ |
| 3 | S | - | Earth |
| 4 | L | Blue | Signal- |
| 5 | V- | Black | OV |



## 8-13-5 LED Indicator \& Troubleshooting

There are 3 LED indicators on CMC-DN01. POWER LED displays the status of power supply. MS LED and NS LED are dual-color LED, displaying the connection status of the communication and error messages.

## POWER LED

| LED status | Indication | How to correct it? |
| :--- | :--- | :--- |
| Off | Power supply in abnormal status. | Check the power supply of CMC-DN01. |
| Green light On | Power supply in normal status | -- |

NS LED

| LED status | Indication | How to correct it? |
| :--- | :--- | :--- |
| Off | No power supply or CMC-DN01 has <br> not completed MAC ID test yet. | 1. Check the power of CMC-DN01 and see if the <br> connection is normal. <br> 2. Make sure at least one or more nodes are on the <br> bus. <br> 3. Check if the serial transmission speed of <br> CMC-DN01 is the same as that of other nodes. |
| Green light <br> flashes | CMC-DN01 is on-line but has not <br> established connection to the master. | 1. Configure CMC-DN01 to the scan list of the <br> master. <br> 2. Re-download the configured data to the master. |
| Green light on | CMC-DN01 is on-line and is normally <br> connected to the master | -- |
| Red light <br> flashes | CMC-DN01 is on-line, but I/O <br> connection is timed-out. | 1. Check if the network connection is normal. <br> 2. Check if the master operates normally. |
| Red light on | 1. The communication is down. <br> 2. MAC ID test failure. <br> 3. No network power supply. <br> 4. CMC-DN01 is off-line. | 1. Make sure all the MAC IDs on the network are <br> not repeated. <br> 2. Check if the network installation is normal. <br> 3. Check if the baud rate of CMC-DN01 is <br> consistent with that of other nodes. |
| 4. Check if the node address of CMC-DN01 is |  |  |
| illegal. |  |  |

## MS LED

| LED status | Indication | How to correct it? |
| :--- | :--- | :--- |
| Off | No power supply or being off-line | Check the power supply of CMC-DN01 and see if <br> the connection is normal. |
| Green light <br> flashes | Waiting for I/O data | Switch the master PLC to RUN status |
| Green light on | I/O data are normal | -- |
| Red light <br> flashes | Mapping error | 1. Reconfigure CMC-DN01 <br> 2. Re-power AC motor drive |
| Red light on | Hardware error | 1. See the error code displayed on AC motor drive. <br> 2. Send back to the factory for repair if necessary. |
| Orange light <br> flashes | CMC-DN01 is establishing connection <br> with AC motor drive. | If the flashing lasts for a long time, turn off the <br> power and check if CMC-DN01 and AC motor drive <br> are correctly installed and normally connected to <br> each other. |

## 8-14 CMC-EIP01 -- Communication card, EtherNet/IP

## 8-14-1 Features

1. Supports Modbus TCP and Ethernet/IP protocol
2. Supports all parameters read/write (use with EIP V.1.06)
3. MDI/MDI-X auto-detect
4. Baud rate: $10 / 100 \mathrm{Mbps}$ auto-detect
5. AC motor drive keypad/ Ethernet configuration
6. Virtual serial port

## 8-14-2 Product Profile



## 8-14-3 Specifications

Network Interface

| Interface | RJ-45 with Auto MDI/MDIX |
| :--- | :--- |
| Number of ports | 1 Port |
| Transmission method | IEEE 802.3, IEEE 802.3u |
| Transmission cable | Category 5e shielding 100M |
| Transmission speed | $10 / 100$ Mbps Auto-Detect |
| Network protocol | ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS over TCP/IP, EtherNet/IP, Delta <br> Configuration |

Electrical Specification

| Weight | 25 g |
| :--- | :--- |
| Insulation voltage | $500 \mathrm{~V}_{\mathrm{DC}}$ |
| Power consumption | 0.8 W |
| Power supply voltage | $5 \mathrm{~V}_{\mathrm{DC}}$ (provided by VFD-C2000) |

## Environment

|  | ESD (IEC 61800-5-1, IEC 61000-4-2) |  |
| :--- | :--- | :--- |
| Noise immunity | EFT (IEC 61800-5-1, IEC 61000-4-4) <br> Surge Test (IEC 61800-5-1, IEC 61000-4-5) <br> Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6) |  |
| Operation/storage | Operation: $-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) <br> Storage: $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity) |  |
| Vibration/shock <br> immunity | International standards: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC <br> $60068-2-27$ |  |

## 8-14-4 Installation

## Connecting CMC-EIP01 to Network

1. Turn off power to the $A C$ motor drive.
2. Open the cover of the $A C$ motor drive.
3. Connect a CAT-5e network cable to the RJ-45 port on the CMC-EIP01 (See Figure 2).

[Figure 2]
RJ-45 PIN Definition

| PIN | Signal | Definition |
| :---: | :---: | :---: |
| 1 | Tx+ | Positive pole for <br> data transmission |
| 2 | Tx- | Negative pole for <br> data transmission |
| 3 | Rx+ | Positive pole for <br> data receiving |
| 4 | -- | N/C |


| PIN | Signal | Definition |
| :---: | :---: | :---: |
| 5 | -- | N/C |
| 6 | Rx- | Negative pole for <br> data receiving |
| 7 | -- | N/C |
| 8 | -- | N/C |

8-14-5 Communication Parameters for VFD-C2000 Connected to Ethernet
When the VFD-C2000 is connected to an Ethernet network, please set up the communication parameters for it according to the table below. The Ethernet master is only able to read/write the frequency word and control word of VFD-C2000 after the communication parameters are set.

| Parameter | Function | Set value (Dec) | Explanation |
| :---: | :--- | :---: | :--- |
| Pr. 00-20 | Source of frequency <br> command setting | 8 | The frequency command is controlled by <br> communication card. |
| Pr. 00-21 | Source of operation <br> command setting | 5 | The operation command is controlled by <br> communication card. |
| Pr. 09-30 | Decoding method for <br> communication | 0 | The decoding method for Delta AC motor <br> drive |
| Pr. 09-75 | IP setting | 0 | Static IP(0) / Dynamic distribution IP(1) |
| Pr. 09-76 | IP address -1 | 192 | IP address 192.168.1.5 |
| Pr. 09-77 | IP address -2 | 168 | IP address 192.168.1.5 |
| Pr. 09-78 | IP address -3 | 1 | IP address 192.168.1.5 |
| Pr. 09-79 | IP address -4 | 5 | IP address 192.168.1.5 |


| Parameter | Function | Set value (Dec) | Explanation |
| :---: | :--- | :---: | :--- |
| Pr. 09-80 | Netmask -1 | 255 | Netmask 255.255.255.0 |
| Pr. 09-81 | Netmask -2 | 255 | Netmask 255.255.255.0 |
| Pr. 09-82 | Netmask -3 | 255 | Netmask 255.255.255.0 |
| Pr. 09-83 | Netmask -4 | 0 | Netmask 255.255.255.0 |
| Pr. 09-84 | Default gateway -1 | 192 | Default gateway 192.168.1.1 |
| Pr. 09-85 | Default gateway -2 | 168 | Default gateway 192.168.1.1 |
| Pr. 09-86 | Default gateway -3 | 1 | Default gateway 192.168.1.1 |
| Pr. 09-87 | Default gateway -4 | 1 | Default gateway 192.168.1.1 |

## 8-14-6 LED Indicator \& Troubleshooting

There are 2 LED indicators on the CMC-EIP01. The POWER LED displays the status of power supply, and the LINK LED displays the connection status of the communication.

LED Indicators

| LED | Status |  | Indication | How to correct it? |
| :--- | :---: | :---: | :--- | :--- |
| POWER | Green | On | Power supply in normal status | -- |
|  |  | Off | No power supply | Check the power supply. |
| LINK | On | Network connection in normal <br> status | -- |  |
|  | Green | Flashing | Network in operation | -- |
|  |  | Off | Network not connected | Check if the network cable is <br> connected. |

Troubleshooting

| Abnormality | Cause | How to correct it? |
| :---: | :---: | :---: |
| POWER LED off | AC motor drive not powered | Check if AC motor drive is powered, and if the power supply is normal. |
|  | CMC-EIP01 not connected to AC motor drive | Make sure CMC-EIP01 is connected to AC motor drive. |
| LINK LED off | CMC-EIP01 not connected to network | Make sure the network cable is correctly connected to network. |
|  | Poor contact to RJ-45 connector | Make sure RJ-45 connector is connected to Ethernet port. |
| No communication card found | CMC-EIP01 not connected to network | Make sure CMC-EIP01 is connected to network. |
|  | PC and CMC-EIP01 in different networks and blocked by network firewall. | Search by IP or set up relevant settings by AC motor drive keypad. |
| Fail to open CMC-EIP01 setup page | CMC-EIP01 not connected to network | Make sure CMC-EIP01 is connected to the network |
|  | Incorrect communication setting in DCISoft | Make sure the communication setting in DCISoft is set to Ethernet. |
|  | PC and CMC-EIP01 in different networks and blocked by network firewall. | Conduct the setup by AC motor drive keypad. |


| Abnormality | Cause | How to correct it? |
| :--- | :--- | :--- |
| Able to open <br> CMC-EIP01 setup <br> page but fail to <br> utilize webpage <br> monitoring | Incorrect network setting in <br> CMC-EIP01 | Check if the network setting for CMC-EIP01 is <br> correct. For the Intranet setting in your company, <br> please consult your IT staff. For the Internet setting <br> in your home, please refer to the network setting <br> instruction provided by your ISP. |
| Fail to send e-mail | Incorrect network setting in <br> CMC-EIP01 | Check if the network setting for CMC-EIP01 is <br> correct. |
|  | Incorrect mail server setting | Please confirm the IP address for SMTP-Server. |

## 8-15 CMC-EC01 -- Communication card, EtherCAT

## 8-15-1 Features

The EtherCAT of C2000 currently provides standard control mode of CiA402 Velocity (Index $6060=2$ ), but it is non-synchronous control mode. There is no need to turn on the DC (Distribute Clock) function when operating. However, if the DC function is required for using with synchronous products (e.g. ASDA-A2), the CMC-EC01 can still be used normally under this circumstances. The VFD-C2000 supports the EtherCAT function with firmware version 2.02 and above. Please be attention to the firmware you use.

## 8-15-2 Product Profile


[Figure 1]

| 1. Screw fixing hole |
| :--- |
| 2. Positioning hole |
| 3. RUN indicator |
| 4. ERR indicator |
| $\frac{\text { 6. OUT LINK indicator }}{\text { 7. IN LINK indicator }}$ |
| $\frac{\text { 8. Fool-proof groove }}{\text { 9. RJ-45 connection port }}$ |
| $\frac{10 . \text { RJ-45 connection port }}{\text { 11. Control board connection port }}$ |

## 8-15-3 Specifications

Network Interface

| Interface | RJ-45 |
| :--- | :--- |
| Number of ports | 2 Port |
| Transmission method | IEEE802.3, IEEE802.3u |
| Transmission cable | Category 5e shielding 100 M |
| Transmission speed | $10 / 100$ Mbps Auto-Defect |
| Network protocol | EtherCAT |

Electrical Specification

| Power supply voltage | $5 \mathrm{~V}_{\mathrm{DC}}$ |
| :--- | :--- |
| Power consumption | 0.8 W |
| Insulation voltage | 500 VDC |
| Weight (g) | 27 |

Environment

|  | ESD (IEC 61800-5-1, IEC 61000-4-2) <br> EFT (IEC 61800-5-1, IEC 61000-4-4) |
| :--- | :--- |
| Noise immunity | Surge Test (IEC 61800-5-1, IEC 61000-4-5) <br> Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6) |
| Operation | $-10^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$ (temperature), $90 \%$ (humidity) |
| Storage | $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity) |
| Vibration $/$ shock <br> immunity | International standard: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, <br> IEC 60068-2-27 |

## 8-15-4 RJ-45 PIN Definition

| RJ-45 | PIN No. | Signal | Definition |
| :---: | :---: | :---: | :---: |
|  | 1 | Tx+ | Positive pole for data transmission |
|  | 2 | Tx- | Negative pole for data transmission |
|  | 3 | Rx+ | Positive pole for data receiving |
|  | 4 | -- | N / C |
|  | 5 | -- | N/C |
|  | 6 | Rx- | Negative pole for data receiving |
|  | 7 | -- | N/C |
|  | 8 | -- | N / C |

## 8-15-5 Communication Parameters for VFD-C2000 Connected to EtherCAT

When operating VFD-C2000 via CMC-EC01, please set the control and operation command as controlled by communication card. When C2000 is connected to EtherCAT network, please set up the communication parameters according to the table below.

| Parameter | Set value (Dec) | Explanation |
| :---: | :---: | :--- |
| Pr. 00-20 | 8 | The frequency command is controlled by communication card. |
| Pr. 00-21 | 5 | The operation command is controlled by communication card. |
| Pr. 09-60 | 6 | Identification: when CMC-EC01 is connected, Pr.09-60 will show <br> value 6 (EtherCAT Slave) |
| Pr. 09-61 | -- | Version of communication card |

## 8-15-6 LED Indicator

| LED | Status |  | Indication |
| :---: | :---: | :---: | :--- |
| POWER | Green | On | Power supply in normal status |
|  |  | Off | No power supply |
| LINK | On | Operate in normal status |  |
|  | Green | Flashes | Pre-operation (On / Off 200ms) |
|  |  | Operate in safe mode <br> (On 200ms / Off 1000ms) |  |
|  |  | Off | Initial state |


| LED | Status |  | Indication |
| :---: | :---: | :---: | :---: |
| ERROR | Red | Flashed | Basic configuration error (On / Off 200ms) |
|  |  |  | Status switching error (On 200ms / Off 1000ms) |
|  |  |  | Times out (On 200ms twice / Off 1000ms) |
|  |  | Off | No error |
| IN LINK | Green | On | Network connection in normal status |
|  |  | Flashes | Network in operation |
|  |  | Off | Network not connected |
| OUT LINK | Green | On | Network connection in normal status |
|  |  | Flashes | Network in operation |
|  |  | Off | Network not connected |

## 8-15-7 Network Connection

Because the packet delivery of EtherCAT has directional characteristics, the connection must be correct. The designed delivery direction of CMC-EC01 is left for IN / right for ON, the correct wiring is as below shown:


When the hardware is installed and power on, check for the display. The current set value of Pr.09-60 will be 6, and shows "EtherCAT" on the display. If the above information does not show on the display, please check the version of VFD-C2000 (V2.02 and above) and the connection of the card.

## 09-60

## 8-16 CMC-PN01 -- Communication card, PROFINET

## 8-16-1 Features

CMC-PN01 connects C2000 drive to PROFINET to exchange data with the host controller easily.
This simple network solution saves cost and time for connection and installation of factory automation. Moreover, its components are compatible with suppliers'.
By installing CMC-PN01 in C2000 through the main PROFINET device, you can:

1. Control the drive through PROFINET
2. Modify the drive's parameters through PROFINET
3. Monitor the drive's status through PROFINET.

## 8-16-2 Product profile

| 1. Screw fixing hole |
| :--- |
| 2. Communication card fixing |
| hole |
| 3. Indicator light: Ready out |
| 4. Indicator light: MT out |
| 5. Indicator light: SD |
| 6. Indicator light: BF out |
| 7. Indicator light: ACT PHY2 |
| 8. Indicator light: Link PHY2 |
| 9. Indicator light: ACT PHY1 |
| 10. ndicator light: Link PHY2 |
| 11. ON / OFF switch <br> 12. Fool-proofing slot to the <br> communication card <br> 13. RJ45 port (Port2) <br> 14. RJ45 port (Port1) <br> 15. A port to connect with <br> control board |

Label with MAC address
5503092600


MAC1: 0018233C0043
MAC2: 0018233C0044
MAC3: 0018233C0045
ACRNAR000189

| 5503092600 |  | MAC1: 0018233C0043 |
| :---: | :---: | :---: |
| - |  |  |
| DAtamatrix | 451 | MAC2: 0018233C0044 |
|  |  | MAC3: 0018233C0045 |
| ACRNAR000189 |  |  |


| Definition | Description |
| :---: | :--- |
| MAC1 | Port 1 MAC Address |
| MAC2 | Port 2 MAC Address |
| MAC3 | Interface MAC Address |

## 8-16-3 Specifications

Network interface

| Item | Specifications |
| :--- | :--- |
| Interface | RJ45 |
| Number of ports | 2 ports |
| Transmission cable | IEEE 802.3 |
| Transmission rate | Category 5e shielding 100 M |
| Communication <br> protocol | $10 / 100$ Mbps auto-negotiate |
| Interface | PROFINET |

Electrical specification

| Item | Specifications |
| :--- | :--- |
| Power supply voltage | $5 \mathrm{VDC}_{\mathrm{DC}}$ |
| Power consumption | 0.8 W |
| Insulation voltage | 500 VDC |
| Weight (g) | $27(\mathrm{~g})$ |

Environmental conditions

| Item | Specifications |
| :--- | :--- |
| Noise immunity | ESD (IEC 61800-5-1, IEC 6100-4-2) <br> EFT (IEC 61800-5-1, IEC 6100-4-4) <br> Surge Teat (IEC 61800-5-1, IEC 6100-4-5) <br> Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6) |
| Operation and <br> storage | $-10-50^{\circ}$ C (temperature), 90\% (humidity) |
| Vibration \& shock <br> resistance | International Standard: IEC 61800-5-1, IEC 60068-2-6 / IEC <br> $61800-5-1, ~ I E C ~ 60068-2-27 ~$ |

## 8-16-4 Definition of PINs in RJ45 port

| RJ45 | PIN | Signal | Definition |
| :---: | :---: | :---: | :---: |
|  | 1 | Tx+ | Positive pole for data transmission |
|  | 2 | Tx- | Negative pole for data transmission |
|  | 3 | Rx+ | Positive pole for receiving data |
|  | 4 | -- | N/C |
|  | 5 | -- | N/C |
|  | 6 | Rx- | Negative pole for receiving data |
|  | 7 | -- | N/C |
|  | 8 | -- | N/C |

8-16-5 To set the communication parameters when C2000 connects with PROFINET
When you operate VFD-C2000 through CMC-PN01, you should set the communication card as the source of VFD-C2000 controls and settings. You need to use the keypad to configure the following parameter addresses to the corresponding values:

| Parameters | Setting value | Description |
| :---: | :---: | :--- |
| Pr.00-20 | 8 | The frequency command is controlled by communication card |
| Pr.00-21 | 5 | The frequency command is controlled by communication card |
| Pr.09-30 | 1 | Use decoding method (60xx or 20xx) |
| Pr.09-60 | 12 | Communication card identification: <br> When CMC-PN01 communication card is connected, the value <br> of this parameter displays "12". |

## 8-16-6 LED indicator introduction

| Name | Indicator status |  | Indication |
| :---: | :---: | :---: | :---: |
| Ready out indicator | Yellow LED | Always on | PN Stack starts normally |
|  |  | Flashing | PN Stack starts normally, and waiting for syncing with MCU |
|  |  | Off | PN Stack failed to start |
| MT out indicator | Green LED | - | - |
| SD indicator | Red LED | - | - |
| BF out indicator | Red LED | Always on | Connection with PROFINET Controller is interrupted |
|  |  | Flashing | Connection is in normal state, but the communication with PROFINET Controller is abnormally |
|  |  | Off | Connection with PROFINET Controller is in normal state |
| ACT PHY1 indicator | Orange LED | Always on | It's online, and exchanging the data with Master normally |
|  |  | Flashing | It's offline, but hand shaking the data with Master |
|  |  | Off | Initial state |
| LINK PHY1 indicator | Green LED | Always on | Internet connection is in normal state |
|  |  | Off | Doesn't connect to network |
| ACT PHY2 indicator | Orange LED | Always on | It's online, and exchanging the data with Master normally |
|  |  | Flashing | It's offline, but hand shaking the data with Master |
|  |  | Off | Initial state |
| LINK PHY2 indicator | Green LED | Always on | Internet connection is in normal state |
|  |  | Off | Doesn't connect to network |

## 8-16-7 Network connection

The wiring of CMC-PN01 shows as follows:


When the installation is finished, supply electricity to the drive. The Pr.09-60 of the drive should be able to display "PROFINET" with a current value of 12 . If not, make sure your version of the drive is correct (C2000 needs 2.04 or later versions) and the communication card is correctly connected.

| 09-60 |  |
| :---: | :---: |
| 12 |  |
| PROFINET |  |
| 0~12 | ADD |

## 8-17 EMC-COP01

## 8-17-6 Terminating Resistor Position



## 8-17-7 RJ-45 Pin Definition



RS485 socket

| Pin | Pin name | Definition |
| :---: | :---: | :--- |
| 1 | CAN_H | CAN_H bus line (dominant high) |
| 2 | CAN_L | CAN_L bus line (dominant low) |
| 3 | CAN_GND | Ground/OV/V- |
| 7 | CAN_GND | Ground/OV/V- |

## 8-17-8 Specifications

| Interface | RJ-45 |
| :---: | :--- |
| Number of ports | 1 Port |
| Transmission method | CAN |
| Transmission cable | CAN standard cable |
| Transmission speed | 1Mbps, $500 \mathrm{Kbps}, 250 \mathrm{Kbps}, 125 \mathrm{Kbps}, 100 \mathrm{Kbps}, 50 \mathrm{Kbps}$ |
| Communication protocol | CANopen |

## 8-18 Delta Standard Fieldbus Cables

| Delta Cables | Part Number | Description | Length |
| :---: | :---: | :---: | :---: |
| CANopen Cable | UC-CMC003-01A | CANopen cable, RJ45 connector | 0.3 m |
|  | UC-CMC005-01A | CANopen cable, RJ45 connector | 0.5m |
|  | UC-CMC010-01A | CANopen cable, RJ45 connector | 1 m |
|  | UC-CMC015-01A | CANopen cable, RJ45 connector | 1.5 m |
|  | UC-CMC020-01A | CANopen cable, RJ45 connector | 2 m |
|  | UC-CMC030-01A | CANopen cable, RJ45 connector | 3 m |
|  | UC-CMC050-01A | CANopen cable, RJ45 connector | 5 m |
|  | UC-CMC100-01A | CANopen cable, RJ45 connector | 10 m |
|  | UC-CMC200-01A | CANopen cable, RJ45 connector | 20 m |
| DeviceNet Cable | UC-DN01Z-01A | DeviceNet cable | 305 m |
|  | UC-DN01Z-02A | DeviceNet cable | 305 m |
| EtherNet / EtherCAT Cable | UC-EMC003-02A | Ethernet / EtherCAT cable, Shielding | 0.3 m |
|  | UC-EMC005-02A | Ethernet / EtherCAT cable, Shielding | 0.5m |
|  | UC-EMC010-02A | Ethernet / EtherCAT cable, Shielding | 1 m |
|  | UC-EMC020-02A | Ethernet / EtherCAT cable, Shielding | 2 m |
|  | UC-EMC050-02A | Ethernet / EtherCAT cable, Shielding | 5 m |
|  | UC-EMC100-02A | Ethernet / EtherCAT cable, Shielding | 10 m |
|  | UC-EMC200-02A | Ethernet / EtherCAT cable, Shielding | 20 m |
| CANopen / DeviceNet TAP | TAP-CN01 | 1 in 2 out, built-in $121 \Omega$ terminal resistor | 1 in 2 out |
|  | TAP-CN02 | 1 in 4 out, built-in $121 \Omega$ terminal resistor | 1 in 4 out |
|  | TAP-CN03 | 1 in 4 out, RJ45 connector, built-in $121 \Omega$ terminal resistor | 1 in 4 out, RJ45 |
| PROFIBUS Cable | UC-PF01Z-01A | PROFIBUS DP cable | 305m |

## Chapter 9 Specification

9-1 230V Series
9-2 460V Series
9-3 575V Series
9-4 690V Series
9-5 Environment for Operation, Storage and Transportation
9-6 Specification for Operation Temperature and Protection Level
9-7 Derating Curve of Ambient Temperature
9-8 Efficiency Curve

## 9-1 230V Series



Table 9-1

## $\square$ NOTE

1. *: The factory setting is Normal Duty mode.
2. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Please refer to Chapter 9-7 Derating Curve of Ambient Temperature.
3. The AC motor drive should operate in derating current when its control method is set to FOC Sensorless, TQC+PG, TQC sensorless. PM+PG, PM sensorless Please refer to Pr. 06-55 for more information.
4. Select the AC motor drive with capacity one grade larger for the impact load application.
5. The rated input current will be affected by not only Power Transformer and the connection of the reactors on input side, but also fluctuates with the impedance of power side.
6. For Frame D and above, if the last character of the model is A then it is under IP20 protection level but the wiring terminal is under IP00 protection level; if the last character of the model is E , it is under IP20/NEMA1/UL TYPE1 protection level.

## 9-2 460V Series

| Frame Size |  |  |  | A |  |  |  |  |  | B |  |  | C |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model VFD-___ C__ |  |  |  | 007 | 015 | 022 | 037 | 040 | 055 | 075 | 110 | 150 | 185 | 220 | 300 |
|  |  | Rated Outpu | Capacity [kVA] | 2.4 | 3.2 | 4.8 | 7.2 | 8.4 | 10 | 14 | 19 | 25 | 30 | 36 | 48 |
|  |  | Rated Outp | Current [A] | 3.0 | 4.0 | 6.0 | 9.0 | 10.5 | 12 | 18 | 24 | 32 | 38 | 45 | 60 |
|  |  | Applicable Mo | r Output [kW] | 0.75 | 1.5 | 2.2 | 3.7 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 |
|  |  | Applicable Mo | or Output [HP] | 1 | 2 | 3 | 5 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 |
|  |  | Overload | apacity | $120 \%$ of rated output current: 1 minute for every 5 minutes; $160 \%$ of rated output current: 3 seconds for every 30 seconds |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Max. Output | equency [Hz] | 0.00~599.00 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Carrier Fre | uency [kHz] | 2~15 (Default: 8) |  |  |  |  |  |  |  |  | 2~10 (Default: 6) |  |  |
|  |  | Rated Outpu | apacity [kVA] | 2.3 | 3.0 | 4.5 | 6.5 | 7.6 | 9.6 | 14 | 18 | 24 | 29 | 34 | 45 |
|  |  | Rated Outp | Current [A] | 2.9 | 3.8 | 5.7 | 8.1 | 9.5 | 11 | 17 | 23 | 30 | 36 | 43 | 57 |
|  |  | Applicable Mo | r Output [kW] | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
|  |  | Applicable M | Output [HP] | 0.5 | 1 | 2 | 3 | 5 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 |
|  |  | Overload | Capacity | $150 \%$ of rated output current: 1 minute for every 5 minutes; $180 \%$ of rated output current: 3 seconds for every 30 seconds |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Max. Output | equency [Hz] | 0.00~300.00 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Carrier Fre | uency [kHz] | 2~15 (Default: 2) |  |  |  |  |  |  |  |  | 2~10 (Default: 2) |  |  |
|  | Input Current [A] |  | Normal Duty | 4.3 | 5.9 | 8.7 | 14 | 15.5 | 17 | 20 | 26 | 35 | 40 | 47 | 63 |
|  |  |  | Heavy Duty | 4.1 | 5.6 | 8.3 | 13 | 14.5 | 16 | 19 | 25 | 33 | 38 | 45 | 60 |
|  | Rated Voltage / Frequency |  |  | 3-phase AC 380V~480V (-15\%~+10\%), $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Operating Voltage Range |  |  | $323 \sim 528 \mathrm{~V}_{\text {AC }}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Frequency Tolerance |  |  | $47 \sim 63 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |
| Efficiency [\%] |  |  |  | 97.8 |  |  |  |  |  |  |  |  |  |  |  |
| Power Factor |  |  |  | >0.98 |  |  |  |  |  |  |  |  |  |  |  |
| Drive Weight [Kg] |  |  |  | $2.6 \pm 0.3$ |  |  |  |  |  | $5.4 \pm 1$ |  |  | $9.8 \pm 1.5$ |  |  |
| Cooling Method |  |  |  | Natural cooling |  | Fan cooling |  |  |  |  |  |  |  |  |  |
| Braking Chopper |  |  |  | Frame A~C: Built-in |  |  |  |  |  |  |  |  |  |  |  |
| DC choke |  |  |  | Frame A~C: Optional |  |  |  |  |  |  |  |  |  |  |  |
| EMC Filter |  |  |  | VFDXXXC43A: Optional; Frame A~C VFDXXXC43E: Built-in |  |  |  |  |  |  |  |  |  |  |  |
| EMC-COP01 |  |  |  | VFDXXXC43A: Optional; VFDXXXC43E: Built-in |  |  |  |  |  |  |  |  |  |  |  |

Table 9-2

## $\square$ note

1. *: The factory setting is Normal Duty mode.
2. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Please refer to Chapter 9-7 Derating Curve of Ambient Temperature.
3. The AC motor drive should operate in derating current when its control method is set to FOC Sensorless, TQC+PG, TQC sensorless. PM+PG, PM sensorless Please refer to Pr. 06-55 for more information.
4. Select the AC motor drive with capacity one grade larger for the impact load application.
5. The rated input current will be affected by not only Power Transformer and the connection of the reactors on input side, but also fluctuates with the impedance of power side.
6. For Frame A, B and C, Model VFDXXXC43A is under IP20/NEMA1/UL TYPE1 protection level.
7. For Frame $D$ and above, if the last character of the model is A then it is under IP20 protection level but the wiring terminal is under IP00 protection level; if the last character of the model is $E$, it is under IP20/NEMA1/UL TYPE1 protection level.

Chapter 9 Specification | C2000

|  | Frame Size |  |  | D0 |  | D |  | E |  | F |  | G |  | H |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model VFD-__ _ C__ |  |  |  | 370 | 450 | 550 | 750 | 900 | 1100 | 1320 | 1600 | 1850 | 2200 | 2800 | 3150 | 3550 | 4500 |
|  |  | Rated Output Capacity [kVA] |  | 58 | 73 | 88 | 120 | 143 | 175 | 207 | 247 | 295 | 367 | 438 | 491 | 544 | 720 |
|  |  | Rated Output Current [A] |  | 73 | 91 | 110 | 150 | 180 | 220 | 260 | 310 | 370 | 460 | 550 | 616 | 683 | 866 |
|  |  | Applicable Motor Output [kW] |  | 37 | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 185 | 220 | 280 | 315 | 355 | 450 |
|  |  | Applicable Motor Output [HP] |  | 50 | 60 | 75 | 100 | 125 | 150 | 175 | 215 | 250 | 300 | 375 | 420 | 475 | 600 |
|  |  | Overload Capacity |  | $120 \%$ of rated output current: 1 minute for every 5 minutes; $160 \%$ of rated output current: 3 seconds for every 30 seconds |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Max. Output Frequency [Hz] |  | 0.00~599.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Carrier Frequency [kHz] |  | 2~10 (Default: 6) |  |  | 2~9 (Default: 4) |  |  |  |  |  |  |  |  |  |  |
|  |  | Rated Output Capacity [kVA] |  | 55 | 69 | 84 | 114 | 136 | 167 | 197 | 235 | 280 | 348 | 417 | 466 | 517 | 677 |
|  |  | Rated Output Current [A] |  | 69 | 86 | 105 | 143 | 171 | 209 | 247 | 295 | 352 | 437 | 523 | 585 | 649 | 815 |
|  |  | Applicable Motor Output [kW] |  | 30 | 37 | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 185 | 220 | 280 | 315 | 355 |
|  |  | Applicable Motor Output [HP] |  | 40 | 53 | 60 | 75 | 100 | 125 | 150 | 175 | 215 | 250 | 300 | 375 | 425 | 475 |
|  |  | Overload Capacity |  | $150 \%$ of rated output current: 1 minute for every 5 minutes; $180 \%$ of rated output current: 3 seconds for every 30 seconds |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Max. Output Frequency [Hz] |  | 0.00~300.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Carrier Frequency [kHz] |  | 2~10 (Default: 2) |  |  | 2~9 (Default: 2) |  |  |  |  |  |  |  |  |  |  |
|  | Input Current [A] |  | Normal Duty | 74 | 101 | 114 | 157 | 167 | 207 | 240 | 300 | 380 | 400 | 494 | 555 | 625 | 866 |
|  |  |  | Heavy Duty | 70 | 96 | 108 | 149 | 159 | 197 | 228 | 285 | 361 | 380 | 469 | 527 | 594 | 815 |
|  | Rated Voltage / Frequency |  |  | 3-phase AC 380V~480V (-15\% +10\%), $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Operating Voltage Range |  |  | $323 \sim 528 \mathrm{~V}_{\text {AC }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Frequency Tolerance |  |  | $47 \sim 63 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Efficiency [\%] |  |  |  | 97.8 |  |  |  | 98.2 |  |  |  |  |  |  |  |  |  |
| Power Factor |  |  |  | $>0.98$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Drive Weight [Kg] |  |  |  | $27 \pm 1.5$ |  | $38.5 \pm 1.5$ |  | $64.8 \pm 1.5$ |  | $86.5 \pm 1.5$ |  | $134 \pm 4$ |  | 228 |  |  |  |
| Cooling Method |  |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Braking Chopper |  |  |  | Frame D0~H: Optional |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DC choke |  |  |  | Frame D0~H: Built-in |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMC Filter |  |  |  | Frame D0~H: Optional |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMC-COP01 |  |  |  | VFDXXXC43A : Optional; VFDXXXC43E: Built-in |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 9-3

## $\Rightarrow$ NOTE

1. *: The factory setting is Normal Duty mode.
2. The carrier frequency is default. Increasing the carrier frequency requires a reduction in current. Please refer to Chapter 9-7 Derating Curve of Ambient Temperature.
3. The AC motor drive should operate in derating current when its control method is set to FOC Sensorless, TQC+PG, TQC sensorless. PM+PG, PM sensorless Please refer to Pr. 06-55 for more information.
4. Select the AC motor drive with capacity one grade larger for the impact load application.
5. The rated input current will be affected by not only Power Transformer and the connection of the reactors on input side, but also fluctuates with the impedance of power side.
6. For Frame A, B and C, Model VFDXXXC43A is under IP20/NEMA1/UL TYPE1 protection level.
7. For Frame D and above, if the last character of the model is A then it is under IP20 protection level but the wiring terminal is under IP00 protection level; if the last character of the model is $E$, it is under IP20/NEMA1/UL TYPE1 protection level.
8. Model VFD4500C43x does not have UL certification.

## 9-3 575V Series

| Frame Size |  |  |  | A |  |  | B |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model VFD-_ _ C53A-21 |  |  |  | 015 | 022 | 037 | 055 | 075 | 110 | 150 |
|  |  | Rated Output Capacity [kVA] |  | 3 | 4.3 | 6.7 | 9.9 | 12.1 | 18.6 | 24.1 |
|  |  | Rated Output Current [A] |  | 3 | 4.3 | 6.7 | 9.9 | 12.1 | 18.7 | 24.2 |
|  |  | Applicable Motor Output [kW] |  | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 |
|  |  | Applicable Motor Output [HP] |  | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 |
|  |  | Rated Output Capacity [kVA] |  | 2.5 | 3.6 | 5.5 | 8.2 | 10 | 15.4 | 19.9 |
|  |  | Rated Output Current [A] |  | 2.5 | 3.6 | 5.5 | 8.2 | 10 | 15.5 | 20 |
|  |  | Applicable Motor Output [kW] |  | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 |
|  |  | Applicable Motor Output [HP] |  | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 |
|  |  | Rated Output Capacity [kVA] |  | 2.1 | 3 | 4.6 | 6.9 | 8.3 | 12.9 | 16.7 |
|  |  | Rated Output Current [A] |  | 2.1 | 3 | 4.6 | 6.9 | 8.3 | 13 | 16.8 |
|  |  | Applicable Motor Output [kW] |  | 0.75 | 1.5 | 2.2 | 3.7 | 3.7 | 7.5 | 7.5 |
|  |  | Applicable Motor Output [HP] |  | 1 | 2 | 3 | 5 | 5 | 10 | 10 |
|  | Carrier Frequency [kHz] |  |  | 2~15 (Default: 6) |  |  |  |  |  |  |
|  | Input Current [A] |  | Light Duty | 3.8 | 5.4 | 10.4 | 14.9 | 16.9 | 21.3 | 26.3 |
|  |  |  | Normal Duty | 3.1 | 4.5 | 7.2 | 12.3 | 15 | 18 | 22.8 |
|  |  |  | Heavy Duty | 2.6 | 3.8 | 5.8 | 10.7 | 12.5 | 16.9 | 19.7 |
|  | Rated Voltage / Frequency |  |  | 3-phase AC $525 \sim 600 \mathrm{~V}$ ( -15\%~+10\%), $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |
|  | Operating Voltage Range |  |  | $446 \sim 660 \mathrm{~V}_{\mathrm{AC}}$ |  |  |  |  |  |  |
|  | Frequency Tolerance |  |  | 47~63Hz |  |  |  |  |  |  |
| Efficiency [\%] |  |  |  | 97 |  |  | 98 |  |  |  |
| Power Factor |  |  |  | >0.98 |  |  |  |  |  |  |
| Drive Weight [Kg] |  |  |  | $3 \pm 0.3$ |  |  | $4.8 \pm 1$ |  |  |  |
| Cooling Method |  |  |  | Natural cooling |  |  | Fan cooling |  |  |  |
| Braking Chopper |  |  |  | Frame A~B: Built-in |  |  |  |  |  |  |
| DC choke |  |  |  | Frame A~B: Optional |  |  |  |  |  |  |
| EMC Filter |  |  |  | Frame A~B: Optional |  |  |  |  |  |  |

Table 9-4

## NOTE

* Parameter 00-16; available load modes: Light Duty (LD), Normal Duty (ND) and Heavy Duty (HD); default setting is LD mode


## 9-4 690V Series

| Frame Size |  |  |  | C |  |  |  | D |  | E |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model VFD-___ C63B-00 /-21 |  |  |  | 185 | 220 | 300 | 370 | 450 | 550 | 750 | 900 | 1100 | 1320 |
|  |  | Rated Output Capacity [kVA] |  | 29 | 36 | 43 | 54 | 65 | 80 | 103 | 124 | 149 | 179 |
|  |  | Applicable Motor Output [690V, kW] |  | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | 132 |
|  |  | Applicable Motor Output [690V, HP] |  | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 125 | 150 | 175 |
|  |  | Applicable Motor Output [575V, HP] |  | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 125 | 150 |
|  |  | Rated Output Current [A] |  | 24 | 30 | 36 | 45 | 54 | 67 | 86 | 104 | 125 | 150 |
|  |  | Rated Output Capacity [kVA] |  | 24 | 29 | 36 | 43 | 54 | 65 | 80 | 103 | 124 | 149 |
|  | $\underset{\substack{\text { a }}}{ }$ | Applicable Motor Output [690V, kW] |  | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 |
|  | $\stackrel{\text { col }}{ }$ | Applicable Motor Output [690V, HP] |  | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 125 | 150 |
|  | $\stackrel{L}{2}$ | Applicable Motor Output [575V, HP] |  | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 125 |
|  |  | Rated Output Current [A] |  | 20 | 24 | 30 | 36 | 45 | 54 | 67 | 86 | 104 | 125 |
|  |  | Rated Output Capacity [kVA] |  | 17 | 24 | 29 | 36 | 43 | 54 | 65 | 80 | 103 | 124 |
|  |  | Applicable Motor Output [690V, kW] |  | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 |
|  |  | Applicable Motor Output [690V, HP] |  | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 125 |
|  |  | Applicable Motor Output [575V, HP] |  | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 |
|  |  | Rated Output Current [A] |  | 14 | 20 | 24 | 30 | 36 | 45 | 54 | 67 | 86 | 104 |
|  | Carrier Frequency [kHz] |  |  | 2~9 (Default: 4) |  |  |  |  |  |  |  |  |  |
|  | Input Current [A] |  | Light Duty | 29 | 36 | 43 | 54 | 65 | 81 | 84 | 102 | 122 | 147 |
|  |  |  | Normal Duty | 24 | 29 | 36 | 43 | 54 | 65 | 66 | 84 | 102 | 122 |
|  |  |  | Heavy Duty | 20 | 24 | 29 | 36 | 43 | 54 | 53 | 66 | 84 | 102 |
|  | Rated Voltage / Frequency |  |  | 3-phase AC $525 \mathrm{~V} \sim 690 \mathrm{~V}$ ( $-15 \% \sim+10 \%$ ), $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |
|  | Operating Voltage Range |  |  | $446 \sim 759 \mathrm{~V}_{\mathrm{AC}}$ |  |  |  |  |  |  |  |  |  |
|  | Frequency Tolerance |  |  | $47 \sim 63 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |
| Efficiency [\%] |  |  |  | 97 |  |  |  |  |  |  |  |  |  |
| Power Factor |  |  |  | $>0.98$ |  |  |  |  |  |  |  |  |  |
| Drive Weight [Kg] |  |  |  | $10 \pm 1.5$ |  |  |  | $39 \pm 1.5$ |  | $61 \pm 1.5$ |  |  |  |
| Cooling Method |  |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |
| Braking Chopper |  |  |  | Frame C: Built-in |  |  |  | Frame D~E: Optional |  |  |  |  |  |
| DC choke |  |  |  | Frame C: Optional |  |  |  | Frame D~E: Built-in |  |  |  |  |  |
| EMC Filter |  |  |  | Frame C~E: Optional |  |  |  |  |  |  |  |  |  |

Table 9-5

## NOTE

* Parameter 00-16; available load modes: Light Duty (LD), Normal Duty (ND) and Heavy Duty (HD); default setting is LD mode

| Frame Size |  |  |  | F |  | G |  | H |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model VFD-_ _ C63B-00/21 |  |  |  | 1600 | 2000 | 2500 | 3150 | 4000 | 4500 | 5600 | 6300 |
|  |  | Rated Output Capacity [kVA] |  | 215 | 263 | 347 | 418 | 494.5 | 534.7 | 678.5 | 776 |
|  |  | Applicable Motor Output [690V, kW] |  | 160 | 200 | 250 | 315 | 400 | 450 | 560 | 630 |
|  |  | Applicable Motor Output [690V, HP] |  | 215 | 270 | 335 | 425 | 530 | 600 | 745 | 850 |
|  |  | Applicable Motor Output [575V, HP] |  | 175 | 200 | 250 | 350 | 400 | 450 | 500 | 745 |
|  |  | Rated Output Current [A] |  | 180 | 220 | 290 | 350 | 430 | 465 | 590 | 675 |
|  |  | Rated Output Capacity [kVA] |  | 179 | 215 | 239 | 347 | 402.5 | 442.7 | 534.7 | 776 |
|  |  | Applicable Motor Output [690V, kW] |  | 132 | 160 | 200 | 250 | 315 | 355 | 450 | 630 |
|  |  | Applicable Motor Output [690V, HP] |  | 175 | 215 | 270 | 335 | 425 | 475 | 600 | 850 |
|  |  | Applicable Motor Output [575V, HP] |  | 150 | 175 | 200 | 250 | 350 | 400 | 450 | 745 |
|  |  | Rated Output Current [A] |  | 150 | 180 | 220 | 290 | 350 | 385 | 465 | 675 |
|  |  | Rated Output Capacity [kVA] |  | 149 | 179 | 215 | 263 | 333.5 | 356.5 | 483 | 776 |
|  |  | Applicable Motor Output [690V, kW] |  | 110 | 132 | 160 | 200 | 250 | 280 | 400 | 630 |
|  |  | Applicable Motor Output [690V, HP] |  | 150 | 175 | 215 | 270 | 335 | 375 | 530 | 850 |
|  |  | Applicable Motor Output [575V, HP] |  | 125 | 150 | 175 | 200 | 250 | 335 | 450 | 745 |
|  |  | Rated Output Current [A] |  | 125 | 150 | 180 | 220 | 290 | 310 | 420 | 675 |
|  | Carrier Frequency [kHz] |  |  | 2~9 (Default: 4) |  |  |  |  |  |  | 2~9 (Default: 3) |
|  | Input Current [A] |  | Light Duty | 178 | 217 | 292 | 353 | 454 | 469 | 595 | 681 |
|  |  |  | Normal Duty | 148 | 178 | 222 | 292 | 353 | 388 | 504 | 681 |
|  |  |  | Heavy Duty | 123 | 148 | 181 | 222 | 292 | 313 | 423 | 681 |
|  | Rated Voltage / Frequency |  |  | 3-phase AC $525 \mathrm{~V} \sim 690 \mathrm{~V}$ ( -15\% $\sim+10 \%$ ), $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |
|  | Operating Voltage Range |  |  | $446 \sim 759 \mathrm{~V}_{\mathrm{AC}}$ |  |  |  |  |  |  |  |
|  | Frequency Tolerance |  |  | $47 \sim 63 \mathrm{~Hz}$ |  |  |  |  |  |  |  |
| Efficiency [\%] |  |  |  | 97 |  | 98 |  |  |  |  |  |
| Power Factor |  |  |  | $>0.98$ |  |  |  |  |  |  |  |
| Drive Weight [Kg] |  |  |  | $88 \pm 1.5$ |  | $135 \pm 4$ |  | $243 \pm 5$ |  |  |  |
| Cooling Method |  |  |  | Fan cooling |  |  |  |  |  |  |  |
| Braking Chopper |  |  |  | Frame F~H: Optional |  |  |  |  |  |  |  |
| DC choke |  |  |  | Frame F~H: Built-in |  |  |  |  |  |  |  |
| EMC Filter |  |  |  | Frame F~H: Optional |  |  |  |  |  |  |  |

Table 9-6

## NOTE

* Parameter 00-16; available load modes: Light Duty (LD), Normal Duty (ND) and Heavy Duty (HD); default setting is LD mode


## General Specifications

|  | Control Method | 230V／460V model： <br> 1：V／F，2：SVC，3：VF＋PG，4：FOC＋PG，5：TQC＋PG，6：PM＋PG，7：FOC sensorless， <br> 8：TQC sensorless，9：PM sensorless <br> 575V／690V model： <br> 1：V／F，2：V／F＋PG，3：SVC |
| :---: | :---: | :---: |
|  | Starting Torque | IM：Reach up to $150 \%$ of $1 / 50$ rated speed PM：Reach up to $150 \%$ of $1 / 100$ rated speed |
|  | V／F Curve | 4 point adjustable V／F curve and square curve |
|  | Speed Circuit Response Bandwidth | Open－circuit：5Hz <br> Close－circuit：Max． 40 Hz for IM，and Max． 100 Hz for PM |
|  | Torque Limit | 230V／460V model：Normal duty：a max．of $160 \%$ torque current；Heavy duty：a max．of $180 \%$ torque current <br> 575V／690V model：Max．200\％torque current |
|  | Torque Accuracy | $\begin{aligned} & \text { TQC + PG: } \pm 5 \% \\ & \text { TQC Sensorless: } \pm 15 \% \end{aligned}$ |
|  | Max．Output Frequency $(\mathrm{Hz})$ | Normal duty：0．01～599．00Hz；Heavy duty： $0.00 \sim 300.00 \mathrm{~Hz}$ |
|  | Frequency Output Accuracy | Digital command： $\pm 0.01 \%,-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ ；Analog command： $\pm 0.1 \%, 25 \pm 10^{\circ} \mathrm{C}$ |
|  | Output Frequency Resolution | Digital command： 0.1 Hz ，Analog command： $0.05 \% \mathrm{X}$ max．output frequency（Pr．01－00）／ 11 bit |
|  | Overload Tolerance | 230V／460V model： <br> Normal duty： $120 \%$ of rated current can endure for1 minute during every 5 minutes $160 \%$ of rated current can endure for 3 seconds during every 30 seconds． <br> Heavy duty： $150 \%$ of rated current can endure for 1 minute during every 5 minutes $180 \%$ of rated current can endure for 3 seconds during every 30 seconds． |
|  |  | 575V／690V model： <br> Light duty： $120 \%$ of rated current can endure for 1 minute． <br> Normal duty： $120 \%$ of rated current can endure for 1 minute， $150 \%$ can endure for 3 seconds． Heavy duty： $150 \%$ of rated current can endure for 1 minute， $180 \%$ can endure for 3 seconds． |
|  | Frequency Setting Signal | －10～＋10V，0～＋10V，4～20mA，0～20mA，Pulse input |
|  | Accel．／decel．Time | 0．00～600．00／0．0～6000．0 seconds |
|  | Main Control Function | Torque control，Speed／torque control switching，Feed forward control，Zero－servo control， Momentary power loss ride thru，Speed search，Over－torque detection，Torque limit，16－step speed （max），Accel．／decel．time switch，S－curve accel．／decel．， 3 －wire sequence，Auto－Tuning（rotational， stationary），Dwell，Slip compensation，Torque compensation，JOG frequency，Frequency upper／ lower limit settings，DC injection braking at start／stop，High slip braking，PID control（with sleep function），Energy saving control，MODBUS communication（RS－485 RJ45，max．115．2 Kbps），Fault restart，Parameter copy |
|  | Fan Control | 230V model：Models above VFD150C23A（including VFD150C23A）are PWM control <br> Models below VFD110C23A（including VFD110C23A）are ON／OFF switch control 460V model：Models above VFD185C43A（including VFD185C43A）are PWM control <br> Models below VFD150C43A（including VFD150C43A）are ON／OFF switch control <br> 575V／690V model：PWM control |
|  | Motor Protection | Electronic thermal relay protection |
|  | Over－current Protection | For drive model 230 V and 460 V <br> Over－current protection： $240 \%$ rated current for normal duty； $250 \%$ rated current for heavy duty Current clamp 『Normal duty：170～175\％』；『Heavy duty：175～180\％』 |
|  |  | For drive model 575 V and 690 V （except 630kW） <br> Over－current protection： $240 \%$ rated current for normal duty <br> Current clamp『Light duty：125～145\％』；『Normal duty：170～175\％』；『Heavy duty：200～250\％』 <br> For 630kW <br> Over－current protection： $240 \%$ rated current for normal duty <br> Current clamp 『Light duty，normal duty，and heavy duty：170～175\％』 |
|  | Over－voltage Protection | 230 V model：drive will stop when DC－BUS voltage exceeds 410 V 460 V model：drive will stop when DC－BUS voltage exceeds 820 V 690 V model：drive will stop when DC－BUS voltage exceeds 1189 V |
|  | Over－temperature Protection | Built－in temperature sensor |


| Stall Prevention | Stall prevention during acceleration, deceleration and running independently |
| :---: | :---: |
| Restart after Instantaneous Power Failure | Parameter setting up to 20 seconds |
| Grounding Leakage Current Protection | Leakage current is higher than $50 \%$ of rated current of the AC motor drive |
| Short-circuit Current Rating (SCCR) | Per UL 508C, the drive is suitable for use on a circuit capable of delivering not more than 100kA symmetrical amperes (rms) when protected by fuses given in the fuse table. |
| Certifications | (E.UL) us GB/T12668-2 |

Table 9-7

## NOTE

The setting range of max. output frequency changes as carrier wave and control modes changes. Refer to Pr. 01-00 and Pr. 06-55 for more information.
Model VFD4500C43x does not have UL certification.

## 9-5 Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive / inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.


Table 9-8

## 9-6 Specification for Operation Temperature and Protection Level

| Model | Frame | Top cover | Conduit Box | Protection Level | Operation Temperature |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VFDxxxCxxA <br> VFDxxxCxxS | $\begin{aligned} & \text { Frame A~C } \\ & \text { 230V: 0.75~22kW } \\ & \text { 460V: 0.75~30kW } \end{aligned}$ | Top cover removed | Standard conduit plate | IP20 / UL Open Type | $-10 \sim 50^{\circ} \mathrm{C}$ |
|  |  | Standard with top cover |  | IP20 / UL Type1 / NEMA1 | $-10 \sim 40^{\circ} \mathrm{C}$ |
|  | $\begin{aligned} & \text { Frame } \mathrm{D} \mathrm{\sim H} \\ & 230 \mathrm{~V}: \geq 22 \mathrm{~kW} \\ & \text { 460V: } \geq 30 \mathrm{~kW} \end{aligned}$ | $N / A$ | No conduit box | $\begin{aligned} & \text { IP00 } \\ & \text { IP20 / UL Open Type } \end{aligned}$ |  |
|  |  |  |  |  | $-10 \sim 50^{\circ} \mathrm{C}$ |
|  |  |  |  | Figure 9-1 |  |
| VFDxxxCxxE VFDxxxCxxU | $\begin{aligned} & \text { Frame A~C } \\ & 460 \mathrm{~V}: 0.75 \sim 30 \mathrm{~kW} \end{aligned}$ | Top cover removed | Standard conduit plate | IP20 / UL Open Type | $-10 \sim 50^{\circ} \mathrm{C}$ |
|  |  | Standard with top cover |  | IP20 / UL Type1 / NEMA1 | $-10 \sim 40^{\circ} \mathrm{C}$ |
|  | $\begin{aligned} & \text { Frame D~H } \\ & 230 \mathrm{~V}: \geq 22 \mathrm{~kW} \\ & 460 \mathrm{~V}: \geq 30 \mathrm{~kW} \end{aligned}$ | N/A | Standard conduit box | IP20 / UL Type1 / NEMA1 | $-10 \sim 40^{\circ} \mathrm{C}$ |

## 9-7 Derating Curve of Ambient Temperature

| Protection Level | Operating Environment |
| :---: | :---: |
| UL Type I/ IP20 | $230 \mathrm{~V} / 460 \mathrm{~V}$ : When the AC motor drive operates at the rated current, and the ambient temperature has to be between $-10 \sim+40^{\circ} \mathrm{C}$. When the temperature is over $40^{\circ} \mathrm{C}$, the rated current decreases $2 \%$ for every increase by $1^{\circ} \mathrm{C}$. The maximum allowable temperature is $60^{\circ} \mathrm{C}$. <br> $575 \mathrm{~V} / 690 \mathrm{~V}$ : When the AC motor drive operates at the rated current, and the ambient temperature has to be between $-10 \sim+40^{\circ} \mathrm{C}$. When the temperature is over $40^{\circ} \mathrm{C}$, the rated current decreases $2.5 \%$ for every increase by $1^{\circ} \mathrm{C}$. The maximum allowable temperature is $60^{\circ} \mathrm{C}$. |
| UL Open Type / IP20 | $230 \mathrm{~V} / 460 \mathrm{~V}$ : When the AC motor drive operates at the rated current, and the ambient temperature has to be between $-10 \sim+50^{\circ} \mathrm{C}$. When the temperature is over $50^{\circ} \mathrm{C}$, the rated current decreases $2 \%$ for every increase by $1^{\circ} \mathrm{C}$. The maximum allowable temperature is $60^{\circ} \mathrm{C}$. <br> $575 \mathrm{~V} / 690 \mathrm{~V}$ : When the AC motor drive operates at the rated current, and the ambient temperature has to be between $-10 \sim+50^{\circ} \mathrm{C}$. When the temperature is over $50^{\circ} \mathrm{C}$, the rated current decreases $2.5 \%$ for every increase by $1^{\circ} \mathrm{C}$. The maximum allowable temperature is $60^{\circ} \mathrm{C}$. |
| High Altitude | If AC motor drive is installed at altitude $0 \sim 1000 \mathrm{~m}$, follow normal operation restriction. If it is install at altitude $1000 \sim 2000 \mathrm{~m}$, decrease $1 \%$ of rated current or lower $0.5^{\circ} \mathrm{C}$ of temperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 2000 m . Contact Delta for more information, if you need to use this motor drive at an altitude of 2000 m or higher. |

## Ambient temperature derating curve

230V / 460V Normal control ambient temperature derating curve


Figure 9-2
$230 \mathrm{~V} / 460 \mathrm{~V}$ Advanced control ambient temperature derating curve


Figure 9-3

575V / 690V Ambient temperature derating curve


Figure 9-4

## Chapter 9 Specification | C2000

## Current derating at high altitude

Current Derating at High Altitude


Figure 9-5
Table 9-10
Carrier wave derating curve
230V / 460V
General Control Derating Curve (Pr.00-10=1 and Pr.00-11=0~3)
In Normal Duty mode (Pr.00-16=0)


In Heavy Duty mode (Pr.00-16=1)
Setting 1
Setting 0 or $2\left(50^{\circ} \mathrm{C}\right.$ : UL open-type)
Setting 0 or $2\left(40^{\circ} \mathrm{C}\right.$ : UL typel or open type_side by
side $)$

Setting 1
Setting 0 or $2\left(50^{\circ} \mathrm{C}\right.$ : UL open-type)
Setting 0 or $2\left(40^{\circ} \mathrm{C}\right.$ : UL type 1 or open type_side by side)
230 V


Advanced Control Derating Curve (Pr.00-10=1, and Pr.00-11=4~7; or Pr.00-10=3, and Pr.00-13=1~3) In Normal Duty mode (Pr.00-16=0)


In Heavy Duty mode (Pr.00-16=1)


575 V Derating Curve (Pr.00-16=0 or 1 or 2 )


Figure 9-6

690V Derating Curve


Figure 9-7

## 9-8 Efficiency Curve



Figure 9-8


Figure 9-9


Figure 9-10


Figure 9-11

## Chapter 10 Digital Keypad

10-1 Descriptions of Digital Keypad
10-2 Function of Digital Keypad KPC-CC01
10-3 TPEditor Installation Instruction
10-4 Fault Code Description of Digital Keypad KPC-CC01
10-5 Unsupported Functions when using TPEditor on KPC-CC01 Keypad

## 10-1 Descriptions of Digital Keypad

The default communication format is ASCII 9600, 7, N, 2 in C2000. But the communication format is RTU 19200, 8, N, 2. To enable the communication between C2000 and KPC-CC01, you need to set up the communication parameters of C2000 before linking the drive and the keypad (KPC-CC01).

Follow the set-up steps below:

- Set Pr.09-00 $=1$ (the communication address)
- Set Pr.09-01 = 19.2 kbps (the COM1 transmission speed)
- Set Pr.09-04 = 13 (8, N, 2; RTU) (the COM1 communicatino protocol)


KPC-CC01
Communication Interface
RJ45 (socket), RS-485 interface
Installation Method

1. Embedded type and can be put flat on the surface of the control box. The front cover is water proof.
2. Buy a MKC-KPPK model to do wall mounting or embedded mounting. Its protection level is IP66.
3. The maximum RJ45 extension lead is 5 m (16ft)
4. This keypad can only be used on Delta's motor drive C2000, CH 2000 and CP2000.

## Descriptions of Keypad Functions

| Key | Descriptions |  |  |
| :---: | :---: | :---: | :---: |
| RUN | Start Operation Key <br> 1. It is only valid when the source of operation command is from the keypad. <br> 2. It can operate the AC motor drive by the function setting and the RUN LED will be ON. <br> 3. It can be pressed again and again at stop process. |  |  |
| OP | Stop Command Key. This key has the highest priority in any situation. <br> 1. When it receives STOP command, no matter if the AC motor drive is in operation or stop status, the AC motor drive needs to execute "STOP" command. <br> 2. The RESET key can be used to reset the drive after the fault occurs. <br> 3. The reasons why the error cannot be reset: <br> a. Because the condition which triggers the fault is not cleared. When the condition is cleared, the fault can be reset. <br> b. Because it's the fault status checking when power-on. When the condition is cleared, re-power again, and the fault can be reset. |  |  |
| REV | Operation Direction Key <br> 1. This key only controls the operation direction, and will NOT activate the drive. FWD: forward, REV: reverse. <br> 2. Refer to the LED descriptions for more details. |  |  |
| ENTER | ENTER Key <br> Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command. |  |  |
| ESC | ESC Key <br> ESC key function is to leave current menu and return to the last menu. It also functions as a return key or cancel key in the sub-menu. |  |  |
| MENU | Press menu to return to main menu. Menu content: <br> 1. Parameter Setup <br> 7. Language Setup <br> 13. Startup Menu <br> 2. Quick Start <br> 8. Time Setup <br> 14. Main Page <br> 3. Application Selection List <br> 9. Keypad Locked <br> 15. PC Link <br> 4. Changed List <br> 10. PLC Function <br> 16. Start Wizard <br> 5. Copy Parameter <br> 11. Copy PLC <br> 6. Fault Record <br> 12. Display Setup |  |  |


| Key | Descriptions |
| :---: | :---: |
| $\wedge$ | Direction: Left / Right / Up / Down <br> 1. In the numeric value setting mode, it is used to move the cursor and change the numeric value. <br> 2. In the menu/text selection mode, it is used for item selection. |
| F1 | Function Key <br> 1. The functions keys have factory settings and can be defined by users. The factory settings of F1 and F4 work with the function list below. For example, F1 is JOG function, F4 is a speed setting key for adding/deleting user defined parameters. <br> 2. Other functions must be defined by TPEditor first (please use version 1.60 or above). TPEditor software can be downloaded at: <br> http://www.deltaww.com/services/DownloadCenter2.aspx?secID=8\&pid=2\&tid=0\&CID=06\&itemID=060302\&typeID=1\&downloadID=,\&title=-- Select Product Series --\&dataType=8;\&check=1\&hl=en-US <br> Please refer to instruction for TPEditor in Chapter 10-3. |
| HAND | HAND Key <br> 1. This key is executed by the parameter settings of the source of Hand frequency and hand operation. The factory settings of both source of Hand frequency and hand operation are the digital keypad. <br> 2. Press HAND key at stop status, the setting will switch to hand frequency source and hand operation source. Press HAND key at operation status, it stops the AC motor drive first (display AHSP warning), and switch to hand frequency source and hand operation source <br> 3. KPC-CC01 displays HAND mode on the screen. |
| AUTO | AUTO Key <br> 1. This key is executed by the parameter settings of the source of AUTO frequency and AUTO operation. The factory setting is the external terminal (source of operation is $4 \sim 20 \mathrm{~mA}$ ). <br> 2. Press Auto key at stop status, the setting will switch to hand frequency source and hand operation source. Press Auto key at operation status, it stops the AC motor drive first (display AHSP warning), and switch to auto frequency source and auto operation source. KPC-CC01 displays AUTO mode on the screen |

## Descriptions of LED Functions

| LED | Descriptions |
| :---: | :---: |
|  | Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. <br> Blinking: drive is decelerating to stop or in the status of base block. <br> Steady OFF: drive doesn't execute the operation command |
|  | Steady ON: stop indicator of the AC motor drive. <br> Blinking: drive is in the standby status. <br> Steady OFF: drive doesn't execute "STOP" command. |
|  | Operation Direction LED <br> 1. Green light is on, the drive is running forward. <br> 2. Red light is on, the drive is running backward. <br> 3. Twinkling light: the drive is changing direction. Operation Direction LED under Torque Mode <br> 1. Green light is ON : when the torque command $\geqq 0$, and the motor is running forward. <br> 2. Red light is ON : when the torque command $<0$, and the motor is running backward. <br> 3. Twinkling light: when the torque command $<0$, and the motor is running forward. |



## 10-2 Function of Digital Keypad KPC-CC01



1. Startup page can only display pictures, no flash.
2. When Power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr.00.03 (Startup display). When the selected item is $U$ page, use left key and right key to switch between the items, the display order of $U$ page is set by Pr. 00.04 (User display).

## Display Icon



## Pr Setup

- 00:SYSTEM PAR 01:BASIC PARA 02:DIGITAL IN/
- : present setting
$\boldsymbol{\nabla}$ : roll down the page for more options
Press for more options
- : show complete sentence

Press << > for complete information

## Display item

## MENU

## ̂ 1:Pr Setup

2:Quick Start
3:App Sel List

MENU

| 1: Parameter Setup | 6: Fault Record |
| :--- | :--- |
| 2: Quick Start | 7: Language Setup |
| 3: Application Selection List | 8: Time Setup |
| 4: Changed List | 9: Keypad Locked |
| 5: Copy Parameter | 10: PLC Function |

1: Parameter Setup
7: Language Setup
8: Time Setup
10: PLC Function

11: Copy PLC
12: Display Setup
13: Startup Menu
14: Main Page
15: PC Link
16: Start Wizard

## Chapter 10 Digital Keypad | C2000

1. Parameter Setup

| Pr setup | For example: Setup source of master frequency command. |  |
| :---: | :---: | :---: |
|  | 00-SYSTEM PARAME | Once in the Group 00 Motor Drive Parameter, |
| - 00:SYSTEM PARAM |  |  |
| 01:BASIC PARAME | 01: Rated Curren 02: Parameter Re | Use Up/Down key to select parameter 20 : Auto Frequency Command. |
| Press to select. | - 20 : Source of $F$ <br> 21: Source of OP <br> 22: Stop Methods | When this parameter is selected, press ENTER key to go to this parameter's setting menu. |
| to select a parameter group. Once a parameter group is selected, to go into that group. | 00 | Use Up/Down key to choose a setting. <br> For example: Choose "2 Analogue Input", then press the ENTER key. |
|  | Analog Input |  |
|  | 00-20 | After pressing the ENTER key, an END will be displayed which means that the parameter setting is done. |
|  | $\begin{gathered} \text { END } \\ \text { Analog Input } \end{gathered}$ |  |
|  | 00-20 Pr. lock | NOTE: When parameter lock/ password protection function is enabled, it will display |
|  |  | "Pr. lock" on the right-up corner of the keypad. The parameter cannot be written or is protected by the password under this circumstances. |

2. Quick Start

| Quick Start | Description: |  |
| :---: | :---: | :---: |
| マ 1: V/F Mode | 1. VF Mode |  |
| 2: VFPG Mode |  | Items |
| 3: SVC Mode | V/F Mode : P00-07 | 1. Parameter Protection Password Input (Pr. 00-07) |
| to select. | 02:Password Inp 03:Control Meth | 2. Parameter Protection Password Setting (Pr. 00-08) <br> 3. Control Mode (Pr. 00-10) |
| Quick Start: <br> 1. V/F Mode <br> 2. VFPG Mode <br> 3. SVC Mode <br> 4. FOCPG Mode <br> 5. TQCPG Mode <br> 6. My Mode | 01:Password Decoder | 4. Control of Speed Mode (Pr. 00-11) <br> 5. Load Selection (Pr. 00-16) |
|  |  | 6. Carrier Frequency (Pr. 00-17) |
|  | 00-07 | 7. Source of the Master Frequency |
|  | 0 | Command (AUTO) (Pr. 00-20) |
|  | Password Decoder 0~65535 | 8. Source of the Operation Command (AUTO) (Pr. 00-21) |
|  |  | 9. Stop Method (Pr. 00-22) |
|  |  | 10. Digital Keypad STOP function (Pr.00-32) |
|  |  | 11. Max. Operation Frequency (Pr. 01-00) <br> 12. Base Frequency of Motor 1 (Pr. 01-01) |
|  |  | 13. Max. Output Voltage Setting of Motor 1 (Pr. 01-02) |
|  |  | 14. Middle Output Frequency of Motor 1 (Pr. 01-03) |
|  |  | 15. Middle Output Voltage of Motor 1 (Pr. 01-04) |
|  |  | 16. Middle Output Frequency of Motor 2 (Pr. 01-05) |
|  |  | 17. Middle Output Voltage of Motor 2 (Pr. 01-06) |
|  |  | 18. Min. Output Frequency of Motor 1 (Pr. 01-07) |
|  |  | 19. Min. Output Voltage of Motor 1 |
|  |  | (Pr. 01-08) |
|  |  | 20. Output Frequency Upper Limit (Pr 01-10) |


3. SVC Mode


01: Password Decoder

## 00-07

0
Password Decoder 0~65535

Items

1. Parameter Protection Password Input (Pr. 00-07)
2. Parameter Protection Password Setting (Pr. 00-08)
3. Control Mode (Pr. 00-10)
4. Control of Speed Mode (Pr. 00-11)
5. Load Selection (Pr. 00-16)
6. Carrier Frequency (Pr. 00-17)
7. Source of the Master Frequency Command (AUTO) (Pr. 00-20)
8. Source of the Operation Command (AUTO) (Pr. 00-21)
9. Stop Method (Pr. 00-22)
10. Digital Keypad STOP function (Pr. 00-32)
11. Max. Operation Frequency (Pr. 01-00)
12. Base Frequency of Motor 1 (Pr. P01-01)
13. Max. Output Voltage Setting of Motor 1 (Pr. 01-02)
14. Min. Output Frequency of Motor 1 (Pr. 01-07)
15. Min. Output Voltage of Motor 1 (Pr. 01-08)
16. Output Frequency Upper Limit (Pr. 01-10)
17. Output Frequency Lower Limit (Pr. 01-11)
18. Accel. Time 1 (Pr. 01-12)
19. Decel Time 1 (Pr. 01-13)
20. Full-load Current of Induction Motor 1 (Pr. 05-01)
21. Rated Power of Induction Motor 1 (Pr. 05-02)
22. Rated Speed of Induction Motor 1 (Pr. 05-03)
23. Pole Number of Induction Motor 1 (Pr. 05-04)
24. No-load Current of Induction Motor 1 (Pr. 05-05)
25. Over-voltage Stall Prevention (Pr. 06-01)
26. Over-current Stall Prevention during Acceleration (Pr. 06-03)
27. Derating Protection (Pr. 06-55)
28. Software Brake Level (Pr. 07-00)
29. Emergency Stop (EF) \& Force to Stop Selection (Pr. 07-20)
30. Filter Time of Torque Command (Pr. 07-24)
31. Filter Time of Slip Compensation (Pr. 07-25)
32. Slip Compensation Gain (Pr. 07-27)
33. FOCPG Mode

FOCPG Mode : P00-07 01:Password De 02: Password Inp 03:Control Meth

## Items

1. Parameter Protection Password Input (Pr. 00-07)
2. Parameter Protection Password Setting (Pr. 00-08)
3. Control Mode (Pr. 00-10)
4. Control of Speed Mode (Pr. 00-11)



5. Application Selection List

| App Sel List | This function allows user to select application and its parameters sets. |
| :---: | :---: |
| No Function | For example: |
| List PrNum $=000$ | Select 3: Application Selection List |
| ENTER or ESC | MENU |
|  | 1:Pr Setup <br> 2:Quick Start <br> - 3 :App Sel List |
|  | 13-00 13-00 |
|  |  |
|  | Press ENTER to enter the application selection screen, the selected application set will be "Fan". |
|  | App Sel List |
|  | Fan |
|  | List PrNum $=033$ |
|  | ENTER or ESC Press ENTER to enter the Fan application set screen. |
|  | Map to : P00-11 |
|  | -01:Velocity Mo ${ }^{\text {- }}$ |
|  | 02:Load Selecti |
|  | 03: Carrier FREQ Press Up/ Down key to select the parameter. |


4. Changed List


This function displays the parameter that user has set.
For example:
Set Pr. 13-00 Application Selection = 3: Fan


Enter the changed list screen. List PrNum=026 means there are 26 parameters that have been changed.

## Changed List

Changed Pr
List PrNum $=026$
ENTER or ESC
Press ENTER to enter the changed list screen.

## Map to : P00-17

-01: Carrier FREQ
02: Source of FR
03: Source of OP
Use Up/ Down key to select the parameters that need to be checked or changed.

Press ENTER to enter the parameter.

5. Copy Parameter

| Copy Pr | 4 duplicates are provided |  |
| :---: | :---: | :---: |
| - 001:Manual_001 | The steps are shown in the example below. |  |
| 002:FileName01 | Example: Saved in the motor drive. |  |
| 003:FileName02 | Copypr | 1 Go to "Copy Parameter" |
| Press ENTER key to go to 001~004: <br> content storage | $\begin{aligned} & \hline \text { 001:Manual_001 } \\ & \text { 002: } \\ & 003 \text { : } \end{aligned}$ | 2 Select the parameter group which needs to be copied and press ENTER key. |


6. Fault Record

| Fault record |
| :--- |
| $\mathbf{\nabla 1 : 0 L}$ |
| $2: 0 \mathrm{Vd}$ |
| $3: \mathrm{GFF}$ |

[^0]| to select． KPC－CE01 does not support this function． |  <br> NOTE <br> Fault actions of When KPC－CC0 previous fault re present AC moto | Press Up／Down key to select an error record． After selecting an error code，press ENTER to see that error record＇s detail <br> Press Up／Down key to see an error record＇s detail such as date，time，frequency，current，voltage， DCBUS voltage． <br> Press Up／Down key to select an error record． After selecting an error code，press ENTER to see that error record＇s detail <br> Press Up／Down key to see an error record＇s detail such as date，time，frequency，current，voltage， DCBUS voltage． <br> C motor drive are recorded and saved to KPC－CC01． is removed and applied to another AC motor drive，the ords will not be deleted．The new fault records of the drive will accumulate to KPC－CC01． |
| :---: | :---: | :---: |

7．Language Setup

| Language | Language setting option is displayed in the language of the user＇s choice． Language setting options： |
| :---: | :---: |
| $\checkmark 1$ English＊ | 1．English 5．Русский |
| 2：繁體中文 | 2．繁體中文 6．Español |
| 3：简体中文 | 3．简体中文 7．Português |
| Use Up／Down key to select language，than press ENTER． |  |

8．Time Setup


Use Left／Right key to select Year，Month，Day，Hour，Minute or Second to set up

| Time Setup |
| :--- |
| $2014 / 01 / 01$ |
| $00: 00: 00$ |

Time Setup
2014／01／01
$00: 00: 00$

Time Setup
2014／01／01
$00: 00: 00$

Use Up／Down key to set up Year

Use Up／Down key to set up Month

Use Up／Down key to set up Day

9. Keypad Locked

| Keypad Lock | Keypad Locked |  |
| :---: | :---: | :---: |
| Press ENTER to Lock Key | This function is used to lock the keypad. The main page would not display "keypad locked" when the keypad is locked, however it will display the message"please press ESC and then ENTER to unlock the keypad" when any key is pressed. |  |
| Press ENTER to lock | $\begin{array}{ll} 4 \mathrm{~F} & 60.00 \mathrm{~Hz} \\ \mathrm{H} & 0.00 \mathrm{~Hz} \\ \mathrm{u} & 540.0 \mathrm{Vdc} \\ \text { Jos } & 14.35 .58 \mathrm{~s} \end{array}$ | When the keypad is locked, the main screen doesn't display any status to show that. |
|  | $\frac{\text { Keypad Lock }}{\text { Press ESC } 3 \text { sec }}$ |  |
|  | Press ESC 3 sec to UnLock Key | Press any key on the keypad; a screen as shown in image on the left will be displayed. |
|  | $\begin{array}{ll} \text { HF } 60.00 \mathrm{~Hz} \\ \mathrm{H} & 0.00 \mathrm{~Hz} \\ \text { u } & 540.0 \mathrm{Vdc} \\ \text { OG } \\ 14.35 \cdot 58 \end{array}$ | If ESC key is not pressed, the keypad will automatically be back to this screen. |
|  | Keypad Lock |  |
|  | Press ESC 3 sec to UnLock Key | pressing any key, a screen as shown in the image on the left will still be displayed. |
|  | $\begin{array}{cc} \text { \&F } & 60.00 \mathrm{~Hz} \\ \mathrm{H} & 0.00 \mathrm{~Hz} \\ \text { u } & 540.0 \mathrm{Vdc} \\ \hline 0 \mathrm{O} & 14.355 .58 \end{array}$ | Press ESC for 3 seconds to unlock the keypad and the keypad will be back to this screen. Then each key on the keypad is functional. |
|  | After the above steps, the keypad will not be locked when turning off the power and turning on the power again. |  |

10. PLC Function

11. Copy PLC


12. Display setup

| Displ Setup | 1. Contrast Contrast |  | Use Up / Down key to adjust the setting value. |
| :---: | :---: | :---: | :---: |
| -1:Contrast |  |  |  |
| 2:Back-Light |  |  |  |
| 3:Text Color | -20 | +20 |  |


13. Start-up


1. Default 1 DELTA LOGO


Industrial Automation
2. Default 2 DELTA Text

3. User Defined: optional accessory is required (TPEditor \& USB / RS-485 Communication Interface-IFD6530) Install an editing accessory would allow users to design their own start-up page. If editor accessory is not installed, "user defined" option will display a blank page.

## DELTA VFD C2000

$X-Y-Z \quad 3$-axis station
$X$-axis

USB/RS-485 Communication Interface-IFD6530
Please refer to Chapter 07 Optional Accessories for more detail.
TPEditor
Go to Delta's website to download TPEditor V1.60 or later versions.
http://www.deltaww.com/services/DownloadCenter2.aspx?secID=8\&pid=2\&tid=0\&CID=068itemID=060302\&typeID=1\&dow nloadID=,\&title=-- Select Product Series - -\&dataType=8;\&check=1\&hl=en-US
14. Main page

2. User Define

Default picture and editable picture are available upon selection.


1. Default page

|  | AUTO |
| :---: | :---: |
| $\stackrel{\rightharpoonup}{\text { F }}$ | 60.00 Hz |
| H | 0.00 Hz |
| u | 540.0 Vdc |
| 100 | 14:25:56 |

## F 60.00 Hz >>> H >>> A >>> U (circulate)

2. User Defined: optional accessory is required (TPEditor \& USB / RS-485 Communication Interface-IFD6530)
Install an editing accessory would allow users to design their own main page. If editor accessory is not installed, "user defined" option will display a blank page.

Freq. 60.00 Hz
Current 123.45 A
DC BUS 543.21 Vdc 2014/02/08 14:25:56

PID target 50.00\%
PID feedback $47.45 \%$
Output freq. 53.21 Hz

## USB/RS-485 Communication Interface-IFD6530

Please refer to Chapter 07 Optional Accessories for more detail.
TPEditor
Go to Delta's website to download TPEditor V1.60 or later versions.
http://www.deltaww.com/services/DownloadCenter2.aspx?secID=8\&pid=2\&tid=0\&CID=06\&itemID=060302\&typeID=1\&dow nloadID=,\&title=-- Select Product Series --\&dataType=8;\&check=1\&hl=en-US
15. PC Link



16. Start Wizard


NOTE: The Start Wizard will not show up when re-power next time.




NOTE: The "16: Start Wizard" on the menu is to set whether shows start wizard when start up the drive.

## Other display

When a fault occurs, the menu will display:


1. Press STOP / RESET button to reset the fault code. If still no response, please contact local distributor or return to the factory. To view the fault DCBUS voltage, output current and output voltage, press "MENU" $\rightarrow$ "Fault Record".
2. After resetting, if the screen returns to main page and shows no fault after pressing ESC, the fault is cleared.
3. When fault or warning message appears, backlight LED will blink until the fault or the warning is cleared.

## Optional accessory: RJ45 Extension Lead for Digital Keypad

| Part No. | Description |
| :---: | :--- |
| CBC-K3FT | RJ45 extension lead, 3 feet (approximately 0.9 m ) |
| CBC-K5FT | RJ45 extension lead, 5 feet (approximately 1.5 m ) |
| CBC-K7FT | RJ45 extension lead, 7 feet (approximately 2.1 m ) |
| CBC-K10FT | RJ45 extension lead, 10 feet (approximately 3 m ) |
| CBC-K16FT | RJ45 extension lead, 16 feet (approximately 4.9 m ) |

Note: When you need to buy communication cables, buy non-shielded, 24 AWG, 4 twisted pair, 100 ohms communication cables.

## 10-3 TPEditor Installation Instruction

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256KB.
Each page can edit 50 normal objects and 10 communication objects.

1) TPEditor: Setup \& Basic Functions
1. Run TPEditor version 1.60 or above

## 문

TPEditor 1.60
2. Go to File $(F) \rightarrow$ Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C KeyPad. As for File Name, enter TPE0. Now click on OK.

3. You are now at the designing page. Go to Edit $(E) \rightarrow$ Click on Add a New Page $(A)$ or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing.

4. Edit Startup Page
5. Static Text $\mathbf{A}$. Open a blank page, click once on this button A and then double click on that blank page. The following window will pop up.

6. Static Bitmap $\rightarrow$ Open a blank page, then click once on this button $\square$ and then double click on that blank page. The following window will pop up.


Please note that Static Bitmap setting supports only images in BMP format. Now choose an image that you need and click open, then that image will appear in the Static Bitmap window.
7. Geometric Bitmap $\square$ $\bigcirc P \theta \otimes \oplus(\tilde{\}}$ $\rightarrow$ As shown in the picture on the left, there are 11 kinds of geometric bitmap to choose. Open a new blank page then click once on a geometric bitmap icon that you need. Then drag that icon and enlarge it to the size that you need on that blank page.
8. Finish editing the keypad starting screen and select Communication>Input User Defined Keypad Starting Screen.


## Chapter 10 Digital Keypad | C2000

9. Downloading setting: Go to Tool > Communication. Set up communication port and speed of IFD6530.
10. Only three speed selections are available: 9600 bps, 19200 bps and 38400 bps.

11. When a dialogue box displayed on the screen asking to confirm writing or not, press buttons on the keypad to go to MENU, select PC LINK and then press ENTER and wait for few seconds. Then select YES on the screen to start downloading.

2) Edit Main Page \& Example of Download
1. Go to editing page, select Edit > Add one page or press the button ADD on the right hand side of the HMI page to increase number of pages to edit. This keypad currently supports up to 256 pages.

2. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW > HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

## 

3. Numeric / ASCII Display: To add a Numeric / ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.


Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to \$2202. For other values, please refer to ACMD ModBus Comm Address List.

4. Scale Setting $\overline{\overline{7 \cdot 1}}$ : On the Tool Bar, click on $\overline{\overline{1 \cdot \frac{1}{2}}}$ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

| Scale Setting |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Scale Position | Top | $\checkmark$ | Font Setting |  |
| Scale Side | Normal Direction | $\square$ |  |  |
| Value Length | 16 Bits $\quad$ | Main Scale | 5 |  |
| Max Value | 100 | SubScale | 2 |  |
| Min Value | 0 | OK |  | Cancel |

a. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
b. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
c. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
d. Value Length: Click on the drop down to choose 16 bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
e. Main Scale \& Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
f. Maximum value \& Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to be hexadecimal, the maximum and the minimum value cannot be input as -4000 .
Follow the Scale setting mentioned above; you will have a scale as shown below.

5. Bar Graph setting

a. Related Device: Choose the VFD Communication Port that you need.
b. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
c. Maximum Value \& Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
6. Button B : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.
Double click on 8 to open set up window.

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.

## A. [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1,

F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by
TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool $\rightarrow$ Function Key Settings (F) $\rightarrow$ Re-Define Up / Down Key (R).


- Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.


## B. [Constant setting] function

This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

| Button Setting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Button Type Constant Setting |  |  | $\begin{aligned} & \text { Constant Setting } \\ & 10 \end{aligned}$ |  |  |  |
|  |  |  | Frame Seting Single Frame - <br> Font Seting $5 \times 8 \quad-$  <br>  Tert Aligment  <br>   Bitnap Aligment |  |
| Wribin | \$211A | ...] |  |  |  |  |
| $\Gamma$ Read |  | - |  |  | Midde $\quad \square$ | Middle $\quad$ |
| 1V Function Key | F3 | $\square$ |  |  | Midile $\quad \square$ | Middle $\quad \rightarrow$ |
| Value Length | 16Bit | $\square$ | r call | - - | Gaph Inpot |  |
| Value Type | Unsigred | $\checkmark$ | C Befor Wuthg | C. Reet |  |  |
| Cuntentse | 0 | $\square$ | C Aftew Writig | C Ser | [ Nonoc ] |  |
| Toel Sters |  | - | User Leved | 0 |  | Bitmap Clear |
| Buthon Text |  |  |  |  | OK | Cancel |

7. Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.
Open a new file and click once in that window, you will see the following
In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to \#9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

| Clock Display Setting |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Frame Seting | No Frame | $\checkmark$ |
| -... | FontSeting | Align Left | $\checkmark$ |
| Time Association 6 TP Time | Aligrment | 548 | $\checkmark$ |
|  | - Trme | $\bigcirc$ Day |  |
| $\bigcirc$ PLC Time | OK | Canol |  |

8. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1 . Set the initial status to be 0 or 1 to define the displayed image or wording.

9. Unit Measurement $\square$ Click once on this Button
Open a new file and double click on that window, you will see the following:


Choose from the drop down list the Metrology and the Unity Name that you need.
As for Metrology, you have the following choices: Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.
10. Numeric Input Setting $\stackrel{\text { 水 }}{ }$ :

This menu allows you to provide parameters or communication ports and to input numbers.
Click once on this button $\underline{\underline{z} \text {. }}$
Open a new file and double click on that window, you will see the following:

a. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter Pr. 01-44.
b. Outline Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
c. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
d. Value Type \& Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C2000 have to be 16bits. The 32bits values are not supported.
e. Value Setting: This part is set automatically by the keypad itself.
f. Limit Setting: Input the range the security setting here.

For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value as 4, then press F1 on Keypad. Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input value is correct.
11. Download TP Page: Press Up or Down key on the keypad until you reach \#13 PC Link. Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication $(M) \rightarrow$ Write to TP $(W)$ to start downloading the page to the keypad.
When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.


## 10-4 Digital Keypad KPC-CC01 Fault Codes and Descriptions



Fault Codes

| LCM Display * | Description | Corrective Actions |
| :---: | :---: | :---: |
| Fault  <br>  FrEr <br> kpdFlash Read Er  | Keypad flash memory read error | An error has occurred on keypad's flash memory. <br> 1. Press RESET on the keypad to clear errors. <br> 2. Verify if there's any problem on Flash IC. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your authorized local dealer. |
| Fault ${ }^{\text {FSEr }}{ }^{\text {HAND }}$ kpdFlash Save Er | Keypad flash memory save error | An error has occurred on keypad's flash memory. <br> 1. Press RESET on the keypad to clear errors. <br> 2. Verify if there's any problem on Flash IC. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your authorized local dealer. |
|  | Keypad flash memory parameter error | Errors occurred on factory setting of parameters. <br> It might be caused by firmware update. <br> 1. Press RESET on the keypad to clear errors. <br> 2. Verify if there's any problem on Flash IC. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your local authorized dealer. |
| $\begin{aligned} & \text { Fault }{ }^{\text {VFDr }}{ }^{\text {HaNo }} \\ & \text { Read VFD Info Er } \end{aligned}$ | Keypad flash memory when read AC drive data error | Keypad cannot read any data sent from VFD. <br> 1. Verify if the keypad is properly connected to the motor drive by a communication cable such as RJ-45. <br> 2. Press RESET on the keypad to clear errors. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your local authorized dealer. |
| Fault <br> CPUEr <br> CPU Error | A serious CPU error occurs to the Keypad | A Serious error has occurred on keypad's CPU. <br> 1. Verify if there's any problem on CPU clock? <br> 2. Verify if there's any problem on Flash IC? <br> 3. Verify if there's any problem on RTC IC? <br> 4. Verify if the communication quality of the RS485 is good? <br> 5. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer. |

## Warning Codes

| LCM Display * | Description | Corrective Actions |
| :---: | :---: | :---: |
| Warning CE01 Comm Command Er | Modbus function code error | Motor drive doesn't accept the communication command sent from keypad. <br> 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. <br> 2. Press RESET on the keypad to clear errors. If none of the above solution works, contact your local authorized dealer. |
| Warning CE02 <br> Comm Address Er | Modbus data address error | Motor drive doesn't accept keypad's communication address. <br> 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. <br> 2. Press RESET on the keypad to clear errors. If none of the above solution works, contact your local authorized dealer. |
| Warning CE03 <br> Comm Data Error | Modbus data value error | Motor drive doesn't accept the communication data sent from keypad. <br> 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. <br> 2. Press RESET on the keypad to clear errors. If none of the above solution works, contact your local authorized dealer. |
| Warning CE04 <br> Comm Slave Error | Modbus slave drive error | Motor drive cannot process the communication command sent from keypad. <br> 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. <br> 2. Press RESET on the keypad to clear errors. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the above solution works, contact your local authorized dealer. |
| Warning CE10 <br> KpdComm Time Out | Modbus transmission time-Out | Motor drive doesn't respond to the communication command sent from keypad. <br> 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. <br> 2. Press RESET on the keypad to clear errors. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the above solution works, contact your local authorized dealer. |
| Warning TPNO TP No Object | Object not supported by TP Editor | Keypad's TP Editor uses unsupported object or Drive series. <br> 1. Verify how the TP Editor should use that object. Delete unsupported object and unsupported setting. <br> 2. Reedit the TP editor and then download it. <br> 3. Make sure the Drive series support TP functions. If it didn't, the main page will display default. <br> If none of the above solution works, contact your local authorized dealer. |

## NOTE The warning code which shows as "CExx" only occurs when the communication problem

 between the drive and keypad, and it's nothing to do with the drive and other device. Be noted that the warning code description to judge the cause of error if "CExx" occurs.
## File Copy Setting Fault Description:

These faults will happen when KPC-CC01 cannot perform the command after clicking the Enter button in copy function.


| LCM Display * | Description | Corrective Actions |
| :---: | :---: | :---: |
| 001> P00-00 |  | The property of the parameter / file is read-only and cannot be written to. |
| ERR1 <br> Read Only | Parameter and file are read only | 1. Verify the specification on the user manual. If the solution above doesn't work, contact your local authorized dealer. |
| 001> P00-00 |  | An error occurred while writing to a parameter / file. 1. Verify if there's any problem on the Flash IC. |
| ERR2 <br> Write Fail | Fail to write parameter and file | 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above work, contact your local authorized dealer. |
| 001> P00-00 |  | A setting cannot be made while motor drive is in operation. |
| ERR3 <br> VFD Running | $A C$ drive is in operating status | 1. Verify if the drive is not in operation. If the solution above doesn't work, contact your local authorized dealer. |
| 001> P00-00 |  | A setting cannot be made because a parameter is locked. |
| ERR4 <br> PrLock | AC drive parameter is locked | 1. Verify if the parameter is locked or not. If it is locked, unlock it and try to set up the parameter again. If the solution above doesn't work, contact your local authorized dealer. |
| 001> P00-00 |  | A setting cannot be made because a parameter is being modified. |
| ERR5 Pr Changing | AC drive parameter changing | 1. Verify if the parameter is being modified. If it is not being modified, try to set up that parameter again. If the solution above doesn't work, contact your local authorized dealer. |
| 001> P00-00 |  | A setting cannot be made because an error has occurred on the motor drive. |
| ERR6 <br> Fault Code | Fault code | 1. Verify if there's any error occurred on the motor drive. If there isn't any error, try to make the setting again. <br> If the solution above doesn't work, contact your local authorized dealer. |
| 001> P00-00 |  | A setting cannot be made because of a warning message given to the motor drive. |
| ERR7 <br> Warning Code | Warning code | 1. Verify if there's any warning message given to the motor drive. <br> If the solution above doesn't work, contact your local authorized dealer. |
| 001> P00-00 |  | The copied data are not the same type, so the setting cannot be made. <br> 1. Verify if the products' serial numbers need to be |
| ERR8 <br> Type Dismatch | File type dismatch | copied fall in the category. If they are in the same category, try to make the setting again. If the solution above doesn't work, contact your authorized dealer. |


| LCM Display * | Description | Corrective Actions |
| :---: | :---: | :---: |
|  | File is locked with password | A setting cannot be made, because some data are locked. <br> 1. Verify if the data are unlocked or able to be unlocked. If the data are unlocked, try to make the setting again. <br> 2. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your local authorized dealer. |
| 001> P00-00 |  |  |
| ERR9 |  |  |
| Password Lock |  |  |
|  |  |  |
|  | File password is incorrect | A setting cannot be made because the password is incorrect. <br> 1. Verify if the password is correct. If the password is correct, try to make the setting again. <br> 2. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your local authorized dealer. |
| 001> P00-00 |  |  |
| ERR10 |  |  |
| Password Fail |  |  |
|  |  |  |
| 001> P00-00 | Different version of copied data | A setting cannot be made, because the version of the data is incorrect. <br> 1. Verify if the version of the data matches the motor drive. If it matches, try to make the setting again. If none of the solution above works, contact your local authorized dealer. |
| ERR11 <br> Version Fail |  |  |
|  | AC drive copy function time-out | A setting cannot be made, because data copying timeout expired. <br> 1. Redo data copying. <br> 2. Verify if copying data is authorized. If it is authorized, try again to copy data. <br> 3. Shut down the system, wait for ten minutes, and then power on again the system. <br> If none of the solution above works, contact your local authorized dealer. |
| 001> P00-00 |  |  |
| ERR12 |  |  |
| VFD Time Out |  |  |
|  |  |  |

[^1]
## 10-5 Functions not supported when using TPEditor with KPC-CC01

1. Local Page Setting and Global Setting functions are not supported.

2. [Communication] $\rightarrow$ [Read from TP] functions are not supported.

3. In RTC Display Setting, the Refer Device cannot be modified.


## Chapter 11 Summary of Parameter Settings

This chapter provides a summary of parameter (Pr.) setting ranges and defaults. You can set, change, and reset parameters through the digital keypad.

## NOTE

1) $N$ : You can set this parameter during operation
2) For more details on parameters, please refer to Ch12 Description of Parameter Settings.

## 00 Drive Parameters

note IM: Induction Motor; PM: Permanent Magnet Motor

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
| 00-00 | Identity code of the AC motor drive | 4: 230V, 0.75 kW <br> 5: 460V, 0.75 kW <br> 6: 230V, 1.50kW <br> 7: 460V, 1.50kW <br> 8: 230V, 2.20 kW <br> 9: 460V, 2.20 kW <br> 10: 230V, 3.70 kW <br> 11: 460V, 3.70 kW <br> 12: $230 \mathrm{~V}, 5.50 \mathrm{~kW}$ <br> 13: 460V, 5.50 kW <br> 14: 230V, 7.50 kW <br> 15: 460V, 7.50 kW <br> 16: 230V, 11.0kW <br> 17: 460V, 11.0kW <br> 18: 230V, 15.0kW <br> 19: 460V, 15.0kW <br> 20: 230V, 18.5kW <br> 21: 460V, 18.5kW <br> 22: $230 \mathrm{~V}, 22.0 \mathrm{~kW}$ <br> 23: 460V, 22.0kW <br> 24: 230V, 30.0kW <br> 25: 460V, 30.0kW <br> 26: 230V, 37.0 kW <br> 27: 460V, 37.0kW <br> 28: 230V, 45.0kW <br> 29: 460V, 45.0kW <br> 30: $230 \mathrm{~V}, 55.0 \mathrm{~kW}$ <br> 31: 460V, 55.0kW <br> 32: 230V, 75.0 kW <br> 33: 460V, 75.0kW | Read <br> only |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | 34: 230V, 90.0 kW <br> 35: 460V, 90.0kW <br> 37: 460V, 110.0kW <br> 39: 460V, 132.0kW <br> 41: 460V, 160.0kW <br> 43: 460V, 185.0kW <br> 45: 460V, 220.0kW <br> 47: 460V, 280.0kW <br> 49: 460V, 315.0kW <br> 51: 460V, 355.0kW <br> 55: 460V, 450.0kW <br> 93: 460V, 4kW <br> 505: 575V, 1.5kW <br> 506: 575V, 2.2kW <br> 507: 575V, 3.7kW <br> 508: 575V, 5.5kW <br> 509: 575V, 7.5kW <br> 510: $575 \mathrm{~V}, 11 \mathrm{~kW}$ <br> 511: 575V, 15kW <br> 612: 690V, 18.5kW <br> 613: 690V, 22kW <br> 614: 690V, 30kW <br> 615: 690V, 37kW <br> 616: 690V, 45kW <br> 617: 690V, 55kW <br> 618: 690V, 75kW <br> 619: 690V, 90kW <br> 620: 690V, 110kW <br> 621: 690V, 132kW <br> 622: 690V, 160kW <br> 686: 690V, 200kW <br> 687: 690V, 250kW <br> 626: 690V, 315kW <br> 628: 690V, 400kW <br> 629: 690V, 450kW <br> 631: 690V, 560 kW <br> 632: 690V, 630kW |  |
| 00-01 | Display AC motor drive rated current | Display by models | Read <br> only |
| 00-02 | Parameter reset | 0 : No function <br> 1: Parameter write protect <br> 5: Reset kWh display to 0 | 0 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 6: Reset PLC (including CANopen Master Index) <br> 7: Reset CANopen Index (Slave) <br> 9: Reset all parameters to defaults with base frequency at 50 Hz <br> 10: Reset all parameters to defaults with base frequency at 60 Hz |  |
| $N$ | 00-03 | Start-up display selection | 0 : F (frequency command) <br> 1: H (output frequency) <br> 2: U (multi-function display, see Pr. 00-04) <br> 3: A (output current) | 0 |
| $N$ | 00-04 | Content of multi-function display (user-defined) | 0: Display output current (A) (Unit: Amp) <br> 1: Display counter value (c) (Unit: CNT) <br> 2: Display actual output frequency (H.) (Unit: Hz) <br> 3: Display DC BUS voltage (v) (Unit: VDC) <br> 4: Display output voltage (E) (Unit: $\mathrm{V}_{\mathrm{AC}}$ ) <br> 5: Display output power angle (n) (Unit: deg) <br> 6: Display output power in kW (P) (Unit: kW) <br> 7: Display actual motor speed rpm (r) (Unit: rpm) <br> 8: Display estimate output torque \% (t) (Unit: \%) <br> 9: Display PG feedback (G) (refer to Pr. 10-00 and Pr. 10-01) (Unit: PLS) <br> 10: Display PID feedback (b) (Unit: \%) <br> 11: Display AVI in \% (1.) (Unit: \%) <br> 12: Display ACI in \% (2.) (Unit: \%) <br> 13: Display AUI in \% (3.) (Unit: \%) <br> 14: Display the temperature of IGBT (i.) (Unit: ${ }^{\circ} \mathrm{C}$ ) <br> 15: Display the temperature of capacitance (c.) (Unit: ${ }^{\circ} \mathrm{C}$ ) <br> 16: The status of digital input (ON / OFF) (i) <br> 17: The status of digital output (ON / OFF) (o) <br> 18: Multi-step speed (S) <br> 19: The corresponding CPU pin status of digital input (d) <br> 20: The corresponding CPU pin status of digital output (0.) <br> 21: Actual motor position (PG1 of PG card) (P.) The maximum value is 32 bits display <br> 22: Pulse input frequency (PG2 of PG card) (S.) <br> 23: Pulse input position (PG2 of PG card) (q.) The maximum value is 32 bits display | 3 |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | 24: Position command tracing error (E.) <br> 25: Overload count (0.00~100.00\%) (o.) (Unit: \%) <br> 26: Ground fault GFF (G.) (Unit: \%) <br> 27: DC BUS voltage ripple (r.) (Unit: VDC) <br> 28: Display PLC data D1043 (C) <br> 29: Display PM pole section (EMC-PG01U application) (4.) <br> 30: Display output of user defined (U) <br> 31: Display Pr. 00-05 user gain (K) <br> 32: Number of actual motor revolution during operation (PG card plug in and $Z$ phase signal input) (Z.) <br> 33: Motor actual position during operation (when PG card is connected) (q) <br> 34: Operation speed of fan (F.) (Unit: \%) <br> 35: Control mode display: <br> $0=$ Speed control mode (SPD) <br> 1 = Torque control mode (TQR) (t.) <br> 36: Present operating carrier frequency of drive $(\mathrm{Hz})$ <br> (J.) <br> 38: Display drive status (6.) <br> 39: Display estimated output torque, positive and negative, using Nt-m as unit ( t 0.0 : positive torque; -0.0: negative torque (C.) <br> 40: Torque command (L.) (Unit: \%) <br> 41: kWh display (J) (Unit: kWh) <br> 42: PID target value (h.) (Unit: \%) <br> 43: PID offset (o.) (Unit: \%) <br> 44: PID output frequency (b.) (Unit: Hz) <br> 45: Hardware ID <br> 49: Motor temperature (PTC, PT100, KTY84-130) <br> 51: PMSVC torque offset <br> 52: Al10\% <br> 53: Al11\% |  |
| 00-05 | Coefficient gain in actual output frequency | 0.00-160.00 | 1.00 |
| 00-06 | Software version | Read only | Read <br> only |
| 00-07 | Parameter protection password input | $0-65535$ <br> $0-4$ : the number of password attempts allowed | 0 |


| Pr. | Parameter Name | Setting Range |  |  |  |  | Default |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00-08 | Parameter protection password setting | $0-65535$ <br> 0: No password protection / password entered correctly (Pr. 00-07) <br> 1: Parameter set |  |  |  |  | 0 |
| 00-10 | Control mode | 0: Speed mode <br> 1: Point-to-point position control mode <br> 2: Torque mode <br> 3: Homing mode |  |  |  |  | 0 |
| 00-11 | Speed control mode | 0: IMVF (IM V/F control) <br> 1: IMVFPG (IM V/F control + Encoder) <br> 2: IM/PM SVC (IM / PM space vector control) <br> 3: IMFOCPG (IM FOC + Encoder) <br> 4: PMFOCPG (PM FOC + Encoder) <br> 5: IMFOC sensorless (IM FOC sensorless ) <br> 6: PM sensorless (PM FOC sensorless) <br> 7: IPM sensorless (Interior PM FOC sensorless) |  |  |  |  | 0 |
| 00-12 | Point-to-point position mode | 0 : Relative position <br> 1: Absolute position |  |  |  |  | 0 |
| 00-13 | Torque mode control | 0: IM TQCPG (IM torque control + Encoder) <br> 1: PM TQCPG (PM torque control + Encoder) <br> 2: IM TQC sensorless (IM sensorless torque control) |  |  |  |  | 0 |
| 00-16 | Load selection | 0 : Normal load <br> 1: Heavy load |  |  |  |  | 0 |
| 00-17 | Carrier frequency | Normal load |  |  |  |  |  |
|  |  | 230V/460V | VF, VFPG, SVC, IMFOCPG, IMTQCPG | PMFOCPG, PMTQCPG | PMFOC, IPMFOC | IMFOC, IMTQC |  |
|  |  | 1-15HP | 2-15kHz | 4-15kHz | 4-10kHz | 4-14kHz | 8 |
|  |  | 20-50HP | 2-10kHz | 4-10kHz | $4-10 \mathrm{kHz}$ | 4-10kHz | 6 |
|  |  | 60-125HP | 2-9kHz | 4-9kHz | 4-9kHz | 4-9kHz | 4 |
|  |  | Heavy load |  |  |  |  | 2 |
|  |  | 230V/460V | $\begin{aligned} & \text { VF, VFPG, } \\ & \text { SVC, } \\ & \text { IMFOCPG, } \\ & \text { ITQCPG } \\ & \hline \end{aligned}$ | PMFOCPG, PMTQCPG | PMFOC, IPMFOC | IMFOC, IMTQC |  |
|  |  | 1-15HP | $2-15 \mathrm{kHz}$ | 4-15kHz | 4-10kHz | $4-14 \mathrm{kHz}$ |  |
|  |  | 20-50HP | 2-10kHz | 4-10kHz | $4-10 \mathrm{kHz}$ | $4-10 \mathrm{kHz}$ |  |
|  |  | $60-125 \mathrm{HP}$ | 2-9kHz | 4-9kHz | 4-9kHz | 4-9kHz |  |
|  |  | 575V/690V (Light/ Normal/ Heavy load) |  |  |  |  |  |
|  |  | $\begin{array}{\|l\|} \hline \text { Power/ Control mode } \\ \hline 1-15 \mathrm{HP}(575 \mathrm{~V}) \end{array}$ |  | , | VF, VFPG, SVC |  |  |
|  |  |  |  | - | $\frac{2-15 \mathrm{kHz}}{2-9 \mathrm{kHz}}$ |  | 6 |
|  |  | $\begin{array}{\|l\|} \hline 1-15 \mathrm{HP}(575 \mathrm{~V}) \\ \hline 20-600 \mathrm{HP}(690 \mathrm{~V}) \\ \hline \end{array}$ |  | $—$ | 2-9kHz |  |  |
|  |  |  |  |  |  |  |  |



| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | 005xh: kW 006xh: HP 007xh: ppm 008xh: 1/m 009xh: kg/s 00Axh: kg/m 00Bxh: kg/h 00Cxh: lb/s 00Dxh: lb/m 00Exh: lb/h 00Fxh: ft/s 010xh: ft/m 011xh: m 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 019xh: mWG 01Axh: inWG 01Bxh: ftWG 01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz |  |
| 00-26 | Maximum user-defined value | 0 : Disable <br> 0-65535 (when Pr. 00-25 set to no decimal place) $0.0-6553.5$ (when Pr. 00-25 set to 1 decimal place) 0.00-655.35 (when Pr. 00-25 set to 2 decimal places) 0.000-65.535 (when Pr. 00-25 set to 3 decimal places) | 0 |


\left.| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
| 00-27 | User-defined value | Read |  |
| Only |  |  |  |$\right]$



## 01 Basic Parameters



Chapter 11 Summary of Parameter Settings | C2000



| Pr. | Parameter Name | Setting Range | Default |
| :--- | :--- | :--- | :---: |
|  |  | $13: 90 \mathrm{~Hz}$, voltage saturation in 60 Hz <br> $14: 120 \mathrm{~Hz}$, voltage saturation in 60 Hz <br> 15: 180 Hz , voltage saturation in 60 Hz |  |
| N |  | 0: Linear acceleration and linear deceleration <br> 1: Auto-acceleration and linear deceleration <br> 2: Linear acceleration and auto-deceleration <br> 3: Auto-acceleration and auto-deceleration <br> 4: Stall prevention by auto-acceleration and <br> auto-deceleration (limited by Pr. $01-12 \sim 01-21)$ | 0 |
| $01-45$ | Time unit for accel. / decel. and S <br> curve | 0: Unit: 0.01 sec. <br> 1: Unit: 0.1 sec. | 0 |
| $01-46$ | CANopen quick stop time | Pr. $01-45=0: 0.00-600.00$ sec. <br> Pr. $01-45=1: 0.0-6000.0$ sec. | 0 |
| $01-49$ | Regenerative energy restriction <br> control method | 0: Disable <br> 1: Over voltage energy restriction <br> 2: Traction energy control (TEC) | 1.00 |

## 02 Digital Input / Output Parameters

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
| 02-00 | Two-wire / Three-wire operation control | 0 : Two-wire mode 1, power on for operation control <br> 1: Two -wire mode 2, power on for operation control <br> 2: Three-wire, power on for operation control | 0 |
| 02-01 | Multi-function input command 1 (MI1) | 0 : No function <br> 1: Multi-step speed command 1 / multi-step position command 1 <br> 2: Multi-step speed command 2 / multi-step position command 2 <br> 3: Multi-step speed command 3 / multi-step position command 3 <br> 4: Multi-step speed command 4 / multi-step position command 4 <br> 5: Reset <br> 6: JOG command (By KPC-CC01 or external control) <br> 7: Acceleration / deceleration speed inhibit <br> 8: $1^{\text {st }}$ and $2^{\text {nd }}$ acceleration / deceleration time selection <br> 9: $3^{\text {rd }}$ and $4^{\text {th }}$ acceleration / deceleration time selection <br> 10: EF input (Pr. 07-20) <br> 11: Base Block (B.B) input from external <br> 12: Output stop <br> 13: Cancel the setting of auto-acceleration / auto-deceleration time <br> 14: Switch between motor 1 and motor 2 <br> 15: Rotating speed command from AVI <br> 16: Rotating speed command from ACl <br> 17: Rotating speed command from AUI <br> 18: Forced to stop (Pr. 07-20) <br> 19: Digital up command <br> 20: Digital down command <br> 21: PID function disabled <br> 22: Clear the counter <br> 23: Input the counter value (MI6) <br> 24: FWD JOG command <br> 25: REV JOG command | 1 |
| 02-02 | Multi-function input command 2 (MI2) |  | 2 |
| 02-03 | Multi-function input command 3 (MI3) |  | 3 |
| 02-04 | Multi-function input command 4 (M14) |  | 4 |
| 02-05 | Multi-function input command 5 (M15) |  | 0 |
| 02-06 | Multi-function input command 6 (MI6) |  | 0 |
| 02-07 | Multi-function input command 7 (MI7) |  | 0 |
| 02-08 | Multi-function input command 8 (MI8) |  | 0 |
| 02-26 | Input terminal of I/O extension card (MI10) |  | 0 |
| 02-27 | Input terminal of I/O extension card (MI11) |  | 0 |
| 02-28 | Input terminal of I/O extension card (MI12) |  | 0 |
| 02-29 | Input terminal of I/O extension card (MI13) |  | 0 |
| 02-30 | Input terminal of I/O extension card (MI14) |  | 0 |
| 02-31 | Input terminal of I/O extension card (MI15) |  | 0 |
|  |  |  |  |


|  | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | 26: TQC / FOC mode selection <br> 27: ASR1 / ASR2 selection <br> 28: Emergency stop (EF1) <br> 29: Signal confirmation for $Y$-connection <br> 30: Signal confirmation for $\Delta$-connection <br> 31: High torque bias (Pr. 11-30) <br> 32: Middle torque bias (Pr. 11-31) <br> 33: Low torque bias (Pr. 11-32) <br> 34: Switch between multi-step position and multi-step speed control <br> 35: Enable single-point position control <br> 36: Enable multi-step position learning function (valid at stop) <br> 37: Enable full position control pulse command input <br> 38: Disable write EEPROM function <br> 39: Torque command direction <br> 40: Force coasting to stop <br> 41: HAND switch <br> 42: AUTO switch <br> 43: Enable resolution selection (Pr. 02-48) <br> 44: Reverse direction homing (NL) <br> 45: Forward direction homing (PL) <br> 46: Homing (ORG) <br> 47: Enable homing function <br> 48: Mechanical gear ratio switch <br> 49: Enable drive <br> 50: Slave dEb action to execute <br> 51: Selection for PLC mode bit 0 <br> 52: Selection for PLC mode bit 1 <br> 53: Trigger CANopen quick stop <br> 55: Brake release <br> 56: Local / Remote selection |  |
| 02-09 | UP / DOWN key mode | 0: UP / DOWN by acceleration / deceleration time <br> 1: UP / DOWN constant speed (Pr. 02-10) | 0 |
| 02-10 | Constant speed, acceleration / deceleration speed of the UP / DOWN key | $0.001-1.000 \mathrm{~Hz} / \mathrm{ms}$ | 0.001 |
| 02-11 | Multi-function input response time | 0.000-30.000 sec. | 0.005 |
| 02-12 | Multi-function input mode selection | 0000h-FFFFh (0: N.O.; 1: N.C.) | 0000h |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
| 02-13 | Multi-function output 1 RLY1 | 0 : No function <br> 1: Indication during RUN <br> 2: Operation speed reached <br> 3: Desired frequency reached 1 (Pr. 02-22) <br> 4: Desired frequency reached 2 (Pr. 02-24) <br> 5: Zero speed (Frequency command) <br> 6: Zero speed including STOP (Frequency command) <br> 7: Over-torque 1 (Pr. 06-06-06-08) <br> 8: Over-torque 2 (Pr. 06-09-06-11) <br> 9: Drive is ready <br> 10: Low voltage warning (Lv) (Pr. 06-00) <br> 11: Malfunction indication <br> 12: Mechanical brake release (Pr. 02-32) <br> 13: Over-heat warning (Pr. 06-15) <br> 14: Software brake signal indication (Pr. 07-00) <br> 15: PID feedback error (Pr. 08-13, Pr. 08-14) <br> 16: Slip error (oSL) <br> 17: Count value reached, does not return to 0 (Pr. 02-20) <br> 18: Count value reached, returns to 0 (Pr. 02-19) <br> 19: External interrupt B.B. input (Base Block) <br> 20: Warning output <br> 21: Over-voltage <br> 22: Over-current stall prevention <br> 23: Over-voltage stall prevention <br> 24: Operation mode <br> 25: Forward command <br> 26: Reverse command <br> 27: Output when current $\geq$ Pr. 02-33 <br> 28: Output when current < Pr. 02-33 <br> 29: Output when frequency $\geq$ Pr. 02-34 <br> 30: Output when frequency < Pr. 02-34 <br> 31: Y-connection for the motor coil <br> 32: $\Delta$-connection for the motor coil <br> 33: Zero speed (actual output frequency) <br> 34: Zero speed including stop (actual output frequency) <br> 35: Error output selection 1 (Pr. 06-23) | 11 |
| 02-14 | Multi-function output 2 RLY2 |  | 1 |
| 02-16 | Multi-function output 3 (MO1) |  | 66 |
| 02-17 | Multi-function output 4 (MO2) |  | 0 |
| 02-36 | Output terminal of the I/O extension card (MO10) or (RA10) |  | 0 |
| 02-37 | Output terminal of I/O extension card (MO11) or (RA11) |  | 0 |
| 02-38 | Output terminal of I/O extension card (RA12) |  | 0 |
| 02-39 | Output terminal of I/O extension card (RA13) |  | 0 |
| 02-40 | Output terminal of I/O extension card (RA14) |  | 0 |
| 02-41 | Output terminal of I/O extension card (RA15) |  | 0 |
| 02-42 | Output terminal of I/O extension card (MO16 virtual terminal) |  | 0 |
| 02-43 | Output terminal of I/O extension card (MO17 virtual terminal) |  | 0 |
| 02-44 | Output terminal of I/O extension card (MO18 virtual terminal) |  | 0 |
| 02-45 | Output terminal of I/O extension card (MO19 virtual terminal) |  | 0 |
| 02-46 | Output terminal of I/O extension card (MO20 virtual terminal) |  | 0 |
|  |  |  |  |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 36: Error output selection 2 (Pr. 06-24) <br> 37: Error output selection 3 (Pr. 06-25) <br> 38: Error output selection 4 (Pr. 06-26) <br> 39: Position reached (Pr. 10-19) <br> 40: Speed reached (including stop) <br> 41: Multi-position reached <br> 42: Crane function <br> 43: Actual motor speed higher than Pr. 02-47 <br> 44: Low current output (use with Pr. 06-71~06-73) <br> 45: UVW output electromagnetic valve switch <br> 46: Master dEb output <br> 47: Closed brake output <br> 49: Homing action complete output <br> 50: Output control for CANopen <br> 51: Analog output control for RS485 interface (InnerCOM / MODBUS) <br> 52: Output control for communication cards <br> 65: Output for both CAN \& 485 control <br> 66: SO output logic A <br> 67: Analog input level reached <br> 68: SO output logic B <br> 70: FAN warning output |  |
|  | 02-18 | Multi-function output direction | 0000h~FFFFh (0: N.O.; 1: N.C.) | 0000h |
|  | 02-19 | Terminal counting value reached (returns to 0) | 0-65500 | 0 |
|  | 02-20 | Preliminary counting value reached (does not return to 0) | 0-65500 | 0 |
|  | 02-21 | Digital output gain (DFM) | 1-166 | 1 |
|  | 02-22 | Desired frequency reached 1 | 0.00-599.00Hz | $\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$ |
|  | 02-23 | The width of the desired frequency reached 1 | 0.00-599.00Hz | 2.00 |
|  | 02-24 | Desired frequency reached 2 | 0.00-599.00Hz | $\begin{gathered} 60.001 \\ 50.00 \end{gathered}$ |
|  | 02-25 | The width of the desired frequency reached 2 | 0.00-599.00Hz | 2.00 |
|  | 02-32 | Brake delay time | 0.000-65.000 sec. | 0.000 |
| $N$ | 02-33 | Output current level setting for multi-function output terminal | 0-100\% | 0 |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
| 02-34 | Output frequency setting for multi-function output terminal | $0.00-599.00 \mathrm{~Hz}$ <br> (Motor speed when using PG Card) | 3.00 |
| 02-35 | External operation control selection after reset and activate | 0 : Disable <br> 1: Drive runs if the RUN command remains after reset or reboot | 0 |
| 02-47 | Motor zero-speed level | 0-65535 rpm | 0 |
| 02-48 | Maximum frequency of resolution switch | $0.00-599.00 \mathrm{~Hz}$ | 60.00 |
| 02-49 | Switch delay time of maximum output frequency | 0-65.000 sec. | 0.000 |
| 02-50 | Display the status of multi-function input terminal | Monitor the status of multi-function input terminals | Read <br> only |
| 02-51 | Display the status of multi-function output terminal | Monitor the status of multi-function output terminals | Read <br> only |
| 02-52 | Display the external multi-function input terminals used by PLC | Monitor the status of PLC input terminals | Read only |
| 02-53 | Display the external multi-function output terminals used by PLC | Monitor the status of PLC output terminals | Read <br> only |
| 02-54 | Display the frequency command executed by external terminal | 0.00-599.00Hz (Read only) | Read only |
| 02-56 | Brake release check time | 0.000-65.000 sec. | 0.000 |
| 02-57 | Multi-function output terminal: function 42: brake current check point | 0-100\% | 0 |
| 02-58 | Multi-function output terminal (function 42): brake frequency check point | 0.00-599.00Hz | 0.00 |
| 02-63 | Frequency reached detection amplitude | 0.00-599.00Hz | 0.00 |
| 02-70 | IO card types | 1: EMC-BPS01 <br> 4: EMC-D611A <br> 5: EMC-D42A <br> 6: EMC-R6AA <br> 11: EMC-A22A | Read <br> only |
| 02-71 | DFM output selection | 0 : Use frequency with speed control as DFM output frequency <br> 1: Use frequency with system acceleration / deceleration as DFM output frequency | 0 |
| 02-74 | Internal / external multi-function input terminal selection | 0000-FFFFh | 0000h |

Chapter 11 Summary of Parameter Settings | C2000

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :---: | :---: |
| $02-75$ | Internal multi-function output terminal <br> selection | 0000-FFFFh | 0000h |

## 03 Analog Input / Output Parameters

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| N | 03-00 | Analog input selection (AVI) | 0 : No function <br> 1: Frequency command (speed limit under torque control mode) <br> 2: Torque command (torque limit under speed mode) <br> 3: Torque compensation command <br> 4: PID target value <br> 5: PID feedback signal <br> 6: Thermistor (PTC / KTY-84) input value <br> 7: Positive torque limit <br> 8: Negative torque limit <br> 9: Regenerative torque limit <br> 10: Positive / negative torque limit <br> 11: PT100 thermistor input value <br> 13: PID compensation value | 1 |
|  | 03-01 | Analog input selection (ACI) |  | 0 |
| $N$ | 03-02 | Analog input selection (AUI) |  | 0 |
|  |  |  |  |  |
| N | 03-03 | Analog input bias (AVI) | -100.0-100.0\% | 0.0 |
| N | 03-04 | Analog input bias (ACI) | -100.0-100.0\% | 0.0 |
| N | 03-05 | Analog input bias (AUI) | -100.0-100.0\% | 0.0 |
| $N$ | 03-07 | Positive / negative bias mode (AVI) | 0 : No bias <br> 1: Lower than or equal to bias <br> 2: Greater than or equal to bias <br> 3: The absolute value of the bias voltage while serving as the center <br> 4: Bias serves as the center | 0 |
| $N$ | 03-08 | Positive / negative bias mode (ACI) |  |  |
| N | 03-09 | Positive / negative bias mode (AUI) |  |  |
|  | 03-10 | Reverse setting when analog signal input is negative frequency | 0 : Negative frequency is not allowed. The digital keypad or external terminal controls the forward and reverse direction. <br> 1: Negative frequency is allowed. Positive frequency = run in forward direction; negative frequency $=$ run in reverse direction. The digital keypad or external terminal control cannot switch the running direction. | 0 |
| N | 03-11 | Analog input gain (AVI) | -500.0-500.0\% | 100.0 |
|  | 03-12 | Analog input gain (ACI) | -500.0-500.0\% | 100.0 |
| N | 03-13 | Analog positive input gain (AUI) | -500.0-500.0\% | 100.0 |
| N | 03-14 | Analog negative input gain (AUI) | -500.0-500.0\% | 100.0 |
| N | 03-15 | Analog input filter time (AVI) | 0.00-20.00 sec. | 0.01 |
| N | 03-16 | Analog input filter time (ACI) | $0.00-20.00 \mathrm{sec}$. | 0.01 |
|  | 03-17 | Analog input filter time (AUI) | 0.00-20.00 sec. | 0.01 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 03-18 | Analog input addition function | 0: Disable (AVI, ACI, AUI) <br> 1: Enable | 0 |
|  | 03-19 | Signal loss selection for analog input 4-20mA | 0 : Disable <br> 1: Continue operation at the last frequency <br> 2: Decelerate to 0 Hz <br> 3: Stop immediately and display ACE | 0 |
| $N$ | 03-20 | Multi-function output 1 (AFM1) | 0: Output frequency (Hz) | 0 |
| $N$ | 03-23 | Multi-function output 2 (AFM2) | 1: Frequency command (Hz) | 0 |
|  |  |  | 2: Motor speed (Hz) <br> 3: Output current (rms) <br> 4: Output voltage <br> 5: DC BUS voltage <br> 6: Power factor <br> 7: Power <br> 8: Output torque <br> 9: AVI <br> 10: ACI <br> 11: AUI <br> 12: Iq current command <br> 13: Iq feedback value <br> 14: Id current command <br> 15: Id feedback value <br> 18: Torque command <br> 19: PG2 frequency command <br> 20: CANopen analog output <br> 21: RS-485 analog output <br> 22: Communication card analog output <br> 23: Constant voltage output <br> 25: CANopen and RS-485 analog output |  |
| $N$ | 03-21 | Analog output gain 1 (AFM1) | 0.0-500.0\% | 100.0 |
| $N$ | 03-22 | Analog output 1 in REV direction (AFM1) | 0 : Absolute value of output voltage <br> 1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$ <br> 2: Reverse output $5-0 \mathrm{~V}$; forward output $5-10 \mathrm{~V}$ | 0 |
| $N$ | 03-24 | Analog output gain 2 (AFM2) | 0.0-500.0\% | 100.0 |
| $N$ | 03-25 | Analog output 2 in REV direction (AFM2) | 0 : Absolute value of output voltage <br> 1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$ <br> 2: Reverse output 5-0 V; forward output 5-10 V | 0 |
| $N$ | 03-27 | AFM2 output bias | -100.00-100.00\% | 0.00 |
| $N$ | 03-28 | AVI terminal input selection | $\begin{aligned} & \text { 0: } 0-10 \mathrm{~V} \\ & \text { 1: } 0-20 \mathrm{~mA} \\ & \text { 2: } 4-20 \mathrm{~mA} \end{aligned}$ | 0 |




## 04 Multi-step Speed Parameters

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 04-00 | $1^{\text {st }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-01 | $2^{\text {nd }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-02 | $3^{\text {rd }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-03 | $4^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-04 | $5^{\text {th }}$ step speed frequency | $0.00-599.00 \mathrm{~Hz}$ | 0.00 |
| $N$ | 04-05 | $6{ }^{\text {th }}$ step speed frequency | $0.00-599.00 \mathrm{~Hz}$ | 0.00 |
| $N$ | 04-06 | $7{ }^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-07 | $8^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-08 | $9^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-09 | $10^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-10 | $11^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-11 | $12^{\text {th }}$ step speed frequency | $0.00-599.00 \mathrm{~Hz}$ | 0.00 |
| $N$ | 04-12 | $13^{\text {th }}$ step speed frequency | $0.00-599.00 \mathrm{~Hz}$ | 0.00 |
| $N$ | 04-13 | $14^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-14 | $15^{\text {th }}$ step speed frequency | 0.00-599.00Hz | 0.00 |
| $N$ | 04-15 | Position command 1 (rotation) | -30000-30000 | 0 |
| $N$ | 04-16 | Position command 1 (pulse) | -32767-32767 | 0 |
| $N$ | 04-17 | Position command 2 (rotation) | -30000-30000 | 0 |
| $N$ | 04-18 | Position command 2 (pulse) | -32767-32767 | 0 |
| $N$ | 04-19 | Position command 3 (rotation) | -30000-30000 | 0 |
| $N$ | 04-20 | Position command 3 (pulse) | -32767-32767 | 0 |
| $N$ | 04-21 | Position command 4 (rotation) | -30000-30000 | 0 |
| $N$ | 04-22 | Position command 4 (pulse) | -32767-32767 | 0 |
| $N$ | 04-23 | Position command 5 (rotation) | -30000-30000 | 0 |
| $N$ | 04-24 | Position command 5 (pulse) | -32767-32767 | 0 |
| $N$ | 04-25 | Position command 6 (rotation) | -30000-30000 | 0 |
| $N$ | 04-26 | Position command 6 (pulse) | -32767-32767 | 0 |
| $N$ | 04-27 | Position command 7 (rotation) | -30000-30000 | 0 |
| $N$ | 04-28 | Position command 7 (pulse) | -32767-32767 | 0 |
| $N$ | 04-29 | Position command 8 (rotation) | -30000-30000 | 0 |
| $N$ | 04-30 | Position command 8 (pulse) | -32767-32767 | 0 |
| $N$ | 04-31 | Position command 9 (rotation) | -30000-30000 | 0 |
| $N$ | 04-32 | Position command 9 (pulse) | -32767-32767 | 0 |
| $N$ | 04-33 | Position command 10 (rotation) | -30000-30000 | 0 |
| $N$ | 04-34 | Position command 10 (pulse) | -32767-32767 | 0 |
| $N$ | 04-35 | Position command 11 (rotation) | -30000-30000 | 0 |
| $N$ | 04-36 | Position command 11 (pulse) | -32767-32767 | 0 |

Chapter 11 Summary of Parameter Settings | C2000

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| N | 04-37 | Position command 12 (rotation) | -30000-30000 | 0 |
| N | 04-38 | Position command 12 (pulse) | -32767-32767 | 0 |
| $N$ | 04-39 | Position command 13 (rotation) | -30000-30000 | 0 |
| $N$ | 04-40 | Position command 13 (pulse) | -32767-32767 | 0 |
| $N$ | 04-41 | Position command 14 (rotation) | -30000-30000 | 0 |
| $N$ | 04-42 | Position command 14 (pulse) | -32767-32767 | 0 |
| N | 04-43 | Position command 15 (rotation) | -30000-30000 | 0 |
| $N$ | 04-44 | Position command 15 (pulse) | -32767-32767 | 0 |
| $N$ | 04-50 | PLC buffer 0 | 0-65535 | 0 |
| $N$ | 04-51 | PLC buffer 1 | 0-65535 | 0 |
| $N$ | 04-52 | PLC buffer 2 | 0-65535 | 0 |
| $N$ | 04-53 | PLC buffer 3 | 0-65535 | 0 |
| $N$ | 04-54 | PLC buffer 4 | 0-65535 | 0 |
| $N$ | 04-55 | PLC buffer 5 | 0-65535 | 0 |
| N | 04-56 | PLC buffer 6 | 0-65535 | 0 |
| N | 04-57 | PLC buffer 7 | 0-65535 | 0 |
| $N$ | 04-58 | PLC buffer 8 | 0-65535 | 0 |
| $N$ | 04-59 | PLC buffer 9 | 0-65535 | 0 |
| $N$ | 04-60 | PLC buffer 10 | 0-65535 | 0 |
| $N$ | 04-61 | PLC buffer 11 | 0-65535 | 0 |
| N | 04-62 | PLC buffer 12 | 0-65535 | 0 |
| N | 04-63 | PLC buffer 13 | 0-65535 | 0 |
| $N$ | 04-64 | PLC buffer 14 | 0-65535 | 0 |
| $N$ | 04-65 | PLC buffer 15 | 0-65535 | 0 |
| $N$ | 04-66 | PLC buffer 16 | 0-65535 | 0 |
| $N$ | 04-67 | PLC buffer 17 | 0-65535 | 0 |
| $N$ | 04-68 | PLC buffer 18 | 0-65535 | 0 |
| $N$ | 04-69 | PLC buffer 19 | 0-65535 | 0 |
| $N$ | 04-70 | PLC Application parameter 0 | 0-65535 | 0 |
| $N$ | 04-71 | PLC Application parameter 1 | 0-65535 | 0 |
| $N$ | 04-72 | PLC Application parameter 2 | 0-65535 | 0 |
| $N$ | 04-73 | PLC Application parameter 3 | 0-65535 | 0 |
| $N$ | 04-74 | PLC Application parameter 4 | 0-65535 | 0 |
| $N$ | 04-75 | PLC Application parameter 5 | 0-65535 | 0 |
| $N$ | 04-76 | PLC Application parameter 6 | 0-65535 | 0 |
| $N$ | 04-77 | PLC Application parameter 7 | 0-65535 | 0 |
| ${ }^{N}$ | 04-78 | PLC Application parameter 8 | 0-65535 | 0 |
| $N$ | 04-79 | PLC Application parameter 9 | 0-65535 | 0 |
| $N$ | 04-80 | PLC Application parameter 10 | 0-65535 | 0 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| N | 04-81 | PLC Application parameter 11 | 0-65535 | 0 |
| N | 04-82 | PLC Application parameter 12 | 0-65535 | 0 |
| $N$ | 04-83 | PLC Application parameter 13 | 0-65535 | 0 |
| N | 04-84 | PLC Application parameter 14 | 0-65535 | 0 |
| $N$ | 04-85 | PLC Application parameter 15 | 0-65535 | 0 |
| $N$ | 04-86 | PLC Application parameter 16 | 0-65535 | 0 |
| $N$ | 04-87 | PLC Application parameter 17 | 0-65535 | 0 |
| N | 04-88 | PLC Application parameter 18 | 0-65535 | 0 |
| N | 04-89 | PLC Application parameter 19 | 0-65535 | 0 |
| N | 04-90 | PLC Application parameter 20 | 0-65535 | 0 |
| N | 04-91 | PLC Application parameter 21 | 0-65535 | 0 |
| N | 04-92 | PLC Application parameter 22 | 0-65535 | 0 |
| N | 04-93 | PLC Application parameter 23 | 0-65535 | 0 |
| N | 04-94 | PLC Application parameter 24 | 0-65535 | 0 |
| N | 04-95 | PLC Application parameter 25 | 0-65535 | 0 |
| N | 04-96 | PLC Application parameter 26 | 0-65535 | 0 |
| N | 04-97 | PLC Application parameter 27 | 0-65535 | 0 |
| $N$ | 04-98 | PLC Application parameter 28 | 0-65535 | 0 |
| N | 04-99 | PLC Application parameter 29 | 0-65535 | 0 |

## 05 Motor Parameters

|  | Pr | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | 05-00 | Motor parameter auto tuning | 0 : No function <br> 1: Simple rolling auto-tuning for induction motor (IM) <br> 2: Static auto-tuning for induction motor (IM) <br> 4: Dynamic test for PM magnetic pole (with the running in forward direction) <br> 5: Rolling auto-tuning for PM (IPM / SPM) <br> 6: Advanced rolling auto-tuning for IM motor flux curve <br> 12: FOC sensorless inertia estimation <br> 13: Static auto-tuning for PM (IPM / SPM) | 0 |
|  | 05-01 | Full-load current for induction motor 1 (A) | Depending on the model power | Depending model model |
|  | 05-02 | Rated power for induction motor $1 \text { (kW) }$ | 0.00-655.35kW | Depending on the model |
|  | 05-03 | Rated speed for induction motor $1 \text { (rpm) }$ | $0-\mathrm{xxxx}$ (Depending on the motor pole number) | Depending motor pole number |
|  | 05-04 | Number of poles for induction motor 1 | 2-64 | 4 |
|  | 05-05 | No-load current for induction motor 1 (A) | 0.00-Pr. 05-01 default | Depending on the model power |
|  | 05-06 | Stator resistance (Rs) for induction motor 1 | 0.000-65.535 | Depending on the model power |
|  | 05-07 | Rotor resistance (Rr) for induction motor 1 | 0.000-65.535 | 0.000 |
|  | 05-08 | Magnetizing inductance (Lm) for induction motor 1 | $0.0-6553.5 \mathrm{mH}$ | 0.0 |
|  | 05-09 | Stator inductance (Lx) for induction motor 1 | $0.0-6553.5 \mathrm{mH}$ | 0.0 |
|  | 05-13 | Full-load current for induction motor 2 (A) | Depending on the model power | Depending on the model |
|  | 05-14 | Rated power for induction motor $2 \text { (kW) }$ | 0.00-655.35kW | Depending on the model power |
|  | 05-15 | Rated speed for induction motor $2 \text { (rpm) }$ | $0-x x x x$ (Depending on the motor pole number) | Depending on the motor pole number |
|  | 05-16 | Number of poles for induction motor 2 | 2-64 | 4 |
|  | 05-17 | No-load current for induction <br> motor 2 (A) | 0.00-Pr. 05-13 default | $\begin{gathered} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{gathered}$ |


|  | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  | Stator resistance (Rs) for induction motor 2 | 0.000-65.535 | Depending on the model power |
|  | Rotor resistance (Rr) of induction motor 2 | 0.000-65.535 | 0.000 |
|  | Magnetizing inductance (Lm) of induction motor 2 | $0.0-6553.5 \mathrm{mH}$ | 0.0 |
|  | Stator inductance (Lx) of induction motor 2 | $0.0-6553.5 \mathrm{mH}$ | 0.0 |
|  | Induction motor 1 / 2 selection | 1: Motor 1 <br> 2: Motor 2 | 1 |
|  | Frequency for Y -connection / $\Delta$-connection switch for an induction motor | 0.00-599.00Hz | 60.00 |
|  | Y-connection / $\Delta$-connection switch for induction motor | 0: Disable <br> 1: Enable | 0 |
|  | Delay time for Y -connection / <br> $\Delta$-connection switch for an induction motor | 0.000-60.000 sec. | 0.200 |
|  | Accumulated Watt-hour for a motor (W-hour) | Read only | 0.0 |
|  | Accumulated Watt-hour for a motor in low word (kW-hour) | Read only | 0.0 |
|  | Accumulated Watt-hour for a motor in high word (MW-hour) | Read only | 0 |
|  | Accumulated motor operation time (Min.) | 0-1439 | 0 |
|  | Accumulated motor operation time (Day) | 0-65535 | 0 |
|  | Induction motor (IM) or permanent magnet motor (PM) selection | 0: IM <br> 1: SPM (Surface permanent magnet motor) <br> 2: IPM (Interior permanent magnet motor) | 0 |
|  | Full-load current for a permanent magnet motor | Depending on the model power | Depending on the model power |
|  | Rated power for a permanent magnet motor | 0.00-655.35kW | Depending on the model power |
|  | Rated speed for a permanent magnet motor | 0-65535rpm | 2000 |
|  | Pole number for a permanent magnet motor | 0-65535 | 10 |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
| $05-38$ | System inertia for a permanent <br> magnet motor | $0.0-6553.5 \mathrm{~kg} . \mathrm{cm}^{2}$ | Depending <br> on the <br> motor <br> power |
| $05-39$ | Stator resistance for a permanent <br> magnet motor | $0.000-65.535 \Omega$ | 0.000 |
| $05-40$ | Permanent magnet motor Ld | $0.00-655.35 \mathrm{mH}$ | 0.00 |
| $05-41$ | Permanent magnet motor Lq | $0.00-655.35 \mathrm{mH}$ | 0.00 |
| $05-42$ | PG offset angle for a permanent <br> magnet motor | $0.0-360.0^{\circ}$ | 0.0 |
| $05-43$ | Ke parameter of a permanent <br> magnet motor | $0-65535($ Unit: $\mathrm{V} / \mathrm{krpm})$ | 0 |

## 06 Protection Parameters

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 06-00 | Low voltage level | 230V: <br> Frame A-D: 150.0-220.0VDc <br> Frame E and above: 190.0-220.0Voc 460V: <br> Frame A-D: 300.0-440.0VDc <br> Frame E and above: 380.0~440.0Voc <br> 575V: 420.0-520.0V Dc <br> 690V: 450.0-660.0VDC | $\begin{aligned} & 180.0 \\ & 200.0 \\ & 360.0 \\ & 400.0 \\ & 470.0 \\ & 480.0 \end{aligned}$ |
| $N$ | 06-01 | Over-voltage stall prevention | $\begin{aligned} & 0 \text { : Disabled } \\ & 230 \mathrm{~V}: 0.0-450.0 \mathrm{~V}_{\mathrm{DC}} \\ & 460 \mathrm{~V}: 0.0-900.0 \mathrm{~V}_{\mathrm{DC}} \\ & 575 \mathrm{~V}: 0.0-920.0 \mathrm{~V}_{\mathrm{DC}} \\ & 690 \mathrm{~V}: 0.0-1087.0 \mathrm{~V}_{\mathrm{DC}} \\ & \hline \end{aligned}$ | $\begin{gathered} 380.0 \\ 760.0 \\ 920.0 \\ 1087.0 \end{gathered}$ |
| N | 06-02 | Selection for over-voltage stall prevention | 0 : Traditional over-voltage stall prevention <br> 1: Smart over-voltage stall prevention | 0 |
| $N$ | 06-03 | Over-current stall prevention during acceleration | 230V / 460V models <br> Normal load: 0-160\% (100\% corresponds to the rated current of the drive) <br> Heavy load: 0-180\% (100\% corresponds to the rated current of the drive) <br> $575 \mathrm{~V} / 690 \mathrm{~V}$ models <br> Light load: 0-125\% (100\% corresponds to the rated current of the drive) <br> Normal load: 0-150\% (100\% corresponds to the rated current of the drive) <br> Heavy load: 0-180\% (100\% corresponds to the rated current of the drive) | 120 <br> 120 <br> 120 <br> 120 <br> 150 |
| $N$ | 06-04 | Over-current stall prevention during operation | 230V / 460V models <br> Normal load: 0-160\% (100\% corresponds to the rated current of the drive) <br> Heavy load: 0-180\% (100\% corresponds to the rated current of the drive) <br> $575 \mathrm{~V} / 690 \mathrm{~V}$ models <br> Light load: 0-125\% (100\% corresponds to the rated current of the drive) <br> Normal load: 0-150\% (100\% corresponds to the rated current of the drive) <br> Heavy load: 0-180\% (100\% corresponds to the rated current of the drive) | 120 <br> 120 <br> 120 <br> 120 <br> 150 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 06-05 | Acceleration / deceleration time selection for stall prevention at constant speed | 0: By current acceleration / deceleration time <br> 1: By the $1^{\text {st }}$ acceleration / deceleration time <br> 2: By the $2^{\text {nd }}$ acceleration / deceleration time <br> 3: By the $3^{\text {rd }}$ acceleration / deceleration time <br> 4: By the $4^{\text {th }}$ acceleration / deceleration time <br> 5: By automatic acceleration / deceleration | 0 |
| $N$ | 06-06 | Over-torque detection selection (OT1) | 0: No function <br> 1: Continue operation after over-torque detection during constant speed operation <br> 2: Stop after over-torque detection during constant speed operation <br> 3: Continue operation after over-torque detection during RUN <br> 4: Stop after over-torque detection during RUN | 0 |
| $N$ | 06-07 | Over-torque detection level (OT1) | $10-250 \%$ ( $100 \%$ corresponds to the rated current of the drive) | 120 |
| $N$ | 06-08 | Over-torque detection time (OT1) | 0.0-60.0 sec. | 0.1 |
| $N$ | 06-09 | Over-torque detection selection (OT2) | 0 : No function <br> 1: Continue operation after over-torque detection during constant speed operation <br> 2: Stop after over-torque detection during constant speed operation <br> 3: Continue operation after over-torque detection during RUN <br> 4: Stop after Over-torque detection during RUN | 0 |
| $N$ | 06-10 | Over-torque detection level (OT2) | 10-250\% (100\% corresponds to the rated current of the drive) | 120 |
| $N$ | 06-11 | Over-torque detection time (OT2) | 0.0-60.0 sec. | 0.1 |
| $N$ | 06-12 | Current limit | $0-250 \%$ ( $100 \%$ corresponds to the rated current of the drive) | 170 |
| $N$ | 06-13 | Electronic thermal relay selection <br> 1 (Motor 1) | 0: Inverter motor (with external forced cooling) <br> 1: Standard motor (motor with fan on the shaft) <br> 2: Disable | 2 |
| $N$ | 06-14 | Electronic thermal relay action time 1 (Motor 1) | 30.0-600.0 sec. | 60.0 |
| $N$ | 06-15 | Temperature level over-heat (OH) warning | $0.0-110.0^{\circ} \mathrm{C}$ | 105.0 |
| $N$ | 06-16 | Stall prevention limit level (Weak magnetic area current stall prevention level) | 0-100\% (Pr. 06-03, Pr. 06-04) | 100 |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
| 06-17 | Fault record 1 <br> (Present fault record) | 0 : No fault record <br> 1: Over-current during acceleration (ocA) <br> 2: Over-current during deceleration (ocd) <br> 3: Over-current during constant speed (ocn) <br> 4: Ground fault (GFF) <br> 5: IGBT short-circuit (occ) <br> 6: Over-current at stop (ocS) <br> 7: Over-voltage during acceleration (ovA) <br> 8: Over-voltage during deceleration (ovd) <br> 9: Over-voltage during constant speed (ovn) <br> 10: Over-voltage at stop (ovS) <br> 11: Low-voltage during acceleration (LvA) <br> 12: Low-voltage during deceleration (Lvd) <br> 13: Low-voltage during constant speed (Lvn) <br> 14: Low-voltage at stop (LvS) <br> 15: Phase loss protection (OrP) <br> 16: IGBT over-heat (oH1) <br> 17: Capacitance over-heat ( oH 2 ) <br> 18: TH1 open: IGBT over-heat protection error (tH1o) <br> 19: TH2 open: capacitance over-heat protection error ( tH 2 o ) <br> 21: Drive over-load (oL) <br> 22: Electronics thermal relay protection 1 (EoL1) <br> 23: Electronics thermal relay protection 2 (EoL2) <br> 24: Motor overheat (oH3) (PTC / PT100) <br> 26: Over-torque 1 (ot1) <br> 27: Over-torque 2 (ot2) <br> 28: Low current (uC) <br> 29: Home limit error (LMIT) <br> 30: Memory write-in error (cF1) <br> 31: Memory read-out error (cF2) | 0 |
| 06-18 | Fault record 2 |  | 0 |
| 06-19 | Fault record 3 |  | 0 |
| 06-20 | Fault record 4 |  | 0 |
| 06-21 | Fault record 5 |  | 0 |
| 06-22 | Fault record 6 |  | 0 |
|  |  |  |  |
|  |  | 33: U-phase current detection error (cd1) <br> 34: V-phase current detection error (cd2) <br> 35: W-phase current detection error (cd3) <br> 36: Clamp current detection error (Hd0) <br> 37: Over-current detection error (Hd1) <br> 38: Over-voltage detection error (Hd2) <br> 39: IGBT short-circuit detection error (Hd3) <br> 40: Auto-tuning error (AUE) <br> 41: PID feedback loss (AFE) |  |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | 42: PG feedback error (PGF1) <br> 43: PG feedback loss (PGF2) <br> 44: PG feedback stall (PGF3) <br> 45: PG slip error (PGF4) <br> 48: Analog current input loss (ACE) <br> 49: External fault input (EF) <br> 50: Emergency stop (EF1) <br> 51: External base block (bb) <br> 52: Password error (Pcod) <br> 54: Communication error (CE1) <br> 55: Communication error (CE2) <br> 56: Communication error (CE3) <br> 57: Communication error (CE4) <br> 58: Communication time-out (CE10) <br> 60: Brake transistor error (bF) <br> 61: Y-connection / $\Delta$-connection switch error (ydc) <br> 62: Deceleration energy backup error (dEb) <br> 63: Slip error (oSL) <br> 64: Electromagnet switch error (ryF) <br> 65: PG card error (PGF5) <br> 68: Sensorless estimated speed have wrong direction <br> 69: Sensorless estimated speed is over speed <br> 70: Sensorless estimated speed deviated <br> 71: Watchdog <br> 72: Channel 1 (STO1~SCM1) safety loop error (STL1) <br> 73: External safety gate (S1) <br> 75: External brake error <br> 76: Safe torque off (STO) <br> 77: Channel 2 (STO2~SCM2) safety loop error (STL2) <br> 78: Internal loop error (STL3) <br> 82: U phase output phase loss (OPHL) <br> 83: V phase output phase loss (OPHL) <br> 84: W phase output phase loss (OPHL) <br> 85: PG-02U ABZ hardware disconnection <br> 86: PG-02U UVW hardware disconnection <br> 87: oL3 Low frequency overload protection <br> 89: RoPd Initial rotor position detection error <br> 90: Inner PLC function is forced to stop <br> 93: CPU error <br> 101: CANopen software disconnect 1 (CGdE) <br> 102: CAN open software disconnect 2 (CHbE) |  |


|  | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | 104: CANopen hardware disconnect (CbFE) <br> 105: CANopen index setting error (CIdE) <br> 106: CANopen slave station number setting error (CAdE) <br> 107: CANopen index setting exceed limit (CFrE) <br> 111: ictE Internal communication overtime error ( InrCOM ) <br> 112: PM sensorless shaft lock error <br> 142: Auto-tuning error 1 (no feedback current error) (AUE1) <br> 143: Auto-tuning error 2 (motor phase loss error) (AUE2) <br> 144: Auto-tuning error 3 (no-load current lo measuring error) (AUE3) <br> 148: Auto-tuning error 4 (leakage inductance Lsigma measuring error) (AUE4) |  |
|  | Fault output option 1 | 0-65535 (refer to bit table for fault code) | 0 |
|  | Fault output option 2 | 0-65535 (refer to bit table for fault code) | 0 |
|  | Fault output option 3 | 0-65535 (refer to bit table for fault code) | 0 |
|  | Fault output option 4 | 0-65535 (refer to bit table for fault code) | 0 |
|  | Electronic thermal relay selection 2 (Motor 2) | 0 : Inverter motor (with external forced cooling) <br> 1: Standard motor (motor with fan on the shaft) <br> 2: Disable | 2 |
|  | Electronic thermal relay action time 2 (Motor 2) | 30.0-600.0 sec. | 60.0 |
|  | PTC detection selection / PT100 motion | 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning | 0 |
|  | PTC level / KTY84 Level | 0.0-100.0\% | 50.0 |
|  | Frequency command at malfunction | 0.00-599.00Hz | Read <br> only |
|  | Output frequency at malfunction | 0.00-599.00Hz | Read <br> only |
|  | Output voltage at malfunction | 0.0-6553.5V | Read only |
|  | DC voltage at malfunction | 0.0-6553.5V | Read <br> only |
|  | Output current at malfunction | 0.0-6553.5Amp | Read only |


|  | Pr | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | 06-36 | IGBT temperature at malfunction | -3276.7-3276.7 ${ }^{\circ} \mathrm{C}$ | Read only |
|  | 06-37 | Capacitance temperature at malfunction | -3276.7-3276.7 ${ }^{\circ} \mathrm{C}$ | Read only |
|  | 06-38 | Motor speed at malfunction | -32767-32767rpm | Read only |
|  | 06-39 | Torque command at malfunction | -32767-32767\% | Read <br> only |
|  | 06-4 | Status of the multi-function input terminal at malfunction | 0000h-FFFFh | Read <br> only |
|  | 06-4 | Status of the multi-function output terminal at malfunction | 0000h-FFFFh | Read only |
|  | 06-42 | Drive status at malfunction | 0000h-FFFFh | Read only |
|  | 06-44 | STO latch selection | 0: STO latch <br> 1: STO no latch | 0 |
|  | 06-45 | Treatment to output phase loss protection (OPHL) | 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning | 3 |
|  | 06-46 | Detection time of output phase loss | 0.000-65.535 sec. | 3.000 |
|  | 06-47 | Current detection level for output phase loss | 0.00-100.00\% | 1.00 |
|  | 06-48 | DC brake time of output phase loss | 0.000-65.535 sec. | 0.000 |
|  | 06-49 | LvX auto-reset | 0: Disable <br> 1: Enable | 0 |
|  | 06-50 | Time for input phase loss detection | 0.00-600.00 sec. | 0.20 |
|  | 06-51 | CAP oH warning level | 0.0-110.0 degree | Depending <br> on the <br> motor <br> power |
|  | 06-52 | Ripple of input phase loss | 230 V series: $0.0-160.0 \mathrm{~V}$ DC <br> 460 V series: $0.0-320.0 \mathrm{~V}$ DC <br> 575 V series: $0.0-400.0 \mathrm{~V}$ DC <br> 690 V series: $0.0-480.0 \mathrm{~V}$ dc | $\begin{aligned} & 30.0 \\ & 60.0 \\ & 75.0 \\ & 90.0 \\ & \hline \end{aligned}$ |
|  | 06-53 | Detected input phase loss (OrP) action | 0 : Warn and ramp to stop <br> 1: Warn and coast to stop | 0 |
|  | 06-55 | Derating protection | 0 : Constant rated current and limit carrier wave by load current and temperature | 0 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1: Constant carrier frequency and limit load current by setting carrier wave <br> 2: Constant rated current (same as setting 0 ), but close current limit |  |
| $N$ | 06-56 | PT100 voltage level 1 | 0.000-10.000V | 5.000 |
| $N$ | 06-57 | PT100 voltage level 2 | $0.000-10.000 \mathrm{~V}$ | 7.000 |
| $N$ | 06-58 | PT100 level 1 frequency protect | 0.00-599.00Hz | 0.00 |
| $N$ | 06-59 | PT100 activation level 1 protect frequency delay time | 0-6000 sec. | 60 |
| $N$ | 06-60 | Software detection GFF current level | 0.0-6553.5 \% | 60.0 |
| $N$ | 06-61 | Software detection GFF filter time | 0.00-655.35 sec. | 0.10 |
|  | 06-62 | dEb reset bias level | $\begin{aligned} & 230 \mathrm{~V}: 0.0-100 \mathrm{VDC} \\ & 460 \mathrm{~V}: 0.0-200.0 \mathrm{VDC} \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 40.0 \end{aligned}$ |
|  | 06-63 | Operation time of fault record 1 (Day) | 0-65535 days | Read <br> only |
|  | 06-64 | Operation time of fault record 1 (Minutes) | 0-1439 min. | Read only |
|  | 06-65 | Operation time of fault record 2 (Day) | 0-65535 days | Read only |
|  | 06-66 | Operation time of fault record 2 (Minutes) | 0-1439 min. | Read <br> only |
|  | 06-67 | Operation time of fault record 3 (Day) | 0-65535 days | Read <br> only |
|  | 06-68 | Operation time of fault record 3 (Minutes) | 0-1439 min. | Read <br> only |
|  | 06-69 | Operation time of fault record 4 (Day) | 0-65535 days | Read <br> only |
|  | 06-70 | Operation time of fault record 4 (Minutes) | 0-1439 min. | Read <br> only |
| $N$ | 06-71 | Low current setting level | 0.0-100.0 \% | 0.0 |
| $N$ | 06-72 | Low current detection time | 0.00-360.00 sec. | 0.00 |
| $N$ | 06-73 | Low current action | 0 : No function <br> 1: Warn and coast to stop <br> 2: Warn and ramp to stop by the $2^{\text {nd }}$ deceleration time <br> 3: Warn and continue operation | 0 |
|  | 06-86 | PTC Type | $\begin{aligned} & 0-1 \\ & \text { 0: PTC } \\ & \text { 1: KTY84-130 } \end{aligned}$ | 0 |

## 07 Special Parameters

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 07-00 | Built-in software brake level | $230 \mathrm{~V}: 350.0-450.0 \mathrm{~V}$ DC <br> 460V: 700.0-900.0VDC <br> 575V: 850.0-1116.0VDc <br> 690V: 939.0-1318.0VDC | $\begin{gathered} 370.0 \\ 740.0 \\ 895.0 \\ 1057.0 \end{gathered}$ |
| N | 07-01 | DC brake current level | 0-100\% | 0 |
| N | 07-02 | DC brake time at run | $0.0-60.0 \mathrm{sec}$. | 0.0 |
| N | 07-03 | DC brake time at stop | 0.0-60.0 sec. | 0.0 |
| $N$ | 07-04 | DC brake frequency at stop | 0.00-599.00Hz | 0.00 |
| N | 07-05 | Voltage increasing gain | 1-200\% | 100 |
| $N$ | 07-06 | Restart after momentary power loss | 0: Stop operation <br> 1: Speed tracking by speed before the power loss <br> 2: Speed tracking by minimum output frequency | 0 |
| N | 07-07 | Allowed power loss duration | $0.0-20.0 \mathrm{sec}$. | 2.0 |
| $N$ | 07-08 | Base block time | 0.0-5.0 sec. | \#.\# |
| N | 07-09 | Current limit of speed tracking | 20-200\% | 100 |
| N | 07-10 | Restart after fault action | 0 : Stop operation <br> 1: Speed tracking by current speed <br> 2: Speed tracking by minimum output frequency | 0 |
| $N$ | 07-11 | Number of times of restart after fault | 0-10 | 0 |
| $N$ | 07-12 | Speed tracking during start-up | 0: Disable <br> 1: Speed tracking by maximum output frequency <br> 2: Speed tracking by motor frequency at start <br> 3: Speed tracking by minimum output frequency | 0 |
| $N$ | 07-13 | dEb function selection | 0: Disable <br> 1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored. <br> 2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored <br> 3: dEb low-voltage control, then increase to $350 \mathrm{~V} \mathrm{Dc} /$ $700 \mathrm{~V}_{\mathrm{DC}}$ and decelerate to stop <br> 4: dEb high-voltage control of $350 \mathrm{VDc} / 700 \mathrm{VDC}$ and decelerate to stop | 0 |
|  | 07-14 | dEb function reset time | 0.0-25.0 sec. | 3.0 |
| $N$ | 07-15 | Dwell time at acceleration | 0.00-600.00 sec. | 0.00 |
| $N$ | 07-16 | Dwell frequency at acceleration | 0.00-599.00Hz | 0.00 |
| $N$ | 07-17 | Dwell time at deceleration | 0.00-600.00 sec. | 0.00 |
| N | 07-18 | Dwell frequency at deceleration | 0.00-599.00Hz | 0.00 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 07-19 | Fan cooling control | 0 : Fan always ON <br> 1: Fan is OFF after AC motor drive stops for one minute <br> 2: Fan is ON when AC motor drive runs; fan is OFF when AC motor drive stops. <br> 3: Fan turns ON when temperature (IGBT) reaches around $60^{\circ} \mathrm{C}$. <br> 4: Fan always OFF | 0 |
| $N$ | 07-20 | Emergency stop (EF) \& force to stop selection | 0 : Coast to stop <br> 1: Stop by the $1^{\text {st }}$ deceleration time <br> 2: Stop by the $2^{\text {nd }}$ deceleration time <br> 3: Stop by the $3^{\text {rd }}$ deceleration time <br> 4: Stop by the $4^{\text {th }}$ deceleration time <br> 5: System deceleration <br> 6: Automatic deceleration | 0 |
| $N$ | 07-21 | Automatic energy-saving selection | 0 : Disable <br> 1: Enable | 0 |
| $N$ | 07-22 | Energy-saving gain | 10~1000\% | 100 |
| $N$ | 07-23 | Auto voltage regulation (AVR) function | 0: Enable AVR <br> 1: Disable AVR <br> 2: Disable AVR during deceleration | 0 |
| $N$ | 07-24 | Torque command filter time (V/F and SVC control mode) | 0.001-10.000 sec. | 0.500 |
| $N$ | 07-25 | Slip compensation filter time (V/F and SVC control mode) | 0.001-10.000 sec. | 0.100 |
| $N$ | 07-26 | Torque compensation gain (V/F and SVC control mode) | IM: 0-10 (when Pr. 05-33 = 0) <br> PM: 0-5000 (when Pr. 05-33 = 1 or 2 ) | 0 |
| $N$ | 07-27 | Slip compensation gain (V/F and SVC control mode) | 0.00-10.00 | 0.00 (Default value is 1.00 in SVC mode) |
| $N$ | 07-29 | Slip deviation level | $0.0-100.0 \%$ <br> 0 : No detection | 0 |
| $N$ | 07-30 | Over slip deviation detection time | 0.0-10.0 sec. | 1.0 |
| N | 07-31 | Over slip deviation treatment | 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning | 0 |
| $N$ | 07-32 | Motor shock compensation factor | $\begin{aligned} & 0-10000 \\ & 0: \text { Disable } \end{aligned}$ | 1000 |
| N | 07-33 | Auto-restart internal of fault | 0.0-6000.0 sec. | 60.0 |

Chapter 11 Summary of Parameter Settings | C2000

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
| $07-38$ | PMSVC voltage feedback <br> forward gain | $0.50-2.00$ | 1.00 |
| $07-62$ | dEb gain $(\mathrm{Kp})$ | $0-65535$ | 8000 |
| $07-63$ | dEb gain $(\mathrm{Ki})$ | $0-65535$ | 150 |

## 08 High-function PID Parameters



Chapter 11 Summary of Parameter Settings | C2000

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
| $08-18$ | Sleep mode function setting | 0: Refer to PID output command <br> 1: Refer to PID feedback signal | 0 |
| $08-19$ | Wake-up integral limit | $0.0-200.0 \%$ | 50.0 |
| $08-20$ | PID mode selection | 0: Serial connection <br> 1: Parallel connection | 0 |
| $08-21$ | Enable PID to change the <br> operation direction | $0:$ Operation direction cannot be changed <br> 1: Operation direction can be changed | 0 |
| $08-22$ | Wake-up delay time | $0.00-600.00$ sec. | 0.00 |
| $08-23$ | PID control flag | bit0 $=1$, PID running in reverse follows the setting for <br> Pr. 00-23. | 0000 h |

## 09 Communication Parameters

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 09-00 | Communication address | 1-254 | 1 |
| N | 09-01 | COM1 transmission speed | 4.8-115.2Kbps | 9.6 |
| N | 09-02 | COM1 transmission fault treatment | 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning and continue operation | 3 |
| N | 09-03 | COM1 time-out detection | 0.0-100.0 sec. | 0.0 |
| N | 09-04 | COM1 communication protocol | $\begin{aligned} & \hline 1: 7, \mathrm{~N}, 2 \text { (ASCII) } \\ & 2: 7, \mathrm{E}, 1 \text { (ASCII) } \\ & 3: 7, \mathrm{O}, 1 \text { (ASCII) } \\ & 4: 7, \mathrm{E}, 2 \text { (ASCII) } \\ & 5: 7, \mathrm{O}, 2 \text { (ASCII) } \\ & 6: 8, \mathrm{~N}, 1 \text { (ASCII) } \\ & 7: 8, \mathrm{~N}, 2 \text { (ASCII) } \\ & 8: 8, \mathrm{E}, 1 \text { (ASCII) } \\ & 9: 8, \mathrm{O}, 1 \text { (ASCII) } \\ & 10: 8, \mathrm{E}, 2 \text { (ASCII) } \\ & 11: 8, \mathrm{O}, 2 \text { (ASCII) } \\ & 12: 8, \mathrm{~N}, 1 \text { (RTU) } \\ & 13: 8, \mathrm{~N}, 2 \text { (RTU) } \\ & 14: 8, \mathrm{E}, 1 \text { (RTU) } \\ & \text { 15: 8, O, } 1 \text { (RTU) } \\ & 16: 8, \mathrm{E}, 2 \text { (RTU) } \\ & \text { 17: 8, O, } 2 \text { (RTU) } \\ & \hline \end{aligned}$ | 1 |
| N | 09-09 | Communication response delay time | 0.0-200.0ms | 2.0 |
|  | 09-10 | Communication main frequency | 0.00-599.00Hz | 60.00 |
| N | 09-11 | Block transfer 1 | 0000-FFFFh | 0000h |
| $N$ | 09-12 | Block transfer 2 | 0000-FFFFh | 0000h |
| N | 09-13 | Block transfer 3 | 0000-FFFFh | 0000h |
| N | 09-14 | Block transfer 4 | 0000-FFFFh | 0000h |
| $N$ | 09-15 | Block transfer 5 | 0000-FFFFh | 0000h |
| $N$ | 09-16 | Block transfer 6 | 0000-FFFFh | 0000h |
| N | 09-17 | Block transfer 7 | 0000-FFFFh | 0000h |
| $N$ | 09-18 | Block transfer 8 | 0000-FFFFh | 0000h |
| N | 09-19 | Block transfer 9 | 0000-FFFFh | 0000h |
| N | 09-20 | Block transfer 10 | 0000-FFFFh | 0000h |
| $N$ | 09-21 | Block transfer 11 | 0000-FFFFh | 0000h |
| N | 09-22 | Block transfer 12 | 0000-FFFFh | 0000h |

Chapter 11 Summary of Parameter Settings | C2000

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
| 09-23 | Block transfer 13 | 0000-FFFFh | 0000h |
| 09-24 | Block transfer 14 | 0000-FFFFh | 0000h |
| 09-25 | Block transfer 15 | 0000-FFFFh | 0000h |
| 09-26 | Block transfer 16 | 0000-FFFFh | 0000h |
| 09-30 | Communication decoding method | 0 : Decoding method 1 (20xx) <br> 1: Decoding method 2 ( $60 x x$ ) | 1 |
| 09-31 | Internal communication protocol | 0: MODBUS 485 <br> -1: Internal communication slave 1 <br> -2: Internal communication slave 2 <br> -3: Internal communication slave 3 <br> -4: Internal communication slave 4 <br> -5: Internal communication slave 5 <br> -6: Internal communication slave 6 <br> -7: Internal communication slave 7 <br> -8: Internal communication slave 8 <br> -10: Internal communication master <br> -12: Internal PLC control | 0 |
| 09-33 | PLC command force to 0 | bit0: Before PLC scans, set up PLC target frequency=0 <br> bit1: Before PLC scans, set up PLC target torque=0 <br> bit2: Before PLC scans, set up the speed limit of torque control mode=0 | 0 |
| 09-35 | PLC address | 1-254 | 2 |
| 09-36 | CANopen slave address | $\begin{array}{\|l\|} \hline 0: \text { Disable } \\ 1-127 \end{array}$ | 0 |
| 09-37 | CANopen speed | $0: 1 \mathrm{Mbps}$ <br> 1: 500 Kbps <br> 2: 250Kbps <br> 3: 125Kbps <br> 4: 100Kbps (Delta only) <br> 5: 50Kbps | 0 |
| 09-39 | CANopen warning record | bit0: CANopen Guarding Time out bit1: CANopen Heartbeat Time out bit2: CANopen SYNC Time out bit3: CANopen SDO Time out bit4: CANopen SDO buffer overflow bit5: Can Bus Off bit6: Error protocol of CANopen | Read only |


| Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: |
|  |  | bit8: The setting values of CANopen indexes are fail <br> bit9: The setting value of CANopen address is fail <br> bit10: The checksum value of CANopen indexes is fail |  |
| 09-40 | CANopen decoding method | 0: Disable (Delta-defined decoding method) <br> 1: Enable (CANopen DS402 standard protocol) | 1 |
| 09-41 | CANopen communication status | 0: Node Reset <br> 1: Com Reset <br> 2: Boot up <br> 3: Pre operation <br> 4: Operation <br> 5: Stop | Read <br> Only |
| 09-42 | CANopen control status | 0: Not ready for use <br> 1: Inhibit Start <br> 2: Ready to Switch on <br> 3: Switched on <br> 4: Enable Operation <br> 7: Quick Stop Active <br> 13: Error Reaction Activation <br> 14: Error | Read <br> Only |
| 09-45 | CANopen master function | 0: Disable <br> 1: Enable | 0 |
| 09-46 | CANopen master address | 0-127 | 100 |
| 09-60 | Communication card identification | 0-12 <br> 0: No communication card <br> 1: DeviceNet Slave <br> 2: Profibus-DP Slave <br> 3: CANopen Slave / Master <br> 4: MODBUS-TCP Slave <br> 5: EtherNet / IP Slave <br> 6: EtherCAT <br> 12: PROFINET | \#\# |
| 09-61 | Firmware version of communication card | Read only | \#\# |
| 09-62 | Product code | Read only | \#\# |
| 09-63 | Error code | Read only | \#\# |
| 09-70 | Communication card address (for DeviceNet or PROFIBUS) | DeviceNet: 0-63 <br> Profibus-DP: 1-125 | 1 |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 09-71 | Communication card speed setting (for DeviceNet) | Standard DeviceNet: <br> 0: 125Kbps <br> 1: 250Kbps <br> 2: 500Kbps <br> 3: 1Mbps (Delta only) <br> Non-standard DeviceNet: (Delta only) <br> 0: 10Kbps <br> 1: 20Kbps <br> 2: 50Kbps <br> 3: 100Kbps <br> 4: 125Kbps <br> 5: 250Kbps <br> 6: 500Kbps <br> 7: 800Kbps <br> 8: 1Mbps | 2 |
| $N$ | 09-72 | Other communication card speed setting (for DeviceNet) | 0: Standard DeviceNet <br> In this mode, baud rate can only be $125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ in standard DeviceNet speed <br> 1: Non-standard DeviceNet In this mode, the baud rate of DeviceNet can be the same as CANopen (0~8). | 0 |
| $v$ | 09-75 | Communication card IP configuration (for MODBUS TCP) | 0: Static IP <br> 1: Dynamic IP (DHCP) | 0 |
| $v$ | 09-76 | Communication card IP address 1 (for MODBUS TCP) | 0-65535 | 0 |
| $v$ | 09-77 | Communication card IP address 2 (for MODBUS TCP) | 0-65535 | 0 |
| $v$ | 09-78 | Communication card IP address 3 (for MODBUS TCP) | 0-65535 | 0 |
| $N$ | 09-79 | Communication card IP address 4 (for MODBUS TCP) | 0-65535 | 0 |
| $v$ | 09-80 | Communication card address mask 1 (for MODBUS TCP) | 0-65535 | 0 |
| $v$ | 09-81 | Communication card address mask 2 (for MODBUS TCP) | 0-65535 | 0 |
| $\checkmark$ | 09-82 | Communication card address mask 3 (for MODBUS TCP) | 0-65535 | 0 |
| $N$ | 09-83 | Communication card address mask 4 (for MODBUS TCP) | 0-65535 | 0 |



## 10 Feedback Control Parameters



|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 10-14 | Detection time of encoder / speed observer slip | $0.0-10.0 \mathrm{sec}$. | 0.5 |
| $N$ | 10-15 | Encoder / speed observer stall and slip error action | 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop | 2 |
| $N$ | 10-16 | Pulse input type setting | 0 : Disable <br> 1: Phases $A$ and $B$ are pulse inputs, forward direction if <br> A-phase leads $B$-phase by 90 degrees <br> 2: Phases $A$ and $B$ are pulse inputs, forward direction if <br> B-phase leads A-phase by 90 degrees <br> 3: Phase $A$ is a pulse input and phase $B$ is a direction input ( $\mathrm{L}=$ reverse direction, $\mathrm{H}=$ forward direction). <br> 4: Phase $A$ is a pulse input and phase $B$ is a direction input. ( $\mathrm{L}=$ forward direction, $\mathrm{H}=$ reverse direction). <br> 5: Single-phase pulse input (MI8) | 0 |
| $N$ | 10-17 | Electrical gear A | 1-65535 | 100 |
| $N$ | 10-18 | Electrical gear B | 1-65535 | 100 |
| $N$ | 10-19 | Positioning for encoder position | -32767-2400 | 0 |
| $N$ | 10-20 | Error range for encoder position reached | 0-65535 pulses | 10 |
| $N$ | 10-21 | Filter time (PG2) | 0.000-65.535 sec. | 0.100 |
| $N$ | 10-24 | FOC \& TQC function control | bit0: ASR control at sensorless torque ( 0 : use Pl as ASR; 1: use P as ASR) <br> bit11: Activate DC braking when executing zero torque command (0: ON; 1: OFF) <br> bit12: FOC Sensorless mode, cross zero means speed goes from negative to positive or reverse direction ( 0 : determined by stator frequency; 1 : determined by speed command) <br> bit15: Direction control at open loop status ( 0 : Switch ON direction control; 1: Switch OFF direction control) | 0 |
| $N$ | 10-25 | FOC bandwidth for speed observer | $20.0-100.0 \mathrm{~Hz}$ | 40.0 |
| , | 10-26 | FOC minimum stator frequency | 0.0-10.0\%fN | 2.0 |
| N | 10-27 | FOC low-pass filter time constant | 1-1000ms | 50 |
| v | 10-28 | FOC gain for excitation current rise time | 33-100\%Tr | 100 |
|  | 10-29 | Top limit of frequency deviation | 0.00-200.00Hz | 20.00 |

Chapter 11 Summary of Parameter Settings | C2000

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | 10-30 | Resolver pole pair | 1-50 pole pairs | 1 |
|  | 10-31 | I/F mode, current command | 0-150\% of motor rated current | 40 |
|  | 10-32 | PM FOC sensorless speed estimator bandwidth | 0.00-600.00Hz | 5.00 |
|  | 10-34 | PM sensorless speed estimator <br> low-pass filter gain | 0.00-655.35 | 1.00 |
|  | 10-35 | AMR (Kp) gain | 0.00-3.00 | 1.00 |
|  | 10-36 | AMR (Ki) gain | 0.00-3.00 | 0.20 |
|  | 10-37 | PM sensorless control word | 0000-FFFFh | 0000 |
|  | 10-39 | Frequency point to switch from I/F mode to PM sensorless mode | 0.00-599.00Hz | 20.00 |
|  | 10-40 | Frequency point to switch from PM sensorless mode to V/F mode | 0.00-599.00Hz | 20.00 |
|  | 10-41 | I/F mode, Id current low pass-filter time | 0.0-6.0 sec. | 0.2 |
|  | 10-42 | Initial angle detection pulse value | 0.0-3.0 | 1.0 |
|  | 10-43 | PG card version | 0-655.35 | Read only |
|  | 10-49 | Zero voltage time during start-up | 0.000-60.000 sec. | 0.000 |
|  | 10-50 | Reverse angle limit (Electrical angle) | 0.00-30.00 degree | 10.00 |
|  | 10-51 | Injection frequency | 0-1200Hz | 500 |
|  | 10-52 | Injection magnitude | 0.0-200.0V <br> 230V Series: $0.0-100.0 \mathrm{~V}$ <br> 460V Series: 0.0-200.0V <br> 575V Series: 0.0-200.0V <br> 690V Series: 0.0-200.0V | $\begin{aligned} & 15.0 \\ & 30.0 \\ & 30.0 \\ & 30.0 \end{aligned}$ |
|  | 10-53 | PM initial rotor position detection method | 0: Disable <br> 1: Internal $1 / 4$ rated current attracting the rotor to zero degrees <br> 2: High frequency injection <br> 3: Pulse injection | 0 |

## 11 Advanced Parameters

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | 11-00 | System control | bit0: Auto-tuning for ASR and APR <br> bit1: Inertia estimate (only in FOCPG mode) <br> bit2: Zero servo <br> bit6: 0 Hz linear-cross <br> bit7: Save or do not save the frequency <br> bit8: Maximum speed for point to point position control | 0000h |
|  | 11-01 | Per unit of system inertia | 1-65535 (256 = 1PU) | 256 |
| $N$ | 11-02 | ASR1 / ASR2 switch frequency | $5.00-599.00 \mathrm{~Hz}$ | 7.00 |
| N | 11-03 | ASR1 low-speed bandwidth | $1-40 \mathrm{~Hz}$ (IM) / 1~100Hz (PM) | 10 |
| $N$ | 11-04 | ASR2 high-speed bandwidth | $1-40 \mathrm{~Hz}$ (IM) / 1~100Hz (PM) | 10 |
| $N$ | 11-05 | Zero-speed bandwidth | $1-40 \mathrm{~Hz}$ (IM) / 1~100Hz (PM) | 10 |
| $N$ | 11-06 | ASR 1 gain | $0-40 \mathrm{~Hz}$ (IM) / 1~100Hz (PM) | 10 |
| $N$ | 11-07 | ASR 1 integral time | 0.000-10.000 sec. | 0.100 |
| N | 11-08 | ASR 2 gain | $0-40 \mathrm{~Hz}$ (IM) / 0~100Hz (PM) | 10 |
| $N$ | 11-09 | ASR 2 integral time | 0.000-10.000 sec. | 0.100 |
| $N$ | 11-10 | ASR gain of zero speed | $0-40 \mathrm{~Hz}$ (IM) / 0~100Hz (PM) | 10 |
| N | 11-11 | ASR1 integral time of zero speed | 0.000-10.000 sec. | 0.100 |
| $N$ | 11-12 | Gain for ASR speed feed forward | 0-150\% | 0 |
| $N$ | 11-13 | PDFF gain value | 0-200\% | 30 |
| $N$ | 11-14 | ASR output Low-pass filter time | $0.000-0.350 \mathrm{sec}$. | 0.008 |
| $N$ | 11-15 | Notch filter depth | 0-20db | 0 |
| $N$ | 11-16 | Notch filter frequency | $0.00-200.00 \mathrm{~Hz}$ | 0.00 |
| $N$ | 11-17 | Forward motor torque limit Quadrant I | 0-500\% | 500 |
| $N$ | 11-18 | Forward regenerative torque limit Quadrant II | 0-500\% | 500 |
| $N$ | 11-19 | Reverse motor torque limit Quadrant III | 0-500\% | 500 |
| $N$ | 11-20 | Reverse regenerative torque limit Quadrant IV | 0-500\% | 500 |
| $N$ | 11-21 | Flux weakening curve for motor 1 gain value | 0-200\% | 90 |
| $N$ | 11-22 | Flux weakening curve for motor 2 gain value | 0-200\% | 90 |
| $N$ | 11-23 | Flux weakening area speed response | 0-150\% | 65 |
| N | 11-24 | APR gain | $0.00-40.00 \mathrm{~Hz}$ (IM) / 0-100.00Hz (PM) | 10.00 |

Chapter 11 Summary of Parameter Settings | C2000

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 11-25 | Gain value for the APR feed forward | 0-100 | 30 |
| $N$ | 11-26 | APR curve time | 0.00-655.35 sec. | 3.00 |
| $N$ | 11-27 | Maximum torque command | 0-500\% | 100 |
| $N$ | 11-28 | Torque offset source | 0 : Disable <br> 1: Analog signal input (Pr. 03-00) <br> 2: Pr. 11-29 <br> 3: Controlled by external terminal (Pr. 11-30-11-32) | 0 |
| $N$ | 11-29 | Torque offset setting | -100.0-100.0\% | 0.0 |
| $N$ | 11-30 | High torque compensation | -100.0-100.0\% | 30.0 |
| $N$ | 11-31 | Middle torque compensation | -100.0-100.0\% | 20.0 |
| $N$ | 11-32 | Low torque compensation | -100.0-100.0\% | 10.0 |
| $N$ | 11-33 | Torque command source | 0 : Digital keypad <br> 1 : RS-485 communication (Pr. 11-34) <br> 2: Analog signal input (Pr. 03-00) <br> 3: CANopen <br> 5: Communication extension card | 0 |
| $N$ | 11-34 | Torque command | -100.0-100.0\% (Pr. 11-27 set value $=100 \%$ ) | 0.0 |
| $N$ | 11-35 | Torque command filter time | 0.000-1.000 sec. | 0.000 |
|  | 11-36 | Speed limit selection | 0 : Set by Pr. 11-37 (Forward speed limit) and Pr. <br> 11-38 (Reverse speed limit) <br> 1: Set by Pr. 11-37, Pr. 11-38 and Pr. 00-20 (Source of master frequency command) <br> 2: Set by Pr. 00-20 (Source of master frequency command). | 0 |
| $N$ | 11-37 | Forward speed limit (torque mode) | 0-120\% | 10 |
| $N$ | 11-38 | Reverse speed limit (torque mode) | 0-120\% | 10 |
|  | 11-39 | Zero torque command mode selection | 0 : Torque mode <br> 1: Speed mode | 0 |
| $N$ | 11-40 | Point-to-point position control command source | 0: External terminal <br> 2: RS-485 <br> 3: CANopen <br> 5: Communication card | 0 |
| $N$ | 11-42 | System control flag | 0000-FFFFh | 0000h |
| $N$ | 11-43 | Point- to-point position control maximum ferquency | $0.00-599.00 \mathrm{~Hz}$ | 10.00 |
| $N$ | 11-44 | Point-to-point position control acceleration time | 0.00-655.35 sec. | 1.00 |

Chapter 11 Summary of Parameter Settings | C2000

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
| $11-45$ | Point-to-point position control <br> deceleration time | $0.00-655.35 \mathrm{sec}$. | 3.00 |
| $11-46$ | Torque output filter time | $0.000-65.535 \mathrm{sec}$. | 0.050 |

## 13 Application Parameters by Industry

| Pr. | Parameter Name | Setting Range | Default |
| :---: | :--- | :--- | :---: |
|  |  | 0: Disable |  |
|  |  | 1: User-defined Parameter |  |
| $13-00$ | Industry Parameters combination | 2: Compressor (IM) |  |
|  |  | 3: Fan | 0 |
|  |  | 4: Pump |  |
|  |  | 10: Air Handling Unit, AHU |  |

14 Extension Card Parameter

|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| $N$ | 14-00 | Extension card Input terminal selection (Al10) | 0: Disable <br> 1: Frequency command | 0 |
| $N$ | 14-01 | Extension card Input terminal selection (Al11) | 2: Torque command (torque limit under speed mode) <br> 3: Torque compensation command | 0 |
| N |  |  | 4: PID target value <br> 5: PID feedback signal <br> 6: Thermistor (PTC / KTY-84) input value <br> 7: Positive torque limit <br> 8: Negative torque limit <br> 9: Regenerative torque limit <br> 10: Positive/ negative torque limit <br> 11: PT100 thermistor input value <br> 13: PID compensation amount |  |
| $N$ | 14-08 | Analog input filter time (Al10) | 0.00-20.00 sec. | 0.01 |
| N | 14-09 | Analog input filter time (AI11) | 0.00-20.00 sec. | 0.01 |
| $N$ | 14-10 | Analog input $4-20 \mathrm{~mA}$ signal loss selection (AI10) | 0: Disable <br> 1: Continue operation at the last frequency <br> 2: Decelerate to 0 Hz <br> 3: Stop immediately and display ACE | 0 |
| $N$ | 14-11 | Analog input 4-20mA signal loss selection (Al11) |  | 0 |
| $N$ | 14-12 | Extension card output terminal selection (AO10) | 0 : Output frequency $(\mathrm{Hz})$ <br> 1: Frequency command (Hz) <br> 2: Motor speed (Hz) <br> 3: Output current (rms) <br> 4: Output voltage <br> 5: DC BUS voltage <br> 6: Power factor <br> 7: Power <br> 8: Torque <br> 9: AVI <br> 10: ACI <br> 12: q-axis current (lq) <br> 13: q-axis feedback value (lq) <br> 14: d-axis current (Id) <br> 15: d-axis feedback value (Id) <br> 18: Torque command <br> 19: PG2 frequency command <br> 20: CANopen analog output <br> 21: RS-485 analog output | 0 |
| $N$ | 14-13 | Extension card output terminal selection (AO11) |  | 0 |
|  |  |  |  |  |


|  | Pr. | Parameter Name | Setting Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 22: Communication card analog output <br> 23: Constant voltage output <br> 25: CANopen and RS-485 analog output |  |
| $N$ | 14-14 | Analog output 1 gain output (AO10) | 0.0-500.0\% | 100.0 |
| $N$ | 14-15 | Analog output 1 gain output (AO11) | 0.0-500.0\% | 100.0 |
| $N$ | 14-16 | Analog output 1 in REV direction (AO10) | 0 : Absolute value of output voltage | 0 |
| $N$ | 14-17 | Analog output 1 in REV direction (AO11) | 2: Reverse output 5~0V; Forward output 5-10V | 0 |
| $N$ | 14-18 | Extension card input selection (Al10) | 0: 0-10V (AVI10) <br> 1: $0-20 \mathrm{~mA}$ (ACl10) <br> 2: $4-20 \mathrm{~mA}$ (ACI10) | 0 |
| $N$ | 14-19 | Extension card input selection <br> (Al11) | 0: 0-10V (AVI11) <br> 1: $0-20 \mathrm{~mA}$ (ACl11) <br> 2: $4-20 \mathrm{~mA}$ (ACI11) | 0 |
|  | 14-20 | AO10 DC output setting level | 0.00-100.00 \% | 0.00 |
|  | 14-21 | AO11 DC output setting level | 0.00-100.00 \% | 0.00 |
| $N$ | 14-22 | AO10 filter output time | 0.00-20.00 sec. | 0.01 |
| $N$ | 14-23 | AO11 filter output time | 0.00-20.00 sec. | 0.01 |
| $N$ | 14-36 | AO10 output selection | $0: 0-10 \mathrm{~V}$ | 0 |
| $N$ | 14-37 | AO11 output selection | 2: 4-20mA | 0 |

[The page intentionally left blank]

# Chapter 12 Description of Parameter Settings 

## 12-1 Description of Parameter Settings <br> 00 Drive Parameters <br> $N$ You can set this parameter during operation.

78-7 Identity Code of the AC Motor Drive
Default: \#.\#

Settings Read Only


Default: \#.\#

## Settings Read Only

1al Pr. 00-00 displays the identity code of the AC motor drive. Use the following specification table to check if Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code of the AC motor drive (Pr. 00-00).

1 The default is the rated current for normal load. Set Pr.00-16 to 1 to display the rated current for heavy load.

| 230V Series |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | A |  |  | B |  |  |  |  |  |  |
| kW | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| HP | 1.0 | 2.0 | 3.0 | 5.0 | 7.5 | 10 | 15 | 20 | 25 | 30 |
| Identity code | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
| Rated current for <br> heavy load (A) | 4.8 | 7.1 | 10 | 16 | 24 | 31 | 47 | 62 | 71 | 86 |
| Rated current for <br> normal load (A) | 5 | 8 | 11 | 17 | 25 | 33 | 49 | 65 | 75 | 90 |


| Frame | D |  | E |  |  | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kW | 30 | 37 | 45 | 55 | 75 | 90 |
| HP | 40 | 50 | 60 | 75 | 100 | 125 |
| Identity code | 24 | 26 | 28 | 30 | 32 | 34 |
| Rated current for <br> heavy duty (A) | 114 | 139 | 171 | 204 | 242 | 329 |
| Rated current for <br> normal duty (A) | 120 | 146 | 180 | 215 | 255 | 346 |


| 460V Series |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | A |  |  |  |  |  | B |  |  | C |  |  |
| kW | 0.75 | 1.5 | 2.2 | 3.7 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 |
| HP | 1 | 2 | 3 | 5 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 |
| Identity code | 5 | 7 | 9 | 11 | 93 | 13 | 15 | 17 | 19 | 21 | 23 | 25 |
| Rated current for heavy load (A) | 2.9 | 3.8 | 5.7 | 8.1 | 9.5 | 11 | 17 | 23 | 30 | 36 | 43 | 57 |
| Rated current for normal load (A) | 3.0 | 4.0 | 6.0 | 9.0 | 10.5 | 12 | 18 | 24 | 32 | 38 | 45 | 60 |


| Frame | D0 |  | D |  | E |  | F |  | G |  |  | H |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kW | 37 | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 185 | 220 | 280 | 315 | 355 | 450 |  |
| HP | 50 | 60 | 75 | 100 | 125 | 150 | 175 | 215 | 250 | 300 | 375 | 425 | 475 | 600 |  |
| Identity code | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 55 |  |
| Rated current for <br> heavy load (A) | 69 | 86 | 105 | 143 | 171 | 209 | 247 | 295 | 352 | 437 | 523 | 585 | 649 | 816 |  |
| Rated current for <br> normal load (A) | 73 | 91 | 110 | 150 | 180 | 220 | 260 | 310 | 370 | 460 | 550 | 616 | 683 | 866 |  |


| 575 V Series |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | A |  |  |  | B |  |  |  |
| kW | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 |  |
| HP | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 |  |
| Identity code | 505 | 506 | 507 | 508 | 509 | 510 | 511 |  |
| Rated current for <br> heavy load (A) | 2.1 | 3 | 4.6 | 6.9 | 8.3 | 13 | 16.8 |  |
| Rated current for <br> normal load (A) | 2.5 | 3.6 | 5.5 | 8.2 | 10 | 15.5 | 20 |  |


| 690V Series |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | C |  |  |  | D |  | E |  |  |  | F |  |
| kW | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 200 |
| HP | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 125 | 150 | 175 | 215 | 270 |
| Identity code | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 686 |
| Rated current for heavy load (A) | 14 | 20 | 24 | 30 | 36 | 45 | 54 | 67 | 86 | 104 | 125 | 150 |
| Rated current for normal load (A) | 20 | 24 | 30 | 36 | 45 | 54 | 67 | 86 | 104 | 125 | 150 | 180 |


| Frame | G |  | H |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kW | 250 | 315 | 400 | 450 | 560 | 630 |
| HP | 335 | 425 | 530 | 600 | 745 | 840 |
| Identity code | 687 | 626 | 628 | 629 | 631 | 632 |
| Rated current for <br> heavy load (A) | 180 | 220 | 290 | 310 | 420 | 675 |
| Rated current for <br> normal load (A) | 220 | 290 | 350 | 385 | 465 | 675 |

## 日里 - Parameter Reset

Default: 0
Settings 0: No Function
1: Write protection for parameters
5: Reset kWh display to 0
6: Reset PLC (including CANopen Master Index)
7: Reset CANopen Index (Slave)
9: Reset all parameters to defaults with base frequency at 50 Hz
10: Reset all parameters to defaults with base frequency at 60 Hz
When set to 1, all parameters are read only except Pr. 00-02, Pr. 00-07 and Pr. 00-08. Set Pr. $00-02$ to 0 before changing other parameter settings.
[l] When set to 9 or 10, reset all parameters to defaults. If there is a password set in Pr. 00-08, enter the password set in Pr. 00-07 to reset to default.
[al When set to 5 , kWh displayed value can be reset to 0 even when the drive is operating. Pr. 05-26, Pr. 05-27, Pr. 05-28, Pr. 05-29, and Pr. 05-30 are reset to 0.
[1] When set to 6, clear internal PLC program (includes the related settings of PLC internal CANopen master)
When set to 7, reset the related settings of CANopen slave.
(1) When set to $6,7,9,10$, reboot the motor drive after setting.

## 88-83 <br> Start-up Display Selection

Default: 0
Settings 0: F (Frequency command)
1: H (Output frequency)
2: U (User defined)
3: A (Output current)
This parameter determines the start-up display page. This is the user defined choice display according to the setting in Pr.00-04.

## 5月-54 Content of Multi-function Display (User-defined)

Default: 3

| Settings | 0: Display output current (A) (Unit: Amp) |
| :---: | :---: |
|  | 1: Display counter value (c) (Unit: CNT) |
|  | 2: Display actual output frequency (H.) (Unit: Hz) |
|  | 3: Display DC BUS voltage (v) (Unit: $\mathrm{V}_{\mathrm{DC}}$ ) |
|  | 4: Display output voltage (E) (Unit: $\mathrm{V}_{\mathrm{AC}}$ ) |
|  | 5: Display output power angle (n) (Unit: deg) |
|  | 6: Display output power in kW (P) (Unit: kW) |
|  | 7: Display actual motor speed rpm (r) (Unit: rpm) |
|  | 8: Display estimate output torque \% (t) (Unit: \%) |
|  | 9: Display PG feedback (G) (refer to Pr. 10-00 and Pr. 10-01) (Unit: PLS) |
|  | 10: Display PID feedback (b) (Unit: \%) |
|  | 11: Display AVI in \% (1.) (Unit: \%) |
|  | 12: Display ACI in \% (2.) (Unit: \%) |
|  | 13: Display AUI in \% (3.) (Unit: \%) |
|  | 14: Display the temperature of IGBT (i.) (Unit: ${ }^{\circ} \mathrm{C}$ ) |
|  | 15: Display the temperature of capacitance (c.) (Unit: ${ }^{\circ} \mathrm{C}$ ) |
|  | 16: The status of digital input (ON/OFF), refer to Pr. 02-12 (i) |
|  | 17: The status of digital output (ON/OFF), refer to Pr. 02-18 (o) |
|  | 18: Multi-step speed (S) |
|  | 19: The corresponding CPU pin status of digital input (d) |
|  | 20: The corresponding CPU pin status of digital output (0.) |
|  | 21: Actual motor position (PG1 of PG card) (P.) The maximum value is 32bits display |
|  | 22: Pulse input frequency (PG2 of PG card) (S.) |
|  | 23: Pulse input position (PG2 of PG card) (q.) The maximum value is 32bits display |
|  | 24: Position command tracing error (E.) |
|  | 25: Overload counting (0.00-100.00\%) (o.) (Unit: \%) |
|  | 26: Ground fault GFF (G.) (Unit: \%) |
|  | 27: DC BUS voltage ripple (r.) (Unit: $\mathrm{V}_{\mathrm{DC}}$ ) |
|  | 28: Display PLC register D1043 data (C) |

28: Display PLC register D1043 data (C)

29: Display PM pole section (EMC-PG01U application) (4.)
30 : Display output of user defined (U)
31 : Display Pr. 00-05 user Gain (K)
32: Number of actual motor revolution during operation (PG card plug in and $Z$ phase signal input) (Z.)
33: Motor actual position during operation (when PG card is connected)(q)
34: Operation speed of fan (F.) (Unit: \%)
35: Control Mode display: $0=$ Speed control mode (SPD), $1=$ torque control mode (TQR) (t.)
36: Present operating carrier frequency of drive $(\mathrm{Hz})(\mathrm{J}$.
38: Display drive status (6.) (Refer to Note 7)
39: Display estimated output torque, positive and negative, using Nt-m as unit ( $\mathrm{t}=0.0$ : positive torque; -0.0 : negative torque) (C.)
40: Torque command (L.) (Unit: \%)
41: kWh display (J) (Unit: kWh)
42: PID reference (h.) (Unit: \%)
43: PID offset (o.) (Unit: \%)
44: PID output frequency (b.) (Unit: Hz)
45: Hardware ID
49: Motor temperature (PTC, PT100, KTY84-130)
51: PMSVC torque offset
52: Al10\%
53: Al11\%

## (1) Explanation 1

- When Pr. 10-01 is set to 1000 and Pr. 10-02 is set to 1,2 , the displayed range for PG feedback is between 0-4000.
- When Pr. 10-01 is set to 1000 and $\operatorname{Pr}$. 10-02 is set to $3,4,5$, the displayed range for PG feedback is between 0-1000.
- Home position: If it has $Z$ phase, $Z$ phase will be regarded as home position. Otherwise, home position will be the encoder start up position.
Explanation 2
It can also display negative values when setting analog input bias (Pr. 03-03-03-10).
Example: Assume that AVI input voltage is 0 V , $\operatorname{Pr} .03-03$ is $10.0 \%$ and $\operatorname{Pr} .03-07$ is 4 (Bias serves as the center).
(1] Explanation 3
Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals.
Normally opened contact (N.O.), 0: OFF, 1: ON

| Terminal | MI15 | MI14 | MI13 | MI12 | MI11 | MI10 | MI8 | MI7 | MI6 | MI5 | MI4 | MI3 | MI2 | MI1 | REV | FWD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Status | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |

NOTE MI10-MI15 are the terminals for extension cards (Pr. 02-26-02-31).

- The value is 0000000010000110 in binary and 0086 H in HEX. When Pr. 00-04 is set to 16 or 19, the u page on the keypad displays 0086 H .
- The setting value 16 is ON / OFF status of digital input according to Pr. 02-12 setting, and the setting value 19 is the corresponding CPU pin ON / OFF status of the digital input.
- The FWD / REV action and MI1 (which is set as three-wire) are not affected by Pr. 02-12.
- You can set 16 to monitor the digital input status, and then set 19 to check if the circuit is normal.

Explanation 4
Assume that RY1: Pr. 02-13 is set to 9 (Drive is ready). After the AC motor drive powers on, if there is no other abnormal status, the contact is ON. The display status is shown below.
Normally opened contact (N.O.)

| Terminal | MO20 | MO19 | MO18 | MO17 | MO16 | MO15 | MO14 | MO13 | MO12 | MO11 | MO10 | MO2 | MO1 | Reserved | RY2 | RY1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Status | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

- If Pr. 00-04 is set to 17 or 20 , it displays in hexadecimal " 0001 h " with LED u page is ON in the keypad.
- The setting value 17 is ON / OFF status of digital output according to Pr. 02-18 setting, and the setting value 19 is the corresponding CPU pin ON / OFF status of the digital output.
- You can set 17 to monitor the digital output status, and then set 20 to check if the circuit is normal.

Explanation 5
Setting value 8: $100 \%$ means the motor rated torque.
Motor rated torque $=($ Motor rated power x $60 / 2 \pi) /$ Motor rated rotating speed
【】 Explanation 6
Setting value 25: when displayed value reaches $100.00 \%$, the drive shows "oL" as an overload warning.

Explanation 7
Setting value 38
bit0: The drive is running forward.
bit1: The drive is running backward.
bit2: The drive is ready.
bit3: Errors occurred on the drive.
bit4: The drive is running.
bit5: Warnings occurred on the drive.

## 78-75 Coefficient Gain in Actual Output Frequency

Default: 0
Settings 0.00-160.00
This parameter is to set coefficient gain in actual output frequency. Set Pr. 00-04= 31 to display the calculation result on the screen (calculation = output frequency *Pr. 00-05).

## 58-96 Software Version

Default: Read only
Settings Read only

Default: 0
Settings 0-65535
Display $0-4$ (the number of password attempts allowed)
Ind This parameter allows you to enter your password (which is set in Pr. 00-08) to unlock the parameter protection and to make changes to the parameter.
10] To avoid problems in the future, be sure to write down the password after you set this parameter.
1 Pr. 00-07 and Pr. 00-08 are used to prevent personnel from setting other parameters by accident.
If If you forget the password, clear the password setting by input 9999 and press the ENTER key, then enter 9999 again and press ENTER within 10 seconds. After decoding, all the settings return to default.

1 When setting is under password protection, all the parameters read 0 , except Pr. 00-08.

## 57-18 Parameter Protection Password Setting

Default: 0

| Settings | $0-65535$ |
| ---: | :--- |
|  | 0: No password protection or password entered correctly (Pr. 00-07) |
|  | 1: Password has been set |

1 This parameter is for setting the password protection. Password can be set directly the first time. After you set the password, the value of Pr.00-08 is 1, which means password protection is activated. At this time, if you want to change any of the parameter settings, you must enter the correct password in Pr.00-07 to deactivate the password temporarily, and this would make Pr.00-08 become 0 . After you finish setting the parameters, reboot the motor drive and the password is activated again.
1 Entering the correct password in Pr.00-07 only temporarily deactivates the password. To permanently deactivate password protection, set Pr.00-08 to 0 manually. Otherwise, password protection is always reactivated after you reboot the motor drive.
1 The keypad copy function works normally only when the password protection is deactivated (temporarily or permanently), and password set in Pr. 00-08 cannot be copied to the keypad. So when copying parameters from the keypad to the motor drive, set the password manually again in the motor drive to activate password protection.
Password Decode Flow Chart



## 78-19 <br> Control Mode

Default: 0
Settings 0: Speed mode
1: Point-to-Point position control mode
2: Torque mode
3: Homing mode
1 Determines the control mode of the AC motor drive.

## 75- : ! Speed Control Mode

Default: 0
Settings 0: IMVF (IM V/F control)
1: IMVFPG (IM V/F control+ Encoder)
2: IM/PM SVC (IM/PM space vector control)
3: IMFOCPG (IM FOC + Encoder)
4: PMFOCPG (PM FOC + Encoder)
5: IMFOC Sensorless (IM FOC sensorless)
6: PM Sensorless (PM FOC sensorless)
7: IPM Sensorless (Interior PM FOC sensorless)
1 D. Determines the control method of the AC motor drive:
0 : IM V/F control, you can set the proportion of V/F as required and control multiple motors simultaneously.

1: IM V/F control + Encoder, you can use optional PG card with encoder for the closed-loop speed control.
2: IM/PM space vector control, get the optimal control by auto-tuning the motor parameters.
3: IM FOC + encoder, not only can increase torque, but also can increase the accuracy of the speed control (1:1000).

4: PM FOC + Encoder, not only can increase torque, but also can increase the accuracy of the speed control ( $1: 1000$ ).
5: IM FOC sensorless, IM field oriented sensorless vector control
6: PM FOC sensorless, PM field oriented sensorless vector control
7: Interior PM FOC sensorless, Interior PM field oriented sensorless vector control

There are more detailed explanation of motor adjustment procedure in section 12-2
[1] When Pr. 00-10=0, and you set Pr. 00-11 to 0 , the V/F control diagram is as follows.


When Pr. 00-10=0, and you set Pr. 00-11 to 1, the V/F control + encoder diagram is as follows.

(1) When Pr. 00-10=0, and you set Pr. 00-11 to 2 , the space vector control diagram is as follows: IM Space Vector Control (IMSVC):


PM Space Vector Control (PMSVC):


When Pr. $00-10=0$, and you set Pr. 00-11 to 3 , the IM FOCPG control diagram is as follows:


When Pr. 00-10=0, and you set Pr. 00-11 to 4, the PM FOCPG control diagram is as follows:


1 When Pr. $00-10=0$, and you set Pr. 00-11 to 5 , IMFOC Sensorless control diagram is as follows:


When Pr. $00-10=0$, and you set Pr. 00-11 to 6, PM FOC Sensorless control diagram is as follows:


1 When Pr. 00-10=0, and you set Pr. 00-11 to 7, IPM FOC sensorless control diagram is as follows:


## 

Default: 0
Settings: 0: Relative position
1: Absolute position
Pr. $00-12=0$ is incremental type P2P; Pr. 00-12 $=1$ is absolute type P2P

Setting=0


Setting=1


## 98- 3 Control of Torque Mode

Default: 0
Settings 0: IM TQCPG (IM Torque control + Encoder)
1: PM TQCPG (PM Torque control + Encoder)
2: IM TQC Sensorless (IM Sensorless torque control)
[1] Pr. 00-13=0, IM TQCPG control diagram is as follows:

(1) Pr. 00-13=1, PM TQCPG control diagram is as follows:

(1) Pr. 00-13=2, IM TQC Sensorless control diagram is as follows:


58- I6 Load Selection
Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0 \text { : Normal load } \\
& 1 \text { : Heavy load }
\end{array}
$$

[a] Normal load: over-load ability is $160 \%$ rated output current in 3 seconds ( $120 \%$ rated output current in 1 minute). Refer to Pr. 00-17 for the setting of carrier wave. Refer to Chapter 9 "Specifications" or Pr. 00-01 for the rated current.
Heavy load: over-load ability is $180 \%$ rated output current in 3 seconds. ( $150 \%$ rated output current in 1 minute). Refer to Pr. 00-17 for the setting of carrier wave. Refer to Chapter 9 "Specifications" or Pr. 00-01 for the rated current.
$\square$ Pr.00-01 varies with the setting value for Pr.00-16. The default value and maximum for Pr.06-03 and Pr.06-04 also vary with the setting value of Pr.00-16.
1 In Normal load, the default setting of Pr. 06-03, Pr. 06-04 is $120 \%$, and the maximum is $160 \%$. However, if DC voltage is higher than $700 \mathrm{~V}_{\mathrm{DC}}$ ( 460 V series) or $350 \mathrm{~V}_{\mathrm{DC}}$ ( 230 V series), then the maximum is $145 \%$
In Heavy load, the default setting of Pr. 06-03, Pr. 06-04 is $150 \%$, and the maximum is $180 \%$. However, if DC voltage is higher than 700 V DC ( 460 V series) or $350 \mathrm{~V}_{\mathrm{DC}}$ ( 230 V series), then the maximum is $165 \%$

## 78- ! 7 Carrier Frequency

Default: Table below
Settings 2-15kHz
10 This parameter determines the PWM carrier frequency for the AC motor drive.

| 230 V Series [Normal Load] |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power/ Control mode | VF, VFPG, SVC, IMFOCPG, IMTQCPG |  | PMFOCPG, PMTQCPG |  | PMFOC, IPMFOC |  | IMFOC, IMTQC |  |
|  | Settings | Default | Settings | Default | Settings | Default | Settings | Default |
| $\begin{gathered} \begin{array}{c} 1-15 \mathrm{HP} \\ {[0.75-11 \mathrm{~kW}]} \end{array} \end{gathered}$ | $2-15 \mathrm{kHz}$ | 8 kHz | $4-15 \mathrm{kHz}$ | 8kHz | $4-10 \mathrm{kHz}$ | 8 kHz | $4-14 \mathrm{kHz}$ | 8 kHz |
| $\begin{aligned} & 20-50 \mathrm{HP} \\ & {[15-37 \mathrm{~kW}]} \end{aligned}$ | 2-10kHz | 6 kHz | 4-10kHz | 6kHz | 4-10kHz | 6kHz | 4-10kHz | 6 kHz |
| $\begin{aligned} & 60-125 \mathrm{HP} \\ & {[45-90 \mathrm{~kW}]} \\ & \hline \end{aligned}$ | $2-9 \mathrm{kHz}$ | 4 kHz | 4-9kHz | 4kHz | $4-9 \mathrm{kHz}$ | 4kHz | $4-9 \mathrm{kHz}$ | 4 kHz |


| 230V Series [Heavy Load] |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1-15 \mathrm{HP}$ <br> $[0.75-11 \mathrm{~kW}]$ | $2-15 \mathrm{kHz}$ | 2 kHz | $4-15 \mathrm{kHz}$ | 4 kHz | $4-10 \mathrm{kHz}$ | 4 kHz | $4-14 \mathrm{kHz}$ | 4 kHz |
| $20-50 \mathrm{HP}$ <br> $[15-37 \mathrm{~kW}]$ | $2-10 \mathrm{kHz}$ | 2 kHz | $4-10 \mathrm{kHz}$ | 4 kHz | $4-10 \mathrm{kHz}$ | 4 kHz | $4-10 \mathrm{kHz}$ | 4 kHz |
| $60-125 \mathrm{HP}$ <br> $[45-90 \mathrm{~kW}]$ | $2-9 \mathrm{kHz}$ | 2 kHz | $4-9 \mathrm{kHz}$ | 4 kHz | $4-9 \mathrm{kHz}$ | 4 kHz | $4-9 \mathrm{kHz}$ | 4 kHz |


| 460V Series [Normal Load] |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power/ Control mode | VF, VFPG, SVC, IMFOCPG, IMTQCPG |  | PMFOCPG, PMTQCPG |  | PMFOC, IPMFOC |  | IMFOC, IMTQC |  |
|  | Settings | Default | Settings | Default | Settings | Default | Settings | Default |
| $\begin{gathered} 1-15 \mathrm{HP} \\ {[0.75-11 \mathrm{~kW}]} \end{gathered}$ | 2-15kHz | 8kHz | $4-15 \mathrm{kHz}$ | 8kHz | 4-10kHz | 8kHz | $4-14 \mathrm{kHz}$ | 8kHz |
| $\begin{gathered} 20-50 \mathrm{HP} \\ {[15-37 \mathrm{~kW}]} \end{gathered}$ | 2-10kHz | 6kHz | 4-10kHz | 6kHz | 4-10kHz | 6kHz | 4-10kHz | 6kHz |
| $\begin{aligned} & 60-125 \mathrm{HP} \\ & {[45-90 \mathrm{~kW}]} \end{aligned}$ | 2-9kHz | 4kHz | 4-9kHz | 4kHz | 4-9kHz | 4 kHz | 4-9kHz | 4kHz |
| 460V Series [Heavy Load] |  |  |  |  |  |  |  |  |
| $\begin{gathered} 1-15 \mathrm{HP} \\ {[0.75-11 \mathrm{~kW}]} \end{gathered}$ | 2-15kHz | 2kHz | 4-15kHz | 4 kHz | 4-10kHz | 4kHz | 4-14kHz | 4kHz |
| $\begin{gathered} 20-50 \mathrm{HP} \\ {[15-37 \mathrm{~kW}]} \end{gathered}$ | 2-10kHz | 2 kHz | 4-10kHz | 4kHz | 4-10kHz | 4kHz | 4-10kHz | 4kHz |
| $\begin{aligned} & 60-125 \mathrm{HP} \\ & {[45-90 \mathrm{~kW}]} \end{aligned}$ | 2-9kHz | 2kHz | 4-9kHz | 4kHz | 4-9kHz | 4 kHz | 4-9kHz | 4kHz |


|  | 575 V Series [Light/ Normal/ Heavy Load] |  |  | 690V Series [Light/ Normal/ Heavy Load] |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Power/ Control <br> mode | Settings | Default | Settings | Default |  |
| $1-15 \mathrm{HP}$ <br> $[0.75-11 \mathrm{~kW}]$ | $2-15 \mathrm{kHz}$ | 6 kHz | - | - |  |
| $20-600 \mathrm{HP}$ <br> $[15-450 \mathrm{~kW}]$ | - | - | $2-9 \mathrm{kHz}$ | 4 kHz |  |
| 850 HP <br> $[630 \mathrm{~kW}]$ | - | - | $2-9 \mathrm{kHz}$ | 3 kHz |  |


| Carrier Frequency | Acoustic Noise | Electromagnetic Noise or Leakage Current | Heat <br> Dissipation | Current Wave |
| :---: | :---: | :---: | :---: | :---: |
| 2 kHz |  |  |  | $\begin{gathered} W N- \\ \text { WNO } \end{gathered}$ |
| 8 kHz |  |  |  |  |
| 15 kHz |  |  |  |  |

$\square$ From the table, you see that the PWM carrier frequency has significant influences on the electromagnetic noise, the AC motor drive heat dissipation, and the motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency is good to reduce the temperature rise. Although it is quiet operation in the higher carrier frequency, the entire wiring and interference resistance should be considerate.
$1 \square$ When the carrier frequency is higher than the factory setting, it needs to protect by decreasing the carrier frequency. See Pr. 06-55 for the related setting and details.

Default：Read Only
Settings bit0：Control command by PLC force control
bit1：Frequency command by PLC force control
bit2：Position command by PLC force control
bit3：Torque command by PLC force control
Determines if frequency command or control command is locked by PLC
Master Frequency Command（AUTO）Source／Source Selection of the PID Target
Default： 0
Settings 0：Digital keypad
1：RS－485 communication
2：External analog input（Pr．03－00）
3：External UP／DOWN terminal（multi－function input terminal）
4：Pulse input without direction command（Pr．10－16 without direction），use with PG card
5：Pulse input with direction command（Pr．10－16），use with PG card
6：CANopen communication card
8：Communication card（does not include CANopen card）
1 Set the source of the master frequency in AUTO mode．
1 Pr．00－20 and Pr．00－21 are for the settings of frequency source and operation source in AUTO mode．Pr．00－30 and Pr．00－31 are for the settings of frequency source and operation source in HAND mode．You can switch the AUTO／HAND mode with the keypad KPC－CC01（optional）or the multi－function input terminal（MI）to set the master frequency source．
［1］The default for the frequency source or operation source is for AUTO mode．It returns to AUTO mode whenever cycle the power．If you use a multi－function input terminal to switch between AUTO and HAND mode，the highest priority is the multi－function input terminal．When the external terminal is OFF，the drive does not accept any operation signal and cannot execute JOG． When Pr．00－20＝4，the pulse input without direction command has included PG and MI8 input．

## 日昌－！Operation Command（AUTO）Source

Default： 0

> | Settings | 0: Digital keypad |
| :--- | :--- |
|  | 1: External terminals. Keypad STOP disabled. |
|  | 2: RS-485 communication. Keypad STOP disabled. |
|  | 3: CANopen communication card |
|  | 5: Communication card (does not include CANopen card) |

Set the source of the operation frequency in AUTO mode．
［a］When you control the operation command by the keypad KPC－CC01，keys RUN，STOP and JOG （F1）are valid．

## 75－3 Stop Method

Default： 0

| Settings | $0:$ Ramp to stop |
| :--- | :--- |
|  | 1：Coast to stop |

$1 \square$ Determines how the motor is stopped when the AC motor drive receives the STOP command.


## Ramp to Stop and Coast to Stop

1. Ramp to stop: the $A C$ motor drive decelerates to 0 or the minimum output frequency (Pr. 01-07) according to the set deceleration time, and then to stop.
2. Coast to stop: the AC motor drive stops output immediately, and the motor coasts to stop according to the load inertia.

■ Use "ramp to stop" for the safety of personnel, or to prevent material from being wasted in applications where the motor must stop immediately after the drive stops. You must set the deceleration time accordingly.
च If idling is allowed, or the load inertia is large, use "coast to stop". For example, blowers, punching machines and pumps

## 98-2 3 Control of Motor Direction

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Enable forward/ reverse } \\
& \text { 1: Disable reverse } \\
& \text { 2: Disable forward }
\end{array}
$$

Enable the AC motor drives to run in the forward / reverse direction. You can use it to prevent a motor from running in a direction that would cause injury or damage the equipment.

## 5in- Digital Keypad Frequency Command Memory

Default: Read Only
Settings Read only
If the keypad is the frequency command source, when Lv or Fault occurs, the parameter stores the current frequency command.

## 75-35 User-Defined Characteristics

Default: 0
Settings bit0-3: user-defined decimal places 0000b: no decimal place 0001b: one decimal place 0010b: two decimal places 0011b: three decimal places
bit 4-15: user-defined unit
000xh: Hz
001xh: rpm
002xh: \%
003xh: kg
004xh: m/s
005xh: kW
006xh: HP
007xh: ppm
008xh: $1 / \mathrm{m}$
009xh: kg/s
00Axh: kg/m
00Bxh: kg/h
00Cxh: lb/s 00Dxh: lb/m 00Exh: lb/h 00Fxh: ft/s 010xh: ft/m 011xh: m 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 019xh: mWG
01Axh: inWG
01Bxh: ftWG
01Cxh: psi
01Dxh: atm
01Exh: L/s
01Fxh: L/m
020xh: L/h
021xh: m3/s
022xh: m3/h
023xh: GPM
024xh: CFM
xxxxh: Hz
1 bit 0-3: the control frequency F page, user-defined unit (Pr.00-04 = d10, PID feedback value) and the number of decimal places (Pr.00-26) which supports up to three decimal places.
[1]
bit 4-15: the control frequency F page, user-defined unit (Pr.00-04 = d10, PID feedback value) and the displayed units for Pr.00-26.


| Settings | $0:$ Disable |
| :--- | :--- |
|  | $0-65535$ (when Pr. 00-25 set to no decimal place) |
|  | $0.0-6553.5$ (when Pr. $00-25$ set to 1 decimal place) |
|  | $0.00-655.35$ (when Pr. $00-25$ set to 2 decimal places) |
|  | $0.000-65.535$ (when Pr. $00-25$ set to 3 decimal places) |

When Pr. 00-26 is NOT set to 0 , the user-defined value is enabled. After selecting the displayed unit and number of decimal points with Pr.00-25, the setting value of Pr.00-26 corresponds to Pr.01-00 (Maximum motor operating frequency), and then the motor operation frequency has a linear relationship with the displayed value on the digital keypad.
Example:
When the frequency set in $\operatorname{Pr} .01-00=60.00 \mathrm{~Hz}$, the maximum user-defined value for Pr. 00-26 is $100.0 \%$. This also means $\operatorname{Pr} .00-25$ is set at 0021 h to select $\%$ as the unit.

## NOTE

The drive display is controlled by the Pr. 00-25 setting when Pr. 00-25 is properly set and Pr.00-26 is not 0 .

## 79-27 User-Defined Value

Default: Read only
Settings Read only
1 Pr. 00-27 displays the user-defined value when Pr. 00-26 is not set to 0 .
[1] The user-defined function is valid only when Pr. 00-20 (frequency source) is set to digital keypad or RS-485 communication.

## 日召-29 LOCAL/REMOTE Mode

Default: 0

| Settings | 0: Standard HOA function |
| :---: | :---: |
|  | 1: When switching between local and remote, the drive stops |
|  | 2: When switching between local and remote, the drive runs with REMOTE settings for frequency and operation status |
|  | 3: When switching between local and remote, the drive runs with LOCAL settings for frequency and operation status |
|  | 4: When switching between local and remote, the drive runs with LOCAL setting when switched to Local and runs with REMOTE settings when switched to Remote for frequency and operation status. |

Lad The default of Pr. 00-29 is 0 (standard Hand-Off-Auto function). Set the AUTO frequency and operation source with Pr.00-20 and Pr.00-21. Set the HAND frequency and operation source with Pr.00-30 and Pr.00-31. Select or switch AUTO / HAND mode by using the digital keypad (KPC-CC01) or setting the multi-function input terminal $\mathrm{MI}=41,42$.
1 When you set the external terminal (MI) to 41 and 42 (AUTO / HAND mode), Pr.00-29 = 1,2,3,4 are disabled. The external terminal has the highest command priority, and Pr. 00-29 functions in standard HOA mode.

1 When you do not set Pr.00-29 to 0, the Local / Remote function is enabled, and the top right corner of digital keypad KPC-CC01 (optional) displays LOC or REM (the display is available
when KPC-CC01 is installed with firmware version higher than version 1.021). Set the LOCAL frequency and operation source with Pr.00-20 and Pr.00-21. Set the REMOTE frequency and operation source with Pr.00-30 and Pr.00-31. Select or switch LOC / REM mode with the digital keypad KPC-CC01 (optional) or set the multi-function input terminal $\mathrm{MI}=56$. The AUTO key of the digital keypad is for the REMOTE function, and HAND key is for the LOCAL function.
When you set the external terminal (MI) to 56 for LOC / REM mode selection, if you set Pr.00-29 to 0 , then the external terminal function is disabled.
[1] When you set the external terminal (MI) to 56 for LOC / REM mode selection, if Pr.00-29 is not set to 0 , then AUTO / HAND key is disabled, and the external terminal has the highest command priority.

59-3n Master Frequency Command (HAND) Source
Default: 0

| Settings | 0: Digital keypad |
| :--- | :--- |
| 1: RS-485 communication |  |
| 2: External analog input (Pr. 03-00) |  |
| 3: External UP/DOWN terminal (multi-function input terminal) |  |
| 4: Pulse input without direction command (Pr. 10-16 without direction) |  |
| 5: Pulse input with direction command (Pr. 10-16) |  |
| 6: CANopen communication card |  |
| 8: Communication card (does not include CANopen card) |  |

Determines the master frequency source in HAND mode.

### 9.13-3 Operation Command (HAND) Source

Default: 0

| Settings | 0: Digital keypad |
| :--- | :--- |
|  | 1: External terminals. Keypad STOP disabled. |
|  | 2: RS-485 communication. Keypad STOP disabled. |
|  | 3: CANopen communication card |
|  | 5: Communication card (does not include CANopen card) |

$10]$ Set the source of the master frequency in HAND mode.
1 Pr. 00-20 and Pr. 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr. 00-30 and Pr. 00-31 are for the settings of frequency source and operation source in HAND mode. You can switch the AUTO / HAND mode with the keypad KPC-CC01 (optional) or the multi-function input terminal $(\mathrm{MI})$ to set the master frequency source.
[1] The default for the frequency source or operation source is for AUTO mode. It returns to AUTO mode whenever cycle the power. If you use a multi-function input terminal to switch between AUTO and HAND mode, the highest priority is the multi-function input terminal. When the external terminal is OFF, the drive does not accept any operation signal and cannot execute JOG.

## 日雨

Default: 0
Settings 0: Disable STOP key
1: Enable STOP key
This parameter is valid when the digital keypad is not set as the operation source ( $\operatorname{Pr} .00-21 \neq 0$ ). When Pr. $00-21=0$, the STOP key on the digital keypad is not affected by the parameter.

78-48 Homing mode
Default: 0000h


Note: Forward run = clockwise (CW)
Reverse run = counterclockwise (CCW)
X 0: Forward run to home. Set PL forward limit as checkpoint.
1: Reverse run (CCW) to home. Set NL reverse limit (CCWL) as checkpoint.
2: Forward run to home. Set ORG: OFF $\rightarrow$ ON as checkpoint.
3: Reverse to home. Set ORG: OFF $\rightarrow$ ON as checkpoint.
4: Forward run and search for Z-pulse as checkpoint.
5: Reverse run and search for Z-pulse as checkpoint.
6: Forward run to home. Set ORG: ON $\rightarrow$ OFF as checkpoint.
7: Reverse run to home. Set ORG: ON $\rightarrow$ OFF as checkpoint.
8: Define current position as home.
Y Set $X$ to $0,1,2,3,6,7$
0 : reverse run to $Z$ pulse
1: continue forward run to $Z$ pulse
2: Ignore $Z$ pulse
Z When home limit is reached, set $X$ to 2, 3, 4, 5, 6, 7 first.
0 : display error
1: reverse the direction
Homing action is controlled by Pr. 00-40, Pr. 00-41, Pr. 00-42 and Pr. 02-01-02-08.

1. When $Y=0, X=0$ or $Y=0, X=2$

Speed

2. When $Y=0, X=1$ or $Y=0, X=3$

3. When $\mathrm{Y}=1, \mathrm{X}=2$

4. When $Y=1, X=3$

Speed

5. When $Y=2, X=2$

Speed

6. When $Y=2, X=3$

7. When $Y=2, X=4$

8. When $Y=2, X=5$


## 8if-y Homing by Frequency 1

Default: 8.00
Settings $0.00-599.00 \mathrm{~Hz}$
Bi - H Homing by Frequency 2
Default: 2.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
Controlled by multi-function input terminal Pr. 02-01-02-08 (44-47).
44: Reverse direction homing (NL)
45: Forward direction homing (PL)
46: Homing (ORG)
47: Homing function enabled
(1) If the drive is not controlled by CAN or PLC, when setting Pr. 00-10 =1 (Control mode $=$ P2P position control), set the external input terminal to 47 (homing function enable) for homing.
When Pr. 00-10 is set to 3 , after homing is complete, you must set control mode (Pr. 00-10 $=1$ ) to execute P2P position control.

## 97-48 Display Filter Time (Current)

Settings $0.001-65.535 \mathrm{sec}$.Minimize the current fluctuation displayed by digital keypad.

N 58-4 Display Filter Time (Keypad)
Default: 0.100
Settings $0.001-65.535 \mathrm{sec}$.Minimize the display value fluctuation displayed by digital keypad.
日是-5 Software Version (Date)
Default: \#\#\#\#
Settings Read only
1 Displays the current drive software version by date.

## 9: 9 Maximum Operation Frequency

Default: 60.00 / 50.00
Settings $00.00-599.00 \mathrm{~Hz}$
1 Determines the AC motor drive's maximum operation frequency range. This setting corresponds to the maximum value for the analog input frequency setting signal ( $0-+10 \mathrm{~V}, 4-20 \mathrm{~mA}$, $0-20 \mathrm{~mA}, \pm 10 \mathrm{~V}$ ).
@l In normal load mode:

- VF, SVC, VFPG, FOCPG: 0-599 Hz
- FOC sensorless (IM/PM): 0-300H z/ 500 Hz
[a] In heave load mode:
- Output range: $0-300 \mathrm{~Hz}$

I: - $\boldsymbol{1}$ : Output Frequency of Motor 1 (base frequency and motor rated frequency)
15 - 3 O Output Frequency of Motor 2 ( base frequency and motor rated frequency )
Default: 60.00 / 50.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
(1) Set the value according to the motor's rated frequency from the motor's nameplate. If the motor's rated frequency is 60 Hz , set the value to 60 Hz . If the motor's rated frequency is 50 Hz , set the value to 50 Hz .

5: - 9 Output Voltage of Motor 1 (base frequency and motor rated frequency)
if $: 36$ Output Voltage of Motor 2 ( base frequency and motor rated frequency )
Default:
200.0 / 400.0 / 575.0 / 660.0

Settings 230 V series: $0.0-255.0 \mathrm{~V}$
460V series: $0.0-510.0 \mathrm{~V}$
575 V series: $0.0-637.0 \mathrm{~V}$
690 V series: $0.0-765.0 \mathrm{~V}$
Set the value according to the motor's rated voltage from the motor's nameplate. If the motor's rated voltage is 220 V , set the value to 220.0 V . If the motor's rated voltage is 200 V , set the value to 200.0 V .

1 There are a wide variety of motors, but the power system for each country is different. The convenient and economical way to solve this problem is to use an AC motor drive, which can deal with different voltages and frequencies, while supporting the original characteristics and life of the motor.

13: Mid-point Frequency 1 of Motor 1
Default: 3.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

18:
Default:
11.0 / 22.0 / 0.0 / 0.0

Settings 230 V series: $0.0-240.0 \mathrm{~V}$
460 V series: $0.0-480.0 \mathrm{~V}$
575 V series: $0.0-637.0 \mathrm{~V}$
690V series: $0.0-720.0 \mathrm{~V}$
17:37 Mid-point Frequency 1 of Motor 2
Default: 3.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

## 7: 38

Mid-point Voltage 1 of Motor 2
Default:
11.0 / 22.0 / 0.0 / 0.0

Settings 230 V series: $0.0-240.0 \mathrm{~V}$
460 V series: $0.0-480.0 \mathrm{~V}$
575 V series: $0.0-637.0 \mathrm{~V}$
690 V series: $0.0-720.0 \mathrm{~V}$
19 - 5 Mid-point Frequency 2 of Motor 1
Default: 1.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
71-96
Mid-point Voltage 2 of Motor 1

## Default:

$5.0 / 10.0 / 0.0 / 0.0$
Settings 230 V series: $0.0-240.0 \mathrm{~V}$
460 V series: $0.0-480.0 \mathrm{~V}$
575 V series: $0.0-637.0 \mathrm{~V}$
690 V series: $0.0-720.0 \mathrm{~V}$
[7:-39
Mid-point Frequency 2 of Motor 2
Default: 1.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

## 18:49

Mid-point Voltage 2 of Motor 2
Default:
$5.0 / 10.0 / 0.0 / 0.0$
Settings 230 V series: $0.0-240.0 \mathrm{~V}$
460 V series: $0.0-480.0 \mathrm{~V}$
575 V series: $0.0-637.0 \mathrm{~V}$
690 V series: $0.0-720.0 \mathrm{~V}$

| 19 $\mathbf{1 7}$ Min. Output Frequency of Motor 1 | Default: 0.50 |
| :---: | :---: |
| Settings $\quad 0.00-599.00 \mathrm{~Hz}$ |  |

## B: - Min. Output Voltage of Motor 1

## Default:

1.0 / 2.0 / 0.0 / 0.0

Settings 230 V series: $0.0-240.0 \mathrm{~V}$
460 V series: $0.0-480.0 \mathrm{~V}$
575V series: $0.0-637.0 \mathrm{~V}$
690V series: $0.0-720.0 \mathrm{~V}$

## I: $\boldsymbol{f}$ : Min. Output Frequency of Motor 2

Default: 0.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

## Bi -4

Min. Output Voltage of Motor 2
Default:
$1.0 / 2.0$ / 0.0 / 0.0
Settings 230 V series: $0.0-240.0 \mathrm{~V}$
460 V series: $0.0-480.0 \mathrm{~V}$
575V series: $0.0-637.0 \mathrm{~V}$
690 V series: $0.0-720.0 \mathrm{~V}$
$\square$ The V/F curve setting is usually set by the motor's allowable loading characteristics. If the loading characteristics exceeds the loading limit of the motor, you must pay more attention to the heat dissipation, dynamic balance, and bearing lubrication of the motor.
[1] If the voltage is too high when the motor is at low frequencies, it may cause motor damage, overheating, and may trigger stalling or over-current protection. To prevent motor damage or motor fault, be careful when you set the voltage.
11 Pr. 01-35 to Pr. 01-42 is the V/F curve for the motor 2. When multi-function input terminals Pr. 02-01-02-08 and Pr. 02-26-Pr. 02-31 are set to 14 and enabled, the AC motor drive will act as the 2nd V/F curve.
The diagram below shows the V/F curve for motor 1. You can also find the V/F curve for motor 2 from the same diagram.


V/F Curve

## Chapter 12 Description of Parameter Settings | C2000

Common settings for the V/F curve:
(1) General purpose

| Motor spec. 60Hz |  |  | Motor spec. 50 Hz |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{220}$ |  |  | V220 |  |  |
|  | Pr. | Setting |  | Pr. | Setting |
|  | 01-00 | 60.0 |  | 01-00 | 50.0 |
|  | 01-01 | 60.0 |  | 01-01 | 50.0 |
|  | 01-02 | 220.0 |  | 01-02 | 220.0 |
|  | $\begin{aligned} & \text { 01-03 } \\ & 01-05 \end{aligned}$ | 1.50 | , | $\begin{aligned} & \hline 01-03 \\ & 01-05 \end{aligned}$ | 1.30 |
|  | $\begin{aligned} & \hline 01-04 \\ & 01-06 \end{aligned}$ | 10.0 | 10 | $\begin{aligned} & \hline 01-04 \\ & 01-06 \end{aligned}$ | 10.0 |
| 1.5 60.0 | 01-07 | 1.50 | 1.3 50.0 ${ }^{\text {F }}$ | 01-07 | 1.30 |
|  | 01-08 | 10.0 |  | 01-08 | 10.0 |

(2) For fan and hydraulic machinery

| Motor spec. 60Hz |  |  |
| :---: | :---: | :---: |
| VA | Pr. | Setting |
| $/$ | 01-00 | 60.0 |
|  | 01-01 | 60.0 |
|  | 01-02 | 220.0 |
|  | $\begin{aligned} & 01-03 \\ & 01-05 \end{aligned}$ | 30.0 |
| 50 | 01-04 |  |
| 10 | 01-06 | 50.0 |
| 1530 F | 01-07 | 1.50 |
| $1.530 \quad 60.0$ | 01-08 | 10.0 |


(3) High starting torque

| Motor spec. 60 Hz |  |  |
| :---: | :---: | :---: |
| $\begin{array}{r} V^{4} \\ 220 \end{array}$ | Pr. | Setting |
|  | 01-00 | 60.0 |
|  | 01-01 | 60.0 |
|  | 01-02 | 220.0 |
|  | $\begin{aligned} & 01-03 \\ & 01-05 \end{aligned}$ | 3.00 |
| 23/ | $\begin{aligned} & 01-04 \\ & 01-06 \end{aligned}$ | 23.0 |
| $18 \xrightarrow{\square} \mathrm{~F}$ | 01-07 | 1.50 |
| 1.5360 .0 | 01-08 | 18.0 |

Motor spec. 50 Hz


## 

Default: 0.50
Settings $0.00-599.00 \mathrm{~Hz}$
1 When the starting frequency is higher than the minimum output frequency, the drives' output is from the starting frequency to the setting frequency. Refer to the following diagram for details.
Fcmd: frequency command
Fstart: start-up frequency (Pr. 01-09)
fstart: actual start-up frequency of drive
Fmin: 4th output frequency setting (Pr. 01-07/ Pr. 01-41)
Flow: output frequency lower limit (Pr. 01-11)
When Fcmd > Fmin and Fcmd < Fstart:
If Flow < Fcmd, drive runs directly by Fcmd.
If Flow $\geq$ Fcmd, drive runs by Fcmd, then rises to Flow according to acceleration time.The output frequency goes directly to 0 when decelerating to Fmin.


## B: ; Output Frequency Upper Limit

Default: 599.00
Settings $0.00-599.00 \mathrm{~Hz}$

## B : : OUtput Frequency Lower Limit

Default: 0.00
Settings $0.00-599.00 \mathrm{~Hz}$
$\square \square$ Use the upper and lower limit output frequency settings to limit the actual output frequency. If the frequency setting is higher than the upper limit (Pr. 01-10), the drive uses the upper limit frequency. If output frequency is lower than lower limit (Pr. 01-11) and frequency setting is higher than minimum frequency (Pr. 01-07), the drive uses the lower limit frequency. Set the upper limit frequency > lower limit frequency (Pr.01-10 setting value must be >Pr.01-11 setting value).The upper output frequency limits the maximum output frequency of the drive. If the frequency setting is higher than Pr.01-10, the Pr. 01-10 setting limits the output frequency.
$\square$ When the drive starts the slip compensation function (Pr.07-27) or PID feedback control, the drive output frequency may exceed frequency command but is still limited by this setting.
[1]
Related parameters: Pr.01-00 Maximum Operation Frequency, and Pr.01-11 Output Frequency Lower Limit

[a] The lower output frequency limits the minimum output frequency of the drive. When the drive frequency command or feedback control frequency is lower than this setting, the lower limit of the frequency limits the drive output frequency.When the drive starts, it operates from the minimum output frequency (Pr. 01-07) and accelerates to the setting frequency. It is not limited by the lower output frequency settings.Use the output frequency upper and lower limit settings to prevent operator misuse, overheating caused by operating at a too low frequency, or damage caused by excessive speed.If the output frequency upper limit setting is 50 Hz and the frequency setting is 60 Hz , the maximum output frequency is 50 Hz .
! If the output frequency lower limit setting is 10 Hz and the minimum operation frequency setting (Pr. 01-07) is 1.5 Hz , the drive operates at 10 Hz when the frequency command is higher than $\operatorname{Pr}$. 01-07 and less than 10 Hz . If the frequency command is less than Pr. 01-07, the drive stays in ready status with no output.
[1] If the frequency output upper limit is 60 Hz and the frequency setting is also 60 Hz , only the frequency command is limited in 60 Hz . The actual frequency output may exceed 60 Hz if the drive starts the slip compensation function.

## 7:-2; <br> JOG Deceleration Time

Default: 10.00
The default of motor drive with 30HP and above: 60.00 / 60.0
Settings Pr.01-45=0: 0.00-600.00 seconds
Pr.01-45=1: 0.00-6000.0 seconds
[1] Use the acceleration time to determine the time required for the AC motor drive to accelerate from 0.00 Hz to maximum output frequency (Pr. 01-00).
$\mathbb{1}$ The acceleration and deceleration time are invalid when using Pr. 01-44 Auto-acceleration and Auto-deceleration Setting.Select the acceleration and deceleration time 1, 2, 3, and 4 with the multi-function input terminals settings. The defaults are acceleration and deceleration time 1.
10 With the enabled torque limits and stall prevention functions, the actual acceleration and deceleration time are longer than the above action time.
1 Note that setting the acceleration time too short may trigger the protection function (Pr. 06-03 Over-current Stall Prevention during Acceleration or Pr. 06-01 Over-voltage Stall Prevention).
Note that setting the acceleration time too short may cause motor damage or trigger drive protection due to over-current during acceleration.Note that setting the deceleration time too short may cause motor damage or trigger drive protection due to over-current during deceleration or over-voltage.
1 Use suitable brake resistor (refer to Chapter 07 Optional Accessories) to decelerate in a short time and prevent over-voltage.When you enable Pr. 01-24-Pr.01-27, the actual acceleration and deceleration time are longer than the setting.

[1- ᄅ JOG Frequency
Default: 6.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[1] You can use both the external terminal JOG and F1 key on the optional keypad KPC-CC01 to set the JOG function. When the JOG command is ON, the AC motor drive accelerates from 0 Hz to the JOG frequency (Pr. 01-22). When the JOG command is OFF, the AC motor drive decelerates from the JOG frequency to stop. The JOG acceleration and deceleration time (Pr. 01-20, Pr. 01-21) are the time to accelerate from 0.00 Hz to JOG frequency (Pr. 01-22).
Mou cannot execute the JOG command when the AC motor drive is running. When the JOG command is executing, other operation commands are invalid.

## 18: - 3 First / Fourth Acceleration / Deceleration Frequency

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
$\square$ This function does not require the external terminal switching function; it switches the acceleration and deceleration time automatically by the Pr.01-23 setting. If you set the external terminal, it is based on the external terminal first, and not on Pr.01-23.
$10]$ When using this function, set the S-curve acceleration time to 0 if the fourth acceleration time is set too short.
As the usage of Pr. 01-23, for instance, under Pr. 01-00=80 Hz and Pr. 01-23=40 Hz:
a. If $\operatorname{Pr} .01-02=10 \mathrm{~s}, \operatorname{Pr} .01-18=6 \mathrm{~s}$, then the $0-40 \mathrm{~Hz}$ acceleration time is 3 s and $40-80 \mathrm{~Hz}$ acceleration time is 5 s .
b. If Pr. $01-13=8 \mathrm{~s}, \operatorname{Pr} .01-19=2 \mathrm{~s}$, then $80-40 \mathrm{~Hz}$ deceleration time is 4 s and $40-0 \mathrm{~Hz}$ deceleration time is 1 s .


S-curve Acceleration Begin Time 1
S-curve Acceleration Arrival Time 2
S-curve Deceleration Begin Time 1
S-curve Deceleration Arrival Time 2
Default: 0.20
Settings Pr.01-45=0: 0.00-25.00 seconds
Pr.01-45=1: 0.00-250.0 seconds
It Sets a slow start when the drive begins to accelerate at the start. The acceleration and deceleration curve adjust the S-curve acceleration and deceleration according to the parameter value. When you enable this function, the drive has a different acceleration and deceleration curve based on the acceleration and deceleration time.
[id The S-curve function is disabled when you set the acceleration and deceleration time to 0 .When Pr. 01-12, Pr. 01-14, Pr. 01-16, Pr. 01-18 $\geq$ Pr. 01-24 and Pr. 01-25, the actual acceleration time $=\operatorname{Pr} .01-12$, Pr. 01-14, Pr. 01-16, Pr. 01-18 $+(\operatorname{Pr} .01-24+\operatorname{Pr} .01-25) / 2$When Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 $\geq$ Pr. 01-26 and Pr. 01-27, the actual deceleration time $=$ Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 + (Pr. 01-26 + Pr. 01-27)/2


Skip Frequency 1 (upper limit) Skip Frequency 1 (lower limit)
Skip Frequency 2 (upper limit)
Skip Frequency 2 (lower limit)
Skip Frequency 3 (upper limit)
Skip Frequency 3 (lower limit)
Default: 0.00
Settings $0.00 \sim 599.00 \mathrm{~Hz}$
110 Set the AC motor drive's skip frequency. The drive's frequency setting skips these frequency ranges. However, the frequency output is continuous. There are no limits for these six parameters and you can combine them. Pr.01-28 does not need to be greater than Pr.01-29; Pr.01-30 does not need to be greater than Pr.01-31; Pr.01-32 does not need to be greater than Pr.01-33.
Pr.01-28-01-33 can be set as required. There is no size distinction among these six parameters.These parameters set the skip frequency ranges for the AC motor drive. You can use this function to avoid frequencies that cause mechanical resonance. The skip frequencies are useful when a motor has resonance vibration at a specific frequency bandwidth. Skipping this frequency avoids the vibration. There are three frequency skip zones available.You can set the Frequency command (F) within the range of skip frequencies. Then the output frequency $(\mathrm{H})$ is limited to the lower limit of skip frequency ranges.When accelerating and decelerating, the output frequency still passes the skip frequency ranges.


## 6:-3

Default: 0
Settings 0: Waiting for output
1: Zero-speed operation
2: Minimum frequency (Refer to Pr. 01-07, Pr. 01-41)
1 When the frequency command of drive is less than Fmin (Pr. 01-07 or Pr. 01-41), the drive operates according to the setting value.

0 : the AC motor drive is in waiting mode without voltage output from terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
1: the drive executes the DC brake by Vmin (Pr. 01-08 and Pr. 01-42) in V/F, FOC Sensorless, and SVC modes. And it executes zero-speed operation in VFPG and FOCPG mode.
1 2: the AC motor drive runs using Fmin (Pr. 01-07, Pr. 01-41) and Vmin (Pr. 01-08, Pr. 01-42) in V/F, VFPG, SVC, FOC Sensorless and FOCPG modes.In V/F, VFPG, SVC and FOC Sensorless modes

$\square$ In FOCPG mode, when Pr. 01-34 is set to 2 , the AC motor drive operates according to the setting.


## 7: - 43 V/F Curve Selection

## Default: 0

Settings 0: V/F curve determined by Pr. 01-00-01-08
1: $1.5^{\text {th }}$ V/F curve
2: $2^{\text {nd }}$ V/F curve
3: 60 Hz , voltage saturation in 50 Hz
4: 72 Hz , voltage saturation in 60 Hz
5: 50 Hz , decrease gradually with cube
6: 50 Hz , decrease gradually with square
7: 60 Hz , decrease gradually with cube
8: 60 Hz , decrease gradually with square
9: 50 Hz , medium starting torque
$10: 50 \mathrm{~Hz}$, high starting torque
$11: 60 \mathrm{~Hz}$, medium starting torque
12: 60 Hz , high starting torque
13: 90 Hz , voltage saturation in 60 Hz
14: 120 Hz , voltage saturation in 60 Hz
15: 180 Hz , voltage saturation in 60 Hz
When setting to 0 , refer to Pr. 01-01-01-08 for the motor 1 V/F curve. For motor 2, refer to Pr. 01-35-01-42.
When setting to 1 or 2 , the second and third voltage frequency settings are invalid.
[10] If the load on the motor is a variable torque load (torque is in direct proportion to rotating speed, such as the load of a fan or a pump), the load torque is low at low rotating speed. Decreasing the input voltage to make the magnetic field of the input current smaller and reduce flux loss and iron loss for the motor to increase efficiency.When you set the V/F curve to high power, it has lower torque at low frequency, and the drive is not suitable for rapid acceleration and deceleration. Do NOT use this parameter for rapid acceleration and deceleration.


## [if: -4 Auto-acceleration and Auto-deceleration Setting

Default: 0
Settings 0: Linear acceleration and linear deceleration
1: Auto-acceleration and linear deceleration
2: Linear acceleration and auto-deceleration
3: Auto-acceleration and auto-deceleration
4: Stall prevention by auto-acceleration and auto-deceleration (limited by Pr. 01-12 to Pr. 01-21)
[1] (linear acceleration and linear deceleration): the drive accelerates and decelerates according to the setting for Pr. 01-12-01-19.1 or 2 (auto/linear acceleration and auto/linear deceleration): the drive reduces the mechanical vibration and prevents the complicated auto-tuning processes. It does not stall during acceleration and has no need for a brake resistor. It can also improve operation efficiency and save energy.3 (auto-acceleration and deceleration-decelerate by actual load): the drive auto-detects the load torque and accelerates from the fastest acceleration time and smoothest start current to the setting frequency. When decelerating, the drive auto-detects the load re-generation and stops the motor smoothly with the fastest deceleration time.4 (stall prevention by auto-acceleration and deceleration-refer to acceleration and deceleration time): if the acceleration and deceleration is within a reasonable range, the drive accelerates and decelerates according to Pr.01-12-01-19. If the acceleration and deceleration time is too short, the actual acceleration and deceleration time are greater than the acceleration and deceleration time settings.


A: 1 - 5 Time Unit for Acceleration / Deceleration and S Curve
Default: 0
Settings 0 : Unit 0.01 sec .
1: Unit 0.1 sec .
[1-4 CANopen Quick Stop Time
Default: 1.00
Settings Pr. $01-45=0: 0.00-600.00 \mathrm{sec}$.
Pr. 01-45=1: 0.0-6000.0 sec.Use this to set the time to decelerate from the maximum operation frequency (Pr. 01-00) to 0.00 Hz by CANopen control.

## II : - 9 Regenerative Energy Restriction Control Method

Default: 0

> | Settings | $0:$ Disable |
| :--- | :--- |
|  | 1: Over voltage energy restriction |
|  | 2: Traction energy control (TEC) |

Pr.01-49=0: the drive decelerates or stops based on original setting of deceleration.
[1] Pr.01-49=1: when decelerating, the motor drive is controlled based on Pr. 06-01 setting and the DC BUS regenerative voltage. When the DC BUS voltage reaches Pr. 06-01 * 95\%, the controller is activated. When Pr. 06-01=0, the drive is controlled referring to the working voltage and DC BUS regenerative voltage. The drive decelerates according to the setting of deceleration time, and the actual maximum deceleration time is not less than the deceleration time setting.
Ial The actual deceleration time of the motor is greater than the deceleration time setting due to the over voltage stall prevention action.
When Pr.01-49=2, it can auto-tuning the output frequency and output voltage based on the capability of the drive, increase consumption of the DC BUS energy, so the actual deceleration time meets the parameter setting as possible as it could. When the application cannot reach the expected deceleration time and therefore cause over-voltage error, this setting will be suggested to use.

## 02 Digital Input/Output Parameter

This parameter can be set during operation.
92-9 Two-wire / Three-wire Operation Control
Default: 0
$\begin{array}{cl}\text { Settings } & 0 \text { : Two-wire mode 1, power on for operation control } \\ & \text { 1: Two -wire mode 2, power on for operation control } \\ & \text { 2: Three-wire, power on for operation control }\end{array}$
This parameter sets the configuration of the terminals (Pr.00-21=1 or Pr.00-31=1) which control the operation. There are three different control modes listed in the following table.

| Pr.02-00 | Control Circuits of the External Terminal |  |
| :---: | :---: | :---: |
| Settings: 0 2-wire mode 1 FWD/STOP REVISTOP |  | ```FWD ("OPEN": STOP) ("CLOSE":FWD) REV ("OPEN": STOP) ("CLOSE": REV)``` |
| Settings: 1 2-wire mode 2 RUN/STOP REV/FWD |  | $\begin{aligned} \text { FWD } & \text { ("OPEN": STOP) } \\ & \text { ("CLOSE": RUUN) } \\ \text { REV } & \text { ("OPEN": FWDD) } \\ \text { DCM } & \text { ("CLOSE": REV) } \end{aligned}$ |
| Settings: 2 <br> 3-wire operation control |  | FWD ("CLOSE": RUN) <br> MI1 ("OPEN": STOP) <br> REV/FWD ("OPEN": FWD) <br> DCM <br> ("CLOSE": REV) |


Default: 1

Default: 2
[8] 9 Multi-function Input Command 3 (MI3)
Default: 3

Default: 4


Multi-function Input Command 5 (MI5)
Multi-function Input Command 6 (MI6)
Multi-function Input Command 7 (MI7)
Multi-function Input Command 8 (MI8)
Input terminal of I/O extension card (MI10)
Input terminal of I/O extension card (MI11)
Input terminal of I/O extension card (MI12)

Input terminal of I/O extension card (MI13)

Settings
0 : No function
1: Multi-step speed command $1 /$ multi-step position command 1
2: Multi-step speed command 2 / multi-step position command 2
3: Multi-step speed command $3 /$ multi-step position command 3
4: Multi-step speed command 4 / multi-step position command 4
5: Reset
6: JOG command (By KPC-CC01 or external control)
7: Acceleration / deceleration speed inhibit
8: The $1^{\text {st }}, 2^{\text {nd }}$ acceleration / deceleration time selection
9: The $3^{\text {rd }}, 4^{\text {th }}$ acceleration / deceleration time selection
10: EF Input (Pr. 07-20)
11: Base Block (B.B) input from external
12: Output stop
13: Cancel the setting of auto-acceleration / auto-deceleration time
14: Switch between motor 1 and motor 2
15: Rotating speed command from AVI
16: Rotating speed command from ACl
17: Rotating speed command from AUI
18: Forced to stop (Pr. 07-20)
19: Digital up command
20: Digital down command
21: PID function disabled
22: Clear the counter
23: Input the counter value (MI6)
24: FWD JOG command
25: REV JOG command
26: TQC / FOC mode selection
27: ASR1/ ASR2 selection
28: Emergency stop (EF1)
29: Signal confirmation for Y-connection
30: Signal confirmation for $\Delta$-connection
31: High torque bias (Pr. 11-30)
32: Middle torque bias (Pr. 11-31)
33: Low torque bias (Pr. 11-32)
34: Switch between multi-step position and multi-step speed control
35: Enable single-point position control
36: Enable multi-step position learning function (valid at stop)
37: Enable full position control pulse command input
38: Disable write EEPROM function
39: Torque command direction
40: Force coasting to stop
41: HAND switch
42: AUTO switch
43: Enable resolution selection (Pr. 02-48)
44: Reverse direction homing (NL)
45: Forward direction homing (PL)
46: Homing (ORG)
47: Enable homing function
48: Mechanical gear ratio switch
49: Enable drive
50: Slave dEb action to execute
51: Selection for PLC mode bit0

52: Selection for PLC mode bit1
53: Trigger CANopen quick stop
55: Brake release
56: Local / Remote Selection
[1] This parameter selects the functions for each multi-function terminal.
The terminals of Pr. 02-26~Pr. 02-31 are set as the corresponded parameters of MI10~MI13 when using with optional card EMC-D42A. Pr. 02-30~Pr. 02-31 are virtual terminals.
When being used as a virtual terminal, it needs to change the status ( $0 / 1$ : ON/OFF) of bit8~15 of Pr. 02-12 by digital keypad KPC-CC01 or communication.
[1] If Pr. 02-00 is set to three-wire operation control, terminal MI1 is for the STOP contact. The function set previously for this terminal is automatically invalid.

Summary of function settings
Take the normally opened contact (N.O.) for example, ON: contact is closed, OFF: contact is open


## Chapter 12 Description of Parameter Settings | C2000

| Settings | Functions | Descriptions |
| :---: | :---: | :---: |
| 7 | Acceleration/deceleration Speed Inhibit | When you enable this function, the drive stops acceleration or deceleration immediately. After you disable this function, the AC motor drive starts to accelerate or decelerate from the inhibit point. |
| 8 9 | The $1^{\text {stt }}, 2^{\text {nd }}$ acceleration / deceleration time selection <br> The $3^{\text {rd }}, 4^{\text {th }}$ acceleration $/$ deceleration time selection | You can select the acceleration and deceleration time of the drive with this function, or from the digital status of the terminals; there are four acceleration and deceleration selections. |
| 10 | EF Input (EF: External Fault) | For external fault input. The drive decelerates according to the Pr.07-20 setting, and the keypad shows "EF" (it shows the fault record when an external fault occurs). The drive keeps running until the fault is cleared (terminal status restored) after RESET. |
| 11 | Base block (B.B.) input from external | ON: the output of the drive stops immediately. The motor is in free run and the keypad displays the B.B. signal. Refer to Pr.07-08 for details. |
| 12 | Output Stop (Output pause) | When the switch is ON, output of the drive stops immediately and the motor is in free run status. The drive is in output waiting status until the switch is turned to OFF, and then the drive restarts and runs to the current setting frequency. |
| 13 | Cancel the setting of auto-acceleration / auto-deceleration time | Set Pr.01-44 to one of the 01-04 setting modes before using this function. When this function is enabled, OFF is for auto mode and ON is for linear acceleration / deceleration. |
| 14 | Switch between motor 1 and motor 2 | When the contact of this function is ON: use motor 2 parameters. OFF: use motor 1 parameters. |
| 15 | Rotating speed command form AVI | ON : force the source of the frequency to be AVI. If the rotating speed commands are set to $\mathrm{AVI}, \mathrm{ACl}$ and AUI at the same time, the priority is $\mathrm{AVI}>\mathrm{ACI}>\mathrm{AUI}$. |


| Settings | Functions | Descriptions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | Rotating speed command form ACI | ON : force the source of the frequency to be ACl . If the rotating speed commands are set to AVI, ACI and AVI at the same time, the priority is AVI > ACI.> AUI |  |  |  |
| 17 | Rotating speed command form AUI | ON: force the source of the frequency to be AUI. If the rotating speed commands are set to AVI, ACI and AVI at the same time, the priority is $\mathrm{AVI}>\mathrm{ACI} .>\mathrm{AUI}$ |  |  |  |
| 18 | $\begin{aligned} & \text { Forced to Stop } \\ & \text { (Pr. 07-20) } \end{aligned}$ | ON: the drive ramps to stop according to the Pr.07-20 setting. |  |  |  |
| 19 | Digital up command | ON: the frequency of the drive increases or decreases by one unit. If this function remains ON continuously, the frequency increases or decreases according to Pr.02-09 / Pr.02-10. <br> The Frequency command returns to zero when the drive stops, and the displayed frequency is 0.00 Hz . If you select Pr.11-00, bit $7=1$, the frequency is not saved. |  |  |  |
| 20 | Digital down command |  |  |  |  |
| 21 | PID function disabled | ON : the PID function is disabled. |  |  |  |
| 22 | Clear the counter | ON: the current counter value is cleared and displays 0 . The drive counts up when this function is disabled. |  |  |  |
| 23 | Input the counter value (MI6) | On: the counter value increases by 1. Use the function with Pr.02-19. |  |  |  |
| 24 | FWD JOG command | This function is valid when the source of the operation command is external terminal. ON: the drive executes forward JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete. |  |  |  |
| 25 | REV JOG command | This function is valid when the source of the operation command is external terminal. ON: the drive executes reverse JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete. |  |  |  |
| 26 | TQC / FOC mode selection | ON: TQC mode. <br> OFF: FOC mode. <br> RUN/STOP $\square$ STOP |  |  |  |
|  |  |  |  |  |  |
|  |  | Multi-function input |  |  |  |
|  |  |  | OFF | ON |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  | speed control | torque control |  |
|  |  | Switch timing fro torque/speed control <br> (Pr. 00-10=0/4, multi-function input terminal is set to 26) |  |  |  |
| 27 | ASR1/ ASR2 selection | ON: the speed is adjusted by the ASR 2 setting. OFF: the speed is adjusted by the ASR 1 setting. Refer to Pr.11-02 for details. |  |  |  |

## Chapter 12 Description of Parameter Settings | C2000



| Settings | Functions | Descriptions |
| :---: | :---: | :---: |
| 35 | Enable single-point position control | ON: the AC motor drive executes internal single-point position control according to the setting for Pr.10-19. This function is valid in FOCPG mode only. |
| 36 | Enable multi-step position learning function (valid at stop) | ON/OFF: the drive uses the multi-function inputs 1-4 ON/OFF status to find the corresponding multi-step positions and writes the current motor position into the corresponding multi-step position. |

## Chapter 12 Description of Parameter Settings | C2000



| Settings | Functions | Descriptions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | Forward direction homing (PL) | Signal input for forward direction limit switch (PL). ON: the drive uses the settings in Pr.00-40, 00-41, 00-42 to execute homing in a forward direction (clockwise). <br> Note: PL means input terminal detection is positive-edge triggered or is regarded as N.C. (Normally Closed) |  |  |  |
| 46 | Homing (ORG) | ORG point input. ON: the drive uses the setting in Pr.00-40, 00-41, 00-42 to execute homing. |  |  |  |
| 47 | Enable homing function | Pr. $00-10=3$ (homing mode), if the external terminal $\mathrm{Mlx}=47$ is OFF, the drive ignores the HOME command and executes Point-to-Point position control. |  |  |  |
| 48 | Mechanical gear ratio switch | ON: the mechanical gear ratio switches to the second group. Refer to Pr.10-04-Pr.10-07. |  |  |  |
| 49 | Enable drive | When the drive is enabled, the RUN command is valid. When the drive is disabled, the RUN command is invalid. When the drive is operating, the motor coasts to stop. This function varies with MOx=45. |  |  |  |
| 50 | Slave dEb action to execute | Slave receives dEb message from Master, avoids low voltage of DC BUS, and coast to stop because of Lv error. |  |  |  |
| 51 | Selection for PLC mode | PLC status <br> Disable PLC function (PLC 0) <br> Trigger PLC to operation (PLC 1) <br> Trigger PLC to stop (PLC 2) <br> No function |  | bit1 | bit0 |
|  | bit0 |  |  | 0 | 0 |
| 52 | Selection for PLC mode bit1 |  |  | 0 | 1 |
|  |  |  |  | 1 | 0 |
|  |  |  |  | 1 | 1 |
| 53 | Trigger CANopen quick stop | When this function is enabled under CANopen control, it will change to quick stop. Refer to Chapter 15 CANopen overview for more details. |  |  |  |
| 55 | Brake release | This parameter needs to be used with Pr. 02-56. The main purpose is to make sure if mechanical brake works or not after triggering brake release command. <br> If the action is right, mechanical brake will give signal to MI terminal. <br> Please check time sequence chart for reference. |  |  |  |
| 56 | Local / Remote Selection | Use Pr. 00-29 to select for LOCAL/ REMOTE mode (refer to Pr. 00-29). <br> When Pr. 00-29 is not set to 0 , on the digital keypad KPC-CC01 it will display LOC/ REM status. (It will display on the KPC-CC01 if the firmware version is above version 1.021). |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## M2-93 UP/DOWN Key Mode

Default: 0
Settings 0: UP / DOWN by acceleration / deceleration time
1: UP / DOWN constant speed (Pr. 02-10)

## 

Default: 0.001
Settings $\quad 0.001 \sim 1.000 \mathrm{~Hz} / \mathrm{ms}$
14 Use when the multi-function input terminals are set to 19, 20 (UP / DOWN command). The frequency increases or decreases according to Pr.02-09 and Pr.02-10.
[1] When Pr.11-00 bit $7=1$, the frequency is not saved. The Frequency command returns to zero when the drive stops, and the displayed frequency is 0.00 Hz . At this time, the increasing or decreasing frequency command (F) by using the UP or DOWN key is valid only when the drive is running.
[0] When Pr.02-09 is set to 0 : the increasing or decreasing frequency command ( $F$ ) operates according to the setting for acceleration or deceleration time (refer to Pr.01-12-01-19).


When Pr.02-09 is set to 1 : the increasing / decreasing frequency command ( $F$ ) operates according to the setting of Pr.02-10 ( $0.01-1.00 \mathrm{~Hz} / \mathrm{ms}$ ).


## ME - ! Digital Input Response Time

Default: 0.005
Settings $0.000 \sim 30.000 \mathrm{sec}$.
Use this parameter to set the response time of the digital input terminals FWD, REV, and MI1-MI8.
1 This function is to delay and confirm the digital input terminal signal. The time for delay is also the time for confirmation. The confirmation prevents interference that could cause error in the input to the digital terminals. But in the meanwhile, it delays the response time though confirmation improves accuracy.
When using MI8 as encoder pulse feedback input, this parameter will not be referred.

## 5-3 Digital Input Operation Setting

Default: 0000h
Settings 0000h~FFFFh (0: N.O. ; 1: N.C.)
The setting of this parameter is in hexadecimal.
1 This parameter sets the status of the multi-function input signal ( 0 : normally open; 1 : normally closed) and it is not affected by the status of SINK / SOURCE.
$\square$ bit2-bit15 correspond to MI1-MI14

1 The default for bit 0 (MI1) is FWD terminal, and the default for bit 1 (MI2) is REV terminal. You cannot use this parameter to change the input mode when $\operatorname{Pr} .02-00 \neq 0$.
$11]$ You can change the terminal ON / OFF status through communications.
For example: MI1 is set to 1 (multi-step speed command 1 ) and MI2 is set to 2 (multi-step speed command 2). Then the forward + second step speed command $=1001_{2}=9_{10}$.
As long as Pr.02-12 $=9$ is set through communications, there is no need to wire any multi-function terminal to run forward with the second step speed.

| bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9 | bit8 | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MI14 | MI 13 | MI 12 | MI 11 | MI 10 | $\mathrm{MI9}$ | $\mathrm{MI8}$ | $\mathrm{MI7}$ | $\mathrm{MI6}$ | $\mathrm{MI5}$ | $\mathrm{MI4}$ | MI 3 | $\mathrm{MI2}$ | MI 1 |  |  |

Use Pr.11-42 bit 1 to select whether the FWD / REV terminal is controlled by Pr.02-12 bit 0 and bit 1.

## Be- 3 Multi-function Output 1 (Relay1)

Default: 11

## Me - : Y Multi-function Output 2 (Relay2)

Default: 1

## Me - IG Multi-function Output 3 (MO1)

Default: 66


Multi-function Output 4 (MO2)
Output terminal of I/O extension card (MO10) or (RA10)
Output terminal of I/O extension card (MO11) or (RA11)
Output terminal of I/O extension card (RA12)
Output terminal of I/O extension card (RA13)
Output terminal of I/O extension card (RA14)
Output terminal of I/O extension card (RA15)
Output terminal of I/O extension card (MO16 virtual terminal)
Output terminal of I/O extension card (MO17 virtual terminal)

## Settings

0 : No function
1: Indication during RUN
2: Operation speed reached
3: Desired frequency reached 1 (Pr. 02-22)
4: Desired frequency reached 2 (Pr. 02-24)
5: Zero speed (Frequency command)
6: zero speed including STOP (Frequency command)
7: Over-torque 1 (Pr. 06-06-06-08)
8: Over-torque 2 (Pr. 06-09-06-11)
9: Drive is ready

10: Low voltage warning (Lv) (Pr. 06-00)
11: Malfunction indication
12: Mechanical brake release (Pr. 02-32)
13: Over-heat warning (Pr. 06-15)
14: Software brake signal indication (Pr. 07-00)
15: PID feedback error (Pr.08-13, 08-14)
16: Slip error (oSL)
17: Count value reached, does not return to 0 (Pr. 02-20)
18: Count value reached, returns to 0 (Pr. 02-19)
19: External interrupt B.B. input (Base Block)
20: Warning output
21: Over-voltage
22: Over-current stall prevention
23: Over-voltage stall prevention
24: Operation mode
25: Forward command
26: Reverse command
27: Output when current $\geq$ Pr. 02-33
28: Output when current < Pr. 02-33
29: Output when frequency $\geq \operatorname{Pr}$. 02-34
30: Output when frequency < Pr. 02-34
31: Y-connection for the motor coil
32: $\Delta$-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed including stop (actual output frequency)
35: Error output selection 1 (Pr. 06-23)
36: Error output selection 2 (Pr. 06-24)
37: Error output selection 3 (Pr. 06-25)
38: Error output selection 4 (Pr. 06-26)
39: Position reached (Pr. 10-19)
40: Speed reached (including Stop)
41: Multi-position reached
42: Crane function
43: Actual motor speed higher than Pr. 02-47
44: Low current output (use with Pr. 06-71~Pr. 06-73)
45: UVW output electromagnetic valve switch
46: Master dEb output
47: Closed brake output
49: Homing action complete output
50: Output control for CANopen
51: Analog output control for RS-485 (InnerCOM / MODBUS)
52: Output control for communication cards

65: Output for CANopen and RS-485
66: SO output logic A
67: Analog input signal level reached
68: SO output logic B
70: FAN warning detection output
[1] Use this parameter to set the function of the multi-function terminals.
[1] Pr. 02-36~Pr. 02-41 requires additional extension cards to display the parameters, the choices of optional cards are EMC-D42A and EMC-R6AA.
The optional card EMC-D42A provides 2 output terminals and can be used with Pr. 02-36~02-37.
[al The optional card EMC-R6AA provides 6 output terminals and can be used with Pr. 02-36~02-41.
Summary of function settings
Take the normally open contact (N.O.) for example, ON: contact is closed, OFF: contact is open

| Settings | Functions | Descriptions |
| :---: | :--- | :--- |
| 0 | No Function | Output terminal with no function |
| 1 | Indication during RUN | Active when the drive is not in STOP. |
| 2 | Operation speed <br> reached | Active when output frequency of the drive reaches the setting <br> frequency. |
| 3 | Desired Frequency <br> reached 1 (Pr. 02-22) | Active when the desired frequency (Pr. 02-22) is reached |
| 4 | Desired Frequency <br> reached 2 (Pr. 02-24) | Active when the desired frequency (Pr. 02-24) is reached. |
| 5 | Zero Speed (frequency <br> command) <br> zero speed including <br> STOP (Frequency <br> command) | Active when frequency command =0. (the drive must be at RUN <br> status) |
| 7 | Octive when frequency command =0 or stopped. |  |
| 8 | Over-torque 1 | Active when the drive detects over-torque. Pr.06-07 sets the <br> over-torque detection level (motor 1), and Pr.06-08 sets the <br> over-torque detection time (motor 1). <br> Refer to Pr.06-06-06-08. |
| 9 | Drive is Ready | Active when the drive detects over-torque. Pr.06-10 sets the <br> over-torque detection level (motor 2), and Pr.06-11 sets the <br> over-torque detection time (motor 2). <br> Refer to Pr.06-09-06-11. |
| 10 | Low voltage warning (Lv) | Active when the drive is ON and with no error detected. <br> voltage level) the DC BUS voltage is too low. (refer to Pr. 06-00 low |
| 11 | Malfunction Indication | Active when fault occurs (except Lv stop). |
| 12 | Mechanical Brake <br> Release (Pr. 02-32) | When drive runs after Pr. 02-32, it will be ON. This function should <br> be used with DC brake and it is recommended to use contact "b" <br> (N.C.). |
| 13 | Over-heat warning | Active when IGBT or heat sink overheats; to prevent the drive <br> from shutting down due to over-heating (refer to Pr.06-15). |
| 14 | Software Brake Signal <br> Indication | Active when the soft brake function is ON. (refer to Pr. 07-00) |
| 15 | PID Feedback Error | Active when the PID feedback signal error is detected. |
| 16 | Slip Error (oSL) | Active when the slip error is detected. |
| 17 | Count value reached, <br> does not return to 0 (Pr. <br> 02-20) | When the drive executes external counter, this contact is active if <br> the count value is equal to the setting value for Pr.02-20. <br> This contact is not active when the setting value for Pr.02-20 > <br> Pr.02-19. |
| 6 |  |  |

## Chapter 12 Description of Parameter Settings | C2000

| Settings | Functions | Descriptions |
| :---: | :---: | :---: |
| 18 | Count value reached, returns to 0 (Pr. 02-19) | When the drive executes the external counter, this contact is active if the count value is equal to the setting value for Pr.02-19. |
| 19 | External interrupt B.B. input (Base Block) | Active when external interrupt (B.B.) stop output occurs in the drive. |
| 20 | Warning Output | Active when the warning is detected. |
| 21 | Over-voltage | Active when the over-voltage is detected. |
| 22 | Over-current Stall Prevention | Active when the over-current stall prevention is detected. |
| 23 | Over-voltage Stall prevention | Active when the over-voltage stall prevention is detected. |
| 24 | Operation Mode | Active when the operation command is controlled by external terminal. (Pr. 00-21キ0) |
| 25 | Forward Command | Active when the operation direction is forward. |
| 26 | Reverse Command | Active when the operation direction is reverse. |
| 27 | Output when Current $\geq$ Pr. 02-33 | Active when current is $\geq \mathrm{Pr}$. 02-33. |
| 28 | $\begin{aligned} & \text { Output when Current < } \\ & \text { Pr. 02-33 } \end{aligned}$ | Active when current is < Pr. 02-33 |
| 29 | Output when frequency $\geq$ Pr. 02-34 | Active when frequency is $\geq$ Pr. 02-34. |
| 30 | Output when Frequency < Pr. 02-34 | Active when frequency is < Pr. 02-34. |
| 31 | Y-connection for the Motor Coil | Active when Pr. 05-24=1, when frequency output is lower than Pr. 05-23 minus 2 Hz , and lasts longer than Pr. 05-25. |
| 32 | $\triangle$-connection for the Motor Coil | Active when Pr. 05-24=1, when frequency output is higher than $\operatorname{Pr}$. 05-23 plus 2 Hz , and lasts longer than Pr. 05-25. |
| 33 | Zero Speed (actual output frequency) | Active when the actual output frequency is 0 . (the drive is in RUN mode) |
| 34 | Zero speed including stop (actual output frequency) | Active when the actual output frequency is 0 or stopped. |
| 35 | Error Output Selection 1 (Pr. 06-23) | Active when Pr. 06-23 is ON. |
| 36 | Error Output Selection 2 (Pr. 06-24) | Active when Pr. 06-24 is ON. |
| 37 | Error Output Selection 3 (Pr. 06-25) | Active when Pr. 06-25 is ON. |
| 38 | Error Output Selection 4 (Pr. 06-26) | Active when Pr. 06-26 is ON. |
| 39 | Position reached (Pr. 10-19) | Active when the PG position control point reaches Pr. 10-19. |
| 40 | Speed reached (including speed) | Active when the output frequency reaches frequency setting or stop. |


| Settings | Functions |  |  | Descriptio |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | Multi-position reached | User can set any three multi-function input terminals to 41 . The current position action status of these three terminals will be outputted. Example: if setting Pr. 02-36~02-38 to 41 and only the multi-position of the second point has been done. Then, the current status is RA (ON), RA (OFF) and MO1 (OFF). In this way, their status is 010 . bit0 is RA and so on. |  |  |  |  |
|  |  |  | $\begin{array}{c\|} \hline \text { MO2 } \\ \operatorname{Pr} .02-17=41 \\ \hline \end{array}$ | $\begin{gathered} \mathrm{MO1} \\ \text { Pr.02-16=41 } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { RY2 } \\ \text { Pr. } 02-14=41 \\ \hline \end{array}$ | $\begin{array}{\|c} \text { RY1 } \\ \text { Pr. } 02-13=41 \\ \hline \end{array}$ |
|  |  | Pr. 04-16 | 0 | 0 | 0 | 1 |
|  |  | Pr. 04-18 | 0 | 0 | 1 | 0 |
|  |  | Pr. 04-20 | 0 | 0 | 1 | 1 |
|  |  | Pr. 04-22 | 0 | 1 | 0 | 0 |
|  |  | Pr. 04-24 | 0 | 1 | 0 | 1 |
|  |  | Pr. 04-26 | 0 | 1 | 1 | 0 |
|  |  | Pr. 04-28 | 0 | 1 | 1 | 1 |
|  |  | Pr. 04-30 | 1 | 0 | 0 | 0 |
|  |  | Pr. 04-32 | 1 | 0 | 0 | 1 |
|  |  | Pr. 04-34 | 1 | 0 | 1 | 0 |
|  |  | Pr. 04-36 | 1 | 0 | 1 | 1 |
|  |  | Pr. 04-38 | 1 | 1 | 0 | 0 |
|  |  | Pr. 04-40 | 1 | 1 | 0 | 1 |
|  |  | Pr. 04-42 | 1 | 1 | 1 | 0 |
|  |  | Pr. 04-44 | 1 | 1 | 1 | 1 |
| 42 | Crane Function | Use this function with Pr. 02-32, Pr. 02-33, Pr. 02-34, Pr. 02-57 and Pr. 02-58. <br> The example of the crane application is in the following for your reference. |  |  |  |  |
| 43 | Actual motor speed higher than Pr. 02-47 | Active when motor actual speed is higher than Pr. 02-47. |  |  |  |  |
| 44 | Low Current Output | Use this function with Pr. 06-71-Pr. 06-73 |  |  |  |  |
| 45 | UVW output electromagnetic valve switch | Use this function with external terminal input = 49 (drive enabled) and external terminal output $=45$ (electromagnetic valve enabled), and then the electromagnetic valve is ON or OFF according to the status of the drive. |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| Settings | Functions | Descriptions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 46 | Master dEb output | When dEb rises at the master, MO sends a dEb signal to the slave. Output the message when the master triggers dEb. This ensures that the slave also triggers dEb. Then slave follows the deceleration time of the master to stop simultaneously with the master. |  |  |  |
| 47 | Closed brake output | When drive stops, the corresponding multi-function terminal will be ON if the frequency is less than Pr. 02-34. After it is ON, it will be OFF when brake delay time exceeds Pr. 02-32. |  |  |  |
| 49 | Homing Action Complete output | Output when homing action is complete. |  |  |  |
| 50 | Output control for CANopen | Control multi-function output terminals through CANopen. To control RY2, set Pr. 02-14 = 50 . <br> The mapping table of the CANopen DO is below: |  |  |  |
|  |  | Physical terminal | Setting of related parameters | Attribute | Corresponding Index |
|  |  | RY1 | Pr. 02-13 $=50$ | RW | The bit0 at 2026-41 |
|  |  | RY2 | Pr. 02-14 $=50$ | RW | The bit1 at 2026-41 |
|  |  | MO1 | Pr. 02-16 = 50 | RW | The bit3 at 2026-41 |
|  |  | MO2 | Pr. 02-17 = 50 | RW | The bit4 at 2026-41 |
|  |  | MO10 | Pr. 02-36 $=50$ | RW | The bit5 at 2026-41 |
|  |  | RY10 |  |  | The bit5 at 2026-41 |
|  |  | MO11 | Pr. 02-37 $=50$ | RW | The bit6 at 2026-41 |
|  |  | RY11 |  |  | The bit6 at 2026-41 |
|  |  | RY12 | Pr. 02-38 = 50 | RW | The bit7 at 2026-41 |
|  |  | RY13 | Pr. 02-39 = 50 | RW | The bit8 at 2026-41 |
|  |  | RY14 | Pr. 02-40 = 50 | RW | The bit9 at 2026-41 |
|  |  | RY15 | Pr. 02-41 = 50 | RW | The bit10 at 2026-41 |
|  |  | Refer to section 15-3-5 for more information. |  |  |  |


| Settings | Functions | Descriptions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | Analog output control for RS-485 (InnerCOM / MODBUS) | For RS-485 interface (InnerCOM/ MODBUS) output. |  |  |  |
|  |  | Physical terminal | Setting of related parameters | Attribute | Corresponding Index |
|  |  | RY1 | Pr. 02-13 = 51 | RW | bit0 at 2640H |
|  |  | RY2 | Pr. 02-14 = 51 | RW | bit1 at 2640 H |
|  |  | MO1 | Pr. 02-16 = 51 | RW | bit 3 at 2640 H |
|  |  | MO2 | Pr. 02-17 = 51 | RW | bit4 at 2640 H |
|  |  | MO10 or RA10 | Pr. 02-36 = 51 | RW | bit5 at 2640 H |
|  |  | MO11 or RA11 | Pr. 02-37 $=51$ | RW | bit6 at 2640 H |
|  |  | RA12 | Pr. 02-38 $=51$ | RW | bit7 at 2640 H |
|  |  | RA13 | Pr. 02-39 $=51$ | RW | bit8 at 2640H |
|  |  | RA14 | Pr. 02-40 = 51 | RW | bit9 at 2640 H |
|  |  | RA15 | Pr. 02-41 $=51$ | RW | bit10 at 2640H |
| 52 | Output control for communication cards | For communication output of communication cards (CMC-MOD01, CMC-EIP01, CMC-PN01 and CMC-DN01) |  |  |  |
|  |  | Physical terminal | Setting of related parameters | Attribute | Corresponding Address |
|  |  | RY1 | Pr. 02-13 = 52 | RW | The bit0 of 2640H |
|  |  | RY2 | Pr. 02-14 = 52 | RW | The bit1 of 2640 H |
|  |  | MO1 | Pr. 02-16 = 52 | RW | The bit3 of 2640H |
|  |  | MO2 | Pr. 02-17 = 52 | RW | The bit4 of 2640H |
|  |  | MO10 or <br> RA10 | Pr. 02-36 = 51 | RW | The bit5 of 2640H |
|  |  | MO11 or <br> RA11 | Pr. 02-37 = 51 | RW | The bit6 of 2640H |
|  |  | RA12 | Pr. 02-38 $=51$ | RW | The bit7 of 2640 H |
|  |  | RA13 | Pr. 02-39 = 51 | RW | The bit8 of 2640 H |
|  |  | RA14 | Pr. 02-40 $=51$ | RW | The bit9 of 2640H |
|  |  | RA15 | Pr. 02-41=51 | RW | The bit10 of 2640 H |
| 65 | Output for CANopen and RS-485 | To control output of CANopen \& RS-485. |  |  |  |
| 66 | SO output logic A | Status of drive | Status of safety output |  |  |
|  |  |  | drive N.O. (1 | Ox=66) | N.C. (MOx=68) |
|  |  | Normal | Broken circuit (Open) |  | Short circuit (Close) |
| 68 | SO output logic B | STO |  |  | Broken circuit (Open) |
|  |  | STL1~STL3 | TL3 Short <br>   |  | Broken circuit (Open) |
| 67 | Analog input signal level reached | The multi-function output terminals operate when the analog input level is between the high level and the low level. <br> Pr.03-44: Select one of the analog input channels (AVI, ACI) to be compared. |  |  |  |

## Chapter 12 Description of Parameter Settings | C2000

| Settings | Functions | Descriptions |
| :---: | :--- | :--- |
|  |  | Pr.03-45: The high level for the analog input, default is $50 \%$. <br> Pr.03-46: The low level for the analog input, default is $10 \%$. <br> If analog input > Pr.03-45, the multi-function output terminal <br> operates. If analog input < 03-46, the multi-function output <br> terminal stops output. |
| 70 | Fan warning detection <br> output | The terminal works when the internal fan warning activates |

## Example: Crane Application



It is recommended to be used with Dwell function as shown in the following:

[1] For crane application, when the MO is set to 42 , the setting of Pr. 02-34 must be greater than Pr. 02-58; Pr. 02-33 must be greater than Pr. 02-57.
[1] To directly control drive's AO/DO and read current AI/DI status via the standard MODBUS, by adding the Remote IO function, the corresponding index of $26 x x$ is as following:

|  | bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9 | bit8 | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2600h | MI15 | MI14 | MI13 | MI12 | M111 | M110 | MI8 | MI7 | MI6 | MI5 | MI4 | MI3 | MI2 | MI1 | REV | FWD |
| 2640h | - | - | - | - | - | MO15 | MO14 | MO13 | MO12 | MO11 | MO10 | MO2 | MO1 | - | RY2 | RY1 |
| 2660h | AVI |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2661h | ACl |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2662h | AUI |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 266Ah | Al10 |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 266Bh | Al11 |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 26A0h | AFM1 |  |  | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 26A1h | AFM2 |  |  | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 26AAh | AO10 |  |  | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 26ABh | A011 |  |  | - | - | - | - | - | - | - | - | - | - | - | - | - |

In addition, the Al and DI value can be read directly, while DO and AO must select MODBUS control under the corresponding parameter function. The related parameter definition is as following:

DO

| Terminal | Pr. Setting | Indexes of MODBUS direct control |
| :---: | :---: | :---: |
| RY1 | Pr. 02-13 $=51$ | The bit0 of 2640h |
| RY2 | Pr. 02-14 $=51$ | The bit1 of 2640 h |
| MO1 | Pr. 02-16 $=51$ | The bit3 of 2640 h |
| MO2 | Pr. 02-17 $=51$ | The bit4 of 2640h |
| MO10 | Pr. 02-36 $=51$ | The bit5 of 2640 h |
| MO11 | Pr. 02-37 $=51$ | The bit6 of 2640 h |
| MO12 | Pr. 02-38 $=51$ | The bit7 of 2640 h |
| MO13 | Pr. 02-39 $=51$ | The bit8 of 2640 h |
| MO14 | Pr. 02-40 $=51$ | The bit9 of 2640 h |
| MO15 | Pr. 02-41 $=51$ | The bit10 of 2640 h |

AO

| Terminal | Pr. Setting | Indexes of MODBUS direct control |
| :---: | :---: | :---: |
| AFM1 | Pr. 03-20=21 | The value of 26A0h |
| AFM2 | Pr. 03-23=21 | The value of 26A1h |
| AFM10 | Pr. 14-12=21 | The value of 26AAh |
| AFM11 | Pr. $14-13=21$ | The value of 26ABh |

## BE $]^{3}$ Multi-function Output Setting

Default Setting: 0000h
Settings 0000h~FFFFh (0: N.O.; 1:N.C.)
[1] This parameter is in hexadecimal.
[1 This parameter is set by a bit. If a bit is 1 , the corresponding multi-function output acts in an opposite way.
Example:
If Pr. 02-13=1 and Pr. 02-18=0, Relay 1 is ON when the drive runs and is open when the drive is stopped.
If Pr. 02-13=1 and Pr. 02-18=1, Relay 1 is open when the drive runs and is closed when the drive is stopped.
bit setting

| bit15 | bit14 | bit13 | bit12 | bit11 | bit10 | bit9 | bit8 | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MO20 | MO19 | MO18 | $\mathrm{MO17}$ | MO 16 | MO 5 | MO 14 | MO 13 | MO 12 | MO 11 | MO 10 | MO | MO | Reserved | RY2 | RY1 |

RI
Default Setting: 0
Settings 0~65500
The counter trigger can be set by the multi-function terminal MI6 (set Pr. 02-06 to 23). Upon completion of counting, the specified multi-function output terminal will be activated (Pr. 02-13, Pr. 02-14, Pr. 02-36, Pr. 02-37 is set to 18). Pr. 02-19 cannot be set to 0 .

When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559 .

## II $\boldsymbol{3}$ Preliminary Counting Value Reached (does not return to 0 )

Default Setting: 0
Settings 0~65500
[10] When the counter value counts from 1 and reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr. 02-13, Pr. 02-14, Pr. 02-36, Pr. 02-37 set to 17 (Preliminary Count Value Setting). This parameter can be used for the end of the counting to make the drive runs from the low speed to stop.

(output signal)
The width of trigger signal
Preliminary Counter Value
RY1 Pr.02-13=17 02-13, 02-14, 02-36, 02-37
$02-20=3$
$\begin{array}{lll} & 02-14=17 & \begin{array}{l}02-19=5 \\ \text { Terminal Counter Value } \\ \text { RY2 Pr.02-14=18 }\end{array}\end{array}$

## 

Default: 1
Settings 1~166
It is used to set the signal for the digital output terminals (DFM-DCM) and digital frequency output (pulse X work period=50\%). Output pulse per second $=$ output frequency X Pr. 02-21.

## (1) 2 Desired Frequency Reached 1

Default: 60.00/50.00
Settings $0.00 \sim 599.00 \mathrm{~Hz}$

## [2] 23 The Width of the Desired Frequency Attained 1

Default: 2.00
Settings 0.00~599.00Hz
[2] Desired Frequency Reached 2
Default:: 60.00/50.00
Settings $0.00 \sim 599.00 \mathrm{~Hz}$
RE
Default: 2.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr. 02-13, Pr. 02-14, Pr. 02-36 and Pr. 02-37), this multi-function output terminal will be ON.


## BE-3 Brake Delay Time

Default: 0.000
Settings $\quad 0.000 \sim 65.000 \mathrm{sec}$.
1 When the AC motor drive runs after Pr. 02-32 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be ON. It has to use this function with DC brake.


1 If this parameter is used without DC brake, it will be invalid. Refer to the following operation timing.


## [IJ 3 Output Current Level Setting for Multi-function Output Terminals

Default: 0
Settings 0~100\%
[ad When output current is higher or equal to Pr. 02-33, it will activate multi-function output terminal (Pr. 02-13, Pr. 02-14, Pr. 02-16, and Pr. 02-17 is set to 27).
(1) When output current is lower or equal to Pr. 02-33, it will activate multi-function output terminal (Pr. 02-13, Pr. 02-14, Pr. 02-16, and Pr. 02-17 is set to 28).

## B2-3 Output Boundary for Multi-function Output Terminals

Default: 3.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$ (Motor speed when using PG)
1 When output frequency is higher or equal to Pr. 02-34 (actual output frequency $\mathrm{H} \geq \operatorname{Pr}$. 02-34), it will activate the multi-function terminal (Pr. 02-13, Pr. 02-14, Pr. 02-16, $\operatorname{Pr} .02-17$ is set to 29).
1 When output frequency is lower or equal to Pr. 02-34 (actual output frequency H < Pr. 02-34), it will activate the multi-function terminal (Pr. 02-13, Pr. 02-14, Pr. 02-16, Pr. 02-17 is set to 30).

## 52-35 External Operation Control Selection after Reset and Activate

Default: 0
Settings 0: Disable
1: Drive runs if the run command still exists after reset or re-boots.
Set value as 1 :
[a] Status 1: After the drive is powered on and the external terminal for RUN stays ON, the drive runs.
1 Status 2: After clearing a fault once a fault is detected and the external terminal for RUN stays ON, you can run the drive by pressing the RESET key.

## ME

Default: 0
Settings 0~65535 rpm
© This parameter should be used with the multi-function output terminals (set to 43). It needs to be used with PG card and motor with encoder feedback.
[1] Use this parameter to set the level of motor at zero-speed. When the speed is lower than this setting, the corresponding multi-function output terminal that is set to 43 is ON, as shown below:


## RI-48 Maximum Frequency of Resolution Switch

Default: 60.00
Settings $0.00 \sim 599.00 \mathrm{~Hz}$

## T3 -13 Switch delay time of Maximum output frequency

Default: 0.000
Settings 0~65.000 sec.
Use to improve unstable speed or unstable position due to insufficient analog resolution. Use with the external terminal (setting to 43). After setting this parameter, you also need to adjust the analog output resolution of the controller so as to work with the parameter function.


BI 5 Display the Status of Multi-function Input Terminal
Default: Read only


## 1 For Example:

When Pr.02-50 displays 0034h (hex) (that is, the value is 52 (decimal) and 110100 (binary)), it means that MI1, MI3 and MI4 are ON.

| Weights | $2^{5}$ |  | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ | $0=\mathrm{OFF}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bit | 1 | 1 | 0 | 1 | 0 | 0 |  |  |
|  | 1 | 1 | MI1 | $1=\mathrm{ON}$ |  |  |  |  |

MI2 Settings
MI3 $=$ bit5 $52^{5}+$ bit $4 \times 2^{4}+$ bit $2 \times 2^{2}$
MI4 $=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}$
$\begin{array}{lllll}\text { MI4 } & =32+16+4=52 & \left.\begin{array}{llll}\text { NOTE } & & \\ \text { MI5 } \\ \text { MI6 } & & 2^{4}=16 & 2^{3}=8 \\ 2^{1}=2 & 2^{2}=4 \\ 2^{1}=2 & 2^{0}=1 & & \end{array}\right]\end{array}$

RI 5 : Display the status of multi-function output terminal
Default: Read only
[1] For Example:
When Pr.02-51 displays 000 Bh (hex) (that is, the value is 11 (decimal) and 1011 (binary)), it means that RY1, RY2, and MO1 are ON.


## [2-5 Display the External Output Terminals Used by PLC

Default: Read only
[1] Pr.02-52 shows the external multi-function input terminal that used by PLC.


For Example:
When Pr.02-52 displays 0034h (hex) (that is, the value is 52 (decimal) and 110100 (binary)), it means that MI1, MI3 and MI4 are used by PLC.


## $93-53$

Display the External Multi-function Output Terminals Used by PLC
Default: Read only

1 Pr. 02-53 shows the external multi-function output terminal that used by PLC.


## [10) For Example:

When Pr.02-53 displays 0003h (hex) (that is, the value is 3 (decimal) and 0011 (binary)), it means that RY1 and RY2 are used by PLC.


Default：Read only
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$（Read only）
［1］When you set the source of the Frequency command as the external terminal，if Lv or Fault occurs，the external terminal Frequency command is saved in this parameter．

## 50－56 Release Brake Check

Default： 0.000 sec ．
Settings $\quad 0.000 \sim 65.000 \mathrm{sec}$ ．
（1）The parameter needs to be used with MIx＝55．This is to be set for the time difference of mechanical brake delay time and actual brake operation．


## T15－5 Multi－function output terminal：Function 42：Brake Current Check Point

Default： 0
Settings 0～100\％
日コ一5 Multi－function output terminal（Function 42）：Brake Frequency Check Point
Default： 0.00
Settings $0.00 \sim 599.00 \mathrm{~Hz}$
1 Pr．02－32，Pr．02－33，Pr．02－34，Pr．02－57 and Pr．02－58 can be applied on setting up cranes． （Choose crane action \＃42 to set up multi－function output Pr．02－13，Pr．02－14，Pr．02－16 and Pr． 02－17）
1 When output current of a drive is higher than the setting of Pr．02－33 Pivot Point of the Current $(\geq$ Pr．02－33）and when output frequency is higher than the setting of Pr．02－34 Pivot Point of the Frequency（ $\geq$ Pr．02－34），choose \＃42 to set up Multi－function output Pr．02－13，Pr．02－14，Pr． 02－16 and Pr．02－17 after the delay time set at Pr．02－32．
1 When the Pivot Point of the Current＇s setting Pr．02－57 $=0$ and when the output current of the drive is lower than the setting of Pr．02－57（＜Pr．02－57），or when the output frequency is lower than the setting of $\operatorname{Pr} .02-58$（＜Pr．02－58），then disable the setting \＃42 of the multi－function output Pr．02－13，Pr．02－14，Pr．02－16 and Pr．02－17

10] When Pr. 02-57 = 0, the output current is lower than the setting of Pr. 02-33 Pivot Point of the current (<Pr. 02-33) or when output frequency is lower than the setting of Pr. 02-58(<Pr. 02-58), disable the setting of \#42 of the multi-function output Pr. 02-13, Pr. 02-14, Pr. 02-16 and Pr. 02-17.
10] For crane application, when MOx=42, the setting of Pr. 02-34 must be greater than Pr. 02-58; and Pr. 02-33 must be greater than Pr. 02-57.

## 192-63 Frequency Reached Detection Amplitude

Default: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

## BI 7 IO Card Type

Default: Read only
Settings Read only
1: EMC-BPS01 Card
4: EMC-D611A Card
5: EMC-D42A Card
6: EMC-R6AA Card
11: EMC-A22A

## M2-9!

DFM Output Selection
Default: 0
Settings 0: Use frequency with speed control as DFM output frequency 1: Use frequency with system accel./decel. as DFM output frequency

BI
Default: 0000h
Settings 0000~FFFFh
(1) This parameter is used to select the terminals MI1~MI15 to be internal terminal or external terminal. When the MIx has set as internal terminal, then the corresponding external terminal function will be disabled.
[10] To activate internal terminals via Pr. 02-75 setting.

[10 The setting method is to convert binary number to hexadecimal number for input.
$\square$ For example: if setting MI1, MI3, MI4 to be internal terminals, the setting value should be bit $5 \times 2^{5}+$ bit $4 \times 2^{4}+$ bit $2 \times 2^{2}=1 \mathrm{X} 2^{5}+1 \times 2^{4}+1 \times 2^{2}=32+16+4=52$ as shown in the following. The $52_{2}=32 \mathrm{~h}$, Pr. 02-74=34h.


53-75 Internal Multi-function Output Terminal Selection

Default: 0000h
Settings 0000~FFFFh
凹 This parameter is used to set the internal terminal action via keypad, communication or PLC.

[1] For example, if setting MI1, MI3 and MI4 to be ON, Pr.02-75 should be set to bit5X2 ${ }^{5}+$ bit $4 X 2^{4}+$ bit $2 X 2^{2}=1 \times 2^{5}+1 X 2^{4}+1 X 2^{2}=32+16+4=522=34 \mathrm{~h}$ as shown in the following.

[1] The Local/Remote of Digital operation panel has the lowest priority.
When the built-in PLC has use a MIx, the original function of this MIx can still be triggered via virtual terminal.
1 Pr. 02-74 and Pr. 02-75 can both do running change.
Pr. 02-74 and Pr. 02-75 setting value are both memorized before power off.
[al The virtual terminal trigger can still be selected by the setting of Pr. 02-12 Digital Input Operation Setting (Pr. 02-12=0 N.O. or Pr. 02-12=1 N.C.)

## 03 Analog Input/Output Parameter

This parameter can be set during operation.

## 13-7 Analog Input Selection (AVI)

Default: 1
153-1 Analog Input Selection (ACI)
Default: 0
13-3 Analog Input Selection (AUI)
Default: 0
Settings
0 : No function
1: Frequency command (speed limit under torque control mode)
2: Torque command (torque limit under speed mode)
3: Torque compensation command
4: PID target value
5: PID feedback signal
6: Thermistor (PTC / KTY-84) input value
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive / negative torque limit
11: PT100 thermistor input value
13: PID compensation value
1 When you use analog input as the PID reference target value, you must set Pr. 00-20 to 2 (analog input).
Setting method 1: Pr. 03-00-03-02 set 1 as PID reference target input.
Setting method 2: Pr. 03-00-03-02 set 4 as PID reference target input.
If the setting value 1 and setting value 4 exist at the same time, the AVI input has highest priority to become the PID reference target input value.

When you use analog input as the PID compensation value, you must set Pr. 08-16 to 1 (source of PID compensation value is analog input). You can see the compensation value with Pr. 08-17.When you use the frequency command or TQC speed limit, the corresponding value for $0- \pm 10 \mathrm{~V} /$ $4-20 \mathrm{~mA}$ is 0 -maximum output frequency (Pr. 01-00).When you use torque command or torque limit, the corresponding value for $0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}$ is 0 to maximum output torque (Pr. 11-27).
When you use the torque compensation, the corresponding value for $0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}$ is $0-$ the motor rated torque.
$1 \mathbb{1}$ The analog input AVI / ACI (use with Switch terminal to switch SW2 to 0-10V) supports KTY84. The AUI does not support this function.When you use KTY84, you can only choose either AVI or ACI at the same time. The AVI is prior to ACI .

(1) When the settings for Pr. 03-00-Pr. 03-02 are the same, the AVI input is selected first.

## II 9-9 9 Analog Input Bias (AVI)

Default: 0.0
Settings -100.0-100.0\%
Lal Sets the corresponding AVI voltage for the external analog input 0.

## 75-74 Analog Input Bias (ACI)

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding ACI voltage for the external analog input 0 .

## 193-9 Analog Voltage Input Bias (AUI)

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding AUI voltage for the external analog input 0.
$\square$ The corresponding external input voltage / current signal and the set frequency is $0-10 \mathrm{~V}$ $(4-20 \mathrm{~mA})$ corresponds to 0 -maximum frequency.

## [7] 7 Positive / Negative Bias Mode (AVI) <br>  <br> Positive / Negative Bias Mode (ACI) <br> 53-9 Positive / Negative Bias Mode (AUI)

Default: 0
Settings 0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
In a noisy environment, use negative bias to provide a noise margin. Do NOT use less than 1 V to set the operation frequency.

## In the diagram below: Black line: Curve with no bias. Gray line: curve with bias

1. 


2.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11Analog Input Gain (AVI) $=100 \%$
3.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
4.

5.

6.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr.03-11 Analog Input Gain (AVI)=100\%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11Analog Input Gain (AVI)=100\%
7.


> Pr.03-03=10\%
> Pr.03-07~03-09 (Positive/Negative Bias Mode)
> 0: No bias
> 1: Lower than or equal to bias
> 2: Greater than or equal to bias
> 3: The absolute value of the bias voltage while serving as the center
> 4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
8.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$
9.


> Pr. 03-03=-10\%

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$
10.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
11.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$
12.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode) 0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
13.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$
14.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode) 0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$
15.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
16.


Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$
17.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$
10/9=111.1\%
18.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI)=111.1\% $10 / 9=111.1 \%$
19.


$$
\begin{aligned}
& \text { Pr.03-03=10\% } \\
& \text { Pr.03-07~03-09 (Positive/Negative Bias Mode) } \\
& \text { 0: No bias } \\
& \text { 1: } \text { Lower than or equal to bias } \\
& \text { 2: Greater than or equal to bias } \\
& \text { 3: The absolute value of the bias voltage } \\
& \text { while serving as the center } \\
& \text { 4: Serve bias as the center }
\end{aligned}
$$

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain $(A V I)=111.1 \%$

$$
10 / 9=111.1 \%
$$

20. 



Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain $(\mathrm{AVI})=111.1 \%$ $10 / 9=111.1 \%$
21.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain $(\mathrm{AVI})=111.1 \%$ $10 / 9=111.1 \%$
22.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr03-11Analog Input Gain $(\mathrm{AVI})=111.1 \%$

$$
10 / 9=111.1 \%
$$

23. 



Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$
10/9 = 111.1\%
24.


Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.03-11 Analog Input Gain (AVI) $=100 \%$

$$
10 / 9=111.1 \%
$$

25. 



Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$
26.


Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$
27.


Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
=-11.1\%

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$
28.


Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$
29.


Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%$
30.


Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1} \mathrm{~V} \times 100 \%=90.0 \%=-11.1 \%$
31.


Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$
32.

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal. 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-x \mathrm{~V})} \quad x \mathrm{~V}=\frac{10}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$

$$
=-11.1 \%
$$

Calculate the gain: $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$
33.


Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain (AUI) $=100 \%$
Pr.03-14 Analog Positive Input Gain (AUI) $=100 \%$
34.

35.

36.

37.


Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)

0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain $($ AUI $)=111.1 \%$
$(10 / 9)^{*} 100 \%=111.1 \%$
Pr.03-14 Analog Positive Input Gain (AUI) $=100 \%$
38.

39.


Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias $(A U I)=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-13 Analog Positive Input Gain $(A U I)=111.1 \%$
$(10 / 9) * 100 \%=111.1 \%$
Pr.03-14 Analog Positive Input Gain $(A U I)=90.0 \%$
$(10 / 11) * 100 \%=90.9 \%$
40.


## 疐－㽗

Reverse Setting when Analog Signal Input is Negative Frequency
Default： 0
Settings 0：Negative frequency is not allowed．The digital keypad or external terminal controls the forward and reverse direction．

1：Negative frequency is allowed．Positive frequency＝run in forward direction；negative frequency＝run in reverse direction．The digital keypad or external terminal control cannot switch the running direction．
10. Use Pr．03－10 to enable running in the reverse direction command when a negative frequency （negative bias and gain）is input to the AVI or ACI analog signal input（except AUI）．

1 Condition for negative frequency（reverse）
1． $\operatorname{Pr} .03-10=1$
2． Bias mode $=$ Serve bias as the center
3．Corresponded analog input gain $<0$（negative）；this makes the input frequency negative．
［1］In using the additional analog input function（Pr．03－18＝1），when analog signal is negative after the addition，you can set this parameter to allow or not allow the reverse direction．The result after adding is restricted by the＂Condition for negative frequency（reverse）＂．

Default： 100.0
Settings－500．0－500．0\％
Une Ur．03－03－Pr．03－14 when the frequency command source is the analog voltage or current signal．

Default： 0.01
Settings $0.00-20.00 \mathrm{sec}$ ．

1 There is often noisy in the analog signal from AVI, ACI and AUI, which affects the stability of the control. Use these input delays to filter a noisy analog signal.
1 When the time constant setting is too large, the control is stable but the control response is slow. When the time constant setting is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting based on the control stability or the control response.

## 日 3- : Analog Input Addition Function

## Default: 0

```
Settings 0: Disable (AVI, ACI, AUI)
1: Enable
```

[10] When Pr. 03-18 is set to 1 :
EX1: Pr. 03-00 = Pr. 03-01=1, Frequency command=AVI+ACI
EX2: Pr. 03-00 = Pr. 03-01 = Pr. 03-02 = 1, Frequency command = AVI + ACI + AUI
EX3: Pr. 03-00 = Pr. 03-02=1, Frequency command = AVI+AUI
EX4: Pr. 03-01 = Pr. 03-02=1, Frequency command = ACI+AUI
When Pr. $03-18$ is set to 0 and the analog input setting is the same, the priority for $A V I, A C I$ and AUI are AVI > ACI > AUI.

Frequency

$$
\begin{aligned}
& \text { Fcmd }=\left[(\text { ay } \pm \text { bias })^{*} \text { gain }\right]^{*} \frac{\text { Fmax }(01-00)}{10 \mathrm{~V} \text { or } 16 \mathrm{~mA} \text { or } 20 \mathrm{~mA}} \\
& \text { Fcmd: the corresponding frequency of } 10 \mathrm{~V} \text { or } 20 \mathrm{~mA} \\
& \text { ay : 0~10V, } 4 \sim 20 \mathrm{~mA}, 0 \sim 20 \mathrm{~mA} \\
& \text { bias : Pr. } 03-03, \operatorname{Pr} .03-04, \text { Pr. } 03-05 \\
& \text { gain : Pr. 03-11, Pr. } 03-12, \text { Pr. } 03-13, \text { Pr. } 03-14
\end{aligned}
$$

## [3-19 Signal Loss Selection for Analog Input 4-20 mA

Default: 0
Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to 0 Hz
3: Stop immediately and display ACE
(1) Determines the response when the $4-20 \mathrm{~mA}$ signal is lost, when AVIc (Pr. 03-28 = 2 ) or AClc (Pr. 03-29 = 0).
[ad When Pr. 03-28 is not set to 2 , the voltage input to AVI terminal is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$, and the Pr. 03-19 is invalid.When Pr. $03-29$ is not set to 0 , the voltage input to ACI terminal is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$, and the $\operatorname{Pr}$. $03-19$ is invalid.
When the setting is 1 or 2, the keypad displays the warning code "ANL". It keeps blinking until the ACl signal is recovered.When the motor drive stops, the warning condition does not continue to exist, so the warning disappears.

## 73-3 Multi-function Output 1 (AFM1)

Default: 0
19-3 Multi-function Output 2 (AFM2)
Default: 0
Settings 0-25
Function Chart

| Settings | Functions | Descriptions |
| :---: | :---: | :---: |
| 0 | Output frequency (Hz) | Maximum frequency Pr. 01-00 is regarded as 100\%. |
| 1 | Frequency command (Hz) | Maximum frequency Pr. 01-00 is regarded as 100\%. |
| 2 | Motor speed (Hz) | Maximum frequency Pr. 01-00 is regarded as 100\%. |
| 3 | Output current (rms) | (2.5 X rated current) is regarded as 100\% |
| 4 | Output voltage | ( 2 X rated voltage) is regarded as $100 \%$ |
| 5 | DC BUS Voltage | 450 V (900 V) $=100 \%$ |
| 6 | Power factor | -1.000-1.000=100\% |
| 7 | Power | ( 2 X rated power) is regarded as 100\% |
| 8 | Output torque | Full-load torque is regarded as $100 \%$ |
| 9 | AVI | 0-10V = 0-100\% |
| 10 | ACI | $4-20 \mathrm{~mA}=0-100 \%$ |
| 11 | AUI | -10-10V=0-100\% |
| 12 | Iq current command | (2.5 X rated current) is regarded as 100\% |
| 13 | Iq feedback value | (2.5 X rated current) is regarded as 100\% |
| 14 | Id current command | (2.5 X rated current) is regarded as 100\% |
| 15 | Id feedback value | (2.5 X rated current) is regarded as 100\% |
| 18 | Torque command | Rated torque is regarded as $100 \%$ |
| 19 | PG2 frequency command | Maximum frequency Pr. 01-00 is regarded as 100\%. |
| 20 | CANopen analog output | CANopen communication analog output |
| 21 | RS-485 analog output | For RS-485 (InnerCOM / MODBUS) control output |
| 22 | Communication card analog output | Communication analog output (CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01) |
| 23 | Constant voltage output | Pr. 03-32 and Pr. 03-33 control voltage output level. <br> $0-100 \%$ of Pr. 03-32 corresponds to $0-10 \mathrm{~V}$ of AFM1. |
| 25 | CANopen and RS-485 analog output | For CANopen and InnerCOM control output |

## [3-2 Analog Output Gain 1 (AFM1)

Default: 100.0
N 5-34 Analog Output Gain 2 (AFM2)
Default: 100.0
Settings 0.0-500.0 \%
14 Adjusts the voltage level outputted to the analog meter from the analog signal (Pr.03-20) output terminal AFM of the drive.

日コ一2 Analog Output 1 in REV Direction（AFM1）
Default： 0
＊13－3 Analog Output 2 in REV Direction（AFM2）
Default： 0
Settings 0 ：Absolute value of output voltage
1：Reverse output 0 V ；forward output $0-10 \mathrm{~V}$
2：Reverse output 5－0 V；forward output 5－10 V


Selections for the analog output direction

## 13037AFM2 Output Bias

Default： 0.00
Settings－100．00－100．00 \％
1 Example 1，AFM2 $0-10 \mathrm{~V}$ is set to the output frequency，the output equation is：
10V＊（output frequency／Pr．01－00）＊Pr．03－24＋10V＊Pr．03－27
Example 2，AFM2 $0-20 \mathrm{~mA}$ is set to the output frequency，the output equation is：
20mA＊（output frequency／Pr．01－00）＊Pr．03－24＋20mA＊Pr．03－27
Example 3，AFM2 $4-20 \mathrm{~mA}$ is set to the output frequency，the output equation is：
$4 \mathrm{~mA}+16 \mathrm{~mA}$＊（output frequency／Pr．01－00）＊Pr．03－24＋16mA＊Pr．03－27
© This parameter sets the corresponding voltage for the analog output 0 ．

## 5－3（9VI Terminal Input Selection

Default： 0
Settings 0：0－10V
1： $0-20 \mathrm{~mA}$
2： $4-20 \mathrm{~mA}$

ACI Terminal Input Selection
Default： 0
Settings 0： $4-20 \mathrm{~mA}$
1： $0-10 \mathrm{~V}$
2： $0-20 \mathrm{~mA}$
When you change the input mode，verify that the external terminal switch（SW3，SW4） corresponds to the setting for Pr．03－28－Pr．03－29．

## 19-3 PLC Analog Output Terminal Status

Default: Read only
Settings Monitor the status of PLC analog output terminals
[a] Pr. 03-30 displays the external multi-function output terminal that used by PLC.


$$
\begin{array}{lll}
\text { NOTE } & & \\
2^{7}=128 & 2^{6}=64 & \\
2^{5}=32 & 2^{4}=16 & 2^{3}=8 \\
2^{2}=4 & 2^{1}=2 & 2^{0}=1
\end{array}
$$

(1) For Example:

When Pr. 03-30 displays 0002h (hex), it means that AFM2 is used by PLC.


## 日3-3: AFM2 Output Selection

Default: 0
Settings $0: 0-20 \mathrm{~mA}$ output
1: 4-20mA output
19 3 3 AFM1 DC Output Setting Level
19-3 3 AFM2 DC Output Setting Level
Default: 0.00
Settings 0.00-100.00 \%
[73-35AFM1 Filter Output Time
53-36AFM2 Filter Output Time
Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.
N 5 I
Default: 0
Settings 0:AVI
1: ACI
2: AUI

## 75-45AI Upper Level

Default: 50.00
Settings -100.00-100.00\%

## 13-45AI Lower Level

Default: 10.00
Settings -100.00-100.00 \%
Malti-function output terminal 67 must work with Pr.03-44 to select input channels. When analog input level is higher than Pr.03-45, multi-function output acts; when analog input level is lower than Pr.03-46, multi-function output terminals stop outputting.When setting levels, Al upper level must be higher than Al lower level.

## 13-5 Analog Input Curve Selection

Default: 0
Settings 0: Regular Curve
1: Three-point curve of AVI
2: Three-point curve of ACI
3: Three-point curve of AVI \& ACI
4: Three-point curve of AUI
5: Three-point curve of AVI \& AUI
6: Three-point curve of ACI \& AUI
7: Three-point curve of AVI \& ACI \& AUI
$\square$ Sets the calculation method for analog input.
[1] When Pr. 03-50 $=0$, all analog input signal is calculated by bias and gain.
When Pr. 03-50 = 1, AVI calculates by frequency and voltage / current (Pr. 03-51-03-56), other analog input signal calculates by bias and gain.
When Pr. 03-50 = 2, ACI consulates by frequency and voltage / current (Pr. 03-57-03-62), other analog input signal calculates by bias and gain.
$\ldots$ When Pr. 03-50 = 3, AVI and ACI calculate by frequency and voltage/ current (Pr. 03-51-03-62), other analog input signal calculates by bias and gain.

When Pr. 03-50 = 4, AVI calculates by frequency and voltage / current (Pr. 03-63-03-74), other analog input signal calculates by bias and gain.
When Pr. 03-50 = 5, AVI and AUI calculate by frequency and voltage / current (Pr. 03-51-03-56 and 03-63-03-74), other analog input signal calculates by bias and gain.
1 When Pr. 03-50 = 6, ACI and AVI calculate by frequency and voltage / current (Pr. 03-57-03-74), other analog input signal calculates by bias and gain.
When Pr. 03-50 = 7, all analog input signal calculate by frequency and voltage / current (Pr. 03-51-03-74).

## [3-5! AVI Lowest Point

Default:
0.00 / 0.00 / 4.00

Settings Pr. 03-28 $=0,0.00-10.00 \mathrm{~V}$
Pr. $03-28=1,0.00-20.00 \mathrm{~mA}$
Pr. $03-28=2,0.00-20.00 \mathrm{~mA}$

## 10 5-5 AVI Proportional Lowest Point

Default: 0.00
Settings -100.00-100.00 \%

## 93-53 AVI Mid-Point

## Default:

$5.00 / 10.00 / 12.00$

$$
\begin{aligned}
\text { Settings } & \text { Pr. } 03-28=0,0.00-10.00 \mathrm{~V} \\
& \text { Pr. } 03-28=1,0.00-20.00 \mathrm{~mA} \\
& \text { Pr. } 03-28=2,0.00-20.00 \mathrm{~mA}
\end{aligned}
$$

## 193-54 AVI Proportional Mid-Point

Default: 50.00
Settings -100.00-100.00 \%

## - $83-55$ <br> AVI Highest Point

## Default:

10.00 / 20.00 / 20.00

Settings Pr. $03-28=0,0.00-10.00 \mathrm{~V}$
Pr. $03-28=1,0.00-20.00 \mathrm{~mA}$
Pr. $03-28=2,0.00-20.00 \mathrm{~mA}$

## 53-56AVI Proportional High Point

Default: 100.00
Settings -100.00-100.00 \%
(1) When Pr. $03-28=0, \mathrm{AVI}$ setting is $0-10 \mathrm{~V}$ and the unit is in voltage $(\mathrm{V})$.

When Pr. $03-28 \neq 0$, AVI setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is in current ( mA ).
When you set the analog input AVI to frequency command, 100\% corresponds to Fmax (Pr. 01-00 maximum operation frequency).
[1] The requirement for these three parameters (Pr. 03-51, Pr. 03-53 and Pr. 03-55) is Pr. 03-51 < Pr. $03-53$ < Pr. 03-55. The values for three proportional points (Pr. 03-52, Pr. 03-54 and Pr. 03-56) have no limits. Values between two points are calculated by a linear equation. The ACI and AUI are same as AVI.
1 The output percentage $0 \%$ when the AVI input value is lower than the lowest point setting.
Example: Pr. 03-51 = 1 V ; $\operatorname{Pr}$. $03-52=10 \%$. The output is $0 \%$ when AVI input is lower than 1 V . If the AVI input varies between 1 V and 1.1 V , the drive's output frequency is between $0 \%$ and $10 \%$.




## 19-5 9 ACI Lowest Point

Default:
4.00 / 0.00 / 0.00

Settings Pr. 03-29 $=0,0.00-20.0 \mathrm{~mA}$
Pr. $03-29=1,0.00-10.00 \mathrm{~V}$
Pr. 03-29 = 2, 0.00-20.00 mA

## 53-58 ACI Proportional Low Point

Default: 0.00
Settings -100.00-100.00 \%

## 53-5 9 ACI Mid-Point

Default:
12.00 / 5.00 / 10.00

Settings Pr. 03-29 $=0,0.00-20.00 \mathrm{~mA}$
Pr. $03-29=1,0.00-10.00 \mathrm{~V}$
Pr. 03-29 $=2,0.00-20.00 \mathrm{~mA}$

## 73-6. ACI Proportional Mid-Point

Default: 50.00
Settings -100.00-100.00\%

## 93-6i <br> ACI Highest Point

Default:
20.00 / 10.00 / 20.00

Settings Pr. 03-29 $=0,0.00-20.00 \mathrm{~mA}$
Pr. $03-29=1,0.00-10.00 \mathrm{~V}$
Pr. 03-29 $=2,0.00-20.00 \mathrm{~mA}$

## [3-63 ACI Proportional Highest Point

Default: 100.00
Settings -100.00-100.00\%
(1) When Pr. 03-29 = 1, ACl setting is $0-10 \mathrm{~V}$ and the unit is in voltage $(\mathrm{V})$. When Pr. 03-29 $\neq 1, \mathrm{ACl}$ setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is in current (mA).
When you set the analog input ACI to frequency command, 100\% corresponds to Fmax (Pr. 01-00 maximum operation frequency).
[a] The requirement for these three parameters (Pr. 03-57, Pr. 03-59 and Pr. 03-61) is Pr. 03-57 < Pr. $03-59$ < Pr. 03-61. The values for three proportional points (Pr. 03-58, Pr. 03-60 and Pr. 03-62) have no limits. Values between two points are calculated by a linear equation.
The output percentage is $0 \%$ when the ACI input value is lower than the lowest point setting. Example:

Pr. 03-57 = 2 mA ; Pr. 03-58 = $10 \%$. The output becomes $0 \%$ when AVI input is lower than 2 mA .
If the ACI input varies between 2 mA and 2.1 mA , the drive's output frequency oscillates between $0 \%$ and $10 \%$.

## 5-63 Positive AUI Voltage Lowest Point

Default: 0.00
Settings $0.00-10.00 \mathrm{~V}$
(43-54
Positive AUI Voltage Proportional Lowest Point
Default: 0.00
Settings -100.00-100.00 \%

## 193-65

Positive AUI Voltage Mid-Point
Default: 5.00
Settings $0.00-10.00 \mathrm{~V}$
時-65
Positive AUI Voltage Proportional Mid-Point
Default: 50.00
Settings -100.00-100.00 \%

## 13-6 7 Positive AUI Voltage Highest Point

Default: 10.00
Settings $0.00-10.00 \mathrm{~V}$
53-68 Positive AUI Voltage Proportional Highest Point
Default: 100.00
Settings -100.00-100.00 \%
When you set the positive voltage AUI to the frequency command, 100\% corresponds to Fmax (Pr. 01-00 maximum operation frequency) and the motor runs in the forward direction.
[1] The requirement for these three parameters (Pr. 03-63, Pr. 03-65 and Pr. 03-67) is Pr. 03-63 < Pr. $03-65$ < Pr. 03-67. The values for three proportional points (Pr. 03-64, Pr. 03-66 and Pr. 03-68) have no limits. Values between two points are calculated by a linear equation.
[a] Positive AUI input voltage is lower than Low Point, output proportional is $0 \%$.
For example:
Pr. 03-63 = 1V; Pr. 03-64 = 10\%. The output will become $0 \%$ when the input is lower than 1 V . If the AUI input varies between 1 V and 1.1 V , the drive's output frequency oscillates between $0 \%$ and $10 \%$.
Pr. 03-51~03-68 is able to set the open circuit corresponding function of analog input value and max. operation frequency (Pr. 01-00), as shown in the figure below:


## 5-59 Negative AUI Voltage Highest Point

Default: 0.00
Settings -10.00-0.00 V

## 33-7

Negative AUI Voltage Proportional Highest Point
Default: 0.00
Settings -100.00-100.00 \%
[7-7 : Negative AUI Voltage Mid-Point
Default: -5.00
Settings -10.00-0.00 V
73-73
Negative AUI Voltage Proportional Mid-Point
Default: -50.00
Settings -100.00-100.00 \%
田3-73
Negative AUI Voltage Lowest Point
Default: -10.00
Settings -10.00-0.00 V
73-74
Negative AUI Voltage Proportional Lowest Point
Default: -100.00
Settings -100.00-100.00\%
When you set the negative voltage AUI to frequency command, 100\% corresponds to Fmax (Pr. 01-00 maximum operation frequency) and the motor runs in the reverse direction.

IId The requirement for these three parameters (Pr. 03-69, Pr. 03-71 and Pr. 03-73) is Pr. 03-69 < Pr. $03-71$ < Pr. 03-73. The values for three proportional points (Pr. 03-70, Pr. 03-72 and Pr. 03-74) have not limits. Values between two points are calculated by a linear calculation.
10] The output \% becomes 0\% when the negative AUI input value is lower than the lowest point setting. For example:
Pr. 03-69 = -1V; Pr. 03-70 = 10\%, then the output becomes $0 \%$ when the AUI input is $\geq-1 \mathrm{~V}$. If the AUI input varies between -1 V and -1.1 V , the drive's output frequency oscillates between $0 \%$ and $10 \%$.

## 04 Multi－step Speed Parameters

 This parameter can be set during operation．
## ～ 84 － 8 日

1st Step Speed Frequency
～ $84-\boldsymbol{A}$ ：
2nd Step Speed Frequency
～ $84-82$
3rd Step Speed Frequency
～ $84-83$
4th Step Speed Frequency
＊

＊
～ B4 $_{4}-77$
8th Step Speed Frequency
～ $84-08$
9th Step Speed Frequency
～64－93 10th Step Speed Frequency
11th Step Speed Frequency
～ 84 －：
12th Step Speed Frequency
0 时－
13th Step Speed Frequency
N［\％－？14th Step Speed Frequency
N
Default： 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
1 Use the multi－function input terminals（refer to settings 1－4 of Pr．02－01－02－08 and Pr． 02－26－02－31 Multi－function Input Command）to select the multi－step speed command（the maximum is $15^{\text {th }}$ step speed）．Pr．04－00 to Pr．04－14 set the multi－step speed frequency as shown in the following diagram．The external terminal／digital keypad／communication controls the RUN and STOP commands with Pr．00－21．You can set each multi－step speed between $0.00-599.00 \mathrm{~Hz}$ during operation．
$\square$ Explanation for the timing diagram of the multi－step speed and external terminals
The related parameter settings are：
1．Pr．04－00－04－14：sets the $1^{\text {st }}$ to $15^{\text {th }}$ multi－step speed（to set the frequency of each step speed）
2．Pr．02－01－02－08 and Pr．02－26－02－31：sets the multi－function input terminals（multi－step speed command 1－4）
［1］Related parameters：
－Pr．01－22 JOG Frequency
－Pr．02－01 Multi－function Input Command 1 （MI1）
－Pr．02－02 Multi－function Input Command 2 （MI2）
－Pr．02－03 Multi－function Input Command 3 （MI3）
－Pr．02－04 Multi－function Input Command 4 （MI4）


Default： 0
Settings－30000－30000
1 To switch the target position for the external terminal，set the multi－function input command Pr．02－01＝1，Pr．02－02＝2，Pr．02－03＝3，Pr．02－04 $=4$ by selecting the P2P target position with the multi－step speed．
10 Setting：Target Position $=$ Pr．04－15 $\times($ Pr．10－01＊4）+ Pr．04－16

| Multi-step Speed Status | Target Position of P2P |  |  | Maximum Speed of P2P |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0 |  |  | 11-00 bit8=0 | 11-00 bit8=1 |
| 0001 | Position 1 | 04-15 | 04-16 | 11-43 | 04-00 |
| 0010 | Position 2 | 04-17 | 04-18 |  | 04-01 |
| 0011 | Position 3 | 04-19 | 04-20 |  | 04-02 |
| 0100 | Position 4 | 04-21 | 04-22 |  | 04-03 |
| 0101 | Position 5 | 04-23 | 04-24 |  | 04-04 |
| 0110 | Position 6 | 04-25 | 04-26 |  | 04-05 |
| 0111 | Position 7 | 04-27 | 04-28 |  | 04-06 |
| 1000 | Position 8 | 04-29 | 04-30 | 11-43 | 04-07 |
| 1001 | Position 9 | 04-31 | 04-32 |  | 04-08 |
| 1010 | Position 10 | 04-33 | 04-34 |  | 04-09 |
| 1011 | Position 11 | 04-35 | 04-36 |  | 04-10 |
| 1100 | Position 12 | 04-37 | 04-38 |  | 04-11 |
| 1101 | Position 13 | 04-39 | 04-40 |  | 04-12 |
| 1110 | Position 14 | 04-41 | 04-42 |  | 04-13 |
| 1111 | Position 15 | 04-43 | 04-44 |  | 04-14 |



Position Command 1 (Pulse) Position Command 2 (Pulse) Position Command 3 (Pulse) Position Command 4 (Pulse) Position Command 5 (Pulse) Position Command 6 (Pulse) Position Command 7 (Pulse) Position Command 8 (Pulse) Position Command 9 (Pulse) Position Command 10 (Pulse) Position Command 11 (Pulse) Position Command 12 (Pulse) Position Command 13 (Pulse) Position Command 14 (Pulse) Position Command 15 (Pulse)

Default: 0

Settings -32767-32767
Refer to Pr. 02-01-02-08 (Multi-function Input Command) for the description on setting 34 (Switch between multi-step position and multi-step speed control), setting 36 (Enable multi-step position learning function) and setting 35 (Enable single-point position control).
1 Multi-function input 35 (Enable single-point position control) switches between multi-step speed and multi-step position with multi-function input 34 (when enabled). You can select 16 positions.

| Multi-step position corresponding | MI4 | MI3 | MI2 | MI1 | Multi-step speed corresponding |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10-19 | 0 | 0 | 0 | 0 | Positioning for Encoder Position |
| 04-16 Position command 1 (pulse) | 0 | 0 | 0 | 1 | $04-001^{\text {st }}$ step speed frequency |
| 04-18 Position command 2 (pulse) | 0 | 0 | 1 | 0 | $04-012^{\text {nd }}$ step speed frequency |
| 04-20 Position command 3 (pulse) | 0 | 0 | 1 | 1 | $04-023^{\text {rd }}$ step speed frequency |


| Multi-step position corresponding | MI4 | MI3 | MI2 | MI1 | Multi-step speed corresponding |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 04-22 Position command 4 (pulse) | 0 | 1 | 0 | 0 | 04-03 $4^{\text {th }}$ step speed frequency |
| 04-24 Position command 5 (pulse) | 0 | 1 | 0 | 1 | 04-04 $5^{\text {th }}$ step speed frequency |
| 04-26 Position command 6 (pulse) | 0 | 1 | 1 | 0 | 04-05 $6^{\text {th }}$ step speed frequency |
| 04-28 Position command 7 (pulse) | 0 | 1 | 1 | 1 | 04-06 $7^{\text {th }}$ step speed frequency |
| 04-30 Position command 8 (pulse) | 1 | 0 | 0 | 0 | 04-07 $8^{\text {th }}$ step speed frequency |
| 04-32 Position command 9 (pulse) | 1 | 0 | 0 | 1 | 04-08 $9^{\text {th }}$ step speed frequency |
| 04-34 Position command 10 (pulse) | 1 | 0 | 1 | 0 | 04-09 $10^{\text {th }}$ step speed frequency |
| 04-36 Position command 11 (pulse) | 1 | 0 | 1 | 1 | 04-10 $11^{\text {th }}$ step speed frequency |
| 04-38 Position command 12 (pulse) | 1 | 1 | 0 | 0 | 04-11 $12^{\text {th }}$ step speed frequency |
| 04-40 Position command 13 (pulse) | 1 | 1 | 0 | 1 | 04-12 $13^{\text {th }}$ step speed frequency |
| 04-42 Position command 14 (pulse) | 1 | 1 | 1 | 0 | 04-13 $14^{\text {th }}$ step speed frequency |
| 04-44 Position command 15 (pulse) | 1 | 1 | 1 | 1 | 04-14 $15^{\text {th }}$ step speed frequency |



Default: 0
Settings 0-65535
1 You can combine the PLC buffer with the built-in PLC function for a variety of applications. 104-7: PLC Application Parameter 1

PLC Application Parameter 2

PLC Application Parameter 3
PLC Application Parameter 4 04-75 PLC Application Parameter 5 64-76 PLC Application Parameter 6 84-77 PLC Application Parameter 7 64-78 PLC Application Parameter 8 [44-79 PLC Application Parameter 9暗-80

PLC Application Parameter 10
PLC Application Parameter 11 04-82

PLC Application Parameter 12 194-83

PLC Application Parameter 13
7\%-8
历if - 5 PLC Application Parameter 15
(04-85
PLC Application Parameter 16
PLC Application Parameter 17
(14-88
PLC Application Parameter 18
If - 8 PLC Application Parameter 19
E4 - 90
PLC Application Parameter 20


PLC Application Parameter 21
(14-92
PLC Application Parameter 22
PLC Application Parameter 23
© 0
PLC Application Parameter 24
64-95
PLC Application Parameter 25
PLC Application Parameter 26
PLC Application Parameter 27
PLC Application Parameter 28
PLC Application Parameter 29
Default: 0
Settings 0-65535
[a] Pr. 04-70-Pr. 04-99 are user-defined parameters. You can combine these 30 PLC Application Parameters with the PLC programming for a variety of applications.

## Default: 0

| Settings | $0:$ No function |
| :--- | :--- |
| 1: Simple rolling auto-tuning for induction motor (IM) |  |
| 2: Static auto-tuning for induction motor |  |
| 4: Dynamic test for PM magnetic pole (with the running in forward direction) |  |
| 5: Rolling auto-tuning for PM (IPM / SPM) |  |
| 6: Advanced rolling auto-tuning for IM flux curve |  |
| 12: FOC Sensorless inertia estimation |  |
| 13: Static auto-tuning for PM (IPM / SPM) |  |

Refer to Section 12-2 "Adjustment and Application" for more details of motor adjustment process.
55-7! Full-load Current for Induction Motor 1 (A)
Default: Depending on the model power

Settings Depending on the model power
Sets this value according to the rated current of the motor as indicated on the motor nameplate.The default is $90 \%$ of the drive's rated current.
Example: The rated current for a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A . The default is 22.5 A .
The setting range is between $40 \%-120 \%$ of the rated current.
( 25 * $40 \%=10 \mathrm{~A}$ and 25 * $120 \%=30 \mathrm{~A}$ )
55-9 Rated Power for Induction Motor 1 (kW)
Default: Depending on the model power
Settings $0.00-655.35 \mathrm{~kW}$
Sets the rated power for motor 1 . The default is the drive's power value.
55-73 Rated Speed for Induction Motor 1 (rpm)
Default: Depending on the motor pole number
Settings $0-\mathrm{xxxx}$ (Depending on the motor pole number)
Sets the rated speed for the motor as indicated on the motor nameplate.
$\mathbb{1} \mathbb{D}$ Pr. 01-01 and Pr. 05-04 determine the maximum rotor speed for IM.
For example: Pr. 01-01=20Hz, Pr. 05-04=2, according to the equation $120 \times 20 \mathrm{~Hz} / 2=1200 \mathrm{rpm}$ and take integers. Due to the slip of the IM, the maximum setting value for Pr. 05-03 is 1199 rpm (1200rpm - 1).

55-74 Number of Poles for Induction Motor 1
Default: 4
Settings 2-64Sets the number poles for the motor (must be an even number).
10 Set up Pr. 01-01 and Pr. 05-03 before setting up Pr. 05-04 to make sure the motor operates normally. Pr. 01-01 and Pr. 05-03 determine the maximum set up number poles for the IM.
For example: Pr. 01-01 = 20 Hz and Pr. 05-03 = 39 rpm , according to the equation $120 \times 20 \mathrm{~Hz}$ / $39 \mathrm{rpm}=61.5$ and take even number, the number of poles is 60 . Therefore, Pr. 05-04 can be set to the maximum of 60 poles.

55-5 No-load Current for Induction Motor 1 (A)
Default: Depending on the model power
Settings 0.0-Pr. 05-01 default
[1] For model with 110 kW and above, default setting is $20 \%$ of motor rated current.
55-96 Stator Resistance (Rs) for Induction Motor 1
Default: Depending on the model power
Settings $0.000-65.535 \Omega$

53-7 Rotor Resistance (Rr) for Induction Motor 1
Default: 0.000
Settings $0.000-65.535 \Omega$

55-98 Magnetizing Inductance (Lm) for Induction Motor 1
55-5 Stator Inductance (Lx) for Induction Motor 1
Default: 0.0
Settings $\quad 0.0-6553.5 \mathrm{mH}$
55-3 Full-load Current for Induction Motor 2 (A)
Default: Depending on the model power

## Settings Depending on the model power

1 Set this value according to the rated current of the motor as indicated on the motor nameplate.
The default $90 \%$ of the drive's rated current.
Example: The rated current for a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ motor is 25 A . The default is 22.5 A .
The setting range is between $40 \%-120 \%$ of rated current.
$25 * 40 \%=10 \mathrm{~A}$ and $25 * 120 \%=30 \mathrm{~A}$

## 85- : 4 Rated Power for Induction Motor 2 (kW)

Default: Depending on the model power

Settings 0.00-655.35 kW
Set the rated power for motor 2 . The default is the drive's power value.
55-5 Rated Speed for Induction Motor 2 (rpm)
Default: Depending on the motor pole number
Settings $0-x x x x$ (Depending on the motor pole number)
1 Sets the rated speed for the motor as indicated on the motor nameplate.
1 Pr. 01-01 and Pr. 05-04 determine the maximum rotor speed of IM.
For example: Pr. 01-01 = 20Hz, Pr. 05-04 = 2, according to the equation $120 \times 20 \mathrm{~Hz} / 2=1200$ rpm and take integers. Due to the slip of the IM, the maximum setting value for Pr. 05-15 is 1199 rpm ( 1200 rpm - 1).

15-16 Number of poles for Induction Motor 2
Default: 4
Settings 2-64
1 Sets the number of poles for the motor (must be an even number).
1 Set up Pr. 01-35 and Pr. 05-15 before setting up Pr. 05-16 to make sure the motor operates normally. Pr. 01-35 and Pr. 05-15 determine the maximum set up number of poles.
For example: Pr. 01-35 = 20 Hz and $\operatorname{Pr} .05-15=39 \mathrm{rpm}$, according to the equation $120 \times 20 \mathrm{~Hz}$ / $39 \mathrm{rpm}=61.5$ and take even number, the number of poles is 60 . Therefore, Pr. 05-16 can be set to the maximum of 60 poles.

175-:7 No-load Current for Induction Motor 2 (A)
Default: Depending on the model power
Settings $0.00-\operatorname{Pr}$. 05-13 default
For model with 110 kW and above, default setting is $20 \%$ of motor rated current.
75-18 Stator Resistance (Rs) for Induction Motor 2
Default: Depending on the model power
Settings $0.000-65.535 \Omega$

Rotor Resistance (Rr) for Induction Motor 2
Default: 0.000
Settings $0.000-65.535 \Omega$

> 55-3
> Magnetizing Inductance (Lm) for Induction Motor 2
> Stator Inductance (Lx) for Induction Motor 2

Default: 0.0
Settings $\quad 0.0-6553.5 \mathrm{mH}$

- 5-3

Induction Motor 1/ 2 Selection
Default: 1
Settings 1: Motor 1
2: Motor 2
$\square$ Sets the motor currently operated by the AC motor drive.
55-3 Frequency for Y-connection / $\Delta$-connection Switch for an Induction Motor
Default: 60.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
Y-connection / $\Delta$-connection Switch for Induction Motor
Default: 0
Settings 0: Disable
1: Enable

## [15-35Delay Time for Y-connection / $\Delta$-connection Switch for an Induction Motor

Default: 0.200
Settings $0.000-60.000 \mathrm{sec}$.
1 You can apply Pr. 05-23-Pr. 05-25 in a wide range of motors, and the motor coil executes the Y-connection / $\Delta$-connection switch as required. The wide range motors are related to the motor design. In general, the motor has higher torque with low speed $Y$-connection, and has higher speed with high speed $\Delta$-connection).
$\square$ Pr. 05-24 enables and disables the switch of Y -connection / $\Delta$-connection.When you set Pr. 05-24 as 1, the drive uses the Pr. 05-23 setting and current motor frequency, and switches the current motor to Y-connection or $\Delta$-connection. You can switch the relevant motor parameter settings simultaneously.Pr. 05-25 sets the switch delay time of Y-connection / $\Delta$-connection.
1 When the output frequency reaches Y-connection / $\Delta$-connection switch frequency, the drive delays according to Pr. 05-25 before activating the multi-function output terminals.

$Y$ - $\triangle$ connection switch: can be used for wide range motor
Y-connection for low speed: higher torque can be used for rigid tapping
$\triangle$-connection for high speed: higher torque can be used for high-speed drilling


55-38 Accumulated Watt-hour for a Motor (W-hour)
Default: 0.0
Settings Read only
65-29
Accumulated Watt-hour for a Motor in Low Word (kW-hour)
Default: 0.0
Settings Read only
Accumulated Watt-hour for a Motor in High Word (MW-hour)
Default: 0
Settings Read only
Pr.05-28-05-30 records the amount of power consumed by the motors. The accumulation begins when the drive is activated and the record is saved when the drive stops or turns OFF. The amount of consumed watts continues to accumulate when the drive is activated again. To clear the accumulation, set Pr. 00-02 as 5 to return the accumulation record to 0 .
$\square$ The accumulated total watts of the motor per hour $=$ Pr. 05-30 $\times 1000000+\operatorname{Pr} .05-29 \times 1000+$ Pr. 05-28 Wh

Example: When Pr. 05-30 = 76 MWh and Pr. 05-29 = $150 \mathrm{kWh}, \operatorname{Pr} .05-28=400 \mathrm{~Wh}($ or 0.4 kWh ), the accumulated total kilowatts of the motor per hour $=76 \times 1000000+150 \times 1000+40=$ $76150400 \mathrm{~Wh}=76150.4 \mathrm{kWh}$

# 55-3 Accumulated Motor Operation Time (Min) 

Default: 0
Settings 0-1439
55-30 Accumulated Motor Operation Time (Day)
Default: 0
Settings 0-65535
[1] Use Pr. 05-31 and Pr. 05-32 to record the motor operation time. To clear the operation time, set Pr. 05-31 and Pr. 05-32 as 00 . An operation time shorter than 60 seconds is not recorded.

55-3〕Induction Motor (IM) or Permanent Magnet Synchronous Motor Selection
Default: 0
Settings 0: IM (Induction Motor)
1: SPM (Surface permanent magnet motor)
2: IPM (Interior permanent magnet motor)
「5-34 Full-load current for a Permanent Magnet Motor
Default: Depending on the model power
Settings Depending on the model power
10 Sets the full-load current for the motor according to motor's nameplate. The default is $90 \%$ of the drive's rated current.
[4] For example: The rated current of a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A . The default is 22.5 A .
The setting range is between $40 \%-120 \%$ of rated current.
$25 * 40 \%=10 \mathrm{~A}$ and 25 * $120 \%=30 \mathrm{~A}$

## 55-35 Rated Power for a Permanent Magnet Motor

Default: Depending on the model power
Settings $0.00-655.35 \mathrm{~kW}$
Sets the rated power for the permanent magnet synchronous motor. The default is the drive's power value.

## 55-36 Rated speed for a Permanent Magnet Motor

Default: 2000
Settings 0-65535 rpm
55-37 Pole number for a Permanent Magnet Motor
Default: 10
Settings 0-65535
55-38
System Inertia for a Permanent Magnet Motor
Default: Depending on the motor power
Settings $\quad 0.0-6553.5 \mathrm{~kg}-\mathrm{cm}^{2}$
(1) Default values are as below:

| Rated Power <br> $[\mathrm{kW}]$ | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 9.3 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rotor inertia <br> $\left[\mathrm{kg}-\mathrm{cm}^{2}\right]$ | 1.2 | 3.0 | 6.6 | 15.8 | 25.7 | 49.6 | 82.0 | 121.6 | 177.0 |


| Rated Power <br> $[\mathrm{kW}]$ | 14.1 | 18.2 | 27 | 33 | 40 | 46 | 54 | 54 and <br> above |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rotor inertia <br> $\left[\mathrm{kg}-\mathrm{cm}^{2}\right]$ | 211.0 | 265.0 | 308.0 | 527.0 | 866.0 | 1082.0 | 1267.6 | 1515.0 |

## 55-39 Stator Resistance for a Permanent Magnet Motor

Default: 0.000
Settings $0.000-65.535 \Omega$
75-4 Permanent Magnet Motor Ld
Default: 0.00
Settings $\quad 0.00-655.35 \mathrm{mH}$
55-\%: Permanent Magnet Motor Lq
Default: 0.00
Settings $\quad 0.00-655.35 \mathrm{mH}$
PG Offset Angle for a Permanent Magnet Motor
Default: 0
Settings $0.0-360.0^{\circ}$
1 When you set Pr. 05-00 as 4, the drive detects the offset angle and writes it into Pr. 05-42.

## 55-4 Ke Parameter of a Permanent Magnet Motor

Default: 0
Settings 0-65535 V / krpm
[1] Permanent magnet motor parameter $\mathrm{Ke}\left(\mathrm{V}_{\text {phase, rms }} / \mathrm{krpm}\right)$
[1] When Pr. $05-00=5$, parameter Ke is calculated according to the motor's actual operation.
$\Perp$ When Pr. $05-00=13$, parameter $K e$ is automatically calculated according to the motor power, current and rotor speed.

## 56-75 Low Voltage Level

Default:
Settings 230V series:
Frame A-D (including D0): 150.0-220.0 V $\mathrm{VC}_{\mathrm{C}} 180.0$
Frame E and above: 190.0-220.0 VDC 200.0
460V series:
Frame A-D (including D0): 300.0-440.0 VDC 360.0
Frame E and above: 380.0-440.0 VDC 400.0
575 V series: $420.0-520.0 \mathrm{~V}_{\mathrm{DC}} \quad 470.0$
690V series: 450.0-660.0 VDC 480.0
Sets the Low Voltage (Lv) level. When the DC BUS voltage is lower than Pr. 06-00, the drive stops output and the motor free runs to a stop.
1 If the Lv fault is triggered during operation, the drive stops output and the motor free runs to a stop. There are three Lv faults: LvA (Lv during acceleration), Lvd (Lv during deceleration), and Lvn (Lv in constant speed) that are triggered according to the status of acceleration or deceleration. You must press RESET to clear the Lv fault. The drive automatically restarts if you set to restart after momentary power loss (refer to Pr.07-06 Restart after Momentary Power Loss and Pr.07-07 Allowed Power Loss Duration for details).
1 If the Lv fault is triggered when the drive is in STOP status, the drive displays LvS (Lv during stop), which is not recorded, and the drive restarts automatically when the input voltage is higher than Pr. 06-00 + Lv return level (as listed below).

| Lv Return Level | 230 V | 460 V | 575 V | 690 V |
| :--- | :---: | :---: | :---: | :---: |
| Frame $A-D$ | $30 \mathrm{~V}_{\mathrm{DC}}$ | $60 \mathrm{~V}_{\mathrm{DC}}$ | $100 \mathrm{~V}_{\mathrm{DC}}$ | $100 \mathrm{~V}_{\mathrm{DC}}$ |
| Frame E-H | $40 \mathrm{~V}_{\mathrm{DC}}$ | $80 \mathrm{~V}_{\mathrm{DC}}$ |  | $120 \mathrm{~V}_{\mathrm{DC}}$ |



## 55-7! Over-voltage Stall Prevention

Default:
380.0/760.0/920.0/1087.0

Settings 230 V series: $0.0-450.0 \mathrm{~V}_{\mathrm{DC}}$ 460V series: $0.0-900.0 \mathrm{~V}_{\mathrm{DC}}$ 575 V series: $0.0-920.0 \mathrm{~V}_{\mathrm{DC}}$ 690V series: $0.0-1087.0 V_{D C}$ 0 : Disabled

Setting Pr. 06-01 to 0.0 disables the over-voltage stall prevention function (connected with braking unit or braking resistor). Use this setting when braking units or resistors are connected to the drive.Setting Pr.06-01 to a value > 0 enables the over-voltage stall prevention. This setting refers to the power supply system and loading. If the setting is too low, then over-voltage stall prevention is easily activated, which may increase the deceleration time.Related parameters:

- Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 Deceleration Time 1-4
- Pr. 02-13-Pr. 02-14 Multiple-function Output (Relay 1 and 2)
- Pr. 02-16-Pr. 02-17 Multiple-function output (MO 1 and 2)
- Pr. 06-02 Selection for Over-voltage Stall Prevention.


## 56-9 Selection for Over-voltage Stall Prevention

Default: 0
Settings 0: Traditional over-voltage stall prevention
1: Smart over-voltage stall prevention
[al Use this function when you are unsure about the load inertia. When stopping under normal load, the over-voltage does not occur during deceleration and meet the deceleration time setting. Sometimes it may not stop due to over-voltage during decelerating to STOP when the load regenerative inertia increases. In this case, the AC motor drive extends the deceleration time automatically until the drive stops.
1 When you set Pr.06-02 to 0, during deceleration the motor exceeds the synchronous speed due to load inertia. In this case, the motor becomes an electrical generator. The DC BUS voltage may exceed its maximum allowable value due to motor regeneration in some situations, such as loading inertia being too high or deceleration time being set too short. When you enable traditional over-voltage stall prevention and the DC BUS voltage detected is too high, the drive stops decelerating (output frequency remains unchanged) until the DC BUS voltage drops below the setting value.


When you set Pr. 06-02 to 1, to use smart over-voltage stall prevention during deceleration, the drive maintains the DC BUS voltage when decelerating and prevents the drive from ov.


1 When you enable the over-voltage stall prevention, the drive's deceleration time is longer than the setting.
1 If you encounter any problem with deceleration time, refer to the following guides for troubleshooting.

1. Increase the deceleration time to a suitable value.
2. Install a brake resistor (refer to Section 7-1 All Brake Resistors and Brake Units Used in AC motor Drives for details) to dissipate the electrical energy that is regenerated from the motor.
[1] Related parameters:

- Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 Deceleration Time 1-4
- Pr. 02-13-Pr. 02-14 Multiple-function Output (Relay 1 and 2)
- Pr. 02-16-Pr. 02-17 Multiple-function Output (MO1 and 2)
- Pr. 06-01 Over-voltage Stall Prevention.


## 50-7 Over-current Stall Prevention during Acceleration

| Settings | 230V/460V series |  |
| :--- | :--- | :--- |
|  | Normal duty: $0-160 \%$ (100\%: drive's rated current) | Default: 120 |
|  | Heavy duty: $0-180 \%$ (100\%: drive's rated current) | Default: 120 |
|  | $575 \mathrm{~V} / 690 \mathrm{~V}$ series |  |
|  | Light duty: $0-125 \%$ (100\%: drive's rated current) | Default: 120 |
|  | Normal duty: $0-150 \%$ (100\%: drive's rated current) | Default: 120 |
|  | Heavy duty: $0-180 \%$ (100\%: drive's rated current) | Default: 150 |

11.If the motor load is too large or the drive's acceleration time is too short, the output current of the drive may be too high during acceleration, and it may cause motor damage or trigger protection functions (oL or oc). Use this parameter to prevent these situations.
1 During acceleration, the output current of the drive may increase abruptly and exceed the value of Pr. 06-03. In this case, the drive stops accelerating and keeps the output frequency constant, and then continues to accelerate until the output current decreases.

1 When you enable the over-current stall prevention, the drive's acceleration time is longer than the setting.

1 When the over-current stall prevention occurs because the motor capacity is too small or operates in the default, decrease the Pr.06-03 setting value.When you encounter any problem with the acceleration time, refer to the following guides for troubleshooting.

1. Increase the acceleration time to a suitable value.
2. Set Pr. 01-44 Auto Acceleration / Deceleration Setting to 1, 3 or 4 (auto-acceleration).
[1] Related parameters:

- Pr. 01-12, Pr. 01-14, Pr. 01-16, Pr. 01-18 Acceleration Time 1-4
- Pr. 01-44 Auto Acceleration / Deceleration Setting
- Pr. 02-13-02-14 Multi-function Output 1 (RY1 and RY2)
- Pr. 02-16-02-17 Multi-function Output (MO1 and 2)



## 56-74 Over-current Stall Prevention during Operation

Settings 230V/460V series
Normal duty: 0-160\% (100\%: drive's rated current) Default: 120
Heavy duty: 0-180\% (100\%: drive's rated current) Default: 120
575V/690V series
Light duty: 0-125\% (100\%: drive's rated current)
Normal duty: 0-150\% (100\%: drive's rated current)
Default: 120

Heavy duty: 0-180\% (100\%: drive's rated current)
Default: 120
Default: 150
This parameter only works in VF, VFPG, and SVC control modes.This is a protection for the drive to decrease output frequency automatically when the motor over-loads abruptly during constant motor operation.

Ila If the output current exceeds the setting value for Pr. 06-04 when the drive is operating, the drive decreases output frequency (according to Pr. 06-05) to prevent the motor from stalling. If the output current is lower than the setting value for Pr. 06-04, the drive accelerates (according to Pr. $06-05$ ) again to the setting frequency.


## 56-95Acceleration / Deceleration Time Selection of Stall Prevention at Constant Speed

Default: 0
Settings 0: By current acceleration / deceleration time
1: By the $1^{\text {st }}$ acceleration / deceleration time
2: By the $2^{\text {nd }}$ acceleration / deceleration time
3: By the $3^{\text {rd }}$ acceleration / deceleration time
4: By the $4^{\text {th }}$ acceleration / deceleration time
5: By automatic acceleration / deceleration
10 Sets the acceleration / deceleration time selection when stall prevention occurs at constant speed.

## 86-96 <br> Over-torque Detection Selection (OT1)

Default: 0
Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation

2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN

## 76-73 Over-torque Detection Selection (OT2)

Default: 0
Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation
2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN
When you set Pr. 06-06 and Pr. 06-09 to 1 or 3 , a warning message displays, but there is no error record.When you set Pr. 06-06 and Pr. 06-09 to 2 or 4, a warning message displays and there is an error record.

## 56-97 Over-torque Detection Level (OT1)

Default: 120
Settings 10-250\% (100\% corresponds to the rated current of the drive)

## 75-98 Over-torque Detection Level (OT1)

Default: 0.1
Settings $0.0-60.0 \mathrm{sec}$.

## 56-19 Over-torque Detection Level (OT2)

Default: 120
Settings 10-250\% (100\% corresponds to the rated current of the drive)

## 75- : : Over-torque Detection Time (OT2)

Default: 0.1
Settings $0.0-60.0 \mathrm{sec}$.
10 When the output current exceeds the over-torque detection level (Pr. 06-07 or Pr. 06-10) and exceeds the over-torque detection time (Pr. 06-08 or Pr. 06-11), the over-torque detection follows the setting of Pr. 06-06 and Pr. 06-09.
[a] When you set Pr. 06-06 or Pr. 06-09 to 1 or 3 , an ot 1 / ot2 warning displays while the drive keeps running. The warning remains on until the output current is smaller than $5 \%$ of the over-torque detection level.

$1 \square$ When you set Pr. 06-06 or Pr. 06-09 to 2 or 4 , an ot 1 / ot2 warning displays and the drive stops running after over-torque detection. The drive keeps running after you manually reset it.


## 50-7 Current Limit

Default: 170
Settings $0-250 \%$ ( $100 \%$ corresponds to the rated current of the drive)
$\square$ Sets the maximum output current of the drive. Use Pr.11-17-Pr.11-20 to set the drive's output current limit.When setting the control mode as VF, SVC or VFPG, if the output frequency of the drive reaches this current limit, the output frequency decreases automatically. It works like the current stall prevention.


Electronic Thermal Relay Selection (Motor 1)
106-3 Electronic Thermal Relay Selection (Motor 2)
Default: 2
Settings 0: Inverter motor (with external forced cooling)
1: Standard motor (motor with fan on the shaft)
2: Disable
10 Prevents self-cooled motor from overheating under low speed. Use an electronic thermal relay to limit the drive's output power.
10 Setting the parameter to 0 is suitable for an inverter motor (motor fan using an independent power supply). For this kind of motor, there is no significant correlation between cooling capacity and motor speed. Therefore, the action of electronic thermal relays remains stable in low speed to ensure the load capability of the motor in low speed.
1 Setting the parameter to 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is lower in low speed; therefore, the action of an electronic thermal relay reduces the action time to ensure the life of motor.When the power is cycled frequently, if the power is switched OFF, the electronic thermal relay protection is reset; therefore even setting the parameter to 0 or 1 may not protect the motor well. If there are several motors connected to one drive, install an electronic thermal relay in each motor.

## 56-14 Electronic Thermal Relay Action Time 1 (Motor 1)

56-98 Electronic Thermal Relay Action Time 2 (Motor 2)
Default: 60.0
Settings $30.0-600.0 \mathrm{sec}$.
1 Set the parameter to $150 \%$ of motor rated current and use with the setting of Pr.06-14 and Pr.06-28 to prevent motor damage due to overheating. When it reaches the setting, the drive displays "EoL1 / EoL2", and the motor free runs to stop.
1 Use this parameter to set the action time of the electronic thermal relay. It works based on the $1^{2} \mathrm{t}$ characteristic curve of electronic thermal relay, the output frequency and current of the drive, and the operation time to prevent the motor from overheating.


1 The action of electronic thermal relay depends on the setting for Pr. 06-13 and Pr. 06-27.

1. Pr. 06-13 or Pr. 06-27 set to 0 (using inverter motor):

When the output current of motor drive is higher than $150 \%$ of motor rated current (refer to the motor cooling curve with independent fan), motor drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr. 06-14 or Pr. 06-28.
2. Pr. 06-13 or Pr. 06-27 is set to 1 (using standard motor):

When the output current of the drive is higher than $150 \%$ of the motor rated current (refer to the motor cooling curve with shaft-fixed fan), the drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr. 06-14 or Pr. 06-28.
3. If the motor's rated current (Pr. 05-01) is not set, then set $90 \%$ of the drive's rated current (Pr. 00-01) as the default value of this parameter.
1 The actual electronic thermal relay action time adjusts according to the drive output current (shown as the motor loading rate \%). The action time is short when the current is high, and the action time is long when the current is low. Refer to the following chart: (The motor cooling curve with shaft-fixed fan and motor cooling curve with independent fan $F=50 \mathrm{~Hz}$ are the same one.)

Operation time
(sec.)


## 56-:5 Temperature Level Over-heat (oH) Warning

Default: 105.0
Settings $\quad 0.0-110.0^{\circ} \mathrm{C}$
[1] If Pr. $06-15$ is set to $110^{\circ} \mathrm{C}$, when the temperature reaches $110^{\circ} \mathrm{C}$, the drive stops with an IGBT over-heat fault.
$\square$ For Frame C and above, when IGBT temperature is above Pr. $06-15$ minus $15^{\circ} \mathrm{C}$, the cooling fan enhances performance to $100 \%$; however, when IGBT temperature is below $35^{\circ} \mathrm{C}$ of $\operatorname{Pr}$. $06-15$ and the temperature of CAP is below $10^{\circ} \mathrm{C}$ of capacitor oH warning level (Pr. 06-51), the cooling fan resets. The temperature $35^{\circ} \mathrm{C}$ is the criterion if $\operatorname{Pr} .06-15$ is set below $35^{\circ} \mathrm{C}$.

## 15-15 Stall Prevention Limit Level (Weak Magnetic Area Current Stall Prevention Level)

Default: 100
Settings 0-100\% (Refer to Pr. 06-03, Pr. 06-04)
Sets the over-current stall prevention level when operation frequency is larger than Pr.01-01. This parameter only works during acceleration.Example: Pr. 06-03 $=150 \%$, Pr. $06-04=100 \%$ and Pr. $06-16=80 \%$, when the operation frequency is larger than Pr. 01-01, the over-current stall prevention Level during acceleration is: Pr. $06-03 \times$ Pr. $06-16=150 \times 80 \%=120 \%$.Pr. 06-16 is invalid when the over-current stall prevention activates according to Pr. 06-04 at constant speed.

Fault Record 1
Fault Record 2
Fault Record 3
Fault Record 4
Fault Record 5
Fault Record 6
Settings
0 : No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during constant speed(ocn)
4: Ground fault (GFF)
5: IGBT short-circuit (occ)
6: Over-current at stop (ocS)
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Phase loss protection (OrP)
16: IGBT over-heat (oH1)
17: Capacitance over-heat (oH2)
18: tH1o (TH1 open: IGBT over-heat protection error)
19: tH2o (TH2 open: capacitance over-heat protection error)
21: Drive over-load (oL)
22: Electronics thermal relay protection 1 (EoL1)
23: Electronics thermal relay protection 2 (EoL2)
24: Motor PTC overheat (oH3) (PTC / PT100)

26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)
28: Low current (uC)
29: Home limit error (LMIT)
30: Memory write-in error (cF1)
31: Memory read-out error (cF2)
33: U-phase current detection error (cd1)
34: V-phase current detection error (cd2)
35: W-phase current detection error (cd3)
36: Clamp current detection error (HdO)
37: Over-current detection error (Hd1)
38: Over-voltage detection error (Hd2)
39: IGBT short-circuit detection error (Hd3)
40: Auto-tuning error (AUE)
41: PID feedback loss (AFE)
42: PG feedback error (PGF1)
43: PG feedback loss (PGF2)
44: PG feedback stall (PGF3)
45: PG slip error (PGF4)
48: Analog current input loss (ACE)
49: External fault input (EF)
50: Emergency stop (EF1)
51: External Base Block (bb)
52: Password error (PcodE)
54: Communication error (CE1)
55: Communication error (CE2)
56: Communication error (CE3)
57: Communication error (CE4)
58: Communication Time-out (CE10)
60: Brake transistor error (bF)
61: Y-connection / $\Delta$-connection switch error (ydc)
62: Deceleration Energy Backup error (dEb)
63: Slip error (oSL)
64: Electromagnet switch error (ryF)
65: PG Card Error (PGF5)
68: Sensorless estimated speed have wrong direction
69: Sensorless estimated speed is over speed
70: Sensorless estimated speed deviated
71: Watchdog
72: Channel 1 (STO1-SCM1) safety loop error (STL1)
73: External safety gate (S1)
75: External brake error

76: Safe Torque Off (STO)
77: Channel 2 (STO2-SCM2) safety loop error (STL2)
78: Internal loop error (STL3)
82: U phase output phase loss (OPHL)
83: V phase output phase loss (OPHL)
84: W phase output phase loss (OPHL)
85: PG-02U ABZ hardware disconnection
86: PG-02U UVW hardware disconnection
87: oL3 Low frequency overload protection
89: RoPd initial rotor position detection error
90: Inner PLC function is forced to stop
93: CPU error
101: CANopen software disconnect 1 (CGdE)
102: CANopen software disconnect 2 (CHbE)
104: CANopen hardware disconnect (CbFE)
105: CANopen index setting error (CldE)
106: CANopen slave station number setting error (CAdE)
107: CANopen index setting exceed limit (CFrE)
111: Internal communication overtime error (ictE)
112: PM sensorless shaft Lock error
142: Auto-tuning error 1 (no feedback current error) (AUE1)
143: Auto-tuning error 2 (motor phase loss error) (AUE2)
144: Auto-tuning error 3 (no-load current $I_{0}$ measuring error) (AUE3)
148: Auto-tuning error (leakage inductance Lsigma measuring error) (AUE4)
1 When the fault occurs and forces stopping, the fault is recorded in this parameter.
1 During stop with low voltage Lv (LvS warning), there is no error record. During operation with mid-low voltage Lv (LvA, Lvd, Lvn error), there is a record.When dEb function is valid and enabled, the drive executes dEb and records fault code 62 to Pr . 06-17-Pr. 06-22 simultaneously.
56-3 Fault Output Option 1
BE- 2 4 Fault Output Option 2
56-35 Fault Output Option 3
56-36 Fault Output Option 4
Default: 0
Settings 0-65535 sec. (refer to bit table for fault code)
1 Use these parameters with multi-function output terminal (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals activate. Convert the binary value to decimal value before you enter the value for Pr. 06-23-Pr. 06-26.

| Fault Code | bit0 | bit1 | bit2 | bit3 | bit4 | bit5 | bit6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | current | Volt. | OL | SYS | FBK | EXI | CE |
| 0: No fault record |  |  |  |  |  |  |  |
| 1: Over-current during acceleration (ocA) | $\bullet$ |  |  |  |  |  |  |
| 2: Over-current during deceleration (ocd) | $\bullet$ |  |  |  |  |  |  |
| 3: Over-current during constant speed(ocn) | $\bullet$ |  |  |  |  |  |  |
| 4: Ground fault (GFF) | $\bullet$ |  |  |  |  |  |  |
| 5: IGBT short-circuit (occ) | $\bullet$ |  |  |  |  |  |  |
| 6: Over-current at stop (ocS) | $\bullet$ |  |  |  |  |  |  |
| 7: Over-voltage during acceleration (ovA) |  | $\bullet$ |  |  |  |  |  |
| 8: Over-voltage during deceleration (ovd) |  | $\bullet$ |  |  |  |  |  |
| 9: Over-voltage during constant speed (ovn) |  | $\bullet$ |  |  |  |  |  |
| 10: Over-voltage at stop (ovS) |  | $\bullet$ |  |  |  |  |  |
| 11: Low-voltage during acceleration (LvA) |  | $\bullet$ |  |  |  |  |  |
| 12: Low-voltage during deceleration (Lvd) |  | $\bullet$ |  |  |  |  |  |
| 13: Low-voltage during constant speed (Lvn) |  | $\bullet$ |  |  |  |  |  |
| 14: Low-voltage at stop (LvS ) |  | $\bullet$ |  |  |  |  |  |
| 15: Phase loss protection (OrP) |  | $\bullet$ |  |  |  |  |  |
| 16: IGBT over-heat (oH1) |  |  |  |  | $\bullet$ |  |  |
| 17: Capacitance over-heat (oH2) |  |  |  | $\bullet$ |  |  |  |
| 18: tH1o (TH1 open) |  |  |  |  |  |  |  |
| 19: tH2o (TH2 open) |  |  |  |  |  |  |  |
| 21: Drive over-load (oL) |  |  |  |  |  |  |  |
| 22: Electronics thermal relay protection 1 (EoL1) |  |  | $\bullet$ |  |  |  |  |
| 23: Electronics thermal relay 2 protection (EoL2) |  |  | $\bullet$ |  |  |  |  |
| 24: Motor PTC overheat (oH3) (PTC / PT100) |  |  | $\bullet$ |  |  |  |  |
| 26: Over-torque 1 (ot1) |  |  | $\bullet$ |  |  |  |  |
| 27: Over-torque 2 (ot2) |  |  |  |  |  |  |  |
| 28: Low current (uC) |  |  |  |  |  |  |  |
| 29: Home limit error (LMIT) |  |  |  |  |  |  |  |
| 30: Memory write-in error (cF1) |  |  |  |  |  |  |  |
| 31: Memory read-out error (cF2) |  |  |  |  |  |  |  |
| 33: U-phase current detection error (cd1) |  |  |  |  |  |  |  |
| 34: V-phase current detection error (cd2) |  |  |  |  |  |  |  |
| 35: W-phase current detection error (cd3) |  |  |  |  |  |  |  |
| 36: Clamp current detection error (Hd0) |  |  |  |  |  |  |  |
| 37: Over-current detection error (Hd1) |  |  |  |  |  |  |  |
| 38: Over-voltage detection error (Hd2) |  |  |  |  |  |  |  |
| 39: IGBT short-circuit detection error (Hd3) |  |  |  |  |  |  |  |
| 40: Auto-tuning error (AUE) |  |  |  |  |  |  |  |


| Fault Code | bit0 | bit1 | bit2 | bit3 | bit4 | bit5 | bit6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | current | Volt. | OL | SYS | FBK | EXI | CE |
| 41: PID feedback loss (AFE) |  |  |  |  | - |  |  |
| 42: PG feedback error (PGF1) |  |  |  |  | - |  |  |
| 43: PG feedback loss (PGF2) |  |  |  |  | - |  |  |
| 44: PG feedback stall (PGF3) |  |  |  |  | - |  |  |
| 45: PG slip error (PGF4) |  |  |  |  | - |  |  |
| 48: Analog current input loss (ACE) |  |  |  |  | $\bullet$ |  |  |
| 49: External fault input (EF) |  |  |  |  |  | - |  |
| 50: Emergency stop (EF1) |  |  |  |  |  | - |  |
| 51: External Base Block (bb) |  |  |  |  |  | - |  |
| 52: Password error (Pcod) |  |  |  | - |  |  |  |
| 54: Communication error (CE1) |  |  |  |  |  |  | - |
| 55: Communication error (CE2) |  |  |  |  |  |  | - |
| 56: Communication error (CE3) |  |  |  |  |  |  | - |
| 57: Communication error (CE4) |  |  |  |  |  |  | - |
| 58: Communication time-out (CE10) |  |  |  |  |  |  | - |
| 60: Brake transistor error (bF) |  |  |  |  |  | - |  |
| 61: Y-connection/ $/$-connection switch error (ydc) |  |  |  |  |  | - |  |
| 62: Deceleration Energy Backup error (dEb) |  | - |  |  |  |  |  |
| 63: Slip error (oSL) |  |  |  |  |  | - |  |
| 64: Electromagnet switch error (ryF) |  |  |  |  |  | - |  |
| 65: PG Card Error (PGF5) |  |  |  |  |  | - |  |
| 68: Sensorless estimated speed have wrong direction |  |  |  |  | - |  |  |
| 69: Sensorless estimated speed is over speed |  |  |  |  | - |  |  |
| 70: Sensorless estimated speed deviated |  |  |  |  | - |  |  |
| 72: Channel 1 (STO1-SCM1) safety loop error (STL1) |  |  |  | - |  |  |  |
| 73: External safety gate S1 |  |  |  | - |  |  |  |
| 75: external brake error |  |  |  |  |  | - |  |
| 76: Safe Torque Off (STO) |  |  |  | - |  |  |  |
| 77: Channel 2 (STO2-SCM2) safety loop error (STL2) |  |  |  | - |  |  |  |
| 78: Internal loop error (STL3) |  |  |  | - |  |  |  |
| 82: U phase output phase loss (OPHL) | - |  |  |  |  |  |  |
| 83: V phase output phase loss (OPHL) | - |  |  |  |  |  |  |
| 84: W phase output phase loss (OPHL) | - |  |  |  |  |  |  |
| 85: PG-02U ABZ hardware disconnection |  |  |  |  | $\bullet$ |  |  |
| 86: PG-02U UVW hardware disconnection |  |  |  |  | - |  |  |


| Fault Code | bit0 | bit1 | bit2 | bit3 | bit4 | bit5 | bit6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | current | Volt. | OL | SYS | FBK | EXI | CE |
| 89: Initial rotor position detection error |  |  |  |  | $\bullet$ |  |  |
| 90: Inner PLC function is forced to stop |  |  |  | $\bullet$ |  |  |  |
| 101: CANopen software disconnect 1 (CGdE) |  |  |  |  |  |  | $\bullet$ |
| 102: CANopen software disconnect 2 (CHbE) |  |  |  |  |  |  | $\bullet$ |
| 104: CANopen hardware disconnect (CbFE) |  |  |  |  |  |  | $\bullet$ |
| 105: CANopen index setting error (CIdE) |  |  |  |  |  |  | $\bullet$ |
| 106: CANopen slave station number setting error <br> (CAdE) |  |  |  |  |  |  | $\bullet$ |
| 107: CANopen index setting exceed limit (CFrE) |  |  |  |  |  |  | $\bullet$ |
| 111: Internal communication overtime error (ictE) |  |  |  |  |  |  | $\bullet$ |
| 112: PM sensorless shaft Lock error |  |  |  |  | $\bullet$ |  |  |

## 56-3 PTC Detection Selection / PT100 Motion

Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Warn and continue operation } \\
& 1: \text { Warn and ramp to stop } \\
\text { 2: Warn and coast to stop } \\
\text { 3: No warning }
\end{array}
$$

Sets the operation mode of a drive after you set Pr. 06-29 to define PTC / PT100 / KTY84 detection.

## 56-37 PTC Level / KTY84 Level

Default: 50.0
Settings 0.0-100.0 \%
1 When Pr. $06-86=0$, the setting range is $0.0-100.0$, with unit $\%$, and the default is $50.0 \%$.
When Pr. 06-86 $=1$, the setting range is $0.0-150.0$, with unit ${ }^{\circ} \mathrm{C}$, and the default is $125.0^{\circ} \mathrm{C}$
Sets AVI/ACI/AUI analog input function Pr. 03-00-03-02 to 6 [Positive Temperature Coefficient (P.T.C.) thermistor input value].
[a] The AUI terminal does not support KTY84-130.
Use this to set the PTC / KTY84 level, the corresponding value for $100 \%$ is the analog input maximum value.

When Pr. 06-86 is set as KTY84, Pr. 06-30 setting range and the unit changes automatically.

## 18-3: Frequency Command for Malfunction

Default: Read only
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
1 When a malfunction occurs, check the current frequency command. If it happens again, it overwrites the previous record.

## 15-3 O Output Frequency at Malfunction

Default: Read only
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
When a malfunction occurs, check the current output frequency. If it happens again, it overwrites the previous record.

## 56-3 Output Voltage at Malfunction

Default: Read only
Settings $0.0-6553.5 \mathrm{~V}$
1 When a malfunction occurs, check the current output voltage. If it happens again, it overwrites the previous record.

56-34DC Voltage at Malfunction
Default: Read only
Settings $0.0-6553.5 \mathrm{~V}$
1 When a malfunction occurs, check the current DC voltage. If it happens again, it overwrites the previous record.

55-35 Output Current at Malfunction
Default: Read only
Settings 0.0-6553.5 AmpWhen a malfunction occurs, check the current output current. If it happens again, it overwrites the previous record.

56-36 IGBT Temperature at Malfunction
Default: Read only
Settings $-3276.7-3276.7^{\circ} \mathrm{C}$
When a malfunction occurs, check the current IGBT temperature. If it happens again, it overwrites the previous record.

55-37 Capacitance Temperature at Malfunction
Default: Read only
Settings $-3276.7-3276.7^{\circ} \mathrm{C}$
When a malfunction occurs, check the current capacitance temperature. If it happens again, it overwrites the previous record.

56-38 Motor Speed in rpm at Malfunction
Default: Read only
Settings -32767-32767 rpm
1 When a malfunction occurs, check the current motor speed in rpm. If it happens again, it overwrites the previous record.

Default: Read only
Settings -32767-32767\%
When a malfunction occurs, check the current torque command. If it happens again, it overwrites the previous record.

56-4. Status of the Multi-function Input Terminal at Malfunction
Default: Read only
Settings 0000h-FFFFh
56-4
Status of the Multi-function Output Terminal at Malfunction
Default: Read only
Settings 0000h-FFFFh
When a malfunction occurs, check the status of multi-function input / output terminals. If it happens again, it overwrites the previous record.

76-4 Drive Status at Malfunction
Default: Read only
Settings 0000h-FFFFh
1 When a malfunction occurs, check the current drive status (communication address 2101H). If it happens again, it overwrites the previous record.

## 55-4 STO Latch Selection

Default: 0
Settings 0: STO latch
1: STO no latch
1 Pr. 06-44 = 0: STO Alarm Latch. After you clear the cause of the STO Alarm, use a Reset command to clear the STO Alarm.
1 Pr. 06-44 = 1: STO Alarm no Latch. After you clear the cause of the STO Alarm, the STO Alarm clears automatically.
1 All of STL1-STL3 errors are "Alarm Latch" mode (in STL1-STL3 mode, the Pr. 06-44 function is no effective).

## 55-45 Treatment to Output Phase Loss Protection (OPHL)

Default: 3
Settings 0: Warn and continue operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
1 The OPHL protect function is active when the setting is not 3 .
50-46 Detection Time of Output Phase Loss
Default: 3.000
Settings $0.000-65.535 \mathrm{sec}$.

## 15-47Current Detection Level for Output Phase Loss

Default: 1.00
Settings 0.00-100.00\%
56-48 DC Brake Time of Output Phase Loss
Default: 0.000
Settings $0.000-65.535 \mathrm{sec}$.
Setting Pr. 06-48 to 0 disables the OPHL detection function.
[1] Status 1: The drive is in operation
When any phase is less than the Pr. 06-47 setting, and exceeds the Pr. 06-46 setting time, the drive executes according to the Pr. 06-45 setting.


101 Status 2: The drive is in STOP; Pr. 06-48 = 0 ; Pr. 07-02 $=0$
After the drive starts, the DC brake operates according to Pr. 07-01 and Pr. 07-02. During this period, OPHL detection is not active. After the DC brake action is completed, the drive starts to run, and enables the OPHL protection as mentioned above for status 1.


1a Status 3: The drive is in STOP; Pr. 06-48 $=0$; Pr. $07-02 \neq 0$
When the drive starts, it executes Pr. 06-48 first, and then executes Pr. 07-02 (DC brake). The DC brake current level in this state includes two parts: one is 20 times the Pr. 06-47 setting value in Pr. 06-48 setting time; the other is the Pr. 07-01 setting value in Pr. 07-02 setting time. In this period, if an OPHL happens within the time for Pr. 06-48, the drive executes the Pr. 06-45 setting after the drive starts counting for half the time of Pr. 06-48.

Status 3-1: Pr. 06-48 $=0$, Pr. 07-02 $\neq 0$ (No OPHL detected before operation)


Status 3-2: Pr. 06-48 $=0$, Pr. 07-20 $=0$ (OPHL detected before operation)


Status 4: The drive is in STOP; Pr. 06-48 $=0$; Pr. 07-02 $=0$
When the drive starts, it executes Pr. 06-48 as the DC brake. The DC brake current level is 20 times the Pr. 06-47 setting value. In this period, if an OPHL happens within the time for Pr. 06-48, the drive executes the Pr. 06-45 setting after the drive starts counting for half the time of Pr.06-48.

Status 4-1: Pr. 06-48 $=0$, Pr. 07-02 $=0$ (No OPHL detected before operation)


Status 4-2: Pr. 06-48 $=0$, Pr. 07-02 $=0$ (OPHL detected before operation)


LvX Auto-reset
Default: 0
Settings 0: Disable
1: Enable
Time for Input Phase Loss Detection
Default: 0.20
Settings $0.00-600.00 \mathrm{sec}$.

Default: Depending on the model power
Settings 0.0-110.0 degreeSets the over-heat warning level of the drive's internal DCBUS capacitor.When the setting is less than 10.0 degree, the drive uses its internal capacitor oH warning level.

## 196-52 Ripple of Input Phase Loss

Default:
30.0/60.0/75.0/90.0

$$
\begin{array}{ll}
\text { Settings } & 230 \mathrm{~V} \text { series: } 0.0-160.0 \mathrm{~V} \mathrm{VC} \\
& 460 \mathrm{~V} \text { series: } 0.0-320.0 \mathrm{VDC} \\
& 575 \mathrm{~V} \text { series: } 0.0-400.0 \mathrm{~V} \mathrm{VC} \\
& 690 \mathrm{~V} \text { series: } 0.0-480.0 \mathrm{VDC}
\end{array}
$$

## 195-53 Detected Input Phase Loss (OrP) Action

Default: 0

| Settings | $0:$ Warn and ramp to stop |
| :--- | :--- |
|  | $1:$ Warn and coast to stop |

1 When the drive detects the DC BUS ripple exceeds the setting for Pr. 06-52, and lasts for the time of $\operatorname{Pr}$. 06-50 plus 30 seconds, the drive executes the input phase loss protection according to Pr. 06-53.
During the time of Pr. 06-50 plus 30 seconds, if the DCBUS ripple drops lower than the setting for Pr. 06-52, the Orp protection recalculates.

## 196-55 Derating Protection

Default: 0
Settings 0 : Constant rated current and limit carrier wave by load current and
temperature
1: Constant carrier frequency and limit load current by setting carrier wave
2: Constant rated current (same as setting 0), but close current limit
1 The maximum output frequency and its corresponded carrier frequency lower limit under each control mode:

- VF, SVC and VFPG: 600 Hz , 6 K
- FOCPG: $600 \mathrm{~Hz}, 12 \mathrm{~K}$
- FOC sensorless (IM): $300 \mathrm{~Hz}, 6 \mathrm{~K}$
- FOC sensorless (PM): $500 \mathrm{~Hz}, 10 \mathrm{~K}$

1 Setting 0 :
When the operating point is greater than the derating curve, the rated current is constant, and carrier frequency ( Fc ) output by the drive decreases automatically according to the ambient temperature, overload output current and overload time. If overloads are not frequent, and the concern is only about the carrier frequency operating with the rated current for a long time, and changes to the carrier wave due to short overload are acceptable, set to 0 .

Refer to Section 9-7 "Derating Curve of Ambient Temperature" for the level of carrier frequency. Take VFD007C43A Normal Duty for example: ambient temperature $50^{\circ} \mathrm{C}$, UL Open Type, and independent installation. When the carrier frequency is set to 15 kHz , it corresponds to $75 \%$ of the rated output current. When the output current is higher than this value, it automatically decreases the carrier wave according to the ambient temperature, output current and overload time. At this time, the overload capacity of the drive is still $120 \%$ of the rated current.
1 Setting 1:
When the operating point exceeds derating curve 1 , the carrier frequency is fixed to the set value. Select this mode if the change of carrier wave and motor noise caused by ambient temperature and frequent overload are not acceptable. Refer to Pr.00-17.

Refer to Section 9-7 "Derating Curve of Ambient Temperature" for the derating level of the rated current. Take VFD007C43A Normal Duty for example, when the carrier frequency maintains at 15 kHz , the rated current decreases to $72 \%$. The oL protection executes when the current is $120 \% * 72 \%=86 \%$ for one minute; therefore, it must operate by the curve to keep the carrier frequency.
[1] Setting 2:
The protection method and action are the same as setting it to 0 , but this disables the current limit when output current is the derating ratio $\times 180 \%$ (default value). The advantage is that this can provide a higher starting output current when the carrier frequency setting is higher than the default. The disadvantage is that the carrier wave derates easily when it overloads.

Example: when Pr. 06-55 = 0 or 1, over-current stall prevention level = ratio * Pr. 06-03. When Pr. 06-55 = 2, the over-current stall prevention level $=$ Pr. 06-03.
$\square$ Use with the settings for Pr. 00-16 and Pr. 00-17.
[ad The ambient temperature also affects the derating; refer to Section 9-7 "Ambient Temperature Derating Curve". Take VFD007C43A Normal Duty for example, ambient temperature $50^{\circ} \mathrm{C}$, UL Open Type, and independent installation. When the carrier frequency is set to 15 kHz , it corresponds to $72 \%$ of the rated output current. The ambient temperature $60^{\circ} \mathrm{C}$ corresponds to $72 \%$ * $80 \%$ of the rated output current.

## 55-55PT100 Voltage Level 1

Default: 5.000
Settings $0.000-10.000 \mathrm{~V}$
55-57 PT100 Voltage Level 2
Default: 7.000
Settings $0.000-10.000 \mathrm{~V}$
[a] Condition settings: Pr. 06-57 > Pr. 06-56.

## 55-58PT100 Level 1 Frequency Protection

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

## 56-5 PT100 Activation Level 1 Protection Frequency Delay Time

Default: 60
Settings 0-6000 sec.
PT100 operation instructions
(1) Use voltage type analog input (AVI, AUI, and ACI voltage $0-10 \mathrm{~V}$ ) and select PT100 mode.
(2) Select one of the voltage type analog inputs below: (a) AVI (Pr. 03-00=11), (b) AUI (Pr. 03-02=11), or (c) ACl (Pr. 03-01=11 and Pr. 03-29=1).
(3) When selecting Pr. 03-01 = 11 and Pr. 03-29 = 1, you must switch SW4 to 0-10V for the external I/O board.
(4) The AFM2 outputs constant voltage or current, then Pr. 03-23 = 23. You must switch AFM2 SW2 to 0-20mA for the external I/O board, and set AFM2 output level to $45 \%$ (Pr. 03-33 = $45 \%$ ) of $20 \mathrm{~mA}=9 \mathrm{~mA}$.
(5) Use Pr. 03-33 to adjust the constant voltage or constant current of the AFM2 output; the setting range is $0-100.00 \%$.
(6) There are two types of action levels for PT100. The diagram below shows the PT100 protecting action.

(7) PT100 wiring diagram:


Figure 1

When Pr. 06-58 $=0.00 \mathrm{~Hz}$, PT100 function is disabled.

## Example:

When using PT100, if the motor temperature is higher than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$, the drive starts to count the delay time for auto-deceleration (Pr. 06-59). The drive decreases the motor frequency to the setting for Pr. 06-58 when it reaches the delay time count value. The drive operates at the frequency set for Pr.06-58 until the motor temperature is lower than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$. If the motor temperature is higher than $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$, the drive automatically decelerates to STOP and displays the warning "oH3".

Set up process:

1. Switch AFM2 to $0-20 \mathrm{~mA}$ on the I/O control terminal block. (Refer to Figure 1, PT100 wiring diagram)
2. Wiring (Refer to Figure 1, PT100 wiring diagram):

Connect external terminal AFM2 to (+)
Connect external terminal ACM to (-)
Connect external terminals AFM2 and AVI to "short-circuit"
3. Set Pr. $03-00=11$, Pr. $03-23=23$ or Pr. $03-33=45 \%$ ( 9 mA )
4. Refer to the RTD temperature and resistance comparison table

Temperature $=135^{\circ} \mathrm{C}$, resistance $=151.71 \Omega$; input current: 9 mA , voltage: about $1.37 \mathrm{~V}_{\mathrm{DC}}$
Temperature $=150^{\circ} \mathrm{C}$, resistance $=157.33 \Omega$; input current: 9 mA , voltage: about 1.42 V VC
5. When the RTD temperature $>135^{\circ} \mathrm{C}$, the drive decelerates to the specified operation frequency automatically. Then, Pr. 06-56 $=1.37$ and $\operatorname{Pr} .06-58=10 \mathrm{~Hz}$. When Pr. 06-58 = 0, it disables the specified operation frequency.
6. When the RTD temperature $>150^{\circ} \mathrm{C}$, the drive outputs a fault, decelerates to STOP, and displays the warning "oH3". Then, Pr. 06-57 = 1.42 and Pr. 06-29 $=1$ (warn and ramp to stop).

## 56-6. Software Detection GFF Current Level

Default: 60.0
Settings 0.0-6553.5 \%

## 15-6: Software Detection GFF Filter Time

Default: 0.10
Settings $0.00-655.35 \mathrm{sec}$.
When the drive detects that the unbalanced three-phase output current is higher than the setting for Pr. 06-60, GFF protection activates. The drive then stops output.

## 日6-63

dEb Reset Bias Level
Default: 20.0 / 40.0
Settings 230 V series: $0.0-100.0 \mathrm{~V}_{\mathrm{DC}}$
460 V series: $0.0-200.0 \mathrm{~V}_{\mathrm{DC}}$
Prevents action vibration caused by dEb action level $=$ reset level. dEb active level + Pr. 06-62 = dEb reset bias level.


Default: Read only
Settings 0-65535 days
75-64 Operation Time of Fault Record 1 (Min.)
95-65 Operation Time of Fault Record 2 (Min.)
日6-68
Operation Time of Fault Record 3 (Min.)
65-7
Operation Time of Fault Record 4 (Min.)
Default: Read only
Settings 0-1439 min.
$\square$ If there is any malfunctions when the drive operates, Pr. 06-17-Pr. 06-22 records the malfunctions, and Pr. 06-63-Pr. 06-70 records the operation time for four sequential malfunctions. Check if there is any problem with the drive according to the interval of the recorded fault.

## Example:

The first error: ocA occurs after motor drive operates for 1000 minutes.
The second error: ocd occurs after another 1000 minutes.
The third error: ocn occurs after another 1000 minutes.
The fourth error: ocA occurs after another 1000 minutes.
The fifth error: ocd occurs after another 1000 minutes.
The sixth error: ocn occurs after another 1000 minutes.
Then Pr.06-17-06-22 and Pr.06-63-06-70 are recorded as follows:

|  | $1^{\text {st }}$ fault | $2^{\text {nd }} f a u l t$ | $3^{\text {rd }}$ fault | $4^{\text {th }}$ fault | $5^{\text {th }}$ fault | $6^{\text {th }}$ fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr.06-17 | ocA | ocd | ocn | ocA | ocd | ocn |
| Pr.06-18 | 0 | ocA | ocd | ocn | ocA | ocd |
| Pr.06-19 | 0 | 0 | ocA | ocd | ocn | ocA |
| Pr.06-20 | 0 | 0 | 0 | ocA | ocd | ocn |
| Pr.06-21 | 0 | 0 | 0 | 0 | ocA | ocd |
| Pr.06-22 | 0 | 0 | 0 | 0 | 0 | ocA |
| Pr.06-63 | 0 | 1 | 2 | 2 | 3 | 4 |
| Pr.06-64 | 1000 | 560 | 120 | 1120 | 680 | 240 |
| Pr.06-65 | 0 | 0 | 1 | 2 | 2 | 3 |
| Pr.06-66 | 0 | 1000 | 560 | 120 | 1120 | 680 |
| Pr.06-67 | 0 | 0 | 0 | 1 | 2 | 2 |
| Pr.06-68 | 0 | 0 | 1000 | 560 | 120 | 1120 |
| Pr.06-69 | 0 | 0 | 0 | 0 | 1 | 2 |
| Pr.06-70 | 0 | 0 | 0 | 1000 | 560 | 120 |

※By examining the time record, you can see that that the last fault (Pr.06-17) happened after the drive ran for 4 days and 240 minutes.

## 15-7 : Low Current Setting Level

Default: 0.0
Settings 0.0-100.0 \%
75-75 Low Current Detection Time
Default: 0.00
Settings $0.00-360.00 \mathrm{sec}$.

## 196-73 Low Current Action

Default: 0
Settings 0: No function
1: Warn and coast to stop
2: Warn and ramp to stop by the $2^{\text {nd }}$ deceleration time
3: Warn and continue operation
1 The drive operates according to the setting for Pr. 06-73 when the output current is lower than the setting for Pr. 06-71 and when the time of the low current exceeds the detection time for Pr. 06-72. Use this parameter with the external multi-function output terminal 44 (for low current output).
[1] The low current detection function does not execute when drive is in sleep or standby status.
$\square$ Sets Pr. 06-71 low current level according to the drive's rated current, the equation is Pr. 00-01 (drive's rated current) x Pr. 06-71 (low current setting level)\% = low current detection level (A). The drive changes the setting for Pr. 00-01 (rated current) according to the setting for Pr. 00-16 (load selection).

## 日6-85 PTC Type

Default: 0
Settings 0: PTC
1: KTY84-130
When using KTY84-130, a divider resistance ( $2 \mathrm{k} \Omega$, power $>1 / 4 \mathrm{~W}, \pm 0.1 \%$ ) is needed.Wiring diagram is as below:

When the temperature exceeds the setting level, an oH3 error occurs to the drive. Reset conditions: when the temperature is below the trigger level $-5^{\circ} \mathrm{C}$, the oH3 error is cleared.When the KTY is not connected, or the KTY is burned, the calculated temperature is beyond $-40-150^{\circ} \mathrm{C}$, the temperature is displayed as its lower limit $\left(-40^{\circ} \mathrm{C}\right)$ or upper limit $\left(150^{\circ} \mathrm{C}\right)$ without additional error information. At this time, the drive still trips up the oH3 error, check if the installation is correct.When the temperature detection warning occurs to the KTY-84, select the action according to Pr. 06-29.

## 07 Special Parameters

 $\checkmark$ This parameter can be set during operation.
## 77-9 Software Brake Level

Default:
370.0/740.0/895.0/1057.0

| Settings | 230 V series: $350.0-450.0 \mathrm{~V}_{\mathrm{DC}}$ |
| :--- | :--- |
|  | 460 V series: $700.0-900.0 \mathrm{~V} \mathrm{DC}$ |
|  | 575 V series: $850.0-1116.0 \mathrm{~V}_{\mathrm{DC}}$ |
|  | 690V series: $939.0-1318.0 \mathrm{~V}$ DC |

(1) Sets the brake transistor level for the DC BUS voltage. Choose a suitable brake resistor to achieve the best deceleration. Refer to Chapter 7 Optional Accessories for information about brake resistors.
(1) This parameter is only valid for the models below 30 kW of 460 series and 22 kW of 230 series.

## 7]-9 : DC Brake Current Level

Default: 0
Settings 0-100\%
1 Sets the level of the DC brake current output to the motor during start-up and stop. When you set the DC brake current percentage, the rated current is regarded as $100 \%$. Start with a low DC brake current level, and increase it slowly until the proper brake torque is reached. However, to avoid burning the motor, the DC brake current can NOT exceed the rated current. Therefore, DO NOT use the DC brake for mechanical retention, otherwise injury or accident may occur.
1 The PM has the magnetic field itself, using the DC brake may possibly cause the motor run in a reverse direction, therefore, it is not recommended to use DC brake for PM.

### 7.7.7. DC Brake Time at RUN

Default: 0.0
Settings $0.0-60.0 \mathrm{sec}$.
1 The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. If you use the drive with the motor rotating, it may cause motor damage or trigger drive protection due to over-current. This parameter outputs DC current, generating torque to force the motor stop to get a stable start before motor operation. This parameter determines the duration of the DC brake current output to the motor when the drive starts up. Setting this parameter to 0.0 disables the DC brake at start-up.

Ind The has the magnetic field itself, using the DC brake may possibly cause the motor run in a reverse direction, therefore, it is not recommended to use DC brake for PM. Use Pr. 10-49 zero voltage command to force the motor decelerate or to stop.

## 

Default: 0.0
Settings $0.0-60.0 \mathrm{sec}$.
$\llbracket$ The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. This parameter outputs DC current, generating torque to force the drive stop after the drive stops output to make sure that the motor stops.
[1] This parameter determines the duration of the DC brake current output to the motor when braking. To enable DC brake at STOP, set Pr. 00-22 (Stop Method) to 0 (ramp to stop). The DC brake is invalid when Pr. 07-03 is set to 0.0.Related parameters: Pr. 00-22 Stop Method, Pr. 07-04 DC Brake Frequency at STOP.

## 7-7 DC Brake Frequency at STOP

Default: 0.00
Settings $0.00-599.00 \mathrm{~Hz}$
[1] This parameter determines the start frequency of the DC brake before the drive ramps to stop. When this setting is less than Pr.01-09 (Start-up Frequency), the start frequency of the DC brake starts from the minimum frequency.

(1) Use the DC brake before running the motor when the load is movable at stop, such as with fans and pumps. The motor is in free operating status and in unknown rotation direction before the drive starts up. Execute the DC brake before you start the motor.
10 Use DC Brake at STOP when you need to brake the motor quickly or to control the positioning, such as with cranes or cutting machines.

### 7.7. 5 Voltage Increasing Gain

Default: 100
Settings 1-200\%
1 When using speed tracking, adjust Pr. 07-05 to slow down the increasing voltage gain if there are errors such as oL or oc; however, the speed tracking time will be longer.

## 77-7. Restart after Momentary Power Loss

Default: 0

## Settings 0: Stop operation

1: Speed tracking by speed before the power loss
2: Speed tracking by minimum output frequency
1 Determines the operation mode when the drive restarts from a momentary power loss.
The power system connected to the drive may power off momentarily due to many reasons. This function allows the drive to keep outputting after the drive is repowered and does not cause the drive to stop.
1 Setting 1: Frequency tracking begins before momentary power loss and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is a lot of inertia with little resistance on the motor load.

For example, in equipment with a large inertia flywheel, there is NO need to wait until the flywheel stops completely after a restart to execute the operation command; therefore, it saves time.
(1) Setting 2: Frequency tracking starts from the minimum output frequency and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is little inertia and large resistance.
1 In PG control mode, the AC motor drive executes the speed tracking function automatically according to the PG speed when this setting is NOT set to 0 .
This function is only valid when the RUN command is enabled.

## 7]-97 Allowed Power Loss Duration

Default: 2.0
Settings $0.0-20.0 \mathrm{sec}$.
1 Determines the maximum time of allowable power loss. If the duration of a power loss exceeds this parameter setting, the AC motor drive stops output.
10 Pr.07-06 is valid when the maximum allowable power loss time is $\leq 20$ seconds and the AC motor drive displays "Lv". If the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is $\leq 20$ seconds, the operation mode set in Pr.07-06 does not execute.

## 97-98 Base block Time

Default: Depending on the model power

$$
\text { Settings } \quad 0.0-5.0 \mathrm{sec} .
$$

[al When momentary power loss is detected, the AC motor drive blocks its output and then waits for a specified period of time (determined by Pr. 07-08, called Base Block Time) before resuming operation. Set this parameter to the time that allows the residual voltage at the output side to decrease to 0 V before activating the drive again.
1 This parameter is not only for the B.B. time, but also is the re-start delay time after free run.
10 The RUN command during a free run operation is memorized, and runs or stops with the last frequency command after the delay time.
1 This delay time is only applicable in "Re-start after coast to stop" status, and does not limit ramp to stop. The coast to stop can be caused by various control command source, or by errors.
1 Following table is the recommended setting for re-start delay time of each model power. You must set Pr. 07-08 according to this table (the default of each model power is based on this table as well).

| kW | 007 | 015 | 022 | 037 | 055 | 075 | 110 | 150 | 185 | 220 | 300 | 370 | 450 | 550 | 750 | 900 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HP | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 | 100 | 120 |
| Delay time (sec.) | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 |


| kW | 1100 | 1320 | 1600 | 1850 | 2200 | 2800 | 3150 | 3550 | 4000 | 5000 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HP | 150 | 175 | 215 | 250 | 300 | 375 | 425 | 475 | 536 | 650 |
| Delay time (sec.) | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 |


B.B. Search with last output frequency downward timing chart

B.B. Search with minimum output frequency upward timing chart

B.B. Search with minimum output frequency upward timing chart

## 77-93Current Limit of Speed Tracking

Default: 100
Settings 20-200\%
1 The AC motor drive executes speed tracking only if the output current is greater than the value set in Pr. 07-09.
1 The maximum current for speed tracking affects the synchronous time. The larger the parameter setting is, the faster the synchronization occurs. However, if the parameter setting is too large, the overload protection function may be activated.

## 77-19 Restart after Fault Action

> | Settings | $0:$ Stop operation |
| :--- | :--- |
|  | 1: Speed tracking by current speed |
|  | 2: Speed tracking by minimum output frequency |

In PG control mode, the AC motor drive executes the speed tracking function automatically according to the PG speed when this setting is NOT set to 0 .
[a] Faults include: bb, oc, ov and occ. To restart after oc, ov and occ, you can NOT set Pr. 07-11 to 0 .
! 7 - ! Number of Times of Restart after Fault
Default: 0
Settings 0-10After fault (oc, ov and occ) occurs, the AC motor drive can reset and restart automatically up to 10 times. When Pr. 07-11 is set to 0 , the auto-reset / restart function is disabled after fault. The drive re-starts according to the setting for Pr. 07-10.

1 If the number of faults exceeds the Pr. 07-11 setting, the drive does not reset and restart until you press "RESET" manually and execute the operation command again.

## 17-12 Speed Tracking during Start-up

Default: 0

## Settings 0: Disable

1: Speed tracking by maximum output frequency
2: Speed tracking by motor frequency at start
3: Speed tracking by minimum output frequency
Speed tracking is suitable for punch, fans and other large inertia loads. For example, a mechanical punch usually has a large inertia flywheel, and the general stop method is coast to stop. If it needs to be restarted again, the flywheel may take $2-5$ minutes or longer to stop. This parameter setting allows you to start the flywheel operating again without waiting until the flywheel stops completely. If you can use the speed feedback function (PG + Encoder), this speed tracking function will be faster and more accurate. Set Pr. 07-09 as the tartget of the output current (the maximum current of speed tracking).
1 In PG control mode, the AC motor drive executes the speed tracking function automatically according to the PG speed when this setting is NOT set to 0 .
(1) When using PM, Pr. 07-12 $\neq 0$, the speed tracking function is enabled. When $\operatorname{Pr} .07-12=1,2$ or 3 , the output frequency converts to the actual rotor speed from zero-speed.

## 17-13dEb Function Selection

Default: 0

| Settings0: Disable <br> 1: dEb with auto-acceleration / auto-deceleration, the drive does not output <br> the frequency after the power is restored. <br> 2: dEb with auto acceleration / auto-deceleration, the drive outputs the <br> frequency after the power is restored. <br> 3: dEb low-voltage control, then increase to $350 \mathrm{~V}_{\mathrm{DC}} / 700 \mathrm{~V}_{\mathrm{DC}}$ and decelerate <br> to stop <br> 4: dEb high-voltage control of $350 \mathrm{~V}_{\mathrm{DC}} / 700 \mathrm{~V}_{\mathrm{DC}}$ and decelerate to stop |
| :--- |

1 dEb (Deceleration Energy Backup) lets the motor decelerate to stop when momentary power loss occurs. When the power loss is instantaneous, use this function to let the motor decelerate to zero speed. If the power recovers at this time, the drive restarts the motor after the dEb return time.v return level: Default value depends on the drive power model
Frame A, B, C, D = Pr. 06-00 + 60V/30V ( 230 V series)
Frame E and above $=$ Pr. 06-00 $+80 \mathrm{~V} / 40 \mathrm{~V}$ ( 230 V series)
$\square$ Lv level: Default = Pr. 06-00
1 During dEb operation, other protection such as ryF, ov, oc, occ and EF may interrupt it, and these error codes are recorded.
$1 \square$ The STOP (RESET) command does not work during the dEb auto-deceleration, and the drive continues decelerating to stop. To make the drive coast to stop immediately, use another function (EF) instead.

1 The B.B. function does not work when executing dEb. The B.B. function is enabled after the dEb function finishes.
[10] Even though the Lv warning does not display during dEb operation, if the DC BUS voltage is lower than the Lv level, MOx = 10 (Low voltage warning) still operates.
[1] The following explains the dEb action:
When the DC voltage drops below the dEb setting level, the dEb function starts to work (soft start relay remains closed), and the drive executes auto-deceleration.

- Situation 1: Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.
Pr. 07-13=1, "dEb active, DC BUS voltage returns, output frequency does not return" and power recovers.
When the power recovers and DC BUS voltage exceeds the dEb return level, the drive linearly decelerates to 0 Hz and stops. The keypad displays the "dEb" warning until you manually reset it, so that you can see the reason for the stop.

- Situation 2: Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.
Pr. 07-13=2 "dEb active, DC BUS voltage returns, output frequency returns" and power recovers.
During the dEb deceleration (includes 0 Hz run), if the power recovers higher than dEb return level, the drive maintains the frequency for the set time of Pr. 07-14 (default $=3 \mathrm{sec}$.) and then accelerates again. The dEb warning on the keypad clears automatically.

- Situation 3: Power supply unexpected shut down or power loss

Pr. 07-13=1 "dEb active, DC BUS voltage returns, the output frequency does not return" and the power does not recover.

The keypad displays the "dEb" warning and stops after decelerating to the lowest running frequency. When the DC BUS voltage is lower than the Lv level, the drive disconnects the soft start relay until the power completely runs out.


- Situation 4:

Pr. 07-13=2 "dEb active, DCBUS voltage returns, the output frequency returns" and power does not recover.

The drive decelerates to 0 Hz . The DC BUS voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The keypad displays "dEb" warning until the drive completely runs out of power.

- Situation 5:

Pr. 07-13=2 "dEb low voltage control, when the speed is lower than $1 / 4$ rated motor speed, DCBUS voltage rises to $350 \mathrm{~V} D / 700 \mathrm{~V}$ DC, the drive ramps to stop.

The drive decelerates to 0 Hz . The DC BUS voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The soft start relay closes again after the power recovers and the DC BUS voltage is higher than the Lv return level. When the DC BUS voltage is higher than the dEb return level, the drive maintains the frequency for the set time of Pr. 07-14 (default $=3 \mathrm{sec}$.) and starts to accelerate linearly, and the dEb warning on the keypad clears automatically.

- Situation 6:

Pr. 07-13=4, dEb high-voltage control
When dEb occurs, the DC BUS voltage control level rises to $350 \mathrm{~V}_{D C} / 700 \mathrm{~V}_{\mathrm{DC}}$ to ramp to stop. Even though the power recovers and the frequency does not return, dEb activates until the motor decelerates to 0 Hz .
(1) When dEb activates, it sends dEb warning. When the output frequency reaches 0 Hz , the operation status is STOP and disables the dEb function, the dEb warning continues.
(2) If power does not recover, the DC BUS voltage drops until reaches the Lv level, the drive LvS error occurs (keypad displays LvS error that covers the dEb display), the Soft Start Relay will be OFF.

## 

Default: 3.0
Settings $0.0-25.0 \mathrm{sec}$.
[1] dEb (Deceleration Energy Backup) lets the motor decelerate to stop when momentary power loss occurs. When the power loss is instantaneous, use this function to let the motor decelerate to zero speed.

## 87-15 <br> Dwell Time at Acceleration

Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.
77-!
Dwell Time at Deceleration
Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.
57-15
Dwell Frequency at Acceleration
Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

## 17-98 <br> Dwell Frequency at Deceleration

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[1] In the heavy load situation, Dwell can make stable output frequency temporarily, such as crane or elevator.When the load is heavier, use Pr. 07-15-Pr. 07-18 to avoid ov or oc protection.


## 17-9 Fan Cooling Control

Default: 0

## Settings 0: Fan always ON

1: Fan is OFF after AC motor drive stops for one minute
2: Fan is ON when AC motor drive runs; fan is OFF when AC motor drive stops
3: Fan turns ON when temperature (IGBT) reaches around $60^{\circ} \mathrm{C}$
4: Fan always OFF
$10]$ Use this parameter to control the fan.0 : Fan runs immediately when the drive power is turned ON.
1: Fan runs when AC motor drive runs. One minute after AC motor drive stops, the fan is OFF.
[1] 2: Fan runs when AC motor drive runs and stops immediately when $A C$ motor drive stops.
10. When temperature of the IGBT or capacitance is higher than $60^{\circ} \mathrm{C}$, the fan runs.

When temperature of the IGBT and capacitance are both lower than $40^{\circ} \mathrm{C}$, the fan stops.
[1] 4: Fan is always OFF
10 The control parameters for the applicable fan of each frame are as below:

| Frame | Heat Sink Fan | Capacitor Fan |
| :---: | :---: | :---: |
| A | Pr. 07-19 | No capacitor fan |
| B | Pr. 07-19 | Pr. 07-19 |
| C | Pr. 07-19 | Pr. 07-19 |
| D0 | Pr. 07-19 | Pr. 07-19 |
| D | Pr. $07-19$ | ON |
| E | Pr. 07-19 | Pr. $07-19$ |
| F | Pr. $07-19$ | Pr. 07-19 |
| G | Pr. $07-19$ | No capacitor fan |
| H | Pr. $07-19$ | No capacitor fan |

710 - Emergency Stop (EF) \& Force to Stop Selection
Default: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Coast to stop } \\
& \text { 1: Stop by the } 1^{\text {st }} \text { deceleration time } \\
& \text { 2: Stop by the } 2^{\text {nd }} \text { deceleration time } \\
& \text { 3: Stop by the } 3^{\text {rd }} \text { deceleration time } \\
& \text { 4: Stop by the } 4^{\text {th }} \text { deceleration time } \\
& \text { 5: System deceleration } \\
& \text { 6: Automatic deceleration }
\end{array}
$$

1 When the multi-function input terminal is set to EF input (setting 10) or force to stop (setting 18) and the terminal contact is ON, the drive stops according to the setting of this parameter.


## [7-〕 A Automatic Energy-saving Selection

Default: 0

| Settings | $0:$ Disable |
| :--- | :--- |
|  | 1: Enable |

$\square$ When energy-saving is enabled, the motor acceleration operates with full voltage. During constant speed operation, it automatically calculates the best voltage value according to the load power. This function is not suitable for fluctuating loads or loads which are nearly full during operation.
1 When the output frequency is constant (that is, constant operation), the output voltage decreases automatically as the load decreases. Therefore, the drive operates with minimum multiplication of voltage and current (electric power).
[1] FOCPG IM:
Steady-speed: Torque current is lower than rated current for 0.35 times and entry into energy saving mode after 5 seconds.
Return: Torque current is higher than 0.5 times of rated current.

(1) VF, VFPG, SVC mode:

Steady-speed: When output is light load, entry into energy saving mode after 5 seconds.
Return: When the drive is continuously adding loads, or in non-steady speed status.
[0] FOCPM and FOC sensorless control mode, disable.

## 79-2 Energy-saving Gain

Default: 100
Settings 10-1000\%
[1] When Pr. 07-21 is set to 1 , use this parameter to adjust the energy-saving gain. The default is $100 \%$. If the result is not satisfactory, adjust it by decreasing the setting value. If the motor oscillates, then increase the setting value.
[1] In certain applications such as high speed spindles, the temperature rise in the motor is a major concern. When the motor is not in working state, reduce the motor current to a lower level. Reduce this parameter setting to meet this requirement.

## 19-3 Auto Voltage Regulation (AVR) Function

Default: 0
Settings 0: Enable AVR
1: Disable AVR
2: Disable AVR during deceleration
lal The rated voltage of the motor is usually $200 \mathrm{~V}_{\mathrm{AC}}-240 \mathrm{~V}_{\mathrm{AC}}\left(380 \mathrm{~V}_{\mathrm{AC}}-480 \mathrm{~V}_{\mathrm{AC}}\right), 60 \mathrm{~Hz} / 50 \mathrm{~Hz}$ and the input voltage of the AC motor drive may vary between $170 \mathrm{~V}_{\mathrm{AC}}-264 \mathrm{~V}_{\mathrm{AC}}\left(323 \mathrm{~V}_{\mathrm{AC}}-528 \mathrm{~V}_{\mathrm{AC}}\right)$, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Therefore, when the AC motor drive is used without the AVR function, the output voltage is the same as the input voltage. When the motor runs at the voltage exceeding $12 \%-20 \%$ of the rated voltage, it causes higher temperature, damaged insulation, and unstable torque output, which result in losses due to shorter motor lifetime.
[a] The AVR function automatically regulates the output voltage of the AC motor drive to the motor rated voltage. For example, if the V/F curve is set at $200 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$ and the input voltage is at $200 \mathrm{~V}_{\mathrm{AC}}$ to $264 \mathrm{~V}_{\mathrm{AC}}$, then the drive automatically reduces the output voltage to the motor to a maximum of $200 \mathrm{~V}_{\mathrm{AC}} / 50 \mathrm{~Hz}$. If the input voltage is at $170 \mathrm{~V}_{\mathrm{AC}}$ to $200 \mathrm{~V}_{\mathrm{AC}}$, the output voltage to motor and input power are in direct proportion.
10 0: When the AVR function is enabled, the drive calculates the output voltage according to the actual DC BUS voltage. The output voltage does NOT change when the DC BUS voltage changes.
[1] 1: When the AVR function is disabled, the drive calculates the output voltage according to the actual DC BUS voltage. The DC BUS voltage changes the output voltage, and may cause insufficient or over-current or shock.
1 2: the drive disables the AVR function when decelerating to stop, and may accelerate to brake.
1 When the motor ramps to stop, the deceleration time is shorter when setting this parameter to 2 with auto-acceleration and deceleration, and the deceleration is quicker and more stable.
[al When the control mode is set as FOCPG or TQCPG, it is recommended to set this parameter to 0 (enable AVR).

57-
Default: 0.500
Settings $0.001-10.000 \mathrm{sec}$.When the setting is too long, the control is stable but the control response is delayed. When the setting is too short, the response is quick but the control may be unstable. Adjust the setting according to the stability of the control and response times.

## 77-3 Slip Compensation Filter Time (V/F and SVC Control Mode)

Default: 0.100
Settings $0.001-10.000 \mathrm{sec}$.
Change the compensation response time with Pr.07-24 and Pr.07-25.
If If you set Pr.07-24 and Pr.07-25 to 10 seconds, the compensation response time is the slowest; however, the system may be unstable if you set the time too short.

## 17-5 Torque Compensation Gain (V/F and SVC control mode)

Default: 0

$$
\begin{aligned}
\text { Settings } & \text { IM: } 0-10(\text { when Pr. } 05-33=0) \\
& \text { PM: } 0-5000(\text { when } \operatorname{Pr} .05-33=1 \text { or } 2)
\end{aligned}
$$

■】 Only applicable in IMVF and PMSVC control mode.
1 With a large motor load, a part of drive output voltage is absorbed by the stator winding resistor; therefore, the air gap magnetic field is insufficient. This causes insufficient voltage at motor induction and results in excessive output current but insufficient output torque. Auto-torque compensation can automatically adjust the output voltage according to the load and keep the air gap magnetic fields stable to get the optimal operation
$\mathbb{L} \downarrow$ In the V/F control, the voltage decreases in direct proportion with decreasing frequency. It reduces the torque decrease at low speed due to the AC impedance while the DC resistor is unchanged. The auto-torque compensation function increases the output voltage at low frequency to get a higher starting torque.
When the compensation gain is set too large, it may cause motor over-flux and result in a too large output current, overheating the motor or triggering the protection function.
1 This parameter affects the output current when the drive runs. But the effect is smaller at the low-speed area.
1 Set this parameter higher when the no-load current is too large, but the motor may vibrate if the setting is too high. If the motor vibrates when operating, reduce the setting.

## 77-37 Slip Compensation Gain (V/F and SVC control mode)

Default: 0.00
(1.00 in SVC mode)

Settings 0.00-10.00The induction motor needs constant slip to produce magnetic torque. It can be ignored at higher motor speeds, such as rated speed or $2-3 \%$ of slip.In operation, the slip and the synchronous frequency are in reverse proportion to produce the same magnetic torque. The slip is larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency decreases to a specific value. Therefore, the slip seriously affects the motor speed accuracy at low speed.In another situation, when you use an induction motor with the drive, the slip increases when the load increases. It also affects the motor speed accuracy.

10 Use this parameter to set the compensation frequency, and reduce the slip to maintain the synchronous speed when the motor runs at the rated current in order to improve the accuracy of the drive. When the drive output current is higher than Pr.05-05 (No-load Current of Induction Motor 1 (A)), the drive compensates the frequency with this parameter.
This parameter is set to 1.00 automatically when Pr.00-11 (Speed Control Method) is changed from V/F mode to vector mode. Apply the slip compensation after load and acceleration. Increase the compensation value from small to large gradually; add the output frequency with motor rated slip * Pr.07-27 (Slip Compensation Gain) when the motor is at the rated load. If the actual speed ratio is slower than expected, increase the parameter setting value; otherwise, decrease the setting value.

## 77-9 S Slip Deviation Level

Default: 0
Settings 0.0-100.0\%
0 : No detection

## 77-37 Over Slip Deviation Detection Time

Default: 1.0
Settings $0.0-10.0 \mathrm{sec}$.

## 17-3: <br> Over Slip Deviation Treatment

Default: 0
Settings 0: Warn and continue operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
1 Pr. 07-29 to Pr. 07-31 set the allowable slip level / time and the over-slip action when the drive is running.

## 17-3〕 Motor Shock Compensation Factor

Default: 1000

$$
\begin{array}{ll}
\text { Settings } & 0-10000 \\
& 0: \text { Disable }
\end{array}
$$

[1] If there are current wave motions in the motor in some specific area, setting this parameter can effectively improve this situation. When running with high frequency or PG, set this parameter to 0 . When the current wave motion occurs in low frequency and high-power, increase the value for Pr. 07-32.

## 57-3 3 Auto-restart Interval of Fault

Default: 60.0
Settings $0.0-6000.0 \mathrm{sec}$.
1 When a reset / restart occurs after a fault, the drive uses Pr. 07-33 as a timer and starts counting the numbers of faults within this time period. Within this period, if the number of faults does not exceed the setting for Pr. 07-11, the counting clears and starts from 0 when the next fault occurs.

## 59-38 PMSVC Voltage Feedback Forward Gain

Default: 1.00
Settings $0.50-2.00$Adjusts the PMSVC voltage feedback forward gain, and to meet the demand of rapid feedback application.
(1) Pr. 07-38=1.00 means forward feedback $=\mathrm{Ke}$ * motor rotor speed
[a] Refer to Section 12-2 "PMSVC adjustment" for details.

## 

Default: 8000
Settings 0-65535

## 77-63dEb Gain (Ki)

Default: 150
Settings 0-65535
Sets the PI gain of DC BUS voltage controller when the dEb function activates.
[1] If the DCBUS voltage drops too fast, or the speed vibration occurs during deceleration after the dEb function activates, adjust Pr. 07-62 and Pr. 07-63. Increase the Kp setting to accelerate the control response, but the vibration may occurs if the setting is too large. Use Ki parameter to decrease the steady-state error to zero, increase the setting to accelerate the response speed.

## 08 High－function PID Parameters

$\wedge$ This parameter can be set during operation．

## 98－9 Terminal Selection of PID Feedback

Default：0
Settings 0：No function
1：Negative PID feedback：by analog input（Pr．03－00－03－02）
2：Negative PID feedback：by PG card pulse input，without direction （Pr．10－02）
3：Negative PID feedback：by PG card pulse input，with direction （Pr．10－02）
4：Positive PID feedback：by analog input（Pr．03－00－03－02）
5：Positive PID feedback：by PG card pulse input，without direction （Pr．10－02）

6：Positive PID feedback：by PG card pulse input，with direction （Pr．10－02）
7：Negative PID feedback：by communication protocol
8：Positive PID feedback：by communication protocol
［】］Pr．08－00 $=0$ enables the PID function．
［⿴囗 Negative feedback means：
＋target value－feedback．The detection value increases by increasing the output frequency．
Positive feedback means：
－target value + feedback．The detection value decreases by increasing the output frequency．
［a］When Pr．08－00 $\neq 7$ neither $\neq 8$ ，the input value is disabled．The value of the setting does not remain the same after the drive is off．
$\Perp$ Related applicable parameters：Pr．00－20，Pr．03－00－03－02
When enable the PID function（ $\operatorname{Pr} .08-00 \neq 0$ ），if $\operatorname{Pr} .00-20$ is set to 2 ＂External analog input＂，Pr． $03-00-03-02$ need to be set to 4 ＂PID target value＂accordingly．


# 78-3 Master Frequency Command (AUTO) Source / Source Selection of the PID Target 

 Default: 0Settings 0: Digital keypad

1: RS-485 serial communication
2: External analog input (Refer to Pr. 03-00)
3: External UP/DOWN terminal
4: Pulse input without direction command (Pr. 10-16 without direction), use with PG card

5: Pulse input with direction command (Pr. 10-16), use with PG card
6: CANopen communication card
8: Communication card (does not include CANopen card)

Default: 0
Settings
4: PID target value
Common applications for PID control:
[1] Flow control: Use a flow sensor to feedback the flow data and perform accurate flow control.
[⿴囗 Pressure control: Use a pressure sensor to feedback the pressure data and perform precise pressure control.
Air volume control: Use an air volume sensor to feedback the air volume data to achieve excellent air volume regulation.
[a] Temperature control: Use a thermocouple or thermistor to feedback temperature data for comfortable temperature control.
[1] Speed control: Use a speed sensor or encoder to feedback motor shaft speed or input another machine speed as a target value for closed loop speed control of the master-slave operation. Pr. 10-00 sets the PID set point source (target value).

PID control loop:

$K_{p}$ : Proportional gain (P) $\mathrm{T}_{\mathrm{i}}$ : Integral time (I) $\mathrm{T}_{\mathrm{d}}$ : Derivative control (D) S: Operator

## Concept of PID control

[al Proportional gain (P):
The output is proportional to input. With only proportional gain control, there is always a steady-state error.

Adjustment: Turn off the Ti and Td , or remain Ti and Td in constant value, then adjust the proportional gain (P).
Increase: Faster status feedback, but excessive adjustment will increase the overshoot.
Decrease: Smaller overshoot, but excessive adjustment will slow down the transient response.
[a] Integral time (I):
The controller output is proportional to the integral of the controller input. To eliminate the steady-state error, add an "integral part" to the controller. The integral time controls the relation between integral part and the error. The integral part increases over time even if the error is small. It gradually increases the controller output to eliminate the error until it is zero. This stabilizes the system without a steady-state error by using proportional gain control and integral time control.

Adjustment: The integral time (I) accumulates from the time difference, if the vibration cycle is longer than the setting for integral time, the integration enhances. Increase the integral time (I) to reduce the vibration.
Increase: Reduce the overshoot, excessive adjustment causes worse transient response.
Decrease: Faster transient response, but the transient time will be longer, and takes more time to achieve the steady state. Excessive adjustment causes larger overshoot.
(1) Differential control (D):

The controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. Use the differential control to suppress these effects by acting before the error. That is, when the error is near zero, the differential control should be zero. Use proportional gain (P) and differential control (D) to improve the system state during PID adjustment.

Adjustment: When the vibration cycle is shorter and continuous, it means that the differential time setting is too large, and causes excessive output. Decrease the setting of $D$ gain to reduce the vibration. If the $D$ gain is set to 0 , adjust the PID control again.

## Using PID control in a constant pressure pump feedback application:

Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor sends the actual value as the PID feedback value. After comparing the PID set point and PID feedback, an error displays. The PID controller calculates the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to use a different pump speed and achieves constant pressure control by using a $4-20 \mathrm{~mA}$ signal corresponding to $0-10$ bar as feedback to the drive.


■ Pr. 00-04 = 10 (Display PID feedback (b) (\%)).
■ Pr. 01-12 Acceleration Time is set as according to actual conditions.
■ Pr. 01-13 Deceleration Time is set as according to actual conditions.

- Pr. 00-21 = 0 to operate through the digital keypad.
- Pr. 00-20 = 0, the digital keypad controls the set point.
- Pr. 08-00 = 1 (Negative PID feedback from analog input)

■ ACI analog input Pr. 03-01 = 5, PID feedback signal.

- Pr. 08-01-08-03 is set according to actual conditions:

If there is no vibration in the system, increase Pr. 08-01 (Proportional Gain (P)) If there is no vibration in the system, decrease Pr. 08-02 (Integral Time (I)) If there is no vibration in the system, increase Pr. 08-03 (Differential Time(D))
Refer to Pr. 08-00 to Pr. 08-21 for PID parameter settings.

## 58-8: Proportional Gain (P)

Default: 1.0
Settings $0.0-500.0$
[al 1.0 : Kp gain is $100 \%$; if the setting is $0.5, \mathrm{Kp}$ gain is $50 \%$.
Determines the deviation response of Proportional gain (P). Eliminates the system error; usually used to decrease the error and get faster response speed. it also reduces the steady-state error. But if you set the value too high, it may cause system oscillation and instability.
$\square$ If you set the other two gains (I and D) to zero, proportional control is the only effective parameter.

## 58-9 Integral Time (I)

Default: 1.00
Settings $0.00-100.00 \mathrm{sec}$.
0.00: No integral
$\square$ Use the integral controller to eliminate the error during stable system operation. The integral control does not stop working until the error is zero. The integral is affected by the integral time.

The smaller the integral time, the stronger integral action. It is helpful to reduce overshoot and oscillation for a stable system. Accordingly, the speed to lower the steady-state error decreases. The integral control is often used with the other two controls for the PI controller or PID controller.
[1] Sets the integral time of the I controller. When the integral time is long, there is a small I controller gain, with slower response and slow external control. When the integral time is short, there is a large I controller gain, with faster response and rapid external control.
[1] When the integral time is too short, it may cause system oscillation.
! Set Integral Time to 0.00 to disable Pr. 08-02.

## 58-9 Differential Time (D)

Default: 0.00
Settings $\quad 0.00-1.00 \mathrm{sec}$.
凹】 Use the differential controller to show the system error change, as well as to preview the change in the error. You can use the differential controller to eliminate the error in order to improve the system state. Using a suitable differential time can reduce overshoot and shorten adjustment time; however, the differential operation increases noise interference. Note that a too large differential causes more noise interference. In addition, the differential shows the change and the output is 0 when there is no change. Note that you cannot use the differential control independently. You must use it with the other two controllers for the PD controller or PID controller.
[1] Sets the D controller gain to determine the error change response. Using a suitable differential time reduces the P and I controllers overshoot to decrease the oscillation for a stable system. A differential time that is too long may cause system oscillation.
[1] The differential controller acts on the change in the error and cannot reduce the interference. Do not use this function when there is significant interference.

## 58-74 Upper Limit of Integral Control

Default: 100.0
Settings 0.0-100.0\%
[1] Defines an upper bound for the integral gain (I) and therefore limits the master frequency. The formula is: Integral upper bound = Maximum Operation Frequency (Pr. 01-00) x Pr. 08-04 \%.
[ad An excessive integral value causes a slow response due to sudden load changes and may cause motor stall or machine damage.

## 58-95 PID Output Command Limit

Default: 100.0
Settings 0.0-110.0\%
[ad Defines the percentage of the output frequency limit during the PID control. The formula is Output Frequency Limit $=$ Maximum Operation Frequency (Pr. 01-00) x Pr. 08-05 \%.

## 58-9 PID Feedback Value by Communication Protocol

Default: Read only
Settings -200.00\%-200.00\%
[1] Use communication to set the PID feedback value when the PID feedback input is set to communication (Pr.08-00 $=7$ or 8).

## 78-7 7 PID Delay Time

Default: 0.0
Settings $0.0-35.0 \mathrm{sec}$.
78-3 PID Mode Selection
Default: 0
Settings 0: Serial connection
1: Parallel connection
0: Serial connection, use conventional PID control structure.
1: Parallel connection, the proportional gain, integral gain and differential gain are independent.
You can customize the P, I and D value to fit your application.
[1] Pr. 08-07 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the drive's response rate.
10 PID control output frequency is filtered with a primary low pass function. This function can filter a mix frequencies. A long primary low pass time means the filter degree is high and a short primary low pass time means the filter degree is low.
In Inappropriate delay time setting may cause system error.
$\square$ PI Control:
Controlled only by the P action, so the deviation cannot be entirely eliminated. In general, to eliminate residual deviations, the $\mathrm{P}+\mathrm{I}$ controls. When you use the PI control, it eliminates the deviation caused by the targeted value changes and the constant external interferences. However, if the I action is too powerful, it delays the responde when there is rapid variation. You can use the P action by itself to control the loading system with the integral components.
[1] PD Control:
When deviation occurs, the system immediately generates an operation load that is greater than the load generated only by the $D$ action to restrain deviation increment. If the deviation is small, the effectiveness of the P action decreases as well. The control objects include applications with integral component loads, which are controlled by the P action only. Sometimes, if the integral component is functioning, the whole system may vibrate. In this case, use the PD control to reduce the P action's vibration and stabilize the system. In other words, this control is useful with no brake function's loading over the processes.
凹】 PID Control:
Use the I action to eliminate the deviation and the D action to reduce vibration; then combine this with the $P$ action for the PID control. Use the PID method for a control process with no deviations, high accuracies and a stable system.

## Serial Connection



## Parallel Connection



## 98－98 Feedback Signal Detection Time

Default： 0.0
Settings $0.0-3600.0 \mathrm{sec}$ ．
［1］Pr．08－08 is valid only for $\mathrm{ACI} 4-20 \mathrm{~mA}$ ．
［a］This parameter sets the detection time for abnormal PID signal feedback．Setting the detection time to 0.0 disables the detection function．

## 58－9 Feedback Signal Fault Treatment

Default： 0
Settings 0：Warn and continue operation
1：Warn and ramp to stop
2：Warn and coast to stop
3：Warn and operate at last frequency
【】 This parameter is valid only for $\mathrm{ACl} 4-20 \mathrm{~mA}$ ．
Ild AC motor drive acts when the analog PID feedback is abnormal．

## 98－9 Sleep Reference

Default： 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
［a］Determines the sleep frequency，and if the sleep time and the wake－up frequency are enabled or disabled．Pr．08－10＝0：Disabled；Pr．08－10 $=0$ ：Enabled．

## 日昌－： ：Wake－up Frequency

Default： 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
［1］When Pr．08－18＝0，the unit for Pr．08－10 and that for Pr．08－11 switch to frequency．The settings are become $0-600.00 \mathrm{~Hz}$ ．
（1）When Pr．08－18＝1，the unit for Pr．08－10 and that for Pr．08－11 switch to percentage．The settings then are to $0-200.00 \%$ ．
（1）The percentage is based on the current command value，not the maximum value．For example， if the maximum value is 100 kg ，and the current value is 30 kg ，then if $\operatorname{Pr} .08-11=40 \%$ ，the value is 12 kg ．
［1］Pr．08－10 uses the same logic for calculation．

## 

Default： 0.0
Settings $0.0-6000.0 \mathrm{sec}$ ．
When the frequency command is smaller than the sleep frequency and less than the sleep time， the frequency command is equal to the sleep frequency．However，the frequency command remains at 0.00 Hz until the frequency command becomes equal to or larger than the wake－up frequency．

## 5昌－！ 3 PID Deviation Level

Default： 10.0
Settings 1．0－50．0\％

## 58－14 PID Deviation Time

Default： 5.0
Settings $0.1-300.0 \mathrm{sec}$ ．
［1］When the PID control function is normal，it should calculate the value within a period of time that is close to the target value．
［a］Refer to the PID control diagram for details．When executing PID feedback control，if｜PID reference target value－detection value｜＞Pr．08－13 PID Deviation Level and exceeds Pr．08－14 setting，it is judged as a PID control fault，and the multi－function output MOx $=15$（PID feedback error）activates．

## 58－5 PID Feedback Filter Time

Default： 5.0
Settings $0.1-300.0 \mathrm{sec}$ ．
88－ 16 PID Compensation Selection
Default： 0
Settings 0：Parameter setting（Pr．08－17）
1：Analog input
（1）0：The setting for Pr．08－17 gives the PID compensation value．
1：Set the analog input（Pr．03－00－03－02）to 13，then the PID compensation value of analog input is displayed on Pr．08－17．At this time，Pr．08－17 is read only）．

## 日昌- : 7 PID Compensation

Default: 0.0
Settings -100.0-100.0\%
[1] The PID compensation value $=$ maximum PID target value $\times$ Pr. 08-17. For example, if the maximum operaiton frequency Pr. 01-00 $=60.00 \mathrm{~Hz}$, $\operatorname{Pr} .08-17=10.0 \%$, the PID compensation value increases the output frequency $6.00 \mathrm{~Hz} .60 .00 \mathrm{~Hz} \times 100.00 \% \times 10.0 \%=6.00 \mathrm{~Hz}$

## 98-18

Sleep Mode Function Setting
Default: 0
Settings 0: Refer to PID output command
1: Refer to PID feedback signal
0. The unit for Pr. 08-10 and that for Pr. 08-11 switch to frequency. The settings then are between $0-599.00 \mathrm{~Hz}$.
10] The unit for Pr. 08-10 and that for Pr. 08-11 switch to percentage. The settings then are between 0-200.00\%.

## 58-9 Wake-up Integral Limit

Default: 50.0
Settings 0.0-200.0\%
The wake-up integral limit for the drive prevents suddenly running at high speed when the drive wakes up. The wake-up integral frequency limit $=(\operatorname{Pr} .01-00 \times$ Pr. 08-19\%)Reduces the reaction time from sleep to wake-up.
58-2! Enable PID to Change the Operation Direction
Default: 0
Settings 0: Operation direction cannot be changed
1: Operation direction can be changed

## 18-3 Wake-up Delay Time

Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.
Refer to Pr. 08-18 for more information.

## 198-3 PID Control Flag

Default: 0000h
Settings bit0 $=1$, PID running in reverse follows the setting for Pr. 00-23 bit0 $=0$, PID running in reverse follows PID's calculated value bit1 $=1$, second decimal place of PID Kp bit1 $=0$, first decimal place of PID Kp
[al bit0 = 1: Valid when enables PID running in reverse (Pr. 08-21 = 1).
1 bit0 $=0$, if the PID calculated value is positive, the direction is forward. If the PID calculated value is negative, the direction is reverse.

There are three scenarios for sleep and wake-up frequency. Refer to following explanations:

1) Frequency Command (PID is not in use, Pr. $08-00=0$, only works in VF mode)

When the output frequency $\leq$ the sleep frequency, and the drive reaches the preset sleep time, then the the drive is in sleep mode.

When the frequency command reaches the wake-up frequency, the drive starts to count the wake-up delay time. When the drive reaches the wake-up delay time, the drive begins acceleration time to reach the frequency command value.

2) Frequency Command Calculation of the Internal PID (Use PID, Pr. 08-00 $\neq 0$ and Pr. 08-18=0)

When the PID calculation reaches the sleep frequency, the drive starts to count the sleep time and the output frequency starts to decrease. If the drive exceeds the preset sleep time, it goes directly to sleep mode $(0 \mathrm{~Hz})$. If the drive does not reach the sleep time, it remains at the lower limit (if there is a preset of lower limit.), or it remains at the lowest output frequency set at Pr. 01-07 and waits to reach the sleep time before it goes into sleep mode $(0 \mathrm{~Hz})$.

When the calculated frequency command reaches the wake-up frequency, the drive starts to count the wake-up delay time. Once it reaches the wake-up delay time, the drive starts the acceleration time to reach the PID frequency command value.

Internal PID Calculation Frequency Command


## 3) PID Feedback Rate Percentage (Use PID, Pr. 08-00 $=0$ and Pr. 08-18 = 1)

When the PID feedback rate reaches the sleep level percentage, the drive starts to count the sleep time. The output frequency also decreases. If the drive exceeds the preset sleep time, it goes to sleep mode $(0 \mathrm{~Hz})$. If the drive does not reach the sleep time, it remains at the lower limit (if there is a preset of lower limit.), or it remains at the lowest output frequency set for Pr.01-07 and waits to reach the sleep time before going into sleep mode $(0 \mathrm{~Hz})$.

When the PID feedback value reaches the wake-up percentage, the drive starts to count the wake-up delay time. Once it reaches the wake-up delay time, the drive starts the acceleration time to reach the PID frequency command value.

## Example 01: PID negative feedback

- Pr. 08-10 must > Pr. 08-11
- 30 kg is the reference
- Set the parameter:

Pr. 03-00 $=5$ (AVI is PID feedback)
Pr. 08-00 = 1 (PID negative feedback: AVI simulation input function select)
Pr. 08-10 = 40\% (Sleep reference:

$$
12 \mathrm{~kg}=40 \% * 30 \mathrm{~kg})
$$

Pr. 08-11 = 20\% (Wake-up reference:

$$
6 \mathrm{~kg}=20 \% * 30 \mathrm{~kg})
$$

Case 01: If feedback >12kg, frequency decreases.
Case 02: If feedback <6kg, frequency increases.

| Area | PID <br> Physical quantity |
| :---: | :--- |
| Sleep area | $>12 \mathrm{~kg}$, the drive goes <br> into sleepotor goes <br> into sleep |
| Excessive <br> area | between 6kg and <br> 12 kg, the drive <br> remains in current <br> state |
| Wake-up area | $<6 \mathrm{~kg}$, the drive <br> wakes-upmotor <br> wakes-up |



Example 02: PID positive feedback

- Pr. 08-10 must < Pr. 08-11
- 30 kg is the reference
- Set the parameter:

Pr. 03-00 $=5$ (AVI is PID feedback)
Pr. 08-00 $=4$ (PID positive feedback: AVI simulation input function select)
Pr. 08-10 = 110\% (Sleep reference:

$$
33 \mathrm{~kg}=110 \% * 30 \mathrm{~kg})
$$

Pr. 08-11 = 120\% (Wake-up reference:

$$
36 \mathrm{~kg}=120 \% * 30 \mathrm{~kg})
$$

Case 01: If feedback $<33 \mathrm{~kg}$, frequency decreases.

| Area | PID <br> Physical quantity |
| :---: | :--- |
| Sleep area | $>36 \mathrm{~kg}$, the drive goes <br> into sleepmotor goes <br> into sleep |
| Excessive | between 33kg and <br> area <br> 36kg, the drive remains <br> in the current state |
| Wake-up <br> area | <33kg, the drive <br> wakes-up |

Case 02: If feedback $>36 \mathrm{~kg}$, frequency increases.


## 09 Communication Parameters

$\wedge$ The parameter can be set during the operation.


189-93
Communication Address
Default: 1
Settings 1-254
[1] If RS-485 serial communication controls the AC motor drive, you must set the communication address for this drive in this parameter. Each AC motor drive's communication address must be different.

## 59-1 1 COM1 Transmission Speed

Default: 9.6
Settings $4.8-115.2 \mathrm{Kbps}$
[4] Sets the transmission speed of the computer and the drive.Options are $4.8 \mathrm{Kbps}, 9.6 \mathrm{Kbps}, 19.2 \mathrm{Kbps}, 38.4 \mathrm{Kbps}, 57.6 \mathrm{Kbps}$, and 115.2 Kbps ; otherwise, the transmission speed is set to the default 9.5 Kbps .

## 59-9 COM1 Transmission Fault Treatment

Default: 3
$\begin{array}{ll}\text { Settings } & 0: \text { Warn and continue operation } \\ & \text { 1: Warn and ramp to stop } \\ & \text { 2: Warn and coast to stop } \\ & \text { 3: No warning and continue operation }\end{array}$
Sets the response for Modbus communication errors in with the host. Set the detection time in Pr. 09-03.

## 59-9 9 COM1 Time-out Detection

Default: 0.0
Settings $0.0-100.0 \mathrm{sec}$.
$\llbracket$ Sets the communication transmission time-out.
78-94 COM1 Communication Protocol
Default: 1
Settings 1:7, N, 2 (ASCII)
2:7, E, 1 (ASCII)
3:7, O, 1 (ASCII)
4:7, E, 2 (ASCII)
$5: 7, \mathrm{O}, 2$ (ASCII)
6 : 8, N, 1 (ASCII)
$7: 8, \mathrm{~N}, 2$ (ASCII)

$$
\begin{aligned}
& 8: 8, \mathrm{E}, 1 \text { (ASCII) } \\
& 9: 8, \mathrm{O}, 1 \text { (ASCII) } \\
& 10: 8, \mathrm{E}, 2 \text { (ASCII) } \\
& 11: 8, \mathrm{O}, 2 \text { (ASCII) } \\
& 12: 8, \mathrm{~N}, 1 \text { (RTU) } \\
& 13: 8, \mathrm{~N}, 2 \text { (RTU) } \\
& 14: 8, \mathrm{E}, 1 \text { (RTU) } \\
& 15: 8, \mathrm{O}, 1 \text { (RTU) } \\
& 16: 8, \mathrm{E}, 2 \text { (RTU) } \\
& 17: 8, \mathrm{O}, 2 \text { (RTU) } \\
& \hline
\end{aligned}
$$

(1) Control by PC (Computer Link)

When using the RS-485 serial communication interface, you must specify each drive's communication address in Pr. 09-00. The computer then implements control using the drives' individual addresses.
1 MODBUS ASCII (American Standard Code for Information Interchange): Each byte of data is the combination of two ASCII characters. For example, one byte of data: 64 Hex, shown as '64' in ASCII, consists of ' 6 ' (36Hex) and '4' (34Hex).

## 1. Code Description

The communication protocol is in hexadecimal, ASCII: "0"..."9", "A"..."F", every hexadecimal value represents an ASCII code. The following table shows some examples.

| Character | $' 0 '$ | $' 1 '$ | $' 2 '$ | $' 3 '$ | $' 4 '$ | $' 5 '$ | $' 6 '$ | $' 7 '$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII code | 30 H | 31 H | 32 H | 33 H | 34 H | 35 H | 36 H | 37 H |


| Character | $' 8 \prime$ | $' 9 '$ | $' A '$ | 'B' | 'C' | 'D' | ' E ' | ' F ' |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII code | 38 H | 39 H | 41 H | 42 H | 43 H | 44 H | 45 H | 46 H |

2. Data Format

10-bit character frame (For ASCII):
(7, N, 2)

(7, E, 1)

(7, O, 1)

| Start bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | Odd parity | Stop bit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 7-data bits <br> 10-bits character frame |  |  |  |  |  |  |

11-bit character frame (For RTU):
( $8, \mathrm{~N}, 2$ )

(8, E, 1)

(8, O, 1)


## 3. Communication Protocol

Communication Data Frame:
ASCII mode:

| STX | Start character = ' ${ }^{\prime}$ ( 3 AH ) |
| :---: | :---: |
| Address High | Communication address: one 8-bit address consists of 2 ASCII codes |
| Address Low |  |
| Function High | Command code: one 8 -bit command consists of 2 ASCII codes |
| Function Low |  |
| DATA ( $\mathrm{n}-1$ ) | Contents of data: <br> $\mathrm{n} \times 8$-bit data consists of 2 n ASCII codes <br> $\mathrm{n} \leq 16$, maximum of 32 ASCII codes ( 20 sets of data) |
| .... |  |
| DATA 0 |  |
| LRC Check High | LRC checksum: one 8 -bit checksum consists of 2 ASCII codes |
| LRC Check Low |  |
| END High | End characters:END1 = CR (0DH), END0= LF(0AH) |
| END Low |  |

RTU mode:

| START | Defined by a silent interval of more than 10 ms |
| :---: | :--- |
| Address | Communication address: 8-bit address |
| Function | Command code: 8-bit command |
| DATA $(\mathrm{n}-1)$ | Contents of data: |
| $\ldots \ldots$. | $\mathrm{N} \times 8$-bit data, $\mathrm{n} \leq 16$ |
| DATA 0 | CRC checksum: |
| CRC Check Low | one 16-bit checksum consists of 2 8-bit characters |
| CRC Check High | Defined by a silent interval of more than 10 ms |
| END |  |

Communication Address (Address)
00 H : broadcast to all AC motor drives
01 H : AC motor drive of address 01
OFH: AC motor drive of address 15
10H: AC motor drive of address 16
:
FEH: AC motor drive of address 254

Function (Function code) and DATA (data characters)
03H: read data from a register
06 H : write to a single register

Example: Reading two continuous data from register address 2102 H, AMD address is 01 H .
ASCII mode:

Command Message:

| STX | ' ${ }^{\prime}$ |
| :---: | :---: |
| Address | '0' |
|  | '1' |
| Function | '0' |
|  | '3' |
| Starting register | '2' |
|  | '1' |
|  | '0' |
|  | '2' |
| Number of register (count by word) | '0' |
|  | '0' |
|  | '0' |
|  | '2' |
| LRC Check | 'D' |
|  | '7' |
| END | CR |
|  | LF |

Response Message

| STX | ' ${ }^{\prime}$ |
| :---: | :---: |
| Address | '0' |
|  | '1' |
| Function | '0' |
|  | '3' |
| Number of register (count by byte) | '0' |
|  | '4' |
| Content of starting register 2102H | '1' |
|  | '7' |
|  | '7' |
|  | '0' |
| Content of register 2103H | '0' |
|  | '0' |
|  | '0' |
|  | '0' |
| LRC Check | '7' |
|  | '1' |
| END | CR |
|  | LF |

RTU mode:
Command Message:

| Address | 01 H |
| :---: | :---: |
| Function | 03 H |
| Starting data register | 21 H |
|  | 02 H |
| Number of register | 00 H |
| (count by word) | 02 H |
| CRC Check Low | 6 FH |
| CRC Check High | F 7 H |

Response Message

| Address | 01 H |
| :---: | :---: |
| Function | 03 H |
| Number of register |  |
| (count by byte) | 04 H |
| Content of register <br> address 2102 H | 17 H |
| Content of register <br> address 2103 H | 70 H |
| CRC Check Low | 00 H |
| CRC Check High | 00 H |

06H: single write, write single data to a register.
Example: Writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .

ASCII mode:

Command Message:

| STX | ' |
| :---: | :---: |
| Address | '0' |
|  | '1' |
| Function | '0' |
|  | '6' |
| Target register | '0' |
|  | '1' |
|  | '0' |
|  | '0' |
| Register content | '1' |
|  | '7' |
|  | '7' |
|  | '0' |
| LRC Check | '7' |
|  | '1' |
| END | CR |
|  | LF |

Response Message

| STX | ':' |
| :---: | :---: |
| Address | '0' |
|  | '1' |
| Function | '0' |
|  | '6' |
| Target register | '0' |
|  | '1' |
|  | '0' |
|  | '0' |
| Register content | '1' |
|  | '7' |
|  | '7' |
|  | '0' |
| LRC Check | '7' |
|  | '1' |
| END | CR |
|  | LF |

RTU mode:
Command Message:
Response Message

| Address | 01 H |
| :---: | :---: |
| Function | 06 H |
| Target register | 01 H |
|  | 00 H |
| Register content | 17 H |
|  | 70 H |
| CRC Check High | 86 H |


| Address | 01 H |
| :---: | :---: |
| Function | 06 H |
| Target register | 01 H |
|  | 00 H |
| Register content | 17 H |
|  | 70 H |
| CRC Check High | 86 H |
|  | 22 H |

10H: write multiple registers (write multiple data to registers). The system can write up to 20 sets of data simultaneously.
Example: Set the multi-step speed of an AC motor drive (address is 01 H ),
Pr. 04-00 = 50.00 (1388H), Pr. 04-01 = 40.00 (0FAOH).

## ASCII Mode

Command Message:

| STX | $\because$ |
| :---: | :---: |
| ADR 1 | '0' |
| ADR 0 | '1' |
| CMD 1 | '1' |
| CMD 0 | '0' |
| Target register | '0' |
|  | '5' |
|  | '0' |
|  | '0' |
| Number of register (count by word) | '0' |
|  | '0' |
|  | '0' |
|  | '2' |
| Number of register (count by byte) | '0' |
|  | '4' |
| The first data content | '1' |
|  | '3' |
|  | '8' |
|  | '8' |
| The second data content | '0' |
|  | 'F' |
|  | 'A' |
|  | '0' |
| LRC Check | '9' |
|  | 'A' |
| END | CR |
|  | LF |

Response Message

| STX | ' ${ }^{\prime}$ |
| :---: | :---: |
|  | '0' |
|  | '1' |
| CMD 1 | '1' |
| CMD 0 | '0' |
| Target register | '0' |
|  | '5' |
|  | '0' |
|  | '0' |
| Number of register (count by word) | '0' |
|  | '0' |
|  | '0' |
|  | '2' |
| LRC Check | 'E' |
|  | '8' |
| END | CR |
|  | LF |

Response Message:

| ADR | 01 H |
| :---: | :---: |
| CMD | 10 H |
| Target register | 05 H |
|  | 00 H |
| Number of register | 00 H |
| (Count by word) | 02 H |
| CRC Check Low | 41 H |
| CRC Check High | 04 H |


| ADR | 01 H |
| :---: | :---: |
| CMD | 10 H |
| Target register | 05 H |
|  | 00 H |
| Number of register |  |
| (Count by word) | 00 H |
| Quantity of data (byte) | 02 H |
| The first data content | 04 |
|  | 13 H |
| Th | 88 H |
| CRC Check Low | AOH |
| CRC Check High | 'A' |

Check sum
ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

## Example:

$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is D 7 H .

RTU mode:
CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFh.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.

Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right, fill MSB with zero, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right, fill MSB with zero, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.

Step 5: Repeat step 3 and 4 until you perform eight shifts. This processes a complete 8-bit byte.
Step 6: Repeat step 2 through 5 for the next 8 -bit byte of the command message. Continue doing this until all bytes are processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, that is, the lower order byte is transmitted first.

The following is an example of CRC generation using $C$ language. The function takes two arguments:

Unsigned char* data $\leftarrow$ a pointer to the message buffer
Unsigned char length $\leftarrow$ the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)
\{
int j;
unsigned int reg_crc=0xffff;
while(length--)\{
reg_crc ^= *data++;

$$
\text { for }(j=0 ; j<8 ; j++)\{
$$

if(reg_crc \& 0x01)\{ /* LSB(b0)=1 */
reg_crc=(reg_crc>>1) ^ 0xa001;
\}else\{
reg_crc=reg_crc >>1;
\}
\}
\}
return reg_crc; // return register CRC
\}

## 4. Address list

AC motor drive parameters

| Modbus <br> address | Function |
| :---: | :---: |
| GGnnH | GG is the parameter group, nn is the parameter number; for example, the address of <br> Pr. 04-10 is 040 AH. |

Control command (20xx)


Status monitor read only (21xx)

| Modbus <br> address | R/W | Function |  |
| :---: | :---: | :--- | :--- |
| 2100 H | R | High byte: Warn Code <br> Low Byte: Error Code |  |


| Modbus <br> address | R/W | Function |  |
| :--- | :---: | :--- | :--- |

Status monitor read only (22xx)

| Modbus <br> address | RW | Function |
| :--- | :---: | :--- |
| 2200 H | R | Display output current (A). When current is higher than 655.35, it shifts the <br> decimal as (XXX. A A). The decimal can refer to High byte of 211F. |
| 2201 H | R | Display counter value (c) |
| 2202 H | R | Actual output frequency (XXXXX Hz) |
| 2203 H | R | DC BUS voltage (XXX.X V) |
| 2204 H | R | Output voltage (XXX.X V) |


| Modbus address | RW | Function |
| :---: | :---: | :---: |
| 2205H | R | Power angle (XXX.X) |
| 2206H | R | Display actual motor speed kW of U, V, W (XXXXX kW) |
| 2207H | R | Display motor speed in rpm estimated by the drive or encoder feedback (XXXXX rpm) |
| 2208H | R | Display positive/negative output torque in \%, estimated by the drive ( t 0.0 : positive torque, -0.0: negative torque) (XXX.X \%) |
| 2209H | R | Display PG feedback (see NOTE 1 in Pr. 00-04) |
| 220AH | R | PID feedback value after enabling PID function (XXX. XX \%) |
| 220BH | R | Display signal of AVI analog input terminal, $0-10 \mathrm{~V}$ corresponds to $0.00-100.00 \%$ (1.) (see NOTE 2 in Pr. 00-04) |
| 220 CH | R | Display signal of ACl analog input terminal, $4-20 \mathrm{~mA} / 0-10 \mathrm{~V}$ corresponds to $0.00-100.00 \%$ (2.) (see NOTE 2 in Pr. 00-04) |
| 220DH | R | Display signal of AUI analog input terminal, -10V-10V corresponds to -100.00-100\% (3.) (see NOTE 2 in Pr. 00-04) |
| 220EH | R | IGBT temperature of drive power module (XXX. ${ }^{\circ} \mathrm{C}$ ) |
| 220FH | R | The temperature of capacitance (XXX. $\mathrm{X}^{\circ} \mathrm{C}$ ) |
| 2210H | R | The status of digital input (ON/OFF), refer to Pr. 02-12 (see NOTE 3 in Pr. 00-04) |
| 2211H | R | The status of digital output (ON/OFF), refer to Pr. 02-18 (see NOTE 4 in Pr. 00-04) |
| 2212H | R | The multi-step speed that is executing ( S ) |
| 2213H | R | The corresponding CPU pin status of digital input (d.) (see NOTE 3 in Pr. 00-04) |
| 2214H | R | The corresponding CPU pin status of digital output (O.) (see NOTE 4 in Pr. 00-04) |
| 2215H | R | Number of actual motor revolution (PG1 of PG card) (P.) it starts from 9 when the actual operation direction is changed or the keypad displays at stop is 0 . The maximum is 65535 |
| 2216H | R | Pulse input frequency (PG2 of PG card) (XXX. XX Hz) |
| 2217H | R | Pulse input position (PG card PG2), the maximum setting is 65535. |
| 2218H | R | Position command tracing error |
| 2219 H | R | Display times of counter overload (XXX. XX \%) |
| 221AH | R | GFF (XXX. XX \%) |
| 221BH | R | DCBUS voltage ripples (XXX. X V ) |
| 221 CH | R | PLC register D1043 data (C) |
| 221DH | R | Number of poles of a permanent magnet motor |
| 221EH | R | User page displays the value in physical measure |
| 221FH | R | Output Value of Pr. 00-05 (XXX. XX Hz) |
| 2220H | R | Number of motor turns when drive operates (saves when drive stops, and resets to zero when operating) |
| 2221H | R | Operating position of the motor (saves when drive stops, and resets to zero when operating) |
| 2222H | R | Fan speed of the drive (XXX \%) |
| 2223H | R | Control mode of the drive 0: speed mode 1: torque mode |
| 2224H | R | Carrier frequency of the drive ( XX kHz ) |
| 2225H | R | Reserve |
| 2226H | R | Drive  <br> status 00b: No direction <br> bit1-0 01b: Forward <br>  10b: Reverse <br> bit3-2 01b: Drive ready <br>  10b: Error <br> bit4 0b: Motor drive did not output <br>  1b: Motor drive did output |


| Modbus address | RW | Function |
| :---: | :---: | :---: |
|  |  | bit5 Ob: No alarm <br>  1b: Alarm |
| 2227H | R | Drive's estimated output torque (positive or negative direction) (XXXX Nt-m) |
| 2228H | R | Torque command (XXX. ${ }^{\text {\% \% ) }}$ |
| 2229H | R | kWh display (XXXX.X) |
| 222AH | R | PG2 pulse input in Low Word |
| 222BH | R | PG2 pulse input in High Word |
| 222CH | R | Motor actual position in Low Word |
| 222DH | R | Motor actual position in High Word |
| 222EH | R | PID reference (XXX. ${ }^{\text {( }}$ \% \%) |
| 222FH | R | PID offset (XXX. XX \%) |
| 2230 H | R | PID output frequency (XXX.XX Hz) |
| 2231H | R | Hardware ID |

Remote IO (26xx)

| Modbus address | RW | Function |
| :---: | :---: | :---: |
| 2601H | R | Each bit corresponds to different terminal input contact |
| 2602H | R | Each bit corresponds to different terminal input contact |
| $\begin{gathered} 2603 \mathrm{H}- \\ 2640 \mathrm{H} \end{gathered}$ | R | Reserved |
| 2641H | RW | Each bit corresponds to different terminal output contact |
| $\begin{gathered} 2642 \mathrm{H}- \\ 2660 \mathrm{H} \end{gathered}$ | R | Reserved |
| 2661H | R | AVI proportional value |
| 2662H | R | ACI proportional value |
| 2663H | R | AUI proportional value |
| $\begin{aligned} & 2664 \mathrm{H}- \\ & 266 \mathrm{AH} \end{aligned}$ | R | Reserved |
| 266BH | R | Expansion card AI10, 0.0-100.0 \% (EMC-A22A) |
| 266CH | R | Expansion card AI11, 0.0-100.0 \% (EMC-A22A) |
| $\begin{gathered} 266 \mathrm{DH}- \\ 26 \mathrm{AOH} \end{gathered}$ | R | Reserved |
| 26A1H | RW | AFM1 output proportional value |
| 26A2H | RW | AFM2 output proportional value |
| $\begin{aligned} & \text { 26A3H- } \\ & 26 \mathrm{AAH} \end{aligned}$ | R | Reserved |
| 26ABH | RW | Expansion card AO10, 0.0-100.0 \% (EMC-A22A) |
| 26ACH | RW | Expansion card AO11, 0.0-100.0 \% (EMC-A22A) |

## 5. Exception response:

When the drive is using the communication connection, if an error occurs, the drive responds to the error code and sets the highest bit (bit 7) of code to 1 (function code AND 80H) then responds to the control system to signal that an error occurred.

If the keypad displays "CE-XX" as a warning message, " XX " is the error code at that time. Refer to the table of error codes for communication error for reference.

Example:

ASCII mode:

| STX | ' ${ }^{\prime}$ |
| :---: | :---: |
| Address | '0' |
|  | '1' |
| Function | '8' |
|  | '6' |
| Exception code | '0' |
|  | '2' |
| LRC Check | '7' |
|  | '7' |
| END | CR |
|  | LF |

RTU mode:

| Address | 01 H |
| :---: | :---: |
| Function | 86 H |
| Exception code | 02 H |
| CRC Check Low | C 3 H |
| CRC Check High | A 1 H |

The explanation of exception codes:

| Error code | Explanation |
| :---: | :--- |
| 1 | Function code is not supported or unrecognized. |
| 2 | Address is not supported or unrecognized. |
| 3 | Data is not correct or unrecognized. |
| 4 | Fail to execute this function code |

## 59-9 Communication Response Delay Time

Default: 2.0
Settings $0.0-200.0 \mathrm{~ms}$
Sets the response delay time after the AC motor drive receives a communication command as shown in the following.


59-19 Communication Main Frequency
Default: 60.00
Settings $0.00-599.00 \mathrm{~Hz}$
(1) When you set Pr. 00-20 to 1 (RS-485 serial communication), the AC motor drive saves the last frequency command into Pr. 09-10 when there is abnormal power off or momentary power loss. After the drive reboots when power is restored, it checks the frequency in Pr. 09-10 if no new frequency command is input. When a frequency command of RS-485 changes (the frequency command source must be set as Modbus), this parameter also changes.


Block Transfer 1
Block Transfer 2
Block Transfer 3
Block Transfer 4
Block Transfer 5
Block Transfer 6
Block Transfer 7
Block Transfer 8
Block Transfer 9

Block Transfer 10
Block Transfer 11
Block Transfer 12
Block Transfer 13
Block Transfer 14
Block Transfer 15
Block Transfer 16
Default: 0000h
Settings 0000-FFFFh
[1] There is a group of block transfer parameters available in the AC motor drive (Pr. 09-11-Pr. $09-26$ ). Using communication code 03 H , you can store the parameters (Pr. 09-11-Pr. 09-26) that you want to read.
[1] For example: according to the Address List (as shown in the table below), Pr. 01-42 is shown as 012A. Set Pr. 09-11 to 012Ah (the minimum voltage of Pr. 01-42 M2 is 2.0 V ), and use Pr. 09-11 (communication address 090B) to read the communication parameter, the read value is 2.0 .

| AC motor drive <br> parameters | GGnnH | GG is the parameter group, nn is the parameter number; for <br> example, the address of Pr. 04-10 is 040AH. |
| :---: | :---: | :--- |

59-35Communication Decoding Method
Default: 1
Settings 0 : Decoding Method 1 (20xx)
1: Decoding Method 2 (60xx)

|  |  | Decoding Method 1 | Decoding Method 2 |
| :---: | :---: | :---: | :---: |
| Source of Operation Control | Digital Keypad | Digital keypad controls the drive action regardless of decoding method 1 or 2. |  |
|  | External Terminal | External terminal controls the drive action regardless of decoding method 1 or 2. |  |
|  | RS-485 | Refer to address: 2000h-20FFh | Refer to address: 6000h-60FFh |
|  | CANopen | Refer to index: 2020-01h-2020-FFh | Refer to index:2060-01h-2060-FFh |
|  | Communication Card | Refer to address: 2000h-20FFh | Refer to address: 6000h-60FFh |
|  | PLC | PLC command controls the drive action regardless of decoding method 1 or 2. |  |

79-3 I Internal Communication Protocol
Default: 0
Settings 0: Modbus 485
-1: Internal Communication Slave 1
-2: Internal Communication Slave 2
-3: Internal Communication Slave 3
-4: Internal Communication Slave 4
-5: Internal Communication Slave 5
-6: Internal Communication Slave 6
-7: Internal Communication Slave 7
-8: Internal Communication Slave 8
-10: Internal Communication Master
-12: Internal PLC Control
1 When it is defined as internal communication, refer to Section 16-10 for Main Control Terminal of Internal Communication.
$\square$ When it is defined as internal PLC control, refer to Section 16-12 for Remote 10 control application (using MODRW).

## 59-3 PLC Command Force to 0

Default: 0
Setting bit0: Before PLC scan, set the PLC target frequency $=0$
bit1: Before PLC scan, set the PLC target torque $=0$
bit2: Before PLC scan, set the speed limit of torque control mode $=0$
[1] Defines whether to clear the frequency command or speed command to 0 before the PLC scan time sequence.

## 193-35 PLC Address

Default: 2
Settings 1-254
59-36CANopen Slave Address
Default: 0
Settings 0: Disable
1-127
79-37 CANopen Speed
Default: 0
Settings 0: 1Mbps
1: 500 Kbps
2: 250 Kbps
3: 125Kbps
4: 100Kbps (Delta only)
5: 50Kbps

## 59-39 CANopen Warning Record

Default: Read only
Settings bit0: CANopen Guarding Time-out
bit1: CANopen Heartbeat Time-out
bit2: CANopen SYNC Time-out
bit3: CANopen SDO Time-out
bit4: CANopen SDO buffer overflow
bit5: CANopen hardware disconnection warning (Can Bus OFF)
bit6: Error protocol of CANopen
bit8: The setting values of CANopen indexes are fail
bit9: The setting value of CANopen address is fail
bit10: The checksum value of CANopen indexes is fail

Default: 1
Settings 0: Disable (Delta-defined decoding method)
1: Enable (CANopen DS402 Standard protocol)
59-\% : CANopen Communication Status
Default: 0
Settings 0: Node Reset State
1: Com Reset State
2: Boot up State
3: Pre-operation State
4: Operation State
5: Stop State

## 59-43 CANopen Control Status

Default: Read Only
Settings 0: Not ready for use state
1: Inhibit start state
2: Ready to switch on state
3: Switched on state
4: Enable operation state
7: Quick stop active state
13: Error reaction activation state
14: Error state

Default: 0
Settings 0: Disable
1: Enable
79-46CANopen Master Address
Default: 100
Settings 0-127
Communication Card Identification
Default: Read only
Settings 0: No communication card
1: DeviceNet Slave
2: Profibus-DP Slave
3: CANopen Slave / Master
4: MODBUS-TCP Slave
5: EtherNet / IP Slave
6: EtherCAT
12: PROFINET

## 78-6: Firmware Version of Communication Card

Default: Read only
Settings Read only

## 19-62 Product Code

Default: Read only
Settings Read only

## 19-63 Error Code

Default: Read only
Settings Read only

## 59-7. Communication Card Address (for DeviceNet and PROFIBUS)

## Default: 1

Settings DeviceNet: 0-63
Profibus-DP: 1-125

## 59-7 Communication Card Speed Setting (for DeviceNet)

Default: 2
Settings Standard DeviceNet:
$0: 125 \mathrm{Kbps}$
1: 250Kbps
2: 500Kbps
3: 1Mbps (Delta only)
Non-standard DeviceNet: (Delta only)
0: 10Kbps
1: 20Kbps
2: 50Kbps
3: 100Kbps
4: 125 Kbps
5: 250 Kbps
6: 500Kbps
7: 800Kbps
8: 1 Mbps

## 59-7 <br> Other Communication Card Speed Setting (for DeviceNet) <br> Default: 0 <br> Settings 0: Standard DeviceNet In this mode, the baud rate can only be $125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ in standard DeviceNet speed. <br> 1: Non-standard DeviceNet <br> In this mode, the baud rate of DeviceNet can be the same as that for CANopen (0-8).

凹】 Use with Pr. 09-71.
[1] Setting 0: The baud rate can only be set to 125 Kbps , 250 Kbps and 500 Kbps .
[ad Setting 1: The DeviceNet communication rate can be the same as that for CANopen (setting 0-8).

Communication Card IP Configuration (for MODBUS TCP)
Default: 0
Settings 0: Static IP
1: Dynamic IP (DHCP)
(1) Setting 0: Set the IP address manually.
[1] Setting 1: IP address is automatically set by the host controller.
19-76 Communication Card IP Address 1 (for MODBUS TCP)
19-7 Communication Card IP Address 2 (for MODBUS TCP)
89-78 Communication Card IP Address 3 (for MODBUS TCP)
59-75Communication Card IP Address 4 (for MODBUS TCP)
Default: 0
Settings 0-65535
[a] Use Pr. 09-76-09-79 with a communication card.
日9-9.7Communication Card Address Mask 1 (for MODBUS TCP)
5最: Communication Card Address Mask 2 (for MODBUS TCP)
N 5-8 Communication Card Address Mask 3 (for MODBUS TCP)
59-8 Communication Card Address Mask 4 (for MODBUS TCP)
Default: 0
Settings 0-65535
85-84Communication Card Gateway Address 1 (for MODBUS TCP)
89-85Communication Card Gateway Address 2 (for MODBUS TCP)
59-86Communication Card Gateway Address 3 (for MODBUS TCP)
19-87Communication Card Gateway Address 4 (for MODBUS TCP)
Default: 0
Settings 0-65535


Communication Card Password (Low word) (for MODBUS TCP)
Communication Card Password (High word) (for MODBUS TCP)
Default: 0
Settings 0-99

## 59-98

Reset Communication Card (for MODBUS TCP)
Default: 0

| Settings | 0 : Disable |
| :--- | :--- |
|  | 1: Reset, return to default |

## 78-9 Additional Settings for the Communication Card (for MODBUS TCP)

Default: 1
Settings bit0: Enable IP Filter
bit1: Enable internet parameters (1bit)
When IP address is set, this bit is enabled. After updating the communication card parameters, this bit changes to disabled.
bit2: Enable login password (1 bit)
When you enter the login password, this bit is enabled. After updating the communication card parameters, this bit changes to disable.

## 53-93

Communication Card Status (for MODBUS TCP)
Default: 0
Settings bit0: Enable password
When the communication card is set with a password, this bit is enabled. When the password is cleared, this bit is disabled.

## 10 Speed Feedback Control Parameters

$\wedge$ This parameter can be set during operation.
In this parameter group, ASR stands for Adjust Speed Regulator and PG stands for Pulse Generator.

## 19-9 Encoder Type Selection

Default: 0

| Settings | $0:$ Disabled |
| ---: | :--- |
|  | 1: ABZ |
|  | 2: ABZ (Delta encoder for Delta Servo motor) |
|  | 3: Resolver |
|  | 4: ABZ/UVW |
|  | 5: MI8 single phase pulse input |

(1) When using PG expansion card EMC-PG01L or EMC-PG01O, set Pr.10-00=1. These expansion cards are applicable for induction motor (IM) only.
[1] When using EMC-PG01U, set Pr. 10-00=2 (Delta encoder), and make sure SW1 is switched to D (Delta type). If the setting for Pr. 10-00, Pr. 10-01 and Pr. 10-02 has changed, please turn off the drive's power and reboot to prevent permanent magnetic motor (PM) stall. This mode is recommended to use for PM.
[al When using EMC-PG01U, set Pr. 10-00=4 (Standard ABZ/UVW Encoder), and make sure SW1 is switched to $S$ (Standard Type). This mode is applicable for both IM and PM.
[1] When using EMC-PG01R, set Pr. 10-00=3, and set Pr. 10-01 to 1024 ppr, then set Pr. 10-30 after verifying the pole numbers of the resolver.
[1] When using MI8 single-phase pulse input as frequency command, the Pr. 10-02 must set to" 5 : Single-phase input". The drive calculates the MI8 single-phase pulse input speed when the control modes are VF, VFPG, SVC, IM/PM FOC Sensorless and IM/PM TQC Sensorless. If you use the MI8 single-phase pulse input for speed feedback in closed-loop control, you can only use it in VFPG closed-loop control mode.

## 17-17 Encoder Pulses per Revolution

Default: 600
Settings 1-20000
[1] This parameter sets the encoder pulses per revolution (ppr). It is a feedback control signal source when using PG. The encoder sets the number of pulses for the motor rotating through one rotation. The $A / B$ phase cycle generates the pulse number.
[1] This setting is also the encoder resolution. The speed control is more accurate with higher resolution.
[al If you set this parameter incorrectly, it may cause motor stall, drive over-current, or a magnetic pole origin detection error for the PM in closed-loop control. When using the PM, you must perform the pole zero point detection (Pr.05-00 $=4$ ) again if you modify the content of this parameter.

19-7 ${ }^{2}$ 2
Default: 0

## Settings 0: Disable

1: $A / B$ phase pulse input, run forward if the A-phase leads the B-phase by 90 degrees.


2: $A / B$ phase pulse input, run forward if the B-phase leads the A-phase by 90 degrees.


3: Phase $A$ is a pulse input and phase $B$ is a direction input ( $\mathrm{L}=$ reverse direction, $\mathrm{H}=$ forward direction).


B


4: Phase $A$ is a pulse input and phase $B$ is a direction input ( $\mathrm{L}=$ forward direction, $\mathrm{H}=$ reverse direction).


5: Single-phase input

[1] Position control: the PG2 pulse affects the PG1 pulse tracking position.

1. When PG2 is single-pulse, and PG1 is A/B phase pulse, the frequency of position control should be (input pps*2) / (PG1 ppr *4) at constant speed.
2. When PG2 and PG1 are either single-pulse (or both $A / B$ phase pulse), the frequency of position control should be (input pps*2) / (PG1 ppr*2) at constant speed.
3. Due to the edge trigger of the pulse input, the input of $A / B$ phase pulse should be read as 4 times of the frequency; and the single-phase input should be read as twice of the frequency. For inputs with the same pps, the single-phase tracking frequency will be half of the double-phase frequency.
[1] Velocity control: PG2 acts according to the setting for Pr. 10-01 (PG1 ppr), and will not be affected by PG1 pulse (single-phase input or A/B phase pulse). When the setting for Pr. 10-00, Pr.

10-01 and Pr. 10-02 are changed, cycle the power of the motor drive.

1. The speed formula is (input ppr) / (PG1 ppr), when PG1 ppt $=2500, \mathrm{PG} 2$ is single-phase input, and the input pps is 1000 (1000 pulse per second), the speed should be $(1000 / 2500)=0.40 \mathrm{~Hz}$.
2. The same pps inputs of $A / B$ phase pulse or single-phase pulse input should get the same frequency command.

N 17 - 3 Frequency Division Output Setting (Denominator)
Default: 1
Settings 1-255
Sets the denominator for the frequency division of the PG card feedback and output. When you set it to 2 with feedback 1024 ppr, PG OUT (pulse output) of PG card is 1024 / $2=512$ ppr.

## : 17 - 1 Electrical Gear at Load Side A1

N 1 II -15 Electrical Gear at Motor Side B1
N 15-96 Electrical Gear at Load Side A2
$N$ 19-7 Electrical Gear at Motor Side B2
Default: 100
Settings 1-65535
$\square$ Use Pr. 10-04-Pr. 10-07 with the multi-function input terminal (set to 48) to switch to $\operatorname{Pr}$. $10-04-\operatorname{Pr} .10-05$ or Pr. 10-06-Pr. 10-07, as the following shows.


19-98 Treatment for Encoder / Speed Observer Feedback Fault
Default: 2
Settings 0: Warn and continue operation
1: Warn and ramp to stop
2: Warn and coast to stop

19-9 Detection Time of Encoder / Speed Observer Feedback Fault
Default: 1.0
Settings $0.0-10.0 \mathrm{sec}$.
0: Disable
When there is an encoder loss, an encoder signal error, a pulse signal setting error or a signal error, if the duration exceeds the detection time for the encoder feedback fault (Pr. 10-09), the encoder signal error occurs. Refer to Pr. 10-08 for encoder feedback fault treatment.
[1] When the speed controller signal is abnormal, if time exceeds the detection time for the encoder feedback fault (Pr. 10-09), the feedback fault occurs. Refer to Pr. 10-08 for the encoder feedback fault treatment.

## 19-19 Encoder / Speed Observer Stall Level

Default: 115

$$
\begin{array}{ll}
\text { Settings } & 0-120 \% \\
& 0: \text { No function }
\end{array}
$$

This parameter determines the maximum encoder feedback signal allowed before a fault occurs. The maximum operation frequency for Pr.01-00 = 100\%

## II - ! Detection Time of Encoder / Speed Observer Stall

Default: 0.1
Settings $\quad 0.0-2.0 \mathrm{sec}$.
19-12 Encoder / Speed Observer Stall Action
Default: 2
Settings 0: Warn and continue operation
1: Warn and ramp to stop
2: Warn and coast to stop
When the drive output frequency exceeds the encoder/ speed observer stall level (Pr. 10-10), the drive start to count the time. When the error time exceeds the encoder/ speed observer stall detection time (Pr. 10-11), the drive implements the encoder stall treatment.

17-13 Encoder / Speed Observer Slip Range
Default: 50
Settings 0-50\%
0: Disable
: 1 - 14 Detection Time of Encoder/ Speed Observer Slip
Default: 0.5
Settings $0.0-10.0 \mathrm{sec}$.
17 - 5 Encoder / Speed Observer Stall and Slip Error Action
Default: 2
Settings 0: Warn and continue operation
1: Warn and ramp to stop
2: Warn and coast to stop
[a] This parameter acts on the settings for Pr. 10-13-Pr. 10-15:
When the value of (rotation speed - motor frequency) exceeds the Pr. 10-13 setting, and the detection time exceeds Pr. 10-14; the drive starts to count the time. If the detection time exceeds Pr. 10-14, the encoder feedback signal error occurs. Refer to Pr.10-15 for the encoder stall and slip error treatment.

17-15 Pulse Input Type Setting
Default: 0

## Settings 0: Disable

1: A/B phase pulse input, run forward if the A-phase leads the B-phase by 90 degrees.


2: A/B phase pulse input, run forward if the B-phase leads the A-phase by 90 degrees.


3: Phase $A$ is a pulse input and phase $B$ is a direction input ( $\mathrm{L}=$ reverse direction, $\mathrm{H}=$ forward direction).


4: Phase $A$ is a pulse input and phase $B$ is a direction input ( $\mathrm{L}=$ forward direction, $\mathrm{H}=$ reverse direction).


5: MI8 single-phase pulse input
1 When this setting is different from the Pr. 10-02 setting and the source of the frequency command is pulse input ( $\mathrm{Pr} .00-20$ set to 4 or 5 ), it causes a four-time frequency problem .
Example:
Assume that Pr. 10-01=1024, Pr. 10-02=1, Pr. 10-16=3, Pr. 00-20=5, MIx $=37$ and ON, then the pulse needed to rotate the motor one revolution is 4096 (1024*4).
(1) Assume that Pr. 10-01=1024, Pr. 10-02=1, Pr. 10-16=1, Pr. 00-20=5, MIx = 37 and ON, the pulse needed to rotate the motor one revolution is 1024 (1024*1). Position control diagram

(1) Setting procedure of MI8 single-phase pulse input:

Pr. 00-20=4, Pulse input without direction command
Pr.10-01 set as the ppr number of each rotation.
Pr.10-16=5, MI8 single-phase pulse input
[1] MI8 input and PG2 input could both exist at the same time. But PG card Pr. 10-00 and Pr. 10-16 cannot be set as MI8 at the same time.

## 19-17 Electrical Gear A <br> 17-18 Electrical Gear B

Default: 100
Settings 1-65535
(1) Rotation speed = pulse frequency / encoder pulses (Pr. 10-01) * Electrical Gear A / Electrical Gear B.

## 17-19 Positioning for Encoder Position

Default: 0
Settings -32767-2400
[a] Determines the internal position in the position mode.
(1) Use this with the multi-function input terminal setting $=35$ (enable position control).
[】 When set to 0 , it is the $Z$-phase position of the encoder.
[ad The setting range is affected by Pr. 10-01 and Pr. 10-02.
Example:
When Pr. 10-01 $=2500$, Pr. 10-02 $=1$ or 2 , the setting range for Pr. 10-19 is $-32767-10000$.
When Pr. 10-01 = 1024, Pr. 10-02 = 1 or 2 , the setting range for $\operatorname{Pr} .10-19$ is $-32767-4096$.
When Pr. $10-01=2500$, $\operatorname{Pr} .10-02=3,4$ or 5 , the setting range for Pr. $10-19$ is $-32767-2500$.

## 17-37 Error Range for Encoder Position Reached

Default: 10
Settings 0-65535 pulses
$\square$ This parameter determines the range for the internal positioning position reached.
Example:
When you set the position for Pr.10-19 (Positioning for Encoder Position) and Pr.10-20 to 1000, it reaches the position if the position is between 990-1010 after positioning.

## 

Default: 0.100
Settings $0.000-65.535 \mathrm{sec}$.
When you set Pr. 00-20 to 5 and the multi-function input terminal to 37 (OFF), the system treats the pulse command as a Frequency command. Use this parameter to suppress the speed command jump.

## 19-34 FOC \& TQC Function Control

Settings bit0: ASR controller under torque control
(0: use PI as ASR; 1: use P as ASR)
bit11: Activate DC brake when executing the zero torque command (0: ON; 1: OFF)
bit12: FOC Sensorless mode, crossing zero means the speed goes from negative to positive or positive to negative
( 0 : determined by stator frequency; 1 : determined by speed command)
bit15: Direction control in open-loop status
( 0 : Switch ON direction control; 1: Switch OFF direction control)
(1) Set bit $=0$ for closed-loop; any other bit setting for open-loop.

## 19-25 FOC Bandwidth for Speed Observer

Default: 40.0
Settings 20.0-100.0Hz
[1] Setting the speed observer to a higher bandwidth could shorten the speed response time but creates greater noise interference during the speed observation.

## 19-36 FOC Minimum Stator Frequency

Default: 2.0
Settings $\quad 0.0-10.0 \% \mathrm{fN}$
[1] Use this parameter to set the stator frequency minimum level in operation status. This setting ensures the stability and accuracy of observer and avoids interferences from voltage, current and motor parameter. fN is the motor rated frequency.

## 17-7 FOC Low-pass Filter Time Constant

Default: 50
Settings $1-1000 \mathrm{~ms}$
[1] This parameter sets the low-pass filter time constant of a flux observer at start-up. If you cannot activate the motor during high speed operation, lower the setting for this parameter.

## 19-28 FOC Gain of Excitation Current Rise Time

Default: 100
Settings $\quad 33-100 \% \operatorname{Tr}$ (Tr: rotor time constant)
[1] Sets the drive's excitation current rise time when it activates in sensorless torque mode. When the drive's activation time is too long in torque mode, adjust this parameter to a shorter time value.

## 17-39 Top Limit of Frequency Deviation

Default: 20.00
Settings $\quad 0.00-200.00 \mathrm{~Hz}$
[1] Limits the maximum frequency deviation.
[1] If you set this parameter too high, an abnormal feedback malfunction occurs.
[1] If the application needs a higher setting for Pr. 10-29, note that a higher setting results in larger motor slip, which causes a PG Error (PGF3, PGF4). In this case, you can set Pr. 10-10 and Pr. 10-13 to 0 to disable PGF3 and PGF4 detection, but you must make sure the PG wiring and application are correct; otherwise, it may lose the instant PG protection. Pr. 10-29 setting too high is not commonly done.

## 19-39 Resolver Pole Pair

Default: 1
Settings $1-50$
[1] To use the Pr. 10-30 function, you must set Pr. 10-00=3 (Resolver Encoder) first.
17-3:I/F Mode, Current Command
Default: 40
Settings $0-150 \%$ of motor rated current
$\square$ Sets the current command for the drive in low speed area (low speed area: frequency command < Pr. 10-39). When the motor stalls on heavy-duty start-up or forward/ reverse with load, increase the parameter value. If the inrush current is too high and causes oc stall, then decrease the parameter value.

## 19-3 PM FOC Sensorless Speed Estimator Bandwidth

Default: 5.00
Settings $0.00-600.00 \mathrm{~Hz}$
Lad Sets the speed estimator bandwidth. Adjust the parameter to change the stability and the accuracy of the motor speed.
(1)]

If there is low frequency vibration (the waveform is similar to sine wave) during the process, then increase the bandwidth. If there is high frequency vibration (the waveform shows extreme vibration and is like a spur), then decrease the bandwidth.

## 19-34PM Sensorless Speed Estimator Low-pass Filter Gain

Default: 1.00
Settings 0.00-655.35
[1] Changes the response speed of the speed estimator.
[4] If there is low frequency vibration (the waveform is similar to the sine wave) during the process, then increase the gain. If there is high frequency vibration (the waveform shows extreme vibration and is like a spur), then decrease the gain.

## 19-35ARM (Kp) Gain

Default: 1.00
Settings 0.00-3.00
17-36 ARM (Ki) Gain
Default: 0.20
Settings 0.00-3.00
Active Magnetic Regulator Kp / Ki, affects the response of magnetic regulation in the low magnetic area.
[】. If entering the low magnetic area and the input voltage (or DC BUS) plummets (e.g. an unstable power net causes instant insufficient voltage, or a sudden load that makes DC BUS drop), which causes the ACR diverge and oc, then increase the gain. If the Id value of a spur creates large noise in high-frequency output current, decrease the gain to reduce the noise. Decrease the gain will slow down the response.

N 19-37 PM Sensorless Control Word
Default: 0000h
Settings 0000-FFFFh

| bit No. | Function | Description |
| :---: | :--- | :--- |
| 2 | Choose a control mode to start. | 0: Start in IF mode <br> $1:$ Start in VF mode |
| 3 | Choose a mode to stop. | 0: Stop in IF mode <br> $1:$ Stop in VF mode |
| 5 | Choose a control mode to stop | 0: When lower than Pr. 10-40, coast to stop <br> $1:$ When lower than Pr. 10-40, ramp to stop |

## 19-33 Frequency Point to Switch from I/F Mode to PM Sensorless Mode

Default: 20.00
Settings $0.00-599.00 \mathrm{~Hz}$
1 Cal Sets the frequency for the switch point from low frequency to high frequency.
[1] If the switch point is too low, the motor does not generate enough back-EMF to let the speed estimator measure the rotor right position and speed, and causes stall and oc when running at the switch point frequency
10] If the switch point is too high, the active area of $I / F$ is too wide, which generates more current and cannot save energy. If the current value for Pr. 10-31 is too high, the high switch point makes the drive continue to output with the setting value for Pr. 10-31.

## 15-45 Frequency Point to Switch from PM Sensorless Mode to I/F Mode

Default: 20.00
Settings $0.00-599.00 \mathrm{~Hz}$
[1] Sets the switch point from high frequency to low frequency.
[1] If the switch point is too low, the motor does not generate enough back-EMF to let the speed estimator measure the rotor right position and speed when running at the switch point frequency.
[1] If the switch point is too high, the active area of I/F is too wide, which generates more current and cannot save energy. If the current of Pr. 10-31 is too high, the high switch point makes the drive continue to output with the setting value for Pr. 10-31).

17-4 I/F Mode, Id Current Low Pass-Filter Time
Default: 0.2
Settings $\quad 0.0-6.0 \mathrm{sec}$.
[10] Sets the filter time for Pr. 10-31. Smoothly increases the magnetic field to the current command setting value under the I/F mode.
[a] If you want to slowly increase the size of Id, increase the filter time to avoid a Step phenomenon occurs when starting current output. When decrease the filter time (minimum value is 0 ), the current rises faster, then a Step phenomenon occurs.

## 19-43 Initial Angle Detection Pulse Value

Default: 1.0
Settings $0.0-3.0$The angle detection is fixed to 3: Use the pulse injection method to start. The parameter influences the value of the pulse during the angle detection. The larger the pulse, the higher the accuracy of rotator's position. A larger pulse might cause oc.
[1] Increase the parameter when the running direction and the command are opposite during start-up. If oc occurs at start-up, then decrease the parameter.
[1] Refer to Section 12-2 Adjustment \& Application for detailed motor adjustment procedure.

## 19-43PG Card Version

Default: Read only
Settings 0.00-655.35
Corresponding version reference:

| PG02U | 21.XX |
| :--- | :--- |
| PG01U | 31.XX |
| PG01O / PG01L | 11.XX |
| PG02O / PG02L | 14.XX |
| PG01R | 41.XX |

## 17-43 Zero Voltage Time during Start-up

Default: 00.000
Settings 00.000-60.000 sec.
[1] This parameter is valid only when the setting of Pr. 07-12 (Speed Tracking during Start-up) $=0$.
$10]$
When the motor is in static status at start-up, this increases the accuracy when estimating angles. In order to put the motor in static state, set the three-phase drive output to 0 V to the motor. The Pr. 10-49 setting time is the length of time when three-phase output at 0 V .
[1] It is possible that even when you apply this parameter, the motor cannot go into the static state because of inertia or some external force. If the motor does not go into the static state in 0.2 seconds, increase this setting value appropriately.
1 If $\operatorname{Pr} .10-49$ is too high, the start-up time is longer. If it is too low, then the braking performance is weak.

## 18-5 <br> Reverse Angle Limit (Electrical Angle)

Default: 10.00
Settings $0.00-30.00$ degree
When the drive is running forward, if a sudden reverse run occurs and the reverse angle exceeds the setting for Pr. 10-50, then a ScRv error occurs.
(1) This parameter is valid only when the setting of Pr. 07-28 =11 (enable textile machine).

In If the estimated tolerance of start-up angle detection is larger, and causes a reverse run of the motor, this parameter can limit the reverse angle.
［a］Decrease the parameter setting to prevent large reverse angle．If the tolerance is bigger，then increase the parameter setting．If the load is too large at this moment，it may cause oc．

19－5 ：Injection Frequency
Default： 500
Settings $0-1200 \mathrm{~Hz}$This parameter is a high frequency injection command in IPM－HFI sensorless control mode and usually you do not need to adjust it．If a motor＇s rated frequency（for example， 400 Hz ）is too close to the frequency setting for this parameter（that is，the Default of 500 Hz ），it affects the accuracy of the angle detection．Refer to the setting for Pr．01－01 before you adjust this parameter．
［1］If the setting value for Pr．00－17 is lower than Pr．10－51＊10，then increase the frequency of the carrier wave．
［】］Pr．10－51 is valid only when Pr．10－53＝2．

## 17－5 Injection Magnitude

Default：
15．0／30．0／30．0／ 30.0
Settings 0．0－200．0V
230 V series： $0.0-100.0 \mathrm{~V}$
460 V series： $0.0-200.0 \mathrm{~V}$
575 V series： $0.0-200.0 \mathrm{~V}$
690 V series： $0.0-200.0 \mathrm{~V}$
［a］The parameter is the magnitude command for the high frequency injection signal in IPM Sensorless control mode．
［1］Increasing the parameter can increase the accuracy of the angle estimation，but the electromagnetic noise might be louder if the setting value is too high．
［al The system uses this parameter when the motor＇s parameter is＂Auto＂．This parameter influences the angle estimation accuracy．
［1］When the ratio of the salient pole（Lq／Ld）is lower，increase Pr．10－52 to make the angle detection more accurate．
凹】 Pr．10－52 is valid only when Pr．10－53＝2．

## 19－5 PM Initial Rotor Position Detection Method

Default： 0

| Settings | $0:$ Disable |
| :--- | :--- |
|  | 1：Internal $1 / 4$ rated current attracting the rotor to zero degrees |
|  | 2：High frequency injection |
|  | 3：Pulse injection |Set to 2 for IPM；set to 3 for SPM．If these settings cause problems，then set the parameter to 1 ．

## 11 Advanced Parameters

$\wedge$ This parameter can be set during operation.
In this parameter group, ASR stands for Adjust Speed Regulator

## : : - 7 System Control

Default: 0000h

$$
\begin{array}{ll}
\text { Settings } & \text { bit0: Auto-tuning for ASR and APR } \\
& \text { bit1: Inertia estimate (only in FOCPG mode) } \\
\text { bit2: Zero servo } \\
& \text { bit6: OHz linear-cross } \\
& \text { bit7: Save or do not save the frequency } \\
& \text { bit8: Maximum speed for point-to-point position control }
\end{array}
$$

(ad bit0=0: Manual adjustment for ASR and APR gain, Pr. 11-06-Pr. 11-11 are valid and Pr. 11-03-Pr. 11-05 are invalid.
bit0=1: Auto-adjustment for ASR and APR gain, the system automatically generates an ASR setting, Pr. 11-06-Pr. 11-11 are invalid and Pr. 11-03-Pr. 11-05 are valid.

[1] When the drive needs to keep a certain torque at zero-speed, or it needs a steady frequency output at extreme low speed, increase Pr. 11-05 zero-speed bandwidth appropriately. When the speed is in high-speed area, if the output current trembles seriously and makes the drive vibrate, then decrease the high-speed bandwidth.
For example:

| Manual gain | Response: <br> $[$ Pr. 11-10, Pr. 11-11] $>[$ Pr. 11-06, Pr. 11-07] $>$ [Pr. 11-08, Pr. 11-09] |
| :---: | :--- |$|$| Auto gain | Pr. 11-05 = 15 Hz, Pr. 11-03 = 10 Hz, Pr. 11-04 = 8 Hz |
| :---: | :---: |



ASR adjustment- manual gain


ASR adjustment- auto gain
(1)] bit1=0: no function.
bit1=1: Inertia estimation function is enabled. bit1 setting would not activate the estimation process, set Pr. 05-00=12 to begin FOC/TQC Sensorless inertia estimating.


Da] bit2=0: no function.
bit2=1: when frequency command is less than Fmin (Pr. 01-07), it will use the zero-servo function as position control.
bit6 OHz linear-cross function: keeps the S -Curve in linear-cross the OHz point when the S acceleration/ deceleration curves (Pr. 01-24-Pr. 01-27) are set, and the forward/ reverse run cross 0 Hz .
bit6=1: The S acceleration/ deceleration curves (Pr. 01-24-Pr. 01-27) do NOT affect the drive
starts and stops. Forward / reverse rotation crosses the zero point in linear.
bit6=0: The S acceleration / deceleration curves (Pr. 01-24-Pr. 01-27) affect the drive starts and stops. Forward / reverse rotation crosses the zero point after the S-Curve.


Output frequency


Pr. 11-00 bit6=1

Output frequency


Pr. 11-00 bit6=1
(1)] bit 7=0: Save the frequency before power is OFF. When power is ON again, the saved frequency is displayed.
bit7=1: Do not save the frequency before power is OFF. When power is ON again, 0.00 Hz is the displayed frequency.
[4] bit8=0: Pr. 11-43 sets the maximum speed for point-to-point position control bit8=1: The external multi-speed terminal sets the maximum speed for point-to-point position control. When the external multi-speed terminal is 0 , Pr. 11-43 sets the maximum speed.
! : 5 ! Per Unit of System Inertia
Default: 256
Settings 1-65535 (256=1PU)
©a] To get the system inertia from Pr. 11-01, user needs to set Pr. 11-00 to bit1 $=1$ and execute continuous forward/reverse running.
(1) When Pr. $11-01=256$, it is 1 PU . So if you use a 2 HP motor, the 2 HP motor inertia is $4.3 \mathrm{~kg}-\mathrm{cm}^{2}$ according to the table below. If Pr. 11-01 = 10000 after tuning, the system inertia is (10000 / 256) $x 4.3 \mathrm{~kg}-\mathrm{cm}^{2}$.
(1) Perform the operation test with load based on the inertia after tuning. Run the motor in acceleration, deceleration, and steady speed and observe the values. If values between speed feedback and speed command are close, steady-state error is small and overshoot is less, then this inertia is a better one.
[1] If the Iq current command from ASR has high-frequency glitch, then decrease the setting. If the response time of sudden loading is too slow, then increase the setting.
[1] When using torque mode as the control mode, perform the tuning with speed mode first to see if the tuned inertia can work normally. After verifying with speed mode, change the control mode to torque mode.

Unit of induction motor system inertia is ${\mathrm{kg}-\mathrm{cm}^{2} \text { : }}^{2}$

| Power | Setting | Power | Setting | Power | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1HP | 2.3 | 25HP | 142.8 | 175HP | 2150.0 |
| 2HP | 4.3 | 30HP | 176.5 | 250HP | 2800.0 |
| 3HP | 8.3 | 40HP | 202.5 | 300HP | 3550.0 |
| 5HP | 14.8 | 50HP | 355.5 | 375HP | 5139.0 |
| 7.5HP | 26.0 | 60HP | 410.8 | 425HP | 5981.0 |
| 10HP | 35.8 | 75HP | 494.8 | 475HP | 7053.0 |
| 12HP | 54.8 | 100HP | 1056.5 | 600HP | 9643.0 |
| 15HP | 74.3 | 125HP | 1275.3 | 650HP | 10734.0 |
| 20HP | 95.3 | 150HP | 1900.0 | 750HP | 13000.0 |

The base value for induction motor system inertia is set by Pr. 05-38 and the unit is in $\mathrm{kg}-\mathrm{cm}^{2}$.

* : : - $\boldsymbol{H}_{\mathrm{B}} \mathrm{I}$ ASR1 / ASR2 Switch Frequency

Default: 7.00
Settings $5.00-599.00 \mathrm{~Hz}$
Iad Sets the low-speed and high-speed ASR switching point in the FOC area. Provides flexibility to meet two needs: in the high-speed region of the estimator switch point it has a high response, and in the low-speed region of the estimator switch point it has a lower response. The recommended switching point is higher than Pr. 10-39.
Ald A low setting does not cover Pr. 10-39. If the setting is too high, the high-speed range is too narrow.

## : : - 3 ASR1 Low-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM)/ 1-100Hz (PM)
N : : - $\boldsymbol{7}$ H ASR2 High-speed Bandwidth
Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM)/ $1-100 \mathrm{~Hz}$ (PM)

## : : - 75 Zero-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM)/ $1-100 \mathrm{~Hz}$ (PM)
ㄸ.] After estimating inertia and setting Pr. 11-00 bit0=1 (auto-tuning), you can adjust Pr. 11-03, Pr. 11-04 and Pr. 11-05 separately according to the speed response. The larger the setting value, the faster the response. Pr. 11-02 is the switch frequency for the low-speed / high-speed bandwidth.
[1] The position control pulse command ( $\mathrm{Mlx}=37$ ) and P2P position control Kp gain can adjust Pr. 11-05. The higher the value, the lower the steady-state error.

## : 1 - 56 ASR 1 Gain

Default: 10
Settings $\quad 0-40 \mathrm{~Hz}$ (IM) / 1-100Hz (PM)

## : - 88 ASR 2 Gain

Default: 10
Settings $\quad 0-40 \mathrm{~Hz}(\mathrm{IM}) / 0-100 \mathrm{~Hz}$ (PM)

## * it - $\mathrm{S}_{\mathrm{g}}$ ASR 2 Integral Time

Default: 0.100
Settings $0.000-10.000 \mathrm{sec}$.
i : in ASR Gain of Zero Speed
Default: 10
Settings $0-40 \mathrm{~Hz}(\mathrm{IM}) / 0-100 \mathrm{~Hz}$ (PM)
! : ! $!$ ASR Integral Time of Zero Speed
Default: 0.100
Settings $0.000-10.000 \mathrm{sec}$.

Default: 0
Settings 0-150\%
1a This function enables when Pr. 11-00 bit0 $=1$.
[1] Increase the setting for Pr.11-12 to redcue the command tracking difference, and improve the speed response. Use this function for speed tracking applications.
$\square$ Set Pr.11-01 correctly to get excellent improvement of the speed response.


## : : - 3 PDFF Gain Value

Default: 30
Settings 0-200\%
[1] This parameter is invalid when Pr. 05-24 = 1 .
[l] This parameter is valid only when $\operatorname{Pr}$. 11-00 bit0 $=1$.
(1) After you finish estimating and set Pr. 11-00 bit0=1 (auto-tuning), use Pr. 11-13 to reduce overshoot, but a shift of the curve may occur earlier. Set Pr. 11-13 $=0$, when the acceleration time fits the applicable demand, but an overshoot occurs, increase Pr. 11-13 to "the best acceleration without overshoot".
[al Increase Pr. 11-13 to improve the overshoot of speed tracking, but an excessive value may reduce the transient response.
1 Increase Pr. 11-13 to enhance the system stiffness in high-speed steady state, and reduce the speed transient fluctuation at suddenly loading.

Set Pr.11-01 correctly to get excellent improvement of the speed response.

: : : 4 ASR Output Low-pass Filter Time
Default: 0.008
Settings $0.000-0.350 \mathrm{sec}$.
1 Use this to set the ASR command filter time.

## : : - : 5 Notch Filter Depth

Default: 0
Settings 0-20db
: : 16 Notch Filter Frequency
Default: 0.00
Settings $0.00-200.00 \mathrm{~Hz}$Sets the resonance frequency of mechanical system and suppresses the mechanical system resonance.The higher the setting value for Pr. 11-15, the better the mechanical resonance is suppressed.The notch filter frequency is the mechanical frequency resonance.
: : - 7 Forward Motor Torque Limit Quadrant I
: : - $: 8$ Forward Regenerative Torque Limit Quadrant II
N
: : 15 Reverse Motor Torque Limit Quadrant III
N
: 1-9 Reverse Regenerative Torque Limit Quadrant IV
Default: 500
Settings 0-500\%
[1] FOCPG \& FOC Sensorless mode:
The drive rated current $=100 \%$. The setting value for Pr. 11-17-Pr. 11-20 is compared with Pr. $03-00=7,8,9,10$. The minimum of the comparison result is the torque limit. Refer to the torque limit diagram below.
Ial TQCPG and TQC Sensorless mode:
The function of Pr. 11-17-Pr. 11-20 is the same as FOC; however, in this case, the torque command limits the output torque. The minimum value between Pr. 11-17-11-20 and Pr. 06-12 becomes the current output torque limit.
■ VF, VFPG and SVC mode:

## Chapter 12 Description of Parameter Settings | C2000

Pr. 11-17-Pr. 11-20 limit the output current, the percentage base value is the drive's rated current (not the motor's rated current). The minimum value between Pr. 11-17-11-20 and Pr.06-12 becomes the current output limit. In acceleration and steady state operation, when the output current reaches the limit, the ocA (over-current during acceleration) protection or over-current stall prevention under steady-state operation acts. The output frequency drops, and recovers when the output current is lower than the limit value.
[a] Calculation equation for the motor rated torque:
Motor rated torque $=T(N . M)=\frac{P(W)}{\omega(r a d / s)} ; \mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02($ Pr. 05-14);
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03(\operatorname{Pr} .05-15) ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$


【a The control mode is based on $100 \%$ motor rated current except for these four modes: IM: VF, VFPG, SVC / PM: PMSVC modes.

## : : - : Flux Weakening Curve for Motor 1 Gain Value

Default: 90
Settings 0-200\%

## : $\boldsymbol{f}$ ? Flux Weakening Curve for Motor 2 Gain Value

Default: 90
Settings 0-200\%
Id Adjusts the output voltage for the flux-weakening curve.
[al For the spindle application, use this adjustment method:

1. Use it to adjust the output voltage when exceeding rated frequency.
2. Monitor the output voltage.
3. Adjust the Pr. 11-21 (motor 1) or Pr. 11-22 (motor 2 ) setting to make the output voltage reach the motor rated voltage.
4. The larger the setting value, the greater the output voltage.


## : 1 ? 3 Flux Weakening Area Speed Response

Default: 65
Settings 0: Disable
0-150\%
Controls the speed in the flux weakening area. The larger the value set for Pr. 11-23, the faster the acceleration/deceleration. In general, you do not need to adjust this parameter.

## : : -

Default: 10.00
Settings $\quad 0.00-40.00$ (IM) / $0-100.00 \mathrm{~Hz}$ (PM)
[1] Sets the Kp gain of the internal position ( $\mathrm{Mlx}=35$ ).
: : - 5 Gain Value for the APR Feed Forward
Default: 30
Settings 0-100
[al This applies only to the internal position ( $\mathrm{Mlx}=35$ ) and position control pulse command ( $\mathrm{MIx}=$ 37). A larger value can shorten the pulse differential and speed up the position response; however, it may cause overshoot.

## : : 3 E APR Curve Time

Default: 3.00
Settings $0.00-655.35 \mathrm{sec}$.
[al This is valid when the multi-function input terminal is set to 35 (ON). The larger the setting value, the longer the position time.

## ＊1－〕 $\mathbf{I}$ Max．Torque Command

Default： 100
Settings 0－500\％
［1］Determines the upper limit of the torque command（motor rated torque is $100 \%$ ）．
凹】 Calculation equation for the motor rated torque：
Motor rated torque：$T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02(\operatorname{Pr} .05-14)$ ；
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03(\operatorname{Pr} .05-15) ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$
N ：i－D Torque Offset Source
Default： 0
Settings 0：Disable
1：Analog signal input（Pr．03－00）
2：Pr．11－29
3：Controlled by external terminal（Pr．11－30－Pr．11－32）
［1］Determines the source for the torque offset．
［1］When it is set to 3 （external terminal control），the torque offset source follows Pr．11－30，Pr． $11-31$ or Pr．11－32 as the combination of MI setting as 31 ， 32 or 33 commands．Refer to the following chart：

Normally open（N．O．）contact：ON＝contact closed，OFF＝contact open

| Pr．11－32 | Pr．11－31 | Pr．11－30 | Torque Offset |
| :---: | :---: | :---: | :---: |
| Mlx＝33（Low） | Mlx＝32（Mid） | Mlx＝31（High） |  |
| OFF | OFF | OFF | Pr．11－30 |
| OFF | OFF | ON | Pr．11－31 |
| OFF | ON | OFF | Pr．11－30＋Pr．11－31 |
| OFF | ON | ON | Pr．11－32 |
| ON | OFF | OFF | Pr．11－30 + Pr．11－32 |
| ON | OFF | ON | Pr．11－31＋Pr．11－32 |
| ON | ON | OFF | Pr．11－30 $+\operatorname{Pr} .11-31+$ Pr．11－32 |

：：－ 9 Torque Offset Setting
Default： 0.0
Settings－100．0\％－100．0\％
［a］Determines the torque offset command．The motor rated torque is $100 \%$ ．
1 The calculation equation for the motor rated torque：
Motor rated torque：$T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02(\operatorname{Pr} .05-14)$ ；
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03(\operatorname{Pr} .05-15) ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

## : 1 - 3 High Torque Compensation

Default: 30.0
Settings -100.0\%-100.0\%
: : 3 : Middle Torque Compensation
Default: 20.0
Settings -100.0\%-100.0\%
: $\boldsymbol{\text { f }}$ ? Low Torque Compensation
Default: 10.0
Settings -100.0\%-100.0\%
When Pr. 11-28 is set to 3 , the torque-offset source uses Pr. 11-30, Pr. 11-31 or Pr. 11-32 determined by the multi-function input terminals setting ( 31,32 or 33 ). The motor rated torque is $100 \%$.
[1] The calculation equation for the motor rated torque:
Motor rated torque: $T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02(\operatorname{Pr} .05-14)$;
$\omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03(\operatorname{Pr} .05-15) ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

## : : 33 Torque Command Source

Default: 0
Settings 0: Digital Keypad
1: RS-485 communication (Pr. 11-34)
2: Analog signal input (Pr. 03-00)
3: CANopen
5: Communication expansion card
[a] When you set Pr. 11-33 to 0 or 1, set the torque command in Pr. 11-34.
[a] When you set Pr. 11-33 to 2, 3 or 5, Pr. 11-34 only displays the torque command.

## : : - 3 Y Torque Command

Default: 0.0

$$
\text { Settings }-100.0-100.0 \% \text { (Pr. 11-27=100\%) }
$$

$\square$ This parameter is for the torque command. When you set Pr. 11-27 to $250 \%$ and Pr. 11-34 to $100 \%$, the actual torque command $=250 \times 100 \%=250 \%$ motor rated torque.
[a] The drive saves the setting before power is OFF.

## : f - 5 Torque Command Filter Time

Default: 0.000
Settings $0.000-1.000 \mathrm{sec}$.
When the setting is too long, the control is stable but the control response is delayed. When the setting is too short, the response is quick but the control may be unstable. Adjust the setting according to the stability of the control and response for the application.

## ; ; 36 Speed Limit Selection

Default: 0
Settings 0: Set by Pr. 11-37 (Forward Speed Limit) and Pr. 11-38 (Reverse Speed Limit)
1: Set by Pr. 11-37, Pr. 11-38 and Pr. 00-20 (Source of Master Frequency Command)
2: Set by Pr. 00-20 (Source of Master Frequency Command).
Speed limit function: when you use the torque control mode, if the torque command is greater than the load, the motor accelerates until the motor speed equals the speed limit. At this time, it switches to speed control mode to stop acceleration.Pr. 11-36=1:
When the torque command is positive, the forward speed limit is $\operatorname{Pr} .00-20$ and the reverse speed limit is Pr. 11-38.
When the torque command is negative, the forward speed limit is Pr. 11-37 and the reverse speed limit is Pr. 00-20.
For example: In an unwind application, the torque command direction is different from the motor operating direction, and this indicates that the load drives the motor. The speed limit must be Pr. 11-37 or Pr. 11-38. In normal applications, when the motor drives the load and the torque command is in the same direction as the speed limit, only then you can set the speed limit according to Pr. 00-20.
【】 About the keypad display, refer to the LED function descriptions in Chapter10 "Digital Keypad". In torque control, the F page of keypad displays the present speed limit value.


## : 1 - 7 Forward Speed Limit (Torque Mode)

Default: 10
Settings 0-120\%

## : : 38 Reverse Speed Limit (Torque Mode)

Default: 10
Settings 0-120\%
[1] These parameters define the speed limit in the forward and reverse directions in torque mode (Pr. 01-00 maximum operation frequency $=100 \%$ ).

## : : 3 3 Zero Torque Command Mode Selection

Default: 0
Settings 0: Torque mode
1: Speed mode
This parameter is only valid in TQCPG IM and TQCPG PM, and it defines the mode when the speed limit is $0 \%$ or 0 Hz .
(1) When you set Pr. 11-39 to 0, and the speed limit is $0 \%$ or 0 Hz , the motor generates an excitation current, and the torque command Pr. 11-34 limits the torque.
(1) When you set Pr. 11-39 to 1 , and the speed limit is $0 \%$ or 0 Hz , the AC motor drive can generate output torque through the speed controller (the torque limit is Pr. 06-12), and the control mode changes from TQC + PG to FOC + PG mode. The motor has a holding torque. If the speed command is not 0 , the drive automatically changes it to 0 .

## : : - 4 Point-to-Point Position Control Command Source

Default: 0
Settings 0: External terminal
2: RS-485
3: CANopen
5: Communication card

Default: 0000h
Settings 0000-FFFFh

| bit No. | Function | Description |
| :---: | :--- | :--- |
| 0 | Current limit selection of the <br> speed control in torque mode | 0: <br> $1:$The speed control in torque mode, the maximum <br> current limit is the torque command. <br> The speed control in torque mode, the maximum <br> current limit is Pr. 06-12. <br> 1$\quad$ FWD / REV action control |

: : - 4 3 Point- to-Point Position Control Maximum Frequency
Default: 10.00
Settings $0.00-599.00 \mathrm{~Hz}$
: : - 1 -
Default: 1.00
Settings $0.00-655.35 \mathrm{sec}$.
: : - 45 Point-to-Point Position Control Deceleration Time

Settings $0.00-655.35 \mathrm{sec}$.

: : - 4 Torque Output Filter Gain
Default: 0.050
Settings 0.000-65.535
1 Sets the filter gain of the torque output display (keypad display and communication read), including Pr. 00-04 = 8 displays the output torque (\%) that the drive calculates, the output torque (XXX.X \%) of communication address 210B and the positive / negative output torque (\%) that 2208 drive calculates (XXX.X \%).

## 13 Application Parameters by Industry

This parameter can be set during operation.

## 13-7.1 Application Selection

Default: 0

| Settings | 0: Disabled |
| :--- | :--- |
|  | 1: User-defined Parameter |
| 2: Compressor (IM) |  |
|  | 3: Fan |
| 4: Pump |  |
| 10: Air Handling Unit, AHU |  |

[1] Note: after you select the macro, some of the default values adjust automatically according to the application selection.
(1) Group setting 02: Compressor (IM)

The following table lists the relevant compressor application parameters.

| Pr. | Explanation | Settings |
| :---: | :---: | :---: |
| 00-11 | Speed control mode | 0 (V/F control) |
| 00-16 | Load selection | 0 (Normal load) |
| 00-17 | Carrier frequency | Default setting |
| 00-20 | Master frequency command source (AUTO) / Source selection of the PID target | 2 (External analog input) |
| 00-21 | Operation command source (AUTO) | 1 (External terminals) |
| 00-22 | Stop method | 0 (Ramp to stop) |
| 00-23 | Control of motor direction | 1 (Disable reverse) |
| 01-00 | Maximum operation frequency | Default setting |
| 01-01 | Output frequency of motor 1 | Default setting |
| 01-02 | Output voltage of motor 1 | Default setting |
| 01-03 | Mid-point frequency 1 of motor 1 | Default setting |
| 01-04 | Mid-point voltage 1 of motor 1 | Default setting |
| 01-05 | Mid-point frequency 2 of motor 1 | Default setting |
| 01-06 | Mid-point voltage 2 of motor 1 | Default setting |
| 01-07 | Minimum output frequency of motor 1 | Default setting |
| 01-08 | Minimum output voltage of motor 1 | Default setting |
| 01-11 | Output frequency lower limit | 20 (Hz) |
| 01-12 | Acceleration time 1 | 20 (s) |
| 01-13 | Deceleration time 1 | 20 (s) |
| 03-00 | Analog input selection (AVI) | 0 (No function) |
| 03-01 | Analog input selection (ACI) | 1 (Frequency command) |
| 05-01 | Full-load current for induction motor 1 (A) | Default setting |
| 05-03 | Rated speed for induction motor 1 (rpm) | Default setting |
| 05-04 | Number of poles for induction motor 1 | Default setting |

[1] Group setting 03: Fan
The following table lists the relevant fan setting application parameters.

| Pr. | Explanation | Settings |
| :---: | :---: | :---: |
| 00-11 | Speed control mode | 0 (V/F control) |
| 00-16 | Load selection | 0 (Normal load) |
| 00-17 | Carrier frequency | Default setting |
| 00-20 | Master frequency command source (AUTO) / Source selection of the PID target | 2 (External analog input) |
| 00-21 | Operation command source (AUTO) | 1 (External terminals) |
| 00-22 | Stop method | 1 (Coast to stop) |
| 00-23 | Control of motor direction | 1 (Disable reverse) |
| 00-30 | Master frequency command (HAND) source | 0 (Digital keypad) |
| 00-31 | Operation Command (HAND) source | 0 (Digital keypad) |
| 01-00 | Maximum operation frequency | Default setting |
| 01-01 | Output frequency of motor 1 | Default setting |
| 01-02 | Output voltage of motor 1 | Default setting |
| 01-03 | Mid-point frequency 1 of motor 1 | Default setting |
| 01-04 | Mid-point voltage 1 of motor 1 | Default setting |
| 01-05 | Mid-point frequency 2 of motor 1 | Default setting |
| 01-06 | Mid-point voltage 2 of motor 1 | Default setting |
| 01-07 | Minimum output frequency of motor 1 | Default setting |
| 01-08 | Minimum output voltage of motor 1 | Default setting |
| 01-10 | Output frequency upper limit | 50 (Hz) |
| 01-11 | Output frequency lower limit | 35 (Hz) |
| 01-12 | Acceleration time 1 | 15 (s) |
| 01-13 | Deceleration time 1 | 15 (s) |
| 01-43 | V/F curve selection | 2 (Second V/F curve) |
| 02-05 | Multi-function input command 5 (MI5) | 16 (Rotating speed command from ACI) |
| 03-00 | Analog input selection (AVI) | 1 (Frequency command) |
| 03-01 | Analog input selection (ACI) | 1 (Frequency command) |
| 03-28 | AVI terminal input selection | 0 (0-10 V) |
| 03-29 | ACI terminal input selection | 1 (0-10 V) |
| 03-31 | AFM output selection | 0 (0-10 V) |
| 03-50 | Analog input curve selection | 1 (three-point curve of AVI) |
| 07-06 | Restart after momentary power loss | 2 (Speed tracking by minimum output frequency) |
| 07-11 | Number of times of restart after fault | 5 (times) |
| 07-33 | Auto-restart interval of fault | 60 (s) |

(1) Group setting 04: Pump

The following table lists the relevant pump setting application parameters.

| Pr. | Explanation | Settings |
| :---: | :--- | :--- |
| $00-11$ | Speed control mode | 0 (V/F control) |
| $00-16$ | Load Selection | 0 (Normal load) |
| $00-20$ | Master frequency command source (AUTO) <br> / Source selection of the PID target | 2 (External analog input) |
| $00-21$ | Operation command source (AUTO) | 1 (External terminals) |
| $00-23$ | Control of motor direction | 1 (Disable reverse) |
| $01-00$ | Maximum operation frequency | Default setting |
| $01-01$ | Output frequency of motor 1 | Default setting |
| $01-02$ | Output voltage of motor 1 | Default setting |
| $01-03$ | Mid-point frequency 1 of motor 1 | Default setting |
| $01-04$ | Mid-point voltage 1 of motor 1 | Default setting |
| $01-05$ | Mid-point frequency 2 of motor 1 | Default setting |
| $01-06$ | Mid-point voltage 2 of motor 1 | Default setting |
| $01-07$ | Minimum output frequency of motor 1 | Default setting |
| $01-08$ | Minimum output voltage of motor 1 | Default setting |
| $01-10$ | Output frequency upper limit | 50 (Hz) |
| $01-11$ | Output frequency lower limit | 35 (Hz) |
| $01-12$ | Acceleration time 1 | 15 (s) |
| $01-13$ | Deceleration time 1 | 15 (s) |
| $01-43$ | V/F curve selection | 2 (Second V/F curve) |
| $07-06$ | Restart after momentary power loss | 2 (Speed tracking by minimum output |
| frequency) |  |  |
| $07-11$ | Number of times of restart after fault | 5 |
| $07-33$ | Auto-restart interval of fault | 60 (s) |

[a] Group setting 10: Air Handling Unit, AHU
The following table lists the relevant AHU setting application parameters.

| Pr | Explanation | Settings |
| :---: | :---: | :---: |
| 00-04 | Content of multi-function display | 2 |
| 00-11 | Speed control mode | 0 (V/F control) |
| 00-16 | Load Selection | 0 (Normal load) |
| 00-20 | Master frequency command source (AUTO) <br> / Source selection of the PID target | 2 or 0 |
| 00-21 | Operation command source (AUTO) | 1 or 0 |
| 00-22 | Stop method | 1 (Coast to stop) |
| 00-23 | Control of motor direction | 1 (Disable reverse) |
| 00-30 | Master frequency command (HAND) source | 0 (Digital keypad) |
| 00-31 | Operation Command (HAND) source | 0 (Digital keypad) |
| 01-00 | Maximum operation frequency | 50 |
| 01-01 | Output frequency of motor 1 | 50 |
| 01-02 | Output voltage of motor 1 | 380 |
| 01-07 | Minimum output frequency of motor 1 | 0.1 |
| 01-10 | Output frequency upper limit | 50 |
| 01-11 | Output frequency lower limit | 35 |
| 01-34 | Zero-speed mode | 2 |
| 01-43 | V/F curve selection | 2 |
| 02-05 | Multi-function input command 5 (MI5) | 16 or 17 |
| 02-13 | Multi-function output 1 RLY1 | 11 |
| 02-14 | Multi-function output 2 RLY2 | 1 |
| 03-00 | Analog input selection (AVI) | 1 |
| 03-01 | Analog input selection (ACI) | 1 |
| 03-02 | Analog input selection (AUI) | 1 |
| 03-28 | AVI terminal input selection | 0 |
| 03-29 | ACI terminal input selection | 1 |
| 03-20 | Multi-function output 1 (AFM1) | 0 |
| 03-23 | Multi-function output 2 (AFM2) | 0 |
| 03-31 | AFM2 output selection | 0 or 1 |
| 03-50 | Analog input curve selection | 4 (three-point curve of AUI) |
| 07-06 | Restart after momentary power loss | 2 (Speed tracking by minimum output frequency) |
| 07-11 | Number of times of restart after fault | 5 (times) |
| 07-33 | Auto-restart interval of fault | 60 (s) |

## 14 Extension Card Parameter

$\checkmark$ This parameter can be set during operation.
14-77 Extension Card Input Terminal Selection (AI10)
if -
Default: 0
Settings 0: Disable
1: Frequency command
2: Torque command (torque limit in speed mode)
3: Torque compensation command
4: PID target value
5: PID feedback signal
6: Thermistor (PTC / KTY-84) input value
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive / negative torque limit
11: PT100 thermistor input value
13: PID compensation amount
When the setting for Pr. 14-00 and Pr. 14-01 are the same, the AI10 is selected first.
14-9 18 Analog Input Filter Time (AI10)
N $14-19$ Analog Input Filter Time (Al11)
Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.
1 The input analog signal of terminal Al1 and AI2 often includes interferences, which will affect the stability of the control. Use these input delays to filter a noisy analog signal.
10 When the setting for the time constant is too large, the control is stable but the control response is slow. When the setting for time constant is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting according to the control stability or the control response.
$1 \%$ - 19 Analog Input 4-20mA Signal Loss Selection (AI10)
! 4 - ! : Analog Input 4-20mA Signal Loss Selection (AI11)
Default: 0

| Settings | $0:$ Disable |
| :--- | :--- |
|  | 1: Continue operation at the last frequency |
|  | 2: Decelerate to $0 H z$ |
|  | 3: Stop immediately and display ACE |

1 This parameter determines the treatment when the $4-20 \mathrm{~mA}$ signal is lost, when $\operatorname{Pr}$. $14-18=2$, Pr. 14-19 = 2 .

When the setting for Pr. 14-18 or Pr. 14-19 are 0 or 1, the voltage input to AVI and ACI terminal is $0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$. At this moment, $\operatorname{Pr} .14-10$ and $\operatorname{Pr}$. 14-11 are invalid.
1 Setting 1 or 2: Displays the warning code "ANL" on the keypad. It continues blinking until the lost ACl signal is recovered.
11 When the motor drive stops, the warning condition does not continue to exist, so the warning disappears.


Default: 0
Settings 0-23
1 Refer to the function chart below for details setting.
Function Chart

| Settings | Functions | Descriptions |
| :---: | :---: | :---: |
| 0 | Output frequency (Hz) | Maximum frequency Pr.01-00 is processed as 100\%. |
| 1 | Frequency command (Hz) | Maximum frequency Pr.01-00 is processed as 100\%. |
| 2 | Motor speed (Hz) | Maximum frequency Pr.01-00 is processed as 100\%. |
| 3 | Output current (rms) | ( $2.5 \times$ rated current) is processed as $100 \%$ |
| 4 | Output voltage | ( $2 \times$ rated voltage) is processed as $100 \%$ |
| 5 | DC BUS voltage | 450 V (900V)=100\% |
| 6 | Power factor | -1.000-1.000=100\% |
| 7 | Power | ( $2 \times$ rated power) is processed as $100 \%$ |
| 8 | Torque | Full load torque $=100 \%$ |
| 9 | AVI | 0-10 V = 0-100\% |
| 10 | ACI | $4-20 \mathrm{~mA}=0-100 \%$ |
| 11 | AUI | $-10-10 \mathrm{~V}=0-100 \%$ |
| 12 | Iq current command | ( $2.5 \times$ rated current) is processed as 100\% |
| 13 | Iq feedback value | ( $2.5 \times$ rated current) is processed as $100 \%$ |
| 14 | Id current command | ( $2.5 \times$ rated current) is processed as 100\% |
| 15 | Id feedback value | ( $2.5 \times$ rated current) is processed as $100 \%$ |
| 18 | Torque command | Rated torque of motor $=100 \%$ |
| 19 | PG2 frequency command | Maximum frequency Pr.01-00 is processed as 100\%. |
| 20 | CANopen analog output | For CANopen communication analog output |
| 21 | RS-485 analog output | For RS-485 (InnerCOM / MODBUS) analog output |
| 22 | Communication card analog output | For communication analog output (CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01) |
| 23 | Constant voltage output | Pr. 03-32 controls the voltage output level. <br> $0-100 \%$ of Pr. 03-32 corresponds to $0-10 \mathrm{~V}$ of AFM. |
| 25 | CANopen and RS-485 analog output | For CANopen and InnerCOM control output |

## 14- 14 Analog Output 1 Gain (AO10)

N
$94-15$ Analog Output 1 Gain (AO11)

Default: 100.0
Settings 0.0-500.0\%
Adjusts the voltage level outputted to the analog meter from the analog signal (Pr. 14-12, Pr. 14-13) output terminal AFM of the drive.

## 14-16 Analog Output 1 in REV Direction (AO10)

## 14- ! Analog Output 1 in REV Direction (AO11)

Default: 0
$\begin{array}{ll}\text { Settings } & 0 \text { : Absolute output voltage value } \\ & \text { 1: Reverse output } 0 \mathrm{~V} \text {; forward output } 0-10 \mathrm{~V} \\ & \text { 2: Reverse output } 5-0 \mathrm{~V} \text {; forward output } 5-10 \mathrm{~V}\end{array}$
Determines the voltage reverse output when AO10 and AO11 are set as $0-10 \mathrm{~V}(\operatorname{Pr} .14-36=2$, Pr. 14-37 = 2).



Pr. 14-16=1
Pr. 14-17=1


Pr. 14-16=2
Pr. 14-17=2

Analog Output Direction
14-18 Extension Card Input Selection (AI10)
Default: 0
Settings 0 : $0-10 \mathrm{~V}$ (AVI10)
1: $0-20 \mathrm{~mA}(\mathrm{ACl} 10)$
2: 4-20mA (ACI10)
; $4-19$ Extension Card Input Selection (Al11)
Default: 0
$\begin{array}{ll}\text { Settings } & 0: 0-10 \mathrm{~V} \text { (AVI11) } \\ & 1: 0-20 \mathrm{~mA}(\mathrm{ACI} 11) \\ & 2: 4-20 \mathrm{~mA}(\mathrm{ACI} 11)\end{array}$
[1] When you change the input mode, verify that the switch position of external terminal (Al10, Al11) is correct.

14-3 7 AO10 DC Output Setting Level
:
Default: 0.00

Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.

Default: 0
Settings 0:0-10V
1: $0-20 \mathrm{~mA}$
2: 4-20mA

## 12-2 Adjustment \& Application

## 12-2-1 Standard IM Motor Adjustment Procedure

Flow chart



FOC sensorless control diagram


Adjustment procedure

1. Parameter reset to default, $\operatorname{Pr} .00-02=10$ or $\mathbf{9}$
(To avoid other parameters that are not related affecting the motor controlling)
2. Set up motor parameters according to the nameplate on the motor

Pr. 01-01 Output Frequency of Motor 1
Pr. 01-02 Output Voltage of Motor 1
Pr. 05-01 Full-load Current for Induction Motor 1
Pr. 05-02 Rated Power for Induction Motor 1
Pr. 05-03 Rated Speed for Induction Motor 1
Pr. 05-04 Number of Poles for Induction Motor 1
3. Press "RUN" to start auto-tuning of IM magnetic flux curve dynamic test for Pr.05-00 = 1 or 6 (motor is running). Make sure the motor executes auto-tuning under break-away load condition. Check if there are motor parameters after auto-tuning.

Pr. 05-06 Stator Resistance (Rs) for Induction Motor 1
Pr. 05-07 Rotor Resistance (Rr) for Induction Motor 1
Pr. 05-08 Magnetizing Inductance (Lm) for Induction Motor 1
Pr. 05-09 Stator Inductance (Lx) for Induction Motor 1
4. Execute estimation of the motor inertia (optional). Press "RUN" to start the estimation after finishing the settings for the parameters mentioned below.

Pr. 00-10 = 2, torque mode
Pr. 00-13 = 2, TQC sensorless
Pr. 05-00 $=12$, FOC sensorless inertia estimation (motor is running)
After inertia estimation is finished, check if the estimated value for Pr. 11-01 is reasonable, refer to the base value table below. (Unit: $\mathrm{kg}-\mathrm{cm}^{2}$ )

| Power | Setting |
| :---: | :---: |
| 1 HP | 2.3 |
| 2 HP | 4.3 |
| 3 HP | 8.3 |
| 5 HP | 14.8 |
| 7.5 HP | 26.0 |
| 10 HP | 35.8 |
| 12 HP | 54.8 |
| 15 HP | 74.3 |
| 20 HP | 95.3 |


| Power | Setting |
| :---: | :---: |
| 25 HP | 142.8 |
| 30 HP | 176.5 |
| 40 HP | 202.5 |
| 50 HP | 355.5 |
| 60 HP | 410.8 |
| 75 HP | 494.8 |
| 100 HP | 1056.5 |
| 125 HP | 1275.3 |
| 150 HP | 1900.0 |


| Power | Setting |
| :---: | :---: |
| 175 HP | 2150.0 |
| 250 HP | 2800.0 |
| 300 HP | 3550.0 |
| 375 HP | 5139.0 |
| 425 HP | 5981.0 |
| 475 HP | 7053.0 |
| 600 HP | 9643.0 |
| 650 HP | 10734.0 |
| 750 HP | 13000.0 |

5. Execute IM sensorless FOC mode, set up the following parameters:

Pr. 00-10 = 0, set as speed mode
Pr. 00-11 = 5, set as FOC sensorless mode
Pr. 11-00 bit0 $=1$, use ASR gain auto-tuning
Press "RUN" and start the Test with no-load. Accelerate the motor to the rated speed, and then decelerate to stop, check if the motor runs smoothly.

If the motor runs smoothly, then the setting for IM Sensorless FOC is completed. If the motor does not run smoothly, or fails to start at low-frequency, then refer to the following steps for adjustment.
6. Select auto-tuning gain (Pr. 11-00 bit0=1), adjust ASR parameters according to the speed response.

Pr. 11-00 bit0 =1, use auto-tuning for ASR
Pr. 11-03 ASR1 low-speed bandwidth (When the acceleration of low-speed cannot follow the acceleration command, increase the low-speed bandwidth)
Pr. 11-04 ASR2 high-speed bandwidth (When the acceleration in high speed causes vibration or cannot follow the acceleration command, increase high-speed bandwidth)
Pr. 11-05 Zero-speed bandwidth (If the response of start-up is slow or incapable, increase zero-speed bandwidth)
The bigger the setting value for ASR bandwidth, the faster the response.

The low-speed bandwidth cannot be set too high, or the observer will diverge.


ASR adjustment- auto gain
7. Adjust the setting of FOC speed observer and per-unit value of inertia (common problems)
$>$ Pr. 10-25: Set up FOC bandwidth of speed observer
Situation 1. Speed command changes rapidly, but speed response cannot follow.
(Speed response is too slow $\rightarrow$ Increase the setting value)
Situation 2. The noise of the observer is too large, and causes the operation diverged.
(Speed noise is too large $\rightarrow$ Decrease)
$>$ Pr. 11-01: Set up per unit of system inertia
Situation 1. The inrush current is too high at start-up, and causes an oc error.
Situation 2. An ocn error occurs during RUN or STOP, and the motor runs randomly.

- Check Pr. 11-01 whether the JM per-unit of system inertia is too large.
- Decrease Pr. 10-25 FOC bandwidth for speed observer, or Pr. 11-05 zero-speed bandwidth.

8. Related parameters

## 59- : ! Speed Control Mode

Default: 0
Settings 0: IMVF (IM V/F control)
1: IMVFPG (IM V/F control+ Encoder)
2: IM/PM SVC(IM/PM space vector control)
3: IMFOCPG (IM FOC + Encoder)
4: PMFOCPG (PM FOC + Encoder)
5: IMFOC Sensorless (IM FOC sensorless)
6: PM Sensorless (PM FOC sensorless)
7: IPM Sensorless (Interior PM FOC sensorless)

## [1] : Output Frequency of Motor 1 (Base Frequency and Motor Rated Frequency)

Default: 60.00 / 50.00
Settings $0.00-599.00 \mathrm{~Hz}$
[a] Set this value according to the motor's rated frequency from the motor's nameplate. If the motor's rated frequency is 60 Hz , set the value to 60 Hz . If the motor's rated frequency is 50 Hz , set the value to 50 Hz .

Default:
200.0/400.0/575.0/660.0

Settings 230 V series: $0.0-255.0 \mathrm{~V}$
460 V series: $0.0-510.0 \mathrm{~V}$
575 V series: $0.0-637.0 \mathrm{~V}$
690 V series: $0.0-765.0 \mathrm{~V}$
[1] Set this value according to the motor's rated voltage from the motor's nameplate. If the motor's rated voltage is 220 V , set the value to 220.0 V . If the motor's rated voltage is 200 V , set the value to 200.0 V .
[a] There is a wide variety of motors, but the power system for each country is difference. The convenient and economical way to solve this problem is to use an AC motor drive, which can deal with different voltages and frequencies, while supporting the original characteristic and life of the motor.

## 185-93 Motor Parameter Auto-tuning

Default: 0
Settings 0: No function
1: Simple rolling auto-tuning for induction motor (IM)
2: Static auto-tuning for induction motor (IM)
4: Dynamic test for PM magnetic pole (with the running in forward direction)
5: Rolling auto-tuning for PM (IPM / SPM)
6: Advanced rolling auto-tuning for IM flux curve
12: FOC Sensorless inertia estimation
13: Static auto-tuning for PM (IPM / SPM)

## [5-7 Rated Power for Induction Motor 1 (kW)

Default: Depending on the model power
Settings $0.00-655.35 \mathrm{~kW}$
[0] Sets the rated power for motor 1. The default is the drive's power value.
55-7 Rated Speed for Induction Motor 1 (rpm)
Default: Depending on the motor pole number
Settings $\quad 0-\mathrm{XXXX}$ (Depending on the motor pole number)
110 Sets the rated speed for the motor as indicated on the motor nameplate.
$10]$ Pr. 01-01 and Pr. 05-04 determine the maximum rotor speed for IM.
For example: Pr. 01-01=20Hz, Pr. 05-04=2, according to the equation $120 \times 20 \mathrm{~Hz} / 2=1200 \mathrm{rpm}$ and take integers. Due to the slip of the IM, the maximum setting value for Pr. $05-03$ is 1199 rpm (1200rpm - 1).

55-74 Number of Poles for Induction Motor 1
Default: 4
Settings 2-64
[a] Sets the number poles for the motor (must be an even number).
$\square$ Set up Pr. 01-01 and Pr. 05-03 before setting up Pr. 05-04 to make sure the motor operates normally. Pr. 01-01 and Pr. 05-03 determine the maximum set up number poles for the IM.
For example: Pr. 01-01 = 20 Hz and Pr. 05-03 = 39 rpm , according to the equation $120 \times 20 \mathrm{~Hz}$ / $39 \mathrm{rpm}=61.5$ and take even number, the number of poles is 60 . Therefore, Pr. 05-04 can be set to the maximum of 60 poles.

55-5 No-load Current for Induction Motor 1 (A)
Default: Depending on the model power
Settings 0 to the factory setting in Pr.05-01
(1) For model with 110 kW and above, default setting is $20 \%$ of motor rated current.

55-75 Stator Resistance(Rs) for Induction Motor 1
Default: Depending on the model power
Settings 0.000-65.535 $\Omega$
-65-77
Rotor Resistance(Rr) for Induction Motor 1
Default: 0.000
Settings $0.000-65.535 \Omega$

Magnetizing Inductance (Lm) for Induction Motor 1
Stator inductance (Lx) for Induction Motor 1
Default: 0.0
Settings $0.0-6553.5 \mathrm{mH}$

## 19-35 FOC Bandwidth for Speed Observer

Default:40.0
Settings $20.0-100.0 \mathrm{~Hz}$
[a] Setting the speed observer to a higher bandwidth could shorten the speed response time, but creates greater noise interference during the speed observation.

## : 1 - 7 System Control

Default: 0000h
Settings bit0: Auto-tuning for ASR and APR
bit1: Inertia estimate (only in FOCPG mode)
bit2: Zero servo
bit6: 0 Hz linear-cross
bit7: Save or do not save the frequency
bit8: Maximum speed for point-to-point position control
[a] bit0 $=0$ : Manual adjustment for ASR and APR gain, Pr. 11-06-Pr. 11-11 are valid and Pr.
11-03-Pr. 11-05 are invalid.
bit0 $=1$ : Auto-tuning for ASR and APR gain, the system automatically generates an ASR setting, Pr. 11-06-Pr. 11-11 are invalid and Pr. 11-03-Pr. 11-05 are valid.

[1] When the drive needs to keep a certain torque at zero-speed, or it needs a steady frequency output at extreme low speed, increase Pr. 11-05 zero-speed bandwidth appropriately. When the speed is in high-speed area, if the output current trembles seriously and makes the drive vibrate, then decrease the high-speed bandwidth.

For example:

| Manual gain | Response: <br> $[$ Pr. 11-10, Pr. 11-11 $]>$ Pr. 11-06, Pr. 11-07] $>[$ Pr. 11-08, Pr. 11-09 $]$ |
| :---: | :--- |$|$| Auto gain |
| :---: |



ASR adjustment- manual gain


ASR adjustment- auto gain
[1] bit1 $=0$ : no function.
bit1 = 1: Inertia estimation function is enabled. bit1 setting would not activate the estimation process, set Pr. 05-00 $=12$ to begin FOC / TQC Sensorless inertia estimating.

: : - ! Per Unit of System Inertia
Default: 256
Settings 1-65535 (256=1PU)
(a) To get the system inertia from Pr.11-01, user needs to set Pr.11-00 to bit1=1 and execute continuous forward / reverse running.
(1) When Pr. 11-01 = 256, it is 1 PU . So if you use a 2 HP motor, the 2 HP motor inertia is $4.3{\mathrm{~kg}-\mathrm{cm}^{2}}^{2}$ according to the table below. If Pr. 11-01 = 10000 after tuning, the system inertia is ( $10000 / 256$ ) $x 4.3 \mathrm{~kg}-\mathrm{cm}^{2}$.
[1] Perform the operation test with load based on the inertia after tuning. Run the motor in acceleration, deceleration, and steady speed and observe the values. If values between speed feedback and speed command are close, steady-state error is small and overshoot is less, then this inertia is a better one.
[1] When using torque mode as the control mode, perform the tuning with speed mode first to see if the tuned inertia can work normally. After verifying with speed mode, change the control mode to torque mode.
(1) If the Iq current command from ASR has high-frequency glitch, then decrease the setting. If the response time of sudden loading is too slow, then increase the setting.

Unit of induction motor system inertia is $\mathrm{kg}^{2} \mathrm{~cm}^{2}$ :

| Power | Setting |
| :---: | :---: |
| 1 HP | 2.3 |
| 2 HP | 4.3 |
| 3 HP | 8.3 |
| 5 HP | 14.8 |
| 7.5 HP | 26.0 |
| 10 HP | 35.8 |
| 12 HP | 54.8 |
| 15 HP | 74.3 |
| 20 HP | 95.3 |


| Power | Setting |
| :---: | :---: |
| 25 HP | 142.8 |
| 30 HP | 176.5 |
| 40 HP | 202.5 |
| 50 HP | 355.5 |
| 60 HP | 410.8 |
| 75 HP | 494.8 |
| 100 HP | 1056.5 |
| 125 HP | 1275.3 |
| 150 HP | 1900.0 |


| Power | Setting |
| :---: | :---: |
| 175 HP | 2150.0 |
| 250 HP | 2800.0 |
| 300 HP | 3550.0 |
| 375 HP | 5139.0 |
| 425 HP | 5981.0 |
| 475 HP | 7053.0 |
| 600 HP | 9643.0 |
| 650 HP | 10734.0 |
| 750 HP | 13000.0 |

The base value for PM system inertia is set by Pr.05-38 and the unit is in $\mathrm{kg}-\mathrm{cm}^{2}$.

## :

Default: 7.00
Settings $5.00-599.00 \mathrm{~Hz}$
Iad Sets the low-speed and high-speed ASR switching point in the FOC area. Provides flexibility to meet two needs: in the high-speed region of the estimator switch point it has a high response, and in the low-speed region of the estimator switch point it has a lower response. The recommended switching point is higher than Pr. 10-39.
Dad A low setting does not cover Pr. 10-39. If the setting is too high, the high-speed range is too narrow.

## : : - 3 ASR1 Low-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM)/ 1-100Hz (PM)

## : : - 1 A ASR2 High-speed Bandwidth

Default: 10
Settings $\quad 1-40 \mathrm{~Hz}$ (IM)/ $1-100 \mathrm{~Hz}$ (PM)
: : - 75 Zero-speed Bandwidth
Default: 10
Settings $\quad 1-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}$ (PM)
After estimating inertia and setting Pr.11-00 bit0=1 (auto-tuning), you can adjust Pr.11-03, Pr. 11-04 and Pr. 11-05 separately according to the speed response. The larger the setting value, the faster response you. Pr. 11-02 is the switch frequency for the low-speed / high-speed bandwidth.
[1] The position control pulse command ( $\mathrm{Mlx}=37$ ) and P2P position control Kp gain can adjust Pr. 11-05. The higher the value, the lower the steady-state error.

## Chapter 12 Description of Parameter Settings | C2000

## 12-2-2 Standard PM Motor Adjustment Procedure

12-2-2-1 Pr. 00-11=4 PM FOC+PG

1. Control Diagram
(A) PM FOC+PG Control Diagram (applicable for C2000 V2.04 and above)

(B) PM TQC+PG Control Diagram (applicable for C2000 V2.04 and above)

2. PM FOC+PG Adjustment Procedure (* the number marked on the procedure corresponds to the number of following adjustment explanations)

PM FOC+PG Motor Parameter Adjustment Procedure


©a Basic Motor Parameters Adjustment

1. Parameter reset:

Pr. $00-02=9(50 \mathrm{~Hz})$ or $10(60 \mathrm{~Hz})$, reset parameter to the default value.
2. Select IPM motor type:

Pr.05-33=1 (SPM) or 2 (IPM)
3. Motor nameplate parameter setting:

| Parameter | Description |
| :---: | :--- |
| Pr.01-01 | Rated frequency (Hz) |
| Pr.01-02 | Rated voltage (V V ) |
| Pr.05-33 | PM motor type (IPM or SPM) |
| Pr.05-34 | Rated current (A) |


| Parameter | Description |
| :---: | :--- |
| Pr.05-35 | Rated power (kW) |
| Pr.05-36 | Rated rotor speed (RPM) |
| Pr.05-37 | Number of poles for the motor (poles) |

4. PM parameter auto-tuning:

Rolling auto-tuning for PM (without load) Pr.05-00=5 or static auto-tuning for PM (Pr.05-00=13)
Set Pr.05-00=5 or 13 and press "RUN" key to finish motor auto-tuning, then you will get the following parameters:

| Parameter | Description |
| :---: | :--- |
| Pr.05-39 | Stator resistance for a permanent magnet motor $(\Omega)$ |
| Pr.05-40 | Permanent magnet motor Ld $(\mathrm{mH})$ |
| Pr.05-41 | Permanent magnet motor Lq $(\mathrm{mH})$ |
| Pr.05-43 | Ke parameter of a permanent magnet motor $\left(\mathrm{V}_{\text {phase }} \cdot \mathrm{rms} / \mathrm{krpm}\right)$ <br> (When Pr.05-00 $=5$, the Ke parameter is measured based on the <br> actual motor rotation. $)$ <br> (When Pr.05-00 $=13$, the Ke parameter is automatically calculated <br> based on the motor power, current and rotor speed.) |

If an auto-tuning error (AUE) occurs, refer to Section 14 "Error Codes and Descriptions" for further treatment.

| AUE Erro (code) | Description |
| :---: | :--- |
| AUE (40) | Auto-tuning error |
| AUE1 (142) | Auto-tuning error 1 (No feedback current error) |
| AUE2 (143) | Auto-tuning error 2 (Motor phase loss error) |
| AUE3 (144) | Auto-tuning error 3 (No-load current Io measuring error) |
| AUE4 (148) | Auto-tuning error 4 (Leakage inductance Lsigma measuring <br> error) |

5. Set encoder parameter

Check the encoder power and input type, make sure it is used with correct PG card.

| PG Card Type |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| EMC-PG01L | EMC-PG01O | EMC-PG01U | EMC-PG01R |  |
| EMC-PG02L | EMC-PG02O | EMC-PG02U | - |  |

Related parameters:
(1) Pr. 10-00: Encoder type selection
(2) Pr. 10-01: Encoder pulses per revolution
(3) Pr. 10-02: Encoder input type setting $=1$ (Phases $A$ and $B$ are pulse inputs, forward direction if A-phase leads B-phase by 90 degrees)
6. Measure the initial magnetic pole angle of PM
(1) Set Pr.05-00=4 (dynamic test for PM magnetic pole)
(2) Press "RUN" key to proceed the PM magnetic pole measurement, and to get the offset angle.

Note 1: It is suggested to measure the offset angle more than twice, to make sure the angle tolerance is within $\pm 5$ degree.

Note 2: Verify the encoder and PG card are connected in the right order.
7. Cycle the power.
8. Execute inertia estimation for PM
(1) Set Pr. 00-11 = 4 FOCPG control.
(2) Set the operation frequency command to $2 / 3$ of the motor's rated frequency.
(3) Set the acceleration / deceleration time (Pr. 01-12, Pr. 01-13) to $1 / 10$ of the default time. (Adjust the acceleration / deceleration time according to the load inertia. The smaller the load inertia, the shorter the acceleration / deceleration time is set).
(4) Check if the load and the motor is connected.
(5) Set Pr. 11-00 bit1 = 1 inertia estimate (only in FOCPG mode).
(6) Press "RUN" key to proceed the inertia

Quickly run the motor in forward and reverse direction repeatedly, and observe the inertia estimated value of Pr. 11-01 for the keypad.
a. If the system inertial estimated value of Pr. 11-01 does not change ( $=$ default 256), it means the inertia estimation is wrong. Reduce the frequency command and estimate the inertia again.
b. If the system inertia estimated value of Pr. 11-01 is still a lot different from the estimated value of FWD/REV operation, continue the estimation in forward / reverse operating direction to restraint the estimated inertia to small difference.
(7) Press "STOP" key to obtain the estimated inertia value:
a.Press "ENTER" to confirm the input value at the displayed page of the last estimated inertia value of Pr. 11-01.
b. Set Pr.11-01 bit1 = 0, return the control mode to speed mode.
c. Set the acceleration / deceleration time (Pr. 01-12, Pr. 01-13) back to the default value.
II. PM FOC+PG No-load/ Light-load Adjustment Procedure

$1 \mathbb{1}$ No-load/ Light duty Running Adjustment
9. No-load trial run

Set the frequency command to 10 Hz to proceed the encoder running test:
A1. If the motor starts in a reverse direction.
If the motor starts in a reverse direction, set the encoder input type Pr. 10-02 $=2$ (phases
$A$ and $B$ are pulse inputs, forward direction if $B-$ phase leads $A$-phase by 90 degrees.)
A2. Observe if a PGFx error is displayed on the keypad, or the motor runs in an abnormal speed.
If the PGFx error is displayed or the motor runs in an abnormal speed, refer to Section 14 "Fault Codes and Descriptions" or the following table for PGFx error type and further treatment.

| PGF Error (code) | Description | Solution |
| :---: | :--- | :--- |
| PGF1 (42) | PG feedback error | Check parameter setting of Pr.10-00-10-02 |
| PGF2 (43) | PG feedback loss | Check the wiring of encoder and PG card |
| PGF3 (44) | PG feedback stall | Check the wiring of encoder and PG card |
| PGF4 (45) | PG slip error | Check the pulse setting of Pr.10-01 <br> Check the wiring of encoder and PG card |
| PGF5 (65) | PG hardware error | Check if the PG card is installed on the <br> correct slot position <br> Check the setting parameter of the encoder |

10. No-load / light duty running test
a. Set the speed regulator (ASR) as Pr.11-00=1, and set the ASR gain as auto-tuning.
b. Start the motor with no-load / light duty and proceed acceleration / deceleration test.

B1. Accelerate to the rated frequency and observe if the motor runs stably.

- If the output rotor speed cannot follow the acceleration time, increase Pr.11-04 (ASR2 high-speed bandwidth) or Pr.11-03 (ASR1 low-speed bandwidth).
- If a high-frequency oscillation occurs in the output frequency, decrease Pr.11-04 (ASR2 high-speed bandwidth) or Pr.11-03 (ASR1 low-speed bandwidth).
B2. Accelerate the motor to the maximum frequency and observe if it runs stably.
If an oscillation occurs or motor stalls at maximum rotor speed during operation, increase Pr.11-04 (ASR2 high-speed bandwidth) or Pr.00-17 (Carrier frequency).

Setting curve of speed regulator (ASR) and related parameter:


ASR adjustment- auto gain

| Parameter | Description | Default |
| :---: | :--- | :---: |
| Pr.11-00 | System control | 0 |
| Pr.11-01 | Per unit of system inertia | 256 |
| Pr.11-02 | ASR1/ASR2 switch frequency <br> (it is suggested to set the switch frequency <br> higher than Pr.10-39) | 7 Hz |
| Pr.11-03 | ASR1 low-speed bandwidth | 10 Hz |
| Pr.11-04 | ASR2 high-speed bandwidth | 10 Hz |
| Pr.11-05 | ASR zero-speed bandwidth | 10 Hz |

[1] PM FOC+PG With-load starting adjustment procedure

(1) With-load Operation Adjustment:

C1. Low-frequency load performance, when the drive operates under ASR1/ASR2 switch frequency (Pr.11-02):
a. If the low-speed frequency cannot start-up with load or the rotor speed is not smooth, increase Pr.11-03 (ASR1 low-speed bandwidth), or increase Pr.11-01 (Per-unit system inertia).
b. If an oscillation or over current (oc) error occurs at low-speed frequency, decrease Pr.11(ASR1 low-speed bandwidth) or decrease Pr.11-01 (Per-unit system inertia).

C2. With-load accelerating performance testing in heavy-load status, accelerate the motor to the rated rotor speed according to the acceleration time.
a. If the motor rotor speed cannot follow the acceleration time, and the response is too slow, increase Pr.11-04 (ASR2 high-speed bandwidth) and Pr.11-03 (ASR1 low-speed bandwidth); if the response speed is still not enough, increase $10 \%$ of the per-unit system inertia for Pr.11-01 each time.
b. If an excessive acceleration causes an oscillation or ocA error, decrease Pr.11-04 (ASR2 high-speed bandwidth) and Pr.11-03 (ASR1 low-speed bandwidth).

## 12-2-2-2 PM FOC+PG Adjustment Parameters

Refer to Section 12-1 "Description of Parameter Settings" for detailed information.

| Parameter | Description | Unit | Default | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| Encoder Setting Parameters |  |  |  |  |
| Pr.10-00 | Encoder type selection | N/A | 0 | 0-5 |
| Pr.10-01 | Encoder pulses per revolution | ppr | 600 | 1-20000 |
| Pr.10-02 | Encoder input type setting | N/A | 0 | 0-5 |
| Motor Performance Control Parameters |  |  |  |  |
| Pr.11-00 | System control | bit | 0 | 0-8 |
| Pr.11-01 | Per-unit of system inertia | N/A | 256 | 1-65535 |
| Pr.11-02 | ASR1 / ASR2 switch frequency | Hz | 7 | 5.00-599 |
| Pr.11-03 | ASR1 low-speed bandwidth | Hz | 10 | $\begin{gathered} 1-100(\mathrm{PM}) \\ 1-40(\mathrm{IM}) \end{gathered}$ |
| Pr.11-04 | ASR2 high-speed bandwidth | Hz | 10 | $\begin{gathered} 1-100(\mathrm{PM}) \\ 1-40(\mathrm{IM}) \\ \hline \end{gathered}$ |
| Pr.11-05 | Zero-speed bandwidth | Hz | 10 | $\begin{gathered} \hline 1-100(\mathrm{PM}) \\ 1-40(\mathrm{iM}) \\ \hline \end{gathered}$ |

## 12-2-3 PM Motor Adjustment (PM SVC)

12-2-3-1 Permanent magnet motor space vector control (PM SVC) Pr. 00-11 $=2$

1. Control Diagram

PM SVC control diagram (applicable for C2000 V2.04 and above)

2. PM SVC Adjustment Procedure (* the number marked on the procedure corresponds to the number of following adjustment explanations)
I. PM SVC motor parameters adjustment


Basic Motor Parameters Adjustment

1. Parameter reset:

Pr. $00-02=9(50 \mathrm{~Hz})$ or $10(60 \mathrm{~Hz})$, reset parameter to the default value.
2. Select PM motor type:

Pr.05-33=1 (SPM) or 2 (IPM)
3. Motor nameplate parameter setting:

| Parameter | Description |
| :---: | :--- |
| Pr.01-01 | Rated frequency (Hz) |
| Pr.01-02 | Rated voltage (VAC) |
| Pr.05-33 | PM motor type (IPM or SPM) |
| Pr.05-34 | Rated current (A) |
| Pr.05-35 | Rated power (kW) |
| Pr.05-36 | Rated rotor speed (RPM) |
| Pr.05-37 | Number of poles for the motor (poles) |

4. PM parameter auto-tuning:

Rolling auto-tuning for PM (without load) Pr.05-00=5 or static auto-tuning for PM (Pr.05-00=13)
Set Pr.05-00=5 or 13 and press "RUN" key to finish motor auto-tuning, then you will get the following parameters:

| Parameter | Description |
| :---: | :--- |
| Pr.05-38 | System inertia for a permanent magnet motor $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$ |
| Pr.05-39 | Stator resistance for a permanent magnet motor $(\Omega)$ |
| Pr.05-40 | Permanent magnet motor $\mathrm{Ld}(\mathrm{mH})$ |
| Pr.05-41 | Permanent magnet motor $\mathrm{Lq}(\mathrm{mH})$ |
| Pr.05-43 | Ke parameter of a permanent magnet motor $\left(\mathrm{V}_{\text {phase } \cdot \mathrm{ms}} / \mathrm{krpm}\right)$ <br> (When Pr.05-00=5, the Ke parameter is measured based on the <br> actual motor rotation. $)$ <br> (When Pr.05-00=13, the Ke parameter is automatically calculated <br> based on the motor power, current and rotor speed.) |

If an auto-tuning error (AUE) occurs, refer to Section 14 "Error Codes and Descriptions" for further treatment.

| AUE Error (code) | Description |
| :---: | :--- |
| AUE (40) | Auto-tuning error |
| AUE1 (142) | Auto-tuning error 1 (No feedback current error) |
| AUE2 (143) | Auto-tuning error 2 (Motor phase loss error) |
| AUE3 (144) | Auto-tuning error 3 (No-load current Io measuring error) |
| AUE4 (148) | Auto-tuning error 4 (Leakage inductance Lsigma measuring <br> error) |

5. Set control mode

Control mode for the drive: Pr. 00-10 = 0: Speed mode
Control mode for the motor: Pr. 00-11 = 2: PM SVC mode
6. After setting the control mode, cycle the power.
7. Measure the initial magnetic pole angle of PM

Set Pr.10-53 PM initial rotor position detection method
0 : Disable
1: Internal $1 / 4$ rated current attracting the rotor to zero degrees
2: High frequency injection
3: Pulse injection
(Set to 2 for IPM; set to 3 for SPM. If these settings cause problems, then set the parameter to 1.)
II. PMSVC Adjustment for Operation without Load / with Light duty
Adjustment for Operation with Light duty
8. Start the motor with no-duty / light-duty, and operates to $1 / 2$ of the rated rotor speed

A1. Start operation direction:
a. If the start operation direction is wrong

SPM: increase the current proportion for Pr. 10-42 (Initial angle detection pulse value) to improve the accuracy of the angle detection.
IPM: Increase the voltage for Pr. 10-52 (Injection magnitude) to improve the accuracy of the angle detection.
b. If an ocA error occurs when pressing RUN to start the motor, decrease the current proportion for Pr. 10-42 (Initial angle detection pulse value). An excessive pulse current may cause ocA error easily.
A2. Operates the motor in $1 / 2$ of the rated rotor speed, adjust the no-load operating current If the no-load operating current exceeds $20 \%$ of the rated current, increase Pr. 07-26 (Torque compensation gain) and observe the no-load operating current.
A3. Accelerate to rated frequency and observe if the motor operates stably.
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr. 10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high-frequency vibration, decrease Pr. 10-34 or decrease Pr. 10-32.

A4. Accelerate the motor to the maximum rotor speed, and observe if it operates stably. If the motor stalls when accelerating to the maximum rotor speed, then increase Pr. 10-34 PM Sensorless Speed Estimator Low-pass Filter Gain, or increase Pr. 00-17 Carrier Frequency (you must set the carrier frequency larger than 10 times of the maximum output frequency)
III. PM SVC Carrier Start-up Adjustment


Heavy Load Operation Adjustment
9. Load operating test

B1. Low-frequency loading performance is below $1 / 10$ of rated frequency:
a. If the low-frequency loading performance is insufficient, or the rotor speed is not smooth, increase Pr. 10-31 (Current command of I/F mode).
b. If the low-frequency current is large, decrease Pr. 10-31 (Current command of I/F mode).

B2. Test the with-load accelerating performance:
When the motor operates in $1 / 10$ of rotor speed and above, if the speed cannot follow the acceleration time during accelerating, or the current stalls, increase Pr. 07-38 (PMSVC voltage feedback forward gain).
10. Stability test at constant speed operation: if the motor operates stably at constant speed
a. If the motor output rotor speed presents periodic low-frequency wave, increase $\operatorname{Pr}$. 10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high-frequency vibration, decrease Pr. 10-34 or decrease Pr. 10-32.

## 12-2-3-2 PMSVC Related Parameters

Refer to Section 12-1 Description of Parameter Settings for more details.

| Parameter | Description | Unit | Default | Setting <br> Range |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Pr.07-24 | Torque command filter time | sec. | 0.5 | $0.001-10$ |  |
| Pr.07-26 | Torque compensation gain | $\mathrm{N} / \mathrm{A}$ | 0 | $0-5000$ |  |
| Pr.07-38 | PMSVC voltage feedback forward gain | $\mathrm{N} / \mathrm{A}$ | 1.0 | $0.5-2.0$ |  |
| Pr.10-31 | I/F mode, current command | $\%$ | 40 | $0-150$ |  |
| Pr.10-32 | PM FOC sensorless speed estimator bandwidth | Hz | 5.00 | $0.00-600$ |  |
| Pr.10-34 | PM sensorless speed estimator low-pass filter <br> gain | $\mathrm{N} / \mathrm{A}$ | 1.00 | $0.00-655.35$ |  |
| Pr.10-39 | Frequency point to switch from I/F mode to PM <br> sensorless mode | Hz | 20.00 | $0.00-599.00$ |  |
| Pr.10-40 | Frequency point to switch from PM sensorless <br> mode to V/F mode | Hz | 20.00 | $0.00-599.00$ |  |
|  | Initial Angle Estimating Parameters |  |  |  |  |
| Pr.10-42 | Initial angle detection pulse value <br> Pr.10-51Injection frequency | $\mathrm{N} / \mathrm{A}$ | 1.0 | $0.0-3.0$ |  |
| Pr.10-52 | Injection magnitude | Hz | 500 | $0-1200$ |  |
|  | PM initial rotor position detection method <br> 0: Disable <br> 1: Internal 1/4 rated current attracting the rotor to <br> zero degrees <br> 2: High frequency injection <br> 3: Pulse injection | $\mathrm{N} / \mathrm{A}$ | $15.0 /$ |  |  |
| 30.0 |  |  |  |  |  |

## 12-2-4 IPM Adjustment

12-2-4-1 Pr.00-11=7 Interior PM FOC sensorless vector control (IPM sensorless)

1. Control Diagram

IPM sensorless FOC mode (applicable for C2000 V2.04 and above)

※ PM Sensorless FOC control is the control method dedicated for IPM, it uses the high salient pole characteristic ( $\mathrm{Lq}>\mathrm{Ld}$ ) of IPM to detect the positions of NS magnetic poles. By doing this, it calculates the motor's rotor position at low-speed frequency.
2. IPM Sensorless FOC Control Adjustment Procedure (* the number marked on the procedure corresponds the number of following adjustment explanations)
I. IPM Sensoress FOC Mode Motor Parameters Adjustment


Basic Motor Parameters Adjustment

1. Parameter reset:

Pr. $00-02=9(50 \mathrm{~Hz})$ or $10(60 \mathrm{~Hz})$, reset parameter to the default value.
2. Select IPM motor type:

Pr.05-33=2 (IPM)
3. Motor nameplate parameter setting:

| Parameter | Description |
| :---: | :--- |
| Pr.01-01 | Rated frequency (Hz) |
| Pr.01-02 | Rated voltage (VAC) |
| Pr.05-33 | PM motor type (IPM or SPM) |
| Pr.05-34 | Rated current (A) |
| Pr.05-35 | Rated power (kW) |
| Pr.05-36 | Rated rotor speed (RPM) |
| Pr.05-37 | Number of poles for the motor (poles) |

4. PM parameter auto-tuning:

Rolling auto-tuning for PM (without load) Pr.05-00=5 or static auto-tuning for PM (Pr.05-00=13)
Set Pr.05-00=5 or 13 and press "RUN" key to finish motor auto-tuning, then you will get the following parameters:

| Parameter | Description |
| :---: | :--- |
| Pr.05-39 | Stator resistance for a permanent magnet motor $(\Omega)$ |
| Pr.05-40 | Permanent magnet motor Ld $(\mathrm{mH})$ |
| Pr.05-41 | Permanent magnet motor Lq $(\mathrm{mH})$ |
| Pr.05-43 | Ke parameter of a permanent magnet motor $\left(\mathrm{V}_{\text {phase }} \cdot \mathrm{ms} / \mathrm{krpm}\right)$ <br> (When Pr.05-00=5, the Ke parameter is measured based on the <br> actual motor rotation.) <br> (When Pr.05-00=13, the Ke parameter is automatically calculated <br> based on the motor power, current and rotor speed.) |

If an auto-tuning error (AUE) occurs, refer to Section 14 "Error Codes and Descriptions" for further treatment.

| AUE Error (code) | Description |
| :---: | :--- |
| AUE (40) | Auto-tuning error |
| AUE1 (142) | Auto-tuning error 1 (No feedback current error) |
| AUE2 (143) | Auto-tuning error 2 (Motor phase loss error) |
| AUE3 (144) | Auto-tuning error 3 (No-load current I Io measuring error) |
| AUE4 (148) | Auto-tuning error 4 (Leakage inductance Lsigma measuring <br> error) |

5. Set control mode

Control mode for the drive: Pr. 00-10 = 0: Speed mode
Control mode for the motor: Pr. 00-11 = 7: Interior PM FOC Sensorless
6. After auto-tuning, cycle the power.
7. Measure the initial magnetic pole angle of PM

When Pr.00-11=7 PM FOC Sensoreless mode, the initial magnetic pole angle detection method is high frequency injection.
II. IPM Sensorless FOC Mode - No-load / Light-duty Adjustment


1 No-load / Light-duty Operation Adjustment
8. Start the motor with no-duty
(a) Set Pr.11-00 = 1 Auto-tuning for ASR and APR
(b) Start the motor without load, and operates the motor to $1 / 2$ of rated rotor speed
a. If the start direction is wrong, starting rotation is not smooth (ocA) or the motor salient ratio (Lq / Ld) is low, increase Pr. 10-52 (Injection Magnitude) and Pr. 10-42 (Initial Angel Detection Pulse Value) to improve the accuracy of the angle detection.
b. If Pr. 10-51 (Injection frequency) is close to the rated motor frequency (Pr. 01-01), then increase Pr.10-51 to avoid the angle detection difference caused by motor rated frequency.
9. Acceleration test with no-duty / light-duty

A1. Accelerate to rated frequency and observe if the motor operates stably.
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr. 11-04 (ASR2 high-speed bandwidth), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high-frequency vibration, decrease Pr.11-04 or decrease Pr.10-32.
A2. Accelerate the motor to the maximum frequency, and observe if it operates stably. If the motor stalls when accelerating to the maximum rotor speed, increase Pr.10-32 (PM FOC sensoress speed estimator bandwidth) and Pr.10-34 (PM sensorless speed estimator low-pass filter gain).
※ Setting curve of speed regulator (ASR) and related parameters:


ASR adjustment- auto gain

| Parameter | Description | Default |
| :---: | :--- | :---: |
| Pr.11-00 | System control | 0 |
| Pr.11-01 | Per unit of system inertia | 256 |
| Pr.11-02 | ASR1 / ASR2 switch frequency <br> (it is suggested to set the switch <br> frequency higher than Pr.10-39) | 7 Hz |
| Pr.11-03 | ASR1 low-speed bandwidth | 10 Hz |
| Pr.11-04 | ASR2 high-speed bandwidth | 10 Hz |
| Pr.11-05 | Zero-speed bandwidth | 10 Hz |

III. IPM Sensoress FOC Mode - Load Starting Adjustment

[]. Load Operation Adjustment
10. Load operating test

B1. Low-frequency loading performance, when the switch frequency is below Pr.10-39:
a. When the low-frequency cannot start the motor with load, or the rotor speed is not smooth, increase Pr.11-03 (ASR1 low-speed bandwidth) or Pr.11-01 (Per-unit of system inertia); if the above adjustment cannot meet the requirement, then increase Pr.10-32 (PM FOC sensorless speed estimator bandwidth).
b. When frequency outputs, low-frequency operating current is large or an oc error occurs, decrease Pr.11-03 and Pr.11-01; or decrease Pr.10-32.
B2. Acceleration performance test under heavy-duty status, accelerate the motor to rated rotor speed according to the acceleration time:
a. If the motor cannot follow the acceleration time, and the response is too slow, increase Pr.11-04 (ASR2 high-speed bandwidth) and Pr.11-03 (ASR1 low-speed bandwidth).
b. If an excessive acceleration causes vibration or ocA error, decrease Pr.11-04 and Pr.11-03.
11. Stability test at constant speed operation: if the motor operates stably at constant speed
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr. 10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high-frequency vibration, decrease Pr. 10-34 or decrease Pr. 10-32.

12-2-4-2 IPM sensorless FOC Mode Related Parameters:
Refer to Section 12-1 Description of Parameter Settings for more details.

| Parameter | Description | Unit | Default | Setting Range |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Pr.10-32 | PM FOC sensorless speed estimator bandwidth | Hz | 5.00 | $0.00-600$ |  |  |
| Pr.10-34 | PM sensorless speed estimator bandwidth | $\mathrm{N} / \mathrm{A}$ | 1.00 | $0.00-655.35$ |  |  |
| Pr.10-35 | AMR (Kp) gain | $\mathrm{N} / \mathrm{A}$ | 1.00 | $0.00-3.00$ |  |  |
| Pr.10-36 | AMR (Ki) gain | $\mathrm{N} / \mathrm{A}$ | 0.20 | $0.00-3.00$ |  |  |
| Pr.10-39 | Frequency point to switch from I/F mode to PM <br> sensorless mode | Hz | 20.00 | $0.00-599$ |  |  |
| Pr.10-40 | Frequency point to switch from PM sensorless <br> mode to V/F mode | Hz | 20.00 | $0.00-599$ |  |  |
| Pr.10-42 | Initial angle detection pulse value | $\mathrm{N} / \mathrm{A}$ | 1.0 | $0.0-3.0$ |  |  |
| Initial Angle Estimating Parameters |  |  |  |  |  |  |
| Pr.10-51 | Injection frequency (for IPM) | Hz | 500 | $0-1200$ |  |  |
| Pr.10-52 | Injection magnitude (for IPM) | V | $15.0 /$ | $0.0-200.0$ |  |  |
| Pr.10-53 | PM initial rotor position detection method | $\mathrm{N} / \mathrm{A}$ | 0 | $0-3$ |  |  |
| Motor Performance Control Parameters |  |  |  |  |  |  |
| Pr.11-00 | System control | bit | 0 | $0-8$ |  |  |
| Pr.11-02 | ASR1 / ASR2 switch frequency | Hz | 7 | $5.00-599$ |  |  |
| Pr.11-03 | ASR1 low-speed bandwidth | Hz | 10 | $1-100(\mathrm{PM})$ |  |  |
| $1-40(\mathrm{IM})$ |  |  |  |  |  |  |
| Pr.11-04 | ASR2 high-speed bandwidth | Hz | 10 | $1-100(\mathrm{PM})$ |  |  |
| Pr.11-05 (IM) |  |  |  |  |  |  |

# Chapter 13 Warning Codes 

| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 1 | Warning CE1 Comm. Error 1 | Communication error 1 (CE1) | RS-485 Modbus illegal function code |
| Action and Reset |  |  |  |
|  | Action level | When the function code is not 03, 06, 10 and 63 |  |
|  | Action time | Immediately act |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | "Warning" occurs when Pr. 09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the correct function code. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Incorre comma | communication d from upper unit | Check if the communication command is correct. |  |
| Malfunc | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from the | communication setting upper unit | Check if the setting for Pr. 09-02 is the same as the setting for the upper unit. |  |
| Disconn of the c | ection or bad connection ble | Check the cable and replace it if necessary. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 2 | Warning CE2 <br> Comm. Error 2 | Communication error 2 (CE2) | RS-485 Modbus illegal data address |
| Action and Reset |  |  |  |
|  | Action level | When the input data address is incorrect |  |
|  | Action time | Immediately act |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | "Warning" occurs when Pr. 09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the correct data address. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Incorrec comma | communication d from upper unit | Check if the communication command is correct. |  |
| Malfunc | on caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from the | communication setting upper unit | Check if the setting for Pr. 09-02 is the same as the setting for the upper unit. |  |
| Disconn of the c | ction or bad connection be | Check the cable and replace it if necessary. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 3 | Warning CE3 Comm. Error 3 | Communication error 3 (CE3) | RS-485 Modbus illegal data value |
| Action and Reset |  |  |  |
|  | Action level | When the length of communication data is too long |  |
|  | Action time | Immediately act |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | "Warning" occurs when Pr. 09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the correct communication data value. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Incorre comma | communication d from upper unit | Check if the communication command is correct. |  |
| Malfunc | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from the | communication setting upper unit | Check if the setting for Pr. 09-02 is the same as the setting for the upper unit. |  |
| Disconn of the c | ection or bad connection ble | Check the cable and replace it if necessary. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 4 | Warning <br> CE4 <br> Comm. Error 4 | Communication error 4 (CE4) | RS-485 Modbus data is written to read-only address |
| Action and Reset |  |  |  |
|  | Action level | When the data is written to read-only address |  |
|  | Action time | Immediately act |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | "Warning" occurs when Pr. 09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the correct written address of communication data. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Incorre comma | t communication drom upper unit | Check if the communication command is correct. |  |
| Malfunc | tion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from the | communication setting upper unit | Check if the setting for Pr. 09-02 is the same as the setting for the upper unit. |  |
| Disconn of the c | ection or bad connection able | Check the cable and replace it if is necessary. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 5 | Warning CE10 Comm. Error 10 | Communication error 10 (CE10) | RS-485 Modbus transmission time-out |
| Action and Reset |  |  |  |
|  | Action level | When the communication time exceeds the detection time of Pr. 09-03 communication time-out |  |
|  | Action time | Setting for Pr. 09-03 |  |
| War | ning setting parameter | N/A |  |
|  | Reset method | "Warning" occurs when Pr. 09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the next communication packet. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The upp the com within P | er unit does not transmit munication command 09-03 setting time | Check if the upper unit transmits the communication command within the setting time for Pr. 09-03. |  |
| Malfunc | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from the | communication setting upper unit | Check if the setting for Pr.09-02 is the same as the setting for the upper unit. |  |
| Disconn of the c | ection or bad connection able | Check the cable and replace it if necessary. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 7 | Warning SE1 <br> Save Error 1 | Save error 1 (SE1) | Keypad COPY error 1: Keypad copy time-out |
| Action and Reset |  |  |  |
|  | Action level | "SE1" warning occurs when the keypad does not transmit the COPY command to the drive, and does not transmit any data to the drive again in 10 ms at the time you copy the parameters to the drive. |  |
|  | Action time | 10 ms |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Comm | rication connection error | SE1: The causes of error are mostly communication problems between the keypad and control board. Potential causes include communication signa interference and the unacceptable communication command to the Slave. <br> Check if the error occurs randomly, or only occurs when copying certain parameters (the error displays on the upper right corner of the copy page). If you cannot clear the error, please contact Delta. |  |
| Keypad error |  |  |  |
| Control | board error |  |  |

Chapter 13 Warning Codes | C2000

| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 8 | Warning SE2 <br> Save Error 2 | Save error 2 (SE2) | Keypad COPY error 2: parameter writing error |
| Action and Reset |  |  |  |
|  | Action level | "SE2" warning occurs when writing the parameters incorrectly at the time you copy parameters to the drive. For example, you copy the new firmware version with added parameters to the drive with old firmware version. |  |
|  | Action time | N/A |  |
| War | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Add new firmwar | parameters to the new version. | SE2: In this stage, the copied data has been transmitted to the Slave. The Slave compares and processes the copied data, and then saves the data to the Data ROM. During the process, the data error (should be attribution error) may occur, or the data cannot be saved to EEPROM. At this time, the warning occurs. <br> It is suggested to check the status of Data ROM and remove the error causes first. <br> If you cannot clear the error, please contact Delta. |  |
| Malfunc | on caused by interference | Verify the wiring and grounding of the main circuit, control circuit and the encoder for effective anti-interference performance. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 9 | Warning oH1 <br> Over heat 1 warn | IGBT over-heating warning ( OH 1 ) | The AC motor drive detects over-heating of IGBT, and over the protection level of oH1 warning. (When Pr. $06-15$ is higher than the IGBT over-heating level, the drive shows oH 1 error without displaying oH 1 warning.) |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-15 |  |
|  | Action time | "oH1" warning occurs when IGBT temperature is higher than Pr. 06-15 setting value. |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Auto-reset |  |
|  | Reset condition | The drive auto-resets when IGBT temperature is lower than oH 1 warning level minus (-) $5^{\circ} \mathrm{C}$ |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Check or temp is too h in the $v$ cabinet | the ambient temperature rature inside the cabinet h , or if there is obstruction ntilation hole of the control | 1. Check the ambient temperature. <br> 2. Regularly inspect the ventilation hole of the control cabinet. <br> 3. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. <br> 4. Install/ add cooling fan or air conditioner to lower the temperature inside the cabinet. |  |
| Check the hea | here is any obstruction on ink or if the fan is running | Remove the obstruction or replace the cooling fan. |  |
| Insufficie | nt ventilation space | Increase ventilation space of the drive. |  |
| Check corresp | the drive matches the nded loading | 1. Decrease loading. <br> 2. Decrease the carrier. <br> 3. Replace with a drive with larger capacity. |  |
| The driv the rate | has run $100 \%$ or more o output for a long time | Replace with a drive with larger capacity. |  |



| Model | oH1 | oH 2 | $\begin{gathered} \text { oH warning } \\ \text { oH1 warning }=(\text { Pr.06-15 }) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| VFD110C43A/E | 110 | 80 | oH 1 Warning $=\mathrm{oH} 1-5$ <br> oH 2 Warning $=\mathrm{oH} 2-5$ |
| VFD150C43A/E |  |  |  |
| VFD185C43A/E |  | 85 |  |
| VFD220C43A/E |  |  |  |
| VFD300C43A/E |  |  |  |
| VFD370C43S/U |  | 65 |  |
| VFD450C43S/U |  |  |  |
| VFD550C43A/E |  |  |  |
| VFD750C43A/E |  |  |  |
| VFD900C43A/E |  |  |  |
| VFD1100C43A/E |  |  |  |
| VFD1320C43A/E |  |  |  |
| VFD1600C43A/E |  |  |  |
| VFD1850C43A/E |  | 70 |  |
| VFD2200C43A/E |  |  |  |
| VFD2800C43A/E |  |  |  |
| VFD3150C43A/E |  |  |  |
| VFD3550C43A/E |  |  |  |
| VFD4500C43A/E |  |  |  |
| VFD015C53A | 100 | 85 | oH 1 Warning $=\mathrm{oH} 1-5$ <br> oH 2 Warning $=\mathrm{oH} 2-5$ |
| VFD022C53A | 105 |  |  |
| VFD037C53A | 100 |  |  |
| VFD055C53A |  | 70 |  |
| VFD075C53A |  |  |  |
| VFD110C53A |  |  |  |
| VFD150C53A |  |  |  |
| VFD185C63B | 90 | 85 | $\begin{aligned} & \mathrm{oH} 1 \text { Warning }=\mathrm{oH} 1-5 \\ & \mathrm{oH} 2 \text { Warning }=\mathrm{oH} 2-5 \end{aligned}$ |
| VFD220C63B |  |  |  |
| VFD300C63B |  |  |  |
| VFD370C63B |  |  |  |
| VFD450C63B | 100 | 65 |  |
| VFD550C63B | 100 |  |  |
| VFD750C63B | 110 |  |  |
| VFD900C63B |  |  |  |
| VFD1100C63B |  |  |  |
| VFD1320C63B |  |  |  |
| VFD1600C63B |  |  |  |
| VFD2000C63B |  |  |  |
| VFD2500C63B |  | 70 |  |
| VFD3150C63B |  |  |  |
| VFD4000C63B |  |  |  |
| VFD4500C63B |  |  |  |
| VFD5600C63B |  |  |  |
| VFD6300C63B |  |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 11 | Warning PID PID FBK Error | PID feedback error (PID) | PID feedback loss (warning for analog feedback signal; works only when PID enables) |
| Action and Reset |  |  |  |
|  | Action level | When the analog input is lower than 4 mA (only detects analog input of 4-20mA) |  |
|  | Action time | Pr. 08-08 |  |
|  | ning setting parameter | Pr. 08-09 <br> 0: Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: Warn and operate at last frequency |  |
| Reset method |  | Auto "Warning" occurs when Pr. 08-09=0 or 3. The "Warning" automatically <br> clears when the feedback signal is larger than 4mA.  |  |
|  |  | Manual "Error" occurs when Pr. 08-09=1 or 2. You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Records when Pr. 08-09=1 or 2 ("Error"). <br> Does not record when Pr. 08-09=3 ("Warning"). |  |
|  | Cause | Corrective Actions |  |
| $\begin{aligned} & \text { Loose c } \\ & \text { wiring } \end{aligned}$ | broken PID feedback | Tighten the terminals again. Replace with a new cable. |  |
| Feedba | k device malfunction | Replace with a new feedback device. |  |
| Hardwa | e error | If the PID error still occurs after checking all the wiring, return to the factory for repair. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 12 | Warning <br> ANL <br> Analog loss | ACl analog signal loss (AnL) | Analog input current loss (including all analog $4-20 \mathrm{~mA}$ signals) |
| Action and Reset |  |  |  |
|  | Action level | When the analog input is lower than 4mA (only detects analog input 4-20mA) |  |
|  | Action time | Immediately act |  |
| Wa | ning setting parameter | Pr. 03-19 <br> 0 : Disable <br> 1: Continue operation at the last frequency (warning, keypad displays ANL) <br> 2: Decelerate to 0 Hz (warning, keypad displays ANL) <br> 3: Stop immediately and display ACE |  |
| Reset method |  | Auto "Warning" occurs when Pr. 03-19=1 or 2 . The "Warning automatically <br> clears when the analog input signal is larger than 4 mA .  |  |
|  |  | Manual "Error" occurs when Pr. 03-19=3. You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Does not record when Pr. 03-19=1 or 2 ("Warning"). |  |
|  | Cause | Corrective Actions |  |
| Loose or | r broken ACl wiring | Tighten the terminals again. Replace with a new cable. |  |
| Externa | device error | Replace new device. |  |
| Hardwa | e error | If the AnL error still occurs after checking all the wiring, return to the factory for repair. |  |



| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 15 | Warning PGFB PG FBK Warn | PG feedback warning (PGFb) | PG feedback error warning |
| Action and Reset |  |  |  |
|  | Action level | Motor runs in a reverse direction to the direction of frequency command |  |
|  | Action time | Pr. 10-09 |  |
|  | ing setting parameter | Pr. 10-08=0 <br> 0 : Warn and operation continue <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop |  |
|  | Reset method | Auto-reset |  |
|  | Reset condition | "Warning" automatically clears when the drive stops |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Incorre setting | encoder parameter | Reset encoder parameter (Pr. 10-02). |  |
| Check is loss | the connection of encoder | Wiring again. |  |
| Broken | G card or PG encoder | Replace with a new PG card or encoder. |  |
| Malfunc | on caused by interference | Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 17 | Warning oSPD Over Speed Warn | Over speed warning (oSPd) | Over speed warning |
| Action and Reset |  |  |  |
|  | Action level | The encoder feedback speed > Pr. 10-10 |  |
|  | Action time | Pr. 10-11 |  |
| Wa | ning setting parameter | Pr. 10-12=0 <br> 0 : Warn and keep operation |  |
|  | Reset method | "Warning" automatically clears when the drive stops |  |
|  | Reset condition | "Warning" automatically clears when the drive stops |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Improp bandwi | r setting for Pr. 10-25 FOC th of speed observer | Decrease setting value for Pr. 10-25. |  |
| Improper ASR sp | $r$ bandwidth setting for eed controller | Increase the bandwidth setting for ASR speed controller. |  |
| Incorrec | t motor parameter setting | Reset motor parameter and run parameter tuning. |  |
| Malfunc | tion caused by interference | Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 18 | Warning dAvE Deviation Warn | Deviation Warning (dAvE) | Over speed deviation warning |
| Action and Reset |  |  |  |
|  | Action level | Pr. 10-13 |  |
|  | Action time | Pr. 10-14 |  |
| Warning setting parameter |  | Pr. 10-15=0 <br> 0 : Warn and keep operation |  |
|  | Reset method | "Warning" automatically clears when the drive stops |  |
|  | Reset condition | After the drive stops |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Imprope slip erro | parameter setting for the | Reset proper value for Pr. 10-13 and Pr. 10-14. |  |
| Imprope parame deceler | setting for ASR r and acceleration/ tion | Reset ASR parameters. <br> Set proper accel./ decel. time. |  |
| Accel./ | ecel. time is too short | Reset proper accel./ decel. time. |  |
| Motor lo | ked | Remove the causes of motor locked. |  |
| Mechan | cal brake is not released | Check the active timing of the system. |  |
| Incorre torque (Pr. 06- | parameter setting of nit <br> 2, Pr. 11-17-20) | Adjust to proper setting value. |  |
| Malfunc | on caused by interference | Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 19 | Warning PHL Phase Loss | Phase loss (PHL) | Input phase loss warning |
| Action and Reset |  |  |  |
|  | Action level | One of the phases outputs less than Pr. 06-47 |  |
|  | Action time | Pr. 06-46 |  |
|  | ing setting parameter | Pr. 06-45=0 <br> 0 : Warn and keep operation |  |
|  | Reset method | "Warning" automatically clears when the drive stops |  |
|  | Reset condition | After the drive stops |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Phase I | ss of the input power | Verify wiring of the main circuit. |  |
| Single three-p | hase power input on a ase model | Use the model with voltage that matches the power. |  |
| The pow | r voltage has changed | If the power of main circuit works well, check if the MC of the main circuit is broken. <br> Cycle the power after verifying the power is normal. If PHL still occurs, return to the factory for repair. |  |
| $\begin{aligned} & \text { Loose } \\ & \text { power } \end{aligned}$ | ring terminal of input | Tighten the terminal screws with the torque listed in the user manual. |  |
| Check power is | the input cable of 3-phase broken | Make sure the wiring is correct. Replace the broken part of the cable. |  |
| The vol changed | ge of input power has | Check setting for Pr. 06-50 (Time for Input Phase Loss Detection) and Pr. 06-52 (Ripple of Input Phase Loss). |  |
| Unbalan input pow | e three-phase of the er | Check the status of 3-phase power. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 20 | Warning <br> ot1 <br> Over Torque 1 | Over-torque 1 (ot1) | Over-torque 1 warning |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-07 |  |
|  | Action time | Pr. 06-08 |  |
|  | ning setting parameter | Pr. 06-06=1 or 3 <br> 0 : No function <br> 1: Continue operation after over-torque detection during constant speed operation <br> 2: Stop after over-torque detection during constant speed operation <br> 3: Continue operation after over-torque detection during RUN <br> 4: Stop after over-torque detection during RUN |  |
|  | Reset method | When input current < (Pr. 06-07-5\%), the Ot1 warning automatically clears |  |
|  | Reset condition | When input current < (Pr. 06-07-5\%), the Ot1 warning automatically clears |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Incorrec | parameter setting | Configure the settings for Pr. 06-07 and Pr. 06-08 again. |  |
| Mechan lock du | cal error (e.g. mechanical to over-torque) | Remove the causes of malfunction. |  |
| The load | is too large | Decrease the loading. <br> Replace with a motor with larger capacity. |  |
| Accel./ cycle is | ecel. time and working oo short | Increase the setting values for Pr. 01-12-01-19 (accel./ decel. time) |  |
| V/F volt | ge is too high | Adjust the settings for Pr. 01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed). |  |
| The mo | r capacity is too small | Replace with a motor with larger capacity. |  |
| Over-lo operatio | during low-speed | Decrease the loading during low-speed operation. Increase the motor capacity. |  |
| The tor large | e compensation is too | Adjust the torque compensation value (Pr. 07-26 torque compensation gain) until the output current decreases and the motor does not stall. |  |
| Imprope the spe (includi power | parameter settings for d tracking function restart after momentary ss and restart after fault) | Correct the parameter settings for speed tracking. Start the speed tracking function. Adjust the maximum current for Pr. 07-09 speed tracking. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 21 | Warning <br> ot2 <br> Over Torque 2 | Over-torque (ot2) | Over-torque 2 warning |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-10 |  |
|  | Action time | Pr. 06-11 |  |
|  | g setting parameter | Pr. 06-09=1 or 3 <br> 0 : No function <br> 1: Continue operatio operation <br> 2: Stop after over-tor <br> 3: Continue operatio <br> 4: Stop after over-tor | after over-torque detection during constant speed <br> detection during constant speed operation after over-torque detection during RUN ue detection during RUN |
|  | Reset method | When output current < (Pr. 06-10-5\%), the Ot2 warning automatically clears |  |
|  | Reset condition | When output current < (Pr. 06-10-5\%), the Ot2 warning automatically clears |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Incorrec | parameter setting | Configure the settings for Pr. 06-10 and Pr. 06-11 |  |
| Mechan lock due | cal error (e.g. mechanical to over-torque) | Remove the causes of malfunction. |  |
| The load | is too large | Decrease the loading. <br> Replace with a motor with larger capacity. |  |
| Accel./ D cycle is | Decel. time and working oo short | Increase the setting values for Pr. 01-12-01-19 (accel./ decel. time) |  |
| V/F volta | ge is too high | Adjust the V/F curve (Motor 2, Pr. 01-35-01-42), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed). |  |
| The motor | r capacity is too small | Replace with a motor with larger capacity. |  |
| Over-load operatio | d during low-speed | Decrease the loading during low-speed operation. Increase the motor capacity. |  |
| The torq large | ue compensation is too | Adjust the torque compensation value (Pr. 07-26 torque compensation gain) until the output current decreases and the motor does not stall. |  |
| Imprope the speed (includin power lo | parameter settings for d tracking function g restart after momentary ss and restart after fault) | Correct the parameter settings for speed tracking. Start speed tracking function. Adjust the maximum current for Pr. 07-09 speed tracking. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 22_1 | Warning oH3 Motoro Over Heat | Motor over-heating (oH3) PTC | Motor over-heating warning. <br> The AC motor drive detects the temperature inside the motor is too high |
| Action and Reset |  |  |  |
|  | Action level | Pr. 03-00=6 (PTC), PTC input level > Pr. 06-30 (default=50\%) |  |
|  | Action time | Immediately act |  |
|  | ning setting parameter | Error treatment: Pr. 06-29 <br> 0: Warn and keep operating <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | When Pr. 06-29=0, oH3 displays "Warning". When the temperature is $\leqq$ Pr. 06-30 level, the oH3 warning automatically clears. |  |
|  | Reset condition | When the temperature is $\leqq \operatorname{Pr}$. 06-30 level, the oH3 warning automatically clears. |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Motor lo | cked | Clear the motor lock status. |  |
| The load | is too large | Decrease the loading. <br> Replace with a motor with larger capacity. |  |
| Ambien | temperature is too high | Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature. |  |
| Motor | ooling system error | Check the cooling system to make it work normally. |  |
| Motor fa | n error | Replace the fan. |  |
| Operate | s at low-speed too long | Decrease low-speed operation time. Change to dedicated motor for the drive. Increase the motor capacity. |  |
| Accel./ cycle is | Decel. time and working too short | Increase setting values for Pr. 01-12-01-19 (accel./ decel. time). |  |
| V/F volt | ge is too high | Adjust settings for Pr. 01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed). |  |
| Check matche | the motor rated current the motor nameplate | Configure the correct rated current value of the motor again. |  |
| Check and wir | the PTC is properly set d | Check the connection between PTC thermistor resistor and the heat protection. |  |
| Check i prevent | the setting for stall on is correct | Set the stall prevention to the proper value. |  |
| Unbalan impeda | ce three-phase ce of the motor | Replace the motor. |  |
| Harmon | ics is too high | Use remedies to reduce harmonics. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 22_2 | Warning oH3 Motoro Over Heat | Motor over-heating (oH3) PT100 | Motor over-heating warning. <br> The AC motor drive detects the temperature inside the motor is too high. |
| Action and Reset |  |  |  |
|  | Action level | Pr. 03-00=11 (PT100), PT100 input level > Pr. 06-57 (default=7V) |  |
|  | Action time | Immediately act |  |
|  | ing setting parameter | Error treatment: Pr. 06-29 <br> 0 : Warn and keep operating <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | When Pr. 06-29=0, oH3 displays "Warning". When the temperature is < Pr. $06-56$ level, the oH3 warning automatically clears. |  |
|  | Reset condition | When the temperature is < Pr. 06-56 level, the oH3 warning automatically clears. |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Motor lo | ked | Clear the motor lock status. |  |
| The load | is too large | Decrease loading. <br> Replace with a motor with larger capacity. |  |
| Ambien | emperature is too high | Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature. |  |
| Motor | oling system error | Check the cooling system to make it work normally. |  |
| Motor fa | error | Replace the fan. |  |
| Operate | at low-speed too long | Decrease low-speed operation time. Change to dedicated motor for the drive. Increase the motor capacity. |  |
| Accel./ cycle is | ecel. time and working oo short | Increase the setting values for Pr. 01-12-01-19 (accel./ decel. time). |  |
| V/F volt | ge is too high | Adjust the settings for Pr. 01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed). |  |
| Check matche | the motor rated current the motor nameplate | Configure the correct rated current value of the motor again. |  |
| Check and wir | the PT100 is properly set d | Check the connection between PT100 thermistor resistor and the heat protection. |  |
| Check prevent | the setting for stall n is correct | Set the stall prevention to the proper value. |  |
| Unbala impeda | ce three-phase ce of the motor | Replace the motor. |  |
| Harmon | cs is too high | Use remedies to reduce harmonics. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 24 | Warning oSL Over Slip Warn | Over slip warning (oSL) | Over slip warning. <br> By using the maximum slip (Pr. 10-29) as the base, when the drive outputs at constant speed, and the $\mathrm{F}>\mathrm{H}$ or F<H exceeds Pr. 07-29 level and Pr. 07-30 setting time, $100 \%$ Pr. $07-29=$ Pr. 10-29. |
| Action and Reset |  |  |  |
|  | Action level | When the drive outputs at constant speed, and $\mathrm{F}>\mathrm{H}$ or $\mathrm{F}<\mathrm{H}$ exceeds the Pr. 07-29 level |  |
|  | Action time | Pr. 07-30 |  |
|  | ning setting parameter | Pr. 07-31=0 Warning <br> 0 : Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | When Pr. $07-31=0$ and when the drive outputs at constant speed, and F>H or F<H no longer exceeds the Pr. 07-29 level, the oSL warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Check correct | the motor parameter is | Check the motor parameter. |  |
| The loa | is too large | Decrease the loading. |  |
| Check Pr. 07-3 properly | the settings for Pr. 07-29, and Pr. 10-29 are set | Check the parameter settings for oSL protection. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 25 | Warning <br> tUn <br> Auto tuning | Auto tuning (tUn) | Parameter auto-tuning is processing. When running auto-tuning, the keypad displays "tUn". |
| Action and Reset |  |  |  |
|  | Action level | When running Pr. 05-00 motor parameter auto-tuning, the keypad displays "tUn". |  |
|  | Action time | N/A |  |
|  | ng setting parameter | N/A |  |
|  | Reset method | When auto-tuning is finished and no error occurs, the warning automatically clears. |  |
|  | Reset condition | When auto-tuning is finished and no error occurs. |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The mo auto-tun | parameter is running ng | When the auto-tuning is finished, the warning automatically clears. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 28 | Warning OPHL Output PHL Warn | Output phase loss (OPHL) | Output phase loss |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-47 |  |
|  | Action time | N/A |  |
|  | ing setting parameter | Pr. 06-45 <br> 0 : Warn and keep operating <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | If Pr. $06-45$ is set to 0 , the OPHL warning automatically clears after the drive stops. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Unbalan impeda | ced three-phase ce of the motor | Replace the motor. |  |
| Check if | the wiring is incorrect | Check the cable. Replace the cable. |  |
| Check single-p | the motor is a ase motor | Choose a three-phase motor. |  |
| Check broken | the current sensor is | Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the error still occurs, return to the factory for repair. <br> Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL error still shows on the display, return to the factory for repair. |  |
| If capac than the | $y$ of the drive is larger motor | Choose the matches capacity of the drive and motor. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 30 | Warning <br> AUTO SE3 Copy Model Err 3 | Copy model error 3 (SE3) | Keypad COPY error 3: copy model error |
| Action and Reset |  |  |  |
|  | Action level | "SE3" warning occurs when different drive identity codes are found during copying parameters. |  |
|  | Action time | Immediately act when the error is detected |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Keypad power | copy between different nge drives | It is mainly to prevent parameter copies between different $\mathrm{HP} /$ /models. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 36 | Warning CGdn Guarding T-out | CANopen guarding time-out (CGdn) | CANopen guarding time-out 1 |
| Action and Reset |  |  |  |
|  | Action level | When CANopen Node Guarding detects that one of the slaves does not response, the CGdn error displays. <br> The upper unit sets factor and time during configuration. |  |
|  | Action time | The time that upper unit sets during configuration |  |
| War | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | The upper unit sends a reset package to clear this fault. |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The gua less det | rding time is too short, or ction times | Increase the guarding time (Index 100C) and detection times. |  |
| Malfunc | ion caused by interference | 1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 37 | Warning CHbn Heartbeat T-out | CANopen heartbeat error (CHbn) | CANopen heartbeat error |
| Action and Reset |  |  |  |
|  | Action level | When CANopen Heartbeat detects that one of the slaves does not response, the CHbn error shows. <br> The upper unit sets the confirming time of producer and consumer during configuration. |  |
|  | Action time | The upper unit sets the confirming time of producer and consumer during configuration. |  |
| War | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | The upper unit sends a reset package to clear this fault |  |
|  | Record | When Pr. 00-21\#3, CHbn is a "Warning", and the warning is not recorded |  |
|  | Cause | Corrective Actions |  |
| The hea | tbeat time is too short | Increase heartbeat time (Index 1016) |  |
| Malfunc | ion caused by interference | 1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Commu bad con | ication cable is broken or ected | Check or replace the communication cable. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 39 | Warning <br> CbFn <br> Can Bus Off | CANopen bus off error (CbFn) | CANopen BUS off error |
| Action and Reset |  |  |  |
| Hardware When CANopen card is not installed, CbFn fault will occur. |  |  |  |
|  | Action level |  When the <br> Sault will occ <br> Software <br> Too much in <br> When the CA <br> master rece  | master received wrong communication package, CbFn ur. <br> terference on BUS <br> CAN_H and CAN_L communication cable is short, the ives wrong package, and CbFn fault occurs. |
|  | Action time | Immediately act when the fault is detected |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Manual Reset |  |
|  | Reset condition | Cycle the power |  |
|  | Record | When Pr. $00-21 \neq 3, \mathrm{CbFn}$ is a "Warning", and the warning is not recorded |  |
|  | Cause | Corrective Actions |  |
| Check installed | the CANopen card is | Make sure the CANopen card is installed. |  |
| Check i correct | the CANopen speed is | Reset CANopen speed (Pr. 09-37) |  |
| Malfunc | on caused by interference | 1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Commu bad con | ication cable is broken or ected | Check or replace the communication cable. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 40 | Warning Cldn CAN/S Idx exceed | CANopen index error (Cldn) | CANopen Index error |
| Action and Reset |  |  |  |
|  | Action level | CANopen communication Index error |  |
|  | Action time | Immediately act when the fault is detected |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Manual Reset |  |
|  | Reset condition | Upper unit sends a reset package to clear this fault |  |
|  | Record | When Pr. 00-21 $\ddagger 3$, Cldn is a "Warning", and the warning is not recorded |  |
|  | Cause |  | Corrective Actions |
| Incorre index | setting of CANopen | Reset CANopen Index (Pr. 00-02=7) |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 41 | Warning <br> CAdn CAN/S Addres set | CANopen station address error (CAdn) | CANopen station address error (only supports 1-127) |
| Action and Reset |  |  |  |
|  | Action level | CANopen station address error |  |
|  | Action time | Immediately act when the fault is detected |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Manual Reset |  |
|  | Reset condition | Pr. 00-02=7 |  |
|  | Record | When Pr. 00-21 $=3$, CAdn is a "Warning", and the warning is not recorded |  |
|  | Cause | Corrective Actions |  |
| Incorrec station | setting of CANopen ddress | 1. Disable CANopen (Pr. 09-36=0) <br> 2. Reset CANopen (Pr. 00-02=7) <br> 3. Reset CANopen station address (Pr. 09-36) |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 42 | Warning CFrn CAN/S FRAM fail | CANopen memory error (CFrn) | CANopen memory error |
| Action and Reset |  |  |  |
|  | Action level | When the user update firmware version of the control board, the FRAM internal data will not be changed, then CFrn fault will occur. |  |
|  | Action time | Immediately act when the fault is detected |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Manual Reset |  |
|  | Reset condition | Pr. 00-02=7 |  |
|  | Record | When Pr. 00-21 $=3$, CFrn is a "Warning", and the warning is not recorded |  |
|  | Cause | Corrective Actions |  |
| CANop | internal memory error | 1. Disable CANopen (Pr. 09-36=0) <br> 2. Reset CANopen (Pr. 00-20=7) <br> 3. Reset CANopen station address (Pr. 09-36) |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 43 | Warning CSdn SDO T-out | CANopen SDO time-out (CSdn) | SDO transmission time-out (only shows on master station) |
| Action and Reset |  |  |  |
|  | Action level | When the CANopen master transmits SDO command, and the Slave response "time-out", CSdn warning will occur. |  |
|  | Action time | Immediately act when the fault is detected |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | When the master resends a SDO command and receives the response, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Slave is | not connected | Connect slave and CANopen BUS. |  |
| The syn short | hronize cycle is set too | Increase the synchronization time (Index 1006) |  |
| Malfun | on caused by interference | 1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Disconn of the $c$ | ction or bad connection mmunication cable | Check the status of the cable, or replace the cable. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 44 | Warning CSbn Buf Overflow | CANopen SDO receives register overflow (CSbn) | CANopen SDO receives register overflow |
| Action and Reset |  |  |  |
|  | Action level | The upper unit sends too much SDO and causes buffer overflow |  |
|  | Action time | Immediately act when the fault is detected |  |
| War | ning setting parameter | N/A |  |
|  | Reset method | The upper unit sends a reset package to clear the warning. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Too muc | SDO from the upper unit | Check if the master sends too much SDO command. Make sure the master sends SDO command according to the command format. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 46 | Warning CPtn Error Protocol | CANopen format error (CPtn) | CANopen protocol format error |
| Action and Reset |  |  |  |
|  | Action level | The slave detects that data from the upper unit cannot be recognized, and then shows CPtn warning |  |
|  | Action time | Immediately displays when the fault is detected |  |
| War | ning setting parameter | N/A |  |
|  | Reset method | The upper unit sends a reset packet to clear the warning |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The upper unit sends incorrect communication packet |  | Make sure the master sends the packet based on CANopen DS301 standard command format. |  |
|  |  |  |  |
| ID No. | Display on LCM Keypad | Warning Name | Description |
| 47 | Warning PLrA RTC Adjust | RTC adjust (PLrA) | PLC (RTC) is not adjusted |
| Action and Reset |  |  |  |
|  | Action level | When using RTC function for PLC program, and PLC detects unreasonable RTC time, PLrA warning displays. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | N/A |  |
| Reset method |  | Auto $\quad$ Stops the PLC and runs again, the warning automatically clears |  |
|  |  | Manual Manual reset to clear this warning |  |
|  | Reset condition | Cycle the power |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| When us program over 7 not con time, th the inte re-conn | sing RTC function for PLC , and the drive is power off ays or KPC-CC01 does ect to the drive for a long RTC time is different with nal calculated time when ect the keypad to the drive. | 1. Stop the PLC program and restart it. <br> 2. Adjust the RTC time and cycle the power. |  |
| KPC-C RTC tim | 01 does not adjust the | Adjust the RTC time and cycle the power. |  |
| PLC de <br> time | ects unreasonable RTC | 1. Stop the PLC program and restart it. <br> 2. Cycle the power. |  |
| Replace | with a new KPC-CC01 | 1. Stop the PLC program and restart it. <br> 2. Cycle the power. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 48 | Warning PLiC InnerCOM error | InnerCOM error (PLiC) | InnerCOM error |
| Action and Reset |  |  |  |
|  | Action level | N/A |  |
|  | Action time | N/A |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | N/A |  |
|  | Reset condition | When InnerCOM is back to normal condition, the warning automatically clears |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Commu | nication cable is loose | Check the connection of the communication cable |  |
| Malfunc | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> It recommended to install terminal resistor(s) on the first and the last unit of the communication circuit. |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 49 | Warning <br> Plrt <br> Keypad RTC T-out | Keypad RTC time-out <br> (PLrt) | PLC (RTC) error |
| Action and Reset |  |  |  |
| Action level | N/A |  |  |
| Action time | N/A |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | N/A |  |  |
| Reset condition | Cycle the power |  |  |
| Record | N/A |  |  |
| Cause |  |  |  |
| KPC-CC01 is not connected to the <br> control board while using the RTC <br> function | Do not remove the KPC-CC01 keypad while using RTC function. |  |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :---: | :--- | :--- |
| 50 | Warning <br> PLod <br> Opposite Defect | PLC opposite defect <br> (PLod) | PLC download error warning |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 51 | Warning PLSv Save mem defect | PLC save memory error (PLSv) | Data error during PLC operation |
| Action and Reset |  |  |  |
|  | Action level | The program detects incorrect written address (e.g. the address has exceeds the range) during PLC operation, then the PLSv warning shows. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| An inco detecte | rect written address is during PLC operation | Make sure the write-in address is correct and re-download the program. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 52 | Warning PLdA AuTo Data defect | Data defect (PLdA) | Data error during PLC operation |
| Action and Reset |  |  |  |
|  | Action level | The program detects incorrect write-in address when translating the program source code, then PLSv warning acts. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| During Modbus data to | LC operation, the external has written/read incorrect internal PLC program | Check if the upper unit transmits the correct command |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 53 | Warning PLFn <br> Function defect | Function defect (PLFn) | PLC download function code error |
| Action and Reset |  |  |  |
|  | Action level | The program detects incorrect command (unsupported command) during PLC downloading, then PLFn warning acts. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Unsupp while do | rted command has used wnloading the program | Check if the firmware of the drive is the old version. If yes, please contact Delta. |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 54 | Warning <br> PLor <br> Buf overflow | PLC buffer overflow <br> (PLor) | PLC register overflow |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 55 | Warning <br> PLFF <br> Function defect | Function defect <br> (PLFF) | Function code error during PLC operation |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 56 | Warning <br> PLSn <br> Check sum error | Checksum error <br> (PLSn) | PLC checksum error |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 57 | Warning <br> PLEd <br> No end command | No end command (PLEd) | PLC end command is missing |
| Action and Reset |  |  |  |
|  | Action level | The "End" command is missing until the last command is executed, the PLEd warning shows |  |
|  | Action time | Immediately displays when the fault is detected |  |
| Wa | ning setting parameter | NA |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| There is during | no "END" command LC operation | 1. Disable PLC <br> 2. Remove PLC program (Pr. 00-02=6) <br> 3. Enable PLC <br> 4. Re-download PLC program |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 58 | Warning PLCr PLC MCR error | PLC MCR error (PLCr) | PLC MCR command error |
| Action and Reset |  |  |  |
|  | Action level | The MC command is detected during PLC operation, but there is no corresponded MCR command, then the PLCr warning shows. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | NA |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The MC used for | command is continuously more than 9 times | The MC command cannot be used continuously for 9 times. Check and reset the program, then re-download the program. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 59 | Warning PLdF Download fail | PLC download fail (PLdF) | PLC download fail |
| Action and Reset |  |  |  |
|  | Action level | PLC download fail due to momentary power loss during the downloading, when power is ON again, PLdF warning shows. |  |
|  | Action time | Immediately displays when the fault is detected |  |
| War | ing setting parameter | NA |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| PLC do the prog | nload is forced to stop, so am write-in is incompleted | Check if there is any error in the program and re-download the PLC program |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 60 | Warning PLSF <br> Scan time fail | PLC scan time fail (PLSF) | PLC scan time exceeds the maximum allowable time |
| Action and Reset |  |  |  |
|  | Action level | When the PLC scan time exceeds the maximum allowable time (400ms), PLSF warning shows. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ing setting parameter | NA |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The PL maximu | scan time exceeds the allowable time ( 400 ms ) | Check if the source code is correct and re-download the program |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 61 | Warning PCGd CAN/M Guard err | CAN/M guarding error (PCGd) | CANopen Master guarding error |
| Action and Reset |  |  |  |
|  | Action level | When CANopen Master Node Guarding detects that one of the Slaves does not response, the PCGd warning will display |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | NA |  |
|  | Reset method | Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Slave is CANop connec | not connected or BUS cable is not d | Connect the Slave and CANopen BUS |  |
| Malfunc | ion caused by interference | 1. Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Commu bad con | ication cable is broken or nected | Check or replace the communication cable. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 62 | Warning PCbF CAN/M bus off | CAN/M BUS off (PCbF) | CANopen Master BUS off |
| Action and Reset |  |  |  |
|  | Action level | When the CANopen master detects error packets more than 255 during the BUS off detection, or when the CANopen card is not installed, the PCbF warning displays. <br> If the BUS cable is not connected, the drive will not receive issues packet, and the PCbF warning will not display. |  |
|  | Action time | Immediately displays when the fault is detected |  |
| War | ing setting parameter | NA |  |
|  | Reset method | Cycle the power |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Malfunc | ion caused by interference | 1. Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Commu bad con | nication cable is broken or nected | Check or replace the communication cable. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 63 | Warning PCnL CAN/M Node Lack | CAN/M node lack (PCnL) | CANopen Master node error |
| Action and Reset |  |  |  |
|  | Action level | When the CANopen master configures different setting nodes from the actual nodes, the PCnL warning displays. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | When connect BUS to the original slave, or change the configured node numbers to meet the actual node quantity, the warning automatically clears. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The con differen | figured node quantity is from the actual nodes | Connect BUS to the original slave, or change the configured node numbers to meet the actual node quantity |  |
| Commu bad con | nication cable is broken or nected | Check or replace the communication cable. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 64 | Warning PCCt CAN/M Cycle Time | CAN/M cycle time-out (PCCt) | CANopen Master cycle time-out |
| Action and Reset |  |  |  |
|  | Action level | When the transmitted packet from CANopen master exceeds the maximum allowable quantity in a certain time, the PCCt warning displays. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | The warning automatically clears when changing the configuration and re-executing the program. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| When th CANop maxim certain | e transmitted packet from n master exceeds the $m$ allowable quantity in a me | Increase the time setting of D1090 synchronization cycle |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 65 | Warning PCSF CAN/M SDO over | CAN/M SDO over (PCSF) | CANopen Master SDO overflow |
| Action and Reset |  |  |  |
|  | Action level | When the CANopen master transmits too much SDO that causes buffer overflow, the PCSF warning displays |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Cycle the power, or stop the PLC and run the PLC again |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Internal SDO at | PLC transmits too much once | The PLC program needs to confirm receiving the SDO feedback data before sending another SDO command. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 66 | Warning PCSd CAN/M Sdo Tout | CAN/M SDO time-out (PCSd) | CANopen Master SDO time-out |
| Action and Reset |  |  |  |
|  | Action level | When the CANopen master sends a SDO command, and the BUS is too busy to transmit the command, PCSd warning displays. |  |
|  | Action time | Immediately displays when the fault is detected |  |
| Wa | ning setting parameter | N/A |  |
|  | Reset method | The warning automatically clears when the SDO transmits normally. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| When th transmi does no the Sla | e CANopen master a SDO command, and receive feedback from within 1 sec . | Check if the Slave responds within 1 second. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 67 | Warning | CAN/M address error (PCAd) | CANopen Master station address error |
| Action and Reset |  |  |  |
|  | Action level | When the CANopen master detects an incorrect or repeated station address from the Slave, the PCAd warning displays. |  |
|  | Action time | Immediately displays when the fault is detected |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | The warning automatically clears when reset the station address and run the program again. |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| When th detects station | e CANopen master an incorrect or repeated address from the Slave | Set the correct slave station address. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 68 | Warning PCTo CANTO CT-Out | CAN/M time-out (PCTo) | When the drive receives an incorrect packet, it means that there is interference or the command from the upper unit does not meet the CANopen command format. |
| Action and Reset |  |  |  |
|  | Action level | N/A |  |
|  | Action time | Immediately acts when receiving the command |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | The warning automatically clears after receives another normal packet |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Malfunc | on caused by interference | 1. Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| The com does no format | mand from the upper unit meet the CANopen | Please contact Delta for further confirmation. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 70 | Warning ECid ExCom ID failed | ExCom ID fail (ECid) | Duplicate MAC ID error Node address setting error |
| Action and Reset |  |  |  |
| Action level Duplicate setting of MAC ID <br> Node address setting error |  |  |  |
|  | Action time | N/A |  |
| Wa | ning setting parameter | N/A |  |
|  | Reset method | Correct the setting and cycle the power |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The set range | ing address exceeds the -63) | Check the address setting of the communication card (Pr. 09-70) |  |
| The spe range | ed setting exceeds the | Standard: 0-2, non-standard: 0-7 |  |
| The add other n | ress is duplicated with des on the BUS | Reset the address |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 71 | Warning <br> ECLV <br> ExCom pwr loss | ExCom power loss <br> (ECLv) | Low voltage of communication card |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 72 | Warning ECtt ExCom Test Mode | ExCom test mode (ECtt) | Communication card is in the test mode |
| Action and Reset |  |  |  |
|  | Action level | Communication card is in the test mode |  |
|  | Action time | Immediately acts |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Cycle the power and enter the normal mode |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Communication command error |  | Cycle the power |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :--- | :--- | :--- |
| 73 | Warning <br> ECbF <br> ExCom Bus off | ExCom Bus off <br> (ECbF) | The communication card detects too much errors in the <br> BUS, then enters the BUS-OFF status and stop <br> communicating |
| Action and Reset |  |  |  |
| Action level | When the drive detects BUS-off (for DeviceNet) |  |  |
| Action time | Immediately acts |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Cycle the power |  |  |
| Reset condition | N/A |  |  |
| Record | N/A |  |  |
| Cause | Re-connect the cable |  |  |
| Poor connection of the cable | Replace the cable |  |  |
| Bad quality of the cable |  |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 74 | Warning ECnP ExCom No power | ExCom no power $(\mathrm{ECnP})$ | There is no power supply on the DeviceNet |
| Action and Reset |  |  |  |
|  | Action level | There is no power supply on the DeviceNet |  |
|  | Action time | Immediately acts |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Re-power |  |
|  | Reset condition | N/A |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The driv has no | detects that DeviceNet ower | Check if the cable and power is normal. If yes, return to the factory for repair. |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 75 | Warning <br> ECFF <br> ExCom Facty def | ExCom factory defect <br> (ECFF) | Fescription |
| Factory default setting error |  |  |  |
| Action level | Factory default sent and Reset error |  |  |
| Action time | Immediately acts |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Cycle the power |  |  |
| Reset condition | N/A |  |  |
| Record | N/A |  |  |
| Cause | Use DCISoft to reset to the default value. |  |  |
| Factory default setting error |  |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :--- | :--- | :--- |
| 76 | Warning <br> ECiF <br> ExCom Inner err | ExCom inner error <br> (ECiF) | Serious internal error |
| Action and Reset |  |  |  |
| Action level | Internal memory saving error |  |  |
| Action time | Immediately acts |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Cycle the power |  |  |
| Reset condition | N/A |  |  |
| Record | N/A |  |  |
| Cause | Verify wiring of the control circuit, and wiring/grounding of the main circuit to <br> prevent interference. <br> Cycle the power. |  |  |
| Noise interference | Reset to the default value and check if the error still exists. If yes, replace the <br> communication card. |  |  |
| The memory is broken |  |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 77 | Warning <br> ECio <br> ExCom IONet brk | ExCom IO Net break (ECio) | IO connection break off |
| Action and Reset |  |  |  |
|  | Action level | IO connection between the communication card and the master is broken off |  |
|  | Action time | Immediately acts |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The ca | is loose | Re-install the cable |  |
| Incorre master | parameter setting for mmunication | Check the setting for master communication parameter |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 78 | Warning | ExCom Parameter data error (ECPP) | Profibus parameter data error |
| Action and Reset |  |  |  |
|  | Action level | N/A |  |
|  | Action time | N/A |  |
| War | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The GS | file is incorrect | Get the correct GSD file from the software |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 79 | Warning <br> ECPi <br> ExCom Conf data | ExCom configuration data error (ECPi) | Profibus configuration data error |
| Action and Reset |  |  |  |
|  | Action level | N/A |  |
|  | Action time | N/A |  |
| War | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The GS | file is incorrect | Get the correct GSD file from the software |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 80 | Warning <br> ECEF <br> ExCom Link fail | Ethernet link fail <br> (ECEF) | Ethernet cable is not connected |
| Action and Reset |  |  |  |
| Action level | Hardware detection |  |  |
| Action time | Immediately acts |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Manual reset |  |  |
| Reset condition | N/A |  |  |
| Record | N/A |  |  |
| Cause | Re-connect the cable |  |  |
| Ethernet cable is loose | Replace the cable |  |  |
| Bad quality of Ethernet cable |  |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 81 | Warning <br> ECto <br> ExCom Inr T-out | Communication time-out (ECto) | Communication time-out for communication card and the upper unit |
| Action and Reset |  |  |  |
|  | Action level | N/A |  |
|  | Action time | N/A |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | N/A |  |
|  | Reset condition | CMC-EC01: auto resets when the communication with the upper unit is back to normal |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| Commu connec | ication card is not d with the upper unit | Check if the connection of the communication cable is correct |  |
| Commu unit | ication error of the upper | Check if the communication of the upper unit is normal |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 82 | Warning <br> ECCS <br> ExCom Inr CRC | Checksum error <br> (ECCS) | Checksum error for communication card and the drive |
| Action and Reset |  |  |  |
| Action level | Software detection |  |  |
| Action time | N/A |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Manual reset |  |  |
| Reset condition | Immediately resets |  |  |
| Record | N/A |  |  |
| Cause | Verify wiring of the control circuit, and wiring/grounding of the main circuit to <br> prevent interference. |  |  |
| Noise interference |  |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 83 | Warning ECrF ExCom Rtn def | Return defect (ECrF) | Communication card returns to the default setting |
| Action and Reset |  |  |  |
|  | Action level | Communication card returns to the default setting |  |
|  | Action time | N/A |  |
| Wa | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately resets |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Communication card is returning to default setting |  | No actions. |  |
|  |  |  |  |
| ID No. | Display on LCM Keypad | Warning Name | Description |
| 84 | Warning ECo0 ExCom MTCP over | Modbus TCP over (EcoO) | MODBUS TCP exceeds maximum communication value |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately acts |  |
| Wa | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately resets |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The Ma is more of the $c$ | ster communication value than the allowable quantity mmunication card | Reduce Master communication value |  |
| The up commu break causes | er unit is online without nicating, and does not f the MODBUS TCP link, occupy connection | Revise program of upper unit, the communication should be break off when it is not used for a long time |  |
| A new is built unit is commu caused | IODBUS TCP connection very time when the upper nnected to the ication card, which occupy connection | Revise program of upper unit: use the same MODBUS TCP connection when connected to the same communication card |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 85 | Warning ECo1 ExCom EIP over | EtherNet/IP over (ECo1) | Ethernet/IP exceeds maximum communication value |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately acts |  |
|  | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately resets |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The Ma is more of the $c$ | ster communication value than the allowable quantity mmunication card | Reduce Master communication value |  |
| The upp commu break of causes | er unit is online without nicating, and does not f the MODBUS TCP link, occupy connection | Revise program of upper unit, the communication should be break off when it is not used for a long time |  |
| A new is built unit is c commu caused | ODBUS TCP connection very time when the upper nnected to the ication card, which occupy connection | Revise program of upper unit: use the same MODBUS TCP connection when connected to the same communication card |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 86 | Warning <br> ECiP <br> ExCom IP fail | IP fail (ECiP) | IP setting error |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately acts |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediate reset |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| IP conflict |  | Reset IP |  |
| DHCP IP configuration error |  | MIS check if DHCP Server works normally |  |


| ID No. | Display on LCM Keypad | Warning Name |  |
| :---: | :--- | :--- | :--- |
| 87 | Warning <br> EC3F <br> ExCom Mail fail | Mescription |  |
| Action and Reset (EC3F) |  |  |  |
| Action level | Mail warning: Alarm mail will be sent when the <br> communication card establishes alarm conditions |  |  |
| Action time | Immediately acts |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Manual reset |  |  |
| Reset condition | Immediately resets |  |  |
| Record | N/A |  |  |
| Communication card establishes |  |  |  |
| Colarm conditions | No actions |  |  |



| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 89 | Warning <br> AUTO ECCb <br> ExCom Card break | ExCom card break $($ ECCb) | Communication card break off warning |
| Action and Reset |  |  |  |
|  | Action level | Communication card break off |  |
|  | Action time | The time between communicatcion card break off and ECCb displays: <br> 1. EtherNet/IP: 3 sec . <br> 2. Modbus TCP: 3 sec . <br> 3. DeviceNet: 1 sec . <br> 4. PROFIBUS: 1 sec . <br> 5. EtherCAT: 0.1 sec . |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Auto resets after communication card is re-installed |  |
|  | Reset condition | Immediately resets |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Commu | ication card break off | Re-install communication card |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 90 | Warning CPLP <br> Copy PLC Pass Wd | Copy PLC: password error (CPLP) | Copy PLC password error. <br> When KPC-CC01 is processing PLC copy and the PLC password is incorrect, the CPLP warning shows. |
| Action and Reset |  |  |  |
|  | Action level | PLC password is incorrect |  |
|  | Action time | Immediately acts |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Directly resets |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| PLC pa | sword is incorrect | Reset and enter correct PLC password |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 91 | Warning CPLO Copy PLC Mode Rd | Copy PLC: Read mode error (CPLO) | Copy PLC Read mode error |
| Action and Reset |  |  |  |
|  | Action level | When copy PLC read mode with incorrect process |  |
|  | Action time | Immediately acts |  |
| Wa | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Directly resets |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| When c the proc | py PLC read mode and ess is incorrect | Cycle the power and copy PLC read mode again |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 92 | Warning CPL1 <br> Copy PLC Mode Wt | Copy PLC: Write mode (CPL1) | Copy PLC write mode error |
| Action and Reset |  |  |  |
|  | Action level | Copy PLC write mode with incorrect process |  |
|  | Action time | Immediately acts |  |
| War | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Directly resets |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| When c the proc | py PLC write mode and ess is incorrect | Cycle the power and copy PLC read mode again |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 93 | Warning CPLV Copy PLC Version | Copy PLC: version $\quad$ error (CPLv) | Copy PLC version error. <br> When non-C2000 built-in PLC is copied to C2000 drive, the CPLv warning shows |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately acts |  |
| Wa | ning setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Directly resets |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| $\begin{aligned} & \hline \text { Non-C2 } \\ & \text { to C200 } \\ & \hline \end{aligned}$ | 000 PLC program is copied | Check if the copied PLC program is for C2000. Use the correct C2000 PLC program. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 94 | Warning CPLS Copy PLC Size | Copy PLC: size error (CPLS) | Copy PLC Capacity size error |
| Action and Reset |  |  |  |
|  |  |  |  |
|  | Action time | Immediately acts |  |
| War | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Directly resets |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| The PLC the allow | copied to C2000 exceeds able capacity | Check if the copied PLC program is for C2000 |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :--- | :--- | :--- |
| 95 | Warning <br> CPLF <br> Copy PLC Func | Copy PLC: PLC <br> function (CPLF) | KPC-CC01 Copy PLC function should be executed <br> when PLC is off |
| Action and Reset |  |  |  |
| Action level | Software detection |  |  |
| Action time | Immediately acts |  |  |
| Warning setting parameter | N/A |  |  |
| Reset method | Manual reset |  |  |
| Reset condition | Directly resets |  |  |
| Record | N/A |  |  |
| Cause | Disable PLC function first, then run the PLC copy function again |  |  |
| PLC function is enabled when |  |  |  |
| KPC-CC01 is running copy PLC | Corrective Actions |  |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 96 | Warning CPLt Copy PLC TimeOut | Copy PLC: time-out (CPLt) | Copy PLC time out |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately acts |  |
|  | ing setting parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Directly resets |  |
|  | Record | N/A |  |
|  | Cause |  | Corrective Actions |
| $\begin{aligned} & \text { KPC-CC } \\ & \text { copying } \end{aligned}$ | 01 is removed while PLC program | The KPC-CC01 cannot be removed during the PLC copy process |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 101 | Warning ictn InrCOM Time Out | InrCOM time-out (ictn) | Internal communication time-out |
| Action and Reset |  |  |  |
|  | Action level | When Pr. 09-31=(-1) - (-10) (no -9) and the internal communication between Master and Slave is abnormal, the ictn warning shows. |  |
|  | Action time | Immediately acts |  |
| Wa | ing setting parameter | N/A |  |
|  | Reset method | Auto-reset |  |
|  | Reset condition | The warning automatically clears when the communication is back to normal condition |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Malfunc | ion caused by interference | Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen conditio | communication s with the upper unit | Check if the setting for Pr. 09-02 is the same as the setting for upper unit |  |
| Commu not con | ication cable break off or ected well | Check the cable status or replace the cable |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 105 | Warning SpdR Est-Speed REV | Estimated speed reverse (SpdR) | Estimated speed is in a reverse direction with motor actual running direction |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Pr. 10-09 |  |
|  | ing setting parameter | Pr. 10-08 <br> 0: Warn and keep operation <br> 1: Warn and coast to stop <br> 2: Warn and ramp to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately resets |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| The mo at start | runs in reverse direction | Check if the motor is hold when started, or start the motor with speed source. |  |
|  | rence between motor r measured Rr and Rs oo large | Normally the Rr value of IM is $\mathrm{Rs}^{*} 0.7$. If there is much difference of the measured value (e.g. $\mathrm{Rr}=\mathrm{Rs}^{*} 0.3$ ), proceed the motor parameter auto-tuning again. |  |
| Insuffici dragged the load | nt output torque is to the reverse direction by | Increase the current limit of Pr. 06-12, so as to increase the output torque. |  |


| ID No. | Display on LCM Keypad | Warning Name | Description |
| :---: | :---: | :---: | :---: |
| 123 | Warning dEb Dec. Energy backup | Deceleration energy backup (dEb) | Deceleration energy backup |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | N/A |  |
|  | ning setting parameter | 0: Disable <br> 1: dEb with auto accel./decel., the output frequency will note return after power reply. <br> 2: dEb with auto accel./decel., the output frequency will return after power reply. <br> 3: dEb low-voltage control, then increase to $350 \mathrm{~V} \mathrm{Dc} / 700 \mathrm{~V} \mathrm{DC}$ and decelerate to stop. <br> 4: dEb high-voltage control of 350 V DC $/ 700 \mathrm{~V} \mathrm{DC}$ and decelerate to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately resets |  |
|  | Record | N/A |  |
|  | Cause | Corrective Actions |  |
| Instant voltage heavy loa the volt | neous power off or low and unstable/ sudden ad of the power that cause ge drop | Check the power consumption |  |
| Unexpe | cted power off | Check the power consumption |  |

[This page intentionally left blank]

# Chapter 14 Fault Codes and Descriptions 



| Hardware failure | The ocA occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuits between terminals with the electric meter: <br> B1 corresponds to U, V, W; DC- corresponds to U, V, W; © corresponds to U, V, W. <br> If short circuit occur, return to the factory for repair. |
| :---: | :---: |
| Check if the setting for stall prevention is correct | Set the stall prevention to the proper value. |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 2 | aUto <br> Fault <br> ocd <br> Oc at decel | Over-current during deceleration (ocd) | Output current exceeds 2.4 times of rated current during deceleration. <br> When ocd occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocd error. |
| Action and Reset |  |  |  |
|  | Action level | 240\% of rated current |  |
|  | Action time | Immediately act |  |
|  | reatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Decele | tion time too short | 1. Increase the deceleration time <br> 2. Increase the deceleration time of S-curve <br> 3. Set auto-acceleration and auto-deceleration parameter (Pr. 01-44) <br> 4. Set over-current stall prevention function (Pr. 06-03) <br> 5. Replace the drive with a larger capacity model |  |
| Check the mo | the mechanical brake of ractivates too early | Check the action timing of the mechanical brake |  |
| Shortpoor in | cuit at motor output due to ulation wiring | Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power. |  |
| Check aging | r possible burnout or ulation of the motor | Check the motor insulation value with megger. Replace the motor if the insulation is poor. |  |
| The load | is too large | Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model. |  |
| Impuls | change of the load | Reduce the load or increase the capacity of AC motor drive. |  |
| Use sp larger | cial motor or motor with pacity than the drive | Check the motor capacity (the rated current on the motor's nameplate should $\leqq$ the rated current of the drive) |  |
| Use O electro output | OFF controller of an agnetic contactor at the U/V/W) of the drive | Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage. |  |
| V/F c | e setting error | Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage. |  |
| Torque | ompensation is too large | Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall. |  |
| Malfu | on caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |
| The long | th of motor cable is too | Increase AC motor drive's capacity Install AC reactor(s) on the output side (U/V/W) |  |
| Hardw | error | The ocd occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuits between terminals with the electric meter: <br> B1 corresponds to $\mathrm{U}, \mathrm{V}, \mathrm{W}$; DC- corresponds to $\mathrm{U}, \mathrm{V}, \mathrm{W}$; $\doteq$ corresponds to U, $\mathrm{V}, \mathrm{W}$. <br> If short circuits occur, return to the factory for repair. |  |
| Check preven | the setting of stall n is correct | Set the stall prevention to the proper value. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 3 | Fault ocn Oc at normal SPD | Over-current during steady operation (ocn) | Output current exceeds 2.4 times of the rated current during constant speed. <br> When ocn occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocn error. |
| Action and Reset |  |  |  |
|  | Action level | 240\% of rated current |  |
|  | Action time | Immediately act |  |
|  | treatment param | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Short-c poor in | cuit at motor output due to lation wiring | Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power. |  |
| Check burnou motor | possible shaft lock, or aging insulation of the | Troubleshoot the motor shaft lock. Check the motor insulation value with megger. Replace the motor if the insulation is poor. |  |
| Impulsiv | change of the load | Reduce the load or increase the capacity of AC motor drive. |  |
| Use sp larger | ial motor or motor with pacity than the drive | Check motor capacity (the rated current on the motor's nameplate should $\leqq$ the rated current of the drive) |  |
| Use ON electro output | OFF controller of an agnetic contactor at the (U/W) of the drive | Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage. |  |
| V/F cur | setting error | Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage. |  |
| Over-to | que offset value too high | Adjust over-torque offset value (Refer to Pr. 07-26 torque compensation gain), until the output current is reduced and not motor stall. |  |
| Torque | mpensation is too large. | Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall. |  |
| Malfun | on caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |
| $\begin{aligned} & \text { The len } \\ & \text { long } \end{aligned}$ | th of motor cable is too | Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W). |  |
| Hardwa | failure | The ocn occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuit between terminals with the electric meter: B1 corresponds to $\mathrm{U}, \mathrm{V}, \mathrm{W}$; DC- corresponds to $\mathrm{U}, \mathrm{V}, \mathrm{W}$; $\Theta$ corresponds to U , V , W . <br> If short circuits occur, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 4 | AUTO <br> Fault <br> GFF <br> Ground fault | Ground fault (GFF) | When (one of) the output terminal(s) is grounded, short circuit current is larger than Pr. 06-60 setting value, and the detection time is longer than Pr. 06-61 time setting, GFF occurs. <br> NOTE: the short circuit protection is provided for AC motor drive protection, not to protect the user. |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-60 (Default = 60\%) |  |
|  | Action time | Pr. 06-61 (Default $=0.10 \mathrm{sec}$.) |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Motor occurr | rnout or aging insulation | Check the motor insulation value with megger. Replace the motor if the insulation is poor. |  |
| Short | cuit due to broken cable | Troubleshoot the short circuit. Replace the cable. |  |
| Larger cable | ray capacitance of the d terminal | If the motor cable length exceeds 100 m , decrease the setting value for carrier frequency. <br> Take remedies to reduce stray capacitance. |  |
| Malfu | on caused by interference | Verify the grounding and wiring of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective sufficient anti-interference performance. |  |
| Hardw | failure | Cycle the power after checking the status of motor, cable and cable length. If GFF still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 5 | AUTO <br> Fault occ Short Circuit | IGBT short circuit between upper bridge and lower bridge (occ) | Short-circuit is detected between upper bridge and lower bridge of the IGBT module |
| Action and Reset |  |  |  |
|  | Action level | Hardware protection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec. after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| IGBT e |  | Check the motor wiring. Cycle the power, if occ still exists, return to the factory for repair. |  |
| Short-circuit detecting circuit error |  |  |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 6 | auto <br> Fault ocS <br> Oc at stop | Over-current at stop (ocS) | Over-current or hardware failure in current detection at stop. <br> Cycle the power after ocS occurs. If the hardware failure occurs, the display shows cd1, cd2 or cd3. |
| Action and Reset |  |  |  |
|  | Action level | 240\% of rated current |  |
|  | Action time | Immediately act |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Malfun | on caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |
| Hardw | failure | Check if other error code such as cd1-cd3 occur after cycling the power. If yes, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 7 | AUTO <br> Fault <br> ovA <br> Ov at accel | Over-voltage during acceleration (ovA) | DC BUS over-voltage during acceleration. When ovA occurs, the drive closes the gate of the output, the motor runs freely, and the display shows an ovA error. |
| Action and Reset |  |  |  |
| Action level 230 V series: $410 \mathrm{~V}_{\mathrm{DC}}$ <br> 460 V series: $820 \mathrm{~V}_{\mathrm{DC}}$ <br> 575 V series: $1116 \mathrm{~V}_{\mathrm{DC}}$ <br>  <br> 690 V series: 1318 V, |  |  |  |
|  | Action time | Immediately act when DC BUS voltage is higher than the level |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset only when DC BUS voltage is lower than 90\% of the over-voltage level |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Accele lifting time) | tion is too slow (e.g. hen d decreases acceleration | Decrease the acceleration time Use brake unit or DC BUS Replace the drive with a larger capacity model. |  |
| The s level is curren | ng for stall prevention maller than no-load | The setting for stall prevention level should be larger than no-load current |  |
| Power | tage is too high | Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. |  |
| ON/O capac system | switch action of phase-in in the same power | If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. |  |
| Regen inertia | ative voltage of motor | Use over-voltage stall prevention function (Pr. 06-01) Use auto-acceleration and auto-deceleration setting (Pr. 01-44) Use a brake unit or DC BUS |  |
| Accele | tion time is too short | Check if the over-voltage warning occurs after acceleration stops. When the warning occurs, do the following: <br> 1. Increase the acceleration time <br> 2. Set Pr. 06-01 over-voltage stall prevention <br> 3. Increase setting value for Pr. 01-25 S-curve acceleration arrival time 2 |  |
| Motor | ound fault | The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. <br> Troubleshoot the ground fault. |  |
| Incorr brake | wiring of brake resistor or it | Check the wiring of brake resistor and brake unit. |  |
| Malfun | on caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 8 | Fault <br> ovd <br> Ov at decel | Over-voltage during deceleration (ovd) | DC BUS over-voltage during deceleration. When ovd occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ovd error. |
| Action and Reset |  |  |  |
| Action level $\quad$230 V series: $410 \mathrm{~V}_{\mathrm{DC}}$ <br> 460 V series: $820 \mathrm{~V}_{\mathrm{DC}}$ <br> 575 V series: $1116 \mathrm{~V}_{\mathrm{DC}}$ <br> 690 V series: $1318 \mathrm{~V}_{\mathrm{DC}}$ |  |  |  |
|  | Action time | Immediately act when DC BUS voltage is higher than the level |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset only when DC BUS voltage is lower than $90 \%$ of the over-voltage level |  |
|  | Record | Yes |  |
|  | Cause | 1. | Corrective Actions |
| Decele causing energy | ation time is too short, too large regenerative of the load | 1. Increase the setting value of Pr. 01-13, Pr. 01-15, Pr. 01-17 and Pr. 01-19 (deceleration time) <br> 2. Connect brake resistor, brake unit or DC BUS on the drive. <br> 3. Reduce the brake frequency. <br> 4. Replace the drive with a larger capacity model. <br> 5. Use S-curve acceleration/deceleration. <br> 6. Use over-voltage stall prevention (Pr. 06-01). <br> 7. Use auto-acceleration and auto-deceleration (Pr. 01-44). <br> 8. Adjust braking level (Pr. 07-01 or the bolt position of the brake unit). |  |
| The s level curre | g for stall prevention maller than no-load | The setting for stall prevention level should be larger than no-load current |  |
| Power | Itage is too high | Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. |  |
| ON/OF capaci system | switch action of phase-in in the same power | If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. |  |
| Motor | und fault | The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. <br> Troubleshoot the ground fault. |  |
| Incorre brake | t wiring of brake resistor or it | Check the wiring of brake resistor or brake unit. |  |
| Malfu | tion caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 9 | Auto <br> Fault <br> ovn <br> Ov at normal SPD | Over-voltage at constant speed (ovn) | DC BUS over-voltage at constant speed. When ovn occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ovn error. |
| Action and Reset |  |  |  |
| Action level 230 V series: $410 \mathrm{~V}_{\mathrm{DC}}$ <br> 460 V series: 820 V <br>  <br>  <br>  <br> 575 V series: $1116 \mathrm{~V}_{\mathrm{DC}}$ <br> 690 V series: $1318 \mathrm{~V}_{\mathrm{DC}}$ |  |  |  |
|  | Action time | Immediately act when DC BUS voltage is higher than the level |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset only when DC BUS voltage is lower than $90 \%$ of over-voltage level |  |
|  | Record | Yes |  |
|  | Cause | 1. | Corrective Actions |
| Impuls | change of the load | 1. Connect brake resistor, brake unit or DC BUS to the drive. <br> 2. Reduce the load. <br> 3. Replace to drive with a larger capacity model. <br> 4. Adjust braking level (Pr. 07-01 or bolt position of the brake unit). |  |
| The se level is curren | ng for stall prevention maller than no-load | The setting of stall prevention level should be larger than no-load current |  |
| Regen inertia | ative voltage of motor | Use over-voltage stall prevention function (Pr. 06-01) Use a brake unit or DC BUS |  |
| Power | oltage is too high | Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. |  |
| ON/O сарас system | switch action of phase-in in the same power | If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. |  |
| Motor | ound fault | The ground short-circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. <br> Troubleshoot the ground fault. |  |
| Incorre brake | wiring of brake resistor or it | Check the wiring of brake resistor or brake unit. |  |
| Malfun | ion caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 10 | $\qquad$ <br> ovS <br> Ov at stop | Over-voltage at stop (ovS) | Over-voltage at stop |
| Action and Reset |  |  |  |
| Action level 230 V series: $410 \mathrm{~V}_{\mathrm{DC}}$ <br> 460 V series: $820 \mathrm{~V}_{\mathrm{DC}}$ <br> 575 V series: $1116 \mathrm{~V}_{\mathrm{DC}}$ <br> 690 V series: $1318 \mathrm{~V}_{\mathrm{DC}}$ |  |  |  |
|  | Action time | Immediately act when DC BUS voltage is higher than the level |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset only when DC BUS voltage is lower than 90\% of over-voltage level |  |
|  | Record | Yes |  |
|  | Cause | orrective Actions |  |
| Powe | voltage is too high | Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. |  |
| ON/OF capacit system | switch action of phase-in $r$ in the same power | If the phase-in capacitor or active power supply unit activates in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. |  |
| Incorre brake | wiring of brake resistor or it | Check the wiring of brake resistor or brake unit. |  |
| Malfun | ion caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |
| Hardw | re failure in voltage | Check if other error code such as cd1-cd3 occur after cycling the power. If yes, return to the factory for repair. |  |
| Motor g | round fault | The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. <br> Troubleshoot the ground fault. |  |
|  |  |  |  |
| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| 11 | FaultAUTO <br> LvA <br> Lvat accel | Low-voltage during acceleration (LvA) | DC BUS voltage is lower than Pr. 06-00 setting value during acceleration |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-00 (Default = depending on the model) |  |
|  | Action time | Immediately act when DC BUS voltage is lower than Pr. 06-00 |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset when DC BUS voltage is higher than Pr. 06-00 + 30V (Frame A-D) / 40V (Frame E and below) |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Power- |  | Improve power supply condition. |  |
| Power | voltage changes | Adjust voltage to the power range of the drive |  |
| Start up capacity | the motor with large | Check the power system. Increase the capacity of power equipment. |  |
| The loa | is too large | Reduce the load. Increase the drive capacity. Increase the acceleration time. |  |
| DC BU |  | Install DC reactor(s). |  |
| Check or any betwee | there is short-circuit plate C reactor installed terminal +1 and +2 | Connect short circuit plate or DC reactor between terminal +1 and +2 . If the error still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 12 | Fault Lvd Lvato Lvat decel | Low-voltage during deceleration (Lvd) | DC BUS voltage is lower than Pr. 06-00 setting value during deceleration |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-00 (Default = depending on the model) |  |
|  | Action time | Immediately act when DC BUS voltage is lower than Pr. 06-00 |  |
|  | treatment parameter | NA |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset when DC BUS voltage is higher than Pr. 06-00 + 30V (Frame A-D) / 40V (Frame E and above) |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Power- |  | Improve power supply condition. |  |
| Power | oltage changes | Adjust voltage to the power range of the drive. |  |
| Start u capac | the motor with large | Check the power system. Increase the capacity of power equipment. |  |
| Sudden load |  | Reduce the load. Increase the drive capacity. |  |
| DC BU |  | Install DC reactor(s). |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 13 | auto <br> Fault <br> Lvn <br> Lv at normal SPD | Low-voltage at constant speed (Lvn) | DC BUS voltage is lower than Pr. 06-00 setting value at constant speed |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-00 (Default = depending on the model) |  |
|  | Action time | Immediately act when DCBUS voltage is lower than Pr. 06-00 |  |
|  | It treatment parameter | NA |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset when DCBUS voltage is higher than Pr. 06-00 + 30V (Frame A-D) / 40V (Frame E and above) |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Power- |  | Improve power supply condition. |  |
| Power | voltage changes | Adjust voltage to the power range of the drive |  |
| Start u capacity | the motor with large | Check the power system. Increase the capacity of power equipment. |  |
| Sudden | load | Reduce the load. Increase the drive capacity. |  |
| DC BU |  | Install DC reactor(s). |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 14 | FaultAUTO <br> LvS at stop | Low-voltage at stop (LvS) | 1. DC BUS voltage is lower than Pr. 06-00 setting value at stop <br> 2. Hardware failure in voltage detection |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-00 (Default = depending on the model) |  |
|  | Action time | Immediately act when DCBUS voltage is lower than Pr. 06-00 |  |
|  | treatment parameter | N/A |  |
|  | Reset method |  |  |
|  | Reset condition | 500ms |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Power |  | Improve power supply condition. |  |
| Incorr | drive models | Check if the power specification matches the drive. |  |
| Power | oltage changes | Adjust voltage to the power range of the drive. <br> Cycle the power after checking the power. If LvS error still exists, return to the factory for repair. |  |
| Start up capac | the motor with large | Check the power system. Increase the capacity of power equipment. |  |
| DC BU |  | Install DC reactor(s). |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 15 | Fault ${ }^{\text {Auto }}$ OrP Phase lacked | Phase loss protection (OrP) | Phase loss of power input |
| Action and Reset |  |  |  |
|  | Action level | DC BUS is lower than Pr. 07-00, and DC BUS ripple is higher than Pr. 06-52 |  |
|  | Action time | N/A |  |
|  | ult treatment parameter | Pr. 06-53 |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset when DCBUS is higher than Pr. 07-00 |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Phase | ss of input power | Correctly install the wiring of the main circuit power. |  |
| Single three-p | hase power input to ase model | Choose the model whose power matches the voltage. |  |
| Power | oltage changes | If the main circuit power works normally, verify the main circuit. Cycle the power after checking the power, if OrP error still exists, return to the factory for repair. |  |
| Loose power | wing terminal of input | Tighten the terminal screws according to the torque described in the user manual. |  |
| The in power | t cable of three-phase cut off | Wire correctly. Replace the cut off cable. |  |
| Input p much | wer voltage changes too | Verify the setting value for Pr. 06-50 Time for Input Phase Loss Detection and Pr. 06-52 Ripple of Input Phase Loss |  |
| Unbala power | ced three-phase of input | Check the power three-phase status. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 16 | FaultoH1 <br> oHTO <br> IGBT over heat | IGBT overheating (oH1) | IGBT temperature exceeds the protection level |
| Action and Reset |  |  |  |
|  | Action level | When Pr.06-15 is higher than the IGBT overheating protection level, oH1 error occurs instead of oH 1 warning. |  |
|  | Action time | IGBT temperature exceeds the protection level for more than $100 \mathrm{~ms}, \mathrm{oH} 1$ error occurs. |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset only when IGBT temperature is lower than oH 1 error level minus (-) $10^{\circ} \mathrm{C}$ |  |
|  | Record | Yes |  |
|  | Cause | 1. | Corrective Actions |
| Check or temp cabine obstruc of the | the ambient temperature rature inside the control s too high, or if there is on in the ventilation hole ntrol cabinet. | 1. Check ambient temperature. <br> 2. Regularly inspect the ventilation hole of the control cabinet. <br> 3. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. <br> 4. Install/ add cooling fan or air conditioner to lower the temperature inside the cabinet. |  |
| Check the hea running | there is any obstruction on sink or if the fan is | Remove the obstruction or replace the cooling fan. |  |
| Insuffic | nt ventilation space | Increase ventilation space of the drive. |  |
| Check corres | the drive matches the nding load | 1. Reduce the load <br> 2. Reduce the carrier <br> 3. Replace the drive with a larger capacity model. |  |
| The drive than 1 long tim | has run $100 \%$ or more $\%$ of the rated output for a | Replace the drive with a larger capacity model. |  |



| Model | oH1 | oH 2 | $\begin{gathered} \text { oH warning } \\ \text { oH1 warning }=(\text { Pr.06-15 }) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| VFD150C43A/E | 110 | 80 | oH 1 Warning $=\mathrm{oH} 1-5$oH 2 Warning $=\mathrm{oH} 2-5$ |
| VFD185C43A/E |  |  |  |
| VFD220C43A/E |  | 85 |  |
| VFD300C43A/E |  |  |  |
| VFD370C43S/U |  | 65 |  |
| VFD450C43S/U |  |  |  |
| VFD550C43A/E |  |  |  |
| VFD750C43A/E |  |  |  |
| VFD900C43A/E |  |  |  |
| VFD1100C43A/E |  |  |  |
| VFD1320C43A/E |  |  |  |
| VFD1600C43A/E |  |  |  |
| VFD1850C43A/E |  | 70 |  |
| VFD2200C43A/E |  |  |  |
| VFD2800C43A/E |  |  |  |
| VFD3150C43A/E |  |  |  |
| VFD3550C43A/E |  |  |  |
| VFD4500C43A/E |  |  |  |
| VFD015C53A | 100 | 85 | $\begin{aligned} & \mathrm{oH} 1 \text { Warning }=\mathrm{oH} 1-5 \\ & \mathrm{oH} 2 \text { Warning }=\mathrm{oH} 2-5 \end{aligned}$ |
| VFD022C53A | 105 |  |  |
| VFD037C53A | 100 |  |  |
| VFD055C53A |  | 70 |  |
| VFD075C53A |  |  |  |
| VFD110C53A |  |  |  |
| VFD150C53A |  |  |  |
| VFD185C63B | 90 | 85 | oH 1 Warning $=\mathrm{oH} 1-5$ <br> oH 2 Warning $=\mathrm{oH} 2-5$ |
| VFD220C63B |  |  |  |
| VFD300C63B |  |  |  |
| VFD370C63B |  |  |  |
| VFD450C63B |  | 65 |  |
| VFD550C63B | 100 |  |  |
| VFD750C63B | 110 |  |  |
| VFD900C63B |  |  |  |
| VFD1100C63B |  |  |  |
| VFD1320C63B |  |  |  |
| VFD1600C63B |  |  |  |
| VFD2000C63B |  |  |  |
| VFD2500C63B |  | 70 |  |
| VFD3150C63B |  |  |  |
| VFD4000C63B |  |  |  |
| VFD4500C63B |  |  |  |
| VFD5600C63B |  |  |  |
| VFD6300C63B |  |  |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 18 | FaulttH1o <br> Thermo 1 open auto | IGBT temperature detection failure (tH1o) | IGBT hardware failure in temperature detection |
| Action and Reset |  |  |  |
|  | Action level | NTC broken or wiring failure |  |
|  | Action time | When the IGBT temperature is higher than the protection level, and detection time exceeds 100 ms , the tH 10 protection activates. |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | re failure | Wait for 10 minutes, and then cycle the power. Check if tH1o protection still exists. If yes, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 19 | Fault Auto th2o Thermo 2 open | Capacitor hardware error (tH2o) | Hardware failure in capacitor temperature detection |
| Action and Reset |  |  |  |
|  | Action level | NTC broken or wiring failure |  |
|  | Action time | When the IGBT temperature is higher than the protection level, and detection time exceeds 100 ms , the tH 2 o protection activates. |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Hardwa | failure | Wait for 10 minutes, and then cycle the power. Check if tH2o protection still exists. If yes, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 21 | Fault  Auto <br> oL   <br> Over load   | Over load (oL) | The AC motor drive detects excessive drive output current. The overload capacity sustains for 1 minute when the drive outputs $120 \%$ of the drive's rated output current. |
| Action and Reset |  |  |  |
|  | Action level | Based on over load curve and derating curve. |  |
|  | Action time | When the load is higher than the protection level and exceeds allowable time, the oL protection activates. |  |
|  | ult treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| The load | dis too large | Reduce the load |  |
| Accel. cycle | Decel. time or the working e too short | Increase the setting value for Pr. 01-12-01-19 (accel./decel time) |  |
| V/F vol | age is too high | Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). <br> Refer to the V/F curve selection of Pr.01-43. |  |
| The ca small | acity of the drive is too | Replace the drive with a larger capacity model. |  |
| Overlo operatio | during low-speed n | Reduce the load during low-speed operation. Increase the drive capacity. Decrease the carrier frequency of Pr. 00-17. |  |
| Torque | compensation is too large | Adjust the torque compensation (refer to Pr. 07-26 Torque Compensation Gain) until the output current reduces and the motor does not stall. |  |
| Check preven | the setting for stall on is correct. | Set the stall prevention to the proper value. |  |
| Output | phase loss | Check the status of three-phase motor. Check if the cable is broken or the screws are loose. |  |
| Improp the spe (includ power | parameter settings for ed tracking function ing restart after momentary oss and restart after fault) | Correct the parameter settings for speed tracking. <br> 1. Start the speed tracking function. <br> 2. Adjust the maximum current for Pr.07-09 speed tracking. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 22 | Fault <br> EoL1 <br> Thermal relay 1 | Electronics thermal relay 1 protection (EoL1) | Electronics thermal relay 1 protection. The drive coasts to stop once it activates. |
| Action and Reset |  |  |  |
|  | Action level | Start counting when output current > 105\% of motor 1 rated current |  |
|  | Action time | Pr. 06-14 (if the output current is larger than $105 \%$ of motor 1 rated current again within 60 sec., the counting time reduces and is less than Pr. 06-14) |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| The load | is too large | Reduce the load. |  |
| Accel./ cycle is | cel. time or the working oo short | Increase the setting values for Pr. 01-12-01-19 (Accel./Decel time) |  |
| V/F vol | ge is too high | Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). <br> Refer to the V/F curve selection of Pr.01-43. |  |
| Overloa operati When it opera overload low-sp | during low-speed . <br> ing a general motor, even es below rated current, an may still occur during d operation. | Decrease low-speed operation time. <br> Replace the drive with a dedicated to VFD model. Increase the motor capacity. |  |
| When motors therma inverte | ing VFD dedicated Pr. 06-13=0 (electronic relay selection motor $1=$ motor) | Pr. 06-13=1 electronic thermal relay selection motor $1=$ standard motor (motor with fan on the shaft). |  |
| Incorre therma | value of electronic elay | Reset to the correct motor rated current. |  |
| The max set too | imum motor frequency is w | Reset to the correct motor rated frequency. |  |
| One d | to multiple motors | Set Pr. 06-13=2 electronic thermal relay selection motor 1= disable, and install thermal relay on each motor. |  |
| Check preven | the setting for stall is correct. | Set the stall prevention to the proper value. |  |
| Torque | ompensation is too large | Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall. |  |
| Motor fan | error | Check the status of the fan, or replace the fan. |  |
| Unbala impeda | ced three-phase ce of the motor | Replace the motor. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 23 | AUTO <br> Fault <br> EoL2 <br> Thermal relay 2 | Electronic thermal relay 2 protection (EoL2) | Electronic thermal relay 2 protection. The drive coasts to stop once it activates. |
| Action and Reset |  |  |  |
|  | Action level | Start counting when output current > 105\% of motor 2 rated current |  |
|  | Action time | Pr. 06-28 (If the output current is larger than $105 \%$ of motor 2 rated current again within 60 sec., the counting time reduces and is less than Pr. 06-28) |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset in 5 sec . after the fault is cleared |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| The load | is too large | Reduce the load |  |
| Accel. cycle | ecel. time or the working too short | Increase the setting values for Pr.01-12-01-19 (accel./decel. time) |  |
| V/F vol | ge is too high | Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). <br> Refer to the V/F curve selection setting of Pr.01-43. |  |
| Overlo operat When operat overloa low-sp | during low-speed . <br> ing general motor, even it below rated current, an may still occur during d operation. | Decrease low-speed operation time. Replace the drive with a dedicated to VFD model. Increase the motor capacity. |  |
| When motors therma invert | ing VFD dedicated Pr. 06-27=0 (electronic relay selection motor $2=0$ motor) | Pr. 06-27=1 Electronic thermal relay selection motor 2 = standard motor (motor with fan on the shaft). |  |
| Incorr therm | value of electronic relay | Reset to the correct motor rated current. |  |
| The max set too | imum motor frequency is w | Reset to the correct motor rated frequency. |  |
| One d | to multiple motors | Set Pr. 06-27=2 Electronic thermal relay selection motor 2 = disable, and install thermal relay on each motor. |  |
| Check preven | the setting for stall n is correct. | Set the stall prevention to the proper value. |  |
| Torque | ompensation is too large | Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall. |  |
| Motor | error | Check the status of the fan, or replace the fan. |  |
| Unbala imped | ced three-phase ce of the motor | Replace the motor. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 24_1 | $\begin{aligned} & \text { Fault AUTO } \\ & \text { oH3 } \\ & \text { Motor over heat } \end{aligned}$ | Motor overheating (oH3) PTC | Motor overheating (PTC) (Pr. 03-00 - Pr. 03-02=6 PTC), when PTC input > Pr. 06-30, the fault treatment acts according to Pr. 06-29. |
| Action and Reset |  |  |  |
|  | Action level | PTC input value > Pr. 06-30 setting (Default = 50\%) |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | Pr. 06-29 <br> 0 : Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | When Pr. 06-29=0, oH3 is a "Warning". The "Warning" is automatically cleared. When Pr. $06-29=1$ or 2, oH3 is a "Fault". You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 06-29=1 or 2, oH3 is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Motor | aft lock | Remove the shaft lock. |  |
| The load | is too large | Reduce the load. Increase the motor capacity. |  |
| Ambien | temperature is too high | Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature. |  |
| Motor c | oling system error | Check the cooling system to make it work normally. |  |
| Motor fa | error | Replace the fan. |  |
| Operate | at low-speed too long. | Decrease low-speed operation time. Replace the motor with a dedicated to VFD model. Increase the motor capacity. |  |
| Accel./I cycle | ecel. time and working too short | Increase the setting values for Pr. 01-12-01-19 (accel./decel. time) |  |
| V/F volt | ge is too high | Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). |  |
| Check matche namep | the motor rated current that on the motor te. | Reset to the correct motor rated current. |  |
| Check and wir | the PTC is properly set d. | Check the connection between PTC thermistor and the heat protection. |  |
| Check prevent | the setting for stall n is correct. | Set the stall prevention to the proper value. |  |
| Unbala impeda | ced three-phase ce of the motor | Replace the motor. |  |
| Harmon | cs are too high. | Use remedies to reduce harmonics. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 24_2 | Fault AUTO oH3 Motor over heat | Motor overheating (oH3) PT100 | Motor overheating (PT100) (Pr. 03-00 - Pr. 03-02=11 PT100). When PT100 input > Pr. 06-57 (default = 7V), the fault treatment acts according to Pr. 06-29. |
| Action and Reset |  |  |  |
|  | Action level | PT100 input value > Pr. 06-57 setting (default $=7 \mathrm{~V}$ ) |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | Pr. 06-29 <br> 0: Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | When Pr. $06-29=0$ and the temperature < Pr. 06-56, oH3 is automatically cleared. <br> When Pr. $06-29=1$ or 2, oH3 is a "Fault". You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 06-29=1 or 2, oH3 is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Motor s | aft lock | Remove the shaft lock. |  |
| The load | is too large | Reduce the load. Increase the motor capacity. |  |
| Ambien | temperature is too high | Change the installed place If there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature. |  |
| Motor c | oling system error | Check the cooling system to make it work normally. |  |
| Motor fa | error | Replace the fan. |  |
| Operate | at low-speed too long | Decrease low-speed operation time. <br> Replace the motor with a dedicated to VFD model. Increase the motor capacity. |  |
| Accel./D cycle a | ecel. time and working too short | Increase the setting values for Pr. 01-12-Pr.01-19 (accel./decel. time) |  |
| V/F volt | ge is too high | Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). |  |
| Check matche namepl | the motor rated current that on the motor te. | Reset to the correct motor rated current. |  |
| Check and wir | the PT100 is properly set d. | Check connection of PT100 thermistor. |  |
| Check prevent | the setting for stall n is correct. | Set the stall prevention to the proper value. |  |
| Unbala impeda | ced three-phase ce of the motor | Replace the motor. |  |
| Harmon | cs are too high | Use remedies to reduce harmonics. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 26 | Fault Auto <br> ot1  <br> Over torque 1  | Over torque 1 (ot1) | When output current exceeds the over-torque detection level (Pr.06-07) and exceeds over-torque detection time (Pr.06-08), and when Pr.06-06 or Pr.06-09 is set to 2 or 4, the ot1 error displays. |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-07 |  |
|  | Action time | Pr. 06-08 |  |
|  | treatment parameter | Pr. 06-06 <br> 0 : No function <br> 1: Continue operation after Over-torque detection during constant speed operation <br> 2: Stop after Over-torque detection during constant speed operation <br> 3: Continue operation after Over-torque detection during RUN <br> 4: Stop after Over-torque detection during RUN |  |
| Reset method Reset condition |  | Auto When Pr. 06-06=1 or 3, ot1 is a "Warning". The warning is automatically cleared when the output current < (Pr. 06-07-5\%) |  |
|  |  | Manual When Pr. 06-06=2 or 4, ot 1 is a "Fault". You must reset manually. |  |
|  | Record | Immediately reset |  |
|  | Active level | When Pr. 06-06=2 or 4, ot 1 is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Incorre | parameter setting | Reset Pr. 06-07 and Pr. 06-08 |  |
| Mecha over-to | cal failure (e.g. que, mechanical lock) | Remove the causes of malfunction. |  |
| The load is too large |  | Reduce the load. <br> Replace the motor with a larger capacity model. |  |
| Accel./ cycle | ecel. time and working too short | Increase the setting values for Pr. 01-12-Pr. 01-19 (accel./decel. time) |  |
| V/F voltage is too high |  | Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). |  |
| Overload during low-speed operation |  | Replace the motor with a larger capacity model. |  |
|  |  | Decrease low-speed operation time. Increase the motor capacity. |  |
| Torque compensation is too large |  | Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall. |  |
| Improper parameter settings for speed tracking function (including restart after momentary power loss and restart after fault) |  | Correct the parameter settings for speed tracking. <br> 1. Start the speed tracking function. <br> 2. Adjust the maximum current for Pr.07-09 speed tracking |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 27 |  | Over torque 2 (ot2) | When output current exceeds the over-torque detection level (Pr.06-10) and exceeds over-torque detection time (Pr.06-11), and when Pr.06-09 is set to 2 or 4 , the ot 2 error displays. |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-10 |  |
|  | Action time | Pr. 06-11 |  |
|  | reatment parameter | Pr. 06-09 <br> 0 : No function <br> 1: Continue opera operation <br> 2: Stop after Over-t <br> 3: Continue operation <br> 4: Stop after Over-t | after Over-torque detection during constant speed <br> ue detection during constant speed operation after Over-torque detection during RUN ue detection during RUN |
| Reset method Reset condition |  | Auto When Pr. $06-09=1$ or 3 , ot2 is a "Warning". The warning is automatically cleared when the output current < (Pr. 06-10-5\%). |  |
|  |  | Manual When Pr. 06-09=2 or 4, ot2 is a "Fault". You must reset manually. |  |
|  | Record | Immediately reset |  |
|  | Active level | When Pr. 06-09=2 or 4, ot2 is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Incorre | parameter setting | Reset Pr. 06-07 and Pr. 06-08 |  |
| Mecha over-to | ical failure (e.g. que, mechanical lock) | Remove the causes of malfunction. |  |
| The load | is too large. | Reduce the load. <br> Replace the motor with a larger capacity model. |  |
| Accel. cycle | ecel. time and working too short | Increase the setting values for Pr.01-12-01-19 (accel./decel. time). |  |
| V/F vol | age is too high | Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). |  |
| The m | or capacity is too small | Replace the motor with a larger capacity model. |  |
| Overlo operatio | during low-speed | Decrease low-speed operation time. Increase the motor capacity. |  |
| Torque | compensation is too large | Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall. |  |
| Improp speed restart and re | parameter settings for cking function (including momentary power loss rt after fault) | Correct the parameter settings for speed tracking. <br> 1. Start the speed tracking function. <br> 2. Adjust the maximum current for Pr.07-09 speed tracking. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 28 | Fault auto uC Under current | Under current (uC) | Low current detection |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-71 |  |
|  | Action time | Pr. 06-72 |  |
|  | treatment parameter | Pr. 06-73 <br> 0 : No function <br> 1: warn and coast to stop <br> 2: warn and ramp to stop by $2^{\text {nd }}$ deceleration time <br> 3: warn and operation continue |  |
| Reset method Reset condition |  | Auto When Pr. 06-73=3, uC is a "Warning". The warning is automatically cleared when the output current > (Pr. 06-71+0.1A). |  |
|  |  | Manual When Pr. 06-73=1 or 2, uC is a "Fault". You must reset manually. |  |
|  | Record | Immediately reset |  |
|  | Active level | When Pr. 06-71=1 or 2, uC is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Motor | ble disconnection | Troubleshoot the connection between the motor and the load. |  |
| Improp protect | setting of low-current <br> n | Reset Pr. 06-71, Pr. 06-72 and Pr. 06-73 to proper settings. |  |
| The load is too low |  | Check the load status. Check if the motor capacity matches the load. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 29 | Fault ${ }^{\text {LMIT }}$ Limit Error | Limit Error (LMIT) | When MIx=45 (forward run limit) or Mlx=44 (backward run limit) act during operation, LMIT error shows. |
| Action and Reset |  |  |  |
|  | Action level | Mlx=44 (backward run limit) or Mlx=45(forward run limit) |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| The lim incorre | ON/OFF switch is on position | Install the limit ON/OFF switch to correct position. |  |
| Decele causing limited | tion time is too long, the motor cannot stop at osition | Reduce deceleration time. Adjust setting values for brake level (Pr. 07-01 or the insert position on the brake unit). |  |
| The mot over-vo | or cannot stop due to age stall prevention | Reset the over-voltage stall prevention. |  |
| Malfun | on caused by interference | Verify wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 30 | AUTO <br> Fault <br> cF1 <br> EEPROM write err | EEPROM write error (cF1) | Internal EEPROM cannot be programmed |
| Action and Reset |  |  |  |
|  | Action level | Firmware internal detection |  |
|  | Action time | CF1 acts immediately when the drive detects the fault |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Internal progra | EEPROM cannot be med | Press "RESET" key or reset the parameter to the default setting, if cF1 still exists, return to the factory for repair. <br> Cycle the power, if cF1 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 31 | Fault $\quad$ cF2 EEPROM read err | EEPROM read error (CF2) | Internal EEPROM cannot be read |
| Action and Reset |  |  |  |
|  | Action level | Firmware internal detection |  |
|  | Action time | cF2 acts immediately when the drive detects the fault |  |
|  | alt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Interna | EEPROM cannot be read | Press "RESET" key or reset the parameter to the default setting, if cF2 still exists, return to the factory for repair. <br> Cycle the power, if cF2 error still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 33 | Fault $\quad$ auto  <br>  cd1 <br> las sensor err  | U-phase error (cd1) | U-phase current detection error when power is ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | cd1 acts immediately when the drive detects the fault |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Hardwa | e failure | Cycle the power. <br> If cd1 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 34 | auto <br> Fault <br> cd2 <br> lbs sensor err | V-phase error (cd2) | V-phase current detection error when power ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | cd2 acts immediately when the drive detects the fault |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | failure | Cycle the power. If cd2 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 35 | Faultcd3 <br> Auto <br> Ics sensor err | W-phase error (cd3) | W-phase current detection error when power ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | cd3 acts immediately when the drive detects the fault |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | failure | Cycle the power. If cd3 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 36 | Fault  <br> HdO Auto  <br> cc HW error  | cc hardware failure (HdO) | cc (current clamp) hardware protection error when power is ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Hd0 acts immediately when the drive detects the fault |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | failure | Cycle the power. If Hd0 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 37 | Fault <br> Hd1 <br> Oc HW error | Oc hardware error (Hd1) | oc hardware protection error when power is ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Hd1 acts immediately when the drive detects the fault |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardwa | e failure | Cycle the power. <br> If Hd 1 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 38 | Fault  <br> Hd2 2  <br> Ov HW error  | ov hardware error (Hd2) | ov hardware protection error when power is ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Hd2 acts immediately when the drive detects the fault |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Hardware failure |  | Cycle the power. <br> If Hd 2 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 39 | FaultHd3 <br> occ HW error | occ hardware error (Hd3) | Protection error of occ IGBT short-circuit detection when power is ON |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Hd3 acts immediately when the drive detects the fault |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Power-off |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | e failure | Cycle the power. If Hd 3 still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 40 | Fault AUTO AUE Auto tuning error | Auto-tuning error (AUE) | Motor auto-tuning error |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| $\begin{aligned} & \text { Press " } \\ & \text { auto-tu } \end{aligned}$ | TOP" key during ng | Re-execute auto-tuning. |  |
| Incorre or too | motor capacity (too large mall) and parameter setting | Check motor capacity and related parameters. Set the correct parameters, that is Pr. 01-01-Pr. 01-02. Set Pr.01-00 larger than motor rated frequency. |  |
| Incorre | motor wiring | Check the wiring. |  |
| Motor | aft lock | Remove the cause of motor shaft lock. |  |
| The el ON at drive | tromagnetic contactor is tput side (U/V/W) of the | Make sure the electromagnetic valve is OFF. |  |
| The loa | is too large. | Reduce the load. Replace the motor with a larger capacity model. |  |
| Accel./ | ecel. time is too short | Increase the setting values for Pr. 01-12-Pr. 01-19 (Accel./Decel. time). |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 41 |  | PID loss ACI (AFE) | PID feedback loss (analog feedback signal is only valid when the PID function is enabled) |
| Action and Reset |  |  |  |
|  | Action level | When the analog input < 4mA (only detects 4-20mA analog input) |  |
|  | Action time | Pr. 08-08 |  |
|  | treatment parameter | Pr. 08-09 <br> 0: warn and keep operation <br> 1: warn and ramp to stop <br> 2: warn and coast to stop <br> 3: warn and operate at last frequency |  |
| Reset method |  | AutoWhen Pr. 08-09=3 or 4, AFE is a "Warning". When the feedback signa <br> is $>4 \mathrm{~mA}$, the "Warning" is automatically cleared. |  |
|  |  | Manual When Pr. 08-09=1 or 2, AFE is a "Fault". You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. $08-09=1$ or 2, AFE is a "Fault", and the fault is recorded; when Pr. $08-09=3$ or 4 , AFE is a "Warning", and the warning is not recorded. |  |
|  | Cause | Corrective Actions |  |
| PID fee off | back cable is loose or cut | Tighten the terminal. Replace the cable with a new one. |  |
| Feedb | k device failure | Replace the device with a new one. |  |
| Hardw | e failure | Check all the wiring. If AFE fault still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 42 | AUTO <br> PGF1 <br> PG Fbk error | PG feedback error (PGF1) | The motor runs in a reverse direction to the frequency command direction. |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Pr. 10-09 |  |
|  | It treatment parameter | Pr. 10-08 <br> 0 : warn and keep operation <br> 1: warn and ramp to stop <br> 2: warn and coast to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| $\begin{aligned} & \text { Incorre } \\ & \text { encode } \end{aligned}$ | parameter setting of | Reset encoder parameter (Pr. 10-02). |  |
| Check | wiring of the encoder | Re-wire the encoder. |  |
| PG card | or PG encoder failure | Replace PG card or encoder with a new one. |  |
| Malfun | ion caused by interference | Verify wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 43 | $\qquad$ | PG feedback loss (PGF2) | Pr. 10-00 and Pr. 10-02 is not set in the PG control mode. When press "RUN" key, PGF2 fault occurs. |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| $\begin{aligned} & \text { Incorrec } \\ & \text { parame } \end{aligned}$ | setting of encoder er | Reset encoder parameters (Pr. 10-00 and Pr. 10-02) |  |
| Incorre mode | selection of the control | Choose the correct control mode. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 44 | auto <br> Fault <br> PGF3 <br> PG Fbk over SPD | PG feedback stall (GF3) | Under PG mode, when the motor frequency exceeds the encoder observer stall level (Pr. 10-10) and starts to count, the fault time is longer than the detection time of encoder observer stall (Pr. 10-11), then PGF3 fault occurs. |
| Action and Reset |  |  |  |
|  | Action level | Pr. 10-10 |  |
|  | Action time | Pr. 10-11 |  |
| Fault treatment parameter |  | Pr. 10-12 <br> 0 : warn and keep operation <br> 1: warn and ramp to stop <br> 2: warn and coast to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorrect setting of encoder parameter |  | Reset encoder parameter (Pr. 10-01) |  |
| Pr. 01-00 is set too small |  | Set proper value for Pr. 01-00. |  |
| Incorrect setting for ASR parameters and accel./decel. time |  | Reset ASR parameters. Set correct accel./decel. time. |  |
| Incorrect setting for PG feedback stall |  | Reset proper values for Pr. 10-10 and Pr. 10-11 |  |
| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| 45 | auto <br> Fault <br> PGF4 <br> PG Fbk deviate | PG slip error (PGF4) | Under PG mode, when the motor frequency exceeds encoder observer slip range (Pr. 10-13) and starts to count, the fault time is longer than the detection time of encoder observer slip (Pr. 10-14), PGF4 fault occurs. |
| Action and Reset |  |  |  |
|  | Action level | Pr. 10-13 |  |
|  | Action time | Pr. 10-14 |  |
| Fault treatment parameter |  | Pr. 10-15 <br> 0 : warn and keep operation <br> 1: warn and ramp to stop <br> 2: warn and coast to stop |  |
| Reset method |  | AutoWhen Pr. 10 <br> output frequ <br> observer slip | $15=0$, PGF4 is a "Warning", when the deviation between ncy and motor frequency is smaller than the encoder range, the warning is automatically cleared. |
|  |  | Manual When Pr. 10-15=1 or 2, PGF4 is a "Fault". You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 10-15=1 or 2, PGF4 is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Incorre param | settings for PG feedback rs | Reset correct values for Pr. 10-13 and Pr. 10-14. |  |
| Incorr param | settings for ASR rs and accel./decel. time | Reset ASR parameters. Set correct accel./decel time. |  |
| Incorre param | settings of encoder rs | Reset encoder parameters (Pr. 10-01). |  |
| Accel. | cel. time is too short | Reset proper accel./decel. time. |  |
| Incorrect settings of torque limit parameters (Pr. 06-12, Pr.11-17-20) |  | Reset proper setting values for Pr. 06-12 and Pr. 11-17-Pr. 17-20. |  |
| Motor shaft lock |  | Remove causes of motor shaft lock. |  |
| Mechanical brake is not released |  | Check the action sequence of the system. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 48 | Fault ACE ACI ACIOSS | ACI loss <br> (ACE) | Analog input loss (including all the $4-20 \mathrm{~mA}$ analog signal) |
| Action and Reset |  |  |  |
|  | Action level | When the analog input is $<4 \mathrm{~mA}$ (only detects $4-20 \mathrm{~mA}$ analog input) |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | Pr. 03-19 <br> 0: Disable <br> 1: Continue operation at the last frequency (warning, ANL is displayed on the keypad) <br> 2: Decelerate to stop (warning, ANL is displayed on the keypad) <br> 3: Stop immediately and display ACE |  |
| Reset method |  | Auto When Pr. 03-19=1 or 2, ACE is a "Warning". When analog input signal <br> is $>4 \mathrm{~mA}$, the warning is automatically cleared. |  |
|  |  | Manual When Pr. 03-19=3, ACE is a "Fault". You must reset manually. |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 03-19=3, ACE is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| ACI cable is loose or cut off |  | Tighten the terminal. Replace the cable with a new one. |  |
| External device failure |  | Replace the device with a new one. |  |
| Hardware failure |  | Check all the wiring. If ACE still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 49 | Fault EF <br> External fault | External fault (EF) | External fault. When the drive decelerates based on the setting of Pr. 07-20, the EF fault displays on the keypad. |
| Action and Reset |  |  |  |
|  | Action level | MIx=EF and the MI terminal is ON |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | Pr. 07-20 <br> 0 : Coast to stop <br> 1: Stop by $1^{\text {st }}$ deceleration time <br> 2: Stop by $2^{\text {nd }}$ deceleration time <br> 3: Stop by $3^{\text {rd }}$ deceleration time <br> 4: Stop by $4^{\text {th }}$ deceleration time <br> 5: System deceleration <br> 6: Automatic deceleration (Pr. 01-46) |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Manual reset only after the external fault is cleared (terminal status is recovered) |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| External fault |  | Press RESET key after the fault is cleared. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 50 | AUTO <br> Fault <br> EF1 <br> Emergency stop | Emergency stop (EF1) | When the contact of Mlx=EF1 is ON, the output stops immediately and displays EF1 on the keypad. The motor is in free running. |
| Action and Reset |  |  |  |
|  | Action level | $\mathrm{Mlx}=\mathrm{EF} 1$ and the Ml terminal is ON |  |
|  | Action time | Immediately act |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Manual reset only after the external fault is cleared (terminal status is recovered) |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| When | $x=E F 1$ activates | Verify if the system is back to normal condition, and then press "RESET" key to go back to the default. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 51 | Fault  Auto <br> bb   <br> Base block   | External base block (bb) | When the contact of $\mathrm{Mlx}=\mathrm{bb}$ is ON , the output stops immediately and displays bb on the keypad. The motor is in free running. |
| Action and Reset |  |  |  |
|  | Action level | $\mathrm{Mlx}=\mathrm{bb}$ and the MI terminal is ON |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | The display "bb" is automatically cleared after the fault is cleared. |  |
|  | Reset condition | N/A |  |
|  | Record | No |  |
|  | Cause | Corrective Actions |  |
| When | $\mathrm{x}=\mathrm{bb}$ activates | Verify if the system is back to normal condition, and then press "RESET" key to go back to the default. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 52 | Fault $\quad$ Auto Pcod Password error | Password is locked (Pcod) | Entering the wrong password three consecutive times |
| Action and Reset |  |  |  |
|  | Action level | Entering the wrong password three consecutive times |  |
|  | Action time | Immediately act |  |
|  | ult treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Power-off |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorre <br> Pr. 00-07 | password input through | 1. Input the correct password after rebooting the motor drive. <br> 2. If you forget the password, do the following steps: <br> Step 1: Input 9999 and press ENTER. <br> Step 2: Repeat step 1. Input 9999 and press ENTER. <br> (You need to finish step 1 and step 2 within 10 seconds. If you don't finish the two steps in 10 seconds, try again.) <br> 3. The parameter settings return to the default when the "Input 9999 " process is finished. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 54 | Fault $\quad$ CE1 PC err command | Illegal command (CE1) | Communication command is illegal |
| Action and Reset |  |  |  |
|  | Action level | When the function code is not $03,06,10$, or 63. |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | No |  |
|  | Cause | Corrective Actions |  |
| Incorre comma | communication d from the upper unit | Check if the communication command is correct. |  |
| Malfunction caused by interference |  | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differe from th | communication setting upper unit | Check if the setting for Pr.09-02 is the same as the setting for the upper unit. |  |
| Discon of the | ection or bad connection ble | Check the cable and replace it if necessary. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 55 | Fault  <br> CE2  <br> PC err address  | Illegal data address (CE2) | Data address is illegal |
| Action and Reset |  |  |  |
|  | Action level | When the data address is correct. |  |
|  | Action time | Immediately act |  |
|  | tt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | No |  |
|  | Cause | Corrective Actions |  |
| Incorr comm | communication d from the upper unit | Check if the communication command is correct. |  |
| Malfun | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differe from th | communication setting upper unit | Check if the setting for Pr.09-02 is the same as the setting for the upper unit. |  |
| Discon of the | ction or bad connection ble | Check the cable and replace it if necessary. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 56 | Fault  <br> CE3  <br> PC err data  | Illegal data value (CE3) | Data value is illegal |
| Action and Reset |  |  |  |
|  | Action level | When the data length is too long |  |
|  | Action time | Immediately act |  |
|  | reatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | No |  |
|  | Cause | Corrective Actions |  |
| Incorre comma | communication d from the upper unit | Check if the communication command is correct. |  |
| Malfunction caused by interference |  | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differe from th | communication setting upper unit | Check if the setting for Pr.09-02 is the same as the setting for the upper unit. |  |
| Discon of the | ection or bad connection ble | Check the cable and replace it if necessary. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 57 | Fault  <br> CE4 4  <br> PC slave fault  | Data is written to read-only address (CE4) | Data is written to read-only address |
| Action and Reset |  |  |  |
|  | Action level | When the data is written to read-only address. |  |
|  | Action time | Immediately act |  |
|  | reatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | No |  |
|  | Cause | Corrective Actions |  |
| Incorre comma | communication d from the upper unit | Check if the communication command is correct. |  |
| Malfun | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from th | communication setting upper unit | Check if the setting for Pr.09-02 is the same as the setting for the upper unit. |  |
| Discon of the | ction or bad connection ble | Check the cable and replace it if necessary. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 58 | $\begin{aligned} & \text { Fault } \\ & \text { CE10 } \\ & \text { PC time out } \end{aligned}$ | MODBUS transmission time-out (CE10) | MODBUS transmission time-out occurs |
| Action and Reset |  |  |  |
|  | Action level | When the communication time exceeds the detection time for Pr.09-03 time-out. |  |
|  | Action time | Pr. 09-03 |  |
|  | lt treatment parameter | Pr. 09-02 <br> 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning and continue operation |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| The up the com within P | er unit does not transmit munication command .09-03 setting time. | Check if the upper unit transmits the communication command within the setting time for Pr.09-03. |  |
| Malfun | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| Differen from th | communication setting upper unit | Check if the setting for Pr.09-02 is the same as the setting for the upper unit. |  |
| Discon of the | ection or bad connection ble | Check the cable and replace it if necessary. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 60 | Fault <br> bF <br> Braking fault | Brake transistor error (bF) | The brake transistor of the motor drive is abnormal. (for the models with built-in brake transistor) |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | e error | 1. Press "RESET" ke factory for repair. <br> 2. Power off the moto to check if it is sho to the factory for re | y to go back to the default. If bF still exists, return to the $r$ drive since the internal circuit is abnormal. Use a meter rt-circuit between B2 to DC-. If short-circuit exists, return pair. |
| Malfunction caused by interference |  | Verify wiring/grounding of the main circuit to prevent interference. |  |
| Using the incorrect brake resistor Incorrect wiring of the brake resistor |  | Check if the resistance value of the brake resistor matches to the drive. |  |
|  |  | Refer to the optional accessories instruction in chapter 7, and verify the wiring. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 61 |  | Y-connection / $\Delta$-connection switch error (ydc) | An error occurs when $\mathrm{Y}-\Delta$ switches |
| Action and Reset |  |  |  |
|  | Action level | 1. ydc occurs when the confirmation signals of Y-connection and $\Delta$-connection are conducted at the same time. <br> 2. If any of confirmation signals is not conducted within Pr. 05-25, ydc occurs. |  |
|  | Action time | Pr. 05-25 |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Can be reset only when the confirmation signal of Y-connection is conducted if it is $Y$-connection, or when the confirmation signal of $\Delta$-connection is conducted if it is $\Delta$-connection. |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| The el operat switch | tromagnetic valve incorrectly during Y- $\Delta$ | Check if the electromagnetic valve works normally. If not, replace it. |  |
| Incorre | parameter setting | Check if related parameters are all set up and set correctly. |  |
| The wis incorre | g of $\mathrm{Y}-\Delta$ switch function is | Check the wiring. |  |


| ID* | Display on LCM Keypad | Fault Name |  |  | Fault |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | FaultdEb <br> Dec. Energy back | Deceleration energy backup error (dEb) |  |  | not 0 , US volta ction a plays on |
| Action and Reset |  |  |  |  |  |
| Action level |  | When Pr. 07-13 is not 0 , and the DCBUS voltage is lower than the level of dEb. |  |  |  |
| Action time |  | Immediately act |  |  |  |
| Fault treatment parameter |  | N/A |  |  |  |
| Reset method |  | Auto | When Pr. 07-13=2 (dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored): dEb is automatically cleared. |  |  |
|  |  | Hand | When Pr. 07-13=1 (dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored): The drive stops when dEb acts and the rotation speed becomes 0 Hz , then the drive can be reset manually. |  |  |
|  | Reset condition | Auto: The fault is automatically cleared. <br> Hand: When the drive decelerates to 0 Hz . |  |  |  |
|  | Record | Yes |  |  |  |
|  | Cause | Corrective Actions |  |  |  |
| Unstab power | power source or the off | Check the power system. |  |  |  |
| There is any other large load operates in the power system |  | 1. Replace power system with a larger capacity. <br> 2. Use a different power system from the large load system. |  |  |  |


| ID* | Display on LCM Keypad | Fault Name |  | Fault Descriptions |
| :---: | :---: | :---: | :---: | :---: |
| 63 | $\qquad$ <br> auto oSL <br> Over slip error | Ove | error (oSL) | On the basis of the maximum slip limit set via Pr. 10-29, the speed deviation is abnormal. When the motor drive outputs at constant speed, $\mathrm{F}>\mathrm{H}$ or $\mathrm{F}<\mathrm{H}$ exceeds the level set via Pr. 07-29, and it exceeds the time set via Pr. 07-30, oSL shows. oSL occurs in induction motors only. |
| Action and Reset |  |  |  |  |
| Action level |  | Pr. 07-29$100 \%$ of Pr. $07-29=$ the maximum limit of the slip frequency (Pr. 10-29) |  |  |
|  | Action time | Pr. 07-30 |  |  |
| Fault treatment parameter |  | Pr. 07-31 <br> 0 : Warn and continue operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |  |
| Reset method |  | Pr. 07-31=0 is a warning. <br> When the motor drive outputs at constant speed, and $\mathrm{F}>\mathrm{H}$ or $\mathrm{F}<\mathrm{H}$ does not exceed the level set via Pr. 07-29 anymore, oSL warning will be cleared automatically. |  |  |
|  |  | Hand When Pr. 07-31=1 or 2, oSL is an error, and it needs to reset manually. |  |  |
|  | Reset condition | Immediately reset |  |  |
|  | Record | Pr. $07-31=1$ or 2, oSL is "Fault", and will be recorded. |  |  |
|  | Cause | Corrective Actions |  |  |
| Any of the motor parameters in parameter group 5 may be incorrect |  | Check the motor parameters |  |  |
| Overload |  | Decrease the load |  |  |
| Any of the setting value of Pr. $07-29,07-30$, and $10-29$ is improper |  | Check the setting of oSL protection function related parameters |  |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 64 | Fault ryF MC Fault | Electric valve switch error (ryF) | Electric valve switch error when executing Soft Start |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection (Frame D and above) |  |
|  | Action time | Immediately act |  |
|  | ult treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset when the electric valve switch is correctly closed |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| The in | power is abnormal | Check if the power is shut down during the drive operation? Check if the three-phase input power is normal. |  |
| Malfun | ion caused by interference | Verify the wiring/grounding of the main circuit to prevent interference. |  |
| Hardw | e failure | Cycle the power after checking the power. If ryF error still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 65 | Fault ${ }^{\text {PGF5 }}$ PG HW Error | Hardware error of PG card (PGF5) | Hardware error of PG card |
| Action and Reset |  |  |  |
|  | Action level | 1. The PG card (PG01U/PG02U) can only be used with the permanent magnetic motor. When the power is ON and $\operatorname{Pr}$. 00-04=29 pole section shows 0 or 7 (wiring error or no U/V/W signal input), the PGF5 error will be activated. <br> 2. The drive receives the operation command right after the power is ON , meanwhile, the PG card is not ready yet. |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset after cycle the power. |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Wiring signal | rror or there is no U/V/W put | Re-connect the cables correctly |  |
| Encod | failure | Verify if it is the UVW encoder |  |
| The s is inco | ing of encoder parameter ect | Choose the correct setting of Pr. 10-00 |  |
| If the card | tor selection switch of PG the correct position | Check if it is the UVW encoder or Delta encoder |  |
| PG ca | selection is incorrect | Install the correct PG card |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 68 | FaultSdRv <br> SpdFbk Dir Rev,$~$ | Reverse direction of the speed feedback (SdRv) | Rotating direction is different from the commanding direction detected by the sensorless |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Pr. 10-09 |  |
|  | lt treatment parameter | Pr. 10-08 <br> 0 : Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 10-08=1 or 2, SdRv is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| The se bandwid improp | ing of Pr.10-25 FOC th of speed observer is | Decrease the setting of Pr. 10-25 |  |
| The se incorre | ing of motor parameter is | Reset the motor parameter and execute parameter tuning |  |
| The mot broken | or cable is abnormal or | Check if the cable is well functioned or replace the cable |  |
| A rever motor r start | e force is exerted, or the ns in a reverse direction at | Start speed tracking function (Pr. 07-12) |  |
| Malfunction | ion caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 69 | auto <br> Fault <br> SdOr <br> SpdFbk over SPD | Over speed rotation feedback (SdOr) | Over speed rotation detected by sensorless |
| Action and Reset |  |  |  |
|  | Action level | Pr. 10-10 |  |
|  | Action time | Pr. 10-11 |  |
|  | treatment parameter | Pr. 10-12 <br> 0 : Warn and keep operation <br> 1: Warn and ramp to stop <br> 2. Warn and coast to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 10-12=1 or 2, SdOr is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| The se bandw improp | ng of Pr. 10-25 FOC th of speed observer is | Decrease the setting of Pr. 10-25 |  |
| The se speed | ng of ASR bandwidth of ntroller is improper | Increase the bandwidth of ASR speed controller |  |
| The se incorre | ng of motor parameter is | Reset motor parameter and execute parameter tuning |  |
| Malfun | ion caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 70 |  | Large deviation of speed feedback (SdDe) | A large deviation between the rotating speed and the command detected by the sensorless |
| Action and Reset |  |  |  |
|  | Action level | Pr. 10-13 |  |
|  | Action time | Pr. 10-14 |  |
|  | treatment parameter | Pr. 10-15 <br> 0: Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 10-15=1 or 2, SdDe is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Improp abnor | parameter setting for rotating slip function | Reset proper setting for Pr. 10-13 and Pr. 10-14 |  |
| Improp ASR | parameter setting for d acceleration/deceleration | Reset ASR parameters Set proper acceleration/deceleration time |  |
| The a is too | eleration/deceleration time ort | Reset proper acceleration/deceleration time |  |
| Motor | aft lock | Remove the cause of motor shaft lock |  |
| The m releas | hanical brake is not | Verify the system action timeline |  |
| Incorr torque 20) | parameter setting for mit (Pr. 06-12, Pr. 11-17 - | Adjust the setting to proper value |  |
| Malfun | n caused by interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 71 | $\qquad$ AUTO <br> WDTT <br> Watchdog | Watchdog ( WDTT ) | Watchdog error |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | N/A |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Hardware failure, and cannot reset. Cycle the power. |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | e interference | Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. <br> If the WDTT fault still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 72 | Fault  <br>  STL1 <br> STO Loss 1  | STO Loss 1 (STL1) | STO1 - SCM1 internal loop detection error |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Hardware failure, and cannot reset. Cycle the power. |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| STO1 are no | d SCM1 short circuit lines onnected | Connect the short circuit line |  |
| Hardw | e failure | After you make sure all the wiring is correct, if STOL fault still exists after cycling the power, please return to the factory for repair. |  |
| Bad co | ection of the IO card | Check if the PIN of IO card is broken? <br> Check if the IO card connects to the control board correctly, and if the screws are tightened well? |  |
| The IO version | ard does not match the of the control board | Contact local agent or Delta |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 73 | Fault  <br> S1  <br> S1-emergy stop  | Emergency stop for external safety (S1) | Emergency stop for external safety |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Reset only after S1 error is cleared. |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| $\begin{aligned} & \text { The sw } \\ & \text { (OPEN } \end{aligned}$ | ch action of S1 and SCM | Reset the switch and cycle the power. |  |
| $\begin{aligned} & \text { S1 and } \\ & \text { not con } \end{aligned}$ | SCM short circuit lines are ected | Re-connect the short circuit lines |  |
| Malfun | ion caused by interference | Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference. |  |
| Hardw | e failure | If S1 fault still exists after cycling the power, please return to the factory for repair. |  |
| Poor co | nection of the IO card | Check if the PIN of IO card is broken? <br> Check if the IO card connects to the control board correctly, and if the screws are tightened well? |  |
| The IO version | ard does not match the of the control board | Contact local agent or Delta |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 75 | Auto <br> Fault <br> Brk <br> EXT-Brake Error | External brake error (Brk) | External mechanical brake error <br> The MO terminal is active when $M O x=12,42,47$ or 63 , but the MIx=55 does not receive signal for mechanical brake action during the set time of Pr. 02-56. |
| Action and Reset |  |  |  |
|  | Action level | $\mathrm{Mlx}=55$ did not receive signal for the mechanical brake action during the set time of Pr. 02-56. |  |
|  | Action time | Pr. 02-56 |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Mecha | cal brake error | Verify if the mechanical brake can work correctly. Replace mechanical brake. |  |
| Incorre | parameter setting | If there is no brake-confirming signal to use, set Pr. 02-56=0. |  |
| Signal | able is loose or cut off | Tighten the screws. Replace the signal cable with a new one. |  |
| The tim short | of Pr. 02-56 is set too | Increase the time setting of Pr. 02-56 |  |
| Malfun | on caused by interference | Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 76 |  | STO ( STO ) | Safety Torque Off function active |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
| Reset method |  | Auto $\begin{aligned} & \text { When Pr. 06-44=1 and after STO error is cleared, it automatically } \\ & \text { resets. }\end{aligned}$ |  |
|  |  | Manual When Pr. 06-44=0 and after STO error is cleared, reset it manually. |  |
|  | Reset condition | Reset only after STO error is cleared. |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| The sw and S | ch action of STO1/SCM1 2/SCM2 (OPEN) | Reset the switch (ON) and cycle the power |  |
| Poor connection of the IO card |  | Check if the PIN of IO card is broken? <br> Check if the IO card connects to the control board correctly, and if the screws are tightened well? |  |
| The IO card does not match the version of the control board |  | Contact local agent or Delta |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 77 | $\begin{aligned} & \text { Fault } \\ & \text { STL2 } \\ & \text { STO Loss } 2 \end{aligned}$ | STO Loss 2 (STL2) | STO2-SCM2 internal loop detection error |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Hardware failure, and cannot reset. Cycle the power. |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| $\begin{aligned} & \hline \text { STO2 } \\ & \text { are no } \end{aligned}$ | nd SCM2 short circuit lines connected | Connect the short circuit lines |  |
| Hardw | e failure | After you make sure all the wiring is correct, if STL2 fault still exists after cycling the power, please return to the factory for repair. |  |
| Poor | nnection of the IO card | Check if the PIN of IO card is broken? <br> Check if the IO card connects to the control board correctly, and if the screws are tightened well? |  |
| The IO versio | card does not match the of the control board | Contact local agent or Delta |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 78 | Fault <br> STL3 <br> STOLoss 3 | STO Loss 3 (STL3) | STO1-SCM1 and STO2-SCM2 internal loop detection error |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Hardware failure, and cannot reset. Cycle the power. |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| $\begin{aligned} & \text { STO1 } \\ & \text { SCM2 } \\ & \text { conned } \end{aligned}$ | d SCM1, or STO2 and ort circuit lines are not d | Re-connect the short circuit lines |  |
| Hardw | e failure | After you make sure all the wiring is correct, if STL3 fault still exists after cycling the power, please return to the factory for repair. |  |
| Poor co | nection of the IO card | Check if the PIN of IO card is broken? <br> Check if the IO card connects to the control board correctly, and if the screws are tightened well? |  |
| The IO version | ard does not match the of the control board | Contact local agent or Delta |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 82 | Fault OPHL U phase lacked | Output phase loss U phase (OPHL) | U phase output phase loss |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-47 |  |
|  | Action time | Pr. 06-46 <br> Pr. 06-48: Use the setting value of Pr. 06-48 first if there is DC braking function, and then use that of Pr. 06-46. |  |
|  | it treatment parameter | Pr.06-45 <br> 0: Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Pr. $06-45=1$ or 2 is "Fault", and will be recorded. |  |
|  | Cause | Corrective Actions |  |
| The thr motor | e-phase impedance of unbalanced | Replace the motor. |  |
| The mo | r is wired incorrectly | Check the cable condition. Replace the cable. |  |
| Using a | single-phase motor | Choose a three-phase motor |  |
| The cu | ent sensor is damaged | Check the flat cable of the control board. Re-do the wiring and test again if the flat cable is loose. If the fault still exists, return the unit to the factory. Verify that the three-phase current is balanced via a current clamp meter. If it is balanced and the OPHL fault still exists, return the unit to the factory |  |
| The driv than th | capacity is much larger motor capacity | Make sure the capacity of the drive and motor match to each other. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 83 |  | Output phase loss <br> $\checkmark$ phase (OPHL) | $V$ phase output phase loss |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-47 |  |
|  | Action time | Pr. 06-46 <br> Pr. 06-48: Use the setting value of Pr. 06-48 first. If DC braking function activates, use that of Pr. 06-46. |  |
|  | lt treatment parameter | Pr. 06-45 <br> 0 : Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. $06-45=1$ or 2, OPHL is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Unbala impeda | ced three-phase nce of the motor | Replace the motor. |  |
| Check | the wiring is incorrect | Check the cable and replace it if necessary. |  |
| Check single- | the motor is a hase motor | Choose a three-phase motor. |  |
| Check broken | the current sensor is | Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the fault still exists, return to the factory for repair. <br> Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL fault still exists, return to the factory for repair. |  |
| Check than th | the drive capacity is larger motor capacity | Choose the drive that matches the motor capacity |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 84 | $\begin{aligned} & \text { Fault OPHL } \\ & \text { W phase lacked } \end{aligned}$ | Output phase loss <br> W phase (OPHL) | W phase output phase loss |
| Action and Reset |  |  |  |
|  | Action level | Pr. 06-47 |  |
|  | Action time | Pr. 06-46 <br> Pr. 06-48: Use the setting value of Pr. 06-48 first. If DC braking function activates, use that of Pr. 06-46. |  |
|  | It treatment parameter | Pr. 06-45 <br> 0: Warn and keep operation <br> 1: Warn and ramp to stop <br> 2: Warn and coast to stop <br> 3: No warning |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | When Pr. 06-45=1 or 2, OPHL is a "Fault", and the fault is recorded. |  |
|  | Cause | Corrective Actions |  |
| Unbala impeda | ced three-phase ce of the motor | Replace the motor. |  |
| Check | the wiring is incorrect | Check the cable and replace it if necessary. |  |
| Check single- | the motor is a hase motor | Choose a three-phase motor. |  |
| Check broken | the current sensor is | Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the fault still exists, return to the factory for repair. <br> Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL fault still exists, return to the factory for repair. |  |
| Check than th | the drive capacity is larger motor capacity | Choose the drive that matches the motor capacity |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 85 | AboF PGABZ Line off | PG ABZ line off (AboF) | The ABZ line off for protection when using PG02U |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| The PG conne | signal cable is not d or cut off | Check the PG signal cable |  |
| PG card | screw is loose | Tighten all the screws |  |
| Malfun | ion caused by interference | Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference. |  |
| Hardw | e failure | 1. After you check the wiring, if AboF fault still exists after cycle the power, return to the factory for repair. <br> 2. Check if the VP power of PG card has no output, or the output voltage level is abnormal. <br> 3. Check if the encoder is broken. |  |
| Encod large v power. | wiring is too long, causing tage drop of PG card VP | 1. Decrease the wiring length. <br> 2. Power on the encoder by other power sources. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 86 |  | PG UVW line off (UvoF) | UVW line off for protection when using PG02U |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| The PG connec | signal cable is not d or cut off | Check the PG signal cable |  |
| PG car | screw is loose | Tighten all the screws |  |
| Malfun | ion caused by interference | Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference. |  |
| Hardw | e failure | 1. After you check the wiring, if AboF fault still exists after cycle the power, return to the factory for repair. <br> 2. Check if the VP power of PG card has no output, or the output voltage level is abnormal. <br> 3. Check if the encoder is broken. |  |
| $\begin{aligned} & \hline \text { Encode } \\ & \text { large v } \\ & \text { power. } \end{aligned}$ | wiring is too long, causing tage drop of PG card VP | 1. Decrease the wiring length. <br> 2. Power on the encoder by other power sources. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 87 | Fault oL3 <br> Derating Error | Overload protection at low frequency (oL3) | Low frequency and high current protection |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | ult treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| The dri frequen 15 Hz; IGBT t Low HP | operates in the low cy range (High HP: below ow HP: below 5 Hz ) and mperature (High HP: $20^{\circ} \mathrm{C}$; $50^{\circ} \mathrm{C}$ ) | 1. Reduce the ambient temperature of the operating drive. <br> 2. Replace the drive with a larger power model. <br> 3. Reset drive parameters or decrease carrie frequency. <br> 4. If the drive operates in V/F control mode, reduce the output voltage for low-frequency operation. <br> 5. If the drive operates in IMVF and PMSVC control mode, decrease the torque compensation gain (Pr.07-26). |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 89 | Fault RoPd Rotor Pos. Error | Rotor position detection error (RoPd) | Rotor position detection error protection |
| Action and Reset |  |  |  |
|  | Action level | Reset the software |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Check abnorm | the motor cable is al or broken | Check or replace the cable. |  |
| Motor | il error | Replace the motor. |  |
| Hardw | e failure | IGBT broken. Return to the factory for repair. |  |
| Drive's | urrent feedback line error | Cycle the power. If RoPd still occurs during operation, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 90 | Fault  <br>  Fstp <br> Force Stop  | Force to stop (FStp) | Keypad forces PLC to Stop |
| Action and Reset |  |  |  |
|  | Action level | When Pr. 00-32=1, STOP button on the keypad is valid. When giving the STOP command during the PLC operation, FStp fault will active. |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Pr. 00- is valid | 2=1: keypad STOP button | Check if it is necessary to set Pr. 00-32=0, so the keypad STOP button is invalid. |  |
| Press operatio | TOP button during PLC $\qquad$ | Verify the timing of STOP function. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 93 | Fault ${ }^{\text {AUTO }}$ TRAP CPU Trap 0 error | CPU error 0 (TRAP) | CPU crash |
| Action and Reset |  |  |  |
|  | Action level | Hardware detection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Cannot reset, power off. |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Hardw | e interference | Verify the wiring of control circuit, and the wiring/grounding of the main circuit to prevent interference. <br> If TRAP fault still exists, return to the factory for repair. |  |
| Hardw | failure | Return to the factory for repair. |  |
| CPU is | an infinite loop | Cycle the power. If the TRAP fault still exists, return to the factory for repair. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 101 |  | CANopen guarding error (CGdE) | CANopen guarding error |
| Action and Reset |  |  |  |
|  | Action level | When CANopen Node Guarding detects that one of the slaves does not response, the CGdE fault will activate. <br> The upper unit sets factor and time during configuration. |  |
|  | Action time | The time that upper unit sets during configuration |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | The upper unit sends a reset package to clear this fault |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| The gu less de | ding time is too short, or ction times | Increase the guarding time (Index 100C) and detection times |  |
| Malfun | ion caused by interference | 1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Comm bad co | ication cable is broken or nected | Check or replace the communication cable. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 102 | Fault <br> CHbE <br> Heartbeat T-out | CANopen heartbeat error (CHbE) | CANopen heartbeat error |
| Action and Reset |  |  |  |
|  | Action level | When CANopen Heartbeat detects that one of the slaves does not response, the CHbE fault will activate. <br> The upper unit sets the confirming time of producer and consumer during configuration. |  |
|  | Action time | The confirming time that upper unit sets for producer and consumer during configuration. |  |
|  | tr treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | The upper unit sends a reset package to clear this fault |  |
|  | Record | Yes |  |
|  | Cause | Increase heartbeat time (Index 100C) |  |
| The he | tbeat time is too short |  |  |
| Malfu | on caused by interference | 1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. <br> 2. Make sure the communication circuit is wired in series. <br> 3. Use CANopen cable or add terminating resistance. |  |
| Comm bad co | ication cable is broken or nected | Check or replace the communication cable. |  |



| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 105 | Fault ${ }^{\text {AUTO }}$ CIdE Can bus Index Err | CANopen index error (CIdE) | CANopen index error |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Upper unit sends a reset package to clear this fault |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorre index | setting of CANopen | Reset CANopen Index (Pr. 00-02=7) |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 106 | auto <br> Fault <br> CAdE <br> Can bus Add. Err | CANopen station address error (CAdE) | CANopen station address error (only supports 1 - 127) |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset (Pr. 00-02=7) |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorre station | setting of CANopen ddress | 1. Disable CANopen (Pr. 09-36=0) <br> 2. Reset CANopen (Pr. 00-02=7) <br> 3. Reset CANopen station address (Pr. 09-36) |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 107 | AUTO <br> Fault <br> CFrE <br> Can bus off | CANopen memory error (CFrE) | CANopen memory error |
| Action and Reset |  |  |  |
|  | Action level | When the user update firmware version of the control board, the FRAM internal data will not be changed, and then CFrE fault will occur. |  |
|  | Action time | Immediately act |  |
|  | t treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Pr. 00-02=7 |  |
|  | Record | Pr. $00-21=3$, the fault is recorded |  |
|  | Cause | Corrective Actions |  |
| CANop | internal memory error | 1. Disable CANopen (Pr. 09-36=0) <br> 2. Reset CANopen (Pr. 00-02=7) <br> 3. Reset CANopen station address (Pr. 09-36) |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 111 |  | InrCOM time-out error (ictE) | Internal communication time-out |
| Action and Reset |  |  |  |
|  | Action level | Pr. 09-31=-1 - -10 (there is no -9), when the internal communication between Slave and Master is abnormal, IctE fault will occur. |  |
|  | Action time | Immediately act |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Automatically reset after the internal communication is normal |  |
|  | Reset condition | N/A |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Malfun | ion caused by interference | Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. |  |
| The co differen | munication condition is with the upper unit | Verify the setting of Pr. 09-02 is the same as the setting of upper unit. |  |
| Comm bad co | ication cable is broken or nected | Check or replace the communication cable. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 112 | Fault SfLK PMLess Shaft Lock | PMLess shaft lock (SfLK) | The drive has RUN command with output frequency, but the permanent magnetic motor does not turn. |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | 3 sec . |  |
|  | treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause |  | Corrective Actions |
| Improp observ | setting of the speed bandwidth | Increase the setting value. |  |
| Motor s | aft lock | Remove causes of the motor shaft lock. |  |
| Motor | ror (e.g. demagnetization) | Replace the motor with a new one. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 142 | Fault <br> AUE1 <br> Auto tuning Err | Auto-tune error 1 (AUE1) | No feedback current error when motor parameter automatically detects |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | It treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Motor is | not wired | Wire the motor correctly |  |
| The el used a output | tromagnetic contactor is an open state on the de of the drive (U/V/W). | Verify that the electromagnetic valve is closed. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 143 | AUTO <br> Fault <br> AUE2 <br> Auto tuning Err | Auto-tune error 2 (AUE2) | Motor phase loss error when motor parameter automatically detects |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | llt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorre | t motor wiring | Wire the motor correctly. |  |
| Motor |  | Check if the motor works normally. |  |
| The ele used a output | ctromagnetic contactor is an open state on the side of the drive (U/V/W). | Verify that the three-phases of the electromagnetic valve are all closed. |  |
| Motor | V/W wire error | Check if the wires are broken. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 144 | FaultAUEO <br> Auto tuning Err | Auto-tune error 3 (AUE3) | No load current $I_{0}$ measurement error when motor parameter automatically detects. |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | it treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorre param | settings for the motor er (rated current) | Check the settings for Pr. 05-01 / Pr. 05-13 / Pr. 05-34. |  |
| Motor error |  | Check if the motor works normally. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 148 | FaultAUTO <br> AUE4 <br> Auto tuning Err | Auto-tune error 4 (AUE4) | Leakage inductance Lsigma measurement error when motor parameter automatically detects. |
| Action and Reset |  |  |  |
|  | Action level | Software detection |  |
|  | Action time | Immediately act |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Manual reset |  |
|  | Reset condition | Immediately reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Motor error |  | Check if the motor works normally. |  |
| Incorrect setting of motor parameters (base frequency) |  | Check the setting of Pr. 01-01. |  |


| ID* | Display on LCM Keypad | Fault Name | Fault Descriptions |
| :---: | :---: | :---: | :---: |
| 170 | Fault CBM C/B Mismatch | $\begin{aligned} & \text { C/B mismatch } \\ & \text { (CBM) } \end{aligned}$ | Control board matching error |
| Action and Reset |  |  |  |
|  | Action level | N/A |  |
|  | Action time | Acts when turning on the drive |  |
|  | lt treatment parameter | N/A |  |
|  | Reset method | Cannot reset |  |
|  | Reset condition | Cannot reset |  |
|  | Record | Yes |  |
|  | Cause | Corrective Actions |  |
| Incorre | control board | Replace with the correct control board. If the CBM still exists, contact Delta for further confirmation. |  |

[This page intentionally left blank]

## Chapter 15 CANopen Overview

15-1 CANopen Overview
15-2 Wiring for CANopen
15-3 CANopen Communication Interface Description
15-4 CANopen Supporting Index
15-5 CANopen Fault Code
15-6 CANopen LED Function

The built-in CANopen function is a kind of remote control. You can control the AC motor drive by using CANopen protocol. CANopen is a CAN-based higher layer protocol that provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). It also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to the CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

## Delta CANopen supporting functions:

■Supports CAN2.0A Protocol
■ Supports CANopen DS301 V4.02
■ Supports DS402 V2.0.

## Delta CANopen supporting services:

■PDO (Process Data Objects): PDO1-PDO4
■ SDO (Service Data Objects):
Initiate SDO Download;
Initiate SDO Upload;
Abort SDO;
You can use the SDO message to configure the slave node and access the Object Dictionary in every node.

■SOP (Special Object Protocol):
Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;
Support SYNC service;
Support Emergency service.
■NMT (Network Management):
Support NMT module control;
Support NMT Error control;
Support Boot-up.

## Delta CANopen not supporting service:

- Time Stamp service


## 15-1 CANopen Overview

## CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover the application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA DS302), recommendations for cables and connectors (CiA DS303-1), SI units, and prefix representations (CiA DS303-2).


## RJ45 Pin Definition


plug

| PIN | Signal | Description |
| :---: | :---: | :--- |
| 1 | CAN_H | CAN_H bus line (dominant high) |
| 2 | CAN_L | CAN_L bus line (dominant low) |
| 3 | CAN_GND | Ground / OV $/ \mathrm{N}$ - |
| 6 | CAN_GND | Ground / OV N - |

## CANopen Communication Protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)


## NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. A network has only one NMT master, and the other nodes are slaves. All CANopen nodes have a present NMT state, and the NMT master can control the state of the slave nodes. Following shows the state diagram of a node:

(1) After power is applied, start in the auto-initialization state
(2) Automatically enter the pre-operational state A: NMT
(3) (6) Start remote node

B: Node Guard
(4) (7) Enter the pre-operational state

C: SDO
(5) (8) Stop remote node

D: Emergency
(9) (10) (11) Reset node

E: PDO
(12) (13) (14) Reset communication

F: Boot-up
(15) Automatically enter reset application state
(16) Automatically enter reset communication state

|  | Initializing | Pre-Operational | Operational | Stopped |
| :---: | :---: | :---: | :---: | :---: |
| PDO |  |  | $\circ$ |  |
| SDO |  | $\circ$ | $\circ$ |  |
| SYNC |  | $\circ$ | $\circ$ |  |
| Time Stamp |  | $\circ$ | $\circ$ |  |
| EMCY |  | $\circ$ | $\circ$ |  |
| Boot-up | $\circ$ |  |  |  |
| NMT |  | $\circ$ | $\circ$ | $\circ$ |

## SDO (Service Data Objects)

Use SDO to access the Object Dictionary in every CANopen node using the Client/Server model. One SDO has two COB-IDs (request SDO and response SDO) to upload or download data between two nodes. There is no data limit for SDOs to transfer data, but it must transfer data by segment when the data exceeds four bytes with an end signal in the last segment.

The Object Dictionary (OD) is a group of objects in a CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path in the OD is the index and sub-index; each object has a unique index in the OD, and has a sub-index if necessary.

## PDO (Process Data Objects)

PDO communication can be described by the producer/ consumer model. Each node of the network listens to the messages of the transmission node and distinguishes whether the message has to be processed or not after receiving the message. A PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and an RxPDO. PDOs are transmitted in a non-confirmed mode. All transmission types are listed in the following table:

| Type Number | PDO |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cyclic | Acyclic | Synchronous | Asynchronous | RTR only |
| 0 |  | $\circ$ | $\circ$ |  |  |
| $1-240$ | $\circ$ |  | $\circ$ |  |  |
| $241-251$ | Reserved |  |  |  |  |
| 252 |  |  | $\circ$ |  | $\circ$ |
| 253 |  |  |  | $\circ$ | $\circ$ |
| 254 |  |  |  | $\circ$ |  |
| 255 |  |  |  | $\circ$ |  |

Type number 0 indicates the synchronous aperiodic message between two PDO transmissions. Type number 1-240 indicates the number of SYNC message between two PDO transmissions. Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC. Type number 253 indicates the data is updated immediately after receiving RTR.

Type number 254: Delta CANopen does not support this transmission format.
Type number 255 indicates the data is an asynchronous aperiodic transmission.
All PDO transmission data must be mapped to index via Object Dictionary.

## EMCY (Emergency Object)

When errors occur inside the hardware, an emergency object is triggered. An emergency object is only sent when an error occurs. As long as there is nothing wrong with the hardware, there is no emergency object warning of an error message.

## 15-2 Wiring for CANopen

Use an external adapter card EMC-COP01 for CANopen wiring to connect CANopen to a C2000. The link uses a RJ45 cable. You must terminate the two farthest ends with $120 \Omega$ terminating resistors as shown in the picture below.


## 15-3 CANopen Communication Interface Descriptions

## 15-3-1 CANopen Control Mode Selection

There are two control modes for CANopen: the DS402 standard (Pr. 09-40 set to 1) is the default, and the Delta's standard setting (Pr. 09-40 set to 0 ). There are two control modes according to Delta's standard. One is the old control mode (Pr. 09-30 = 0); this control mode can only control the motor drive under frequency control. The other mode is a new standard (Pr. 09-30 = 1); this new control mode allows the motor drive to be controlled under multiple modes. The C2000 currently supports speed, torque, position and home mode. The following table shows the control mode definitions:

| CANopen Control Mode Selection | Control Mode |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Speed |  | Torque |  | Position |  | Home |  |
|  | Index | Description | Index | Description | Index | Description | Index | Description |
| $\begin{gathered} \text { DS402 } \\ \text { standard } \\ \text { Pr. } 09-40=1 \end{gathered}$ | 6042-00 | Target Rotating Speed (RPM) | 6071-00 | Target Torque (\%) | 607A-00 | Target Position | ----- | ----- |
|  | ----- | ----- | 6072-00 | Max. Torque Limit (\%) | ----- | ----- | ----- | ----- |
| Delta Standard (Old definition) Pr. 09-40=1, Pr. 09-30=0 | 2020-02 | Target Rotating Speed (Hz) | ----- | ----- | ---- | ----- | ----- | ----- |
| Delta Standard (New definition) Pr. 09-40=0, Pr. 09-30=1 | 2060-03 | Target Rotating Speed (Hz) | 2060-07 | Target Torque (\%) | 2060-05 | Target Position | ----- | ----- |
|  | 2060-04 | Torque Limit (\%) | 2060-08 | Speed Limit (Hz) | ----- | ----- | ----- | ---- |


| CANopen Control Mode Selection | Operation Control |  |
| :---: | :---: | :---: |
|  | Index | Description |
| DS402 standard Pr. 09-40=1 | 6040-00 | Operation Command |
|  | ----- | ----- |
| Delta Standard (Old definition) Pr. 09-40=1, Pr. 09-30=0 | 2020-01 | Operation Command |
| Delta Standard (New definition) Pr. 09-40=0, Pr. 09-30=1 | 2060-01 | Operation Command |
|  | ----- | ----- |


| CANopen Control Mode Selection | Other |  |
| :---: | :---: | :---: |
|  | Index | Description |
| $\begin{gathered} \text { DS402 standard } \\ \text { Pr. 09-40=1 } \end{gathered}$ | 605A-00 | Quick stop processing mode |
|  | 605C-00 | Disable operation processing mode |
| Delta Standard (Old definition) <br> Pr. 09-40=1, Pr. 09-30=0 | -- | ----- |
| Delta Standard (New definition) Pr. 09-40=0, Pr. 09-30=1 | ----- | ----- |
|  | ----- | -- |

You can use some indices in either DS402 or Delta's standard.
For example:

1. Indices that are defined as RO attributes.
2. The corresponding index of available parameter groups: (2000-00-200B-XX)
3. Accelerating / Decelerating Index: 604F 6050

## 15-3-2 DS402 Standard Control Mode

15-3-2-1 Related set up for an AC motor drive (following the DS402 standard)
If you want to use the DS402 standard to control the motor drive, follow these steps:

1. Wire the hardware (refer to Section 15-2 Wiring for CANopen)
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control. (Run/ stop, forward/ reverse run...etc.)
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set the torque source: set Pr. 11-33. Choose the source for the Torque command from the CANopen setting.
5. Set the position source: set Pr. 11-40. Choose the source for the Position command from the CANopen setting.
6. Set DS402 for the control mode: Pr. 09-40=1
7. Set the CANopen station: set the CANopen station (range 1-127, 0 is the disable CANopen slave function) with Pr.09-36. Note: set Pr.00-02 = 7 to reset if the station number error CAdE or CANopen memory error CFrE appears.
8. Set the CANopen baud rate: set Pr. 09-37 (CANBUS Baud Rate: $1 \mathrm{Mbps}(0)$, $500 \mathrm{Kbps}(1)$, $250 \mathrm{Kbps}(2), 125 \mathrm{Kbps}(3), 100 \mathrm{Kbps}(4)$ and $50 \mathrm{Kbps}(5))$
9. Set the multiple input functions to Quick Stop. You can also choose enable or disable; the default setting is disabled. If it is necessary to enable the function, set MI terminal to 53 in one of the following parameters: Pr. 02.01-Pr. 02.08 or Pr. 02.26-Pr. 02.31. (Note: This function is available in DS402 only.)

15-3-2-2 The status of the motor drive (by following DS402 standard)
According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

## 3 blocks

1. Power Disable: without PWM output
2. Power Enable: with PWM output
3. Fault: One or more errors have occurred.

## 9 status

1. Start: Power On
2. Not ready to switch on: the motor drive is initiating.
3. Switch On Disable: occurs when the motor drive finishes initiating.
4. Ready to Switch On: warming up before running.
5. Switch On: the motor drive has the PWM output, but the reference command is not effective.
6. Operation Enable: able to control normally.
7. Quick Stop Active: when there is a Quick Stop request, stop running the motor drive.
8. Fault Reaction Active: the motor drive detects conditions that might trigger error(s).
9. Fault: One or more errors have occurred in the motor drive.

When the motor drive turns on and finishes the initiation, it remains in Ready to Switch On status. To control the operation of the motor drive, change to Operation Enable status. To do this, set the control word's bit0-bit3 and bit7 of the Index 6040H and pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described below:

Index 6040

| $15-9$ | 8 | 7 | $6 \sim 4$ | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved | Halt | Fault Reset | Operation | Enable <br> operation | Quick Stop | Enable <br> Voltage | Switch On |

Index 6041

| $15-14$ | $13-12$ | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved | Operation | Internal <br> limit <br> active | Target <br> reached | Remote | Reserved | Warning | Switch on <br> disabled | Quick <br> stop | Voltage <br> enabled | Fault | Operation <br> enable | Switch on | Ready to <br> switch on |



Set command 6040=0xE, then set another command 6040=0xF. Then you can switch the motor drive to Operation Enable. The Index 605A determines the lines from Operation Enable when the control mode changes from Quick Stop Active. When the setting value is $1-3$, both lines are active, but when the setting value of 605 A is not $1-3$, once the motor drive is switched to Quick Stop Active, it is not able to switch back to Operation Enable.)

| Index | Sub | Definition | Default | R/W | Size | Unit | PDO <br> Map | Mode | note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $605 A h$ | 0 |  |  |  |  |  |  |  | 0: Disable drive function <br> Quick stop <br> option codew down on slow down ramp |

When the control section switches from Power Enable to Power Disable, use 605C to define the stop method.

| Index | Sub | Definition | Default | R/W | Size | Unit | PDO <br> Map | Mode | note |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 605 Ch | 0 | Disable <br> operation <br> option code | 1 | RW | S16 |  | No | 0: Disable drive function <br> 1: Slow down with slow down <br> ramp; disable the drive <br> function |  |

## 15-3-2-3 Various mode control method (by following DS402 standard)

The control mode of C2000 currently supports speed, torque, position and home control, and are described as below:

## Speed mode

1. Set C2000 to speed control mode: set Index 6060 to 2.
(The Index 6071 is available for torque limit under the speed control mode)
2. Switch to Operation Enable mode: set $6040=0 x E$, and then set $6040=0 x F$.
3. Set the target frequency: Set target frequency of 6042 , since the operation unit of 6042 is rpm , a transform is required:

$$
\begin{array}{ll}
\mathrm{n}=\mathrm{f} \times \frac{120}{\mathrm{p}} & \begin{array}{l}
\mathrm{n}: \text { rotation speed (rpm) (rounds/minute) } \\
\mathrm{p}: \text { motor's pole number (Pole) } \\
\text { f: rotation frequency }(\mathrm{Hz})
\end{array}
\end{array}
$$

For example:
Set 6042H = 1500 (rpm), if the number of poles is 4 (Pr. 05-04 or Pr. 05-16), then the motor drive's operation frequency is $1500 /(120 / 4)=50 \mathrm{~Hz}$. The 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter clockwise
4. To set acceleration and deceleration: Use 604F (Acceleration) and 6050 (Deceleration).
5. Trigger an ACK signal: in the speed control mode, the bit 6-4 of Index 6040 needs to be controlled. It is defined as below:

| Speed mode <br> (Index $6060=2$ ) | Index 6040 |  |  | SUM |
| :---: | :---: | :---: | :---: | :---: |
|  | bit 6 | bit 5 | bit 4 |  |
|  | 1 | 0 | 1 | Run to reach targeting signal. |
|  | 1 | 1 | 1 | Decelerate to 0Hz. |
|  | Other |  |  | R |



NOTE 01: Read 6043 to get the current rotation speed. (Unit: rpm)
NOTE 02: Read bit 10 of 6041 to find if the rotation speed has reached the targeting value. (0: Not reached; 1: Reached)

## Torque mode

1. Set AC motor drive to the torque mode: set Index $6060=4$.
(The Index 6042 is available for speed limit under the torque control mode)
2. Switch to Operation Enable mode: set $6040=0 x E$, and then set $6040=0 x F$.
3. To set targeting torque: set 6071 as targeting torque and 6072 as the largest output torque.

| Torque mode <br> (Index $6060=4)$ | Index 6040 |  |  | SUM |
| :---: | :---: | :---: | :---: | :---: |
|  | bit6 | bit5 | bit4 |  |



NOTE: The standard DS402 does not regulate the maximum speed limit. Therefore, if the motor drive defines the control mode of DS402, the highest speed will go with the setting of Pr. 11-36 to Pr. 11-38.
NOTE 01: Read 6077 to get the current torque. (Unit: 0.1\%).
NOTE02: Read bit10 of 6041 to find if the torque has reached the targeting value. (0: Not reached; 1 : Reached)

## Position mode

1. Set the parameter of a trapezium curve to define position control (Pr. 11-43 Max. Frequency of Point-to-Point Position Control, Pr. 11-44 Accel. Time of Point-to-Point Position Control and Pr. 11-45 Decel. Time of Point-to-Point Position Control)
2. Set C2000 to position control mode: set Index $6060=1$.
3. Switch to Operation Enable mode: set $6040=0 x E$, and then set $6040=0 x F$.
4. Set targeting position: set 607A as the targeting position.
5. Trigger an ACK signal: set $6040=0 \times 0 F$, and then set $6040=0 \times 1 F$. (Pulse On).


NOTE 01: Read 6064 to get the current position.
NOTE 02: Read bit10 of 6041 to find if the position reaches the targeting position. ( 0 : Not reached, 1 : reached)
NOTE 03: Read bit11 of 6041 to find if the position is over the limited area. ( 0 : in the limit, 1 : over the limit)

## Home mode

1. Set Pr. 00-12 to choose a home method.
2. Set the left and right limits correspond to the position of MI terminal.
3. Switch to Home mode: set Index $6060=6$.
4. Switch to Operation Enable mode: set $6040=0 x E$, and then set $6040=0 x F$.
5. To trigger an ACK signal: set $6040=0 \times 0 F$, and then set $6040=0 \times 1 F$ (Pulse On, and the motor drive will be back to home.)

NOTE 01: Read bit12 of 6041 to find if the home mode is completed. (0: Not reached, 1: reached)

15-3-3 Using the Delta Standard (Old definition, only supports speed mode)

15-3-3-1 Various mode control method (Delta Old Standard)
Follow the steps below:

1. Wire the hardware (refer to Section 15-2 Wiring for CANopen).
2. Set the operation source: set Pr. 00-21 to 3 for CANopen communication card control. (Run/ stop, Forward/ reverse run etc.)
3. Set the frequency source: set Pr. 00-20 to 6. Choose source for the Frequency Commend from the CANopen setting.
4. Set Delta Standard (Old definition, only supports speed mode) as the control mode: Pr. 09-40 = 0 and Pr. 09-30 = 0 .
5. Set the CANopen station: set Pr. 09-36; the range is among 1-127. When Pr. 09-36=0, the CANopen slave function is disabled. Note: If an error appears (CAdE or CANopen memory error) as you complete the station setting, set Pr.00-02 $=7$ to reset.
6. Set the CANopen baud rate: set Pr. 09-37 (CANBUS Baud Rate: 1Mbps(0), 500Kbps(1), $250 \mathrm{Kbps}(2), 125 \mathrm{Kbps}(3), 100 \mathrm{Kbps}(4)$ and $50 \mathrm{Kbps}(5))$

15-3-3-2 By speed mode

1. Set the target frequency: set 2020-02, the unit is Hz , with 2 decimal places. For example, 1000 is 10.00 Hz .
2. Operation control: set 2020-01 $=0002 \mathrm{H}$ for running, and set $2020-01=0001 \mathrm{H}$ for stopping.


## 15-3-4 Using Delta Standard (New Definition)

15-3-4-1 Related set up for an AC motor drive (Delta New Standard)
Follow the steps below:

1. Wire the hardware (refer to Section 15-2 Wiring for CANopen).
2. Set the operation source: set Pr. 00-21 to 3 for CANopen communication card control. (Run/ stop, Forward/ reverse run...., etc.)
3. Set the frequency source: set Pr. 00-20 to 6. Choose the source of the Frequency Command from CANopen setting.
4. Set the torque source: set Pr. 11-33. Choose the source of the Torque Command from CANopen setting.)
5. Set the position source: set Pr. 11-40=3. Choose the source of the Position Command from CANopen setting.)
6. Set Delta Standard (New definition) as the control mode: Pr. 09-40 $=0$ and Pr. 09-30 $=0$.
7. Set the CANopen station: set Pr. 09-36; the range is among 1-127. When Pr. 09-36=0, the CANopen slave function is disabled. (Note: If an error appears (CadE or CANopen memory error) as you complete the station setting, set Pr.00-02 $=7$ to reset.
8. Set the CANopen baud rate: set Pr. 09-37 (CANBUS Baud Rate: $1 \mathrm{Mbps}(0), 500 \mathrm{Kbps}(1)$, $250 \mathrm{Kbps}(2), 125 \mathrm{Kbps}(3), 100 \mathrm{Kbps}(4)$ and $50 \mathrm{Kbps}(5))$

15-3-4-2 Various mode control method (Delta New Standard)

## Speed Mode

1. Set C2000 to speed control mode: set Index6060 $=2$.
2. Set the target frequency: set 2060-03, unit is Hz , with 2 decimal places. For example, 1000 is 10.00 Hz .
3. Operation control: set 2060-01 $=008 \mathrm{H}$ for Server on, and set $2060-01=0081 \mathrm{H}$ for running.


## Torque Mode

1. Set C2000 to torque control mode: set Index $6060=4$.
2. Set the target torque: set 2060-07, unit as \%, and the value is one decimal place. For example, 100 is $10.0 \%$.
3. Operation control: set 2060-01 $=0080 \mathrm{H}$ starts excitation, and the drive immediately runs at the target torque.


Note01: Read 2061-07 for the current torque (unit is $0.1 \%$ ).
Note02: Read bit0 of 2061-01 to find if the torque has reached the set value ( 0 : Not reached, 1 : Reached).
Note 03: If the speed of the drive reaches the speed limit when torque outputs, you may reduce the output torque in order to ensure that the speed stays within the limits.

## Position Mode

1. Set the parameter of a trapezium curve to define position control (Pr. 11-43 Max. Position Control Frequency), Pr. 11-44 Accel. Time of Position Control, Pr. 11-45 Decel. Time of Position Control)
2. Set C2000 to position control mode, set Index $6060=1$.
3. Set 2060-01 $=0080 \mathrm{~h}$, then motor drive starts excitation.
4. Set target position: set 2060-05 = target position.
5. Set 2060-01 $=0081 \mathrm{~h}$ to trigger the motor drive runs to the target position.
6. Repeat step 3 to step 5 to move to another position.


NOTE01: Read 2061-05 to get the current position.
NOTE02: Read bit0 of 2061 to find if the position has reached to the target position. (0: Not reached,
1: Reached).

## Home Mode

1. Set Pr. 00-12 to choose the method to return home.
2. Set the left and right limits correspond to the position of MI terminal.
3. Switch to home mode: set Index $6060=6$.
4. Set 2060-01 $=0080 \mathrm{~h}$, then the motor drive starts excitation.
5. Set the ACK signal: set 2060-01 $=0081 \mathrm{~h}$, then the motor drive starts to go back home.

NOTE 01: Read bit12 of 6041 to find if returning home is completed. ( 0 : Not reached, 1: Reached).

## 15-3-5 DI/DO AI/AO are controlled through CANopen

To control the DO/AO of the motor drive through CANopen, follow the steps below:

1. Define the DO to be controlled by CANopen. For example, set Pr. 02-14 to control RY2.
2. Define the AO to be controlled by CANopen. For example, set Pr. 03-23 to control AFM2.
3. Control the mapping index of CANopen. To control DO, use control index 2026-41. To control AO, you will need to control 2026-AX. To set RY2 as ON, set bit1 of Index 2026-41 =1, then RY2 outputs 1. To control AFM2 output $=50.00 \%$, set Index $2026-A 2=5000$, then AFM2 outputs $50 \%$.

The following table shows the mapping of CANopen DI/ DO/ Al/ AO:
DI:

| Terminal | Related Parameters | R/W | Mapping Index |
| :---: | :---: | :---: | :---: |
| FWD | $==$ | RO | $2026-01$ bit0 |
| REV | $==$ | RO | $2026-01$ bit1 |
| MI1 | $==$ | RO | $2026-01$ bit2 |
| MI2 | $==$ | RO | $2026-01$ bit3 |
| MI3 | $==$ | RO | $2026-01$ bit4 |
| MI4 | $==$ | RO | $2026-01$ bit5 |
| MI5 | $==$ | RO | $2026-01$ bit6 |
| MI6 | $==$ | RO | $2026-01$ bit7 |
| MI7 | $==$ | RO | $2026-01$ bit8 |
| MI8 | $==$ | RO | $2026-01$ bit9 |
| MI10 | $==$ | RO | $2026-01$ bit10 |
| MI11 | $==$ | RO | $2026-01$ bit11 |
| MI12 | $==$ | RO | $2026-01$ bit12 |
| MI13 | $==$ | RO | $2026-01$ bit13 |
| MI14 | $==$ | RO | $2026-01$ bit14 |
| MI15 | $==$ | RO | $2026-01$ bit15 |

DO :

| Terminal | Related Parameters | R/W | Mapping Index |
| :---: | :---: | :---: | :---: |
| RY1 | Pr. 02-13 $=50$ | RW | $2026-41$ bit0 |
| RY2 | Pr. 02-14 $=50$ | RW | $2026-41$ bit1 |
| MO1 | Pr. 02-16 $=50$ | RW | $2026-41$ bit3 |
| MO2 | Pr. 02-17 $=50$ | RW | $2026-41$ bit4 |
| MO10 | Pr. 02-36 $=50$ | RW | $2026-41$ bit5 |
| RY10 |  |  |  |
| MO11 | Pr. 02-37 $=50$ | RW | $2026-41$ bit6 |
| RY11 |  |  | $2026-41$ bit6 |
| RY12 | Pr. 02-38 $=50$ | RW | $2026-41$ bit7 |
| RY13 | Pr. 02-39 $=50$ | RW | $2026-41$ bit8 |
| RY14 | Pr. 02-40 $=50$ | RW | $2026-41$ bit9 |
| RY15 | Pr. 02-41 $=50$ | RW | $2026-41$ bit10 |

AI :

| Terminal | Related Parameters | R/W | Mapping Index |
| :---: | :---: | :---: | :---: |
| AVI | $==$ | RO | Value of 2026-61 |
| ACl | $==$ | RO | Value of 2026-62 |
| AUI | $==$ | RO | Value of 2026-63 |

AO :

| Terminal | Related Parameters | R/W | Mapping Index |
| :---: | :---: | :---: | :---: |
| AFM1 | Pr. 03-20 $=20$ | RW | Value of 2026-A1 |
| AFM2 | Pr. 03-23 $=20$ | RW | Value of 2026-A2 |

## 15-4 CANopen Supporting Index

C2000 Index:
The parameter index corresponds as shown in this example:

Index
2000 H + Group

## sub-Index

member+1

For example:
Pr. 10-15 (Encoder Slip Error Treatment)

## Group member <br> 10(0AH) - 15(0FH)

Index $=2000 \mathrm{H}+0 \mathrm{AH}=200 \mathrm{~A}$
Sub Index $=0 \mathrm{FH}+1 \mathrm{H}=10 \mathrm{H}$
C2000 Control Index:

Delta Standard Mode (Old Definition)

| Index | Sub | Definition | Default | R/W | Size | Note |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020H | 0 | Number | 3 | R | U8 |  |  |
|  | 1 | Control word | 0 | RW | bit1-0 |  | 00B: disable |
|  |  |  |  |  |  |  | 01B: stop |
|  |  |  |  |  |  |  | 10B: disable |
|  |  |  |  |  |  |  | 11B: JOG Enable |
|  |  |  |  |  | U16 | bit3-2 | Reserved |
|  |  |  |  |  |  | bit5-4 | 00B:disable |
|  |  |  |  |  |  |  | 01B: Direction forward |
|  |  |  |  |  |  |  | 10B: Reverse |
|  |  |  |  |  |  |  | 11B: Switch Direction |
|  |  |  |  |  |  | bit7-6 | 00B: $1^{\text {st }}$ step Accel. /Decel. |
|  |  |  |  |  |  |  | 01B: $2^{\text {nd }}$ step Accel. /Decel. |
|  |  |  |  |  |  |  | 10B: $3^{\text {rd }}$ step Accel. /Decel. |
|  |  |  |  |  |  |  | 11B: $4^{\text {th }}$ step Accel. /Decel. |
|  |  |  |  |  |  | bit11-8 | 0000B: Master speed |
|  |  |  |  |  |  |  | 0001B: $1^{\text {st }}$ step speed |
|  |  |  |  |  |  |  | 0010B: ${ }^{\text {nd }}$ step speed |
|  |  |  |  |  |  |  | 0011B: $3^{\text {rd }}$ step speed |
|  |  |  |  |  |  |  | 0100B: $4^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 0101B: $5^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 0110B: $6^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 0111B: $7^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1000B: $8^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1001B: $9^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1010B: $10^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1011B: $11^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1100B: $12^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1101B: $13^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1110B: $14^{\text {th }}$ step speed |
|  |  |  |  |  |  |  | 1111B: $15^{\text {th }}$ step speed |
|  |  |  |  |  |  | bit12 | 1: Enable the function of bit6-11 |
|  |  |  |  |  |  | bit 15 | Reserved |
|  | 2 | Freq. command (XXX.XXHz) | 0 | RW | U16 |  |  |



| Index | Sub | Definition | Default | R/W | Size | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | Display actual output frequency (XXX.XXHz) | 0 | R | U16 |  |
|  | 4 | Display DC-BUS voltage (XXX.XV) | 0 | R | U16 |  |
|  | 5 | $\begin{aligned} & \text { Display output voltage } \\ & (\mathrm{XXX} . \mathrm{XV}) \end{aligned}$ | 0 | R | U16 |  |
|  | 6 | Display output power angle (XX. $\mathrm{X}^{\circ}$ ) | 0 | R | U16 |  |
|  | 7 | Display output power in kW | 0 | R | U16 |  |
|  | 8 | Display actual motor speed (rpm) | 0 | R | U16 |  |
|  | 9 | Display estimate output torque (XXX.X\%) | 0 | R | U16 |  |
|  | A | Display PG feedback | 0 | R | U16 |  |
|  | B | Display PID feedback value after enabling PID function in \% (To 2 decimal places) | 0 | R | U16 |  |
|  | C | Display signal of AVI analog input terminal, $0-10 \mathrm{~V}$ corresponds to $0-100 \%$ (To 2 decimal places) | 0 | R | U16 |  |
|  | D | Display signal of ACl analog input terminal, <br> $4-20 \mathrm{~mA} / 0-10 \mathrm{~V}$ <br> corresponds to 0-100\% (To <br> 2 decimal places) | 0 | R | U16 |  |
|  | E | Display signal of AUI analog input terminal, $-10 \mathrm{~V}-10 \mathrm{~V}$ corresponds to -100-100\% (To 2 decimal places) | 0 | R | U16 |  |
|  | F | Display the IGBT temperature of drive power module in ${ }^{\circ} \mathrm{C}$ | 0 | R | U16 |  |
|  | 10 | Display the temperature of capacitance in ${ }^{\circ} \mathrm{C}$ | 0 | R | U16 |  |
|  | 11 | The status of digital input (ON/OFF), refer to Pr.02-12 | 0 | R | U16 |  |
|  | 12 | The status of digital output (ON/OFF), refer to Pr.02-18 | 0 | R | U16 |  |
|  | 13 | Display the multi-step speed that is executing | 0 | R | U16 |  |
|  | 14 | The corresponding CPU pin status of digital input | 0 | R | U16 |  |
|  | 15 | The corresponding CPU pin status of digital output | 0 | R | U16 |  |
|  | 16 | Number of actual motor revolutions (PG1 of PG card). Starts from 9 when the actual operation direction is changed, or the keypad display at stop is 0 . Max. is 65535 | 0 | R | U16 |  |
|  | 17 | Pulse input frequency (PG2 of PG card) | 0 | R | U16 |  |
|  | 18 | Pulse input position (PG card PG2), maximum setting is 65535 . | 0 | R | U16 |  |
|  | 19 | Position command tracing error | 0 | R | U16 |  |
|  | 1A | Display times of counter overload (0.00-100.00\%) | 0 | R | U16 |  |
|  | 1B | Display GFF in \% | 0 | R | U16 |  |


| Index | Sub | Definition | Default | R/W | Size | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1C | Display DC BUS voltage ripples (Unit: VDC) | 0 | R | U16 |  |
|  | 1D | Display PLC register D1043 data | 0 | R | U16 |  |
|  | 1E | Display Pole of Permanent Magnet Motor | 0 | R | U16 |  |
|  | 1F | User page displays the value in physical measure | 0 | R | U16 |  |
|  | 20 | Output Value of Pr.00-05 | 0 | R | U16 |  |
|  | 21 | Number of motor turns when drive operates | 0 | R | U16 |  |
|  | 22 | Operation position of motor | 0 | R | U16 |  |
|  | 23 | Fan speed of the drive | 0 | R | U16 |  |
|  | 24 | Control mode of the drive 0 : speed mode 1: torque mode | 0 | R | U16 |  |
|  | 25 | Carrier frequency of the drive | 0 | R | U16 |  |
|  | 26 | Reserved |  |  |  |  |
|  | 27 | Motor status |  |  |  |  |
|  | 28 | Output positive/ negative torque of motor drive calculation |  |  |  |  |
|  | 29 | Torque command |  |  |  |  |
|  | 2A | kWh display |  |  |  |  |
|  | 2B | PG2 pulse input low-word |  |  |  |  |
|  | 2C | PG2 pulse input high-word |  |  |  |  |
|  | 2D | Motor actual position low-word |  |  |  |  |
|  | 2E | Motor actual position high-word |  |  |  |  |
|  | 2F | PID reference target |  |  |  |  |
|  | 30 | PID bias value |  |  |  |  |
|  | 31 | PID output frequency |  |  |  |  |

CANopen Remote IO mapping

| Index | Sub | R/W | Definition |
| :---: | :---: | :---: | :---: |
| 2026H | 01h | R | Each bit corresponds to the different input terminals |
|  | 02h | R | Each bit corresponds to the different input terminals |
|  | 03h-40h | R | Reserved |
|  | 41h | RW | Each bit corresponds to the different output terminals |
|  | 42h-60h | R | Reserved |
|  | 61h | R | AVI proportional value (\%) |
|  | 62h | R | ACI proportional value (\%) |
|  | 63h | R | AUI proportional value (\%) |
|  | 64h-6Ah | R | Reserved |
|  | 6Bh | R | Extension card Al10, 0.0-100.0\% (EMC-A22A) |
|  | 6Ch | R | Extension card Al11, 0.0-100.0\% (EMC-A22A) |
|  | 6Dh-A0h | R | Reserved |
|  | A1h | RW | AFM1 output proportional value (\%) |
|  | A2h | RW | AFM2 output proportional value (\%) |
|  | A3h-AAh | RW | Reserved |
|  | ABh | RW | Extension card AO10, 0.0-100.0\% (EMC-A22A) |
|  | ACh | RW | Extension card AO11, 0.0-100.0\% (EMC-A22A) |


| Index <br> $2026-01$ | bit0 | bit1 | bit2 | bit3 | bit4 | bit5 | bit6 | bit7 | bit8 | bit9 | bit10 | bit11 | bit12 | bit13 | bit14 | bit15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FWD | REV | MI 1 | MI 2 | MI 3 | MI 4 | MI 5 | $\mathrm{MI6}$ | MI 7 | MI 8 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  | MI 10 | MI 11 | MI 12 | MI 13 | MI 14 | MI 15 |
| 3 |  |  |  |  |  |  |  |  |  |  | MI 10 | MI 11 | MI 12 | MI 13 |  |  |

1: Control broad I/O (Standard)
2: Add external card, EMC-D611A
3: Add external card, EMC-D42A

| Index <br> $2026-41$ | bit0 | bit1 | bit2 | bit3 | bit4 | bit5 | bit6 | bit7 | bit8 | bit9 | bit10 | bit11 | bit12 | bit13 | bit14 | bit15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RY1 | RY2 |  | MO1 | MO2 |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  | MO10 | MO11 |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  | RY10 | RY11 | RY12 | RY13 | RY14 | RY15 |  |  |  |  |  |

1: Control broad I/O (Standard)
2: Add external card, EMC-D42A
3: Add external card, EMC-R6AA
Delta Standard Mode (New definition)

| Index | sub | R/W | Size | Descriptions |  |  | Speed Mode | Position Mode | Home Mode | Torque Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | bit | Definition | Priority |  |  |  |  |
| 2060h | 00h | R | U8 |  |  |  |  |  | 0: Stop Homing |  |
|  | 01h | RW | U16 | 0 | Ack | 4 | $\begin{aligned} & 0: \text { fcmd }=0 \\ & 1: \text { fcmd }=\text { Fset(Fpid) } \end{aligned}$ | Pulse 1: Position control | Pulse 1: Return to home |  |
|  |  |  |  | 1 | Dir | 4 | 0: FWD run command <br> 1: REV run command |  |  |  |
|  |  |  |  | 2 |  |  |  | 0: Relative move <br> 1: Absolute move |  |  |
|  |  |  |  | 3 | Halt | 3 | 0: drive run till target speed is attained 1: drive stop by declaration setting |  |  | The torque target of internal decoding is set as 0 , but the display of outside torque target will remain its outside setting. |
|  |  |  |  | 4 | Hold | 4 | 0: drive run till target speed is attained 1: frequency stop at current frequency |  |  |  |
|  |  |  |  | 5 | JOG | 4 | $\begin{aligned} & \text { 0: JOG OFF } \\ & \text { Pulse 1: JOG RUN } \end{aligned}$ |  |  |  |
|  |  |  |  | 6 | Qstop | 2 | Quick Stop | Quick Stop | Quick Stop | Quick Stop |
|  |  |  |  | 7 | Power | 1 | $\begin{aligned} & \text { 0: Power OFF } \\ & \text { 1: Power ON } \end{aligned}$ | $\begin{aligned} & \text { 0: Power OFF } \\ & \text { 1: Power ON } \end{aligned}$ | $\begin{aligned} & \text { 0: Power OFF } \\ & \text { 1: Power ON } \end{aligned}$ | $\begin{aligned} & \text { 0: Power OFF } \\ & \text { 1: Power ON } \end{aligned}$ |
|  |  |  |  | 8 | Reserved |  |  |  |  |  |
|  |  |  |  | 9 | Ext Cmd2 | 4 | 0->1: Absolute position cleared | 0->1: Absolute position cleared | $0->1: \quad$ Absolute position cleared | $\begin{aligned} & \text { 0->1: Absolute } \\ & \text { position cleared } \end{aligned}$ |
|  |  |  |  | 10-14 | Reserved |  |  |  |  |  |
|  |  |  |  | 15 | RST |  | Pulse 1: Fault code cleared |
|  | 02h | RW | U16 |  | Mode Cmd |  | 0: Speed mode | 1: P2P position mode | 3: Home mode | 2: Torque mode |
|  | 03h | RW | U16 |  |  |  | Speed command (unsigned decimal) |  |  |  |
|  | 04h | RW | U16 |  |  |  |  |  |  |  |
|  | 05h | RW | S32 |  |  |  |  | Position command |  |  |


| Index | sub | R/W | Size | Descriptions |  |  | Speed Mode | Position Mode | Home Mode | Torque Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | bit | DefinitionP | Priority |  |  |  |  |
|  | 06h | RW |  |  |  |  |  |  |  |  |
|  | 07h | RW | U16 |  |  |  |  |  |  | Torque command (signed decimal) |
|  | 08h | RW | U16 |  |  |  |  |  |  | Speed limit (unsigned decimal) |
| 2061h | 01h | R | U16 | 0 | Arrive |  | Frequency attained | Position attained | Homing complete | Torque attained |
|  |  |  |  | 1 | Dir |  | 0 : Motor FWD run <br> 1: Motor REV run | $\begin{aligned} & \text { 0: Motor FWD } \\ & \text { run } \\ & \text { 1: Motor REV run } \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 0: Motor FWD } \\ \text { run } \\ 1: \text { Motor REV run } \end{array}$ | $\begin{aligned} & \text { 0: Motor FWD } \\ & \text { run } \\ & \text { 1: Motor REV run } \end{aligned}$ |
|  |  |  |  | 2 | Warn |  | Warning | Warning | Warning | Warning |
|  |  |  |  | 3 | Error |  | Error detected | Error detected | Error detected | Error detected |
|  |  |  |  | 4 |  |  |  |  |  |  |
|  |  |  |  | 5 | JOG |  | JOG | JOG | JOG | JOG |
|  |  |  |  | 6 | Qstop |  | Quick stop | Quick stop | Quick stop | Quick stop |
|  |  |  |  | 7 | Power On |  | Switch ON | Switch ON | Switch ON | Switch ON |
|  |  |  |  | 15-8 |  |  |  |  |  |  |
|  | 02h | R |  |  |  |  |  |  |  |  |
|  | 03h | R | U16 |  |  |  | Actual output frequency | Actual output frequency | Actual output frequency | Actual output frequency |
|  | 04h | R |  |  |  |  |  |  |  |  |
|  | 05h | R | S32 |  |  |  | Actual position (absolute) | Actual position (absolute) | Actual position (absolute) | Actual position (absolute) |
|  | 06h | R |  |  |  |  |  |  |  |  |
|  | 07h | R | S16 |  |  |  | Actual torque | Actual torque | Actual torque | Actual torque |

DS402 Standard

| Index | Sub | Definition | Default | R/W | Size | Unit | $\begin{aligned} & \hline \text { PDO } \\ & \text { Map } \\ & \hline \end{aligned}$ | Mode | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6007h | 0 | Abort connection option code | 2 | RW | S16 | Yes |  |  | 0: No action |
|  |  |  |  |  |  |  |  |  | 2: Disable Voltage |
|  |  |  |  |  |  |  |  |  | 3: Quick stop |
| 603Fh | 0 | Error code | 0 | R0 | U16 |  | Yes |  |  |
| 6040h | 0 | Control word | 0 | RW | U16 |  | Yes |  |  |
| 6041h | 0 | Status word | 0 | R0 | U16 |  | Yes |  |  |
| 6042h | 0 | vl target velocity | 0 | RW | S16 | rpm | Yes | vl |  |
| 6043h | 0 | vl velocity demand | 0 | RO | S16 | rpm | Yes | vl |  |
| 6044h | 0 | vl control effort | 0 | RO | S16 | rpm | Yes | vl |  |
| 604Fh | 0 | vl ramp function time | 10000 | RW | U32 | 1 ms | Yes | vl |  |
| 6050h | 0 | vl slow down time | 10000 | RW | U32 | 1 ms | Yes | vl | check if the setting is 0 |
| 6051h | 0 | vl quick stop time | 1000 | RW | U32 | 1 ms | Yes | vl | check if the setting is 0 . |
| 605Ah | 0 | Quick stop option code | 2 | RW | S16 |  | No |  | 0 : Disable drive function |
|  |  |  |  |  |  |  |  |  | 1: Slow down on slow down ramp |
|  |  |  |  |  |  |  |  |  | 2: Slow down on quick stop ramp |
|  |  |  |  |  |  |  |  |  | 5: Slow down on slow down ramp and stay in QUICK STOP |
|  |  |  |  |  |  |  |  |  | 6: Slow down on quick stop ramp and stay in QUICK STOP |
| 605Ch | 0 | Disable operation option code | 1 | RW | S16 |  | No |  | 0 : Disable drive function <br> 1: Slow down with slow down ramp; disable the drive function |
| 6060h | 0 | Mode of operation | 2 | RW | S8 |  | Yes |  | 1: Profile Position Mode <br> 2: Velocity Mode <br> 4: Torque Profile Mode |


| Index | Sub | Definition | Default | R/W | Size | Unit | PDO <br> Map | Mode | Note |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  |  |  |  |  |  |  |  | 6: Homing Mode |
| 6061 h | 0 | Mode of operation display | 2 | RO | S8 |  | Yes |  | Same as above |
| 6064 h | 0 | pp Position actual value | 0 | RO | S32 |  | Yes | pp |  |
| 6071 h | 0 | tq Target torque | 0 | RW | S16 | $0.1 \%$ | Yes | tq | Valid unit: $1 \%$ |
| 6072 h | 0 | tq Max torque | 150 | RW | U16 | $0.1 \%$ | No | tq | Valid unit: $1 \%$ |
| 6075 h | 0 | tq Motor rated current | 0 | RO | U32 | mA | No | tq |  |
| 6077 h | 0 | tq torque actual value | 0 | RO | S16 | $0.1 \%$ | Yes | tq |  |
| 6078 h | 0 | tq current actual value | 0 | RO | S16 | $0.1 \%$ | Yes | tq |  |
| 6079 h | 0 | tq DC link circuit voltage | 0 | RO | U32 | mV | Yes | tq |  |
| $607 A h$ | 0 | pp Target position | 0 | RW | S32 | 1 | Yes | pp |  |

## 15-5 CANopen Fault Code


*: Refer to setting value of Pr.06-17-Pr. 06-22

| $\begin{array}{\|c\|} \hline \text { ID } \\ \text { No.* } \end{array}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Fault $\quad$ Auto ocA Oc at accel | 0001H | Over-current during acceleration | 1 | 2213 H |
| 2 |  | 0002H | Over-current during deceleration | 1 | 2213 H |
| 3 | Fault AUTO ocn Oc at normal SPD | 0003H | Over-current during steady operation | 1 | 2214H |
| 4 |  | 0004H | Ground fault. When one of the output terminals is grounded, the short circuit current is more than $50 \%$ of AC motor drive rated current. NOTE: The short circuit protection is provided for the AC motor drive protection, not to protect the user. | 1 | 2240H |
| 5 | Fault AUTO Occ Short Circuit | 0005H | Short-circuit is detected between upper bridge and lower bridge of the IGBT module. | 1 | 2250H |
| 6 |  | 0006H | Over-current at stop. Hardware <br> failure in current detection | 1 | 2214H |
| 7 | Fault ova OUTO Ov at accel | 0007H | Over-current during acceleration. <br> Hardware failure in current detection | 2 | 3210H |
| 8 | Fault auto <br> ovd  <br> Ov at decel  | 0008H | Over-current during deceleration. <br> Hardware failure in current detection. | 2 | 3210 H |


| $\begin{gathered} \text { ID } \\ \text { No.* } \end{gathered}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | FaultAUTO <br> ovn <br> Ov at normal SPD | 0009H | DC BUS over-voltage at constant speed | 2 | 3210 H |
| 10 |  | 000AH | Over-voltage at stop. Hardware failure in voltage detection | 2 | 3210 H |
| 11 |  | 000BH | DCBUS voltage is less than Pr.06-00 during acceleration. | 2 | 3220 H |
| 12 | $\qquad$ <br> Lvd <br> Lv at decel | 000CH | DCBUS voltage is less than Pr.06-00 during deceleration. | 2 | 3220 H |
| 13 |  | 000DH | DCBUS voltage is less than Pr.06-00 at constant speed. | 2 | 3220H |
| 14 | $\qquad$ LvS <br> Lv at stop | 000EH | DCBUS voltage is less than Pr.06-00 at stop | 2 | 3220 H |
| 15 |  | 000FH | Phase Loss Protection | 2 | 3130H |
| 16 | $\begin{aligned} & \text { Fault AUTO } \\ & \text { oH1 } \\ & \text { IGBT over heat } \end{aligned}$ | 0010H | IGBT is overheated above the protection level. $\begin{aligned} & 1-15 \mathrm{HP}: 90^{\circ} \mathrm{C} \\ & 20-100 \mathrm{HP}: 100^{\circ} \mathrm{C} \end{aligned}$ | 3 | 4310H |
| 17 | $\begin{aligned} & \text { Fault }{ }^{\text {oH2 } 2} \\ & \text { Heat Sink oH } \end{aligned}$ | 0011H | Heat sink overheat <br> Heat sink temperature exceeds $90^{\circ} \mathrm{C}$ | 3 | 4310H |
| 18 |  | 0012H | IGBT over-heating protection error | 3 | FFOOH |
| 19 | FaultAUTO <br> tH20 <br> Thermo 2 open | 0013H | Temperature detection circuit error (capacity module) <br> CAP NTC | 3 | FF01H |


| $\begin{array}{\|c\|} \hline \text { ID } \\ \text { No.* } \end{array}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 |  | 0015H | Overload; the AC motor drive detects excessive drive output current. <br> NOTE: The AC motor drive can withstand up to $150 \%$ of the rated current for a maximum of 60 seconds. | 1 | 2310H |
| 22 | $\qquad$ <br> AUTO <br> EoL1 <br> Thermal relay 1 | 0016H | Electronic thermal relay 1 protection | 1 | 2310H |
| 23 | FaultAUTO <br> EoL2 <br> Thermal relay 2 | 0017H | Electronic thermal relay 2 protection | 1 | 2310H |
| 24 |  | 0018H | Motor overheating: the AC motor drive internal temperature exceeds the setting for Pr. 06-30 (PTC level). | 3 | FF20H |
| 26 |  | 001AH | When the output current exceeds the over-torque detection level (Pr. 06-07 or Pr. 06-10) and exceeds Pr. 06-08 | 3 | 8311H |
| 27 | Fault Auto <br> ot2  <br> Over torque 2  | 001BH | or Pr. 06-11; when Pr. 06-06 or Pr. 06-09 is set as 2 or 4 , the keypad displays these two fault codes. | 3 | 8311H |
| 28 | Fault ${ }^{\text {aUTO }}$ Under current | 001CH | Low current detection | 1 | 8321H |
| 29 | Fault AUTO LMIT Limit Error | 001DH | Home limit error | 1 | 7320H |
| 30 |  | 001EH | Cannot program internal EEPROM | 5 | 5530H |
| 31 | $\begin{aligned} & \text { Fault auto } \\ & \text { cF2 } \\ & \text { EEPROM read err } \end{aligned}$ | 001FH | Cannot read internal EEPROM | 5 | 5530H |
| 33 |  | 0021H | U-phase current error | 1 | FF04H |


| $\begin{gathered} \text { ID } \\ \text { No.* } \end{gathered}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | Fault <br> cd2 <br> Ibs sensor err | 0022H | V-phase current error | 1 | FF05H |
| 35 |  | 0023H | W-phase current error | 1 | FF06H |
| 36 | Fault  <br> HdOTO  <br> cc HW error  | 0024H | CC (current clamp) hardware error | 5 | FF07H |
| 37 |  | 0025H | oc hardware error | 5 | FF08H |
| 38 |  | 0026H | ov hardware error | 5 | FF09H |
| 39 | FaultHd3 <br> AUTO <br> Occ HW error | 0027H | GFF hardware error | 5 | FFOAH |
| 40 | FaultAUTO <br> AUE <br> Auto tuning error | 0028H | Motor parameters auto-tuning error | 1 | FF21H |
| 41 |  | 0029H | PID loss (ACI) | 7 | FF22H |
| 42 |  | 002AH | PG feedback error | 7 | 7301H |
| 43 |  | 002BH | PG feedback loss | 7 | 7301H |
| 44 | Fault PGF3 AUTO PG Fbk over SPD | 002CH | PG feedback stall | 7 | 7301H |


| $\begin{array}{\|c\|} \hline \text { ID } \\ \text { No.* } \end{array}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | PGF4 <br> PG Fbk deviate | 002DH | PG slip error | 7 | 7301H |
| 48 | Fault AUTO ACE ACI loss | 0030H | ACI loss (ACE) | 1 | FF25H |
| 49 |  | 0031H | External Fault; when the multi-function input terminal (EF) is active, the AC motor drive stops output. | 5 | 9000H |
| 50 | $\begin{aligned} & \text { Fault } \quad \text { AUTO } \\ & \text { EF1 } \\ & \text { Emergency stop } \end{aligned}$ | 0032H | Emergency stop; when the multi-function input terminals MI1 to MI6 are active, the AC motor drive stops output. | 5 | 9000H |
| 51 |  | 0033H | External Base Block; when the multi-function input terminal (B.B.) is active, the AC motor drive stops output. | 5 | 9000H |
| 52 | $\begin{aligned} & \text { Fault AUTO } \\ & \text { Pcod } \\ & \text { Password error } \end{aligned}$ | 0034H | Keypad is locked after you enter the wrong password three times. | 5 | FF26H |
| 54 |  | 0036H | Modbus function code error (illegal function code) | 4 | 7500H |
| 55 | CE2 <br> PC err address | 0037H | Modbus data address error [illegal data address ( $00 \mathrm{H}-254 \mathrm{H}$ )] | 4 | 7500H |
| 56 |  | 0038H | Modbus data error (illegal data value) | 4 | 7500H |
| 57 |  | 0039H | Modbus communication error (data is written to read-only address) | 4 | 7500H |


| $\begin{gathered} \text { ID } \\ \text { No.* } \end{gathered}$ | Display | Fault code | Description | $\qquad$ | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | Fault <br> CE10 <br> PC time out | 003AH | Modbus transmission time-out. | 5 | 7500H |
| 60 | $\qquad$ Braking fault | 003CH | Brake resistor error | 4 | 7110H |
| 61 | Fault AuTO <br> ydc  <br> Y-delta connect  | 003DH | Y-connection / $\Delta$-connection switch error | 2 | 3330 H |
| 62 |  | 003EH | Energy regeneration when decelerating | 2 | FF27H |
| 63 | Fault oSL AUTO Over slip error | 003FH | Motor slip exceeds Pr. 05-26 and Pr. 05-27 setting | 7 | FF28H |
| 64 |  | 0040H | Electric valve switch error | 5 | 7110H |
| 65 | $\qquad$ | 0041H | PG Card Error | 5 | FF29H |
| 68 | FaultAUTO <br> SdRv <br> SpdFbk Dir Rev$~$ | 0044H | Reverse direction of the speed feedback | 7 | 8400H |
| 69 |  | 0045H | Over speed rotation feedback | 7 | 8400H |
| 70 | FaultSdDe <br> SpdFbk deviateSplole | 0046H | Large deviation of speed feedback | 7 | 8400H |
| 72 | $\qquad$ | 0048H | STO1-SCM1 internal loop detection error | 5 | 5441H |


| $\begin{aligned} & \text { ID } \\ & \text { No.* } \end{aligned}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 73 | FaultS1 <br> S1-emergy stopS1 | 0049H | Emergency stop for external safety | 5 | FF2AH |
| 75 | Fault  <br> Brk  <br> EXT-Brake Error  | 004BH | External brake error | 5 | 7110 H |
| 76 |  | 004CH | Safe Torque Off function active | 5 | 5440 H |
| 77 | Fault ${ }^{\text {STL2 }}$ STOLOSS 2 | 004DH | STO2-SCM2 internal loop detection error | 5 | 5442H |
| 78 | Fault ${ }^{\text {STL3 }}$ STOLOLO STOSS 3 | 004EH | STO1-SCM1 and STO2-SCM2 internal loop detection error | 5 | 5443H |
| 82 | FaultOPHL <br> Uphase lacked | 0052H | Output phase loss 1 (Phase U) | 2 | 2331H |
| 83 | FaultOPHTO <br> OPh <br> phase lacked | 0053H | Output phase loss 2 (Phase V) | 2 | 2332H |
| 84 | Fault AUTO OPHL W phase lacked | 0054H | Output phase loss 3 (Phase W) | 2 | 2333H |
| 85 | Fault AbTO AboF PGABZ Line off | 0055H | PG ABZ line off | 5 | 7301H |
| 86 | Fault UVoF PG UVW Line off | 0056H | PG UVW line off | 5 | 7301H |
| 89 | FaultRoPdo <br> Rotor Pos. Error | 0059H | Rotor position detection error | 7 | FF30H |


| $\begin{gathered} \text { ID } \\ \text { No.* } \end{gathered}$ | Display | Fault code | Description | CANopen fault register (bit 0-7) | CANopen fault code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 90 |  | 005AH | Force to stop | 7 | FF2EH |
| 101 |  | 0065H | CANopen guarding error | 4 | 8130H |
| 102 | Fault AUTO CHbE Heartbeat T-out | 0066H | CANopen heartbeat error | 4 | 8130H |
| 104 |  | 0068H | CANopen bus off error | 4 | 8140H |
| 105 | Fault AUTO CIdE Can bus Index Err | 0069H | CANopen index error | 4 | 8100H |
| 106 | FaultCAdE <br> Can bus Add. Err | 006AH | CANopen station address error | 4 | 8100H |
| 107 |  | 006BH | CANopen memory error | 4 | 8100H |
| 111 | Faultauto <br> ictE <br> InrCom Time Out | 006FH | InrCOM internal communication special error code | 4 | 7500H |
| 112 | Fault  <br> SfLK  <br> PMLess Shaft Lock  | 0070H | PMLess shaft lock | 7 | FF31H |

## 15-6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.
RUN LED:


ERR LED:

| LED status | Condition / Status |
| :---: | :---: |
| OFF | No Error |
| Single <br> flash | One Message failure |
| Double <br> flash | Guarding failure or heartbeat failure |
| Triple flash | SYNC failure |
| ON | Bus off |

## Chapter 16 PLC Function Applications

16-1 PLC Summary
16-2 Notes before PLC use
16-3 Turn on
16-4 Basic principles of PLC ladder diagrams
16-5 Various PLC device functions
16-6 Introduction to the Command Window
16-7 Error display and handling
16-8 CANopen Master control applications
16-9 Explanation of various PLC mode controls (speed, torque,homing, and position)
16-10 Internal communications main node control
16-11 Count function using MI8
16-12 Modbus remote IO control applications (use MODRW)
16-13 Calendar Function

## 16-1 PLC Summary

## 16-1-1 Introduction

The commands provided by the C2000's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, chiefly retain the operating methods of Delta's PLC DVP series.

## 16-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's program editing software for the DVP and C2000 programmable controllers in the Windows operating system environment. Apart from general PLC program design general Windows editing functions (such as cut, paste, copy, multiple windows, etc.), WPLSoft also provides many Chinese/ English annotation editing and other convenience functions (such as registry editing, settings, file reading, saving, and contact graphic monitoring and settings, etc.).

The following basic requirements that need to install WPLSoft editing software:

| Item | System requirements |
| :---: | :--- |
| Operating system | Windows 95/98/2000/NT/ME/XP |
| CPU | At least Pentium 90 |
| Memory | At least 16MB (we recommend at least 32MB) |
| Hard drive | Hard drive capacity: at least 100MB free space <br> One optical drive (for use in installing this software) |
| Display | Resolution: $640 \times 480$, at least 16 colors; it is recommended that the screen <br> area be set at 800×600 pixels |
| Mouse | Ordinary mouse or Windows-compatible device |
| Printer | Printer with a Windows driver program |
| RS-485 port | Must have at least an RS-485 port to link to the PLC |
| Suitable PLC <br> models | Delta's full DVP-PLC series, VFD-C2000 series |

## 16-2 Notes before PLC use

1. The PLC has a preset communications format of $7, \mathrm{~N}, 2,9600$, with node 2 ; the PLC node can be changed in Pr. 09-35, but this address may not be the same as the drive's address setting of Pr. 09-00.
2. The C2000 provides 2 communications serial ports that can be used to download PLC programs (see figure below). Channel 1 has a fixed communications format of 19200, 8, N, 2 RTU.

3. The client can simultaneously access data from the converter and internal PLC, which is performed through identification of the node. For instance, if the converter node is 1 and the internal PLC node is 2 , then the client command will be

01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in converter Pr. 04-00

02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0
4. The PLC program will be disabled when uploading/ downloading programs.
5. Please note when using WPR commands to write in parameters, values may be modified up to a maximum of $10^{9}$ times, otherwise a memory write error will occur. The calculation of modifications is based on whether the entered value has been changed. If the entered value is left unchanged, the modifications will not increase afterwards. But if the entered value is different from before, the number of modifications will increase by one.
6. When Pr. 00-04 is set as 28 , the displayed value will be the value of PLC register D1043 (see figure below):


Digital Keypad KPC-CC01
Can display 0-65535
7. In the PLC Run and PLC Stop mode, the content 9 and 10 of Pr. 00-02 cannot be set and cannot be reset to the default value.
8. The PLC can be reset to the default value when $\operatorname{Pr} .00-02$ is set as 6 .
9. The corresponding MI function will be disabled when the PLC writes to input contact X.
10. When the PLC controls converter operation, control commands will be entirely controlled by the PLC and will not be affected by the setting of Pr. 00-21.
11. When the PLC controls converter frequency commands (FREQ commands), frequency commands will be entirely controlled by the PLC, and will not be affected by the setting of Pr. 00-20 or the Hand ON/OFF configuration.
12. When the PLC controls converter frequency (TORQ commands), torque commands will be entirely controlled by the PLC, and will not be affected by the setting of Pr. 11-33 or the Hand ON/OFF configuration.
13. When the PLC controls converter frequency (POS commands), position commands will be entirely controlled by the PLC, and will not be affected by the setting of Pr. 11-40 or the Hand ON/OFF configuration.
14. When the PLC controls converter operation, if the keypad Stop setting is valid, this will trigger an FStP error and cause stoppage.

## 16-3 Turn on

## 16-3-1 Connect to PC

Start operation of PLC functions in accordance with the following four steps

1. After pressing the Menu key and selecting 4: PLC on the KPC-CC01 digital keypad, press the Enter key (see figure below).

2. Wiring: Connect the drive's RJ45 communications interface to a PC via the RS-485.


C2000
3. PLC function usage

## PLC

- 1.Disable
2.PLC Run
3.PLC Stop
- PLC functions are as shown in the figure on the left; select item 2 and implement PLC functions.
1: No function (Disable)
2: Enable PLC (PLC Run)
3: Stop PLC functions (PLC Stop)
- When the external multifunctional input terminals (MI1-MI8) are in PLC Mode select bit0 (51) or PLC Mode select bit1 (52), and the terminal contact is closed or opened, it will compulsorily switch to the PLC mode, and keypad switching will be ineffective. Corresponding actions are as follows:

| PLC mode | PLC Mode select bit1(52) | PLC Mode select bit0 (51) |
| :---: | :---: | :---: |
| Using KPC-CC01 |  |  |
| Disable | OFF | ON |
| PLC Run | ON | OFF |
| PLC Stop | ON | ON |
| Maintain previous state |  |  |

## NOTE

■ When input/ output terminals (FWD REV MI1-MI8, MI10-15, Relay1, Relay2, RY10-RY15, MO1-MO2, and MO10-MO11) are included in the PLC program, these input/ output terminals will only be used by the PLC. As an example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay ( $R A / R B / R C$ ) will operate in accordance with the program. At this time, the multifunctional input/ output terminal setting will be ineffective. Because these terminal functions are already being used by the PLC, the DI/ DO/ AO in use by the PLC can be determined by looking at Pr. 02-52, Pr. 02-53, and Pr. 03-30.

- When the PLC's procedures use special register D1040, the corresponding AO contact AFM1 will be occupied, and AFM2 corresponding to special register D1045 will have the same situation.
- Pr. 03-30 monitors the state of action of the PLC function analog output terminal; bit0 corresponds to the AFM1 action state, and bit1 corresponds to the AFM2 action state.


## 16-3-2 I/O device explanation

Input devices:

| Serial <br> No. | X 0 | X 1 | X 2 | X 3 | X 4 | X 5 | X 6 | X 7 | X 10 | X 11 | X 12 | X 13 | X 14 | X 15 | X 16 | X 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FWD | REV | MI 1 | MI 2 | MI 3 | $\mathrm{MI4}$ | MI 5 | $\mathrm{MI6}$ | $\mathrm{MI7}$ | MI 8 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  | MI 10 | MI 11 | MI 12 | MI 13 | MI 14 | MI 15 |
| 3 |  |  |  |  |  |  |  |  |  |  | MI 10 | MI 11 | MI 12 | MI 13 |  |  |

1: Control I/O |
2: Expansion card: EMC-D611A (D1022=4)
3: Expansion card: EMC-D42A (D1022=5)

## Output devices:

| Serial <br> No. | Y 0 | Y 1 | Y 2 | Y 3 | Y 4 | Y 5 | Y 6 | Y 7 | Y 10 | Y 11 | Y 12 | Y 13 | Y 14 | Y 15 | Y 16 | Y 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RY 1 | RY 2 |  | MO 1 | MO 2 |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  | MO10 | MO11 |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  | RY10 | RY11 | RY 12 | RY 13 | RY 14 | RY 15 |  |  |  |  |  |

1: Control I/O |
2: Expansion card: EMC-D42A (D1022=5)
3: Expansion card: EMC-R6AA (D1022=6)

RY1 / RY2 / RY3


## RY10 / RY11 / RY12 / RY13 / RY14 / RY15



## 16-3-3 Installation WPLSoft

Download and install WPLSoft editing software in Delta's website:


After completing installation, the WPLSoft program will be installed in the designated subfolder " C : IProgram Files\Delta Industrial Automation\WPLSoft x.xx".

## 16-3-4 Program writing

Step 1: Click on the WPLSoft icon to start the editing software. (See figure 16-1)


Figure 16-1 (Left: WPLSoft icon; Right: Start WPLSoft)

Step 2: The WPLSoft editing window appears (see figure 16-2 below). When running WPLSoft for the first time, before "New file" has been used, only the "File (F)," "Communications (C)," View (V)," "Options (O)," and "Help (H)" columns will appear on the function toolbar.


Figure 16-2
$\square$ NOTE After running WPLSoft for the second time, the last file edited will open and be displayed in the editing window. The following figure 16-3 provides an explanation of the WPLSoft editing software window:


Figure 16-3
 *) wPL Editor


Figure 16-4
$\square$ NOTEYou can also find "New file (N) (Ctrl+N)" in the "File (F)", as shown in figure 16-5 below.


Figure 16-5
Step 4: The "Device settings" window will appear after clicking, see figure 16-6 below. You can now enter the project title and filename, and select the device and communication settings to be used.


Figure 16-6
Communications settings: Perform settings in accordance with the desired communications method. See figure 16-7 below.


Figure 16-7

Step 5: Press Confirm after completing settings and begin program editing. There are two program editing methods; you can choose whether to perform editing in the command mode or the ladder diagram mode (see figure 16-8 below).


Figure 16-8
NOTEIn ladder diagram mode, you can perform program editing using the buttons on the function icon row (see figure 16-9 below).


Figure 16-9

## Basic Operation-Example

Input the ladder diagram as the figure below. The following steps can be operated through the mouse or function key (F1-F12) on the keyboard.


Figure 16-10

Step 1: The following screen will appear after a new file is established:


Figure 16-11

Step 2: Click on the always-open switch icon | 각 |
| :---: |
| or press the function key F1. After the name of the | input device and the comment dialog box have appeared, the device name (such as " M "), device number (such as "10"), and input comments (such as "auxiliary contact") can be selected; press the OK button when finished (see figure 16-12 and 16-13 below).



Figure 16-12


Figure 16-13

Step 3: Click on the output coil icon | $C 7$ |
| :---: | :---: |
| F 7 | or press function key F7. After the name of the input device and the comment dialog box have appeared, the device name (such as " $Y$ "), device number (such as " 0 "), and input comments (such as "output coil") can be selected; press the OK button when finished (see figure 16-14 and 16-15 below).



Figure 16-14


Figure 16-15

Step 4: Press "ENTER" button, when the "Input Instructions" window appears, key in "END" in the field and press the OK button (see figure 16-16 and 16-17 below).


Figure 16-16


Figure 16-17
Step 5: Click on the $\begin{aligned} & \text { 占 } \\ & \text { cons }\end{aligned}$ "Ladder diagram => Code" icon, which will compile the edited ladder diagram as a command program. After compiling, the number of steps will appear on the left side of the busbar (see figure 16-18 below).


Figure 16-18

## 16-3-5 Program download

After inputting a program using WPLSoft, select compile $\square$ After completing compilation, select the to download a program. WPLSoft will perform program download with the online PLC in the communications format specified in communications settings.

## 16-3-6 Program monitoring

While confirming that the PLC is in the Run mode, after downloading a program, click on $\wp$ in the communications menu and select start ladder diagram control (see figure below)


## 16-4 Basic principles of PLC ladder diagrams

## 16-4-1 Schematic diagram of PLC ladder diagram program scanning

Output results are calculated on the basis of the ladder diagram configuration
(internal devices will have real-time output before results are sent to an external output point)


Repeated implementation

## 16-4-2 Introduction to ladder diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1 , this may indicate that a coil is electrified, and if that bit is 0 , it will indicate that the coil is not electrified. An N.O. contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an N.C. contact (Normal Close, or contact b) can be used to obtain the inverse of the bit's value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/ subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLC's storage area. When these devices are used, the content of the corresponding storage area is read in the form of bits, bytes, or words.

Introduction to the basic internal devices in a PLC

| Device type | Description of Function |
| :---: | :---: |
| Input Relay | An input relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external input point (which serves as a terminal connecting with an external input switch and receiving external input signals). It is driven by external input signals, to which it assigns values of 0 or 1 . A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay, and WPLSoft cannot be used to perform compulsory On/Off actions. A relay's contacts (contacts a and b) can be used an unlimited number of times. An input relay with no input signal must be left idle and cannot be used for some other purpose. <br> $\square$ Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed with the symbol " X ", and a device's order is indicated with an octal number. Please refer to Chapter 16-3-2 I/O device explanation for input point numbers. |
| Output Relay | An output relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external output point (which connects with an external load). It may be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one NO contact to connect with external loads or other contacts, and, like input contacts, can use the contact an unlimited number of times. An output relay with no input signal will be idle, but may be used an internal relay if needed. <br> $\square$ Device indicated as: Y0, Y1,...Y7, Y10, Y11,...etc. This device is expressed with the symbol " $Y$ ", and a device's order is indicated with an octal number. Please refer to Chapter 16-3-2 I/O device explanation for output point numbers. |
| Internal Relay | Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponding to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. An internal auxiliary relay's contact can also be used an unlimited number of times. Internal relays have no outputs to outside, and must output via an output point. <br> ■ Device indicated as: M0, M1 to M799, etc. This device is expressed as the symbol " M ", and its order is expressed as a decimal number. |
| Counter | A counter is used to perform counting operations. A count setting value (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from Off to On, this indicates that the counter has an input pulse, and one is added to its count. There are 16 bits that can be employed by the user. <br> $\square$ Device indicated as: C0, C1 to C79, etc. This device is expressed as the symbol " C ", and its order is expressed as a decimal number. |
| Timer | A timer is used to complete control of timing. The timer contains a coil, contact, and a time value register. When the coil is electrified, if the preset time is reached, the contact will be actuated (contact a will close, contact $b$ will open), and the timer's fixed value will be given by the set value. Timer has a regulated clock cycle (timing units: 100 ms ). As soon as power to the coil is cut off, the contact will no longer be actuated (contact a will open, contact b will close), and the original timing value will return to zero. <br> ■ Device indicated as: T0, T1 to T159, etc. The device is expressed as the symbol "T" , and its order is expressed as a decimal number. |


| Device type | Description of Function |
| :---: | :--- |
|  | When a PLC is used to perform various types of sequence control and set time <br> value and count value control, it most commonly perform data processing and <br> numerical operations, and data registers are used exclusively for storage of data <br> and various parameters. Each data register contains 16 bits of binary data, which <br> means that it can store one word. Two data registers with adjacent numbers can <br> be used to process double words. <br> Data register |
| Device indicated as: D0, D1 to D399, etc. The device is expressed as the <br> symbol "D", and its order is expressed as a decimal number. |  |

Ladder diagram images and their explanation

| Ladder diagram structures | Explanation of commands | Command | Using Device |
| :---: | :---: | :---: | :---: |
| †1 | NO switch, contact a | LD | $X, Y, M, T, C$ |
| い | NC switch, contact b | LDI | $X, Y, M, T, C$ |
| $\downarrow \vdash$ | Series NO | AND | $X, Y, M, T, C$ |
| $\longmapsto \vdash$ | Series NC | ANI | $X, Y, M, T, C$ |
|  | Parallel NO | OR | X, Y, M, T, C |
|  | Parallel NC | ORI | $X, Y, M, T, C$ |
| $-\uparrow \uparrow \mid$ | Positive edge-triggered switch | LDP | X, Y, M, T, C |
| $\forall \downarrow \downarrow$ | Negative edge-triggered switch | LDF | X, Y, M, T, C |
| $-\dashv \vdash\| \|$ | Positive edge-triggered series | ANDP | X, Y, M, T, C |
| $-1 \longmapsto\| \|$ | Negative edge-triggered series | ANDF | $X, Y, M, T, C$ |
|  | Positive edge-triggered parallel | ORP | $X, Y, M, T, C$ |
|  | Negative edge-triggered parallel | ORF | X, Y, M, T, C |
|  | Block series | ANB | N/A |
|  | Block parallel | ORB | N/A |
|  | Multiple outputs | MPS <br> MRD <br> MPP | N/A |
| - | Coil driven output commands | OUT | Y , M |


| Ladder diagram <br> structures | Explanation of commands | Command | Using Device |
| :---: | :---: | :---: | :---: |
| $\square$ | Some basic commands, <br> applications commands | Some basic <br> commands <br> Applications <br> commands |  |
| $\square$ | Inverted logic | INV | N/A |

## 16-4-3 Overview of PLC ladder diagram editing

The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:


The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command-computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

Explanation of
command
sequence

| 1 | LD | X0 |
| :---: | :---: | :---: |
| 2 | OR | M0 |
| 3 | AND | X1 |
| 4 | LD | X3 |
|  | AND | M1 |
|  | ORB |  |
| 5 | LD | Y1 |
|  | AND | X4 |
| 6 | LD | T0 |
|  | AND | M3 |
|  | ORB |  |
| 7 | ANB |  |
| 8 | OUT | Y1 |
|  | TMR | T0 |

Explanation of basic structure of ladder diagrams
LD (LDI) command: An LD or LDI command is given at the start of a block.


LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (see figure below):


AND (ANI) command: A series configuration in which a single device is connected with one device or a block.

## AND command



AND command


ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.
OR (ORI) command: A single device is connected with one device or a block.


ORP, ORF also have identical structures, but their action occurs at the rising and falling edge.
ANB command: A configuration in which one block is in series with one device or block.


ORB command: A configuration in which one block is in parallel with one device or block.


In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.
MPS can be distinguished by use of the " $T$ " symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.
MRD can be distinguished by use of the " $\mid$ " symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded.
MPP can be distinguished by use of the " L" symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:


## 16-4-4 Commonly used basic program design examples

## Start, stop, and protection

Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:

Example 1: Priority stop protective circuit
When the start NO contact $\mathrm{X} 1=\mathrm{On}$, and the stop NC contact $\mathrm{X} 2=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On}$; if $\mathrm{X} 2=\mathrm{On}$ at this time, coil Y 1 will no longer be electrified, and this is therefore referred to as priority stop.


## Example 2: Priority start protective circuit

When start NO contact $\mathrm{X} 1=O n$, and the stop NC contact $\mathrm{X} 2=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On}$, and coil Y 1 will be electrified and protected. At this time, if $\mathrm{X} 2=\mathrm{On}$, coil Y 1 will still protect the contact and continue to be electrified, and this is therefore priority start.


Example 3: Setting (SET) and reset (RST) command protective circuit
The following figure shows a protective circuit composed of RST and SET commands.
Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y 1 will indicate whether coil Y 1 is electrified. When X 1 and X 2 are both actuated, Y 1 will lose power, and this is therefore priority stop.

Priority start occurs when the SET command is placed after the RST command. When X1 and X 2 are both actuated, Y 1 will be electrified, and this is therefore priority start.


Top priority of start


## Commonly used control circuits

Example 4: Conditional control
X1, X3 are respectively start/ stop Y1, and X2 \& X4 are respectively start/ stop Y2; all have protective circuits. Because Y1's NO contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y 2 . The action of Y 1 is therefore a condition for the action of Y 2 , and Y 1 must be actuated before Y 2 can be actuated.


Example 5: Interlocking control
The figure below shows an interlocking control circuit. Depending on which of the start contacts $\mathrm{X} 1, \mathrm{X} 2$ is valid first, the corresponding output Y 1 or Y 2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y 1 and Y 2 cannot be actuated at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y 1 and Y 2 to be actuated at same time. This ladder diagram assigns priority only to Y1.



## Example 6: Sequence control

If the NC contact of Y 2 in the interlocking control configuration of example 5 is put in series with the Y 1 circuit, so that it is an AND condition for actuation of Y 1 (see figure below), not only is Y 1 a condition for the actuation of Y 2 in this circuit, the actuation of Y 2 will also stop the actuation of Y 1. This configuration confirms the actuation order of Y 1 and Y 2 .


## Example 7: Oscillating circuit

## Oscillating circuit with a period of $\Delta T+\Delta T$

The figure below shows a very simple ladder diagram. When starting to scan the Y1 NC contact, because the Y1 coil has lost power, the Y1 NC contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1 . When the Y 1 NC contact is scanned in the scanning cycle, because Y1 coil is electrified, the Y1 NC contact will be opened, the Y 1 coil will then lose power, and the output will be 0 . Following repeated scanning, the output of Y 1 coil will have an oscillating waveform with a period of $\Delta \mathrm{T}(\mathrm{On})+\Delta \mathrm{T}$ (Off).


Oscillating circuit with a period of $n T+\Delta T$
The program of the ladder diagram shown below uses timer T0 to control coil Y1's electrified time. After Y 1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y 1 to have the oscillating waveform shown in the figure below. Here n is the timer's decimal setting value, and T is the clock cycle of the timer.


## Example 8: Flashing circuit

The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or a buzzer to buzz. It uses two timers to control the On and Off time of Y1 coil. Here n1, n2 are the timing set values of T1 and T2, and T is the clock cycle of the timer.


Example 9: Triggering circuit
In the figure below, a command consisting of the differential of the rising edge of XO causes coil M0 to generate a single pulse for $\Delta T$ (length of one scanning cycle), and coil Y 1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and NC contact MO and NC contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0, which again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input XO is a square wave signal with a period of T , the output of coil Y 1 will be a square wave signal with a period of 2 T .


Example 10: Delay circuit
When input X0 is On, because the corresponding NC contact will be Off, the timer T10 will be in no power status, and output coil Y1 will be electrified. T10 will receive power and begin timing only after input X0 is Off, and output coil Y1 will be delayed for 100 sec. (K1000*0.1 sec. $=100 \mathrm{sec}$.) before losing power; please refer to the sequence of actions in the figure below.


TB:0.1 sec


Example 11: The open/ close delay circuit is composed of two timers; output Y 4 will have a delay whether input X0 is On or Off.


## Example 12: Extended timing circuit

In the circuit in the figure on the left, the total delay time from the moment input X 0 closes to the time output Y 1 is electrified is $(\mathrm{n} 1+\mathrm{n} 2)^{*} \mathrm{~T}$, where T is the clock cycle. Timers: $\mathrm{T} 11, \mathrm{~T} 12$; clock cycle: T .


## 16-5 Various PLC device functions

| Item | Specifications | Notes |
| :---: | :--- | :--- |
| Algorithmic control <br> method | Program stored internally, alternating <br> back-and-forth scanning method |  |
| Input/ output control <br> method | When it starts again after ending (after execution to <br> the END command), the input/ output has an <br> immediate refresh command | Applications command (1 to <br> several tens of $\mu \mathrm{s})$ |
| Algorithmic <br> processing speed | Basic commands (several $\mu \mathrm{s}$ ); |  |
| Programming <br> language | Command + ladder diagram | This number of contacts <br> constitutes C2000 input/ output <br> contacts; other devices have <br> different correspondences |
| Program capacity | 10000 steps |  |
| Input/ output terminal | Input $(\mathrm{X}): 10$, output $(\mathrm{Y}): 4$ |  |


| Type | Device | Item |  | Range |  | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Relay bit form | X | External input relay |  | X0-X17, 16 points, octal number | Total32 points | Corresponds to external input point |
|  | Y | External output relay |  | Y0-Y17, 16 points, octal number |  | Corresponds to external output point |
|  |  |  | General Use | M0-M799, 800 points | $\begin{array}{\|c\|} \hline \text { Total } \\ 880 \\ \text { point } \end{array}$ | Contact can switch On/ Off within the program |
|  | M | Relay | Special purpose | M1000-M1079, 80 points |  |  |
|  | T | Timer | 100ms timer | T0-T159, 160 points | $\begin{gathered} \text { Total } \\ 160 \\ \text { points } \end{gathered}$ | Timers referred to by the TMR command; contact of the $T$ with the same number will go On when the time is reached |
|  | C | Counter | 16-bit counter, general use | C0-C79, 80 points | $\begin{gathered} \text { Total } \\ 80 \\ \text { points } \end{gathered}$ | Counter referred to by the CNT command; contact of the C with the same number will go On when the count is reached |
| Register word data | T | Current timer value |  | T0-T159, 160 points |  | The contact will be On when the time is reached |
|  | C | Current counter value |  | C0-C79, 16-bit counter 80 points |  | The counter contact will come On when the count is reached |
|  | D | Data Register | Used to maintain power Off | D0-D399, 400 points | Total 1400 points | Used as data storage memory area |
|  |  |  | Special purpose | D1000-D1199, 200 points D2000-D2799, 800 points |  |  |
| Constant | K | Decimal | Single-byte | Setting Range: K-32,768-K32,767 |  |  |
|  |  |  | Double-byte | Setting Range: K-2,147,48 | 83,648- | K2,147,483,647 |
|  | H | Hexadecimal | Single-byte | Setting Range:H0000-HFFFF |  |  |
|  |  |  | Double-byte | Setting Range: H00000000-HFFFFFFFF |  |  |
| Serial communications port (program write/read) |  |  |  | RS-485/ keypad port |  |  |
| Input/output |  |  |  | Built-in three analog inputs and two analog outputs |  |  |
| Function expansion module |  |  | Optional Accessories | EMC-D42A; EMC-R6AA; EMCD611A |  |  |
| Communication Expansion Module |  |  | Optional Accessories | EMC-COP01,(CANopen) |  |  |

## 16-5-1 Introduction to device functions

## Input/ output contact functions

Input contact $X$ functions: Input contact $X$ is connected with an input device, and reads input signals entering the PLC. The number of times that contact a or $b$ of input contact $X$ is used in the program is not subject to restrictions. The $\mathrm{On} / \mathrm{Off}$ state of input contact $X$ will change as the input device switches On and Off; a peripheral device (WPLSoft) cannot be used to force contact X On or Off.

## Output contact $Y$ functions

The job of output contact $Y$ is to send an On/Off signal to drive the load connected with output contact Y. Output contacts consist of two types: relays and transistors. While number of times that contact a or $b$ of each output contact $Y$ is used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the program's final output Y circuit.


The output of Y 0 will be decided by circuit (2), i.e. decided by ON/OFF of X10.

## Numerical value, constant [K]/ [H]

| Constant | Single-byte | K | Decimal | K-32,768-K32,767 |
| :---: | :---: | :---: | :---: | :---: |
|  | Double-byte |  |  | K-2,147,483,648-K2,147,483,647 |
|  | Single-byte | H | Hexadecimal | H0000-HFFFF |
|  | Double-byte |  |  | H00000000-HFFFFFFFF |

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.
Binary Number, BIN
The PLC's numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

| bit | Bits are the fundamental units of binary values, and have a state of either 1 or 0 |
| :---: | :--- |
| Nibble | Comprised of a series of 4 bits (such as b3-b0); can be used to express a <br> one-nibble decimal number 0-9 or hexadecimal number: 0-F. |
| Byte | Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a <br> hexadecimal number: 00-FF. |
| Word | Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a <br> hexadecimal number with four nibbles: $0000-$ FFFF. |
| Double Word | Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a <br> hexadecimal number with eight nibbles: $00000000-F F F F F F F F F$ |

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):


## Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers
Example: External input: $\mathrm{X} 0-\mathrm{X} 7, \mathrm{X} 10-\mathrm{X} 17 \ldots$ (Device number table);
External output: Y0-Y7, Y10-Y17...(Device number table)

## Decimal Number, DEC

Decimal numbers are used for the following purposes in a PLC system:
च The setting values of timer T or counter C, such as TMR C0 K50. (K constant)
$\square \quad$ The numbers of devices including M, T, C, or D, such as M10 or T30. (device number)
■ Used as an operand in an application command, such as MOV K123 D0. (K constant)

## Binary Code Decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display drive.

## Hexadecimal Number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

## Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100.
Exceptions: K can be combined with bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}$, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4 -bit combination, and K2-K4 variously represent 8 , 12, and 16-bit combinations.

## Constant H

Hexadecimal numbers are usually prefixed with the letter " H " in a PLC system, such as in the case of H 100 , which indicates a hexadecimal number with a numerical value of 100 .

## Functions of auxiliary relays

Like an output relay Y , an auxiliary relay M has an output coil and contacts $a$ and $b$, and the number of times they can be used in a program is unrestricted. Users can use an auxiliary relay $M$ to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:
Ordinary auxiliary relays: Ordinary auxiliary relays will all revert to the Off state if a power outage occurs while the PLC is running, and will remain in the Off state if power is again turned down.

Special purpose auxiliary relays: Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

## Timer functions

Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value = set value, power will be sent to the output coil. Timer setting values consist of decimal $K$ values, and the data register $D$ can also serve as a setting value.

Actual timer setting time $=$ timing units * set value
Counter features

| Item |  |
| :---: | :--- |
| Type | General Type |
| CT Direction: | Score |
| Setting | $0-32,767$ |
| Designation of set value | Constant K or data register D |
| Change in current value | When the count reaches the set value, there is no longer a count |
| Output contact | When the count reaches the set value, the contact comes On and stays On |
| Reset | The current value reverts to 0 when an RST command is executed, and the <br> contact reverts to Off |
| Contact actuation | All are actuated after the end of scanning |

## Counter functions

When a counter's counting pulse input signal goes Off $\rightarrow$ On, if the counter's current value is equal to the set value, the output coil will come On. The setting value will be a decimal $K$ values, and the data register D can also serve as a setting value.

16-bit counter C0-C79:
च 16-bit counter setting range: K0-K32,767. (when K0 and K1 are identical, the output contact will immediately be On during the first count.)
$\boxtimes \quad$ The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.

च If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C 0 current value register, when the next X1 goes from Off $\rightarrow$ On, the C 0 counter contact will change to On, and the current value will change to the set value.
$\boxtimes \quad$ A counter's setting value may be directly set using a constant K or indirectly set using the value in register D (not including special data registers D1000-D1199 or D2000-D2799).
च If the set value employs a constant K , it may only be a positive number; the set value may be either a positive or a negative number if the value in data register $D$ is used. The current counter value will change from 32,767 to $-32,768$ as the count continues to accumulate.

Example


OUT
YO

1. When $X 0=O n$ and the RST command is executed, the current value of CO will revert to 0 , and the output contact will revert to Off.
2. When X 1 changes from $\mathrm{Off} \rightarrow \mathrm{On}$, the current value of the counter will execute an increase (add one).
3. When the count of counter CO reaches the 4


Contacts YO,CO set value K 5 , the contact C 0 will come On, and the current value of $\mathrm{C} 0=$ set value =K5. Afterwards, signal C0 triggered by X1 cannot be received, and the current value of C 0 will remain K 5 .

## 16-5-2 Introduction to special relay functions (special M)

R/W items: RO: read only function; RW: read and write function

| Special <br> M | Description of Function | R/W * |
| :--- | :--- | :---: |
| M1000 | Operates monitor NO contact (contact a). NO while RUN, contact a. This contact <br> is On while in the RUN state. | RO |
| M1001 | Operates monitor NC contact (contact b). NC while RUN, contact b. This contact is <br> Off while in the RUN state. | RO |
| M1002 | Initiates a forward (the instant RUN is On) pulse. Initial pulse, contact a. Produces <br> a forward pulse the moment RUN begins; its width = scan cycle | RO |
| M1003 | Initiates a reverse (the instant RUN is Off) pulse. Initial pulse, contact a. Produces <br> a reverse pulse the moment RUN ends; the pulse width = scan cycle | RO |
| M1004 | Reserved | RO |
| M1005 | Drive malfunction instructions | RO |
| M1006 | Converter has no output (1 = no output, 0 = output) | RO |
| M1007 | Drive direction FWD(0)/REV(1) | RO |
| M1008 | -- | -- |
| M1010 |  | RO |
| M1011 | 10 ms clock pulse, $5 m s$ On / 5ms Off | RO |
| M1012 | 100 ms clock pulse, 50 ms On / 50ms Off | RO |
| M1013 | 1 sec. clock pulse, 0.5s On / 0.5s Off | RO |
| M1014 | 1 min. clock pulse, 30s On / 30s Off | RO |
| M1015 | Frequency attained (when used together with M1025) | RO |
| M1016 | Parameter read/write error | RO |
| M1017 | Parameter write successful | -- |
| M1018 | -- |  |


| Special M | Description of Function | R/W * |
| :---: | :---: | :---: |
| M1019 | -- | -- |
| M1020 | Zero flag | RO |
| M1021 | Borrow flag | RO |
| M1022 | Carry flag | RO |
| M1023 | Divisor is 0 | RO |
| M1024 | -- | -- |
| M1025 | $\begin{aligned} & \text { Target drive frequency }=\text { set frequency (ON) } \\ & \text { Target drive frequency }=0 \text { (OFF) } \end{aligned}$ | RW |
| M1026 | Drive operating direction FWD(OFF) / REV(ON) | RW |
| M1027 | Drive Reset | RW |
| M1028 | -- | -- |
| M1029 | -- | -- |
| M1030 | -- | -- |
| M1031 | Compulsory setting of the current PID integral value equal to D1019 (0 change, 1 valid) | RW |
| M1032 | Compulsory definition of FREQ command after PID control | RW |
| M1033 | -- | -- |
| M1034 | Initiates CANopen real-time control | RW |
| M1035 | Initiates internal communications control | RW |
| M1036 | Ignore calendar error | RW |
| M1037 | -- | -- |
| M1038 | MI8 count begins | RW |
| M1039 | Reset MI8 count value | RW |
| M1040 | Excitation (Servo On) | RW |
| M1041 | -- | -- |
| M1042 | Quick stop | RW |
| M1043 | -- | -- |
| M1044 | Pause (Halt) | RW |
| $\begin{gathered} \hline \text { M1045 } \\ - \\ \text { M1047 } \end{gathered}$ | -- | -- |
| M1048 | Move to new position | RW |
| M1049 | -- | -- |
| M1050 | Absolute position / relative position (0: relative/1: absolute) | RW |
| M1051 | -- | -- |
| M1052 | Lock frequency (lock, frequency locked at the current operating frequency) | RW |
| M1053 | -- | -- |
| M1054 | Compulsory reset of absolute position | RW |
| M1055 | Search Origin | RW |
| M1056 | Excitation ready (Servo On Ready) | RO |
| M1057 | -- | -- |
| M1058 | On Quick Stopping | RO |
| M1059 | CANopen Master setting complete | RO |
| M1060 | CANopen Currently initializing slave station | RO |
| M1061 | CANopen Slave station initialization failure | RO |
| M1062 | -- | -- |
| M1063 | Torque attained | RO |
| M1064 | Target reached | RO |
| M1065 | Read/write CANopen data time out | RO |
| M1066 | Read/write CANopen data complete | RO |
| M1067 | Read/write CANopen data successful | RO |
| M1068 | Calendar calculation error | RO |
| M1069 | -- | -- |
| M1070 | Return home complete | RO |
| M1071 | Homing error | RO |


| Special <br> M | Description of Function | R/W * |
| :--- | :--- | :---: |
| M1072 <br> - <br> M1075 | -- | -- |
| M1076 | Calendar time error or refresh time out | RO |
| M1077 | 485 Read/write complete | RO |
| M1078 | 485 Read-write error | RO |
| M1079 | 485 Communications time out | RO |
| M1090 | AUTO | RO |
| M1091 | OFF | RO |
| M1092 | HAND | RO |
| M1100 | LOCAL | RO |
| M1101 | REMOTE | RO |
| M1168 | SBOV BCD and BIN mode switch | RW |
| M1260 | PLC PID1 Enable | RW |
| M1262 | PLC PID1 integral positive value limit | RW |
| M1270 | PLC PID2 Enable | RW |
| M1272 | PLC PID2 integral positive value limit | RW |

## 16-5-3 Introduction to special register functions (special D)

| Special D | Description of Function | R/W * |
| :---: | :---: | :---: |
| D1000 | -- | -- |
| D1001 | Device system program version | RO |
| D1002 | Program capacity | RO |
| D1003 | Total program memory content | RO |
| $\begin{gathered} \hline \text { D1004 } \\ -\quad \\ \text { D1009 } \end{gathered}$ | -- | -- |
| D1010 | Current scan time (units: 0.1 ms ) | RO |
| D1011 | Minimum scan time (units: 0.1 ms ) | RO |
| D1012 | Maximum scan time (units: 0.1 ms ) | RO |
| $\begin{gathered} \text { D1013 } \\ -\quad \\ \text { D1017 } \end{gathered}$ | -- | -- |
| D1018 | Current integral value | RO |
| D1019 | Compulsory setting of PID I integral | RW |
| D1020 | Output frequency ( $0.000-600.00 \mathrm{~Hz}$ ) | RO |
| D1021 | Output current (\#\#\#\#.\#A) | RO |
| D1022 | AI AO DI DO Expansion card number <br> 0 : No expansion card <br> 4: AC input card ( 6 in ) (EMC-D611A) <br> 5: Digital I/O Card (4 in 2 out ) (EMC-D42A) <br> 6: Relay card (6 out) (EMC-R6AA) <br> 11: Analog I/O Card (2 in 2 out) (EMC-A22A) | RO |
| D1023 | Communication expansion card number <br> 0: No expansion card <br> 1: DeviceNet Slave (CMC-DN01) <br> 2: Profibus-DP Slave (CMC-PD01) <br> 3: CANopen Slave (EMC-COP01) <br> 4: Modbus-TCP Slave (CMC-MOD01) <br> 5: EtherNet/IP Slave (CMC-EIP01) <br> 12: PROFINET Slave (CMC-PN01) | RO |
| $\begin{gathered} \hline \text { D1024 } \\ -\quad \\ \text { D1026 } \\ \hline \end{gathered}$ | -- | -- |


| Special D | Description of Function | R/W * |
| :---: | :---: | :---: |
| D1027 | PID calculation frequency command (frequency command after PID calculation) | RO |
| D1028 | AVI value (0.00-100.00\%) | RO |
| D1029 | ACI value (0.0-100.00\%) | RO |
| D1030 | AUI value (-100.0-100.00\%) | RO |
| D1031 | C series: extension card Al10 (0.0-100.0\%) | RO |
| D1032 | C series: extension card Al11 (0.0-100.0\%) | RO |
| $\begin{gathered} \hline \text { D1033 } \\ - \\ \text { D1035 } \end{gathered}$ | -- | -- |
| D1036 | Servo error bit | RO |
| D1037 | Drive output frequency | RO |
| D1038 | DCBUS voltage | RO |
| D1039 | Output voltage | RO |
| D1040 | Analog output value AFM1 (-100.00-100.00\%) | RW |
| D1041 | C series: extension card AO10 (0.0-100.0\%) | RW |
| D1042 | C series: extension card AO11 (0.0-100.0\%) | RW |
| D1043 | Can be user-defined (will be displayed on panel when Pr. 00-04 is set as 28; display method is C xxx) | RW |
| D1044 | -- |  |
| D1045 | Analog output value AFM2 (-100.00-100.00\%) | RW |
| $\begin{gathered} \hline \text { D1046 } \\ -\quad \\ \text { D1049 } \end{gathered}$ | -- | -- |
| D1050 | Actual Operation Mode <br> 0 : Speed <br> 1: Position <br> 2: Torque <br> 3: Homing Origin | RO |
| D1051 | Encoder Pulses L | RO |
| D1052 | Encoder Pulses H | RO |
| D1053 | Actual torque | RO |
| D1054 | MI8 current calculated count value (Low Word) | RO |
| D1055 | M18 current calculated count value (High Word) | RO |
| D1056 | Rotational speed corresponding to MI8 | RO |
| D1057 | MI8's rotational speed ratio | RW |
| D1058 | MI8 refresh rate (ms) corresponding to rotational speed | RW |
| D1059 | Number of nibbles of rotational speed corresponding to MI8 (0-3) | RW |
| D1060 | Operation Mode setting <br> 0 : Speed <br> 1: Position <br> 2: Torque <br> 3: Homing Origin | RW |
| D1061 | 485 COM1 communications time out time (ms) | RW |
| D1062 | Torque command (torque limit in speed mode) | RW |
| D1063 | Year (Western calendar) (display range 2000-2099) (must use KPC-CC01) | RO |
| D1064 | Week (display range 1-7) (must use KPC-CC01) | RO |
| D1065 | Month (display range 1-12) (must use KPC-CC01) | RO |
| D1066 | Day (display range 1-31) (must use KPC-CC01) | RO |
| D1067 | Hour (display range 0-23) (must use KPC-CC01) | RO |
| D1068 | Minute (display range 0-59) (must use KPC-CC01) | RO |
| D1069 | Second (display range 0-59) (must use KPC-CC01) | RO |
| D1100 | Target frequency | RO |
| D1101 | Target frequency (must be operating) | RO |
| D1102 | Reference frequency | RO |
| D1103 | Target L | RO |
| D1104 | Target H | RO |


| Special D | Description of Function | R/W * |
| :---: | :---: | :---: |
| D1105 | Target torque | RO |
| D1106 | -- | -- |
| D1107 | $\pi(\mathrm{Pi})$ Low word | RO |
| D1108 | $\pi(\mathrm{Pi})$ High word | RO |
| D1109 | Random number | RO |
| D1110 | Internal node communications number (set number of slave stations to be controlled) | RW |
| D1111 | Actual position (Low word) | RO |
| D1112 | Actual position (High word) | RO |
| D1113 | -- | RO |
| D1114 | -- | -- |
| D1115 | Internal node synchronizing cycle (ms) | RO |
| D1116 | Internal node error (bit0 = Node 0, bit1 = Node 1, ...bit7 = Node 7) | RO |
| D1117 | ```Internal node online correspondence (bit0 = Node 0, bit1 = Node 1,...bit7 = Node 7)``` | RO |
| D1118 | -- | -- |
| D1119 | -- | -- |
| D1120 | Internal node 0 control command | RW |
| D1121 | Internal node 0 mode | RW |
| D1122 | Internal node 0 reference command L | RW |
| D1123 | Internal node 0 reference command H | RW |
| D1124 | -- | -- |
| D1125 | -- | -- |
| D1126 | Internal node 0 status | RO |
| D1127 | Internal node 0 reference status L | RO |
| D1128 | Internal node 0 reference status H | RO |
| D1129 | -- | -- |
| D1130 | Internal node 1 control command | RW |
| D1131 | Internal node 1 mode | RW |
| D1132 | Internal node 1 reference command L | RW |
| D1133 | Internal node 1 reference command H | RW |
| D1134 | -- | -- |
| D1135 | -- | -- |
| D1136 | Internal node 1 status | RO |
| D1137 | Internal node 1 reference status L | RO |
| D1138 | Internal node 1 reference status H | RO |
| D1139 | -- | -- |
| D1140 | Internal node 2 control command | RW |
| D1141 | Internal node 2 mode | RW |
| D1142 | Internal node 2 reference command L | RW |
| D1143 | Internal node 2 reference command H | RW |
| D1144 | -- | -- |
| D1145 | -- | -- |
| D1146 | Internal node 2 status | RO |
| D1147 | Internal node 2 reference status L | RO |
| D1148 | Internal node 2 reference status H | RO |
| D1149 | -- | -- |
| D1150 | Internal node 3 control command | RW |
| D1151 | Internal node 3 mode | RW |
| D1152 | Internal node 3 reference command L | RW |
| D1153 | Internal node 3 reference command H | RW |
| D1154 | -- | -- |
| D1155 | -- | -- |
| D1156 | Internal node 3 status | RO |
| D1157 | Internal node 3 reference status L | RO |


| Special D | Description of Function |  | R/W * |
| :---: | :---: | :---: | :---: |
| D1158 | Internal node 3 reference status H |  | RO |
| D1159 | -- |  | -- |
| D1160 | Internal node 4 control command |  | RW |
| D1161 | Internal node 4 mode |  | RW |
| D1162 | Internal node 4 reference command L |  | RW |
| D1163 | Internal node 4 reference command H |  | RW |
| D1164 | -- |  | -- |
| D1165 | -- |  | -- |
| D1166 | Internal node 4 status |  | RO |
| D1167 | Internal node 4 reference status L |  | RO |
| D1168 | Internal node 4 reference status H |  | RO |
| D1169 | -- |  | -- |
| D1170 | Internal node 5 control command |  | RW |
| D1171 | Internal node 5 mode |  | RW |
| D1172 | Internal node 5 reference command L |  | RW |
| D1173 | Internal node 5 reference command H |  | RW |
| D1174 | -- |  | RW |
| D1175 | -- |  | -- |
| D1176 | Internal node 5 status |  | -- |
| D1177 | Internal node 5 reference status L |  | RO |
| D1178 | Internal node 5 reference status H |  | RO |
| D1179 | -- |  | -- |
| D1180 | Internal node 6 control command |  | RW |
| D1181 | Internal node 6 mode |  | RW |
| D1182 | Internal node 6 reference command L |  | RW |
| D1183 | Internal node 6 reference command H |  | RW |
| D1184 | -- |  | -- |
| D1185 | -- |  | -- |
| D1186 | Internal node 6 status |  | RO |
| D1187 | Internal node 6 reference status L |  | RO |
| D1188 | Internal node 6 reference status H |  | RO |
| D1189 | -- |  | -- |
| D1190 | Internal node 7 control command |  | RW |
| D1191 | Internal node 7 mode |  | RW |
| D1192 | Internal node 7 reference command L |  | RW |
| D1193 | Internal node 7 reference command H |  | RW |
| D1194 | -- |  | -- |
| D1195 | -- |  | -- |
| D1196 | Internal node 7 status |  | RO |
| D1197 | Internal node 7 reference status L |  | RO |
| D1198 | Internal node 7 reference status H |  | RO |
| D1199 | -- |  | -- |
| Special D | Description of Function | Default | R/W * |
| D1200P | 1 Mode: Basic mode | 0 | RW |
| D12011  <br> 2  <br>  3 | 1 Target selection: Refer to D1202 <br> AVI <br> AUI | 0 | RW |
| D1202 P | 1 Target value (0.00\%-100.00\%) | 5000 | RW |


| Special D | Description of Function | Default | R/W * |
| :---: | :---: | :---: | :---: |
| D1203 | PID 1 Feedback selection: <br> 0: Refer to D1204 <br> 1: AVI <br> 2: ACI <br> 3: AUI | 1 | RW |
| D1204 | PID 1 Feedback value (0.00\%-100.00\%) | 0 | RW |
| D1205 | PID 1 P value (decimal 2 points) | 10 | RW |
| D1206 | PID 1 I value (decimal 2 points) | 1000 | RW |
| D1207 | PID 1 D value (decimal 2 points) | 0 | RW |
| D1209 | PID 1 Max. limit | 10000 | RW |
| D1215 | PID 1 Calculation (decimal 2 points) | 0 | RO |
| D1220 | PID2 Mode: <br> 0 : Basic mode | 0 | RW |
| D1221 | PID 2 Target selection: <br> 0: Refer to D1202 <br> 1: AVI <br> 2: ACI <br> 3: AUI | 0 | RW |
| D1222 | PID 2 Target value (0.00\%-100.00\%) | 5000 | RW |
| D1223 | PID 2 Feedback selection: <br> 0: Refer to D1204 <br> 1: AVI <br> 2: ACI <br> 3: AUI | 1 | RW |
| D1224 | PID 2 Feedback value (0.00\%-100.00\%) | 0 | RW |
| D1225 | PID 2 P value (decimal 2 points) | 10 | RW |
| D1226 | PID 2 I value (decimal 2 points) | 1000 | RW |
| D1227 | PID 2 D value (decimal 2 points) | 0 | RW |
| D1229 | PID 2 Max. limit | 10000 | RW |
| D1235 | PID 2 Calculation (decimal 2 points) | 0 | RO |



The following is CANopen Master's special D (Allow writing only when PLC is in STOP state)

| Special D | Description of Function | $\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$ | Power off Memory | Default | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D1070 | Channel opened by CANopen initialization (bit0=Machine code0 ...) | NO | NO | 0 | R |
| D1071 | Error channel occurring in CANopen initialization process (bit0=Machine code0 ...) | NO | NO | 0 | R |
| D1072 | Reserved | - | - |  | - |
| D1073 | CANopen break channel (bit0=Machine code0 ...) | NO | NO |  | R |
| D1074 | $\begin{aligned} & \text { Error code of master error } \\ & \text { o: No error } \\ & \text { 1: Slave station setting error } \\ & \text { 2: Synchronizing cycle setting error (too small) } \end{aligned}$ | NO | NO | 0 | R |
| D1075 | Reserved | - | - |  | - |
| D1076 | SDO error message (main index value) | NO | NO |  | R |
| D1077 | SDO error message (secondary index value) | NO | NO |  | R |
| D1078 | SDO error message (error code) | NO | NO |  | R |
| D1079 | SDO error message (error code) | NO | NO |  | R |
| D1080 | Reserved | - | - |  | - |
| $\begin{aligned} & \text { D1081 } \\ & -\quad \\ & \text { D1086 } \end{aligned}$ | Reserved | - | - |  | - |
| $\begin{gathered} \text { D1087 } \\ - \\ \text { D1089 } \end{gathered}$ | Reserved | - | ${ }^{-}$ |  | - |
| D1090 | Synchronizing cycle setting | NO | YES | 4 | RW |
| D1091 | Sets slave station On or Off (bit 0-bit 7 correspond to slave stations number 0-7) | NO | YES | FFFFH | RW |
| D1092 | Delay before start of initialization | NO | YES | 0 | RW |
| D1093 | Break time detection | NO | YES | 1000 ms | RW |
| D1094 | Break number detection | NO | YES | 3 | RW |
| $\begin{gathered} \text { D1095 } \\ -\quad \\ \text { D1096 } \end{gathered}$ | Reserved | - | - |  | - |
| D1097 | Corresponding real-time transmission type (PDO) Setting range: 1-240 | NO | YES | 1 | RW |
| D1098 | Corresponding real-time receiving type (PDO) Setting range: 1-240 | NO | YES | 1 | RW |
| D1099 | Initialization completion delay time Setting range: $1-60000 \mathrm{sec}$. | NO | YES | 15 sec . | RW |
| D2000+100*n | Station number n of slave station <br> Setting range: 0-127 <br> 0: No CANopen function | NO | YES | 0 | RW |

The C2000 supports 8 slave stations under the CANopen protocol; each slave station occupies 100 special D locations; stations are numbered $1-8$, total of 8 stations.


1. The range of n is $0-7$
2. •Indicates PDOTX, $\boldsymbol{\Delta}$ Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

| Special D | Description of Function | Default: | R/W |
| :---: | :--- | :---: | :---: |
| D2000+100*n | Station number n of slave station <br> Setting range: 0-127 <br> 0: No CANopen function | 0 | RW |
| D2002+100*n | Manufacturer code of slave station number $\mathrm{n}(\mathrm{L})$ | 0 | R |
| D2003+100*n | Manufacturer code of slave station number $\mathrm{n}(\mathrm{H})$ | 0 | R |
| D2004+100*n | Manufacturer's product code of slave station number $(\mathrm{L})$ | 0 | R |
| D2005+100*n | Manufacturer's product code of slave station number n (H) | 0 | R |

Basic definitions

| Special D | Description of Function | Default: | CAN <br> Index | PDO Default: |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 |  |
| D2006+100*n | Communications break handling method of slave station number $n$ | 0 | $6007 \mathrm{H}-0010 \mathrm{H}$ |  |  |  |  | RW |
| D2007+100*n | Error code of slave station number n error | 0 | $603 \mathrm{FH}-0010 \mathrm{H}$ |  |  |  |  | R |
| D2008+100*n | Control word of slave station number $n$ | 0 | $6040 \mathrm{H}-0010 \mathrm{H}$ | $\bullet$ |  | $\bullet$ | $\bullet$ | RW |
| D2009+100*n | Status word of slave station number $n$ | 0 | $6041 \mathrm{H}-0010 \mathrm{H}$ | - |  | $\Delta$ | A | R |
| D2010+100*n | Control mode of slave station number n | 2 | $6060 \mathrm{H}-0008 \mathrm{H}$ |  |  |  |  | RW |
| D2011+100*n | Actual mode of slave station number n | 2 | $6061 \mathrm{H}-0008 \mathrm{H}$ |  |  |  |  | R |

## Velocity Control

Slave station number $\mathrm{n}=0-7$

| Special D | Description of Function | Default: | CAN <br> Index | PDO Default: |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 |  |
| D2001+100*n | Torque restriction on slave station number n | 0 | $6072 \mathrm{H}-0010 \mathrm{H}$ |  |  |  |  | RW |
| D2012+100*n | Target speed of slave station number n | 0 | $6042 \mathrm{H}-0010 \mathrm{H}$ | $\bullet$ |  |  |  | RW |
| D2013+100*n | Actual speed of slave station number $n$ | 0 | $6043 \mathrm{H}-0010 \mathrm{H}$ | $\triangle$ |  |  |  | R |
| D2014+100*n | Error speed of slave station number $n$ | 0 | $6044 \mathrm{H}-0010 \mathrm{H}$ |  |  |  |  | R |
| D2015+100*n | Acceleration time of slave station number n | 1000 | $604 \mathrm{FH}-0020 \mathrm{H}$ |  |  |  |  | R |
| D2016+100*n | Deceleration time of slave station number n | 1000 | $6050 \mathrm{H}-0020 \mathrm{H}$ |  |  |  |  | RW |

## Torque control

Slave station number $n=0-7$

| Special D | Description of Function | Default: | CAN <br> Index | PDO Default: |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 |  |
| D2017+100*n | Target torque of slave station number n | 0 | $6071 \mathrm{H}-0010 \mathrm{H}$ |  |  |  | $\bullet$ | RW |
| D2018+100*n | Actual torque of slave station number n | 0 | $6077 \mathrm{H}-0010 \mathrm{H}$ |  |  |  | A | R |
| D2019+100*n | Actual current of slave station number n | 0 | $6078 \mathrm{H}-0010 \mathrm{H}$ |  |  |  |  | R |

## Position control

Slave station number $\mathrm{n}=0-7$


## 20XXH correspondences: MI MO AI AO

Slave station number $\mathrm{n}=0-7$

| Special D | Description of Function | Default: | CAN <br> Index | PDO Default: |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 4 |  |
| D2026+100*n | Ml status of slave station number n | 0 | $2026 \mathrm{H}-0110 \mathrm{H}$ |  | $\Delta$ |  |  | RW |
| D2027+100*n | MO setting of slave station number $n$ | 0 | $2026 \mathrm{H}-4110 \mathrm{H}$ |  | $\bullet$ |  |  | RW |
| D2028+100*n | Al1 status of slave station number $n$ | 0 | $2026 \mathrm{H}-6110 \mathrm{H}$ |  | - |  |  | RW |
| D2029+100*n | Al2 status of slave station number $n$ | 0 | $2026 \mathrm{H}-6210 \mathrm{H}$ |  | A |  |  | RW |
| D2030+100*n | Al3 status of slave station number n | 0 | $2026 \mathrm{H}-6310 \mathrm{H}$ |  | A |  |  | RW |
| D2031+100*n | AO1 status of slave station number n | 0 | $2026 \mathrm{H}-\mathrm{A} 110 \mathrm{H}$ |  | $\bullet$ |  |  | RW |
| D2032+100*n | AO2 status of slave station number n | 0 | $2026 \mathrm{H}-\mathrm{A} 210 \mathrm{H}$ |  | $\bullet$ |  |  | RW |
| D2033+100*n | AO3 status of slave station number n | 0 | $2026 \mathrm{H}-\mathrm{A} 310 \mathrm{H}$ |  | $\bullet$ |  |  | RW |

PDO reflection length setting:

| Special D | Description of Function | Default: | R/W |
| :---: | :--- | :---: | :---: |
| D2034+100*n | Real-time transmission setting of slave station number n | 000 AH | RW |
| D2067+100*n | Real-time reception setting of slave station number n | 000 H | RW |

## 16-5-4 PLC Communication address

| Device | Range | Type | Address (Hex) |
| :---: | :---: | :---: | :---: |
| X | $00-37$ (Octal) | bit | $0400-041 \mathrm{~F}$ |
| Y | $00-37$ (Octal) | bit | $0500-051 \mathrm{~F}$ |
| T | $00-159$ | bit/word | $0600-069 \mathrm{~F}$ |
| M | $000-799$ | bit | $0800-0 B 1 \mathrm{~F}$ |
| M | $1000-1079$ | bit | $0 B E 8-0 C 37$ |
| D | $0-79$ | bit/word | $0 E 00-0 E 47$ |
| D | $00-399$ | word | $1000-118 \mathrm{~F}$ |
| D | $1000-1099$ | word | 13E8-144B |
| $2000-2799$ | word | 17D0-1AEF |  |

Command code that can be used

| Function Code | Description of Function | Function target |
| :---: | :--- | :---: |
| 01 | Coil status read | Y,M,T,C |
| 02 | Input status read | X,Y,M,T,C |
| 03 | Read single unit of data | T,C,D |
| 05 | Compulsory single coil status change | Y,M,T,C |
| 06 | Write single unit of data | T,C,D |
| 0 F | Compulsory multiple coil status change | Y,M,T,C |
| 10 | Write multiple units of data | T,C,D |

## NOTE

When PLC functions have been activated, the C2000 can match PLC and drive parameters; this method employs different addresses, drives (default station number is 1 , PLC sets station number as 2 )

## 16-6 Introduction to the Command Window

## 16-6-1 Overview of basic commands

## Ordinary commands

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| LD | Load contact a | X, Y, M, T, C | 0.8 |
| LDI | Load contact b | X, Y, M, T, C | 0.8 |
| AND | Connect contact a in series | X, Y, M, T, C | 0.8 |
| ANI | Connect contact b in series | X, Y, M, T, C | 0.8 |
| OR | Connect contact a in parallel | X, Y, M, T, C | 0.8 |
| ORI | Connect contact b in parallel | X, Y, M, T, C | 0.8 |
| ANB | Series circuit block | N/A | 0.3 |
| ORB | Parallel circuit block | N/A | 0.3 |
| MPS | Save to stack | N/A | 0.3 |
| MRD | Stack read (pointer does not change) | N/A | 0.3 |
| MPP | Read stack | N/A | 0.3 |

## Output command

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| OUT | Drive coil | Y, M | 1 |
| SET | Action continues (ON) | Y, M | 1 |
| RST | Clear contact or register | Y, M, T, C, D | 1.2 |

## Timer, counter

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| TMR | 16-bit timer | T-K or T-D commands | 1.1 |
| CNT | 16 -bit counter | C-K or C-D (16-bit) | 0.5 |

## Main control command

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| MC | Common series contact connection | N0-N7 | 0.4 |
| MCR | Common series contact release | N0-N7 | 0.4 |

Contact rising edge / falling edge detection command

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| LDP | Start of forward edge detection action | X, Y, M, T, C | 1.1 |
| LDF | Start of reverse edge detection action | X, Y, M, T, C | 1.1 |
| ANDP | Forward edge detection series connection | X, Y, M, T, C | 1.1 |
| ANDF | Reverse edge detection series connection | X, Y, M, T, C | 1.1 |
| ORP | Forward edge detection parallel connection | X, Y, M, T, C | 1.1 |
| ORF | Reverse edge detection parallel connection | X, Y, M, T, C | 1.1 |

Upper/lower differential output commands

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| PLS | Upper differential output | $\mathrm{Y}, \mathrm{M}$ | 1.2 |
| PLF | Lower differential output | $\mathrm{Y}, \mathrm{M}$ | 1.2 |

Stop command

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| END | Program conclusion | N/A | 0.2 |

Other commands

| Command <br> code | Function | OPERAND | Execution <br> speed (us) |
| :---: | :--- | :---: | :---: |
| NOP | No action | N/A | 0.2 |
| INV | Inverse of operation results | N/A | 0.2 |
| P | Index | P | 0.3 |

## 16-6-2 Detailed explanation of basic commands

| Command | Function |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LD | Load contact a |  |  |  |  |  |  |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 |  | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | - |
| Explanation | The LD command is used for contact a starting at the left busbar or contact a starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register. |  |  |  |  |  |  |
| Example | Ladder diag |  |  | Command code: |  | Description: |  |
|  |  |  |  | LD | X 0 | Load | act a of X0 |
|  |  |  |  | AND | X1 | Create conne of X 1 | to contact a |
|  |  |  |  | OUT | Y1 | Drive $Y$ |  |


| Command | Function |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LDI | Load contact b |  |  |  |  |  |  |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 |  | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | - |
| Explanation | The LDI command is used for contact $b$ starting at the left busbar or contact $b$ starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register. |  |  |  |  |  |  |
| Example | Ladder diagram: |  |  | Command code: D |  |  | Description: |
|  |  |  |  | LDI | X0 | Load Contact b of X0 |  |
|  |  |  |  | AND X 1 |  | Create series connection to contact a of X 1 |  |
|  |  |  |  | OUT | Y1 | Drive Y1 coil |  |
| Command | Function |  |  |  |  |  |  |
| AND | Connect contact a in series |  |  |  |  |  |  |
| Operand | X0-X17 | $\mathrm{Y} 0-\mathrm{Y} 17$ | M0-M799 | T0-159 |  | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | - |

The AND command is used to create a series connection to contact a; first reads
Explanation current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.

Example \begin{tabular}{l}
Ladder diagram:

$\quad$

Command code: \& \multicolumn{1}{c}{| Description: |
| :--- |
| LDI |} \& X 1

 

Load Contact b of X 1
\end{tabular}



| Command | Function |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ORB | Parallel circuit block |  |  |  |
| Operand | N/A |  |  |  |
| Explanation | ORB performs an "OR" operation on the previously saved logic results and the current cumulative register content. |  |  |  |
| Example | Ladder diagram: | $\begin{aligned} & \text { Command code: } \\ & \text { LD X0 } \end{aligned}$ |  | Description: <br> Load Contact a of X0 |
|  |  |  |  |  |
|  |  |  |  | Establish parallel |
|  |  |  |  | of X1 |
|  |  | LDI |  | Load Contact b of X2 Establish parallel |
|  |  | AND | X3 | connection to contact a of X3 |
|  |  | ORB |  | Parallel circuit block |
|  |  | OUT | Y1 | Drive Y1 coil |
| Command | Function |  |  |  |
| MPS | Save to stack |  |  |  |
| Operand | N/A |  |  |  |
| Explanation | Save current content of cumulative register to the stack. (Add one to stack pointer) |  |  |  |
| Command | Function |  |  |  |
| MRD | Read stack (pointer does not change) |  |  |  |
| Operand | N/A |  |  |  |
| Explanation | Reads stack content and saves to cumulative register. (Stack pointer does not change) |  |  |  |
| Command | Function |  |  |  |
| MPP | Read stack |  |  |  |
| Operand | N/A |  |  |  |
| Explanation | Retrieves result of previously-save logical operation from the stack, and saves to cumulative register. (Subtract one from stack pointer) |  |  |  |
| Example |  | Command code:LD |  | Description: <br> Load Contact a of X0 |
|  |  | MPS |  | Save to stack |
|  |  | AND OUT | X 1 Y 1 | Create series connection to contact a of X 1 <br> Drive Y1 coil |
|  |  | MRD |  | Read stack (pointer does not change) |
|  | $\begin{array}{\|l\|l\|} \hline \text { MPP END } \\ \hline \end{array}$ | AND | X2 | Create series connection to contact a of X 2 |
|  |  | OUT | M0 | Drive M0 coil |
|  |  | MPP |  | Read stack |
|  |  | OUT | Y2 | Drive Y2 coil |
|  |  | END |  | Program conclusion |


| Command | Function |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT | Drive coil |  |  |  |  |  |
| Operand | $\mathrm{X} 0-\mathrm{X} 17$ | $\mathrm{Y} 0-\mathrm{Y} 17$ | $\mathrm{M} 0-\mathrm{M} 799$ | $\mathrm{~T} 0-159$ | $\mathrm{C} 0-\mathrm{C} 79$ | D0-D399 |
|  | - | $\checkmark$ | $\checkmark$ | - | - | - |
| Explanation | Outputs result of logical operation before OUT command to the designated element. <br> Coil contact action: |  |  |  |  |  |


| Result: | Out command |  |  |
| :---: | :---: | :---: | :---: |
|  | Coil | Access Point: |  |
|  | Contact a (NO) | Contact b (NC) |  |
| FALSE | Off | Not conducting | Conducting |
| TRUE | On | Conducting | Not conducting |

Example | Ladder diagram: | Command code: | Description: |
| :--- | :--- | :--- | :--- |
| LD | X0 | Load Contact bof X0 |





When the CNT command is executed from Off $\rightarrow$ On, this indicates that the designated counter coil goes from no power $\rightarrow$ electrified, and 1 will be added to the counter's count value; when the count reaches the designated value (count value $=$ set value), the contact will have the following action:

| NO (Normally Open) contact | Closed |
| :---: | :---: |
| NC (Normally Close) contact | Open |

After the count value has been reached, the contact and count value will both remain unchanged even if there is continued count pulse input. Please use the RST command if you wish to restart or clear the count.


Ladder diagram:


Command code:

## Description:

LD X0 CNT C2 K100

Load Contact a of X0 C2counter Set value as K100

Command
Function

## MC/MCR

Operand
Explanation N0-N7

MC is the main control initiation command, and any commands between MC and MCR will be executed normally. When the MC command is Off, any commands between MC and MCR will act as follows:

## Determination of commands

Description
Ordinary timer
Counter
Coil driven by OUT command
Elements driven by SET, RST commands
Applications commands None are actuated
MCR is the main control stop command, and is placed at the end of the main control program.
There may not be any contact commands before the MCR command.
The MC-MCR main control program commands support a nested program structure with a maximum only 8 levels; use in the order N0-N7, please refer to the following program:


Command
Function
LDP Start of forward edge detection action

| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 | C0-C79 | D0-D399 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |

 current content, while also saving the detected state of the rising edge of the contact to the cumulative register.


Ladder diagram:

Command
code:

LDP X0
AND X1

Start of X0 forward edge detection action
Create series connection to contact a of X1
OUT Y1 Drive Y1 coil

## Remark

Please refer to the function specifications table for each device in series for the scope of usage of each operand.
A rising edge contact will be TRUE after power is turned on if the rising edge contact is On before power is turned on to the PLC.

| Command | Function |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LDF | Start of reverse edge detection action |  |  |  |  |  |  |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 |  | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | - |
| Explanation | The LDF command has the same usage as LD, but its action is different; its function is to save current content while also saving the detected state of the falling edge of the contact to the cumulative register. <br> Command code: <br> Description: |  |  |  |  |  |  |
| Example |  |  |  |  |  |  |  |
|  | Ladder diagram: |  |  | LDF | X0 | Start edge d | X0 reverse tion action |
|  |  |  |  | AND | X1 | Create connec of X1 | series to contact a |
|  |  |  |  | OUT | Y1 | Drive Y |  |


| Command | Function |
| :---: | :---: |


| ANDP | Forward edge detection series connection |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |


| Explanation | The ANDP command used for a contact rising edge detection series connection. |
| :--- | :--- |
| Command code: | Description: |
| Example | LD |
| Adder diagram: | X0 | | Load Contact a of X0 |
| :--- |


| Command | Function |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANDF | Reverse edge detection series connection |  |  |  |  |  |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |


| Explanation The ANDF command is used for a contact falling edge detection series connection. |  |
| :--- | :--- |
| Example | Command code: | | Description: |
| :--- |


| Command | Function |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ORP | Forward edge detection parallel connection |  |  |  |  |  |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |

Explanation The ORP command is used for a contact rising edge detection parallel connection.
Command code:
Example

| Command | Function |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ORF | Reverse edge detection parallel connection |  |  |  |  |  |
| Operand | X0-X17 | Y0-Y17 | M0-M799 | T0-159 | C0-C79 | D0-D399 |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |

Explanation The ORF command is used for contact falling edge detection parallel connection.
Command code:
Example
Ladder diagram:


| Command | Function |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLF | Lower differential output | Y0-Y17 | M0-M799 | T0-159 | C0-C79 | D0-D399 |
| Operand | X0-X17 | Y0-Y |  |  |  |  |
|  | - | $\checkmark$ | $\checkmark$ | - | - | - |

Lower differential output command. When $\mathrm{XO}=\mathrm{On} \rightarrow \mathrm{Off}$ (negative edge-triggered), the Explanation PLF command will be executed, and MO will send one pulse, with pulse length consisting of one scanning period.


Time sequence diagram:


Command code: Description:

| LD | X0 | Load Contact a of X0 |
| :---: | :---: | :--- |
| PLF | M0 | M0 Lower differential <br> output |

LD M0 Load Contact a of M0
Y0 Action continues
(ON)

| Command | Function |  |
| :---: | :---: | :---: |
| END | Program conclusion | N/A |
| Operand |  |  |

An END command must be added to the end of a ladder diagram program or
$\qquad$ command program. The PLC will scan from address 0 to the END command, and will return to address 0 and begins scanning again after execution.

| Command | Function |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| NOP | No action |  |  |  |
| Operand | N/A |  |  |  |
| Explanation | The command NOP does not perform any operation in the program. Because execution of this command will retain the original logical operation results, it can be used in the following situation: the NOP command can be used instead of a command that is deleted without changing the program length. |  |  |  |
| ample | Ladder diagram: <br> NOP command will be simplified and not displayed when the ladder diagram is displayed. | Comm | code: | Description: |
|  |  | LD | X0 | Load Contact b of X0 |
|  |  | NOP |  | No action |
|  |  | OUT | Y1 | Drive Y1 coil |


| Command |  | Function |
| :---: | :--- | :---: |
| INV | Inverse of operation results | N/A |
| Operand |  |  |

Explanation \begin{tabular}{l}
Saves the result of the logic inversion operation prior to the INV command in the <br>
cumulative register. <br>
Ladder diagram:

 Command code: 

Description:
\end{tabular}

| Command | Function |
| :---: | :--- |
| $\mathbf{P}$ | Index |
| Operand | P0-P255 |

Pointer $P$ is used to subprogram call command API 01 CALL. User does not require Explanation starting from zero, but the number cannot be used repeatedly, otherwise an unpredictable error will occur.


Command code: Description:


| P10 |  | Pointer P10 |
| :---: | :---: | :--- |
| LD | X1 | Load Contact a of X1 |
| OUT | Y1 | Drive Y1 coil |

## 16-6-3 Overview of application commands

| Classification | API | Command code |  | $\begin{gathered} P \\ \text { command } \end{gathered}$ | Function | STEPS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 bit | 32 bit |  |  | 16 bit | 32 bit |
| Circuit control | 01 | CALL | - | $\checkmark$ | Call subprogram | 3 | - |
|  | 2 | SRET | - | - | Conclusion of subprogram | 1 | - |
|  | 06 | FEND | - | - | Conclusion a main program | 1 | - |
| Send comparison | 10 | CMP | DCMP | $\checkmark$ | Compares set output | 7 | 13 |
|  | 11 | ZCP | DZCP | $\checkmark$ | Range comparison | 9 | 17 |
|  | 12 | MOV | DMOV | $\checkmark$ | Data movement | 5 | 9 |
|  | 13 | SMOV | DSMOV | $\checkmark$ | Nibble movement | 11 | 21 |
|  | 15 | BMOV | - | $\checkmark$ | Send all | 7 | - |
| Four logical operations | 18 | BCD | DBCD | $\checkmark$ | BIN to BCD transformation | 5 | 9 |
|  | 19 | BIN | DBIN | $\checkmark$ | BCD to BIN transformation | 5 | 9 |
|  | 20 | ADD | DADD | $\checkmark$ | BIN addition | 7 | 13 |
|  | 21 | SUB | DSUB | $\checkmark$ | BIN subtraction | 7 | 13 |
|  | 22 | MUL | DMUL | $\checkmark$ | BIN multiplication | 7 | 13 |
|  | 23 | DIV | DDIV | $\checkmark$ | BIN division | 7 | 13 |
|  | 24 | INC | DINC | $\checkmark$ | BIN add one | 3 | 5 |
|  | 25 | DEC | DDEC | $\checkmark$ | BIN subtract one | 3 | 5 |
| Rotational displacement | 30 | ROR | DROR | $\checkmark$ | Right rotation | 5 | - |
|  | 31 | ROL | DROL | $\checkmark$ | Left rotation | 5 | - |
| Data Process | 40 | ZRST | - | $\checkmark$ | Clear range | 5 | - |
|  | 41 | DECO | DDECO | $\checkmark$ | Decoder | 7 | 13 |
|  | 42 | ENCO | DENCO | $\checkmark$ | Encoder | 7 | 13 |
|  | 43 | Sum | DSUM | $\checkmark$ | ON bit number | 5 | 9 |
|  | 44 | BON | DBON | $\checkmark$ | ON bit judgement | 7 | 13 |
|  | 49 | FLT | DFLT | $\checkmark$ | BIN whole number $\rightarrow$ binary floating point number transformation | 5 | 9 |
| Floating point operation | 110 | - | DECMP | $\checkmark$ | Comparison of binary floating point numbers | - | 13 |
|  | 111 | - | DEZCP | $\checkmark$ | Comparison of binary floating point number range | - | 17 |
|  | 116 | - | DRAD | $\checkmark$ | Angle $\rightarrow$ Diameter | - | 9 |
|  | 117 | - | DDEG | $\checkmark$ | Diameter $\rightarrow$ angle | - | 9 |
|  | 120 | - | DEADD | $\checkmark$ | Binary floating point number addition | - | 13 |
|  | 121 | - | DESUB | $\checkmark$ | Binary floating point number subtraction | - | 13 |
|  | 122 | - | DEMUL | $\checkmark$ | Binary floating point number multiplication | - | 13 |
|  | 123 | - | DEDIV | $\checkmark$ | Binary floating point number division | - | 13 |
|  | 124 | - | DEXP | $\checkmark$ | Binary floating point number obtain exponent | - | 9 |
|  | 125 | - | DLN | $\checkmark$ | Binary floating point number obtain logarithm | - | 9 |
|  | 127 | - | DESQR | $\checkmark$ | Binary floating point number find square root | - | 9 |
|  | 129 | INT | DINT | $\checkmark$ | Binary floating point number $\rightarrow$ BIN whole number transformation | 5 | 9 |
|  | 130 | - | DSIN | $\checkmark$ | Binary floating point number SIN operation | - | 9 |
|  | 131 | - | DCOS | $\checkmark$ | Binary floating point number COS operation | - | 9 |
|  | 132 | - | DTAN | $\checkmark$ | Binary floating point number TAN operation | - | 9 |


| Classification | API | Command code |  | P command | Function | STEPS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 bit | 32 bit |  |  | 16 bit | 32 bit |
|  | 133 | - | DASIN | $\checkmark$ | Binary floating point number ASIN operation | - | 9 |
|  | 134 | - | DACOS | $\checkmark$ | Binary floating point number ACOS operation | - | 9 |
|  | 135 | - | DATAN | $\checkmark$ | Binary floating point number ATAN operation | - | 9 |
|  | 136 | - | DSINH | $\checkmark$ | Binary floating point number SINH operation | - | 9 |
|  | 137 | - | DCOSH | $\checkmark$ | Binary floating point number COSH operation | - | 9 |
|  | 138 | - | DTANH | $\checkmark$ | Binary floating point number TANH operation | - | 9 |
| Other | 147 | SWAP | DSWAP | $\checkmark$ | Exchange the up/down 8 bits | 3 | 5 |
| communicatio <br> n | 150 | MODRW | - | $\checkmark$ | MODBUS read/write | 7 | - |
| Calendar | 160 | TCMP | - | $\checkmark$ | Compare calendar data | 11 | - |
|  | 161 | TZCP | - | $\checkmark$ | Compare calendar data range | 9 | - |
|  | 162 | TADD | - | $\checkmark$ | Calendar data addition | 7 | - |
|  | 163 | TSUB | - | $\checkmark$ | Calendar data subtraction | 7 | - |
|  | 166 | TRD | - | $\checkmark$ | Calendar data read | 3 | - |
| GRAY code | 170 | GRY | DGRY | $\checkmark$ | BIN $\rightarrow$ GRY code transformation | 5 | 9 |
|  | 171 | GBIN | DGBIN | $\checkmark$ | GRY code $\rightarrow$ BIN transformation | 5 | 9 |
| Contact form logical operation | 215 | LD\& | DLD\& | - | Contact form logical operation LD\# | 5 | 9 |
|  | 216 | LD\| | DLD\| | - | Contact form logical operation LD\# | 5 | 9 |
|  | 217 | LD^ | DLD^ | - | Contact form logical operation LD\# | 5 | 9 |
|  | 218 | AND\& | DAND\& | - | Contact form logical operation AND\# | 5 | 9 |
|  | 219 | ANDI | DANDI | - | Contact form logical operation AND\# | 5 | 9 |
|  | 220 | AND^ | DAND^ | - | Contact form logical operation AND\# | 5 | 9 |
|  | 221 | OR\& | DOR\& | - | Contact form logical operation OR\# | 5 | 9 |
|  | 222 | OR\| | DOR\| | - | Contact form logical operation OR\# | 5 | 9 |
|  | 223 | OR^ | DOR^ | - | Contact form logical operation OR\# | 5 | 9 |
| Contact form compare command | 224 | LD $=$ | DLD= | - | Contact form compare LD* | 5 | 9 |
|  | 225 | LD > | DLD> | - | Contact form compare LD* | 5 | 9 |
|  | 226 | LD $<$ | DLD $<$ | - | Contact form compare LD* | 5 | 9 |
|  | 228 | LD $<>$ | DLD $<>$ | - | Contact form compare LD* | 5 | 9 |
|  | 229 | LD $<=$ | DLD $<=$ | - | Contact form compare LD* | 5 | 9 |
|  | 230 | LD > = | DLD > = | - | Contact form compare LD* | 5 | 9 |
|  | 232 | AND $=$ | DAND $=$ | - | Contact form compare AND* | 5 | 9 |
|  | 233 | AND > | DAND > | - | Contact form compare AND* | 5 | 9 |
|  | 234 | AND $<$ | DAND $<$ | - | Contact form compare AND* | 5 | 9 |
|  | 236 | AND $<>$ | DAND $<>$ | - | Contact form compare AND* | 5 | 9 |
|  | 237 | AND $<=$ | DAND $<=$ | - | Contact form compare AND* | 5 | 9 |
|  | 238 | AND $>=$ | DAND $>=$ | - | Contact form compare AND* | 5 | 9 |
|  | 240 | $\mathrm{OR}=$ | DOR $=$ | - | Contact form compare OR* | 5 | 9 |
|  | 241 | OR > | DOR> | - | Contact form compare OR* | 5 | 9 |
|  | 242 | OR< | DOR< | - | Contact form compare OR* | 5 | 9 |
|  | 244 | OR $<>$ | DOR $<>$ | - | Contact form compare OR* | 5 | 9 |
|  | 245 | $\mathrm{OR}<=$ | DOR $<=$ | - | Contact form compare OR* | 5 | 9 |
|  | 246 | OR $>=$ | DOR $>=$ | - | Contact form compare OR* | 5 | 9 |

Chapter 16 PLC Function Applications | C2000

| Classification | API | Command code |  | P command | Function | STEPS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 bit | 32 bit |  |  | 16 bit | 32 bit |
| Floating point contact form | 275 | - | FLD $=$ | - | Floating point number contact form compare LD* | - | 9 |
|  | 276 | - | FLD $>$ | - | Floating point number contact form compare LD* | - | 9 |
|  | 277 | - | FLD $<$ | - | Floating point number contact form compare LD* | - | 9 |
| Compare command | 278 | - | FLD $<>$ | - | Floating point number contact form compare LD* | - | 9 |
|  | 279 | - | FLD $<=$ | - | Floating point number contact form compare LD* | - | 9 |
|  | 280 | - | FLD > = | - | Floating point number contact form compare LD* | - | 9 |
|  | 281 | - | FAND = | - | Floating point number contact form compare AND* | - | 9 |
|  | 282 | - | FAND > | - | Floating point number contact form compare AND* | - | 9 |
|  | 283 | - | FAND< | - | Floating point number contact form compare AND* | - | 9 |
|  | 284 | - | FAND<> | - | Floating point number contact form compare AND* | - | 9 |
|  | 285 | - | FAND $<=$ | - | Floating point number contact form compare AND* | - | 9 |
|  | 286 | - | FAND $>=$ | - | Floating point number contact form compare AND* | - | 9 |
|  | 287 | - | FOR= | - | Floating point number contact form compare OR* | - | 9 |
|  | 288 | - | FOR> | - | Floating point number contact form compare OR* | - | 9 |
|  | 289 | - | FOR < | - | Floating point number contact form compare OR* | - | 9 |
|  | 290 | - | FOR $<>$ | - | Floating point number contact form compare OR* | - | 9 |
|  | 291 | - | FOR $<=$ | - | Floating point number contact form compare OR* | - | 9 |
|  | 292 | - | FOR $>=$ | - | Floating point number contact form compare OR* | - | 9 |
| Drive special command | 139 | RPR | - | $\checkmark$ | Read servo parameter | 5 | - |
|  | 140 | WPR | - | $\checkmark$ | Write servo parameter | 5 | - |
|  | 141 | FPID | - | $\checkmark$ | Drive PID control mode | 9 | - |
|  | 142 | FREQ | - | $\checkmark$ | Drive torque control mode | 7 | - |
|  | 262 | - | DPOS | $\checkmark$ | Set target | - | 5 |
|  | 263 | TORQ | - | $\checkmark$ | Set target torque | 5 | - |
|  | 261 | CANRX | - | $\checkmark$ | Read CANopen slave station data | 9 | - |
|  | 264 | CANTX | - | $\checkmark$ | Write CANopen slave station data | 9 | - |
|  | 265 | CANFLS | - | $\checkmark$ | Refresh special D corresponding to CANopen | 3 | - |
|  | 320 | ICOMR | DICOMR | $\checkmark$ | Internal communications read | 9 | 17 |
|  | 321 | ICOMW | DICOMW | $\checkmark$ | Internal communications write | 9 | 17 |
|  | 323 | WPRA | - | - | RAM write in drive parameters | 5 | - |

## 16-6-4 Detailed explanation of applications commands

| API | $\square$ | CALL | $\mathbf{P}$ | S |
| :---: | :--- | :--- | :--- | :--- |



Explanation $\quad \mathbf{S}$ : Call subprogram pointer.

- Write the subprogram after the FEND command.
- The subprogram must end after the SRET command.
- Refer to the FEND command explanation and sample content for detailed command functions.




Explanation

- S1): Compare value 1. S2): Compare value 2.

(D)Results of comparison.

- Compares the size of the content of operandand S2; the results of comparison are expressed in D.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.


## Example

■ When the designated device is Y 0 , it automatically occupies $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 .

- When $\mathrm{X} 10=$ On, the CMP command executes, and $\mathrm{Y} 0, \mathrm{Y} 1$ or Y 2 will be On. When $\mathrm{X} 10=\mathrm{Off}$, the CMP command will not execute, and the state of $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 will remain in the state prior to X10=Off.
- If $\geq$, $\leq$, or $\neq$ results are needed, they can be obtained via series/parallel connections of $\mathrm{YO}-\mathrm{Y} 2$.

- To clear results of comparison, use the RST or ZRST command.


\section*{| API | $\mathbf{1 1}$ | $\mathbf{D}$ ZCP | $\mathbf{P}$ | S 1 | S 2 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| S | D | Range comparison |  |  |  |}


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (9 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | ZCP | ¢ Continuous | ZCPP | Pulse |
| S1 |  |  |  | * | * | * | * | * | * | * | * |  | execution type |  | execution type |
| S2 |  |  |  | * | * | * | * | * | * | * | * |  |  |  |  |
| S |  |  |  | * | * | * | * | * | * | * | * | 32-bit co | mmand (17 ST |  |  |
| D |  | * | * |  |  |  |  |  |  |  |  | DZCP | Continuous | DZCPP | Pulse |

Notes on operand usage:
The content value of operand S 1 is less than the content value of Flag signal: none S2 operand
The operand D occupies three consecutive points
Explanation - S1: Lower limit of range comparison. S2: Upper limit of range comparison. (S): Comparative value. D: Results of comparison.

- When the comparative value $S$ is compared with the lower limit S1 and upper limit S2, the results of comparison are expressed in D.
- When lower limit S1 > upper limit S2, the command will use the lower limit S1) to perform comparison with the upper and lower limit.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.


## Example

When the designated device is M0, it automatically occupies M0, M1 and M2. When $\mathrm{X} 0=$ On, the ZCP command executes, and M0, M1 or M2 will be On. When $\mathrm{X} 0=\mathrm{Off}$, the ZCP command will not execute, and the state of M0, M1 or M2 will remain in the state prior to $\mathrm{X} 0=\mathrm{Off}$.
■ If $\geq$, $\leq$, or $\neq$ results are needed, they can be obtained via series/parallel connections of M0-M2.


- To clear results of comparison, use the RST or ZRST command.



Explanation - S: Data source. D: Destination of data movement.

- When this command is executed, the content of $S$ will be directly moved to D. When the command is not executed, the content of $D$ will not change.


## Example

- When $\mathrm{X} 0=$ Off, the content of D 10 will not change; if $\mathrm{X} 0=\mathrm{On}$, the value K 10 will be sent to data register D10.
- When $\mathrm{X} 1=$ Off, the content of D10 will not change; if $\mathrm{X} 1=\mathrm{On}$, the current value of T0 will be sent to data register D10.



## 

|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (11 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | MOV | Continuous | SMOVP: | Pulse |
| S |  |  |  | * | * |  | * | * | * | * | * |  | execution type |  | execution type |
| D |  |  |  |  |  |  | * | * | * | * | * |  |  |  |  |
| Notes on operand usage: none $\quad 32$-bit command (21 STEP) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 促 |  |  |  |  |  |  |  |  |  | DSMOV | Continuous execution type | DSMOV | Pulse execution type |

Flag signal: M1168
Explanation - D: Data source. m1: The data source transfers starting bit number.
(m2) : The data source transfers individual bit number. D: Transfer destination.
( $n$ Transferring starting bit number of the destination.

- BCD mode (M1168 = Off):

SMOV enables and operates BCD under this mode, the operation is similar to the way SMOV operates decimal numbers. The command copies specific bit number of arithmetic element $S$ ( $S$ is a 4-figure decimal number), and sends the bit number to arithmetic element D ( D is also a 4-figure decimal number). The current data on the target register will be covered.

- $\mathrm{m}_{1}$ range: $1-4$
- $m_{2}$ range: $1-m_{1}\left(m_{2}\right.$ cannot be larger than $\left.m_{1}\right)$
- n range: $\mathrm{m}_{2}-4$ ( n cannot be smaller than $\mathrm{m}_{2}$ )

When M1168 = Off (BCD mode), X0 is ON, the instruction transfers two digits of the decimal number starting from the fourth digit of the decimal number (the digit in the thousands place of the decimal number) in D10 to the two digits of the decimal number starting from the third digit of the decimal number (the digit in the hundreds place of the decimal number) in D20. After the instruction is executed, the digits in the thousands place of the decimal number $\left(10^{3}\right)$ and the ones place of the decimal number $\left(10^{\circ}\right)$ in D20 are unchanged.



D10 (16-bit binary number)
Automatic conversion
D10 (4-digit binary-coded decimal)
Transferring the digits
D20 (4-digit binary-coded decimal)

- Automatic conversion

D20 (16-bit binary number)

- When M1168 is On (BIN mode), and the SMOV command is executed, D10 and D20 do not change in BCD mode, but send 4 digits as a unit in BIN mode.

 Explanation - $\begin{aligned} & \text { S: Initiate source device. (D): Initiate destination device. } n \text { : Send block } \\ & \text { length. }\end{aligned}$

■ The content of $n$ registers starting from the initial number of the device designated by $S$ will be sent to the $n$ registers starting from the initial number of the device designated by $n$; if the number of points referred to by $n$ exceeds the range used by that device, only points within the valid range will be sent.

Example 1 When $\mathrm{X} 10=$ On, the content of registers D0-D3 will be sent to the four registers D20 to D23.



Example 2 - If the designated bit devices $\mathrm{KnX}, \mathrm{KnY}$, and KnM are sent, S and D must have the same number of nibbles, which implies that n must be identical.


In order to prevent overlap between the transmission addresses of two operands, which would cause confusion, make sure that the addresses designated by the two operands have different sizes, as shown below:
When $S>(D$, send in the order $(1) \longrightarrow$ (2) $\rightarrow$ (3).




Explanation $\quad$| S: Data source. D: Destination of data movement. |
| :--- |
| The content of data source $S$ (BIN value, 0-9999) executes |
| BCD transformation and saves in D. |

- Arithmetic elements $S$ and $D$ use the $F$ device, it can only use 16-bit command.

Example

- When X0 is ON, and the BIN value of D10 is transformed to BCD value, the digit is saved in 4-bit element of K1Y0 (Y0-Y3).

| $X 0$ | KCD | D10 | K1Y0 |
| :---: | :--- | :--- | :--- |

- If D10 $=001 \mathrm{E}(\mathrm{Hex})=0030$ (Decimal), the executed result will be $\mathrm{Y} 0-\mathrm{Y} 3=0000$ (BIN).

| $\begin{array}{\|c\|} \hline \text { API } \\ \hline 19 \\ \hline \end{array}$ |  |  | BIN | P | (S) D |  |  |  |  | BCD to BIN transformation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | BIN | Continuous : | BINP | Pulse |
| S |  |  |  |  |  | * | * | , | * | * | * |  | execution type: |  | execution type |
| D |  |  |  |  |  |  | * | * | * | * | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DBIN | Continuous execution type | DBINP | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |

Flag signal: none

## Explanation - S: Data source. D: Transformation result.

- The content of data source (BCD: 0-9,999) executes BIN transformation and saves in D.

■ Valid number range of the data source S: BCD (0-9,999), DBCD (0-99,999,999).
Example When X0 is ON, and the BCD value of K1X20 is transformed to BIN value, the result saves in D10.


When PLC reads a BCD type switch-off from the outside, it has to use the BIN command to transform the read data to BIN value, then saves the value into PLC.

| AP |  |  | ADD | P | (S1) S2 D |  |  |  |  | BIN addition |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (7 STEP) |  |  |  |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | ADD | Continuous | ADDP | Pulse |
| S1 |  |  |  | * | * |  | * | * | * | * | * |  | execution type |  | execution type |
| S2 |  |  |  | * | * | * | * | * | * | * | * | 32-bit command (13 STEP) |  |  |  |
| D |  |  |  |  |  |  | * | * | * | * | * |  |  |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | DADD | Continuous execution type | DADDP | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation |  |  |  |

Explanation (S1: Augend. S2: Addend. D: Sum.
Using two data sources: The result of adding S1 and s2 using the BIN method will be stored in D.

- The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic addition operations. (for instance: $3+(-9)=-6)$
- Flag changes connected with the addition.

1. When calculation results are 0 , the zero flag M1020 will be On.
2. When calculation results are less than $-32,768$, the borrow flag M 1021 will be On.
3. When calculation results are greater than 32,767 , the carry flag M1022 will be On.

## Example

- 16-bit BIN addition: When $\mathrm{X} 0=\mathrm{On}$, the result of the content of addend D0 plus the content of augend D10 will exist in the content of D20.



## Remark

Relationship between flag actions and negative/positive numbers:
16-bit:


32-bit:


| API | D SUB | $\mathbf{P}$ | S1 S2 | D | BIN subtraction |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (7 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | SUB | Continuous | SUBP | Pulse |
| S1 |  |  |  | * | * | * | * | * | * | * | * |  | execution type |  | execution type |
| S2 |  |  |  | * | * | * | * | * | * | * | * | 32-bit command (13 STEP) |  |  |  |
| D |  |  |  |  |  |  | * | * | * | * | * |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DSUB | Continuous execution type | DSUBP | Pulse execution type |

Flag signal: M1020 Zero flag M1021 Borrow flag
M1022 Carry flag
Please refer to the following supplementary explanation

Explanation (S1: Minuend. S2: Subtrahend. D: Difference.

- Using two data sources: The result of subtraction of S1 and S2 using the BIN method is stored in D.
- The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic subtraction operations.
- Flag changes connected with subtraction.

1. When calculation results are 0 , the zero flag M1020 will be On.
2. When calculation results are less than $-32,768$, the borrow flag M1021 will be On.
3. When calculation results are greater than 32,767 , the carry flag M1022 will be On.

Example
16-bit BIN subtraction: When $\mathrm{X} 0=\mathrm{On}$, the content of D 10 is subtracted from the content of D0, and the difference is stored in D20.

| X0 | SUB | D0 | D10 | D20 |
| :--- | :--- | :--- | :--- | :--- |


| API | D MUL | P | S1 S2 | (D) | BIN multiplication |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 22 | D |  |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (7 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | MUL | Continuous | MULP | Pulse |
| S1 |  |  |  | * | , | * | * | * | * | * | * |  | execution type |  | execution type: |
| S2 |  |  |  | * | * | * | * | * | * | * | * |  |  |  |  |
| D |  |  |  |  |  |  | * | * | * | * | * | 32-bit command (13 STEP) |  |  |  |
| Notes on operand usage: <br> The 16 -bit command operand $D$ will occupy 2 consecutive points |  |  |  |  |  |  |  |  |  |  |  | DMUL <br> Flag sign | Continuous execution type <br> al: none | DMULP | Pulse execution type |

Explanation (S1): Multiplicand. (S2): Multiplier. (D): Product.
Using two data sources: When S1 and S2 are multiplied using the BIN method, the product is stored in D.

16-bit BIN multiplication operation:


When $D$ is a bit device, K1-K4 can be designated as a hexadecimal number, which will occupy 2 consecutive units.

## Example

■ When 16 -bit DO is multiplied by 16 -bit D10, the result will be a 32 -bit product; the upper 16 bits will be stored in D21, and the lower 16 bits will be stored in D20. Whether the bit at the farthest left is Off or On will indicate the sign of the result.



Explanation (S1: Dividend. S2: Divisor. D: Quotient and remainder.

- Using two data sources: The quotient and remainder will be stored in $D$ when S1 and S2 are subjected to division using the BIN method. The sign bit for (S1), S2 and D must be kept in mind when performing a 16-bit operation.
16-bit BIN division:


If $D$ is a bit device, K1-K4 can be designated 16 bits, which will occupy 2 consecutive units and yield the quotient and remainder.

When $\mathrm{X0}=\mathrm{On}$, the quotient resulting from division of dividend D0 by divisor D10 will be placed in D20, and the remainder will be placed in D21. Whether the highest bit is Off or On will indicate the sign of the result.


| $\begin{array}{\|c\|} \hline \text { API } \\ \hline 24 \\ \hline \end{array}$ |  | INC |  | P | (D) |  |  |  |  | BIN add one |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (3 STEP) |  |  |  |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | INC | Continuous | INCP | Pulse |
| D |  |  |  |  |  |  | , | * | * | * | * |  | execution type |  | execution type |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DINC Continuous DINCP |  |  | Pulse execution type |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation $\quad \mathrm{D}$ : Destination device.

- If a command is not the pulse execution type, when the command is executed, the program will add 1 to the content of device D for each scanning cycle.
- This command is ordinarily used as a pulse execution type command (INCP).

■ During 16 -bit operation, $32,767+1$ will change the value to $-32,768$. During 32 bit operation, $2,147,483,647+1$ will change the value to $-2,147,483,648$.

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 1$ is automatically added to the content of DO .


| API | D | DEC | $\mathbf{P}$ | D | BIN subtract one |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 25 | $\mathbf{D}$ |  | $\mathbf{D}$ |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (3 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | DEC | Continuous | DECP | Pulse |
| D |  |  |  | * | * | * | * | * |  |  |  |  | execution type |  | execution type |
| Notes on operand usage: none 32 -bit command (5 STEP) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DDEC : Continuous |  | DDECP | Pulse execution type |

Flag signal: none
Explanation - D: Destination device.

- If a command is not the pulse execution type, when the command is executed, the program will add 1 to the content of device (D) for each scanning cycle.
- This command is ordinarily used as a pulse execution type command (DECP).

■ During 16-bit operation, $-32,768$ minus 1 will change the value to 32,767 . During 32 bit operation, $-2,147,483,648$ minus 1 will change the value to $-2,147,483,647$.

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 1$ is automatically subtracted from the content of D 0 .




## Explanation (D: Device to be rotated. $n$ : Number of bits for one rotation.

## Rotates the device designated by $D$ to the right $n$ bits.

- This command is ordinarily used as a pulse execution type command (RORP).

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 4$ of the 16 bits in D10 specify a right rotation; the content of
, the bit indicated with * (see figure below) will be sent to the carry flag signal M1022.




Explanation (D: Device to be rotated. n : Number of bits for one rotation.

- Rotates the device designated by $D$ to the left $n$ bits.
- This command is ordinarily used as a pulse execution type command (ROLP).

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 4$ of the 16 bits in D10 specify a left rotation; the content of the bit indicated with * (see figure below) will be sent to the carry flag signal M1022.


Rotate to the left


| $\begin{gathered} \text { API } \\ \hline 40 \end{gathered}$ |  | ZRST |  | P | (D1) (D2) |  |  |  |  | Clear range |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16 -bit co | mand (5STEP) |  |  |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | ZRST | Continuous | ZRSTP | Pulse |
| D1 |  |  | * |  |  |  |  |  |  | * | * |  | execution type |  | execution type |
| Notes on operand usage: <br> Number of operand $\mathrm{D}_{1}$ operand $\leq$ number of operand $\mathrm{D}_{2}$ Operands $\mathrm{D}_{1}, \mathrm{D}_{2}$ must designate the same type of device Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | 32-bit command |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Explanation $\quad \mathbf{D}_{1}$ : Clear range's initial device. $\mathbf{D}_{2}$ : Clear range's final device.

- When the number of operand $D_{1}>$ number of operand $D_{2}$, only the operand designated by $\mathrm{D}_{2}$ will be cleared.

Example

Remark

- When X0 is On, auxiliary relays M300-M399 will be cleared and changed to Off.
- When X 1 is On, 16-bit counters C0-C127 will all be cleared. (Writes 0 , and clears and changes contact and coil to Off).
- When X10 is On, timer T0-T127 will all be cleared. (Writes 0 , and clears and changes contact and coil to Off).
- When X 3 is On, the data in data registers D0-D100 will be cleared and set as 0 .


Remark

- Devices can independently use the clear command (RST), such as bit device $\mathrm{Y}, \mathrm{M}$ and word device T, C, D.


| API | D DECO | $\mathbf{P}$ | S (D) n | Decoder |
| :---: | :---: | :---: | :---: | :--- | :--- |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (7 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | DECO | Continuous | DECOP: | Pulse |
| s | * | * | * | * | * |  |  |  | * | * | * |  | execution type |  | execution type |
| D |  | * | * |  |  |  | * | * | * | * | * | S2-bit command (13 STEP) |  |  |  |
| n |  |  |  | * | * |  |  |  |  |  |  |  |  |  |  |
|  | on |  |  |  |  |  |  |  |  |  |  | DDECO | Continuous execution type | DDECOP | Pulse execution type |

Flag signal: none

Decoding source device. D: Device that saves the decoding result. n : Length of decoding bit.

- Decodes with the lower " $n$ " bit, and saves the length of " 2 "" bit in $D$.
- This command usually uses pulse execution type command (DECOP).
- When $D$ is the bit device, $n=1-8$, when $D$ is the word device, $n=1-4$.
- When Dis the bit device, the valid range of $n$ is $0<n \leqq 8$. If $n=0$ or $n>8$, a fault will occur.
- When $\mathrm{n}=8$, the maximum decoding will be $2^{8}=256$ points.

■ When M200 switches from Off to On, the content of X0-X2 is decoded to M100-M107.
■ If $S=3, \mathrm{M} 103$ (the third digit starting from M 100 ) $=$ On.

- When the command is executed, M200 turns to Off. The ones that are decoded and outputted act as usual.


Example 2

- When $D$ is word device, the valid range of $n$ is $0<n \leqq 4$. If $n=0$ or $n>4$, the fault occurs.
- When $\mathrm{n}=4$, the maximum decoding will be $2^{4}=16$ points.
- When M200 switches from Off to On, the content of D10 (b2-b0) is decoded to D20 (b7-b0). The unused digits (b15-b8) of D20 become 0.
- The lower 3 digits of D10 are decoded and saved in the lower 8 digits of D20, the upper 8 digits are 0 .
- When the command is executed, M200 turns to Off. The ones that are decoded and outputted act as usual.


| API | ENCO | $\mathbf{P}$ | S (D) $n$ | Encoder |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 42 | D |  |  |  |



## Explanation

- (n)(n) : Length of encoding bit.
- Encodes the data of lower " 2 "" bit length from encoding source device S , and saves the encoding result in D .
- If multiple digits of encoding source device are 1 , the command will process the first digit starting from high digit.
- This command usually uses pulse execution type command (ENCOP).
- When $S$ is the bit device, $n=1-8$, when $S$ is the word device, $n=1-4$.
- When $S$ is the bit device, the valid range of $n$ is $0<n \leqq 8$. If $n=0$ or $n>8$, a fault will occur.
- When $\mathrm{n}=8$, the maximum decoding will be $2^{8}=256$ points.
- When X0 switches from Off to On, the content of $2^{3}$ digit (M0-M7) is encoded and saved in the lower 3 digits (b2-b0). The unused digits (b15-b3) in D0 become 0.
- When the command is executed, X0 turns to Off. The data in $D$ is unchanged.


The value becomes 0

## Example 2

- When $S$ is word device, the valid range of $n$ is $0<n \leqq 4$. If $n=0$ or $n>4$, the fault occurs.
- When $\mathrm{n}=4$, the maximum decoding will be $2^{4}=16$ points.
- When X0 switches from Off to On, $2^{3}$ digit data of D10 (b0-b7) is encoded and saved in the lower 3 digits (b2-b0) of D20. The unused digits (b15-b3) of D20 become 0. (b8-b15 in D10 are invalid data)
- When the command is executed, X0 turns to Off. The data in D is unchanged.


| API | D | SUM |  | $\mathbf{P}$ |
| :---: | :---: | :---: | :---: | :---: |
| 43 | $\mathbf{D}$ | S D | ON bit number |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | SUM | Continuous | SUMP | Pulse |
| S |  |  |  | * | * | * | * | * | * | * | * |  | execution type |  | execution type |
| D |  |  |  |  |  |  |  |  | * | * | * |  |  |  |  |
| Notes on operand usage: n |  |  |  |  |  |  |  |  |  |  |  | 32-bit command (9 STEP) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DSUM | Continuous execution type | DSUMP | Pulse execution type |

Flag signal: M1020
Explanation $\quad \mathrm{S}$ : Source device. D: Destination of saving counter values.
The total amount of all digits that is " 1 " in $S$ will be saved in $D$.

- D will use 2 registers when use the 32-bit command.
- Arithmetic elements $S$ and $D$ use $F$ device, and can only use 16-bit command.

Example

- If there is no bit is ON, the flag signal M1020 will be ON. be saved in D2.



| API | D | BON | $\mathbf{P}$ | S | D | n |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit co | mmand (7 STEP) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | BON | Continuous | BONP | Pulse |
| S |  |  |  | * | * | * | * | * | * | * | * |  | execution type |  | execution type |
| D |  | * | * |  |  |  |  |  | * | * | * |  |  |  |  |
| n |  |  |  | * | * |  |  |  |  |  |  |  |  |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | DBON | Continuous execution type | DBONP | Pulse execution type |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation - S : Source device. D: Destination of saving judging result. n : assign judged digit (numbering from 0 )

- The status of specific digit from source device is shown on target position.
- Arithmetic element $S$ uses $F$ device, and can only use the 16 -bit command.
- The valid range of arithmetic element $\mathrm{n}: \mathrm{n}=0-15$ (16-bit), $\mathrm{n}=0-31$ (32-bit).

Example

- When $\mathrm{X} 0=\mathrm{On}$, if the $15^{\text {th }}$ digit of D 0 is " 1 ", M0 is On. If it is " 0 ", M0 is Off.

When X0 turns to Off, M0 remains previous status.

| X0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 BON | D0 | M0 | K15 |


| b15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\mathrm{MO}=\mathrm{Off}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
| D0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| b15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | $\mathrm{MO}=\mathrm{On}$ |


| API | FLT | $\mathbf{P}$ | S | D | BIN whole number <br> transformation | $\rightarrow$ binary decimal |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16 -bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | FLT | Continuous | FLTP | Pulse |
| S |  | * | * |  |  |  |  |  | * | * | * |  | execution type |  | execution type |
| D |  | * | * |  |  |  |  |  | * | * | * |  |  |  |  |
| $\begin{aligned} & \text { Not } \\ & \text { tabl } \end{aligned}$ The | ope | $\begin{aligned} & \text { ope } \\ & \text { ach } \end{aligned}$ | $\text { nd } 4$ | $\begin{aligned} & \text { age: } \\ & \text { in se } \end{aligned}$ |  | $\begin{aligned} & \text { e refer } \\ & \text { or the } \\ & \text { nsecut } \end{aligned}$ | to the ive $p$ | func of de ints | s | cific |  | 32-bit co | Continuous CTEP execution type | DFLTP | Pulse execution type |

Flag signal: none
Explanation S: Transformation source device. D: Device storing transformation results.

- Transforms BIN whole number into a binary decimal value.

Example

- When M200 is On, converts the whole number of values corresponding to D0 and D1 into floating point numbers, which are placed in D20 and D21.


| API |  | ECMP |  | $S_{1} S_{2}$ D | Comparison of binary floating point numbers |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | D | ECMP | P | S1 S ${ }^{\text {S }}$ | Comparison of binary floating point numbers |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  |  |  |  |
| S1 |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |
| S2 |  |  |  | * | * |  |  |  |  |  | * | 32-bit com | mand (13 STEE |  |  |
| D |  |  |  | * | * |  |  |  |  |  | * | DECMP | Continuous | DECMP |  |
| Notes on operand usage:The operand D occupies three consecutive points |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation - $\mathbf{S}_{1}$ : Comparison of binary floating point numbers value 1. $\mathbf{S}_{2}$ : Comparison of binary floating point numbers value 2. D: Results of comparison, occupies 3 consecutive points.

- When binary floating point number 1 is compared with comparative binary floating point number 2 , the result of comparison $(>,=,<)$ will be expressed in D.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command will transform the constant to a binary floating-point number for the purpose of comparison.


## Example

■ When the designated device is M10, it will automatically occupy M10-M12.

- When $\mathrm{X} 0=$ On, the DECMP command executes, and one of M10-M12 will be On. When $\mathrm{XO}=$ Off, the DECMP command will not execute, and M10-M12 will remain in the $\mathrm{XO}=$ Off state.
- If results in the form of $\geq, \leq$, or $\neq$ are needed, they can be obtained by series and parallel connection of M10-M12.

■ Please use the RST or ZRST command to clear the result.


\section*{| API |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 111 | D EZCP | $\mathbf{P}$ | $\boldsymbol{S}_{1} \boldsymbol{S}_{2}$ (S) D | Comparison of binary floating point number range |}



Explanation
$\mathbf{S}_{1}$ : Lower limit of binary floating point number in range comparison. $\mathbf{S}_{\mathbf{2}}$ : Upper limit of binary floating point number in range comparison. S: Comparison of binary floating point numerical values. D: Results of comparison, occupies 3 consecutive points.

- Comparison of binary floating point numerical value $\mathbf{S}$ with binary floating point number lower limit value $\mathbf{S}_{1}$ and binary floating point number upper limit value $\mathbf{S}_{\mathbf{2}}$; the results of comparison are expressed in $\mathbf{D}$.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command will transform the constant to a binary floating-point number for the purpose of comparison.
- When the lower limit binary floating point number $\mathbf{S}_{1}$ is greater than the upper limit binary floating point number $\mathbf{S}_{2}$, a command will be issued to perform comparison with the upper and lower limits using the binary floating point number lower limit value $\mathbf{S}_{1}$.


## Example

When the designated device is M0, it will automatically occupy M0-M2.

- When $\mathrm{X} 0=\mathrm{On}$, the DEZCP command will be executed, and one of $\mathrm{M} 0-\mathrm{M} 2$ will be On. When X0=Off, the EZCP command will not execute, and M0-M2 will continue in the $\mathrm{X} 0=\mathrm{Off}$ state.
- Please use the RST or ZRST command to clear the result.


| API | D | RAD | $\mathbf{P}$ | S (D) | Angle $\rightarrow$ Diameter |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 116 | D |  |  |  |  |



Explanation
S: data source (angle).
D: result of transformation (diameter).

- Uses the following formula to convert angles to radians.
- $\quad$ Diameter $=$ Angle $\times(\pi / 180)$


## Example

When $\mathrm{X} 0=$ On, the angle of the designated binary floating point number (D1, D0) will be converted to radians and stored in (D11, D10), with the content consisting of a binary floating point number.


Angle in degrees
Binary floating point

Angle in radians $=$ degrees $X(\pi / 180)$ Binary floating point


Explanation $\quad$ S: data source (diameter). D: results of transformation (angle).

- Uses the following formula to convert radians to an angle.
- Angle $=$ Diameter $\times(180 / \pi)$


## Example

When $\mathrm{X} 0=\mathrm{On}$, angle of the designated binary floating point number (D1, D0) in radians will be converted to an angle and stored in (D11, D10), with the content consisting of a binary floating point number.

| X0 | DDEG | D0 | D10 |
| :---: | :---: | :---: | :---: |

S

| D1 | D0 |
| :--- | :--- |

Angle in radians
Binary floating point
Angle in degrees = radians $\mathrm{X}(180 / \pi)$
(D) $\square$ Binary floating point

| API | D | EADD | P | S1 $S_{2}$ D | Adding binary floating point numbers |
| :---: | :---: | :---: | :---: | :---: | :---: |


$\mathbf{S}_{1}$ : addend. $\mathbf{S}_{2}$ : augend. D: sum.

- When the content of the register designated by $\mathbf{S}_{\mathbf{2}}$ is added to the content of the register designated by $\mathbf{S}_{1}$, and the result is stored in the register designated by $\mathbf{D}$. Addition is performed entirely using binary floating-point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command will transform that constant into a binary floating point number for use in addition.
- In the situation when $\mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On, the register will perform addition once during each scan. Pulse execution type commands (DEADDP) are generally used under ordinary circumstances.
- When $\mathrm{X} 0=\mathrm{On}$, a binary floating point number (D1, D0) will be added to a binary floating point number (D3, D2), and the results stored in (D11, D10).

- When $\mathrm{X} 2=\mathrm{On}$, a binary floating point number (D11, D10) will be added to K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D21, D20).

| $\times 2$ | DEADD | D10 | K1234 | D20 |
| :---: | :--- | :--- | :--- | :--- |


| API |  |  |  | $\mathbf{S}_{1} \mathbf{S}_{2}$ D |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 121 | D | ESUB | P | S1 S ${ }^{\text {S }}$ | Subtraction of binary floating point numbers |



Explanation $\quad \mathbf{S}_{1}$ : minuend. $\mathbf{S}_{2}$ : subtrahend. D: difference.

- When the content of the register designated by $\mathbf{S}_{2}$ is subtracted from the content of the register designated by $\mathbf{S}_{1}$, the difference will be stored in the register designated by $\mathbf{D}$; subtraction is performed entirely using binary floating-point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command will transform that constant into a binary floating point number for use in subtraction.
- In the situation when $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On, the register will perform addition once during each scan. Pulse execution type commands (DESUBP) are generally used under ordinary circumstances.


## Example

When $\mathrm{X} 0=\mathrm{On}$, a binary floating point number (D1, D0) will be subtracted to a binary floating point number (D3, D2), and the results stored in (D11, D10).

| XO | DESUB | D0 | D2 | D10 |
| :--- | :--- | :--- | :--- | :--- |

- When $\mathrm{X} 2=$ On, the binary floating point number (D1, D0) will be subtracted from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

| X2 | DESUB | K1234 | D0 | D10 |
| :--- | :--- | :--- | :--- | :--- |




Explanation $\quad \mathbf{S}_{1}$ : multiplicand. $\mathbf{S}_{2}$ : multiplier. $\mathbf{D}$ : product.

- When the content of the register designated by $\mathbf{S}_{1}$ is multiplied by the content of the register designated by $\mathbf{S}_{\mathbf{2}}$, the product will be stored in the register designated by $\mathbf{D}$; multiplication is performed entirely using binary floating-point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{2}$ designates a constant K or H , the command will transform that constant into a binary floating point number for use in multiplication.
- In the situation when $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On, the register will perform multiplication once during each scan. Pulse execution type commands (DEMULP) are generally used under ordinary circumstances.

When $\mathrm{X} 1=\mathrm{On}$, the binary floating point number (D1, D0) will be multiplied by the binary floating point number (D11, D10), and the product will be stored in the register designated by (D21, D20).


- When $\mathrm{X} 2=$ On, the binary floating point number (D1, D0) will be multiplied from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).


| API |  | EDIV | $\mathbf{P}$ | $\mathbf{S}_{1}$ | $\boldsymbol{S}_{2}$ | D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 123 | $\mathbf{D}$ | Division of binary floating point numbers |  |  |  |  |



Explanation $\mathbf{S}_{1}$ : dividend. $\mathbf{S}_{2}$ : divisor. D: quotient and remainder.
When the content of the register designated by $\mathbf{S}_{1}$ is divided by the content of the register designated by $\mathbf{S}_{\mathbf{2}}$, the quotient will be stored in the register designated by $\mathbf{D}$; division is performed entirely using binary floating-point numbers.

- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command will transform that constant into a binary floating point number for use in division.

Example
When $\mathrm{X} 1=\mathrm{On}$, the binary floating point number (D1, D0) will be divided by the binary floating point number (D11, D10), and the quotient stored in the register designated by (D21, D20).

| X1 | DEDIV | D0 | D10 | D20 |
| :--- | :--- | :--- | :--- | :--- |

When $\mathrm{X} 2=$ On, the binary floating point number (D1, D0) will be divided by K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

| X2 | DEDIV | D0 | K1234 | D10 |
| :--- | :--- | :--- | :--- | :--- |


| API |  | EXP |  | © © | Binary floating point number obtain exponent |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 124 | $\mathbf{D}$ | $\mathbf{P}$ |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  |  |  | - |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { DEXP } \\ & \text { Flag sign } \end{aligned}$ | Continuous execution type : none | DEXPP | Pulse execution type |

Explanation
S: operation source device. D: operation results device.
Taking e $=2.71828$ as a base, $\mathbf{S}$ is the exponent in the EXP operation.

- [ D +1, $\mathbf{D}]=\operatorname{EXP}[\mathbf{S}+\mathbf{1}, \mathbf{S}]$
- Valid regardless of whether the content of $\mathbf{S}$ has a positive or negative value. The designated register D must have a 32 -bit data format. This operation is performed using floating-point numbers, and $\mathbf{S}$ must therefore be converted to a floating point number.
- Content of operand $\mathbf{D}=e^{s} ; e=2.71828, \mathbf{S}$ is the designated source data

Example ■ When M0 is On, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).

- When M1 is On, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).


| API |  | LN | $\mathbf{P}$ | S |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 125 | D | D | Binary floating point number obtain logarithm |  |



## Explanation

S: operation source device. D: operation results device.

- Taking e $=2.71828$ as a base, $\mathbf{S}$ is the exponent in the EXP operation.

■ [ $\mathbf{D}+1, \mathbf{D}]=\operatorname{EXP}[\mathbf{S}+\mathbf{1}, \mathbf{S}]$

- Valid regardless of whether the content of $\mathbf{S}$ has a positive or negative value. The designated register D must have a 32-bit data format. This operation is performed using floating-point numbers, and $\mathbf{S}$ must therefore be converted to a floating point number.

■ Content of operand $\mathbf{D}=e^{s}$; $e=2.71828, \mathbf{S}$ is the designated source data
Example ■ When M0 is On, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).

■ When M1 is On, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).

| M1 | DFLT | D0 |
| :--- | :--- | :--- |
| M10 |  |  |
| M1 |  |  |
|  |  | DLN |
| D10 | D20 |  |
|  |  |  |
|  |  | END |


| API |  | ESQR |  | S | D |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ Binary floating point number find square root


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  |  |  |  |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit co | mand (9 STEP) |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | DESQR | Continuous execution type | DESQR | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

## Explanation

S: source device for which square root is desired $\mathbf{D}$ : result of finding square root.

- When the square root is taken of the content of the register designated by $\mathbf{S}$, the result is temporarily stored in the register designated by $\mathbf{D}$. Taking square roots is performed entirely using binary floating-point numbers.
- If the source operand $\mathbf{S}$ refers to a constant K or H , the command will transform that constant into a binary floating point number for use in the operation.


## Example

When $\mathrm{X} 0=O n$, the square root is taken of the binary floating point number (D1, D0), and the result is stored in the register designated by (D11, D10).


- When $\mathrm{X} 2=$ On, the square root is taken of $\mathrm{K} 1,234$ (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).



|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | INT | Continuous | INTP | Pulse execution type |
| S |  |  |  |  |  |  |  |  |  |  | * |  | execution type |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | 32-bit command (9 STEP) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DINT | Continuous execution type | DINTP | Pulse execution type |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag sig | l: none |  |  |

Explanation
S: the source device to be transformed. D: results of transformation.

- The content of the register designated by $\mathbf{S}$ is transformed from a binary floating point number format into a BIN whole number, and is temporarily stored in D. The BIN whole number floating point number will be discarded.
- The action of this command is the opposite of that of command API 49 (FLT).

Example ■ When $\mathrm{X} 0=\mathrm{On}$, the binary floating point number (D1, D0) is transformed into a BIN whole number, and the result is stored in (D10); the BIN whole number floating point number will be discarded.



Explanation S: the designated source value. D: the SIN value result.
$\mathbf{S}$ is the designated source in radians.

- The value in radians (RAD) is equal to (angle $\times \pi / 180$ ).
- The SIN obtained from the source value designated by $\mathbf{S}$ is stored in $\mathbf{D}$.

The following figure displays the relationship between the arc and SIN results:


Example
When $\mathrm{X} 0=\mathrm{On}$, the SIN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API |  | COS | $\mathbf{P}$ | S | D | Binary floating point number COS operation |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 131 | $\mathbf{D}$ | CO | $\mathbf{P}$ |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | - |  |  |  |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit co | mand (9 STEP) |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | DCOS <br> Flag sign | Continuous execution type <br> : none | DCOSP | Pulse execution type |

$\mathbf{S}$ : the designated source value. D: the COS value result.

- The source designated by $S$ can be given as radians or an angle; this is decided by flag M1018.
- When M1018=Off, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi / 180$ ).
- When M1018=On, the operation is in the angle mode, where the angular range is $0^{\circ} \leq$ angle $<360^{\circ}$.
- When calculation results yield $0, \mathrm{M} 1020=O n$.
- The COS obtained from the source value designated by $\mathbf{S}$ is stored in $\mathbf{D}$.

The following figure displays the relationship between the arc and SIN results:


## Example

When $\mathrm{X} 0=\mathrm{On}$, the COS value of the designated binary floating point number (D1, D0) in radians will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API | TAN | P | S | (D) | Binary floating point number TAN operation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 132 | D |  | $\mathbf{P}$ |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  |  |  |  |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit co | mand (9 STEP) |  |  |
|  | es ol | per er he |  | $\begin{aligned} & \text { age } \\ & \text { uncti } \\ & \text { ff de } \end{aligned}$ |  | cifica sage | tions | table |  |  |  | DTAN <br> Flag sign | Continuous execution type <br> : none | DTANP | Pulse execution type |

## Explanation

S: the designated source value. D: the TAN value result.

- The source designated by $\mathbf{S}$ can be given as radians or an angle; this is decided by flag M1018.
- When M1018=Off, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi / 180$ ).
- When M1018=On, the operation is in the angle mode, where the angular range is $0^{\circ} \leq$ angle $<360^{\circ}$.
- When calculation results yield $0, \mathrm{M} 1020=O n$.
- The TAN obtained from the source value designated by $\mathbf{S}$ is stored in $\mathbf{D}$. The following figure displays the relationship between the arc and TAN results:


Example - When $\mathrm{X} 0=\mathrm{On}$, the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API | D | ASIN | P | (S) D | Binary floating point number ASIN operation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 133 | D |  |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | - | - | - | - |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit co | mand (9 STEP) |  |  |
|  | en on | er | $\begin{aligned} & \text { Id us } \\ & \text { the } \\ & \text { ope } \end{aligned}$ |  |  | cificat age | ions |  |  |  |  | DASIN | Continuous execution type <br> l: none | DASINP | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |

## Explanation

S: the designated source (binary floating point number). D: the ASIN value result.
ASIN value $=\sin ^{-1}$
The figure below shows the relationship between input data and result:


Example ■ When $\mathrm{X} 0=\mathrm{On}$, the ASIN value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API |  | ACOS | P | S (D) | Binary floating point number ACOS operation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 134 | $\mathbf{D}$ |  |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | - | - | - |  |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit co | mand (9 STEP) |  |  |
|  |  |  | do |  |  | cifica age | ons | able fo |  |  | e in | DACOS | Continuous execution type : none | $\begin{aligned} & \text { DACOS } \\ & \text { P } \end{aligned}$ | Pulse execution type |

Explanation
S: the designated source (binary floating point number). D
D: the ACOS value result. ACOS value $=\cos ^{-1}$

The figure below shows the relationship between input data and result:


Example ■ When $\mathrm{X} 0=\mathrm{On}$, the ACOS value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API |  | ATAN | P | S | D | Binary floating point number ATAN operation |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 135 | D |  | P |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | - $\quad$ - | - | - |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit command (9 STEP) |  |  |

Notes on operand usage:
Please refer to the function specifications table for each device in
DATAN: Continuous :DATANP: $\begin{gathered}\text { Pulse } \\ \text { execution type }\end{gathered}$ series for the scope of device usage

Flag signal: none

## Explanation

S: the designated source (binary floating point number).
D: the ATAN value result.
ATAN value $=\tan ^{-1}$
The figure below shows the relationship between input data and result:


Example - When $\mathrm{XO}=\mathrm{On}$, the TAN value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API |  | SINH |  | (S) D | Binary floating point number SINH operation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 136 | $\mathbf{D}$ | P |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | - | - - | - | - |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit co | mand (9 STEP) |  |  |
|  | $\begin{aligned} & \text { se } \mathrm{r} \\ & \text { es for } \end{aligned}$ |  |  |  |  | cificat age | ions ta |  |  |  |  | FSINH | Continuous execution type <br> l: none | DSINHP | Pulse executiontype |

Explanation S: the designated source (binary floating point number). D: the SINH value result.
■ SINH value $=\left(\mathrm{e}^{\mathrm{s}-}-\mathrm{e}^{-\mathrm{s}}\right) / 2$

Example ■ When $\mathrm{XO}=\mathrm{On}$, the SINH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.


\section*{| API | COSH | P | S © D | Binary floating point number COSH operation |
| :--- | :--- | :--- | :--- | :--- |
| 137 | $\mathbf{D}$ |  |  |  |}


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  |  |  | - |
| S |  |  |  | * | * |  |  |  |  |  |  | 32-bit command (9 STEP) |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  |  | Continuous execution type | $\mathrm{DCOSH}$ | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |

Explanation S: the designated source (binary floating point number). D: the COSH value result.

- $\operatorname{COSH}$ value $=\left(e^{s}+e^{-s}\right) / 2$

Example - When $\mathrm{X} 0=$ On, the COSH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.


| API |  | TANH |  | P | D |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 138 | D | Binary floating point number TANH operation |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  | - |  | - |
| S |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |  | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | DTANH | Continuous execution type | $\begin{gathered} \text { DTANH } \\ \mathrm{P} \end{gathered}$ | Pulse execution type |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signa | : none |  |  |

Explanation S: the designated source (binary floating point number). D: the TANH value result. TANH value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$

Example ■ When $\mathrm{XO}=$ On, the TANH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

(S) $\square$ Binary floating point
(D)
 TANH value
Binary floating point

| API | SWAP | P | S | Exchange the up/down 8 bits |
| :--- | :--- | :--- | :--- | :--- |
| 147 | D |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (3 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | SWAP | Continuous | SWAPP | Pulse execution |
| s |  |  |  |  |  | * | * | * | * | * | * |  | execution type |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | 32-bit command (5STEP) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DSWAP | Continuous execution type | DSWAPP | Pulse execution type |

Flag signal: none
Explanation - : The device that going to exchange its up/down 8 bits.

- When using 16-bit command, the upper 8-bit and lower 8-bit exchange.
- When using 32-bit command, the contents of upper 8 -bit and lower 8 -bit of the 2 registers exchange.
- This command usually uses pulse execution type (SWAPP, DSWAPP)


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | MODRW | Continuous | MODRW | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  | * |  | execution type |  | execution type |
| S2 |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| S3 |  |  |  | * | * |  |  |  |  |  | * | 32-bit com | mand |  |  |
| S |  |  |  |  |  |  |  |  |  |  | * | - | - | - | - |
| n |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |

■ S1: online device address. S2: communications function code. S3: address of data to read/write. S: register for data to be read/written is stored. N : length of data to be read/written.

- COM1 must be defined as controlled by the PLC (set Pr.09-31 =-12) before using this command, and the corresponding communications speed and format must also be set (set Pr.09-01 and Pr.09-04). S2: communications function code. Currently only supports the following function code; the remaining function code cannot be executed.

| Function | Description |
| :---: | :--- |
| H 02 | Input read |
| H 03 | Read word |
| H 06 | Write single word |
| H 0F | Write multiple coils |
| H 10 | Write single word |

■ After executing this command, M1077, M1078 and M1079 will be immediately changed to 0 .

- As an example, when C2000 must control another converter and PLC, if the converter has a station number of 10 and the PLC has a station number of 20 , see the following example:
Control slave device converter

| Seria I No. | Example | MODRW command |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S1 | S2 | S3 | S4 | n |
|  |  | Node ID | Function code | $\begin{gathered} \text { Addres } \\ \mathrm{s} \end{gathered}$ | Register | $\begin{aligned} & \text { Leng } \\ & \text { th: } \end{aligned}$ |
| 1 | Reads 4 sets of data comprising the converter slave device parameters Pr.01-00 to Pr.01-03, and saves the read data in D0 to D3 | K10 | H3 | H100 | D0 | K4 |
| 2 | Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7 | K10 | H3 | H2100 | D5 | K3 |
| 3 | Writes 3 sets of data comprising the converter slave device parameters Pr.05-00 to Pr.05-03, and writes the values as D10 to D12 | K10 | H10 | H500 | D10 | K3 |
| 4 | Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16 | K10 | H10 | H2000 | D15 | K2 |

PLC controlling slave device

| Serial No. | Example | MODRW command |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S1 | S2 | S3 | S4 | n |
|  |  | Node ID | Functio n code | $\begin{gathered} \hline \text { Addres } \\ \mathrm{s} \end{gathered}$ | $\underset{r}{\text { Registe }}$ | Length: |
| 1 | Reads 4 sets of data comprising the PLC slave device's X0 to X3 state, and saves the read data in bits 0 to 3 of D0 | K20 | H2 | H400 | D0 | K4 |
| 2 | Reads 4 sets of data comprising the PLC slave device's YO to Y3 state, and saves the read data in bits 0 to 3 of D1 | K20 | H2 | H500 | D1 | K4 |
| 3 | Reads 4 sets of data comprising the PLC slave device's M0 to M3 state, and saves the read data in bits 0 to 3 of D2 | K20 | H2 | H800 | D2 | K4 |
| 4 | Reads 4 sets of data comprising the PLC slave device's T0 to T3 state, and saves the read data in bits 0 to 3 of D3 | K20 | H2 | H600 | D3 | K4 |
| 5 | Reads 4 sets of data comprising the PLC slave device's C0 to C3 state, and saves the read data in bits 0 to 3 of D4 | K20 | H2 | HE00 | D4 | K4 |
| 6 | Reads 4 sets of data comprising the PLC slave device's T0 to T3 count value, and saves the read data of D10 to D13 | K20 | H3 | H600 | D10 | K4 |
| 7 | Reads 4 sets of data comprising the PLC slave device's C 0 to C 3 count value, and saves the read data of D20 to D23 | K20 | H3 | HE00 | D20 | K4 |
| 8 | Reads 4 sets of data comprising the PLC slave device's D0 to D3 count value, and saves the read data of D30 to D33 | K20 | H3 | H1000 | D30 | K4 |
| 9 | Writes 4 sets of the PLC slave device's Y 0 to Y 3 state, and writes the values as bits 0 to 3 of D1 | K20 | HF | H500 | D1 | K4 |
| 10 | Writes 4 sets of the PLC slave device's MO to M3 state, and writes the values as bits 0 to 3 of D2 | K20 | HF | H800 | D2 | K4 |
| 11 | Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values as bits 0 to 3 of D3 | K20 | HF | H600 | D3 | K4 |
| 12 | Writes 4 sets of the PLC slave device's C 0 to C 3 state, and writes the values as bits 0 to 3 of D4 | K20 | HF | HE00 | D4 | K4 |
| 13 | Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values of D10 to D13 | K20 | H10 | H600 | D10 | K4 |
| 14 | Writes 4 sets of the PLC slave device's C 0 to C 3 state, and writes the values of D20 to D23 | K20 | H10 | HE00 | D20 | K4 |
| 15 | Writes 4 sets of the PLC slave device's D0 to D3 state, and writes the values of D30 to D33 | K20 | H10 | H1000 | D30 | K4 |

- Will trigger M0 On when the PLC begins to operate, and sends instruction to execute one MODRW command.
- After receiving the slave device's response, if the command is correct, it will execute one ROL command, which will cause M1 to be On.
- After receiving the slave device's response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.
- After again receiving the slave device's response, if the command is correct, it will execute one ROL command, and M2 will change to On at this time (and M2 can be defined as a repeat of M ); K4M0 will change to K 1 , and only M 0 will remain 1 . Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat $M$ to $\mathrm{Mn}+1$.



|  |  | dev |  |  |  |  | Nord | devic |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | TCMP |  |  | Pulse |
| S1 |  |  |  | * | * | * | * | * | * | * | * | TCMP | execution type | TCMPP | execution type |
| S2 |  |  |  | * | * | * | * | * | * | * | * |  |  |  |  |
| S3 |  |  |  | * | * | * | * | * | * | * | * | 32-bit command |  |  |  |
| S |  |  |  |  |  |  |  |  | * | * | * |  |  |  |  |
| D |  | * | * |  |  |  |  |  |  |  |  |  |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation $\quad \mathbf{S}_{1}$ : Sets the hours of the comparison time, setting range is "K0-K23." $\mathbf{S}_{2}$ : Sets the minutes of the comparison time, setting range is "K0-K59." $\mathbf{S}_{3}$ : Sets the seconds of the comparison time, setting range is "K0-K59." S: current calendar time. D: Results of comparison.

- Compares the time in hours, minutes, and seconds set in $\mathbf{S}_{1}-\mathbf{S}_{3}$ with the current calendar time in hours, minutes, and seconds, with the results of comparison expressed in $\mathbf{D}$.
- $\mathbf{S}$ The hour content of the current calendar time is "K0-K23." $\mathbf{S}+1$ comprises the minutes of the current calendar time, and consists of "K0-K59." S +2 comprises the seconds of the current calendar time, and consists of "K0-K59."
- The current calendar time designated by $\mathbf{S}$ is usually compared using the TCMP command after using the TRD command to read the current calendar time. If the content value of $\mathbf{S}$ exceeds the range, this is considered an operating error, the command will not execute, and M1068=On.

Example - When $\mathrm{X} 10=$ On, the command will execute, and the current calendar time in D20-D22 will be compared with the preset value of 12:20:45; the results will be displayed in M10-M12. When X10 On $\rightarrow$ Off, the command will not be executed, but the On/Off status prior to M10-M12 will be maintained.

- If results in the form of $\geq, \leq$, or $\neq$ are needed, they can be obtained by series and parallel connection of M10-M12.



|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (9 STEEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | TZCP | Continuous | TZCPP | Pulse |
| S1 |  |  |  |  |  |  |  |  | * | * | * |  | execution typ |  | executiont |
| S2 |  |  |  |  |  |  |  |  | * | * | * |  |  |  |  |
| S |  |  |  |  |  |  |  |  | * | * | * | 32-bit co | mand |  |  |
| D |  | * | * |  |  |  |  |  |  |  |  | - | - | - | - |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | Flag sign | l: none |  |  |

Explanation lime $\begin{aligned} & \mathbf{S}_{1} \text { : Sets the lower limit of the comparison time. } \mathbf{S}_{2} \text { : Sets the upper limit of the } \\ & \text { comparison time. } \mathbf{S} \text { : current calendar time. } \mathbf{D} \text { : Results of comparison. }\end{aligned}$

- Performs range comparison by comparing the hours, minutes, and seconds of the current calendar time designated by $\mathbf{S}$ with the lower limit of the comparison time set as $\mathbf{S}_{1}$ and the upper limit of the comparison time set as $\mathbf{S}_{\mathbf{2}}$, and expresses the results of comparison in D.
- $\mathbf{S}_{1}, ~ \mathbf{S}_{1}+1, ~ \mathbf{S}_{1}+2$ : Sets the hours, minutes, and seconds of the lower limit of the comparison time.

■ $\mathbf{S}_{\mathbf{2}}, ~ \mathbf{S}_{\mathbf{2}}+1, \mathbf{S}_{\mathbf{2}}+2$ : Sets the hours, minutes, and seconds of the upper limit of the comparison time.

- $\mathbf{S}, ~ \mathbf{S}+1, ~ \mathbf{S}+2$ : The hours, minutes, and seconds of the current calendar time
- The DO designated by the $\mathbf{S}$ listed in this program is usually obtained by comparison using the TZCP command after using the TRD command in advance to read the current calendar time. If the value of $\mathbf{S}_{1}, \mathbf{S}_{2}$, or $\mathbf{S}$ exceeds the range, this is considered an operating error, the command will not execute, and M1068=On.
- When the current time $\mathbf{S}$ is less than the lower limit value $\mathbf{S}_{1}$ and $\mathbf{S}$ is less than the upper limit value $\mathbf{S}_{\mathbf{2}}$, D will be On. When the current time $\mathbf{S}$ is greater than the lower limit value $\mathbf{S}_{1}$ and $\mathbf{S}$ is greater than the upper limit value $\mathbf{S}_{\mathbf{2}}, \mathbf{D}+2$ will be On; $\mathbf{D}+1$ will be On under other conditions.

Example - When $\mathrm{X} 10=$ On, the TZCP command executes, and one of M10-M12 will be On. When X10=Off, the TZCP command will not execute, and M10-M12 will remain in the $\mathrm{X} 10=\mathrm{Off}$ state.


| API | TADD |  | $S_{1} S_{2}$ D | Calendar data addition |
| :---: | :---: | :---: | :---: | :---: |
| 162 |  | P | (S1) | Calendar data addition |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16 -bit command (7 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | TADD | Continuous | TADDP | Pulse |
| S1 |  |  |  |  |  |  |  |  |  |  | * |  | execution type |  | execution type |
| S2 |  |  |  |  |  |  |  |  | * | * | * |  |  |  |  |
| D |  |  |  |  |  |  |  |  | * | * | * | 32-bit command |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | - Flag | $\begin{aligned} \text { signal: M1020 } & \text { Z } \\ \text { M1022 } & \text { C } \\ \text { M1068 } & \text { C }\end{aligned}$ | ro flag arry flag lendar e |  |

## Explanation

The calendar data in hours, minutes, and seconds designated by $\mathbf{S}_{\mathbf{2}}$ is added to the calendar data in hours, minutes, and seconds designated by $\mathbf{S}_{1}$, and the result is stored as hours, minutes, and seconds in the register designated by $\mathbf{D}$.

- If the value of $\mathbf{S}_{\mathbf{1}}$ or $\mathbf{S}_{\mathbf{2}}$ exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068=On, and D1067 will record the error code 0E1A(HEX).
- If the results of addition are greater than or equal to 24 hours, carry flag M1022=On, and $\mathbf{D}$ will display the results of addition minus 24 hours.
- If the results of addition are equal to 0 ( 0 hours, 0 minutes, 0 seconds), zero flag M1020=On.


## Example

When X10=On, the TADD command will be executed, and the calendar data in hours, minutes, and seconds designated by D0 to D2 will be added to the calendar data in hours, minutes, and seconds designated by D10 to D12, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22.


| D0 | 8(hr) |
| :--- | :--- |
| D1 | 10(min) |
| D2 | 20(sec) $)$ |$+$| D10 | $6(\mathrm{hr})$ |
| :--- | ---: |
| D11 | 40(min |
| D12 | $6(\mathrm{sec}$ |$\rightarrow$| D20 | 14 $(\mathrm{hr})$ |
| :--- | :--- |
| D21 | $50(\mathrm{~min}$ |
| D22 | $26(\mathrm{sec}$ |

$$
8: 10: 20 \quad 6: 40: 6 \quad 14: 50: 26
$$



|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (7 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | TSUB | Continuous | TSUBP | Pulse execution type |
| S1 |  |  |  |  |  |  |  |  | * | * | * | execution type |  |  |  |
| S2 |  |  |  |  |  |  |  |  | * | * | * | 32-bit command |  |  |  |
| D |  |  |  |  |  |  |  |  | * | * | * |  |  |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | - Flag signal: M1020 Zero flag  <br>  $-\ldots$ $\therefore$ <br>  M1022 Carry flag <br> M1068 Calendar error  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Explanation $\mathbf{S}_{1}$ : time minuend. $\mathbf{S}_{2}$ : time augend. $\mathbf{D}$ : time sum.

- Subtracts the calendar data in hours, minutes, and seconds designated by $\mathbf{S}_{2}$ from the calendar data in hours, minutes, and seconds designated by $\mathbf{S}_{1}$, and the result is temporarily stored as hours, minutes, and seconds in the register designated by D.
- If the value of $\mathbf{S}_{\mathbf{1}}$ or $\mathbf{S}_{\mathbf{2}}$ exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068=On, and D1067 will record the error code 0E1A(HEX).
- If subtraction results in a negative number, borrow flag M1021=On, and the result of that negative number plus 24 hours will be displayed in the register designated by D.

■ If the results of subtraction are equal to 0 ( 0 hours, 0 minutes, 0 seconds), zero flag M1020=On.

- When $\mathrm{X} 10=$ On, the TADD command will be executed, and the calendar data in hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22.


| D0 20(hr) | - | D10 14(hr) | $\rightarrow$ | D20 | 5(hr) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D1 20(min) |  | D11 30(min) |  | D21 | 49(min) |
| D2 $5(\mathrm{sec})$ |  | D12 8(sec) |  | D22 | 57(sec) |
| 20:20:5 |  | 14:30:8 |  |  |  |



## Explanation <br> $\mathbf{S}_{1}$ : time minuend. $\mathbf{S}_{2}$ : time augend. $\mathbf{D}$ : time sum. <br> - D: device used to store the current calendar time after reading.

- The EH/EH2/SV/EH3/SV2/SA/SX/SC main units have a built-in calendar clock, and the clock provides seven sets of data comprising year, week, month, day, hour, minute, and second stored in D1063 to D1069. The TRD command function allows program designers to directly read the current calendar time into the designated seven registers.
- D1063 only reads the two right digits of the Western calendar year.

Example
When $\mathrm{XO} 0=\mathrm{On}$, the current calendar time is read into the designated registers D0 to D6.

In D1064, 1 indicates Monday, 2 indicates Tuesday, and so on, with and 7 indicating Sunday.


| Special <br> D | Item | Content |  | General <br> D | Item |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D1063 | Year <br> (Western) | $00-99$ | $\rightarrow$ | D0 | Year <br> (Western) |
| D1064 | Weeks | $1-7$ | $\rightarrow$ | D1 | Weeks |
| D1065 | Month | $1-12$ | $\rightarrow$ | D2 | Month |
| D1066 | Day | $1-31$ | $\rightarrow$ | D3 | Day |
| D1067 | Hour | $0-23$ | $\rightarrow$ | D4 | Hour |
| D1068 | Minute | $0-59$ | $\rightarrow$ | D5 | Minute |
| D1069 | Second | $0-59$ | $\rightarrow$ | D6 | Second |



|  |  | dev |  |  |  |  | /ord | devic |  |  |  | 16-bit | mand (5 STEP) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | GRY | Continuous | GRYP | Pulse |
| S |  |  |  | * | * | * | * | * | * | * | * |  | execution type |  | execution type: |
| D |  |  |  |  |  |  | * | * | * | * | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DGRY | Continuous execution type | DGRYP | Pulse execution type |

## Explanation

S: source device. D: device storing GRAY code.

- Transforms the content value (BIN value) of the device designated by $\mathbf{S}$ to GRAY code, which is stored in the device designated by $\mathbf{D}$.

■ The valid range of $\boldsymbol{S}$ is as shown below; if this range is exceeded, it will be considered an error, and the command will not execute.

16-bit command: 0-32,767
■ 32-bit command: $0-2,147,483,647$

## Example

- When $\mathrm{X} 0=\mathrm{On}$, the constant K 6513 will be transformed to GRAY code and stored in DO.


| API | GBIN | GB | (S) D | GRAY code $\rightarrow$ BIN transformation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 171 | D | P |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16 -bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | GBIN | Continuous | GBINP | Pulse |
| S |  |  |  | * | * |  |  |  |  |  |  |  | execution type |  | execution type |
| D |  |  |  |  |  |  | * | * | * | * | * |  |  |  |  |
| Notes on operand usage: <br> Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | 32-bit command (9 STEP) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DGBIN | $\begin{gathered} \text { Continuous } \\ \text { execution type } \end{gathered}$ | DGBINP | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |

Explanation S: source device used to store GRAY code. D: device used to store BIN value after transformation.

- The GRAY code corresponding to the value of the device designated by $\mathbf{S}$ is transformed into a BIN value, which is stored in the device designated by $\mathbf{D}$.
- This command will transform the value of the absolute position encoder connected with the PLC's input and (this encoder usually has an output value in the form of GRAY code) into a BIN value, which is stored in the designated register.

■ The valid range of $\mathbf{S}$ is as shown below; if this range is exceeded, it will be considered an error, and the command will not execute.

16-bit command: 0-32,767
■ 32-bit command: $0-2,147,483,647$

## Example

- When $\mathrm{X} 20=\mathrm{On}$, the GRAY code of the absolute position encoder connected with input points X0 to X 17 will be transformed into BIN value and stored in D10.




| $\substack{\text { API } \\ \hline \\ 215-\\ 217}$ | D LD\# | SS1 (S2) | Contact form logical operation LD\# |
| :---: | :---: | :---: | :---: | :---: |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit c | mand (5 ST |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | LD\# | Continuous | - | - |
| S1 |  |  |  | * | * | * | * | * | * | * | * |  | execution type |  |  |
| S2 |  |  |  | * | * | * | * | * | * | * | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: \#: \& , \|, ^ Please refer to the function specifications table for each device in series for the range of device usage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DLD\# | Continuous execution type | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

## Explanation

- This command performs comparison of the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The LD\#This command can be used while directly connected with the busbar

| API No. | 16-bit <br> commands | 32-bit <br> commands | Conditions for <br> activation |  |  |  | Conditions for inactivation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 215 | LD\& | DLD\& | $\mathbf{S}_{1}$ | $\&$ | $\mathbf{S}_{2}$ | $\neq 0$ | $\mathbf{S}_{1}$ | $\&$ | $\mathbf{S}_{\mathbf{2}}$ | $=0$ |  |
| 216 | LD\| | DLD\| | $\mathbf{S}_{1}$ | l | $\mathbf{S}_{2}$ | $\neq 0$ | $\mathbf{S}_{1}$ | l | $\mathbf{S}_{\mathbf{2}}$ | $=0$ |  |
| 217 | LD^ $^{\wedge}$ | DLD^ $^{\wedge}$ | $\mathbf{S}_{1}$ | $\wedge$ | $\mathbf{S}_{\mathbf{2}}$ | $\neq 0$ | $\mathbf{S}_{1}$ | $\wedge$ | $\mathbf{S}_{\mathbf{2}}$ | $=0$ |  |

\&: logical AND operation.

- $\mid$ : logical OR operation.
- $\wedge$ : logical XOR operation.


## Example

- When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to $0, \mathrm{Y} 10=\mathrm{On}$.
- When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0 , and $\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.


| API <br> $218-$ <br> 220 | D | AND\# |  | S1 S2 |
| :---: | :---: | :---: | :---: | :--- | Contact form logical operation AND\#


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | AND\# | Continuous | - | - |
| S1 |  |  |  | * | * |  |  |  | * | * |  |  | execution type |  |  |
| S2 |  |  |  | * | * | * | * | * | * | * | * |  |  |  |  |
| Notes on operand usage: \# : \& \1, ^ ${ }^{\text {a }}$ (-bit command (9 STEP) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | DAND\# | Continuous execution type | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation $\mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2 .

- This command performs comparison of the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .

■ The AND\# command is an operation command in series with the contact.

| API No. | 16-bit commands | 32-bit commands | Conditions for activation |  |  |  | Conditions for inactivation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 218 | AND\& | DAND\& | $\mathrm{S}_{1}$ | \& | $\mathrm{S}_{2}$ | $\neq 0$ | $\mathrm{S}_{1}$ |  | $\mathrm{S}_{2}$ | $=0$ |
| 219 | AND\| | DAND\| | $\mathrm{S}_{1}$ | \| | $\mathrm{S}_{2}$ | $\neq 0$ | $\mathrm{S}_{1}$ |  | $\mathrm{S}_{2}$ | $=0$ |
| 220 | AND^ | DAND^ | $\mathrm{S}_{1}$ | $\wedge$ | $\mathrm{S}_{2}$ | $\neq 0$ | $\mathrm{S}_{1}$ |  | $\mathrm{S}_{2}$ | =0 |

- \&: logical AND operation.
- |: logical OR operation.

■ ^: logical XOR operation.

Example

- When $\mathrm{X} 0=\mathrm{On}$ and the content of CO and C 10 is subjected to the logical AND operation, and the result is not equal to $0, Y 10=O n$.
- When $\mathrm{X} 1=\mathrm{Off}$ and D10 and D0 is subjected to the logical OR operation, and the result is not equal to $0, \mathrm{Y} 11=$ On and remains in that state.
■ When X2 $=$ On and the content of the 32-bit register D200 (D201) and 32-bit register D100 (D101) is subjected to the logical XOR operation, and the result is not equal to 0 or M3=On, M50=On.


| API <br> $221-$ <br> 223 | D OR\# | SS1 (S2 | Contact form logical operation OR\# |
| :--- | :--- | :--- | :--- | :--- |



## Explanation

$\mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command performs comparison of the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The OR\# command is an operation command in series with the contact.

| API No. | 16-bit <br> commands | 32-bit <br> commands | Conditions for <br> activation |  |  |  | Conditions for inactivation |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 221 | OR\& | DOR\& | $\mathbf{S}_{1}$ | $\&$ | $\mathbf{S}_{2}$ | $\neq 0$ | $\mathbf{S}_{1}$ | $\&$ | $\mathbf{S}_{2}$ | $=0$ |
| 222 | OR | DOR | $\mathbf{S}_{1}$ | $\mid$ | $\mathbf{S}_{2}$ | $\neq 0$ | $\mathbf{S}_{1}$ | $\mid$ | $\mathbf{S}_{2}$ | $=0$ |
| 223 | OR $^{\wedge}$ | DOR^ $^{\wedge}$ | $\mathbf{S}_{1}$ | $\wedge$ | $\mathbf{S}_{2}$ | $\neq 0$ | $\mathbf{S}_{1}$ | $\wedge$ | $\mathbf{S}_{2}$ | $=0$ |

■ \&: logical AND operation.

- |: logical OR operation.

■ ^: logical XOR operation.
Example

- When $\mathrm{X} 1=\mathrm{On}$ or the content of C 0 and C 10 is subjected to the logical AND operation, and the result is not equal to $0, Y 0=O n$.
- When X2 and M30 are both equal to On, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0 , or the content of the 32-bit counter C235 and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to $0, \mathrm{M} 60=\mathrm{On}$.


| API <br> $224-$ <br> 230 | D | LD* |  | S1 S2 |
| :---: | :---: | :---: | :---: | :--- | Contact form compare LD*


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | LD\% | Continuous | - | - |
| S1 |  |  |  |  | * | * | * | * | * | * | * |  | execution type |  |  |
| S2 |  |  |  | * | * | * | * | * | * | * | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: $\mathbb{*}:=,>,<\cdot<>, \leqq \cdot \geqq$ Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DLD\% | Continuous execution type | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command compares the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar

| API No. | 16-bit commands | 32-bit commands | Conditions for <br> activation | Conditions for <br> inactivation |
| :---: | :--- | :--- | :---: | :---: |
| 224 | LD $=$ | DLD $=$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ |
| 225 | LD $>$ | $\mathrm{DLD}>$ | $\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$ |
| 226 | $\mathrm{LD}<$ | $\mathrm{DLD}<$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$ |
| 228 | $\mathrm{LD}<>$ | $\mathrm{DLD}<>$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ |
| 229 | $\mathrm{LD}<=$ | $\mathrm{DLD}<=$ | $\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$ |
| 230 | LD $>=$ | DLD $>=$ | $\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ |

Example
When the content of C10 is equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.

- When the content of D200 is greater than $\mathrm{K}-30$, and $\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{O}$ and remains in that state.





## Explanation

$\mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.
This command compares the content of $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$. Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.

- The AND* command is a comparison command in series with a contact.

| API No. | 16-bit commands 32 -bit commands |  | Conditions for <br> activation | Conditions for <br> inactivation |
| :---: | :--- | :--- | :---: | :---: |
| 232 | AND $=$ | DAND $=$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ |
| 233 | AND $>$ | DAND $>$ | $\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$ |
| 234 | AND $<$ | DAND $<$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$ |
| 236 | AND $<>$ | DAND $<>$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ |
| 237 | AND $<=$ | DAND $<=$ | $\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$ |
| 238 | AND $>=$ | DAND $>=$ | $\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ |

## Example

When $\mathrm{X} 0=$ On and the current value of C 10 is also equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.

- When $\mathrm{X} 1=\mathrm{Off}$ and the content of register D0 is not equal to $\mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.
- When $\mathrm{X} 2=$ On and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=On, M50=On.


| API <br> $240-$ <br> 246 | D OR* |  | S1 S2 | Contact form compare OR* |
| :--- | :--- | :--- | :--- | :--- |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | OR\% | Continuous |  | - |
| S1 |  |  |  | * | * |  |  |  | * | * |  |  | execution type |  |  |
| S2 |  |  |  | * | * | * | * | * | * | * | * | 32-bit command (9 STEP) |  |  |  |
| Notes on operand usage: $※:=, \gg \lll \gg \leqq, \geqq$ Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | DOR\% | Continuous execution type | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag sign | al: none |  |  |

Explanation $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command compares the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

| API No. | 16-bit commands | 32 -bit commands | Conditions for <br> activation | Conditions for <br> inactivation |
| :---: | :--- | :--- | :---: | :---: |
| 240 | OR $=$ | DOR $=$ | $\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ |
| 241 | OR $>$ | DOR $>$ | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1} \leqq \mathbf{S}_{\mathbf{2}}$ |
| 242 | OR $<$ | DOR $<$ | $\mathbf{S}_{1}<\mathbf{S}_{2}$ | $\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$ |
| 244 | OR $<>$ | DOR $<>$ | $\mathbf{S}_{1} \neq \mathbf{S}_{2}$ | $\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$ |
| 245 | OR $<=$ | DOR $<=$ | $\mathbf{S}_{1} \leqq \mathbf{S}_{2}$ | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ |
| 246 | OR $>=$ | DOR $>=$ | $\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$ |

## Example

When $\mathrm{X} 0=\mathrm{On}$ and the current value of C 10 is also equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.

- When $\mathrm{X} 1=\mathrm{Off}$ and the content of register D0 is not equal to $\mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.
- When X2 =On and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=On, M50=On.




Explanation $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command compares the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking "FLD=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."

■ The FLD* command can directly input floating point numerical values (for instance: F1.2) to the $\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$ operands, or store floating-point numbers in register $D$ for use in operations.

- This command can be used while directly connected with the busbar

| API No. | 32-bit commands | Conditions for activation | Conditions for inactivation |
| :---: | :---: | :---: | :---: |
| 275 | FLD $=$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1} \neq \mathbf{S}_{2}$ |
| 276 | FLD > | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$ |
| 277 | FLD $<$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ | $\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$ |
| 278 | FLD $<>$ | $\mathbf{S}_{1} \neq \mathbf{S}_{2}$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ |
| 279 | FLD $<=$ | $\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ |
| 280 | FLD> $=$ | $\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ |

When the floating point number of register D200 (D201) is less than or equal to F1.2, and X1 activated, contact Y21 will be activated and remain in that state.




- $\quad \mathbf{S}_{1}$ : data source device $1 . \mathbf{S}_{2}$ : data source device 2.
- This command compares the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking "FAND=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FAND* command can directly input floating point numerical values (for instance: F1.2) to the $\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

| API No. | 32-bit commands | Conditions for <br> activation | Conditions for <br> inactivation |
| :---: | :--- | :---: | :---: |
| 281 | FAND $=$ | $\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ |
| 282 | FAND $>$ | $\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1} \leqq \mathbf{S}_{\mathbf{2}}$ |
| 283 | FAND $<$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$ |
| 284 | FAND $<>$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$ |
| 285 | FAND $<=$ | $\mathbf{S}_{1} \leqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ |
| 286 | FAND $>=$ | $\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$ |

Example
When X1=Off, and the floating point number in register D100 (D101) is not equal to F1.2, Y21=On and remains in that state.

| X1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U1 | FAND $<>$ | F1.2 | D0 |
|  |  | SET | Y21 |



|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D |  | - |  |
| S1 |  |  |  |  |  |  |  |  | * | * | * |  |  |  |
| S2 |  |  |  |  |  |  |  |  | * | * | * | 32-bit command |  |  |
| Notes on operand usage: \# : \& , \|, ^ Please refer to the function specifications table for each device in series for the scope of device usage |  |  |  |  |  |  |  |  |  |  |  | FOR\% Flag signat | - | - |

Explanation

- This command compares the content of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking "FOR=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FOR* command can directly input floating point numerical values (for instance: F1.2) to the $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

Example

| API No. | 32-bit commands | Conditions for <br> activation | Conditions for <br> inactivation |
| :---: | :--- | :---: | :---: |
| 287 | FOR $=$ | $\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ |
| 288 | FOR $>$ | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1} \leqq \mathbf{S}_{2}$ |
| 289 | FOR $<$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1} \geqq \mathbf{S}_{\mathbf{2}}$ |
| 290 | FOR $<>$ | $\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$ |
| 291 | FOR $<=$ | $\mathbf{S}_{1} \leqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$ |
| 292 | FOR $>=$ | $\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$ |

When X2 and M30 are both equal to "On," or the floating point number in register D100 (D101) is greater than or equal to F1.234, M60=On.


## 16-6-5 Detailed explanation of drive special applications commands

| API | RPR | $\mathbf{P}$ | S1 S2 | Read servo parameter |
| :--- | :--- | :--- | :--- | :--- |
| 139 | S2 |  |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command ( 5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | RPR | Continuous | RPRP | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  |  |  | execution type |  | execution type |
| S2 |  |  |  |  |  |  |  |  |  |  | * |  |  |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | 32-bit command |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Explanation (S1): Parameter address of data to be read. S2: Register where data to be read is stored.

| API | $\square$ | WPR | $\mathbf{P}$ | (S1) S2 |
| :--- | :--- | :--- | :--- | :--- | Write servo parameter | 140 |
| :--- |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (5 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | WPR | Continuous | WPRP | Pulse |
| S1 |  |  |  |  | * |  |  |  |  |  |  |  | execution type |  | execution type |
| S2 |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | 32-bit command |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

Explanation ■ S1: Data to write to specified page. S2: Parameter address of data to be written.

## Example

- When the data in the C2000 drive's parameter H01.00 is read and written to D0, data from H 01.01 will be read and written to D1.
- When $\mathrm{M} 0=O n$, the content of D 10 will be written to the C 2000 drive parameter 04.00 (first speed of multiple speed levels).
- When the parameter has been written successfully, M1017=On.

■ The C2000's WPR command does not support writing to the 20XX address, but the RPR command supports reading of 21XX, 22XX.


Take care when using the WPR command. When writing parameters, because most parameters are recorded as they are written, these parameters may only be revised 109 times; a memory write error may occur if parameters are written more than $10^{9}$ times.

Because the following commonly-used parameters have special processing, there are no restrictions on the number of times they may be written.

Pr. 00-10: Control method
Pr. 00-11: Speed mode selection
Pr. 00-12: P2P position mode
Pr. 00-13: Torque mode select
Pr. 00-27: User-defined value

Pr. 01-12: Acceleration time 1
Pr. 01-13: Deceleration time 1
Pr. 01-14: Acceleration time 2
Pr. 01-15: Deceleration time 2
Pr. 01-16: Acceleration time 3
Pr. 01-17: Deceleration time 3
Pr. 01-18: Acceleration time 4
Pr. 01-19: Deceleration time 4

Pr. 02-12: Select MI Conversion Time mode:
Pr. 02-18: Select MO Conversion Time mode:

Pr. 04-50-Pr. 04-69: PLC register parameter 0-19

Pr. 08-04: Upper limit of integral
Pr. 08-05: PID output upper limit

Pr. 10-17: Electronic gear A
Pr. 10-18: Electronic gear B

Pr. 11-34: Torque command
Pr. 11-43: P2P highest frequency
Pr. 11-44: Position control acceleration time
Pr. 11-45: Position control deceleration time
Calculation of the number of times written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.
When writing a PLC program, if unsure of usage of the WPR command, we recommend that you use the WPRP command.

| API |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 141 | - | FPID | $\mathbf{P}$ | S1 S2 S3 S4 | Drive PID control mode |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (9 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | FPID | : Continuous | FPIDP | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  | * |  | execution type |  | execution type |
| S2 |  |  |  | * | * |  |  |  |  |  | * | 32-bit command |  |  |  |
| S3 |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| S4 |  |  |  | * | * |  |  |  |  |  | * | - | : - | - | - |
|  | os on |  | d |  |  |  |  |  |  |  |  | Flag signal: none |  |  |  |

```
Explanation
```

(S1): PID reference target value input terminal select.
(S2): PID function proportional gain P. S3: PID function integral time I. S4: PID function differential time D.

- The FPID command can directly control the drive's feedback control of PID Pr. 08-00 PID reference target value input terminal selection, Pr. 08-01 proposal gain P, Pr. 08-02 integral time I, and Pr. 08-03 differential time D.


## Example

- When $\mathrm{M} 0=O n$, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain P is 0 , the PID function integral time I is 1 (units: 0.01 sec .), and the PID function differential time $D$ is 1 (units: 0.01 sec .).
- When M1=On, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain $P$ is 1 (units: 0.01), the PID function integral time I is 0 , and the PID function differential time D is 0 .
- When M2=On, the set PID reference target value input terminal selection is 1 (target frequency input is controlled from the digital keypad), the PID function proportional gain $P$ is 1 (units: 0.01 ), the PID function integral time I is 0 , and the PID function differential time $D$ is 0 .
- D1027: Frequency command after PID operation.


| API | $\square$ | FREQ | $\mathbf{P}$ | S1 S2 S3 |
| :--- | :--- | :--- | :--- | :--- |
| 142 | S3 | Drive speed control mode |  |  |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (7 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | FREQ | Continuous | FREQP | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  | * |  | execution type |  | execution type |
| S2 |  |  |  | * | * |  |  |  |  |  | * | 32-bit command |  |  |  |
| S3 |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Explanation | S1: Frequency command. S2: Acceleration time. S3: Deceleration time |
| :--- |
| S2,S3: In acceleration/deceleration time settings, the number of decimal places is determined |
| by the definitions of Pr. 01-45. |

Example
When Pr. 01-45=0: units of 0.01 sec.
The setting of 50 for S 2 (acceleration time) in the ladder diagram below implies 0.5 sec ,
and the S3 (deceleration time) setting of 60 implies 0.6 sec

- The FREQ command can control drive frequency commands, and acceleration and deceleration time; it also uses special register control actions, such as:
M1025: Control drive RUN(On) / STOP(Off) (RUN requires Servo On (M1040 On) to be effective)
M1026: Control drive operating direction FWD(Off) / REV(On)
M1040: Control Servo On / Servo Off.
M1042: Trigger quick stop (ON) / does not trigger quick stop (Off).
M1044: Pause (On) / release pause (Off)
M1052: Lock frequency (On) / release lock frequency (Off)


## Example

M1025: Drive RUN(On) / STOP(Off), M1026: drive operating direction FWD(Off) / REV(On). M1015: frequency reached.

- When M10 $=$ On, sets the drive frequency command $\mathrm{K} 300(3.00 \mathrm{~Hz})$, with an acceleration / deceleration time of 0 .
When M11 $=$ On, sets the drive frequency command $\mathrm{K} 3000(30.00 \mathrm{~Hz})$, with an acceleration time of 50 ( 0.5 sec .) and deceleration time of 60 ( 0.6 sec .). (When Pr. 01-45=0)
- When M11=Off, the drive frequency command will now change to 0


Pr. 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation.
bit0: Prior to PLC scanning procedures, whether the target frequency has been cleared is 0 . (This will be written to the FREQ command when the PLC is On)
bit1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0 .
(This will be written to the TORQ command when the PLC is On)
bit2: Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0 . (This will be written to the TORQ command when the PLC is On)

Example: When using $r$ to write a program


If we force M 0 to be 1 , the frequency command will be 20.00 Hz ; but when M 0 is set as 0 , there will be a different situation.

Case 1: When the Pr.09-33 bit 0 is 0 , and M0 is set as 0 , the frequency command will remain at 20.00 Hz .
Case 2: When the Pr.09-33 bit 0 is 1 , and M 0 is set as 0 , the frequency command will change to 0.00 Hz .

The reason for this is that when the Pr.09-33 bit 0 is 1 prior to PLC scanning procedures, the frequency will first revert to 0 .

When the Pr.09-33 bit 0 is 0 , the frequency will not revert to 0 .



Explanation (S1: Torque command (numbered, no more than one digit). S2: Speed limit.

- The TORQ command can control the drive torque command and speed limits; it also uses special register control actions, such as:
M1040: Controls Servo On/Servo Off. When Servo is ON, if a TORQ command is executed, the torque will output the torque defined by the TORQ command, and the frequency restrictions will similarly be controlled by the TORQ command.


## Example

- M1040: Control Servo On/Servo Off. M1063: set torque attained. D1060 is the mode controls. D1053 is the actual torque.
- When $\mathrm{M} 0=\mathrm{Off}$, set the drive torque command $\mathrm{K}+500$ ( $+50.0 \%$ ), rotational speed restrictions is $3000(30 \mathrm{~Hz})$.
- When $\mathrm{M} 0=\mathrm{On}$, sets the drive torque command $\mathrm{K}-300$ ( $-30.0 \%$ ), rotational speed restrictions is $3000(30 \mathrm{~Hz})$.
- When $\mathrm{M} 10=\mathrm{On}$, drive began output torque command.
- When set torque is attained, M1063 will go On; this flag usually jumps continuously, however.


Pr. 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation.
bit0: Prior to PLC scanning procedures, whether the target frequency has been cleared is 0 . (This will be written to the FREQ command when the PLC is On)
bit1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0 . (This will be written to the TORQ command when the PLC is On)
bit2: Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0 . (This will be written to the TORQ command when the PLC is On)

Example:


If we now force M 1 to be 1 , the torque command will be $\mathrm{K}+300$ ( $+30 \%$ ), and the speed limit will be $400(40 \mathrm{~Hz})$. But when M1 is set as 0 , there will be a different situation.
Case 1: When bit 1 and bit 2 of Pr. 09-33 are both set as 0 , and $M 1$ is set as 0 , the torque command will remain at $+30 \%$, and the speed limit will be set as 40 Hz .
Case 2: When bit 2 of Pr. 09-33 are both 1, and M1 is set as 0 , the torque command will revert $0 \%$, and the speed limit will be set as 0 Hz .

| API | $\square$ DPOS | $\mathbf{P}$ | S1 | Drive point-to-point control |
| :--- | :--- | :--- | :--- | :--- |
| 262 |  |  |  |  |


| Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | Y | M | K | H | KnX | KnY | KnM | T | C | D | - |  | - |  |
|  |  |  | * | * |  |  |  |  |  |  | 32-bit con | mand (5STEP) |  |  |
|  |  |  |  |  |  |  |  |  |  |  | DPOS | Continuous execution type | DPOSP | $\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$ |

Flag signal: M1064, M1070
Explanation ■ S1: Target (must have a number).
The DPOS command can control the drive's position commands, and employs special register control actions, such as:
M1040: Control Servo On/Servo Off. M1055 search for origin. M1048 move to new position. If the control mode is position mode (D1060 = 1), and the converter is in the Servo ON state (M1040 = 1), if the DPOS command is executed, the drive will move to a new position in conjunction with activation of M1048 once (OFF to ON).

## Example

M1040: Control Servo On/Servo Off. M1064: set position attained. D1060 is the mode control. D1051(L) and D1052(H) are the actual position points.

- When $\mathrm{X0}=\mathrm{On}, \mathrm{M} 1040$ will be On (Servo On).
- When $\mathrm{X} 1=$ On, sets DPOS position as +300000 , and M1048 will change to On (move to new position) after a delay of 1 sec . Check whether the value of D1051 has changed at this time; after the set position point has been reached, M1064 will go On, and Y0 will output On.


| AP |  | CANRX |  |  | (S1) S2 S3 D |  |  |  |  |  | Read CANopen slave station data |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (9 STEP) |  |  |  |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | CANRX | Continuous | CANRX: | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  |  |  | execution type |  | execution type |
| S2 |  |  |  | * | * |  |  |  |  |  |  |  |  |  |  |
| S3 |  |  |  | * | * |  |  |  |  |  |  | 32-bit com | mand |  |  |
| D |  |  |  |  |  |  |  |  | * | * | * | -..----.- | .....--- | - | .-.---......- |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | Flag signa |  |  |  |

```
Explanation
```

S1: Slave station number. S2: Main index.. S3: Subindex+bit length. (D): Preset address.

- The CANRX command can read the index of the corresponding slave station. When it is executed, it will send the SDO message format to the slave station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as 1 after reading. If the slave station gives the correct response, it will write the value to the preset register, and set M1067 as 1. If the slave station has a response error, M1067 will be set as 0, and an error message will be recorded to D1076 to D1079.

M1002: When the PLC runs, the command will be triggered once and will set K4M400 = K1
Afterwards, each time M1066 is 1, it will switch to a different message.


| API | CANTX |  | (S1) S2 S3 S4 | Write CANopen slave station data |
| :---: | :---: | :---: | :---: | :---: |
| 264 | CANTX | P | S1) 52 | Write CANopen slave station data |


|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16-bit command (9 STEP) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | CANTX | Continuous | CANTXP | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  |  |  | execution type |  | execution type |
| S2 |  |  |  | * | * |  |  |  | * | * | * |  |  |  |  |
| S3 |  |  |  | * | * |  |  |  |  |  |  | 32-bit com | mand |  |  |
| S4 |  |  |  | * | * |  |  |  |  |  |  | - | - | - | - |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  | Flag signal |  |  |  |

Explanation (S1): Slave station number. S2: Address to be written. S3: Main index. S4): Subindex+bit length.

- The CANTX command can write a value to the index of the corresponding slave station. When it is executed, it will send the SDO message format to the slave station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as 1 after reading. If the slave station gives the correct response, it will write the value to the preset register, and set M1067 as 1. If the slave station has a response error, M1067 will be set as 0, and an error message will be recorded to D1076 to D1079.


■ D : Special D to be refreshed.
The CANFLS command can refresh special D commands. When is a read only attribute, executing this command will send a message equivalent to that of CANRX to the slave station, and the number of the slave station will be transmitted back and refreshed to this special D. When there is a read/write attribute, executing this command will send a message equivalent to that of CANTX to the slave station, and the value of this special $D$ will be written to the corresponding slave station.

- When M1066 and M1067 are both 0 , and M1066 is set as 1 after reading, if the slave station gives a correct response, the value will be written to the designated register, and M 1067 will be set as 1 . If the slave station's response contains an error, then M1067 will be set as 0 , and an error message will be recorded to D1076-D1079.



Explanation S1: Selection of slave device. S2): Device selection (0: converter, 1: internal PLC). S3: Read address. D: Saving target.

- The ICOMR command can obtain the slave station's converter and the internal PLC's register value.

| $\begin{array}{\|l\|} \hline \text { API } \\ \hline 321 \\ \hline \end{array}$ | 〕 ICOMW |  |  |  | (51) (52) D |  |  |  |  | Internal communications write |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit device |  |  | Word device |  |  |  |  |  |  |  | 16 -bit command (9 STEP) |  |  |  |
|  | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | ICOMW | - Continuous | ICOMW | Pulse |
| S1 |  |  |  | * | * |  |  |  |  |  | * |  | execution type | $P$ | execution type |
| S2 |  |  |  | * | * |  |  |  |  |  | * |  |  |  |  |
| S3 |  |  |  | * | * |  |  |  |  |  | * | DICOM Continuous DICOM |  |  |  |
| D |  |  |  | * | * |  |  |  |  |  | * |  |  |  | Pulse |
| Notes on operand usage: none |  |  |  |  |  |  |  |  |  |  |  |  |  |  | execution type |
|  |  |  |  |  |  |  |  |  |  |  |  | Flag signa | al: M1077 M1078 | 8 M 107 |  |

## Explanation

S1): Selection of slave device. S2): Device selection (0: converter, 1: internal PLC). S3: Read address. (D: Saving target.

- The ICOMW command write a value to the slave station's converter and the internal PLC's register.


## Example

Please refer to the following example:


| API | - WPRA | $\mathbf{P}$ | S1 | S2 |
| :--- | :--- | :--- | :--- | :--- | Drive parameters write-in | S23 |
| :--- |



Explanation S1: Data that is going to write in S2: Parameter address of the write-in data
Example - Read the data of C2000 drive's parameter H01.00 and write into D0, read data of H01.01 and write into D1.

- When M0 is ON, write the content of D10 into C2000 drive's Pr.04-00 ( $1^{\text {st }}$ step speed frequency).
- When parameter writes-in successfully, M1017 is ON.
- The WPR command does not support the write-in of 20XX address, but the RPR command supports the read-out of 21XX and 22XX.

- When WPRA executes, the data is only written into the RAM area, and will get back to previous record when the power is off.


## 16-7 Error display and handling

| Code | ID | Descript | Recommended handling approach |
| :---: | :---: | :---: | :---: |
| PLrA | 47 | RTC time check | Turn power on and off when resetting the keypad time |
| PLrt | 49 | Incorrect RTC time | Turn power on and off after making sure that the keypad is securely connected |
| PLod | 50 | Data writing memory error | Check whether the program has an error and download the program again |
| PLSv | 51 | Data write memory error during program execution | Restart power and download the program again |
| PLdA | 52 | Program transmission error | Try uploading again; if the error persists, sent to the manufacturer for service |
| PLFn | 53 | Command error while downloading program | Check whether the program has an erro and download the program again |
| PLor | 54 | Program exceeds memory capacity or no program | Restart power and download the program again |
| PLFF | 55 | Command error during program execution | Check whether the program has an error and download the program again |
| PLSn | 56 | Check code error | Check whether the program has an error and download the program again |
| PLEd | 57 | Program has no END stop command | Check whether the program has an error and download the program again |
| PLCr | 58 | MC command has been used continuously more than nine times | Check whether the program has an error and download the program again |
| PLdF | 59 | Download program error | Check whether the program has an error and download again |
| PLSF | 60 | PLC scan time excessively long | Check whether the program code has a writing error and download again |

## 16-8 CANopen Master control applications

Control of a simple multi-axis application is required in certain situations. If the device supports the CANopen protocol, a C2000 can serve as the master in implementing simple control (position, speed, homing, and torque control). The setting method comprises the following seven steps:

## Step 1: Activating CANopen Master functions

1. Pr. 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
2. Pr. $00-02=6$ reset PLC (please note that this action will reset the program and PLC registers to the default values)
3. Turn power off and on again.
4. Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if a newly-introduced drive is used, the blank internal PLC program will cause a PLFF warning code to be issued).

## Step 2: Master memory settings

1. After connecting the 485 communications cable, use WPL Soft to set the PLC status as Stop (if the PLC mode has been switched to the "PLC Stop" mode, the PLC status should already be Stop)
2. Set the address and corresponding station number of the slave station to be controlled. For instance, if it is wished to control two slave stations (a maximum of 8 stations can be controlled simultaneously), and the station numbers are 21 and 22 , it is only necessary to set D2000 and D2100 as 20 and 21, and then set D2200, D2300, D2400, D2500, D2600, and D2700 as 0 . The setting method involves use of the PLC's WPL editing software WPL as follows:

- Open WPL and implement communications > register edit (TCD) function


After leaving the PLC register window, the register setting screen will appear, as shown below:


If there is a new PLC program and no settings have been made yet, you can read default data from the converter, and merely edit it to suit the current application.
If settings have already been made, however, the special $D$ in the CANopen area will display the saved status (the CANopen D area is located at D1090 to D1099 and D2000 to D2799). Assuming it is a new program, we will first read the default data from the converter; check the communications format if there is no communications link (the default PLC station number is 2 , 9600, 7N2, ASCII). Perform the following steps:

1. Switch the PLC to Stop status
2. Press the transmit button
3. Click on read memory after exiting the window
4. Ignore D0-D399
5. Click on the confirm button.


After reading the data, it is necessary to perform some special D settings. Before proceeding, we will first introduce the special D implications and setting range.

The CANopen Master's special D range is currently D1070 to D1099 and D2000 to D2799; this range is divided into 3 blocks:
-The first block is used to display CANopen's current status, and has a range of D1070-D1089

- The second block is used for CANopen's basic settings, and has a range of D1090-D1099
-The third block is the slave station mapping and control area, and has a range of D2000-D2799.

These areas are therefore introduced as follows:
The first contains the current CANopen status display:
When the master initializes a slave station, we can find out from D1070 whether configuration of the slave device has been completed; we can find out whether an error occurred in the configuration process from D1071 and whether the configuration is inappropriate from D1074.
After entering normal control, we can find out whether the slave device is offline from D1073. In addition, we can check the slave device's read/write information using the CANRX, CANTX, and CANFLS commands; error information can be obtained from D1076 to D1079 if there has been a read/write failure.

| Special D | Description of Function | R/W |
| :---: | :--- | :---: |
| D1070 | Channel opened by CANopen initialization (bit0=Machine <br> code0 ......) | $R$ |
| D1071 | Error channel occurring in CANopen initialization process <br> (bit0=Machine code0 $\ldots \ldots .)$. | $R$ |
| D1072 | Reserved | - |


| Special D | Description of Function | $\mathrm{R} / \mathrm{W}$ |
| :---: | :--- | :---: |
| D1073 | CANopen break channel (bit0=Machine code0 ......) | R |
| D1074 | Error code of master error <br> 0: No error <br> 1: Slave station setting error <br> 2: Synchronizing cycle setting error (too small) | R |
| D1075 | Reserved | - |
| D1076 | SDO error message (main index value) | R |
| D1077 | SDO error message (secondary index value) | R |
| D1078 | SDO error message (error code L) | R |
| D1079 | SDO error message (error code H) | R |

The second area is for basic CANopen settings: (the PLC must have stopped when this area is used to make settings)
We must set the information exchange time for the master and slave station,

| Special D | Description of Function | Default: | R/W |
| :---: | :---: | :---: | :---: |
| D1090 | Synchronizing cycle setting | 4 | RW |

Use D1090 to perform settings; setting time relationships include:

## Sync time $\geqslant \frac{1 M}{\text { Rate }} * \frac{N}{4}$

## N: TXPDO + RXPDO

For instance, when communications speed is 500 K , TXPDO + RXPDO have 8 sets, and synchronizing time will require more than 4 ms
We must also define how many slave stations will be opened. D1091 is the channel for defining station opening, and D2000+100*n is the station number defining this channel. See the detailed explanation below.

Slave station number $\mathbf{n}=0-7$

| Special D | Description of Function | R/W |
| :---: | :--- | :---: |
| D1091 | Sets slave station On or Off (bit 0-bit 7 correspond to <br> slave stations number 0-7) | RW |
| D2000+100*n | Slave station number | RW |



If slave devices have a slow start-up, the master can delay for a short time before performing slave station configuration; this time delay can be set via D1092.

| Special D | Description of Function | Default | R/W |
| :---: | :--- | :---: | :---: |
| D1092 | Delay before start of initialization | 0 | RW |

With regard to slave device initialization, a delay time can be set to judge whether failure has occurred. If the communications speed is relatively slow, the delay time can be adjusted to judge whether initialization has been completed, which will ensure that there is time to perform slave device initialization.

| Special D | Description of Function | Default | R/W |
| :---: | :--- | :---: | :---: |
| D1099 | Initialization completion delay time <br> Setting range: 1 to 60000 sec. | 15 sec. | RW |

After communication is successful, the system must detect whether there is a break in communications with the slave station. D1093 is used to set detection time, and D1094 sets the number of consecutive errors that will trigger a break error.

| Special D | Description of Function | Default | R/W |
| :---: | :--- | :---: | :---: |
| D1093 | Break time detection | 1000 ms | RW |
| D1094 | Break number detection | 3 | RW |

The packet type transmitted by PDO is set before establishing normal communications and generally does not require adjustment.

| Special D | Description of Function | Default | R/W |
| :---: | :--- | :---: | :---: |
| D1097 | Corresponding real-time transmission type <br> (PDO) <br> Setting range: $1-240$ | 1 | RW |
| D1098 | Corresponding real-time receiving type (PDO) <br> Setting range: 1-240 | 1 | RW |

The third block is the slave station mapping and control area.
CANopen provides a PDO method to perform mapping of the master and slave station memory, and enables the master to directly access read/write data in a certain memory area. The master will automatically perform data exchange with the corresponding slave device, and the read/write values can be seen directly from the special D area after real-time exchange (M1034 $=1$ time) has been established. The C2000 currently supports real-time mapping of four PDOs, and there are two types of PDO RXPDO (reads slave device information) and TXPDO (writes to slave device). In addition, in order to facilitate control, the C2000 cannot perform mapping of commonly-used registers; the following is an overview of the current PDO mapping situation:

| TXPDO |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO4 (Torque) |  | PDO3 (Position) |  | PDO2 (Remote I/O) |  | PDO1 (Speed) |  |
| Description | Special D |
| Controller word | D2008+100*n | Controller word | D2008+100*n | Slave device DO | D2027+100*n | Controller word | D2008+100*n |
| Target torque | D2017+100*n | Target position | $\begin{array}{\|l\|} \hline \mathrm{D} 2020+100 * \mathrm{n} \\ \mathrm{D} 2021+100 * \mathrm{n} \\ \hline \end{array}$ | Slave device AO1 | D2031+100*n | Target speed | D2012+100*n |
| Control method | D2010+100*n | Control method | D2010+100*n | Slave device AO2 | D2032+100*n |  |  |
|  |  |  |  | Slave device AO3 | D2033+100*n |  |  |


| RXPDO |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDO4 (Torque) |  | PDO3 (Position) |  | PDO2 (Remote I/O) |  | PDO1 (Speed) |  |
| Description | Special D |
| Mode word | D2009+100*n | Mode word | D2009+100*n | Slave device DI | D2026+100*n | Mode word | D2009+100*n |
| Actual torque | D2018+100*n | Actual position | $\begin{array}{\|l\|} \hline \text { D2022+100*n } \\ \text { D2023+100*n } \\ \hline \end{array}$ | Slave device Al1 | D2028+100*n | Actual frequency | D2013+100*n |
| Actual mode | D2011+100*n | Actual mode | D2011+100*n | Slave device AI2 | D2029+100*n |  |  |
|  |  |  |  | Slave device Al3 | D2030+100*n |  |  |

Because usage requires only simple to open the corresponding PDO, where TXPDO employs D2034+100*n settings and RXPDO employs D2067+100*n settings.

These two special D areas are defined as follows:

|  | PDO4 |  | PDO3 |  | PDO2 |  | PDO1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Default <br> definition | Torque |  | Position |  | Remote I/O |  | Speed |  |
| bit | 15 | $14-12$ | 11 | $10-8$ | 7 | $6-4$ | 3 |  |
| Definition | En | Length | En | Length | En | Length | En |  |

En: indicates whether PDO is used
Length: indicates mapping of several variables
In a simple example, if we want to control a C2000 slave device and make it to operate in speed mode, we only have to make the following settings:
D2034+100*n =000Ah

| Length: | TX PDO |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PDO4 |  | PDO3 |  | PDO2 |  | PDO1 |  |
|  | Description | Special D |
| 1 | Controller Word | D2008+100*n | Controller Word | D2008+100*n | Slave device DO | D2027+100*n | Controller Word | D2008+100*n |
| 2 | Target torque | D2017+100*n | Target | $\begin{aligned} & \text { D2020+100*n } \\ & \text { D2021+100*n } \end{aligned}$ | Slave device AO1 | D2031+100*n | Target speed | D2012+100*n |
| 3 | Control method | D2010+100*n | Control method | D2010+100*n | Slave device AO2 | D2032+100*n |  |  |
| 4 |  |  |  |  | $\begin{gathered} \hline \text { Slave device } \\ \text { AO3 } \\ \hline \end{gathered}$ | D2033+100*n |  |  |


|  | PDO4 |  | PDO3 |  | PDO2 |  | PDO1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Definition | Torque |  | Position |  | Remote I/O |  | Speed |  |
| bit | 15 | $14-12$ | 11 | $10-8$ | 7 | $6-4$ | 3 | $2-0$ |
| Definition | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |

D2067+100*n =000Ah

| Length: | TX PDO |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PDO4 |  | PDO3 |  | PDO2 |  | PDO1 |  |
|  | Description | Special D |
| 1 | Controller Word | D2009+100*n | Controller Word | D2009+100*n | Slave device DI | D2026+100*n | Controller Word | D2009+100*n |
| 2 | Actual torque | D2018+100*n | Actual position | $\begin{aligned} & \text { D2022+100*n } \\ & \text { D2023+100*n } \end{aligned}$ | Slave device Al1 | D2028+100*n | Actual frequency | D2013+100*n |
| 3 | Actual mode | D2011+100*n | Actual mode | D2011+100*n | Slave device Al2 | D2029+100*n |  |  |
| 4 |  |  |  |  | $\begin{gathered} \text { Slave device } \\ \text { AI3 } \\ \hline \end{gathered}$ | D2030+100*n |  |  |


|  | PDO4 |  | PDO3 |  | PDO2 |  | PDO1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Definition | Torque |  | Position |  | Remote I/O |  | Speed |  |
| bit | 15 | $14-12$ | 11 | $10-8$ | 7 | $6-4$ | 3 | $2-0$ |
| Definition | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |

Switch the PLC to Run after completing settings. Now wait for successful initialization of CANopen ( $\mathrm{M} 1059=1$ and $\mathrm{M} 1061=0$ ), and then initiate CANopen memory mapping ( $\mathrm{M} 1034=1$ ). The control word and frequency command will now automatically refresh to the corresponding slave device (D2008+n*100 and D2012+n*100), and the slave device's status word and currently
frequency will also be automatically sent back to the master station (D2009+n*100 and D2013+n*100). This also illustrates how the master can handle these tasks through read/write operations in the special $D$ area.
Furthermore, it should be noted that the remote I/O of PDO2 can obtain the slave device's current DI and AI status, and can also control the slave device's DO and AO status. Nevertheless, after introducing a fully automatic mapping special D, the C2000 CANopen master also provides additional information refreshes. For instance, while in speed mode, acceleration/deceleration settings may have been refreshed. The special $D$ therefore also stores some seldom-used real-time information, and these commands can be refreshed using the CANFLS command. The following is the C2000's current CANopen master data conversion area, which has a range of D2001+100*n-D2033+100*n, as shown below:

1. The range of $n$ is $0-7$
2. •Indicates PDOTX, $\Delta$ Indicates PDORX; unmarked special $D$ can be refreshed using the CANFLS command

|  | Description of Function | Default | PDO Default |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Special D |  |  | 1 | 2 | 3 | 4 |  |
| D2000+100*n | Station number n of slave station Setting range: 0-127 <br> 0: No CANopen function | 0 |  |  |  |  | RW |
| D2002+100*n | Manufacturer code of slave station number n (L) | 0 |  |  |  |  | R |
| D2003+100*n | Manufacturer code of slave station number $\mathrm{n}(\mathrm{H})$ | 0 |  |  |  |  | R |
| D2004+100*n | Manufacturer's product code of slave station number n (L) | 0 |  |  |  |  | R |
| D2005+100*n | Manufacturer's product code of slave station number n (H) | 0 |  |  |  |  | R |

Basic definitions

| Special D | Description of Function | Default | PDO Default |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |  |
| D2006+100*n | Communications break handling method of slave station number $n$ | 0 |  |  |  |  | RW |
| D2007+100*n | Error code of slave station number n error | 0 |  |  |  |  | R |
| D2008+100*n | Control word of slave station number n | 0 | $\bullet$ |  | $\bullet$ | $\bullet$ | RW |
| D2009+100*n | Status word of slave station number n | 0 | - |  | $\triangle$ | - | R |
| D2010+100*n | Control mode of slave station number $n$ | 2 |  |  |  |  | RW |
| D2011+100*n | Actual mode of slave station number n | 2 |  |  |  |  | R |

Velocity Control

| Special D | Description of Function | Default | PDO Default |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |  |
| D2001+100*n | Torque restriction on slave station number $n$ | 0 |  |  |  |  | RW |
| D2012+100*n | Target speed of slave station number n (rpm) | 0 | - |  |  |  | RW |
| D2013+100*n | Actual speed of slave station number n (rpm) | 0 | $\triangle$ |  |  |  | R |
| D2014+100*n | Error speed of slave station number $n$ (rpm) | 0 |  |  |  |  | R |
| D2015+100*n | Acceleration time of slave station number n (ms) | 1000 |  |  |  |  | RW |
| D2016+100*n | Deceleration time of slave station number n (ms) | 1000 |  |  |  |  | RW |

## Torque control

| Special D | Description of Function | Default | PDO Default |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |  |
| D2017+100*n | Target torque of slave station number $\mathrm{n}(-100.0 \%-+100.0 \%)$ | 0 |  |  |  |  | RW |
| D2018+100*n | Actual torque of slave station number n(XX.X\%) | 0 |  |  |  | $\triangle$ | R |
| D2019+100*n | Actual current of slave station number n(XX.XA) | 0 |  |  |  |  | R |

Position control

| Special D | Description of Function | Default: | PDO Default: |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |  |
| D2020+100*n | Target of slave station number $\mathrm{n}(\mathrm{L})$ | 0 |  |  |  |  | RW |
| D2021+100*n | Target of slave station number $\mathrm{n}(\mathrm{H})$ | 0 |  |  | - |  | RW |
| D2022+100*n | Actual position of slave station number n (L) | 0 |  |  |  |  | R |
| D2023+100*n | Actual position of slave station number $n(H)$ | 0 |  |  | ^ |  | R |
| D2024+100*n | Speed chart of slave station number $n$ (L) | 10000 |  |  |  |  | RW |
| D2025+100*n | Speed chart of slave station number n (H) | 0 |  |  |  |  | RW |

Remote I/O

| Special D | Description of Function | Default: | PDO Default: |  |  |  | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |  |
| D2026+100*n | MI status of slave station number n | 0 |  | - |  |  | R |
| D2027+100*n | MO setting of slave station number n | 0 |  | - |  |  | RW |
| D2028+100*n | Al1 status of slave station number n | 0 |  | $\triangle$ |  |  | R |
| D2029+100*n | Al2 status of slave station number $n$ | 0 |  | - |  |  | R |
| D2030+100*n | Al3 status of slave station number $n$ | 0 |  | $\triangle$ |  |  | R |
| D2031+100*n | AO1 setting of slave station number n | 0 |  | $\bullet$ |  |  | RW |
| D2032+100*n | AO2 setting of slave station number n | 0 |  | - |  |  | RW |
| D2033+100*n | AO3 setting of slave station number n | 0 |  | - |  |  | RW |

After gaining an understanding of special $D$ definitions, we return to setting steps. After entering the values corresponding to D1090 to D1099, D2000+100*n, D2034+100*n and D2067+100*n, we can begin to perform downloading, which is performed in accordance with the following steps:

1. D2000 and D2100 are set as 20 and 21, and D2200, D2300, D2400, D2500, D2600, and D2700 are set as 0 ; if a setting of 0 causes problems, D1091 can be set as 3 , and slave stations 2 to 7 can be closed.
2. Switch PLC to Stop status.
3. Press the transmit button.
4. Click on write memory after exiting the window.
5. Ignore D0-D399.
6. Change the second range to D1090-D1099.
7. Click on Confirm.


- Another method can be used to set D1091: Determine which of slave stations 0 to 7 will not be needed, and set the corresponding bits to 0 . For instance, if it is not necessary to control slave stations 2, 6 and 7 , merely set D1091 = 003B, and the setting method is the same as described above: Use WPL to initiate communications > use register edit (TCD) function to perform settings.


## Step 3: Set the master's communications station number and communications speed

च When setting the master's station number (Pr. 09-46, default is set as 100), make sure not to use the same number as a slave station.

च Set the CANopen communications speed (Pr. 09-37); regardless of whether the drive is defined as a master or slave station, the communications speed is set via this parameter.

## Step 4: Write program code

Real-time access: Can directly read/write to or from the corresponding D area.
Non real-time access:
Read command: Use the CANRX command for reading. M1066 will be 1 when reading is completed; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.
Write command: Use the CANTX command for writing. M1066 will be 1 when writing is completed; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.

Refresh command: Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.
$\square$ NOTE
When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.
Afterwards, download program to the drive (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2 . The WPL must therefore be modified, and the WPL setting pathway is settings > communications settings)

## Step 5: Set the slave stations' station numbers, communications speed, control source, and command source <br> Delta's C2000 and EC series devices currently support the CANopen communications interface drive, and the corresponding slave station numbers and communications speed parameters are as follows:

|  | Corresponding device parameters |  | Value | Definition |
| :---: | :---: | :---: | :---: | :---: |
|  | C2000 | E-C |  |  |
| Slave station address | 09-36 | 09-20 | 0 | Disable CANopen hardware interface |
|  |  |  | 1-127 | CANopen Communication address |
| Communication speed | 09-37 | 09-21 | 0 | 1Mbps |
|  |  |  | 1 | 500Kbps |
|  |  |  | 2 | 250Kbps |
|  |  |  | 3 | 125Kbps |
|  |  |  | 4 | 100Kbps |
|  |  |  | 5 | 50Kbps |
| Control source | 00-21 | - | 3 |  |
|  | - | 02-01 | 5 |  |
| Frequency source | 00-20 | - | 6 |  |
|  | - | 02-00 | 5 |  |
| Torque source | 11-33 | - | 3 |  |
|  | - | - | - |  |
| Position source | 11-40 | - | 3 |  |
|  | - | - | - |  |

Delta's A2 Servo currently supports the CANopen communications interface, and the corresponding slave station numbers and communications speed parameters are as follows:

|  | Corresponding device parameters A2 | Value | Definition |
| :---: | :---: | :---: | :---: |
| Slave station address | 03-00 | 1-127 | CANopen Communication address |
| Communication speed | 03-01 bit 8-11 XRXX | $\mathrm{R}=0$ | 125Kbps |
|  |  | $\mathrm{R}=1$ | 250Kbps |
|  |  | $\mathrm{R}=2$ | 500Kbps |
|  |  | $\mathrm{R}=3$ | 750Kbps |
|  |  | $\mathrm{R}=4$ | 1Mbps |
| Control/command source | 01-01 | B |  |

## Step 6: Connect hardware wiring

When performing wiring, note the head and tail terminal resistance; connection methods are as follows:


## Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.
Refer to CANMasterTest 1 vs. 2 drive.dvp

## Example

C2000 drive one-to-two control

## Step 1: Activating CANopen Master functions

$\square$ Pr. 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
$\square$ Pr. 00-02=6 reset PLC (please note that this action will reset the program and PLC registers to the default values)
■ Turn power off and on again.
■ Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if a newly-introduced drive is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: Master memory correspondences
■ Enable WPL
■ Use keypad set PLC mode as Stop (PLC 2)
■ WPL read D1070 to D1099, D2000 to D2799
■ Set D2000=10, D2100=11

- Set D2100, 2200, 2300, 2400, 2500, 2600, 2700=0

■ Download D2000 to D2799 settings
Step 3: Set the master's communications station number and communications speed
■ When setting the master's station number (Pr. 09-46, default is set as 100), make sure not to use the same number as a slave station.
■ Set the CANopen communications speed as 1M (Pr. 09-37=0); regardless of whether the drive is defined as a master or slave station, the communications speed is set via this parameter.

Step 4: Write program code
Real-time access: Can directly read/write to or from the corresponding D area.
Non real-time access:
Read command: Use the CANRX command for reading. M1066 will be 1 when reading is complete; M 1067 will be 1 if reading is successful, and M 1067 will be 0 if an error has occurred.

Write command: Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.

Refresh command: Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the drive (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2. The WPL must therefore be modified, and the WPL setting pathway is settings > communications settings)

Step 5: Set the slave stations' station numbers and communications speed
Slave station no. 1: 09-37 $=0($ Speed 1M) $\quad 09-36=10($ Node ID 10$)$
Slave station no. 2: 09-37 $=0($ Speed 1 M$) \quad 09-36=10($ Node ID 11$)$

Step 6: Connect hardware wiring
When performing wiring, note the head and tail terminal resistance; connection methods are as follows:


Step 7: Initiate control
After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.
Refer to CANMasterTest 1 vs. 2 driver.dvp

## 16-9 Explanation of various PLC mode controls (speed, torque, homing, and position)

The torque mode and position mode are based on FOC vector control and speed mode also supports FOC vector control. Control therefore cannot be performed successfully unless finishing motor parameter auto tuning ahead of time for the torque mode and position mode, and the speed mode based on FOC.

In addition, motors are classified as two types: IM and PM. For IM motors, the auto tuning of the motor parameter will be enough. For PM motors, after completing motor parameter auto tuning, the auto tuning of motor origin angle of deviation should be completed as well. Please refer to Chapter 12-1 Pr. 05-00 for detailed explanation.
※ If a PM motor belongs to Delta's ECMA series, motor parameters can be directly input from data in the servo motor catalog, and parameter study will not be needed.

Control methods and settings are explained as follows:
Speed control:
Register table for speed mode:

## Control special M

| Special <br> M | Description of Function | Attributes |
| :--- | :--- | :---: |
| M1025 | Drive frequency = set frequency (ON)/ drive frequency =0 (OFF) | RW |
| M1026 | Drive operating direction FWD(OFF) / REV(ON) | RW |
| M1040 | Hardware power (Servo On) | RW |
| M1042 | Quick stop | RW |
| M1044 | Pause (Halt) | RW |
| M1052 | Lock frequency (lock, frequency locked at the current operating frequency) | RW |

## Status special M

| Special <br> M | Description of Function | Attributes |
| :---: | :--- | :---: |
| M1015 | Frequency attained (when used together with M1025) | RO |
| M1056 | Servo On Ready | RO |
| M1058 | On Quick Stopping | RO |

Control special D

| Special <br> D | Description of Function | Attributes |
| :---: | :---: | :---: |
| D1060 | Mode setting (speed mode is 0) | RW |

## Status special D

| Special <br> D | Description of Function | Attributes |
| :---: | :---: | :---: |
| D1037 | Converter output frequency $(0.00-600.00)$ | RO |
| D1050 | Actual operating mode (speed mode is 0$)$ | RO |

Speed mode control commands:
FREQ(P) S1
Target speed The first acceleration time setting The first deceleration time setting
Example of speed mode control:
Before performing speed control, if the FOC (magnetic field orientation) control method is used, setting of electromechanical parameters must first be completed.

1. Setting D1060 $=0$ will shift the converter to the speed mode (default).
2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
3. Set $\mathrm{M} 1040=1$, the drive will now be excited, but the frequency will be 0 .
4. Set M1025 = 1, the drive frequency command will now jump to the frequency designated by FREQ, and acceleration/deceleration will be controlled on the basis of the acceleration time and deceleration time specified by FREQ.
5. M1052 can be used to lock the current operating frequency.
6. M1044 can be used to temporarily pause operation, and the deceleration method will comply with deceleration settings.
7. M1042 can be used to perform quick stop, and deceleration will be as quick as possible without giving rise to an error. (There may still be a jump error if the load is too large.)
8. Control user rights: M1040(Servo ON) $>$ M1042(Quick Stop) $>$ M1044(Halt) $>$ M1052(LOCK)


## Torque control:

Register table for torque mode:
Control special M

| Special M | Description of Function | Attributes |
| :---: | :---: | :---: |
| M1040 | Servo On | RW |

Status special M

| Special M | Description of Function | Attributes |
| :---: | :--- | :---: | :---: |
| M1056 | Servo On Ready | RO |
| M1063 | Torque attained | RO |

Control special D

| Special D | Description of Function | Attributes |
| :---: | :--- | :---: |
| D1060 | Operating mode setting (torque mode is 2) | RW |

Status special D

| Special D | Description of Function | Attributes |
| :---: | :--- | :---: |
| D1050 | Actual operating mode (speed mode is 0) | RO |
| D1053 | Actual torque | RO |

Torque mode control commands:

TORQ(P)
S1
Target torque (with numbers)

S2
Frequency restrictions

Example of torque mode control:
The setting of electromechanical parameters involved in torque control must be completed before implementing torque control.

1. Set D1060 $=2$ to change the converted to the torque mode.
2. Use the TORQ command to implement torque control and speed limits.
3. Set $\mathrm{M} 1040=1$; the drive will now be excited, and immediately jump to the target torque or speed limit. D1053 can be used to find out the current torque.


Homing control / position control:
Register table in homing mode / position mode:
Control special M

| Special M | Description of Function | Attributes |
| :---: | :--- | :---: |
| M1040 | Servo On | RW |
| M1048 | Move to new position, must use control mode as position mode (D1060 $=$ <br> 1) and M1040 = 1 | RW |
| M1050 | Absolute position / relative position (0: relative / 1: absolute) | RW |
| M1055 | Search for origin (home start), must use control mode as position mode <br> $(D 1060=3)$ and M1040 $=1$ | RW |

Status special M

| Special M | Description of Function | Attributes |
| :---: | :--- | :---: |
| M1064 | Target reached | RO |
| M1070 | Return home complete | RO |
| M1071 | Homing error | RO |

Control special D

| Special D | Description of Function | Attributes |
| :---: | :--- | :---: |
| D1060 | Operating mode setting (position mode is 1, homing mode is 3) | RW |

## Status special D

| Special D | Description of Function | Attributes |
| :---: | :--- | :---: |
| D1050 | Actual operating mode (speed mode is 0) | RO |
| D1051 | Actual position (Low word) | RO |
| D1052 | Actual position (High word) | RO |

※ D1051 and D1052 must be combined to give the actual location, and it has a serial number.
Position mode control commands:
DPOS(P)
Target (with numbers)

## Example of homing mode / position mode control:

First complete setting of electromechanical parameters connected with position before implementing homing control or position control.

1. Set Pr. 00-40 to select the homing method and the corresponding limit sensors and origin. (Setting the MI function gives a reverse rotation limit of 44, a forward rotation limit of 45, and an origin proximity of 46 . Because the C2000 currently only supports a Z-phase origin, the encoder card must provide Z-phase.)
2. Set D1060 $=3$ to change the converter to the homing mode.
3. Set M1040 $=1$

In the VF/SVC/VFPG mode, will enter the STANDBY mode (Pr. 01-34 can be used to access the STANDBY mode's action options).
In the FOC+PG mode, zero speed holding will occur
4. Set $\mathrm{M} 1055=1$, and the drive will now start to search for the origin.
5. When homing is complete, M1070 will change to ON . If you now set D1060 $=1$, the control mode will switch to position mode (please note that M1040 will not change to off; this mechanical origin move).
6. The DPOS command can now be used to designate the drive's target location. M1050 or Pr. 00-12 can be used to set a change in absolute or relative position.
7. Implement M1048 Pulse ON once (must be more than 1 ms in duration), and the converter will begin to move toward the target (M1040 must be 1 to be effective). The current position can be obtained from D1051 and D1052.

Part 1: The initialization mode is defined as the "homing" mode from the beginning (set D1060 = 3). X 2 is used to implement converter excitation.


Part 2: Homing; Use X3 to trigger homing action; will automatically switch to position mode after completion.


Part 3: Point-to-point movement; switch to position mode (set D1060 = 1), and move back and forth between position points. (+300000--300000)

※ If homing is not needed in an application, the first and second parts can be skipped. However, the M1040 condition from Part 1 must be included, and the writing method in Part 1 involve the use of X2 to achieve direct access. In addition, when M101 is used at the beginning of Part 3 to set the control mode, it can be rewritten as M1002, which will put the PLC immediately into the position mode when it starts running.

## 16-10 Internal communications main node control

The protocol has been developed in order to facilitate the use of RS-485 instead of CANopen in certain application situations. The RS-485 protocol offers similar real-time characteristics as CANopen; this protocol can only be used on the C2000 and CT2000 devices. The maximum number of slave devices is 8 .

Internal communications have a master-slave structure. The initiation method is very simple:
Slave device:
Set Pr. 09-31 = -1 to -8 in order to access 8 nodes, and set Pr. 00-20 $=1$ to define the control source as RS-485 and access the reference sources that must be controlled, namely speed command (Pr. $00-21=2$ ), torque command (Pr. 11-33 = 1), and position command (Pr. 11-40=2). This will complete slave device settings. (PLC functions do not need to be activated)

## System

Setting the master is even simpler; it is only necessary to set Pr. 09-31 = -10, and enable the PLC.
Hardware wiring: The master and slave stations are connected via the RS-485 serial port. The C2000 provides two types of RS-485 serial port interfaces, see the figure below: (please refer to Chapter 06 "Control Terminals" concerning detailed terminal connections)


Master programming: In a program, D1110 can be used to define a slave station to be controlled (1-8, if set as 0 , can jump between 8 stations). Afterwards, M1035 is set as 1 , and the memory positions of the master and slave stations will correspond. At this time, it is only necessary to send commands to the correlation slave station address to control that station. The following is a register table connected with internal communications:

Control special M

| Special M | Description of Function | Attributes |
| :---: | :---: | :---: |
| M1035 | Initiates internal communications control | RW |

Control special D

| Special D | Description of Function | Attributes |
| :---: | :--- | :---: |
| D1110 | Internal node communications number 1-8 (set the station number of <br> the slave station to be controlled) | RW |


| Special D | Description of Function |  |  |  |  |  |  | Attributes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Definition | bit | User rights | Speed mode | Location mode | Torque mode | Homing mode |  |
| D1120 + 10*N | Internal node N control command | 0 | 4 | Command functions | - | - | Homing Origin | RW |
|  |  | 1 | 4 | Reverse <br> rotation <br> requirements | Immediate change | - | - |  |
|  |  | 2 | 4 | - | - | - | - |  |
|  |  | 3 | 3 | Temporary pause | Temporary pause | - | - |  |
|  |  | 4 | 4 | Frequency locking | - | - | Temporary pause |  |
|  |  | 5 | 4 | JOG | - | - | - |  |
|  |  | 6 | 2 | Quick Stop | Quick Stop | Quick Stop | Quick Stop |  |
|  |  | 7 | 1 | Servo ON | Servo ON | Servo ON | Servo ON |  |
|  |  | 11-8 | 4 | Speed interval switching | Speed interva switching | - | - |  |
|  |  | 13-12 | 4 | Deceleration time change | - | - | - |  |
|  |  | 14 | 4 | $\begin{gathered} \hline \text { Enable Bit } \\ 13-8 \end{gathered}$ | $\begin{gathered} \hline \text { Enable Bit } \\ 13-8 \end{gathered}$ | - | - |  |
|  |  | 15 | 4 | Clear error code | Clear error code | Clear error code | Clear error code |  |
| D1121 + 10*N | Internal node N control mode |  |  | 0 | 1 | 2 | 3 | RW |
| D1122 + 10*N | Internal node N reference command L |  |  | Speed command (no number) | Position command (with numbers) | Torque command (with numbers) | - | RW |
| D1123 + 10*N | Internal node N reference command H |  |  | - |  | Speed limit | - | RW |

※ $\mathrm{N}=0-7$
Status special D

| Special D | Description of Function | Attributes |
| :---: | :--- | :---: |
| D1115 | Internal node synchronizing cycle $(\mathrm{ms})$ | RO |
| D1116 | Internal node error (bit0 = slave device 1, bit1 = slave device 2,...bit7 = slave <br> device 8) | RO |
| D1117 | Internal node online correspondence (bit0 = slave device 1, bit1 = slave device <br> 2,...bit7 = slave device 8) | RO |


| Special D | Description of Function |  |  |  |  | Attributes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | bit | Speed mode | Location mode | Torque mode | Homing mode |  |
| D1126 + 10*N | 0 | Frequency command arrival | Position command attained | Torque command attained | Zero command completed | RO |
|  | 1 | Clockwise | Clockwise | Clockwise | Clockwise |  |
|  |  | Counterclockwise: | Counterclockwise: | Counterclockwise: | Counterclockwise: |  |
|  | 2 | Warning | Warning | Warning | Warning |  |
|  | 3 | Error | Error | Error | Error |  |
|  | 5 | JOG |  |  |  |  |
|  | 6 | Quick Stop | Quick Stop | Quick Stop | Quick Stop |  |
|  | 7 | Servo ON | Servo ON | Servo ON | Servo ON |  |
| D1127 + 10*N |  | Actual frequency | Actual position (with numbers) | Actual torque (with numbers) | - | RO |
| D1128 + 10*N |  | - |  | - | - |  |

※ $\mathrm{N}=0-7$
Example: Assume it is desired to control slave station 1 operation at frequencies of 30.00 Hz and 60.00 Hz , status, and online node correspondences:


When it is judged that slave station 1 is online, delay 3 sec. and begin control


It is required slave station 1 maintains forward rotation at 30.00 Hz for 1 sec ., and maintains reverse rotation at 60.00 Hz for 1 sec ., and repeat this cycle continuously.


## 16-11 Count function using MI8

## 16-11-1 High-speed count function

The C2000's MI8 supports one-way pulse counting, and the maximum speed is 100K. The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored on D1054 and D1055 in non-numerical form. M1039 can reset the count value to 0 .

※ When the PLC program defines MI8 for use as a high-speed counter, and also for use in PLC procedures, it must be written to M1038 or M1039, and the original MI8 functions will be disabled.

## 16-11-2 Frequency calculation function

Apart from high-speed counting, the C2000's MI8 can also convert a received pulse to frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which can be performed simultaneously.

PLC speed calculation formula
D1057 Speed
D1058 Interval between calculations
D1059 Decimal places
Assuming that there are 5 input pulses each second, (see figure below) we set D1058=1000ms=1.0 sec . as the calculation interval. This enables five pulses to be sent to the converter each second.


Time interval between calculations
Assuming that each 5 pulses correspond to 1 Hz , we set D1057=5.
Assuming that we wish to display numbers to two decimal places, we set D1059=2, which is also 1.00 Hz . The numerical value displayed at D1056 is 100. For simplicity, the D1056 conversion formula can be expressed as in the following table:

D1056 $=\frac{\text { Pulses per second }}{\text { D1057 }} \times \frac{1000}{\text { D1058 }} \times 10^{\text {D01059 }}$

## 16-12 Modbus Remote IO Control Applications (use MODRW)

The C2000's internal PLC supports 485 read/write functions, which can be realized using the MODRW command. However, the 485 serial port must be defined as available for the PLC's 485 use before writing a program, and the Pr. 09-31 must be set as -12 . After completing settings, the standard functions defined by 485 can be used to implement read/write commands at other stations. Communications speed is defined by parameter 09-01, the communications format is defined by Pr. 09-04, and the PLC's current station number is defined by Pr. 09-35. The C2000 currently supports the functions read coil ( $0 \times 01$ ), read input ( $0 \times 02$ ), read register ( $0 \times 03$ ), write to single register ( $0 \times 06$ ), write to several coils $(0 \times 0 F)$, and write to several registers ( $0 \times 10$ ). Explanations and the usage of these functions are provided as follows:

| MODRW command |  |  |  |  | General meaning | Slave device is Delta's PLC meaning | Slave device is Delta's converter meaning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 | S2 | S3 | S4 | S5 |  |  |  |
| Node ID | Command | Address | Return: D area | Length |  |  |  |
| K3 | H01 | H500 | D0 | K18 | Read coil (bit) | Read 18 bits of data corresponding to slave station 3 PLC Y0 to Y21. This data is stored by bit 0 to 15 of the this station's D0 and bit 0 to bit 3 of D1. | Does not support this function |
| K3 | H02 | H400 | D10 | K10 | Read input (bit) | Read 10 bits of data corresponding to slave station 3 PLC X0 to X11. This data is stored by bit 0 to 9 of this station's D10. | Does not support this function |
| K3 | H03 | H600 | D20 | K3 | Read register (word) | Read 3 words of data corresponding to slave station 3 PLC T0 to T2. This data is stored by D20 to D22. | Read 3 words of data corresponding to slave station 3 converter parameters 06-00 to 06-02. This data is stored by D20 to D22 |
| K3 | H06 | H610 | D30 | XX | Write to single register (word) | Write slave station 3 PLC's T16 to this station's D30 value | Write slave station 3 converter 06 to 16 parameter to this station's D30 value |
| K3 | H0F | H509 | D40 | K10 | Write to multiple coils (Bit) | Write slave station 3 PLC's Y11 to Y22 to bit 0 to 9 of D40. | Does not support this function |
| K3 | H10 | H602 | D50 | K4 | Write to multiple registers (word) | Write slave station 3 PLC's T2 to T5 to D50 to D53 | Write slave station 3 converter 06-02 to 06-05 parameters to this station's D50 to D53 |

※ XX indicates doesn't matter
After implementing MODRW, the status will be displayed in M1077 (485 read/write complete), M1078 (485 read/write error), and M1079 (485 read/write time out). M1077 is defined so as to immediately revert to 0 after the MODRW command has been implemented. However, any of three situations-a report of no error, a data error report, or time out with no report-will cause the status of M1077 to change to On.

Example program: Testing of various functions
At the start, will cause the transmitted time sequence to switch to the first data unit.


When the reported message indicates no error, it will switch to the next transmitted command

6


If time out occurs or an error is reported, the M1077 will change to On. At this time, after a delay of 30 scanning cycles, it will re-issue the original command once


It will repeat after sending all commands


Practical applications:
Actual use to control the RTU-485 module.
Step 1: Set the communications format. Assume that the communications format is $115200,8, \mathrm{~N}, 2$, RTU
C2000 : The default PLC station number is set as 2 (09-35)
Pr. 09-31=-12 (COM1 is controlled by the PLC ), Pr. 09-01=115.2 (The communications speed is 115200 )
Pr. 09-04=13 (The format is $8, \mathrm{~N}, 2, \mathrm{RTU}$ )

RTU-485: The station number $=8$ (give example)


Communication station \#:
IDO~ ID7 are defined as $2^{0}, 2^{1}, 2^{2} \ldots 2^{6}, 2^{7}$

Communication protocol

| PA3 | PA2 | PA1 | PAO | A/R | Communication *Protocol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OFF | OFF | OFF | OFF | ON | 7,E,1 , ASCII |
| OFF | OFF | OFF | ON | ON | 7,0,1 • ASCII |
| OFF | OFF | ON | OFF | ON | 7,E,2 , ASCII |
| OFF | OFF | ON | ON | ON | 7,0,2 , ASCII |
| OFF | ON | OFF | OFF | ON | 7,N,2 ASCII |
| OFF | ON | OFF | ON | ON | 8,E,1 + ASCII |
| OFF | ON | ON | OFF | ON | 8,0,1 + ASCII |
| OFF | ON | ON | ON | ON | $8, \mathrm{~N}, 1+\mathrm{ASCII}$ |
| ON | OFF | OFF | OFF | ON | 8,N,2 A ASCII |
| OFF | ON | OFF | ON | OFF | 8,E,1 • RTU |
| OFF | ON | ON | OFF | OFF | 8,0,1 $\cdot$ RTU |
| OFF | ON | ON | ON | OFF | 8,N,1 RTU |
| ON | OFF | OFF | OFF | OFF | 8,N,2 , RTU |


| DR2 | DR1 | DR0 | Communicaton Speed |
| :---: | :---: | :---: | :---: |
| OFF | OFF | OFF | $1,200 \mathrm{bps}$ |
| OFF | OFF | ON | $2,400 \mathrm{bps}$ |
| OFF | ON | OFF | $4,800 \mathrm{bps}$ |
| OFF | ON | ON | $9,600 \mathrm{bps}$ |
| ON | OFF | OFF | $19,200 \mathrm{bps}$ |
| ON | OFF | ON | $38,400 \mathrm{bps}$ |
| ON | ON | OFF | $57,600 \mathrm{bps}$ |
| ON | ON | ON | $115,200 \mathrm{bps}$ |

Step 2: Install control equipment. We sequentially connect a DVP16-SP (8 IN 8 OUT), DVP-04AD (4 channels AD), DVP02DA ( 2 channels DA), and DVP-08ST (8 switches) to the RTU-485.
The following corresponding locations can be obtained from the RTU-485's configuration definitions:

| Module | Terminals | 485 Address |
| :--- | :--- | :--- |
| DVP16-SP | X0-X7 | $0400 \mathrm{H}-0407 \mathrm{H}$ |
|  | Y0-Y7 | $0500 \mathrm{H}-0507 \mathrm{H}$ |
| DVP-04AD | AD0-AD3 | $1600 \mathrm{H}-1603 \mathrm{H}$ |
| DVP02DA | DA0-DA1 | $1640 \mathrm{H}-1641 \mathrm{H}$ |
| DVP-08ST | Switch $0-7$ | $0408 \mathrm{H}-040 \mathrm{FH}$ |

Step 3: Physical configuration
C2000

## RTU485



Step 4: Write to PLC program


71


1s clock $p$

Control DA Value ( $0 \sim 4000$ )

120

| M1011 $\qquad$ - |  | INCP | K3M200 |
| :---: | :---: | :---: | :---: |
| 10 ms clock pulse, 5 m |  |  |  |
|  | MOV | K4M200 | D300 |
|  |  |  | DA 1 |
|  |  | DECP | K3M220 |
|  | MOV | K4M220 | D301 |
|  |  |  | DA 2 |
|  |  |  | END |

Step 5: Actual testing situation:
I/O testing: When the switch is activated, it can be discovered that the display corresponds to M115-M108. Furthermore, it can be seen that one output point light is added every 1 sec. (the display uses a binary format)


AD DA testing: It can be discovered that D200 and D201 are roughly twice the D300, and continue to increase progressively. For their part, the D202 and D203 are roughly twice the D301, and continue to decrease progressively.


Chapter 16 PLC Function Applications | C2000


## 16-13Calendar functions

The C2000's internal PLC includes calendar functions, but these may only be used when a keypad (KPC-CC01) is connected, otherwise the function cannot be used. Currently-supported commands include TCMP (comparison of calendar data), TZCP (calendar data range comparison), TADD (calendar data addition), TSUB (calendar data subtraction), and TRD (calendar reading). Please refer to the explanation of relevant commands and functions for the usage of these commands.

In real applications, the internal PLC can judge whether calendar function have been activated; if they have been activated, calendar warning codes may be displayed in some situations. The basis for whether a calendar function has been activated is whether the program has written the calendar time (D1063 to D1069) in connection with the foregoing calendar commands or programs.
The calendar's time display is currently assigned to D1063 to D1069, and is defined as follows:

| Special <br> D | Item | Content | Attributes |
| :---: | :---: | :---: | :---: |
| D1063 | Year <br> (Western) | 20xx (2000-2099) | RO |
| D1064 | Weeks | $1-7$ | RO |
| D1065 | Month | $1-12$ | RO |
| D1066 | Day | $1-31$ | RO |
| D1067 | Hour | $0-23$ | RO |
| D1068 | Minute | $0-59$ | RO |
| D1069 | Second | $0-59$ | RO |

Calendar-related special $M$ items are defined as follows:

| Special <br> D | Item | Attributes |
| :---: | :--- | :---: |
| M1068 | Calendar time error | RO |
| M1076 | Calendar time error or refresh time <br> out | RO |
| M1036 | lgnore calendar warning | RW |

*When a program writes to the commands TCMP, TZCP, TADD, or TSUB, if it is discovered that a value exceeds the reasonable range, M1026 will be 1.
*When the keypad display is PLra (RTC correction warning) or PLrt (RTC time out warning), M1076 will be ON.
*When M1036 is 1 , the PLC will ignore the calendar warning.
Calendar trigger warning code is defined as follows:

| Warning | Description | Reset <br> approach | Whether it affects PLC <br> operation |
| :---: | :--- | :---: | :---: |
| PLra | Calendar time correction | Requires <br> power restart | Will not have any effect |
| PLrt | Calendar time refresh time out | Requires <br> power restart | Will not have any effect |

*When the PLC's calendar functions are operating, if the keypad is replaced with another keypad, it will jump to PLra.
*When it is discovered at startup that the keypad has not been powered for more than 7 days, or the time is wrong, PLra will be triggered.
*When it is discovered that the C2000 has no keypad in 10 sec . after startup, PLrt will be triggered.
*If the keypad is suddenly pulled out while the calendar is operating normally, and is not reconnected for more than 1 minute, PLrt will be triggered.
Practical applications:
We will perform a demo of simple applications.
We first correct the keypad time. After pressing Menu on the keypad, select the 9th time setting option. After selection, set the current time.


We set converter on during the period of 8:00-17:20, which allows us to write the following example


# Chapter 17 Safe Torque Off Function 

17-1 The Drive Safety Function Failure Rate
17-2 Safe Torque Off Terminal Function Description

17-3 Wiring Diagram
17-4 Parameter

17-5 Operating Sequence Description
17-6 New Error Code for STO Function

## 17-1 The Drive Safety Function Failure Rate

| Item | Definition | Standard | Performance |
| :---: | :--- | :--- | :--- |
| SFF | Safe Failure Fraction | IEC61508 | Channel 1:80.08\% <br> Channel 2: 68.91\% |
| HFT (Type A <br> subsystem) | Hardware Fault Tolerance | IEC61508 | 1 |
| SIL | Safety Integrity Level | IEC61508 | SIL 2 |
|  | IEC62061 | SILCL 2 |  |
| PFH | Average frequency of dangerous failure <br> $[$ h-1] | IEC61508 | $9.56 \times 10^{-10}$ |
| PFD $_{\text {av }}$ | Probability of Dangerous Failure on <br> Demand | IEC61508 | $4.18 \times 10^{-6}$ |
| Category | Category | ISO13849-1 | Category 3 |
| PL | Performance level | ISO13849-1 | d |
| MTTF | Mean time to dangerous failure | ISO13849-1 | High |
| DC | Diagnostic coverage | ISO13849-1 | Low |

## 17-2 Safety Torque Off Terminal Function Description

The Safe Torque Off function (STO) is to cut off the power supply to motor through the hardware, thereby the motor couldn't produce torque.
The STO function controls the motor current driving signal through two hardware circuits respectively, and thus cut off the inverter power module output in order to achieve the status of safety stop.

Operation principle Description as following table 1:
Table 1: Terminal operation description

| Signal | Channel | Photo-coupler status |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STO signal | STO1-SCM1 | ON (High) | ON (High) | OFF (Low) | OFF (Low) |
|  | STO2-SCM2 | ON (High) | OFF (Low) | ON (Low) | OFF (Low) |
| Driver Output status |  | Ready | STL2 mode <br> (Torque output <br> off) | STL1 mode <br> (Torque output <br> off) | STO mode <br> (Torque output <br> off) |

## [1] STO means Safe Torque Off

[】 STL1-STL3 means Safe Torque Off hardware abnormal.
[1] STL3 means STO1-SCM1 and STO2-SCM2 internal circuit detected abnormal.
$\square$ STO1-SCM1 ON (High): means STO1-SCM1has connection to a $+24 \mathrm{~V}_{\mathrm{DC}}$ power supply.
[a] STO2-SCM2 ON (High): means STO2-SCM2 has connection to a $+24 V_{D C}$ power supply.
dal STO1-SCM1 OFF (Low): means STO1-SCM1hasn't connection to a $+24 \mathrm{~V}_{\mathrm{DC}}$ power supply.
(1) STO2-SCM2 OFF (Low): means STO2-SCM2hasn't connection to a $+24 \mathrm{~V}_{\mathrm{DC}}$ power supply.

## 17-3 Wiring Diagram

17-3-1 Internal STO circuit as below:


17-3-2 In the figure below, the factory setting for $+24 \mathrm{~V}-\mathrm{STO} 1-\mathrm{STO} 2$ and SCM1-SCM2-DCM is short-circuited:


## 17-3-3 The control loop wiring diagram:

1. Remove the shot-circuit of $+24 \mathrm{~V}-\mathrm{STO} 1-S T O 2$ and DCM-SCM1-SCM2.
2. The wiring as below diagram. The ESTOP switch must at Close status in normal situation and drive will be able to Run.
3. STO mode, switch ESTOP open. Drive output stop and keypad display STO.

[^2]
## 17-4 Parameters

## 196-4 STO Alarm Latch

Default: 0

Settings 0: STO Alarm Latch<br>1 : STO Alarm no Latch

11 Pr. 06-44=0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear the STO Alarm.
1 Pr. Pr. 06-44=1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
$1 \mathbb{1}$ The STL1-STL3 error are all "Alarm latch" mode (in STL1-STL3 mode, the Pr. 06-44 function is no effective).

## FI- I Multi-function Output 1 (Relay1)

Default:11
T2
Default:1
ME - IE Multi-function Output 3 (MO1)
Default:0
N ME ! ? Multi-function Output $4(\mathrm{MO} 2)$
Default:66
Settings
66: SO N.O. output
68: SO N.C. output

| Settings | Functions | Descriptions |
| :---: | :--- | :--- |
| 66 | SO Logic A output | Safety Output Normal Open |
| 68 | SO Logic B output | Safety Output Normal Close |

[1] C2000 factory setting Pr. 02-17 (MO2) = 66 (N.O.) and Multi-function Output setting item adds 2 new function: 66 and 68.

| Drive status | Safety Output status |  |
| :---: | :---: | :---: |
|  | N.O. <br> $(\mathrm{MO}=66)$ | N.C. <br> $(\mathrm{MO}=68)$ |
| Normal run | Open | Close |
| STO | Close | Open |
| STL1-STL3 | Close | Open |

N 5月-74Content of Multi-function Display
Default: 3
Settings 45: Hardware version

## 17-5 Operating Sequence Description

## 17-5-1 Normal operation status

As shown in Figure 3: When the STO1-SCM1 and STO2-SCM2=ON (no STO function is needed), the drive will execute "Operating" or "Output Stop" according to RUN/STOP command.


Figure 3

## 17-5-2-1 STO, Pr. 06-44=0, Pr. 02-35=0

As shown in Figure 4: When both of STO1-SCM1 and STO2-SCM2 channel has turned off during operating, the STO function enabling and the drive will stop output regardless of Run command is ON or OFF status.


Figure 4

## 17-5-2-2 STO, Pr. 06-44=0, Pr. 02-35=1

As shown in Figure 5: As same as the figure 4. Because the Pr. 02-35=1, after the Reset command, if the operating command still exists, then the drive will immediately execute the run command again.


Figure 5

## 17-5-3 STO, Pr. 06-44=1



Figure 6

## 17-5-4 STL1



Figure 7

## 17-5-4 STL2



Figure 8

## 17-6 New Error Code for STO Function

## 150-! 7 Present Fault Record

日6-18
Second Most Recent Fault Record
65-19
Third Most Recent Fault Record
15-9 Fourth Most Recent Fault Record
68-2;
Fifth Most Recent Fault Record
日5-23
Sixth Most Recent Fault Record
Settings 72: Channel 1 (STO1-SCM1)internal hardware error 76: STO (Safe Torque Off)
77: Channel 2 (STO2-SCM2) internal hardware error
78: Channel 1 and Channel 2 internal hardware error

| Error code | Name | Description |
| :---: | :---: | :--- |
| 76 | STO | Safe Torque Off function active |
| 72 | STL1 <br> (STO1-SCM1) | STO1-SCM1 internal hardware detect error |
| 77 | STL2 <br> (STO2-SCM2) | STO2-SCM2 internal hardware detect error |
| 78 | STL3 | STO1-SCM1 and STO2-SCM2 internal <br> hardware detect error |

The Old/New control board and Old/New I/O card:

| C2000 | v1.12 firmware | v1.20 firmware |
| :---: | :---: | :---: |
| v1.12 control board + old I/O card (no STO function) | OK | OK |
| v1.12 control board + new I/O card (with STO function) | Error | Error |
| v1.20 control board + old I/O card (no STO function) | Error | Error |
| v1.20 control board + new I/O card (with STO function) | Error | OK |

## Appendix A. Revision History

| New information |  |
| :---: | :---: |
| Description | Related part |
| Combine the content of C2000 690V models to this manual. | Whole manual |
| Service link label introduction. | Chapter 1 |
| Carton version upacking steps of frame D models. | Chpater 3 |
| The descriptions of short-circuit rated current (SCCR), built-in DC reactor model list, requirements on insulation level of Curve B motor, capacitor filter, dimension of flange mounting for frame D models, dimension and model names of magnetic ring, and description of power termina kit. | Chapter 7 |
| The descriptions of new extension cards, EMC-A22A (I/O relay), CMC-EC01 (Communication, EtherCAT), and CMC-PN01 (Communication, PROFINET). Delta standard filedbus cable list. | Chapter 8 |
| Efficiency curve, and derating curve of voltage / current. | Chpater 9 |
| A note to describe how to use VFDSoft when OS is Win10, and a process of Start Wizard. | Chapter 10 |
| Add desciptions of the following parameters: <br> - Parameter group 01: 01-49 <br> - Parameter group 02: 02-71, 02-74, 02-75 <br> - Parameter group 04: 04-70-04-99 <br> - Parameter group 06: 06-51, 06-62, 06-86 <br> - Parameter group 07: 07-38, 07-62, 07-63 <br> - Parameter group 08: 08-26-08-28 <br> - Parameter group 10: 10-46 <br> - Parameter group 11: 11-46 <br> - Parameter group 13 <br> - Parameter group 14 | Chapter 11, <br> Section 12-1 |
| The descriptions of the adjustment and application for AC drive | Section 12-2 |
| New functions of special relay (special M): M1090, M1091, M1092, M1100, M1101, M1168, M1260, M1262, M1270, M1271; new functions of special register (special D): D1200-D1207, D1209, D1215, D1220-D1227, D1229, D1235. | Chpater 16 |
| New chapter to describe safety torque off function. | Chapter 17 |


| Updated information |  |
| :---: | :---: |
| Description | Related part |
| Nameplate information, and the decription of RFI jumper. | Chapter 1 |
| The decriptions of using the lifting hook and the figure. | Chpater 3 |
| The wiring diagrams of all frame sizes, and the wiring of SINK (NPN) / SOURCE (PNP) mode. | Chpater 4 |
| The wiring diagrams of mair circuit terminals for all frame sizes, the descriptions of the main circuit termials. | Chpater 5 |
| The specifications of the control terminals and the wiring precautions. | Chpater 6 |
| EMC filter model list, the specifications and the assembly of DC reactor, the model list and the descriptions of zero-phase reactor, the torque value, the figures, applicable models and assembly/disassembly of fan. | Chapter 7 |
| The figures of extension cards, the figures to assembly / disassembly, the figure to illustrate the positon of the terminating resistor and the extension cards. | Chapter 8 |
| The cable length of PG card, the description of EMC-BPS01, and delete the description of CANopen cable and breakout box. | Chapter 8 |
| The general specifications, the descriptons of environmental characteristics. | Chpater 9 |
| Describe the functions which are listed on the MENU. Delete information of KPC-CE01. | Chapter 10 |
| Update desciptions of the following parameters: <br> - Parameter group 00: 00-00, 00-04, 00-06, 00-11, 00-13, 00-17, 00-20, 00-24, 00-25, 00-40 <br> - Parameter group 01: 01-02-01-08, 01-11, 01-12-01-23, 01-24-01-27, 01-36-01-42, 01-43 <br> - Parameter group 02: 02-00, 02-01-02-08, 02-13, 02-14, 02-26-02-31, 02-34, 02-38-02-41, 02-42-02-46, 02-49, 02-50-02-53, 02-58, 02-70 <br> - Parameter group 03: 03-00, 03-02, 03-03-03-05, 03-09, 03-10, 03-19 03-20, 03-23, 03-30, 03-51-03-74 <br> - Parameter group 05: 05-00-05-09, 05-13-05-15 05-17-05-21, 05-28-05-30, 05-34, 05-35, 05-38, 05-43. Delete 05-26, 05-27 <br> - Parameter group 06: 06-02-06-04, 06-14, 06-16-06-22, 06-28, 06-29, 06-30, 06-39, 06-46, 06-52, 06-55 <br> - Parameter group 07: 07-00, 07-07, 07-08, 07-12-07-14, 07-19, 07-23 <br> - Parameter group 08: 08-00-08-02, 08-16, 08-20, 08-23 <br> - Parameter group 09: 09-04, 09-11-09-26, 09-31, 09-33, 09-39, 09-40, 09-60, 09-75, 09-84, 09-88, 09-89 <br> - Parameter group 10: 10-02, 10-16, 10-19 10-24, 10-27, 10-30, 10-32, 10-34, 10-35-10-37, 10-41, 10-49, 10-51, 10-52. Delete 10-22 <br> - Parameter group 11: 11-00, 11-01, 11-11, 11-12, 11-17-11-20, 11-31, 11-32, 11-39, 11-40 | Chapter 11, <br> Section 12-1 |

Updated information

| Description | Related part |
| :--- | :--- |
| The descriptions of the adjustment and application for AC drive. | Section 12-2 |
| The descriptions of the warning codes | Chpater 13 |
| The descriptions of the fault codes | Chpater 14 |
| The descriptions of the bit setting for 2060H, 2020H. And the descriptions of <br> speed mode, torque mode, PDO type no. 0. | Chpater 15 |
| The function description of D1051, D1052, and D1111, D1112. | Chpater 16 |
| The installation of WPLSoft | Chpater 16 |


[^0]:    Able to store 6 error codes (Keypad V1.02 and previous versions) Able to store 30 error codes (Keypad V1.20 and later version) The most recent error record is shown as the first record. Select an error record to see its details such as date, time, frequency, current, voltage, DCBUS voltage)

[^1]:    ※ The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

[^2]:    ■NOTE
    *1: Factory short-circuit of DCM-SCM1-SCM2. Remove the short-circuit to use the Safety function.
    *2: Factory short-circuit of +24 V -STO1-STO2. Remove the short-circuit to use the Safety function.

