

Smarter. Greener. Together.

Industrial Automation Headquarters

Delta Electronics, Inc.

Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.

Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, People's Republic of China (Post code: 215200) TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.

238 Min-Xia Road, Pudong District, ShangHai, P.R.C. Post code: 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc.

Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd

4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL: 91-124-4874900 / FAX: 91-124-4874945

Americas

Delta Products Corporation (USA)

Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A

Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: +55 11 3568-3855 / FAX: +55 11 3568-3865

Deltronics (The Netherlands) B.V.

De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

Ш D P P **5**

Delta Power Regenerative Unit

REG2000 Series User Manual

www.delta.com.tw/ia

Preface

Please read prior to installation for safety.

- ☑ Ensure the power is OFF before wiring or installing the Power Regenerative Unit.
- After the AC power is turned off, please do not touch the internal circuits and components until the POWER indicator on the unit (below the digital controller) turns off, as the Power Regenerative Unit will still be charged with a high-voltage current and will be very dangerous.
- ☑ The components on the internal circuit board of the Power Regenerative Unit are susceptible to damage from electrostatic discharge. Please do not touch the circuit board with bare hands before proper antistatic measures are taken. Unauthorized modification of components or circuits within the Power Regenerative Unit is forbidden.
- ☑ The Power Regenerative Unit must be properly grounded. The 230V series uses Type 3 grounding; the 460V series uses special grounding.
- ☑ The Power Regenerative Unit and its components should be installed away from heat sources and flammable objects.

- ☑ The voltage rating of the power system onto which the Power Regenerative Unit is installed must not be higher than 240V for the 230V series (480V for the 460V series), and the current must not be greater than 5000A RMS (10000A RMS for models of 40HP (30kW) or more).
- ☑ Only a qualified professional electrician shall install, wire, repair and maintain the Power Regenerative Unit.
- ☑ Even when the Power Regenerative Unit is in standby mode, its main circuit terminals may still carry dangerously high voltage.
- ☑ If unopened and unused for more than 3 months, the ambient storage temperature must not be higher than 30°C. This is due to concerns that the electrolytic capacitors are likely to deteriorate if stored with no power supply at high ambient temperatures. Please do not leave it in a state without power supply for more than one year.
- ✓ Notes for the disinfection and disinfestation of packaging materials for transportation and installation (including wooden crates, planks, cardboard boxes, etc.):
 - 1. When disinfecting or disinfesting packaging materials, such as crates or cartons, please do not fumigate to avoid damaging internal components.
 - 2. Please use alternative environmental disinfection or disinfestation methods.
 - 3. Permitted high temperature methods: Simply leave the packaging materials at a temperature of over 56°C for 30 minutes or more.
 - 4. Fumigation is forbidden, any damage caused by fumigation will not be covered by warranty.

The pictures and corresponding descriptions in this manual will feature the product with the outer casing or safety shields removed or disassembled to better explain the product in detail. As for the actual product in operation, please be sure to

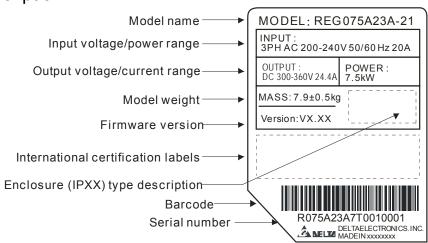
correctly install the outer casing and wirings in accordance with the rules and regulations, and operate the product following the instructions in the manual to ensure your safety.

- The illustrations in the manual may slightly differ from the actual product for demonstration purposes, but will not affect the rights and interests of the customer.
- When product documentation is updated or modified, the latest edition can be downloaded from the industrial automation product page on the Delta Electronics website. (http://www.delta.com.tw/industrialautomation/)

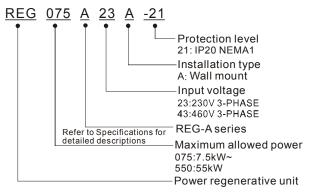
Table of Contents

01 Product Overview	1-1
02 Checking & Recommendations	2-1
03 Specifications	3-1
04 Wiring	4-1
4-1 Wiring Diagram	4-2
4-2 Main Circuit Terminals	4-4
4-3 Control Circuit Terminals	
4-4 Display Panel Indicators	4-13
05 Optional Accessories	
5-1 Digital Controller	5-2
5-2 USB/RS485 Transmission Converter IFD6530	
5-3 Fuse	5-8
06 List of Parameters	6-1
07 Detailed Description of Parameters	7-1
08 Warnings and Fault Display Codes	8-1
09 Usage Recommendations and Troubleshooting	
10 Power Regenerative Unit Selection	

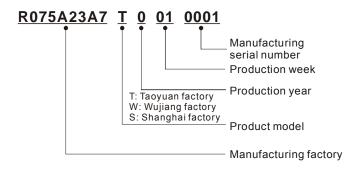
Supported Version


Control BD V1.02;

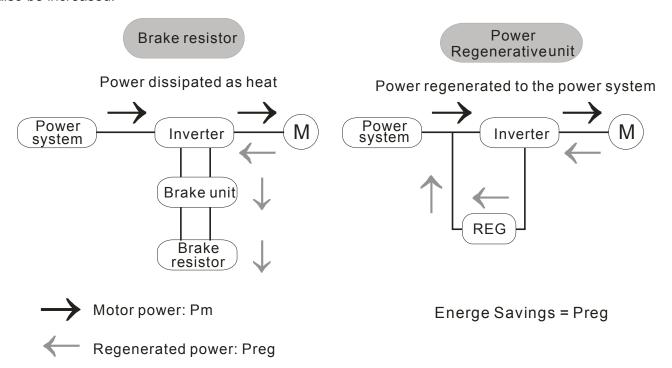
01 Product Overview


Users should follow the steps below before using the product to ensure safety during use.

- 1) After opening the packaging, first check the product has not been damaged during shipment. Inspect and ensure that the nameplate labels on the product match the ones on the box.
- 2) Make sure the wiring is suitable for the voltage range of the Power Regenerative Unit. Please follow the instructions in the installation manual when installing the Power Regenerative Unit.
- 3) When wiring the Power Regenerative Unit, please be aware of the wiring positions of the main circuit terminals "R/L1, S/L2, T/L3, DC+, DC-", and make sure the terminals are wired correctly to prevent any damage.


Nameplate Description

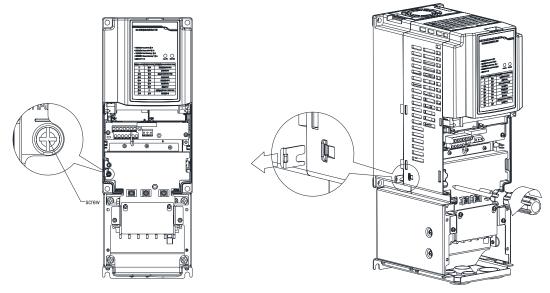
Model Number Description



Serial Number Description

Operation Principle

In a variable-frequency drive system, due to the high inertia in a drive system, such as centrifuges and washing machines, or applications requiring fast braking, such as machine tool spindles, the motor will be in a power generating state. In other words, because the rotor is being dragged by external forces, the actual motor speed exceeds the inverter-controlled synchronous speed, quickly feeding the energy generated by the motor back to the DC bus, resulting in a rapid rise in the DC bus voltage, thereby endangering the inverter. Therefore, this excess energy must be quickly consumed, to keep the DC bus voltage within a safe range, otherwise the inverter will either malfunction or enter overvoltage protection mode. The traditional method is to convert the excess energy into heat by using a brake resistor. This method has the advantages of simpler wiring and lower total cost, but also has disadvantages of a large brake resistor, requiring additional cooling devices, a limited braking capability, and inefficient use of the energy. On the other hand, the Power Regenerative Unit (REG2000) can convert the power generated by the motor into electric energy, and then return it to the electrical grid for other electrical applications, conserving energy. After the installation the Power Regenerative Unit, the motor's braking capability can also be increased.

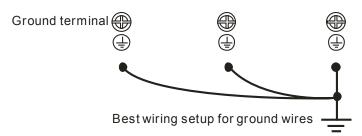


RFI Short-Circuit Cable Description

RFI: The Power Regenerative Unit generates electrical noise, resulting in frequency interference on the AC power cord (Radio Frequency Interference)

Frame A~C Screw torque: 6~8kg-cm(5.2-6.9 lb -in.)

After loosening the screw, remove the MOV-PLATE (as shown in the diagram below). Make sure to tighten the screw back after removing the MOV-PLATE.



Isolating main power from ground:

When the power distribution system of the Power Regenerative Unit is a floating ground system (IT) or an asymmetric ground system (TN), the RFI short short-circuit cable must be cut off. Cutting off the short-circuit cable cuts off the internal RFI capacitor (filter capacitor) between the system's frame and the central circuits to avoid damaging the central circuits and (according to IEC 61800-3) reduce the ground leakage current.

Important points regarding ground connection

- ☑ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the Power Regenerative Unit must be properly grounded during installation.
- ☑ The diameter of the cables must meet the size specified by safety regulations.
- ☑ The shielded cable must be connected to the ground of the Power Regenerative Unit to meet safety regulations.
- ☑ The shielded cable can only be used as the ground for equipment when the aforementioned points are met.
- ☑ When installing multiple sets of Power Regenerative Units, do not connect the grounds of the Power Regenerative Units in series. As shown below

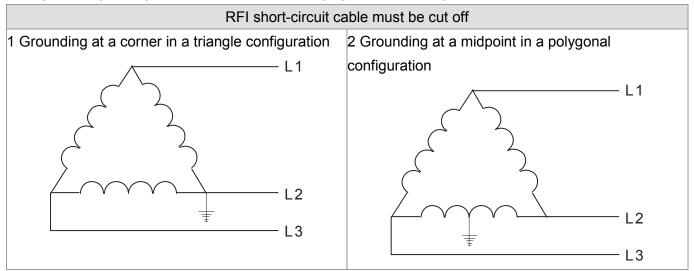
Pay particular attention to the following points:

- ☑ After turning on the main power, do not cut the RFI short-circuit cable while the power is on.
- ☑ Make sure the main power is turned off before cutting the RFI short-circuit cable.
- ☑ Cutting the RFI short-circuit cable will also cut off the conductivity of the capacitor. Gap discharge may occur once the transient voltage exceeds 1000V.

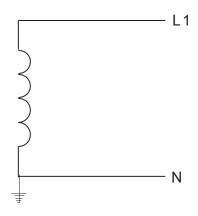
If the RFI short-circuit cable is cut, there will no longer be reliable electrical isolation. In other words, all controlled input and outputs can only be seen as low-voltage terminals with basic electrical isolation. Also, when the internal RFI capacitor is cut off, the Power Regenerative Unit will no longer be electromagnetic compatible.

- ☑ The RFI short-circuit cable may not be cut off if the main power is a grounded power system.
- ☑ The RFI short-circuit cable may not be cut off while conducting high voltage tests. When conducting a high voltage test to the entire facility, the main power and the motor must be disconnected if leakage current is too high.

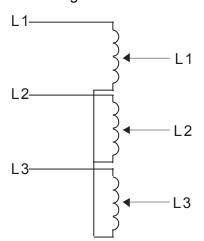
Floating Ground System(IT Systems)


A floating ground system is also called IT system, ungrounded system, or high impedance/resistance (greater than 30Ω) grounding system.

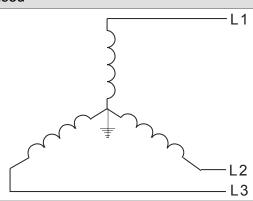
- ☑ Disconnect the ground cable from the internal EMC filter.
- ☑ In situations where EMC is required, check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.
- ☑ Do not install an external RFI/EMC filter, the EMC filter will pass through a filter capacitor, thus connecting power input to ground. This is very dangerous and can easily damage the Power Regenerative Unit.


Asymmetric Ground System(Corner Grounded TN Systems)

Caution: Do not cut the RFI short-circuit cable while the input terminal of the Power Regenerative Unit carries power.

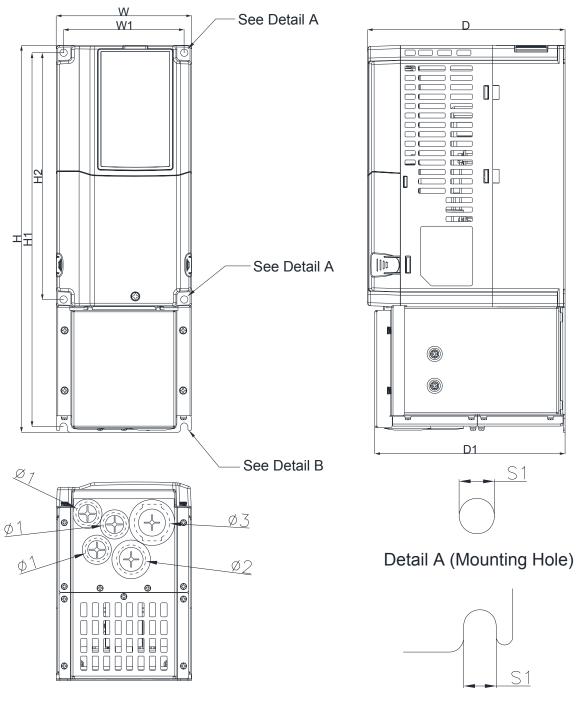

In the following four situations, the RFI short-circuit cable must be cut off. This is to prevent the system from grounding through the RFI capacitor, damaging the Power Regenerative Unit.

3 Grounding at one end in a single-phase configuration



4 No stable neutral grounding in a three-phase autotransformer configuration

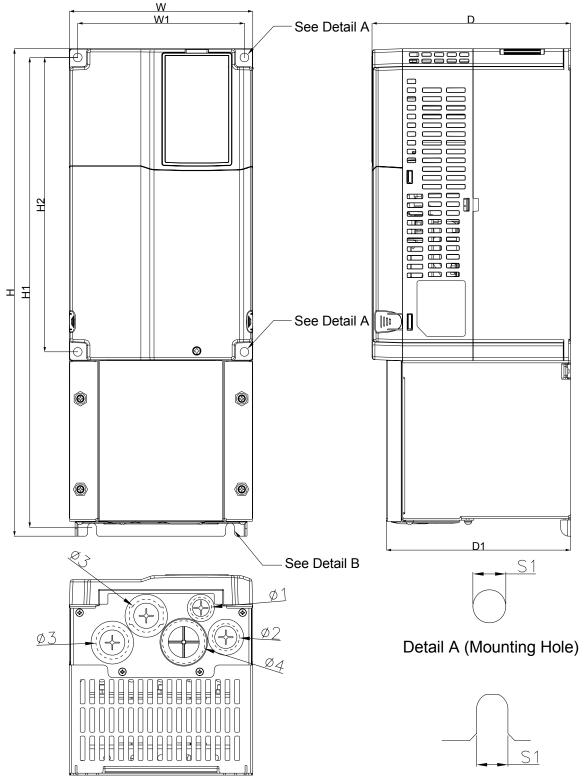
RFI short-circuit can be used


Internal grounding through RFI capacitor, which reduces electromagnetic radiation. In a situation with higher requirements for electromagnetic compatibility, and using a symmetrical grounding power system, an EMC filter can be installed. As a reference, the diagram on the right is a symmetrical grounding power system.

Dimensions

Frame A

REG075A23A-21; REG110A23A-21; REG075A43A-21; REG110A43A-21; REG150A43A-21;

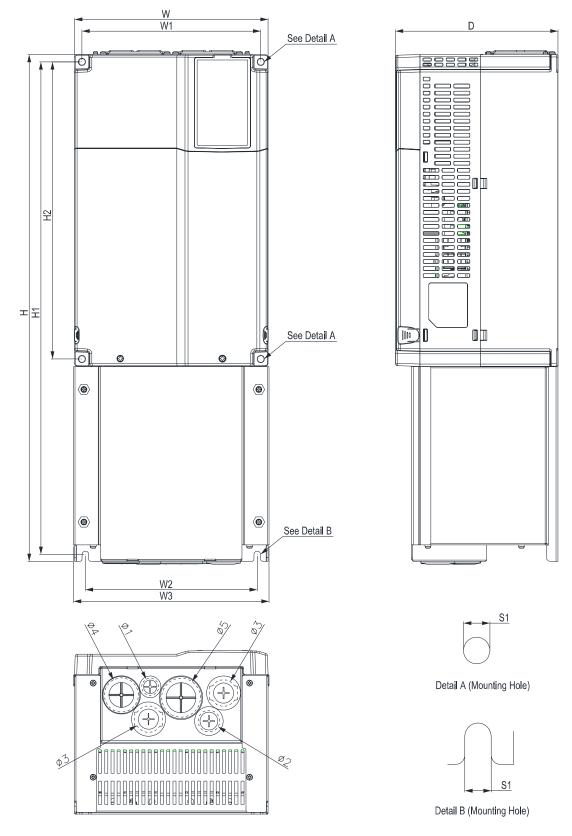


Detail B (Mounting Hole)

Unit: mm [inch]

Frame	W	Н	D	W1	H1	H2	D1	S1	Ф1	Ф2	Ф3
۸1	130.0	370.0	190.0	116.0	357.5	236.0	183.0	7.0	22.2	28.0	34.0
A1	[5.12]	[14.56]	[7.48]	[4.57]	[14.07]	[9.29]	[7.20]	[0.28]	[0.87]	[1.10]	[1.34]

Frame B
REG150A23A-21; REG185A23A-21; REG220A23A-21; REG185A43A-21; REG220A43A-21; REG300A43A-21;



Detail B (Mounting Hole)

Unit: mm [inch]

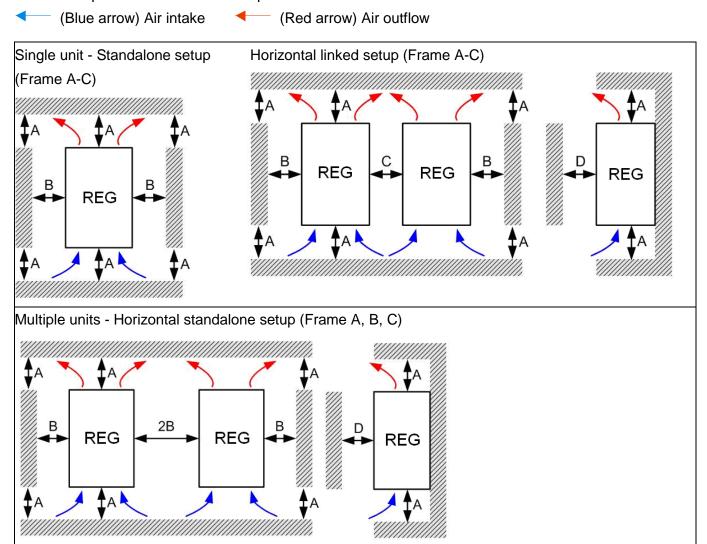
Frame	W	Н	D	W1	H1	H2	D1	S1	Ф1	Ф2	Ф3	Ф4
D4	190.0	500.0	205.0	172.5	482.0	302.0	190.5	9.0	22.2	28.0	34.0	43.8
B1	[7.48]	[19.68]	[8.09]	[6.79]	[18.98]	[11.89]	[7.50]	[0.35]	[0.87]	[1.10]	[1.34]	[1.72]

Frame C
REG300A23A-21; REG370A23A-21; REG370A43A-21; REG450A43A-21; REG550A43A-21;

Unit: mm [inch]

I	rame	W	Н	D	W1	W2	W3	H1	H2	S1	Ф1	Ф2	Ф3	Ф4	Ф5
	C1	250.0	650.0	210.0	231.0	220.0	252.5	631.5	381.0	8.5	22.2	28.0	34.0	44.0	50.1
	Ci	[9.84]	[25.59]	[8.27]	[9.09]	[8.74]	[9.94]	[24.86]	[15.00]	[0.33]	[0.87]	[1.10]	[1.34]	[1.73]	[1.97]

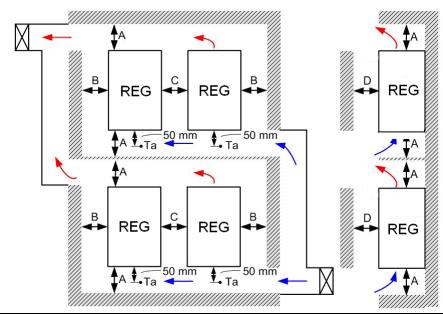
www.maher.ir


02 Checking & Recommendations

Setup Distances & Wiring Description

- Please make sure that this product is installed upright.
- Do not allow foreign materials such as fibers, paper, wood chips/dust, or scrap metal to enter the power regenerative unit or adhere to the cooling fan.
- ☑ The unit should be installed to a metallic or other nonflammable control panel, otherwise it may cause a fire.
- ☑ The power regenerative unit should be installed in an environment that complies to pollution level 2 with clean circulating air. Clean circulating air is defined as air without polluting substances or electronically contaminated dust.

The following diagrams are for demonstration purposes only, and may differ from the actual product, in which case please refer to the actual product

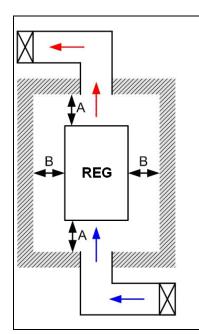


Multiple units - Vertical linked setup (Frame A, B, C)

Ta: Frame A~C

When setting up multiple units in a vertical standalone setup, dividers should be installed between the levels, and the dimensions of the dividers should be determined on the principle that the temperature at the intake fans should be lower than the operating temperature.

(As shown in the diagrams below) Operating temperature is defined as the temperature measured 50mm in front of the fan inlet.


Distances

Frame	A (mm)	B (mm)	C (mm)	D (mm)	
A~C	60	30	10	0	

Frame A	REG075A23A-21; REG110A23A-21; REG075A43A-21; REG110A43A-21; REG150A43A-21;
Frame B	REG150A23A-21; REG185A23A-21; REG220A23A-21; REG185A43A-21; REG220A43A-21;
	REG300A43A-21;
Frame C	REG300A23A-21; REG370A23A-21; REG370A43A-21; REG450A43A-21; REG550A43A-21;

A-D above are all required minimum distances, any distances under these values will affect the fan's functions.

NOTE

- « (As shown in the diagram on the left) The specified distances are only
 applicable in open spaces. If the units are being installed in a closed space
 (such as distribution channel or chassis), in addition to keeping the same
 distances as in an open space, please also install ventilation or air conditioning
 systems to keep the ambient temperature under the operating temperature.
- The table shows the required air flow rate for each model when installing single units in a closed space. For multiple units, the required air flow rate must be multiplied by the number of units installed.
- Please refer to Air flow rate for cooling in the attached table when selecting and designing ventilation systems (Air flow rate for cooling).
- For the design of air conditioning systems, please refer to Power Dissipation in the attached table. (Power Dissipation).

	Air flow rate for cooling										
Model No.	F	Flow Rate (cfm	1)	Flow Rate (m ³ /hr)							
Model No.	External	Internal	Total	External	Internal	Total					
REG075A23A-21	44	-	44	75	-	75					
REG110A23A-21	44	-	44	75	-	75					
REG150A23A-21	92	-	92	155	-	155					
REG185A23A-21	92	-	92	155	-	155					
REG220A23A-21	92	-	92	155	-	155					
REG300A23A-21	121	-	121	206	-	206					
REG370A23A-21	118	15	133	201	25	226					
REG075A43A-21	44	-	44	75	-	75					
REG110A43A-21	44	-	44	75	-	75					
REG150A43A-21	44	-	44	75	-	75					
REG185A43A-21	92	-	92	155	-	155					
REG220A43A-21	92	-	92	155	-	155					
REG300A43A-21	92	-	92	155	-	155					
REG370A43A-21	121	-	121	206	-	206					
REG450A43A-21	118	15	133	201	25	226					
REG550A43A-21	118	15	133	201	25	226					

- * The table shows the required air flow rate for each model when installing single units in a closed space.
- * For multiple units, multiply the required air flow rate for single-unit installation by the number of units installed.

	Power dis	sipation of REG			
Model No.	Loss External (Heat sink)	Internal	Total		
REG075A23A-21	127	86	213		
REG110A23A-21	203	121	324		
REG150A23A-21	219	161	380		
REG185A23A-21	255	184	439		
REG220A23A-21	336	216	552		
REG300A23A-21	434	186	620		
REG370A23A-21	678	898			
REG075A43A-21	128	76	204		
REG110A43A-21	198	93	291		
REG150A43A-21	240	362			
REG185A43A-21	291	138	429		
REG220A43A-21	368	158	526		
REG300A43A-21	446	211	657		
REG370A43A-21	508	692			
REG450A43A-21	664	218	882		
REG550A43A-21	919	257	1176		

^{*} The table shows the required heat dissipation rate due to heat loss for each model when installing single units in a closed space.

^{*} For multiple units, multiply the heat dissipation rate for single units by the number of units installed.

The heat dissipation data are calculated based on each model operating under rated voltage, current, and default carrier wave.

03 Specification

230V Series

Frame		Α			В	С					
Model number REGA23A-21		075	110	150	185	220	300	370			
Power rating (kW)		7.5	11	15	18.5	22	30	37			
	Input current (A)	20	32	38	49	60	80	100			
Mains	Voltage / frequency rating		3	3-phase AC 200V - 240V (-15% - +10%), 50/60Hz							
	Operation voltage				170~265\	/ac					
	Frequency Tolerance	47~63Hz									
Feedb	Feedback activation DC voltage range		300 - 360Vdc (can be adjusted via parameter 01-08)								
	Net weight		.5Kg	14.2± 0.5Kg			26.4± 0.5Kg	28.0± 0.5Kg			

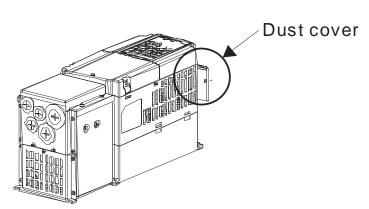
460V Series

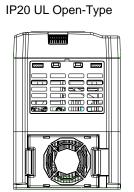
Frame	-rame		A			В			С		
Mode	I number REGA43A-21	075	110	150	185	220	300	370	450	550	
Powe	r rating (kW)	7.5	11	15	18.5	22	30	37	45	55	
Maine	Input current (A)	10.5	17	20	25	32	43	49	60	75	
Mains	Voltage / frequency rating	3-phase AC 380V - 480V (-15% - +10%), 50/60Hz									
	Operation voltage	323~528Vac									
	Frequency Tolerance	47~63Hz									
Feedl	oack activation DC voltage range	580 - 720Vdc (can be adjusted via parameter 01-08)									
	Net weight		7.5± 0.5Kg			14.2± 0.5Kg			26.3± 0.5Kg	27.8± 0.5Kg	

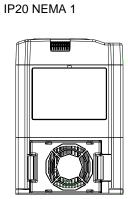
Common Characteristics

Control method	SVPWM							
Brake torque	80% rated input current continuous; 100% rated input current 1min, 25%ED							
Overload capacity	150% rated voltage 10sec							
Generic input signal	5 channels of signal terminals 24Vdc 6mA							
Generic output signal	2 channels of signal terminals 48Vdc 50mA, 1 channel of signal terminal relay output							
Cooling method	Forced air cooling							
Certifications	(€ © Us SEMI F47 GB 12668.3 AE95 VN136							

NOTE

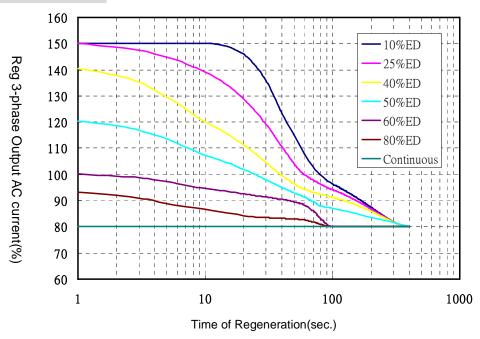

■ This product can show current status combining with attached display panel. If you want to execute advance operations and set parameters, please refer to 05 Optional Accessories and purchase a digital keypad.


Environment for Operation, Storage and Transportation


DO NOT expose the Power Regeneration Unit in the bad environment, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than 0.01mg/cm² every year.

0.01mg/cm eve	ery year.								
	Installation locat	tion	IEC60364-1/IE	C60664-1 Pollution degree 2, Indoor use only					
	Common dia a	Storage	-25°C ~ +70°C						
	Surrounding	Transportation	-25°C ~ +70°C						
	Temperature	Non-condensati	on, non-frozen						
		Operation	Max. 90%						
	Date III will	Storage /	Max. 95%						
	Rated Humidity	Transportation							
		No condense w	lo condense water						
		Operation /	86 to 106 kPa						
	Air Pressure	Storage							
Environmental		Transportation	70 to 106 kPa						
	Pollution Level	IEC721-3-3	EC721-3-3						
		Operation	Class 3C2; Cla	ss 3S2					
		Storage	Class 2C2; Cla	ss 2S2					
		Transportation	Class 1C2; Cla	ss 1S2					
		No concentrate	lo concentrate						
			If Power Reger	neration Unit is installed at altitude 0~1000m, follow					
			normal operation restriction. If it is install at altitude 1000~3000m,						
	Altitude	Operation	decrease 2% of rated current or lower 0.5℃ of temperature for						
			every 100m inc	crease in altitude. Maximum altitude for Corner					
			Grounded is 20	000m.					
Package Drop	Storage	ISTA procedure	1A (based on)	weight) IEC60068-2-31					
r ackage brop	Transportation	131A procedure	TA (based off)	weight) IEG00000-2-31					
Vibration	1.0mm, peak to	peak value rang	ge from 2Hz to 1	3.2 Hz; 0.7G~1.0G range from 13.2Hz to 55Hz;					
Vibration	1.0G range from	1 55Hz to 512 Hz	z. Comply with I	EC 60068-2-6					
Impact	IEC/EN 60068-2	2-27							
Operating position	Max. allowed of installation posit	ffset angle $\pm 10^{\circ}$	(under normal	10°———10°					

Specification for Operation Temperature and Protection Level



Dust cover	Protection Level	Operation Temp.	
with	IP20 NEMA 1	When operating at rated current, the surrounding temperature has to be	
		between -20 $^{\circ}\!$	
		decrease 2% of the rated current for every 1°C increase in temperature. The	
		allowable maximum surrounding temperature is $60^{\circ}\!$	
without	IP20 UL Open-Type	When operating at rated current, the surrounding temperature has to be	
		between -20 $^{\circ}\!$	
		decrease 2% of the rated current for every 1°C increase in temperature. The	
		allowable maximum surrounding temperature is $60^{\circ}\!$	

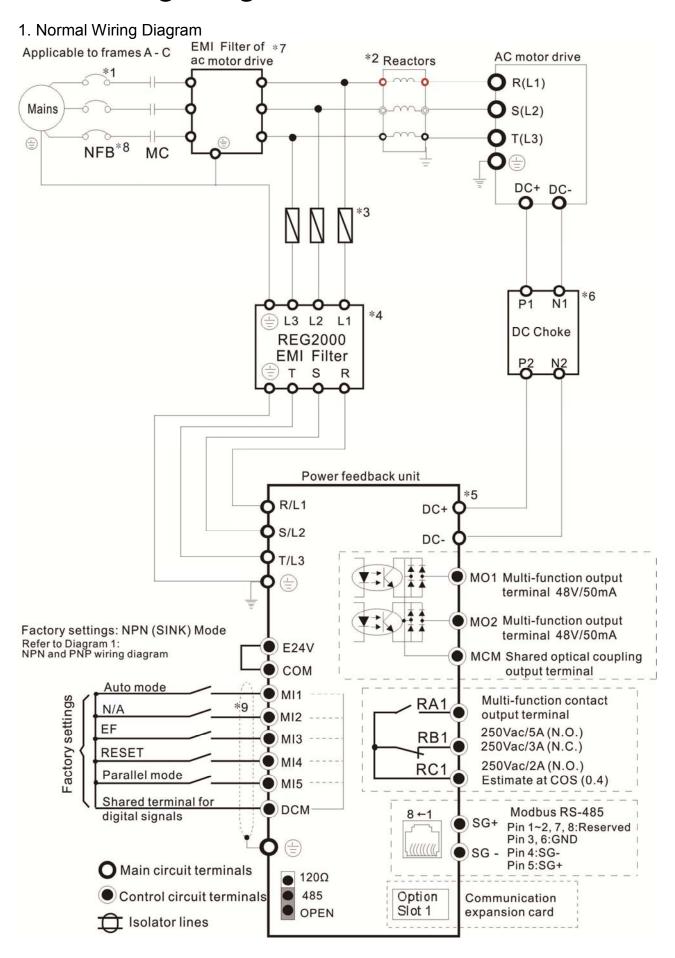
REG Performance Curve

* The measurement of above plot is to combine REG2000 with DC choke.

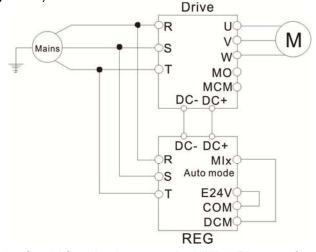
04 Wiring

After removing the front cover, examine if the power and control terminals are clearly noted. Please read following precautions before wiring.

- ☑ Make sure that power is only applied to the R/L1, S/L2, T/L3, DC+, and DC- terminals. Failure to comply may result in damage to the equipments. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1)..
- ☑ All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
- ☑ Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration



- ☑ It is crucial to turn off the Power Regeneration Unit power before any wiring installation are made. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off therefore it is suggested for users to measure the remaining voltage before wiring. For your personnel safety, please do not perform any wiring before the voltage drops to a safe level < 25 Vdc. Wiring installation with remaining voltage condition may cause sparks and short circuit.</p>
- Only qualified personnel familiar with Power Regeneration Unit is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.



- ☑ When wiring, please choose the wires with specification that complies with local regulation for your personnel safety.
- ☑ Check following items after finishing the wiring:
 - 1. Are all connections correct?
 - 2. Any loosen wires?
 - 3. Any short-circuits between the terminals or to ground?

4-1 Wiring Diagram

- *1 The NFB can be selected based on the selection of the drive.
- *2 If a reactor is connected to the drive, install the reactor here (optional).
- *3 Please refer to 05 Optional Accessories for the selection of fuses.
- *4 The length between REG2000 EMI filter and power regenerative unit must be less than 10m, and can't provide power to other instruments from here. While using REG2000 EMI filter, please remove the RFI switch on the power regenerative unit.
- *5 The length of the DC+/DC- wires must be less than 5m, and twisted lines are highly recommended.
- *6 There is an attached DC choke to the shipment, please install it as the above normal wiring diagram. The P1,P2,N1,N2 in Normal Wiring Diagram is equal to the terminal 1,2,3,4 in the Dimensions of DC Choke(Diagram 2). Installing the attached DC choke can increase the regenerative efficiency and prevent from electromagnetic interference. The part numbers of DC choke in REG2000 series is in Table 1.
- *7 If there is no REG2000 EMI filter, we recommend using inductors (w/o capacitors) as the EMI filter of AC Motor Drives, in order to avoid capacitors damaged by current ripples.
- *8 If providing power to other instruments is needed, we recommend using the terminals of magnetic contactor (MC) or NFB to connect to other instruments.
- *9 Wiring in auto mode is shown below. Please refer to Pr02-00 ~ Pr02-04 for detailed wiring of multi-function input terminal (MIx, default setting is MI1).

*10 There are two wiring methods of multi-function input terminal (Mlx). Please refer to the following diagrams:

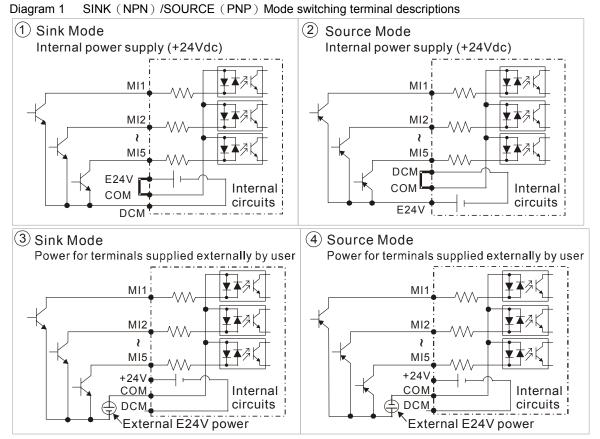
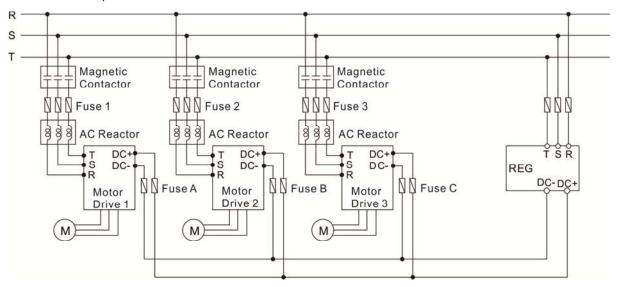


Diagram2 Dimensions of DC chokes RG-RC110D2, RG-RC150D4 RG-RC220D2, RG-RC300D4 4 3 () 4 3 10Max 13Min Heat Shrink Tube X 4PCS Heat Shrink Tube X 4PCS Top View Top View Front View Front View 2 Red Tube Red Tube Black Tube Black Tube 3 (0) 3 () **Bottom View** A: 105.0 MAX E: 20 ± 0.5 A: 95.0 MAX B: 70.0 MAX E: 32±0.5 F: 85±5.0 B: 75.0 MAX C: 96.0 MAX F: 85±5.0 G: 93±0.5 C: 86.0 MAX G: 83±0.5 H: Φ5.5±0.3 H: Φ5.5±0.3 RG-RC370D2 RG-RC550D4 3 4 Heat Shrink Tube X 4PCS Heat Shrink Tube X 4PCS Top View Top View Front View Red Tube Red Tube Black Tube Black Tube 3 () \rangle 3 () **Bottom View Bottom View** E: 20±0.5 F: 85±5.0 A: 105.0 MAX B: 75.0 MAX C: 96.0 MAX A: 105.0 MAX E: 20 ± 0.5

G: 93±0.5 H: Φ5.5±0.3

B: 85.0 MAX C: 96.0 MAX


G: 93±0.5 H: Φ5.5±0.3

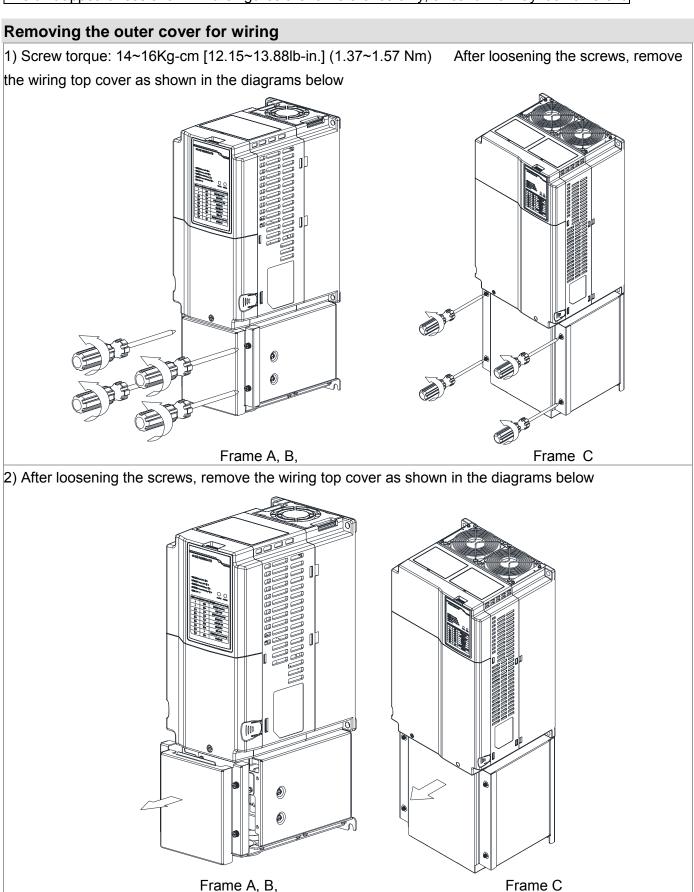
^{*} Please make sure that P,N terminals (DC Bus) don't short through while installing DC choke.

able 1 The part numbers of DC choke in REG2000 series			
REG Model	PN. of attached DC choke		
REG075A23A-21	RG-RC110D2		
REG110A23A-21	NG-NCTIOD2		
REG150A23A-21			
REG185A23A-21	RG-RC220D2		
REG220A23A-21			
REG300A23A-21	RG-RC370D2		
REG370A23A-21	RG-RC370D2		
REG075A43A-21			
REG110A43A-21	RG-RC150D4		
REG150A43A-21			
REG185A43A-21			
REG220A43A-21	RG-RC300D4		
REG300A43A-21			
REG370A43A-21			
REG450A43A-21	RG-RC550D4		
REG550A43A-21			

2. Multi-AC Motor Drives Wiring Diagram

- Points for Attention:
- 1. Please refer to this diagram to wire up.
- 2. Please make sure that your AC motor drives can operate in common DC bus at first. And be aware that the ratings of rectifier or AC motor drives are properly chosen.
- 3. In order to choose proper power regenerative unit, please confirm the maximum regenerative energy while all AC motor drives work at the same time firstly.
- 4. For one-to-many installation, it is recommended to install a fuse, i.e. fuse_A/B/C..., at the DC input side of every drive. Please calculate and select a suitable fuse for your every drive: Fuse type = (Rated input current of drive) x 2.5.

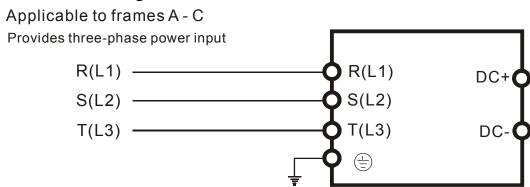
3. Multi-REG2000 Wiring Diagram


- Points for Attention:
- 1. Support maximum 4 power regenerative units working in parallel at the same time.
- 2. DC choke is required, and please install DC choke as near each power regenerative unit as better.
- 3. Please refer to the following diagram. Instead of directly coming from power regenerative unit 1, the wiring which connects to power regenerative unit 2 shall come from the DC bus of the AC motor drive. In addition, using copper bars for wiring are highly recommended.
- 4. Wiring in parallel mode is shown below. Please refer to Pr02-00 ~ Pr02-04 for detailed wiring of multi-function input terminal (MIx, default setting is MI5). Working in parallel, each power regenerative unit will reduce its current limit to 80% automatically.

4-2 Main Circuit Terminals

Please remove the top cover before wiring the main circuit terminals.

The unit appearances shown in the figures are for reference only, a real drive may look different.

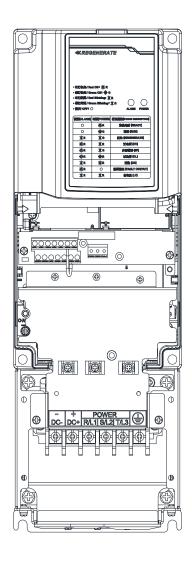

3) Loosen the screws to wire the main circuit terminals

Frame A, screw torque: 6~8Kg-cm [5.2~6.9lb-in.] (0.59~0.78 Nm)

Frame B, screw torque: 14~16Kg-cm [12.15~13.88lb-in.] (1.37~1.57 Nm)

Frame C, screw torque: 10~12Kg-cm [8.68~10.42lb-in.] (0.98~1.18 Nm)

Main Circuit Terminal Diagram

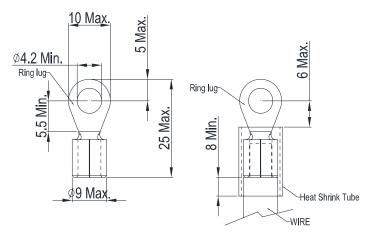

Frame C

Frame A, B,

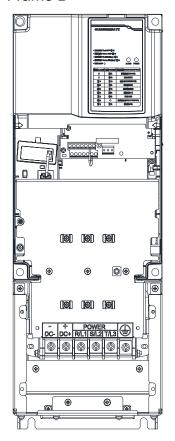
Terminal labels	Descriptions		
R/L1, S/L2, T/L3	AC line input terminals 3-phase		
DC+, DC-	Connect to the AC motor drive's terminals DC+ and DC- respectively. There is a build-in fuse, which can prevent from damaging AC motor drive when REG malfunctions, in the internal hardware circuit.		
	Earth connection, please comply with local regulations.		

Main Circuit Terminal Specifications

Frame A


Main Circuit Terminals:

R/L1, S/L2, T/L3⁽⁺⁾, DC+, DC-


Maximum wire	Minimum wire	Torque
diameter	diameter	(±10%)
8 AWG (8.4mm²)	10 AWG (5.3mm ²)	N//
	8 AWG (8.4mm ²)	M4
	14 AWG (2.1mm ²)	20kg-cm (17.4 lb-in.)
	10 AWG (5.3mm ²)	(17.4 lb-lil.) (1.96Nm)
	10 AWG (5.3mm ²)	(1.aolviii)
	diameter 8	diameter diameter 10 AWG (5.3mm²) 8 AWG (8.4mm²) 14 AWG (2.1mm²) 10 AWG (5.3mm²)

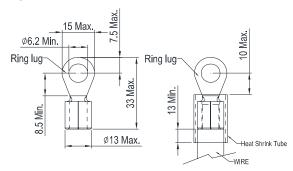
UL installations must use 600V, 75°C or 90°C wire. Use copper wire only. 8 AWG wire must use ring lug.

The diagrams below on the right are specifications for insulated heat shrink tubing that comply with UL (600V, YDPU2).

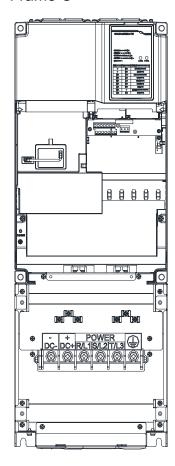
Frame B

Main Circuit Terminals:

R/L1, S/L2, T/L3, ⊕, DC+, DC-


Model	Maximum wire	Minimum wire	Torque
	diameter	diameter	(±10%)
REG150A23A-21;		6 AWG (13.3mm ²)	
REG185A23A-21;		4 AWG (21.2mm ²)	M6
REG220A23A-21;	4	4 AWG (21.2mm ²)	35kg-cm
REG185A43A-21;	AWG (21.2mm ²)	8 AWG (8.4mm ²)	(30.4 lb-in.)
REG220A43A-21;		8 AWG (8.4mm ²)	(3.434Nm)
REG300A43A-21;		6 AWG (13.3mm ²)	

UL installations must use 600V, 75°C or 90°C wire. Use copper wire only.

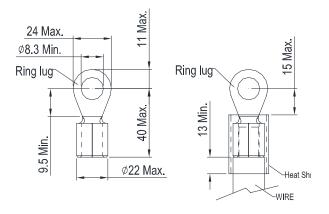

REG220A23A-21 must use 90¢J wire.

NOTE

The diagrams below on the right are specifications for insulated heat shrink tubing that comply with UL (600V, YDPU2)..

Frame C

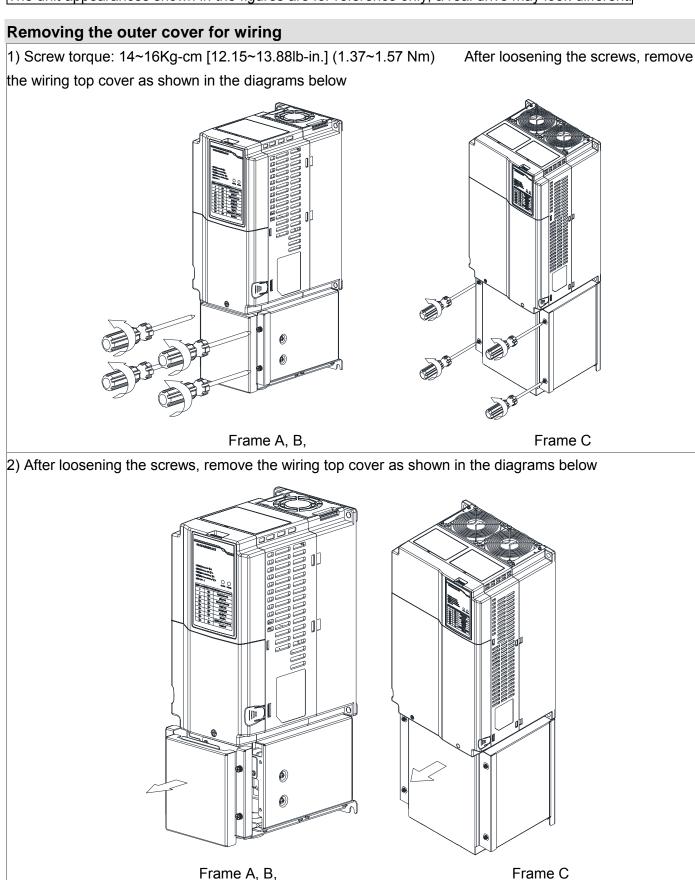
Main Circuit Terminals:

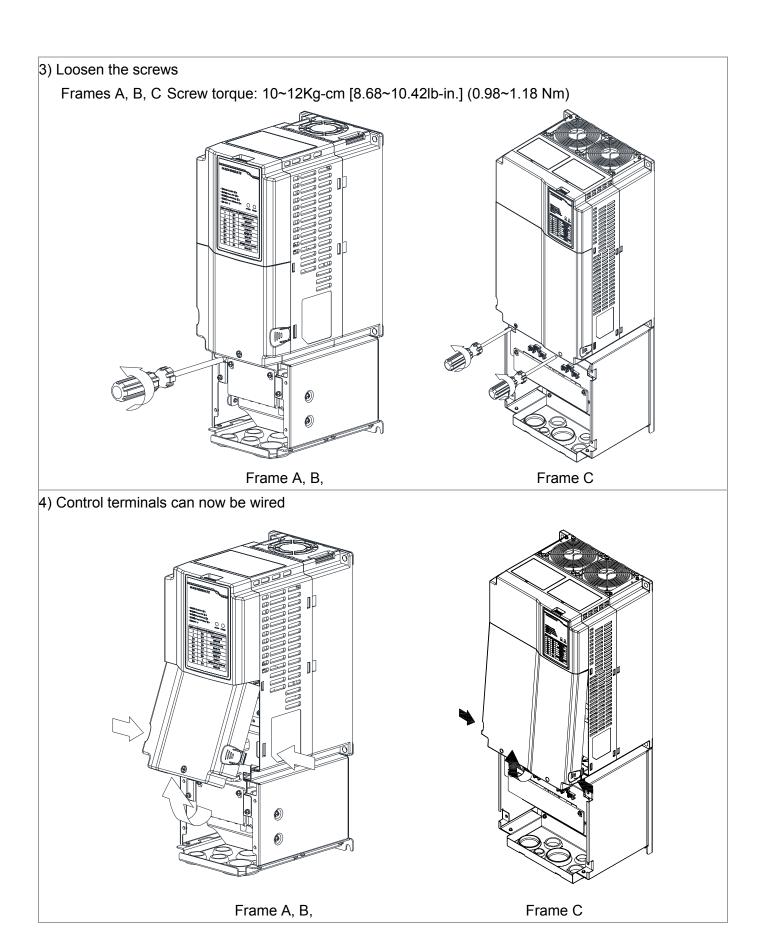

R/L1, S/L2, T/L3, ⊕, DC+, DC-

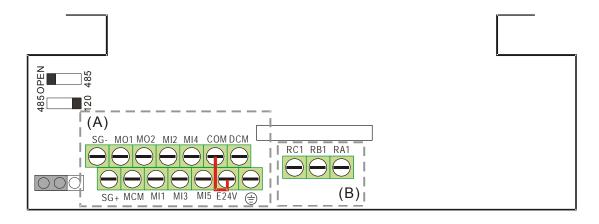
Model	Maximum wire	Minimum wire	Torque
	diameter	diameter	(±10%)
REG300A23A-21;		2 AWG (33.6mm ²)	M8
REG370A23A-21;	1/0	1/0 AWG (53.5mm ²)	
REG370A43A-21;	1/0 AWG (53.5mm²)	4 AWG (21.2mm ²)	81.5kg-cm (70.8 lb-in.)
REG450A43A-21;		3 AWG (26.7mm ²)	(70.8 lb-li1.) (8Nm)
REG550A43A-21;		2 AWG (33.6mm ²)	(OIVIII)

UL installations must use 600V, 75°C or 90°C wire. Use copper wire only.

The diagrams below on the right are specifications for insulated heat shrink tubing that comply with UL (600V, YDPU2).


Main circuit power input terminals:


- ☑ Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phase-sequence requirement, it can be used upon random selection.
- ☑ It is recommend to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the Power Regeneration Unit. Both ends of the MC should have an R-C surge absorber.
- ☑ Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
- ☑ Lease use voltage and current within the specification.
- ☑ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200mA or above and not less than 0.1-second operation time to avoid nuisance tripping.
- ☑ Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.


4-3 Control Circuit Terminals

Please remove the top cover before wiring the multi-function input and output terminals

The unit appearances shown in the figures are for reference only, a real drive may look different.

Control Terminal Specifications

Wire Gauge: 26~16AWG_i]0.1281-1.318mm²);

Torque:(A) 5.6kg-cm [4.86lb-in.] (0.55Nm) (As shown in figure above)

(B) 5.1kg-cm [4.43lb-in.] (0.5Nm) (As shown in figure above)

Wiring notes:

■ The factory setting for E24V-COM is short circuit and SINK mode (NPN); please refer to Diagram 1 in Wiring.

Terminal	Description of Function	Factory setting (NPN mode)
E24V	The factory setting for +24V-COM is short circuit and SINK mode (NPN); (Source)	+24V±5% 200mA
COM	Digital control signal common (Sink)	Common for multi-function input terminals
MI1 ~ MI5	Multi-function input 1-5	Refer to parameters 02-00 - 02-04 to program the multi-function inputs MI1-MI5. ON: the activation current is 6.5mA \geq 11Vdc; OFF: leakage current tolerance is 10µA \leq 5Vdc
DCM	Common terminal for digital control signals (Sink)	Common terminal for multi-function input
MO1	Multi-function output 1 (photocoupler)	The Power Regeneration Unit releases various monitor signals, via transistor (open collector).
MO2	Multi-function output 2 (photocoupler)	Max 48Vdc 50mA
MCM	Multi-function Output Common	● MO2 ● MCM
RA1	Multi-function relay output 1 (N.O.) a	Resistive load
RB1	Multi-function relay output 1 (N.C.) b	5A(N.O.)/3A(N.C.) 250VAC

Terminal	Description of Function	Factory setting (NPN mode)
		5A(N.O.)/3A(N.C.) 30VDC
RC1		Inductive load (COS 0.4)
	Multi-function relay common	2.0A(N.O.)/1.2A(N.C.) 250VAC
		2.0A(N.O.)/1.2A(N.C.) 30VDC
		Outputs various monitoring signals.
SG+	Modbus RS-485	
SG-	PIN 1,2,7,8: Reserved PIN 3, 6: GND	
	PIN 4: SG- PIN 5: S	PIN 5: SG+

NOTE: Wire size of analog control signals: 18 AWG (0.75 mm²) with shielded wire

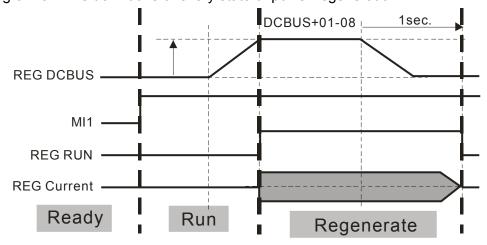
Digital inputs (MI1~MI5, COM)

☑ When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.

Transistor output terminals (MO1, MO2, MCM)

- oxdot Make sure to connect the digital outputs to the right polarity.
- ☑ When connecting a relay to the digital outputs connect a surge absorber across the coil and check the polarity.

4-4 Display Panel Indicators


Display panel information

Power & alarm indicator status descriptions

Alarm	Power	Description
OFF	Red ON	Ready
OFF	Green ON	RUN
Red Blinking	Green Blinking	REGENERATE
Red ON	Red Blinking	OV
Red ON	Green Blinking	EF
Red ON	Red ON	OL
Red Blinking	Red ON	ОН
Red ON	OFF	Fault Output
Red Blinking	Red Blinking	LV
Red Blinking	OFF	PHL & PLE
OFF	Green Blinking	Other Error

Diagram 3 The definitions of every state of power regeneration.

05 Optional Accessories

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your Power Regeneration Unit would substantially improves the unit's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

Optional Accessories

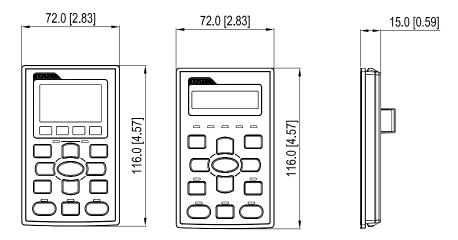
- 5-1 Digital keypad
- 5-2 USB/RS485 Communication Interface IFD6530
- 5-3 Fuse Specification Chart
- 5-4 REG 2000EMI filter

5-1 Digital Keypad

KPC-CC01

KPC-CE01

Communication interface


RJ-45 (socket), RS-485 interface;

Installation Method

Embedded type and can be put flat on the surface of the control box. The front cover is water proof.

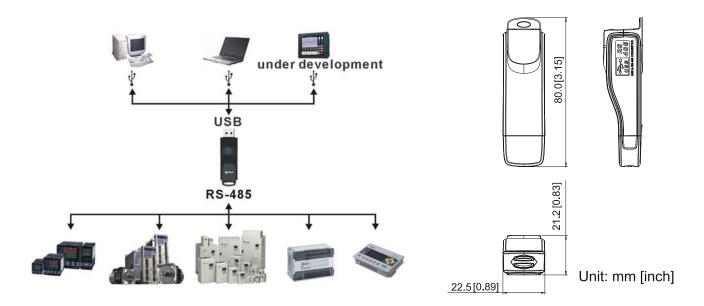
Keys	Description		
ESC	ESC Key		
	Press ESC key to return to the previous page. It also functions as a return to last category key in the sub-menu.		
MENU	Menu Key		
	Press MENU key under any condition will return to the main MENU.		
	Menu content:		
	Parameter Detail 3. Keypad locked		
	Copy Parameter		
ENTER	ENTER Key		
	Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.		
HAND	No assigned function		
AUTO	No assigned function		
FWD/REV	No assigned function		
RUN	Start Key		
	☑ It is only valid when the source of operation command is from the keypad.		
	☑ Press the RUN key, the drive will according to the start-up setting and the RUN LED will be ON.		
	☑ RUN key can be pressed for many times when the Power Regeneration Unit is in stop status.		
STOP	Stop Key		
	☑ STOP key has the highest priority in command.		
	☑ Press STOP key, the Power Regeneration Unit will come to stop under any condition.		
	☐ The RESET key can be used to reset the Power Regeneration Unit when faults occur. If the RESET key is		
	not responding, check MENU → Fault Records and check the most recent fault.		

KPC-CC01& KPC-CE01 Dimension

Optional RJ45 extension cable for the digital keypad

Part numbers	Description
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9m)
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)

5-2 USB/RS-485 Communication Interface IFD6530


- ✓ Please thoroughly read this instruction sheet before installation and putting it into use.
- √ The content of this instruction sheet and the driver file may be revised without prior notice. Please
 consult our distributors or download the most updated instruction/driver version at
 http://www.delta.com.tw/product/em/control/cm/control_cm_main.asp

Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable Models: All DELTA IABU products.

■ Applications and Dimensions

Functional Specifications

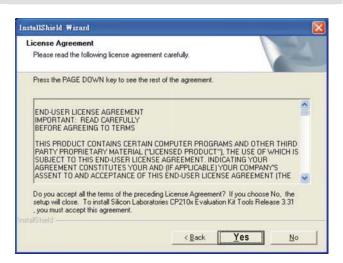
Power supply	No external power is needed
Power consumption	1.5W
Isolation voltage	2,500VDC
Baud rate	75,150,300,600,1,200,2,400,4,800,9,600,19,200,38,400,57,600,115,200 bps
RS-485 connector	RJ-45
USB port	A type (plug)
Compatibility	Full compliance with USB V2.0 specification
Max. cable length	RS-485 Communication Port: 100 m
Support RS-485	half-duplex transmission

www.maher.ir

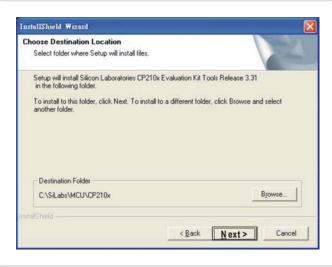
RJ-45

PIN	Description	PIN	Description
1	Reserved	5	SG+
2	Reserved	6	GND
3	GND	7	Reserved
4	SG-	8	+9V

Preparations Before Driver Installation


Please extract the driver file (IFD6530_Drivers.exe) by following steps. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

Note: DO NOT connect IFD6530 to PC before extracting the driver file.


STEP 1

STEP 2

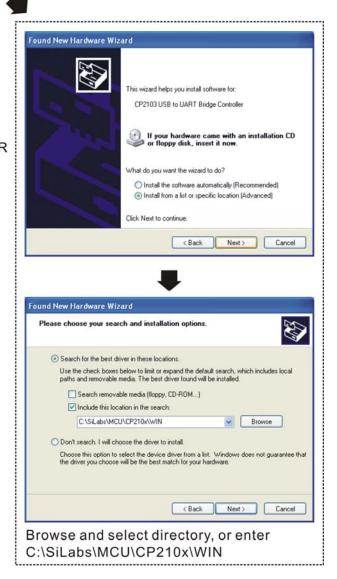
STEP 3

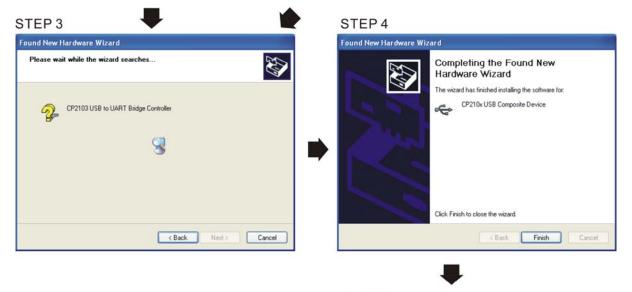
STEP 4

STEP 5

You should have a folder marked SiLabs under drive C. c:\ SiLabs

Driver Installation


After connecting IFD6530 to PC, please install driver by following steps.


STEP 1

STEP 5
Repeat Step 1 to Step 4 to complete
COM PORT setting.

LED Display

- 1. Steady Green LED ON: power is ON.
- 2. Blinking orange LED: data is transmitting.

5-3 Fuse **Specification Chart**

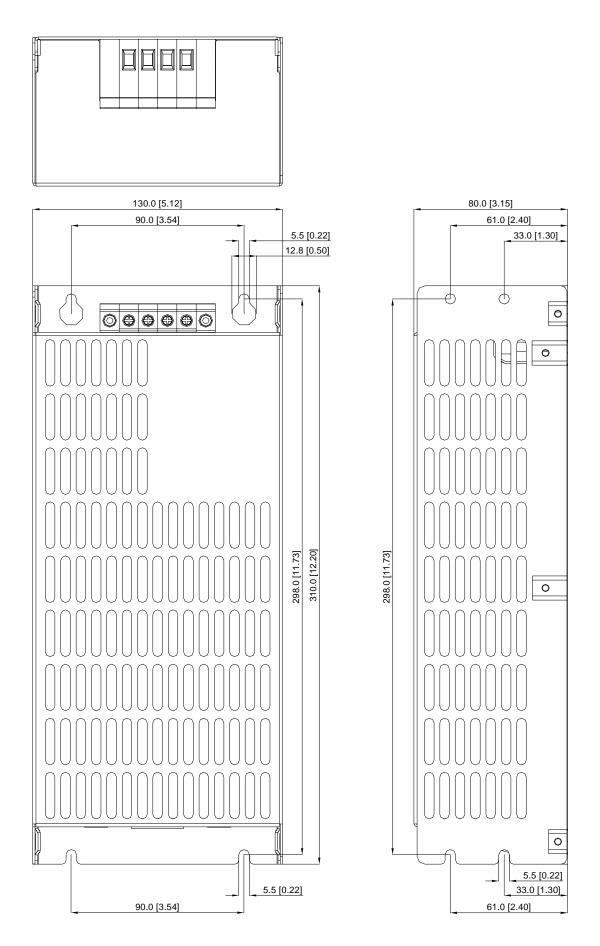
- oxdot The fuses with amperes smaller than the those listed in the table below are allowed.
- ☑ Use only the fuses comply with UL certificated.
- oxdot Use only the fuses comply with local regulations.

Frame A	
Model No.	Ampere
REG075A23A-21	50
REG110A23A-21	80
REG075A43A-21	25
REG110A43A-21	45
REG150A43A-21	50

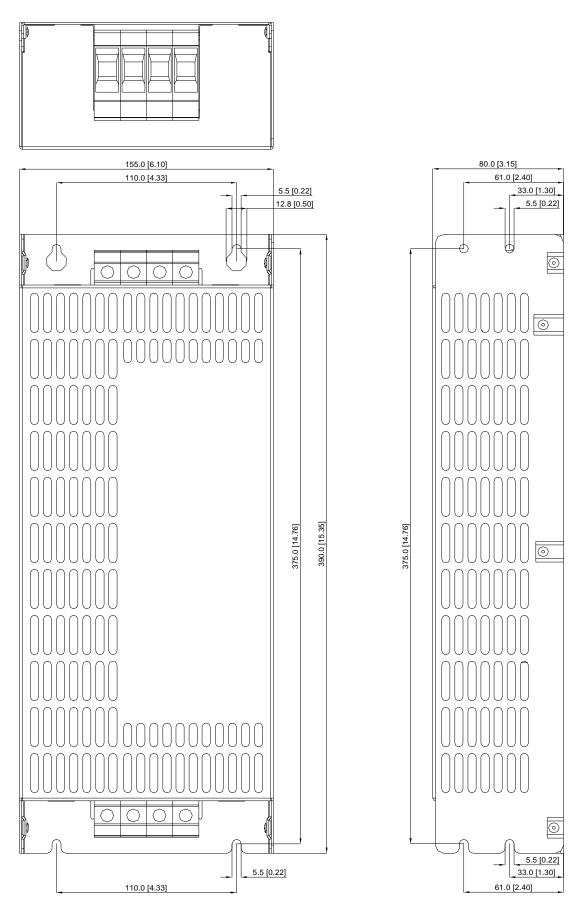
Frame B			
Model No.	Ampere		
REG150A23A-21	100		
REG185A23A-21	125		
REG220A23A-21	150		
REG185A43A-21	60		
REG220A43A-21	80		
REG300A43A-21	100		

Frame C	
Model No.	Ampere
REG300A23A-21	200
REG370A23A-21	250
REG370A43A-21	125
REG450A43A-21	150
REG550A43A-21	200

5-4 REG2000 EMI Filter


EMI filter specifications

REG2000 Model	REG EMI Filter	Weight(kg)
REG075A23A-21	RG-EF110A2	3.2±0.5
REG110A23A-21	NG-EFTIUAZ	3.2±0.3
REG150A23A-21		
REG185A23A-21	RG-EF220A2	4.8±0.5
REG220A23A-21		
REG300A23A-21	RG-EF370A2	6.0±0.5
REG370A23A-21	NG-LI 370AZ	0.0±0.5
REG075A43A-21		
REG110A43A-21	RG-EF150A4	3.2±0.5
REG150A43A-21		
REG185A43A-21		
REG220A43A-21	RG-EF300A4	4.8±0.5
REG300A43A-21		
REG370A43A-21		
REG450A43A-21	RG-EF550A4	6.0±0.5
REG550A43A-21		


	147' '	•		
Model	Wiring Spec.		Torque (±10%)	
Model	Max. Wiring Diameter	Min. Wiring Diameter	101que (±1070)	
	REG200	0 Frame A		
RG-EF110A2	8 AWG (8.4mm²)	8 AWG (8.4mm²)	M4	
RG-EF150A4	6 AVVG (6.411111)	10 AWG (5.3mm ²)	14~16kg-cm	
	REG2000 Frame B			
RG-EF220A2	4 AWG (21.2mm²)	4 AWG (21.2mm ²)	M5	
RG-EF300A4	4 AVVG (21.2111111)	6 AWG (13.3mm ²)	30~34kg-cm	
	REG2000 Frame C			
RG-EF370A2	1/0 AWG (53.5mm ²)	1/0 AWG (53.5mm ²)	M6	
RG-EF550A4	1/0 AVVG (55.511111)	2 AWG (33.6mm ²)	60~69kg-cm	
※ UL installations must use 600V, 75°C or 90°C wire. Use copper wire only.				

[※] Please refer to 4-1 Normal Wiring Diagram for more wiring details.

Unit: mm[inch]

Unit: mm[inch]

06 List of Parameters

Users can quickly look up the range and factory setting for each parameter, making it convenient to set parameter values on their own. Parameter values can be set, changed, or reset using the digital keypad (optional) or via communication ports.

NOTE

- 1) */ Parameter setting can be adjusted during operation.
- 2) For thorough parameter descriptions, please refer to 07 Detailed Descriptions of Parameters.

00 Display Parameters

Parameter codes	Parameter names	Setting range	Factory Setting
		0: 230V, 7.5kW	
		1: 460V, 7.5Kw	
		2: 230V, 11kW	
		3: 460V, 11kW	
		4: 230V, 15kW	
		5: 460V, 15kW	
		6: 230V, 18.5kW	
00-00	ID code for the power	7: 460V, 18.5kW	Read-only
00-00	regenerative unit model	8: 230V, 22kW	Reau-only
		9: 460V, 22kW	
		10: 230V, 30kW	
		11: 460V, 30kW	
		12: 230V, 37kW	
		13: 460V, 37kW	
		15: 460V, 45kW	
		17: 460V, 55kW	
		0: 20A	
		1: 10.5A	
		2: 32A	
		3: 17A	
		4: 38A	
	Current rating of the power regenerative unit	5: 20A	
00-01		6: 49A	Read-only
		7: 25A	
		8: 60A	
		9: 32A	
		10: 80A	
		11: 43A	
		12: 100A	

Parameter codes	Parameter names	Setting range	Factory Setting
codes		13: 49A	Setting
		15: 60A	
		17: 75A	
00-02	Software version	Read-only	Read-only
00-02	Displays input current of	Read-only	Read-only
00 00	Power Regenerative Unit (A)	read only	Read Only
00-04	Displays mains frequency (Hz)	Read-only	Read-only
00-05	Displays DC voltage (V)	Read-only	Read-only
00-06	Displays power (kW)	-300.0 ~ 300.0	Read-only
00-00	Reserved	-500.0 ~ 500.0	i Neau-Oilly
00-07	Reserved		
00-08	Displays the lower value of	0.0 ~ 999.9	Read-only
00-09	kilowatt hours (kWh)	0.0 ~ 999.9	Neau-only
	regenerated by REG2000		
00-10	Displays the higher value of	0 ~ 9999	Read-only
00-10	kilowatt hours (kWh)	0 ~ 9999	Reau-only
	regenerated by REG2000		
00-11	Displays the highest ambient	Read-only	Read-only
00-11	temperature (°C)	ixeau-only	Reau-only
00-12	Displays the highest IGBT	Read-only	Read-only
00 12	temperature (°C)	read only	Read Only
00-13	Displays internal temperature	Read-only	Read-only
00 10	(°C)	ricad only	redu only
00-14	Displays power module's	Read-only	Read-only
00 11	temperature (°C)	Trodd Only	rtodd offiy
00-15	Displays the ON/OFF status of	Read-only	Read-only
00 10	digital input	Trodd Only	rtodd offily
00-16	Displays the ON/OFF status of	Read-only	Read-only
	digital output	,	100.00
00-17	DC voltage during a	Read-only	Read-only
	malfunction (V)	,	100.00
00-18	Mains frequency during a	Read-only	Read-only
	malfunction (Hz)		
00-19	Current during a malfunction	Read-only	Read-only
-	(A)		
00-20	Most recent error log	0: no error records	0
00-21	Second most recent error log	3: ocn overcurrent during operation	0
00-22	Third most recent error log	6: ocs overcurrent between operations	0
00-23	Fourth most recent error log	9: ovn overvoltage during operation	0

www.maher.ir

Parameter codes	Parameter names	Setting range	Factory Setting	
00-24	Fifth most recent error log	recent error log 10: ovs overvoltage between operations		
00-25	Sixth most recent error log	13: LVn low voltage during operation	0	
		15: OrP open-phase in input		
		16:oH1 power module overheated		
		17: oH2 internal ambient temperature overheated		
		18: tHo1 power module overheated protection circuit		
		error		
		19: tHo2 Internal ambient temperature overheated		
		protection circuit error		
		21: oL overload		
		30: cF1 memory write error		
		31: cF2 memory read error		
		33: cd1 U-phase current detection error		
		34: cd2 V-phase current detection error		
		35: cd3 W-phase current detection error		
		37: Hd1 oc current detection error		
		38: Hd2 ov voltage detection error		
		42: 5VF 5V in the control board error (FW v1.02)		
		43: RYF relay error (FW v1.02)		
		49: EF external signal input error		
		52: Pcod password incorrect		
		54: cE1 communication error (warn)		
		55: cE2 communication error (warn)		
		56: cE3 communication error (warn)		
		57: cE4 communication error (warn)		
		58: cE10 communication timeout (warn)		
		66: PLE phase-locking error		
00-26	Low word in electricity bill	Read-only R		
00-27	High word in electricity bill	Read-only	Read-only	
00-28	Displays input AC voltage (V)	0~6553.5	Read-only	

01 Basic Parameters

Parameter codes	Parameter names	Setting range	Factory Setting				
01-00	Reset parameters	0: no function	0				
		1: parameter cannot be written					
		10: parameter reset					
№ 01-01	Select startup display	lay 0: mains frequency					
		1: DC BUS voltage					
		2: input current					
№ 01-02	Enter parameter protection	1~9998,10000~65535	0				
	password	0-2: number of incorrect passwords entered					
№ 01-03		1~9998,10000~65535	0				
	Set parameter protection	0: password not set or password entered successfully					
	password	in 01-02					
		1: parameters locked					
№ 01-04	Set source of operation	1: operate from external terminals	1				
	command	2: input from RS-485 devices or digital keypad					
		(KPC-CE01/ KPC-CC01)					
01-05	Reserved						
01-06	Reserved						
01-07	Reserved						
01-08	Set operating point DC voltage	230V : 30~100V	40				
	(offset value)	460V : 60~200V	80				
01-09	Reserved						
№ 01-10	DC voltage control P gain	0~1000%	100				
№ 01-11	DC voltage control I gain	0~1000%	100				
№ 01-12	DC voltage control bandwidth	1~100Hz	40				
01-13	Reserved						
№ 01-14	Select multi-function display	0: display DC voltage (v)	0				
		1: display mains frequency (H)					
		2: display input current (A)					
		3: display input AC voltage (E)					
		4: display voltage between R and S (r)					
		5: display voltage between S and T (S)					
		6: display voltage between T and R (t)					
		7: display power (P)					
		8: display current limit (p)					

02 Digital Input/Output Parameters

Parameter codes	Parameter names	Setting range	Factory Setting
02-00	Multi-function input command	0: no function	1
	1 (MI1)		
02-01	Multi-function input command	1: Automatic mode	0
	2 (MI2)		
02-02	Multi-function input command	2: Reserved	3
	3 (MI3)		
02-03	Multi-function input command	3: EF	4
	4 (MI4)		
02-04	Multi-function input command	4: RESET	5
	5 (MI5)	5: Parallel mode	
		6: no function	
№ 02-05	Digital input response time	0.001 - 30.000s	0.005
№ 02-06	Digital input working direction	0~65535	0
№ 02-07	Multi-function output 1	0: no function	4
	(Relay1)		
№ 02-08	Multi-function output 2 (MO1)	1: operation indicator	3
№ 02-09	Multi-function output 3 (MO2)	2: no function	0
		3: preparation complete	
		4: error indicator	
		5: no function	
		6: warning indicator	
		7: no function	
№ 02-10	Multi-function output direction	0~65535	0

03 Special Protection Parameters

Parameter	Parameter names	Setting range	Factory
codes			Setting
≠ 03-00	Low voltage level	230V models:160.0 - 220.0Vdc	180
		460V models:320.0 - 440.0Vdc	360
№ 03-01	Current limit	0~150%	150
№ 03-02	Reserved		
№ 03-03	Reserved		
№ 03-04	Phase-locking frequency	0 - 1000ms	150
	deviation time		
№ 03-05	Reserved		
№ 03-06	Reserved		
№ 03-07	Number of error restarts	0~10	0
№ 03-08	Time until error restart count	0.1 - 6000.0s	60.0
	resets		
№ 03-09	Cooling fan control mode	0: fan continues to run	3
		1: runs for 1 minute after shut down and then stops	
		2: runs/stops as the Power Regenerative Unit	
		runs/stops	
		3: runs according to the temperature of the power	
		module	
		4: remains off	
03-10	Reserved		
03-11	Reserved		
№ 03-12	Clears the memory of	0: no function	0
	regenerated energy	1: clear	
№ 03-13	Electricity rate	0 - 6553.5 dollars/kWh	3.0

04 Communication Parameters

Parameter codes	Parameter names	Setting range	Factory Setting
№ 04-00	Communication address	1~254	1
№ 04-01	COM1 transmission speed	4.8~115.2Kbps	9.6
№ 04-02	COM1 transmission error	0: gives warning but continues operating	3
	handling	1: gives warning and stops operation	
		2: reserved	
		3: no actions and no display	
№ 04-03	COM1 timeout detection	0.0 - 100.0s	0
№ 04-04	COM1 communication format	0: 7N1 (ASCII)	1
		1: 7N2 (ASCII)	
		2: 7E1 (ASCII)	
		3: 701 (ASCII)	
		4: 7E2 (ASCII)	
		5: 7O2 (ASCII)	
		6: 8N1 (ASCII)	
		7: 8N2 (ASCII)	
		8: 8E1 (ASCII)	
		9: 8O1 (ASCII)	
		10: 8E2 (ASCII)	
		11: 8O2 (ASCII)	
		12: 8N1 (RTU)	
		13: 8N2 (RTU)	
		14: 8E1 (RTU)	
		15: 8O1 (RTU)	
		16: 8E2 (RTU)	
		17: 8O2 (RTU)	
№ 04-05	Communication response time	0.0~200.0ms	2
	delay		
04-06	Reserved		
~			
04-38			

05 Application Parameters

Parameter codes	Parameter names	Setting range	Factory Setting
№ 05-00	DC voltage filtering time	0.000~65.535	0.000
№ 05-01	Mains frequency filtering time	0.000~65.535	0.000
05-02			
~	Reserved		
05-20			

07 Description of Parameter Settings

00 Display Parameters

ID code for the Power Regenerative Unit model

Current rating of the Power Regenerative Unit

Factory setting: read-only

Display by model Read-only

Parameter 00-00 determines the capacity of the Power Regenerative Unitand is already set at this parameter when shipped from the factory. Also, the current value in the readable parameter (00-01) is the rated current for that model. Parameter 00-00 corresponds to the current displayed in parameter 00-01.

REG2000 Model code table																
Input voltage				230V								460V				
Model code	0	2	4	6	8	10	12	1	3	5	7	9	11	13	15	17
Suitable Power																
Regenerative Unit	7.5	11	15	18.5	22	30	37	7.5	11	15	18.5	22	30	37	45	55
capacity (kW)																
Rated input current	20	32	38	49	60	80	100	10.5	17	20	25	32	43	49	60	75
(A)																

Software version	
	Factory setting: #.##
Read-only (display according to shipped version)	
Display input current of the Power Regenerative Unit(A)	
마음 - 마음 Displays mains frequency (Hz) (cable frequency)	
	Factory setting: #.##
Б	

Read-only

Display DC voltage (V)

Factory setting: #.#

Read-only

Displays power (kW)

Factory setting: #.#

-300.0 ~ 300.0

Reserved
Reserved

00-09	Displays the lower value of kilowatt hours (kWh) rege	enerated by REG2000
		Factory setting: ###.#
	0.0~999.9	
88-48	Displays the higher value of kilowatt hours (kWh) reg	enerated by REG2000
		Factory setting: ####
	0~9999	
When P	r.03-12 =1, Pr.00-09 and Pr.00-10 will be cleaned to be 0 and Pr03-12	will be back to 0.
	he setting of Pr00-09 and Pr00-10 are done, the REG will start to	run and the counting will
start.		
□ Display	r Pr00-10*1000 + Pr00-09.	
88-1	Displays the highest ambient temperature (°C)	
88-18	Displays the highest IGBT temperature (°C)	
		Factory setting: ##.#
	Read-only	
88-13		
00- 14	Displays power module's temperature (°C)	
		Factory setting: ##.#
	Read-only	
00 10	Displays the ON/OFF status of digital input	
00-15	Displays the ON/OFF status of digital input Displays the ON/OFF status of digital output	
00-10	Displays the ON/OH I status of digital output	Factory cotting: ###
	Read-only	Factory setting: ###
	- Read Only	
$\Omega\Omega = \pm 1$	DC voltage during a malfunction (V)	
00 .		Factory setting: ##.#
	Read-only	, 0
88-48	Mains frequency during a malfunction (Hz)	
88- 19	Current during a malfunction (A)	
		Factory setting: #.##
	Read-only	
88-88		
80-8	Second most recent error log	
<u> </u>		
00-25	Fourth most recent error log	
00-24		
88-89	Sixth most recent error log	
		Factory setting: 0

Factory setting: 0

Settings

- 0: no error records
- 3: ocn over current during operation
- 6: ocs over current between operations
- 9: ovn overvoltage during operation
- 10: ovs overvoltage between operations
- 13: LVn low voltage during operation
- 15: OrP open-phase in input
- 16: oH1 power module overheated
- 17: oH2 internal ambient temperature overheated
- 18: tHo1 power module overheated protection circuit error
- 19: tHo2 internal ambient temperature overheated

protection circuit error

- 21: oL overload
- 30: cF1 memory write error
- 31: cF2 memory read error
- 33: cd1 U-phase current detection error
- 34: cd2 V-phase current detection error
- 37: Hd1 oc current detection error
- 38: Hd2 ov voltage detection error
- 42: 5VF 5V in the control board error (FW v1.02)
- 43: RYF relay error (FW v1.02)
- 49: EF external signal input error
- 52: Pcod password incorrect
- 54: cE1 communication error (warn)
- 55: cE2 communication error (warn)
- 56: cE3 communication error (warn)
- 57: cE4 communication error (warn)
- 58: cE10 communication timeout (warn)
- 66: PLE phase-locking error
- PLE and Orp errors are only recorded and deemed as a fault in power regeneration status, otherwise they will be warnings in Standby and Stop status.

OH1 Level

Model	Default
REG075A23A	100
REG110A23A	110
REG150A23A	100
REG185A23A	100
REG220A23A	100
REG300A23A	95
REG370A23A	105

Model	Default
REG075A43A	100
REG110A43A	105
REG150A43A	110
REG185A43A	100
REG220A43A	90
REG300A43A	90
REG370A43A	95
REG450A43A	115
REG550A43A	115

BB-28Low word in electricity billBB-27High word in electricity bill

Factory setting: ###

Settings Read-only

Display the dollar amount saved on electricity expense. The setting of the related parameters are shown below.

The kw/hr regenerated (Pr 00-09 \sim 00-10) x electricity expense (Pr03-13). The display mode is Pr00-27*1000 + Pr00-26.

Displays input AC voltage (V)

Factory setting: ##.#

Settings 0~6553.5

01 Basic Parameters

✓ represents

parameter settings that can be adjusted during operation

Reset parameters

Factory setting:0

Settings 0: no function

1: parameter cannot be written

10: parameter reset

- When set to "1", only parameters 01-00 to 01-03 can be adjusted, the other parameters will be read-only; in combination with the password parameters, this can prevent the parameters from being altered unintentionally by mistake.
- To restore the parameters to factory settings, just set this parameter to 10.If a password is set, it must first be entered before the settings can be restored, and the password will be cleared at the same time.

Select startup display

Factory setting: 0

Settings 0: mains frequency

1: DC voltage

2: input current

First parameter protection password

Factory setting: 0

Settings 1~9998,10000~65535

Display

0-2: number of incorrect passwords entered

value

- Enter the password set in parameter 01-03 into parameter 01-02, and all password protected parameters will be unlocked.
- After setting this parameter, write down the setting to avoid inconveniences in the future.
- The purpose of using parameters 01-02 and 01-03 is to prevent non-technicians from unintentionally altering other parameters.
- If the password is lost or forgotten, it can be reset by entering 9999 and pressing the "ENTER" key, enter 9999 and press "ENTER" again (this sequence must be completed within 10 seconds, otherwise please do it again). This will also restore previously altered parameter settings back to the factory setting.

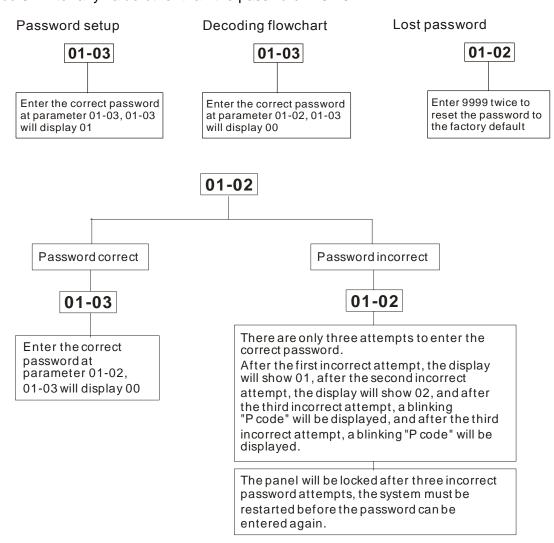
Fig. : - [3] Enter parameter protection password

Factory setting:0

Settings 1~9998,10000~65535

Display

0: password not set or password entered successfully in 01-02 value


1: parameters locked

This parameter sets password protection, which can be entered directly the first time. After the

www.maher.ir

password is set, the parameter value will become 1, meaning password protection is enabled. To make changes to any parameter, first go to parameter 01-02 and enter the correct password. After unlocking the password protection, the parameter value for 01-02 will be set to 0, and all parameters will become adjustable.

- After password protection is enabled, all parameter values except for parameter 01-03 will display 0.
- Password protection can be turned off by unlocking the password protection in parameter 01-02 and setting this parameter to 0.Password protection will remain off after a system reboot.
- The password will otherwise remain active permanently. After turning on the system, if any parameters need to be changed, first unlock the password protection in parameter 01-02.
- How to reactivate password protection:
 - Method 1: Reenter the password in 01-03.
 - Method 2: Reboot the system and password protection will immediately be restored.
 - Method 3: Enter any value other than the password in 01-02.

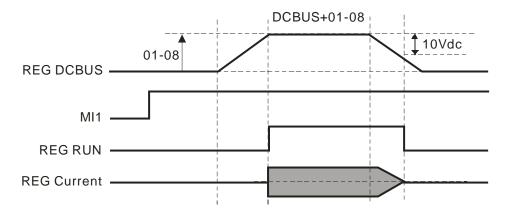
Set source of operation command

Factory setting:1

Settings 1: operation commands controlled via external terminals

2: operation commands controlled through communication interface or the digital keypad (KPC-CC01)

As the standard package does not contain the digital keypad upon shipping, users have to control


- operation via external terminals. Please confirm that the wiring between multi-function input terminals is correct before using.
- ☐ To operate using the communication interface, a digital keypad KPC-CC01 or KPC-CE01 must be purchased before the source of operation command can be set to the communication interface.

<pre># Reserved</pre>		
## Reserved		
<pre>Reserved</pre>		

Set operating point DC voltage (offset value)

Settings 230V models: 30 - 100V Factory setting:40 460V models: 60 - 200V Factory setting:80

- The feedback activating voltage is set to the mains voltage (parameter 00-28) [[* $\sqrt{2}$]] + parameter 01-08.
- Power regenerative unit will stop output when DC bus voltage < (DC bus voltage + parameter 01-08 10V).

Reserved

DC voltage control P gain

DC voltage control I gain

Factory setting: 100

Settings 0 - 1000%

- Pr01-10 is the parameter which decides the response rate of P function on DC BUS voltage bias.
- Take the greater gain, the response rate will be faster while the DC BUS voltage bias will become smaller. But if the gain is too big, there will be an oscillation.
- ☐ Take the smaller gain, the response rate will be slow while the DC BUS voltage bias will become larger. It is scaled to be100% corresponding to the Kp value of auto-calculated DC BUS voltage controller bandwidth (Pr01-12).
- Pr01-11 is an integral controller to eliminate the error caused by the DC BUS voltage bias. The bigger the integral gain, the faster the response rate to respond to external disturbance. But the

smaller the integral gain, the slower the response rate to respond to the external disturbance. The oscillation is easy to occur. It is scaled to be 100% corresponding to the Ki value of auto-calculated DC BUS voltage controller bandwidth (Pr01-12).

M # !- !? DC voltage control bandwidth

Factory setting:40

Settings 1 - 100Hz

This parameter controls the DC voltage response speed; the higher the value, the faster the response.

Reserved

Select multi-function display

Factory setting:0

Settings 0: display DC voltage (v)

1: display mains frequency (H)

2: display input current (A)

3: display input AC voltage (E)

4: display voltage between R and S (r)

5: display voltage between S and T (S)

6: display voltage between T and R (t)

7: display power (P)

8: display current limit (p)

02 Input and Output Parameters

5: Parallel mode6: no function

B ≥ - B B Multi-fu	inction input terminal 1 (MI1)	
		Factory setting:1
## Multi-fu	inction input terminal 2 (MI2)	
		Factory setting:0
### Multi-fu	inction input terminal 3 (MI3)	
		Factory setting:3
## Multi-fu	inction input terminal 4 (MI4)	
		Factory setting:4
## Multi-fu	inction input terminal 5 (MI5)	
		Factory setting:5
Settings	0: no function	
	1: Automatic mode	
	2: Reserved	
	3: EF	
	4: RESET	

This parameter can be planned and adjusted by the user to include necessary external terminal input functions as required.

List of functions

Setting	Function	Description	
0	no function	The output terminal does not have any function	
1	automatic mode	This terminal setting only becomes effective when parameter 01-04 is set to 1 "controlled via external terminals" When the Auto mode is ON and when the Power Regenerative Unit detects DC bus voltage reaches the setting of Pr01-08, the DC bus voltage will be regenerated to electrical grid. The default wiring between multi-function input terminals is as below. Please check the wiring is correct before using. Please refer to 04 Wiring for more details of wiring about auto mode. REG2000 R/L1 S/L2 T/L3 E24V COM Mains REG2000 R/L1 S/L2 T/L3 E24V COM DCM	

Setting	Function	Description	
2	Reserved	The output terminal is reserved	
3	EF	External failure input terminal	
4	RESET	Only this terminal function can reset the Power Regenerative Unit after eliminating a failure	
5	Parallel mode (the default terminal is MI5)	This terminal setting only becomes effective when parameter 01-04 is set to 1 "controlled via external terminals" Working under parallel mode, each power regenerative unit will reduce its current limit to 80% automatically. The default wiring between multi-function input terminals of each power regenerative unit is as below. Please check the wiring is correct before using. Please refer to 04 Wiring for more details of wiring about parallel mode. REG2000 R/L1 S/L2 T/L3 E24V COM Mil1 Auto Mode MIS Parallel Mode DCM	
6	no function	The output terminal does not have any function	

✓ @2 - @5 Digital input response time

Factory setting:0.005

Settings 0.001 - 30.000s

This parameter adds a delay and confirm process to digital input terminal signals, the delay time is the confirmation time. This can prevent unknown interference from causing the digital input terminals (MI1 - 5) to malfunction (except counting inputs). This parameter can significantly improve these situations, but response time will be slightly delayed.

Factory setting: 0

Settings 0 - 65535

- This parameter sets the activation point for input signals, and the setting has no relation to the SINK/SOURCE status of the terminals.
- ☐ bit 0 bit 4 corresponds to MI1 MI5, respectively.
- Users can enter corresponding values by ways of communication, to alter the ON/OFF status of the terminals.

Factory setting:4

www.maher.ir

Factory setting:3

Factory setting: 0

Settings

0: no function

1: operation indicator

2: no function

3: (phase-locking complete) preparation complete

4: error indicator

5: no function

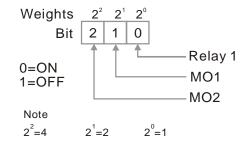
6: warning indicator

7: no function

This parameter can be planned and adjusted by the user to include necessary external terminal output functions as required.

List of functions

Setting	Function	Description	
0	no function	The output terminal does not have any function	
1	Operation indicator	When the Power Regenerative Unit is in RUN status, the contacts will be in ON status.	
2	no function	The output terminal does not have any function	
3	(Phase-locking complete) preparation complete	The contacts will "ON" when the Power Regenerative Unit is not suffering from any errors and phase-locking is complete.	
	proparation complete	The contacts will " ON " when an error is detected by the Power	
4	Error indicator	Regenerative Unit.	
5	no function The output terminal does not have any function		
6	Warning indicator	The contacts will " ON " when a warning is detected by the Power	
		Regenerative Unit.	
7	no function	The output terminal does not have any function	

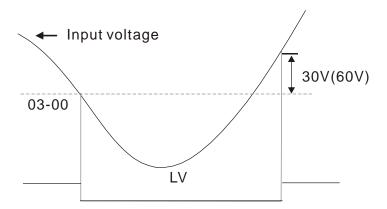

★ B2 - 18 Multi-function output direction

Factory setting: 0

Settings 0~65535

The setting of this function is binary, if a bit is set to 1, the multi-function output direction is reversed; e.g. when parameter 02-07 is set to 1 (operation indicator), if the bit is set to 0 or the forward output direction, Relay 1 will activate (ON) only when the Power Regenerative Unit is in operation, and when the Power Regenerative Unit is stopped Relay 1 will be OFF. In contrast, if the bit is set to 1 or the reverse output direction, Relay 1 will be OFF when in operation, and ON when stopped.

Bit 2	Bit 1	Bit 0
MO2	MO1	RY1


03 Special Protection Parameters

Factory setting:180.0/360.0

Settings 230V models:160.0~220.0V 460V models:320.0~440.0V

- This parameter sets the LV voltage level.
- When the voltage of the Power Regenerative Unit drops below the low voltage level, the parameter will send a warning.

Current limit

Factory setting:150

Settings 0 - 150%

This parameter limits the maximum current output of the Power Regenerative Unit.

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Factory setting:150

Settings 0 - 1000ms

When a frequency is detected to be < 47Hz or >63Hz and the duration is longer than the value set at Pr03-04, a PLE phase-locking signal will be generated.

✓ ☐ 3 - ☐ ? Number of error restarts

Factory setting:0

Settings 0 - 10

After an error (acceptable error: only OC over current, OV overvoltage), the number of times the Power Regenerative Unit can automatically reset/restart may be set to 10 times. If this is set to 0, then the system will not automatically reset/restart after an error.

★ # 3 - # 8 Time until error restart count resets

Factory setting:60.0

Settings 0.1 - 6000.0s

When an error restart occurs, the Power Regenerative Unit will start a count down according to the setting of this parameter. If the count down reaches the set time before another error restart, then parameter 03-07 number of error restarts will reset to the initial value.

✓ ☐ 3 - ☐ ☐ Cooling fan control mode

Factory setting:3

Settings 0: fan runs always

1: runs for 1 minute after stop and then stops

2: runs/stops as the Power Regenerative Unit runs/stops

3: runs according to the temperature of the power module

4: always off

- This parameter determines the cooling fan setting.
- If the parameter is set to 0, the cooling fan will start running as soon as the Power Regenerative Unit starts transmitting power.
- If the parameter is set to 1, the cooling fan will run when the Power Regenerative Unit runs and will stop 1 minute after the Power Regenerative Unit stops.
- If the parameter is set to 2, the cooling fan will run when the Power Regenerative Unit runs and will stop as soon as the Power Regenerative Unit stops.
- If the parameter is set to 3, the cooling fan will adjust its speed according to the temperature of the power module. When the temperature is high, the cooling fan starts running; the higher the temperature the faster it runs, and when temperature drops within the normal range(As shown in the table below), the cooling fan will stop.
- If the parameter is set to 4, the cooling fan will be always off.

Model	Operating temperature range of fans (RUN→STOP)
REG075A23A	50→40
REG110A23A	60→50
REG150A23A	50→40
REG185A23A	50→40
REG220A23A	50→40
REG300A23A	45→35
REG370A23A	65→55
REG075A43A	50→40
REG110A43A	55→45
REG150A43A	60→50
REG185A43A	50→40
REG220A43A	40→30
REG300A43A	40→30
REG370A43A	45→35
REG450A43A	65→55
REG550A43A	65→55

Factory setting: 0

Settings 0: parameter reverted

1: clear

Setting this parameter to 1 clears parameters 00-09 and 00-10 to 0, and this parameter reverts to 0.

Factory setting:3.0

Settings 0 - 6553.5

☐ Set up calculation for local electricity bill. Unit: dollar/kw-hr

04 Communication Parameters

When using the communication interface, the communication port definition is shown as in the diagram on the right.

We recommend using a Delta IFD6530 or IFD6500 as a communication converter to connect the power regenerative unit to a computer.

Modbus RS-485 Pin 1~2, 7, 8: Reserved Pin 3, 6:GND Pin 4:SG-Pin 5:SG+

Factory setting:1

Settings 1 - 254

When the system uses the RS-485 serial communication interface to control or monitor, every Power Regenerative Unit must have their own communication address and every address in the network must be unique.

★ 日子・日 : Communication transmission speed

Factory setting:9.6

Settings 4.8 - 115.2kbits/s

This parameter sets the speed of transmission between the Power Regenerative Unit and computers.

Communication error handling

Factory setting:3

Settings 0: gives warning but continues operating

1: gives warning and stops

2: reserved

3: no actions and no display

This parameter determines how the Power Regenerative Unit handles a transmission timeout fault (such as a broken line) during communications.

★ ☐ Y - ☐ ∃ Timeout detection

Factory setting:0.0

Settings 0.0 - 100.0s

0.0: no detection

This parameter sets the duration for a timeout during transmissions between communication ports and COM1.

Factory setting:1

Settings 0: 7,N,1 for ASCII

1: 7,N,2 for ASCII

2: 7,E,1 for ASCII

3: 7,O,1 for ASCII

4: 7,E,2 for ASCII

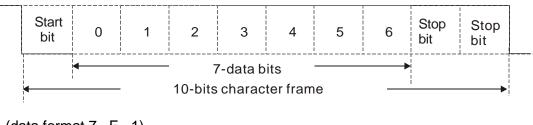
5: 7,O,2 for ASCII

www.maher.ir

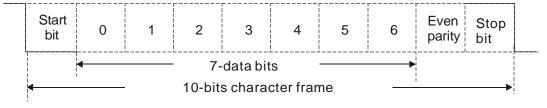
6: 8,N,1 for ASCII
7: 8,N,2 for ASCII
8: 8,E,1 for ASCII
9: 8,O,1 for ASCII
10: 8,E,2 for ASCII
11: 8,O,2 for ASCII
12: 8,N,1 for RTU
13: 8,N,2 for RTU
14: 8,E,1 for RTU
15: 8,O,1 for RTU
16: 8,E,2 for RTU
17: 8,O,2 for RTU

- Computer control Computer Link
- When using the RS-485 serial communication interface, every Power Regenerative Unit must first have a communication address assigned in parameter 09-00. The computer will control the units based on their individual addresses.
- Communications protocol uses MODBUS ASCII (American Standard Code for Information Interchange) Mode: A byte is made by a combination of 2 ASCII codes. For example: the value 64 Hex, represented as "64" in ASCII, is a combination of "6" (36Hex) and "4" (34 Hex).

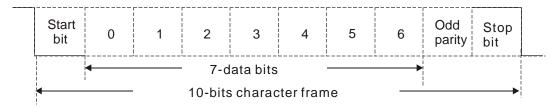
1. Character encoding


The communication protocol is hexadecimal, the ASCII codes denotes: "0"..."9", "A"..."F". Each hexadecimal character represents the corresponding ASCII code. For example:

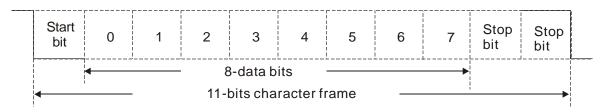
Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	,C,	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H


2. Character structure

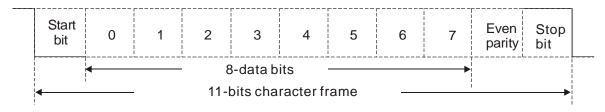
10-bit character frame (For ASCII)


(data format 7, N, 2)

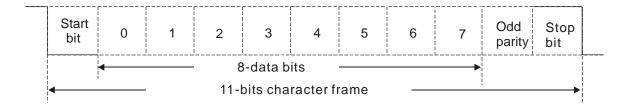
(data format 7, E, 1)



(data format 7, O, 1)



11-bit character frame (For RTU)


(data format 8, N, 2)

(data format 8, E, 1)

(data format 8, O, 1)

3. Communication data structure

Data format frame

ASCII mode:

STX	Start bit = ':' (3AH)
Address Hi	Communication address
Address Lo	8-bit addresses are a combination of 2 ASCII codes
Function Hi	Function code:
Function Lo	8-bit function codes are a combination of 2 ASCII codes
DATA (n-1)	Data character:
	nx8-bit data characters are combinations of 2n ASCII codes
DATA 0	n<=16, at most 32 ASCII codes (20 sets of data)
LRC CHK Hi	LRC check codes:
LRC CHK Lo	8-bit check codes are a combination of 2 ASCII codes
END Hi	End bit:
END Lo	END Hi = CR (0DH), END Lo = LF(0AH)

RTU mode:

START	Maintains no input signal for at least 10ms
Address	Communication address8-bit binary address
Function	Function code:8-bit binary address
DATA (n-1)	Data character:
	nx8-bit data, n<=16
DATA 0	
CRC CHK Low	CRC check codes:
CRC CHK High	16-bit CRC check codes are a combination of 2 8-bit binary codes
END	Maintains no input signal for at least 10ms

Communication address (Address)

00H: broadcasts to all Power Regenerative Units

01H: targets the Power Regenerative Unit at address 01 0FH: targets the Power Regenerative Unit at address 15

10H: targets the Power Regenerative Unit at address 16, and so on..., to the maximum of 254 (FEH).

Function code and data character

03H: reads data from the register

STX

END

06H: writes one set of data to the register

For example: codes to target Power Regenerative Unit01H, read out 2 consecutive data characters in the register as shown below: starting from register address 2102H

ASCII mode:

Inquiry message string format:

Address	'0'
Address	'1'
Function	'0'
Function	'3'
	'2'
Starting address	'1'
Starting address	'0'
	'2'
	'0'
Number of data	'0'
(count by word)	'0'
	'2'
LRC Check	'D'
LKC Check	'7'

Response	message	string 1	format:

STX	'.' ·
Address	' 0'
Address	'1'
Function	'0'
1 diletion	'3'
Number of data	'0'
(count by byte)	'4'
	'1'
Content of starting	'7'
address 2102H	'7'
	'0'
	'0'
Content of address 2103H	'0'
Content of address 2 10511	'0'
	'0'
LRC Check	'7'
LINO OTIECK	'1'
END	CR
LIND	LF

RTU mode:

Inquiry message string format:

CR

LF

1- 7 3	3
Address	01H
Function	03H
Starting data address	21H
Starting data address	02H
Number of data	00H
(count by world)	02H
CRC CHK Low	6FH
CRC CHK High	F7H

Response message string format:

Response message string format.				
Address	01H			
Function	03H			
Number of data	04H			
(count by byte)				
Content of data	17H			
address 2102H	70H			
Content of data	00H			
address 2103H	00H			
CRC CHK Low	FEH			
CRC CHK High	5CH			

Function code 06H: writes one set of data to the register (at most 20 sets of data can be written consecutively to the register at once)

For example: for Power Regenerative Unit01H, write 6000 (1770H) to the internal setting parameter 0100H.

ASCII mode:

Inquiry message string format:

Response	message	strina	format:

inquiry message string format.		Tresponse message string format.		
STX	.,	STX	(.) :	
Address	'0'	Address	'0'	
Address	'1'	Address	'1'	
Function	'0'	Function	' 0'	
Function	'6'	Function	'6'	
	'0'		'0'	
Data address	'1'	Data address	'1'	
Data address	'0'	Data address	' 0'	
	'0'		'0'	
	'1'	Data content	'1'	
Data content	'7'		'7'	
Data Content	'7'		'7'	
	'0'		'0'	
LRC Check	'7'	LRC Check	'7'	
LKC Check	'1'	LIXO CHECK	'1'	
END	CR	END	CR	
LIND	LF	END	LF	

RTU mode:

Inquiry message string format:

Response	message	string	format:
1/E9DOH9E	IIICSSAUC	อแแน	iuiiiai.

inquiry message string format.		Response message string format.		
01H	Address	01H		
06H	Function	06H		
01H	Data address	01H		
00H	Data address	00H		
17H	Data content	17H		
70H	Data content	70H		
86H	CRC CHK Low	86H		
22H	CRC CHK High	22H		
	01H 06H 01H 00H 17H 70H 86H	01H Address 06H Function 01H Data address 17H Data content 70H CRC CHK Low		

Command code: 10H, continuously writes multiple sets of data

For example, change the multispeed settings 04-00=50.00 (1388H), 04-01=40.00 (0FA0H) for the Power Regenerative Unit (address 01H)

ASCII mode:

Command message:

Response message:

STX		STX	4.1
ADR 1	'0'	ADR 1	'0'
ADR 0	'1'	ADR 0	'1'
CMD 1	'1'	CMD 1	'1'
CMD 0	'0'	CMD 0	'0'
Data	'0'	Data address	'0'
	'5'		'5'
Start address	'0'		'0'
	'0'		'0'
	'0'		'0'
Data amount	'0'	Data amount	'0'
(Word)	'0'	(Word)	'0'
	'2'		'2'

Command message:

Data amount	'0'
(Byte)	'4'
	'1'
First set	'3'
Data	'8'
	'8'
	'0'
Second set	'F'
Data	'A'
	'0'
LRC Check	'9'
LRC Check	'A'
END	CR
END	IF

Response message:

LRC Check	'E'
LRC Check	'8'
FND	CR
END	LF

RTU mode:

Command message:

O O I I I I I I I I I I I I I I I I I I	
ADR	01H
CMD	10H
Data	05H
Start address	00H
Data amount	00H
(Word)	02H
Data amount (Byte)	04
First set	13H
Data	88H
Second set	0FH
Data	A0H
CRC Check Low	'9'
CRC Check High	'A'
·	·

Response message:

ADR	01H
CMD 1	10H
Data	05H
Start address	00H
Data amount	00H
(Word)	02H
CRC Check Low	41H
CRC Check High	04H

Check code in ASCII mode (LRC Check)

Check code (LRC Check) is the sum from Address to Data Content. For example, the check code of the inquiry message in 3.3.1 above: 01H + 03H + 21H + 02H + 00H + 02H = 29H, and take the complement number of 2 = D7H.

Check code in RTU mode (CRC Check)

Check code starts from Address and ends at Data content. The calculation is shown below:

- Step 1: set the 16-bit register (CRC register) = FFFFH.
- Step 2: Exclusive OR the first 8-bit byte message and the low bit 16-bit CRC register, create Exclusive OR, and store the results in CRC register.
- Step 3: shift 1 CRC register to the right, fill in 0 high bit position.
- Step 4: check the shifted value, if it is 0, store the new value from step 3 to the CRC register, otherwise Exclusive OR A001H and the CRC register, and store the results to the CRC register.
- Step 5: repeat steps 3 4, until all 8-bits are complete.
- Step 6: repeat step 2 step 5, take the message command from the next 8-bit, until all message commands are computed. Finally, the acquired value in the CRC register is the CRC check code. Please note the CRC check code must be alternate places within the message command check code.

```
The following is an example of computing the CRC check code using language C:
unsigned char* data ← // message command index
unsigned char length ← // length of message command
unsigned int crc_chk(unsigned char* data, unsigned char length)
  {
  int j;
  unsigned int reg_crc=0Xffff;
  while(length--){
    reg_crc ^= *data++;
    for(j=0;j<8;j++){
    if(reg_crc & 0x01){ /* LSB(b0)=1 */
       reg_crc=(reg_crc>>1) ^ 0Xa001;
    }else{
       reg_crc=reg_crc >>1;
    }
  }
}
```

4. Definition of parameter addresses in the communication protocol

return reg_crc;

Definition	Parameter address		Description of Function
REG2000 parameters	GGnnH	parameter nur	the parameter group and nn stands for the nber. For example: 04-01 is shown as 0401H.
Command Write only	2000H	Bit2~0	0: no function
			1: stop
			2: start
		Bit15~3	no function
	2001H	no function	
	2002H	Bit0	1:E.F. ON
		Bit1	1: reset command
		Bit2	1: no function
		Bit3~5	no function
Status monitor Read only	2100H	Error code	
	2101H	Status of Drive	
		Bit 1~0	00: Reserved
			01: Reserved
			10: Reserved
			11: Reserved
		Bit 2	1: Reserved
		Bit 4~3	00: Reserved
			01: Reserved
			10: Reserved
			11: Reserved
		Bit 5	1: Reserved
		Bit 6	Reserved
		Bit 7	Operation command controlled by external terminal
		Bit 8	Reserved
		Bit 9	Reserved
		Bit 10	Reserved
		Bit 11	1: Parameters been locked
		Bit 12	0: No regeneration 1: Regeneration

// final value returned to CRC register

www.maher.ir

Definition	Parameter address	Description of Function	
		Bit 13	1: Reg Running (include standby)
		Bit 15~14	Reserved
Status monitor Read only	2119H	Bit 1~0	O: stop 1: Set operating commend, but DC BUS voltage not yet back to regulative operating voltage (Pr01-08) 3: In operation
		Bit 9~2	no function
		Bit10	1: operation commands from communication interface
		Bit11	1: parameters locked
		Bit12	Digital keypad copies the parameter functions
		Bit15~13	Reserved
	2102H	Mains frequen	су
	2104H	Output current	t (AXX.XX)
	2116H	Multi-function	display (parameter 01-14)
	2200H	Displays outpu	ut current
	2210H	ON/OFF status of digital input, see parameter 02-06	
	2211H	ON/OFF statu	s of digital output, see parameter 02-10

5. Additional response in communication errors

If an error occurs when the Power Regenerative Unit is making communication connections, the Power Regenerative Unit will respond to the main control system with an error code and set the highest bit (bit7) to 1 (i.e. Function code AND 80H), to make the main control system aware of the error. A warning message CE-XX will also be shown on the keypad display of the Power Regenerative Unit, where XX is the error code. Refer to the error code definitions in communication errors.

For example:

		_
Δ SC	Ш	mode.

RTU	mode:
-----	-------

01H

86H

02H

СЗН

A1H

Address

Function

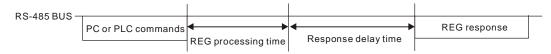
Exception code

CRC CHK Low

CRC CHK High

STX	(.)
Address	'0'
Address	'1'
Function	'8'
Function	'6'
Exception code	'0'
Exception code	'2'
LRC CHK	'7'
LRC CHK	'7'
END	CR
EIND	LF

	'7'
LRC CHK	'7'
	CP


Error code definitions:

Error code	Description
1	Data character value error: the value is too large and cannot be recognized by the
ı	Power Regenerative Unit.
2	Parameter address error: parameter address cannot be recognized by the Power
2	Regenerative Unit.
3	Password locked: cannot edit the parameters
4	Parameter cannot be edited in operation
10	Transmission timeout

★ 34 - 35 Communication response time delay

Settings 0.0 - 200.0ms

In situations where the host machine has not completed the transition (transmission - reception), use this parameter to delay the response time of the Power Regenerative Unit.

#4-#8 Reserved

05 Application Parameters

✓ ☐ 5 - ☐ ☐ DC voltage filtering time

Factory setting:0.000

Settings 0.000 - 65.535

Pr05-00Time of filter to adjust DC BUS voltage. The bigger the value, the better the filter result. But it might affect control performance, so it normally doesn't need adjustment.

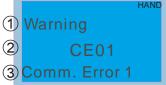
★ B5 - B I Mains frequency filtering time

Factory setting:0.000

Settings 0.000 - 65.535

Pr05-01: The filter time displayed by the frequency which normally doesn't need adjustment.

88-88


~ Reserved

05-20

08 Warnings and Fault Display Codes

This chapter contains information on the display function of the optional digital keypad (KPC-CC01/KPC-CE01), users who are not using the optional digital keypad can find out about error signals via the communication interface RS-485.

Warnings Display Codes

- 1 Display error type
- ② Display error code (abbreviation)
 This error code is the same as displayed on the digital controller (KPC-CE01)
- 3 Display error description

ID No.	LCM panel display	Description
1	Warning CE01 Comm. Error 1	Modbus function code error
2	Warning CE02 Comm. Error 2	Modbus data location error
3	Warning CE03 Comm. Error 3	Modbus data content error
4	Warning CE04 Comm. Error 4	Modbus driver processing error
5	Warning CE10 Comm. Error 10	Modbus transmission timeout
7	Warning SE1 Save Error 1	Keypad COPY function error warning
8	Warning SE2 Save Error 2	Keypad COPY function error warning 2

ID No.	LCM panel display	Description
14	Warning LVS LV at Stop	While stopped, the power feedback unit detected voltages lower than the value set in parameter 03-00 on the high-voltage end of the internal DC voltage.

Fault Display Codes

- 1 Display error type
- ②Display error code (abbreviation)
 This error code is the same as displayed on the digital controller (KPC-CE01)
- 3 Display error description
- *: according to settings in parameters 00-20 to 00-25.

Setting	LCM panel display	Description
3	Fault ocn Oc at normal SPD	Overcurrent during operation; input current exceeds 2.4 times the current rating of the power feedback unit. Solution Test wiring insulation Raise DC voltage command (parameter 01-08) Switch to a power feedback unit with a larger output current capacity.
6	Fault ocS Oc at stop	Overcurrent while stopped. Current detection hardware circuit error Solution Send for repair
9	Fault ovn Ov at normal SPD	 While in operation, the power feedback unit detected overvoltage on the high-voltage end of the internal DC voltage. 230V: 425Vdc; 460V: 850Vdc. Solution ☑ Check the power supply wiring between terminals R, S, T, for poor insulation or off-load line ☑ Check whether the input voltage is within the voltage rating range of the power feedback unit, and the monitor for voltage surges. ☑ Lower DC voltage command (parameter 01-08);or increase the current limit (parameter 03-01) ☑ If there is a voltage surge, there may be a phase advancing capacitor switch in the same power supply system, causing abnormal rise in input voltage.
10	Fault ovS Ov at stop	Overvoltage while stopped. Voltage detection hardware circuit error Solution ☑ Check whether the input voltage is within the voltage rating range of the power feedback unit, and the monitor for voltage surges. ☑ If there is a voltage surge, there may be a phase advancing capacitor switch in the same power supply system, causing abnormal rise in input voltage.
13	Fault Lvn Lv at normal SPD	While in operation, the power feedback unit detected voltages lower than the value set in parameter 03-00 on the high-voltage end of the internal DC voltage. Solution Check whether the power supply voltage is normal

www.maher.ir

15	Fault OrP Phase lacked	Open-phase in input Solution Check whether the power supply cable is off-load
16	Fault oH1	The power feedback unit detected a temperature higher than the safety level in the power module Solution ☐ Check whether the ambient temperature is too high ☐ Check for foreign objects in the heat sink, and whether the fan is spinning ☐ Check whether there is enough ventilation space near the power feedback unit
17	Fault oH2 HS over heat	A temperature higher than the safety level is detected within the power feedback unit Solution Check whether the ambient temperature is too high Check for foreign objects in the heat sink, and whether the fan is spinning Check whether there is enough ventilation space near the power feedback unit
18	Fault tH10 Thermo 1 open	Power module temperature detection circuit error Solution Send for repair
19	Fault tH2o Thermo 2 open	Error in the internal temperature detection circuit of the power feedback unit Solution Send for repair
21	Fault oL Over load	Input current exceeds the allowed current in the power feedback unit. Solution Increase the output capacity of the power feedback unit
30	Fault cF1 EEPROM write err	Memory write error Solution Press the RESET key to restore the parameters to factory settings If this does not work, send for repair
31	Fault cF2 EEPROM read err	Memory read error Solution Press the RESET key to restore the parameters to factory settings If this does not work, send for repair
33	Fault cd1 las sensor err	R-phase current detection error Solution Restart and if the problem persists send for repair

34	Fault cd2 Ibs sensor err	S-phase current detection error Solution Restart and if the problem persists send for repair
35	Fault cd3	T-phase current detection error Solution Restart and if the problem persists send for repair
37	Fault Hd1 Oc HW error	OC protection hardware circuit error Solution Restart and if the problem persists send for repair
38	Fault Hd2 Ov HW error	OV protection hardware circuit error Solution Restart and if the problem persists send for repair
42	Fault SVF error	5VF 5V in the control board error Solution Send back to vendor for repair
43	Fault RYF error	RYF relay error Solution Send back to vendor for repair
49	Fault EF External fault	When the external EF terminals are closed, output from the power feedback unit stops Solution Remove the source of error and press the "RESET" key
52	Fault Pcod Password error	Password entered incorrectly three consecutive times Solution Refer to parameter settings 01-02 to 01-03 Reboot the system and enter the correct password
54	Fault CE1 PC err command	Illegal communication command Solution Check whether communication commands are correct (communication commands must be 03, 06, 10, 63)
55	Fault CE2 PC err address	Illegal communication address (00H~254H) Solution Check whether the length of communication data is correct

56	Fault CE3 PC err data	Illegal communication data value Solution Check whether communication data value exceeds maximum / minimum values
57	Fault CE4 PC slave fault	Data written to read-only addresses Solution Check whether the communication address is correct
58	Fault CE10 PC time out	Modbus transmission timeout
66	Fault PLE Phase Lock Err	Power frequency phase-lock error Solution Check whether the power supply cable is off-load

09 Usage Recommendations and Troubleshooting

- 9-1 Regular Maintenance
- 9-2 Grease Problems
- 9-3 Lint Problems
- 9-4 Corrosion Problems
- 9-5 Dust Problems
- 9-6 Installation and Wiring Problems
- 9-7 Multi-function Input/Output Terminal Application Problems

The power feedback unit has various warnings and protections against errors such as over voltages, low voltages, or over current. Once an error occurs, the protections will activate, the power feedback unit will stop output, and the error contacts will be activated. Please refer to the error display from the power feedback unit and look up the corresponding causes and solutions. The error log is stored in the internal memory of the power feedback unit (can store the last 6 error messages), and can be read from the digital keypad or communication ports by accessing the parameters.

The power feedback unit is assembled from a large number of electronic components including IC, resistors, capacitors, transistors, and cooling fans and relays. These components are not built to last forever or be used forever; even under normal circumstances, they will eventually become error-prone if used past their life spans. Therefore periodic preventive maintenance needs to be implemented to identify defective and worn down parts, thus eliminating the causes of malfunctions in the power feedback unit at an early stage. At the same time, parts that have exceeded their product life should be replaced whenever possible to ensure safe operation.

Visual checks should be done regularly to monitor the operation of the power feedback unit, and make sure nothing unusual happens. Check whether the following situations occurred:

- After an error occurs, the error must be cleared for at least 5 seconds before the RESET key becomes effective.
- ☑ The power feedback unit must first be switched off for at least 5 minutes for ≤ 22kW model, and 10 minutes for ≥ 30kW model until the charging indicator turns off, and the DC voltage between terminals ⊕ ~ ⊖ must be lower than 25V before the cover can be opened to begin maintenance operations.
- ☑ Only qualified operators shall work on maintenance or replace parts (watch, rings,

- and other metal items should be taken off before operation, and only insulated tools should be used during operation).
- ☑ Never modify the power feedback unit in any way.
- ☑ The performance and the surrounding environment meet the standard specifications. No abnormal noise, vibration, or smell.

9-1 Regular Maintenance

For regular maintenance, first stop operation, then cut the power and take off the outer cover. Even after cutting off the power supply to the power feedback unit, charging voltages remaining in the filter capacitor will take some time to discharge. To avoid danger, operation must not start until the charging indicator goes off, and the voltage is confirmed with a voltmeter to be below the safety value ($\leq 25 \text{Vdc}$).

Surrounding environment

		Maintenance cycle			
Inspection item	Inspection method	Daily	6	One	
		Daily	months	year	
Check the ambient temperature, humidity, vibration, and whether there is dust, gas, grease, water drops, etc.	Visual inspection and measuring instruments	0			
Are dangerous or abnormal objects such as tools placed in the surrounding area?	Visual inspection	0			

Voltage

	Inspection method	Maintenance cycle			
Inspection item		Daily	6 months	One year	
Are the main circuit and control circuit voltages	Measure with a multimeter	0			
normal?					

Keyboard display panel

		Maintenance cycle		
Inspection item	Inspection method	Daily	6 months	One year
Are the displays clear?	Visual inspection	0		
Are there missing characters?	Visual inspection	0		

Mechanical parts

Inspection item	Inspection method	Maintenance cycle		
		Daily	6 months	One year
Are there abnormal sounds or vibrations?	Visual inspection, hearing	0	0	
Are any bolts (or other fastening pieces) loose?	Secure tightly	0	0	
Are any parts deformed or damaged?	Visual inspection	0	0	
Is there any discoloration due to excess heat?	Visual inspection	0	0	
Is there any dust or staining?	Visual inspection	0	0	_

Main circuit

Inspection item	Inspection method	Maintenance cycle			
		Daily	6	One	
			months	year	
Are any bolts loose or missing?	Secure tightly	0			
Is the machine or insulator deformed, cracked,					
damaged, or discolored due to excess heat and	Visual inspection		0		
aging?					
Is there any dust or staining?	Visual inspection		0		

Main circuit - terminal, wiring

			Maintenance cycle		
Inspection item	Inspection method	Daily	6	One	
			months	year	
Are the terminals and copper plates deformed or	Visual inspection		0		
discolored due to excess heat?					
Are wire sheaths damaged or discolored?	Visual inspection		0		

Main circuit - terminal block

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One year	
Is there any damage?	Visual inspection	0		_	

Main circuit - filter capacitor

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One year	
			1110111115	yeai	
Are there any leaking liquids, discoloration,	Visual inspection	0			
cracks, or shell expansions?					
Are the safety valves released? Are the valve	Visual inspection	0			
bodies significantly expanded?					
Measure electrostatic capacity as required		0			

Main circuit - resistor

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One year	
Are there abnormal odors or cracks in the	Visual inspection, hearing	0			
insulator due to excess heat?					
Are there broken wires?	Visual inspection	0			
Are the connection joints damaged?	Measure the resistance	0			
	with a multimeter				

Main circuit - transformer, reactor

			Maintenance cycle				
	Inspection item	Inspection method	Daily	6	One		
				months	year		
	Are there abnormal vibrating noises or odors?	Visual inspection, hearing	0				

Main circuit - electromagnetic contactor, relay

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One vear	
Is there a vibrating noise during operation?	Hearing	0	mommo	your	
Are the contacts well connected?	Visual inspection	0			

Control circuit - control printed circuit board, connector

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One year	
Are there any loose screws or connectors?	Secure tightly		0		
Are there any abnormal odors or discoloration?	Olfactory perception,		0		
	visual inspection				
Are there cracks, damages, deformations, or	Visual inspection		0		
obvious corrosions?					
Are there signs of leakage or deformation in the	Visual inspection		0		
capacitors?					

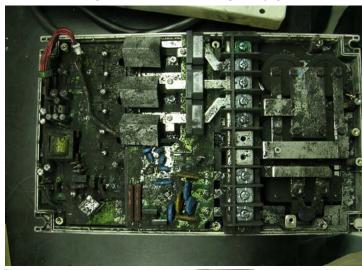
Cooling system - cooling fan

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One year	
Do the fans run?	Hearing	0			
	Hearing, visual inspection,				
Are there abnormal sounds or vibrations?	turn with hands. (Cut off		0		
	power)				
Are any bolts loose?	Secure tightly		0		
Is there any discoloration due to excess heat?	Visual inspection		0		

Cooling system - ventilation duct

		Maintenance cycle			
Inspection item	Inspection method	Daily	6 months	One year	
Are heat sinks or vents blocked or attached with	Hearing		0	<i></i>	
abnormal objects?					

Wipe the contaminated area clean with a chemically-neutral cleaning cloth. Clean with an electric dust cleaner.


9-2Grease Problems

Precautions for industries where grease pollution is more serious, typically machining, punching, or other processing industries:

1: grease accumulating on electrical components may cause components to short, resulting in explosions.

2: most are mildly corrosive, and will likely damage this product.

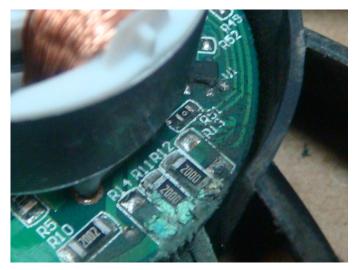
Recommended procedure: Users are recommended to install the power feedback unit in a dedicated cabinet, as far away from grease as possible, and clean it regularly to prevent the power feedback unit from being polluted and damaged by grease.

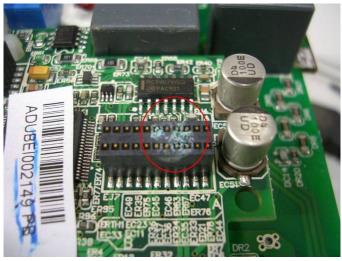
9-3 Lint Problems

Precautions for industries where lint pollution is more serious, typically textile industries:

- 1: lint often floats in the air and accumulates on fans and other devices, blocking the ventilation system in the power feedback unit, resulting in overheating.
- 2: textile factories are often humid, and lint easily collects water vapor, causing components on the circuit boards to short, in turn resulting in damage or explosions.

Recommended procedure: Users are recommended to install the power feedback unit in a dedicated cabinet, and clean it regularly to prevent lint from accumulating in the power feedback unit.

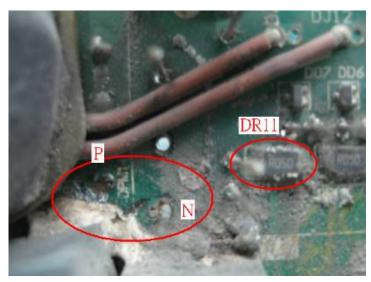




9-4 Corrosion Problems

Precautions for situations with corrosive materials, typically unknown liquids flowing into the power feedback unit: If the inner electrical components are corroded, it may lead to damage in the power feedback unit causing malfunctions or even explosions.

Recommended procedure: Users are recommended to install the power feedback unit in a dedicated cabinet, and by all means prevent liquids from flowing into the power feedback unit, and clean it regularly to prevent the power feedback unit from corrosion.


9-5 Dust Problems

Precautions for places where dust pollution is more serious, typically environments filled with dust such as stone processing plants, flour mills, or cement factories:

- 1: dust accumulating on the electrical components may cause overheating, thereby shortening the life of the product.
- 2: if the dust is conductive, they will very likely cause damage to the circuit and possibly explosions.

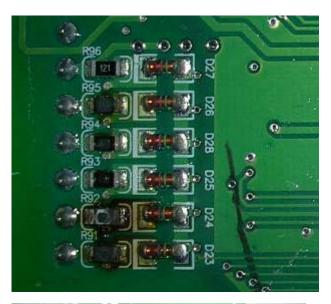
Recommended procedure: Users are recommended to install the power feedback unit in a dedicated cabinet with a dust cover, and clean the cabinet and air ducts regularly so that the power feedback unit may dissipate heat normally.

9-6 Installation and Wiring Problems

Precautions on wiring: these types of error usually occur due to improper wiring by the customer. Effects on the product:

- (1) Loose wiring screws may lead to an increase in the contact resistance, causing arcing and damage to the power feedback unit.
- (2) Tampering with the circuits inside the power feedback unit by users may cause damage to relevant components.

Recommended procedure: Secure all wiring screws tightly when installing the power feedback unit!If the machine malfunctions, do not attempt to fix the problem yourself, please send the product to a specialized service center for repair!



w mahar ir


9-7 Multi-function Input/Output Terminal Application Problems

These types of error usually happen when the external I/O are abused; Precautions when using the external I/O functions: I/O related circuit components will be burned by the excessive energy and lose their function!

Recommended procedure: Refer to the voltage and current specifications in the manual when using these I/O contacts. Never exceed the specified limits!

10 Power Regenerative Unit Selection

Delta offers four model selection methods of REG2000:

- A. Make selection base on the specs of brake resistor

 Suit for applications that require to perform rapid acceleration and deceleration, such as tapping drilling machines and lathes.
- B. Make selection base on the overload ability of drive Servo drive has higher overload ability than an inverter.
- C. Make selection base on the load characteristics of applications

 Calculate the regenerated power of the application using the application's system characteristics and specifications, especially for elevator and hoist application.

The three model selection methods are described in more detail below:

Model selection method 1 (base on the specs of brake resistor)

Take 220V as an example, if a 1500W 13Ω brake resistor is selected, with brake level set to 380V, then the total braking current would be 380V / 13Ω = 29A.

DC power equals AC power, i.e. Vdc * Idc = $\sqrt{3}$ * Vac * Iac

Vac is AC voltage

lac is AC current

Vdc is DC voltage

Idc is DC current

i.e. lac = (Vdc * ldc) / (
$$\sqrt{3}$$
 *Vac) = (380*29) / ($\sqrt{3}$ *220) = 28.9A

The brake resistor's braking torque is 125% at 10%ED, and REG2000 is 150% at 10%ED, therefore selections can be made using REG2000's current at 150% in the following tables. In this example, REG075A23A-21 can be selected, as the current at 150% of 30A > total braking current of 28.9A

230V Series

Frames		A	4	В			С		
Model R	EGA23A-21	075	110	150	185	220	300	370	
Rated Po	ower(kW)	7.5	11	15	18.5	22	30 37		
Mains	Input current(A)	20	32	38	49	60	80	100	
Mairis	Input current at 150%	30	48	57	73.5	90	120	150	

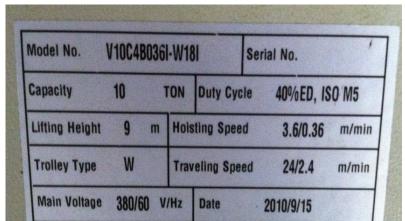
460V Series

Frames		Α	В С		В				
Model REGA43A-21	075	110	150	185	220	300	370	450	550
Rated Power(kW)	7.5	11	15	18.5	22	30	0 37 45 5		55
Mains Input current(A)	10.5	17	20	25	32	43	49	60	75
Input current at 150%	15.8	25.5	30	37.5	48	64.5	73.5	90	112.5

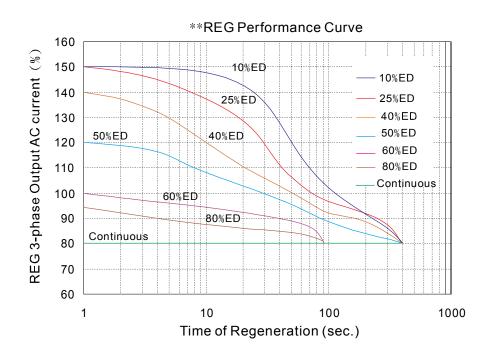
*Please contact Delta if the required current exceeds those listed above.

Model selection method 2 (base on the overload ability of drive)

Make the selection based on the overload ability of the drive. The table as below is an example that C2000 using with REG2000 when the condition is 10%ED and maximum regenerated work time during one cycle is 10sec. The overload ability of C2000 is 160% 3sec and 120% 60sec base on rated output current

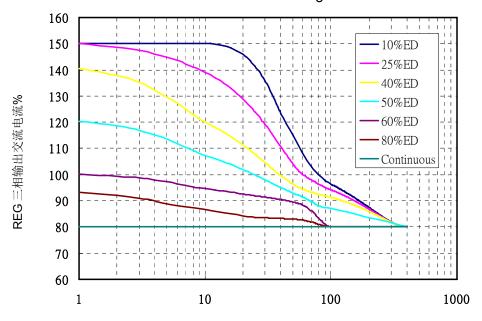

Voltage		10%ED 10s						
	Drive	REG select	ion					
	kW	Model	Quantity					
	0.7	REG075A23A	1					
	1.5	REG075A23A	1					
-	2.2	REG075A23A	1					
	3.7	REG075A23A	1					
	5.5	REG075A23A	1					
	7.5	REG075A23A	1					
220V	11	REG110A23A	1					
220V	15	REG110A23A	1					
	18	REG150A23A	1					
	22	REG185A23A	1					
-	30	REG220A23A	1					
	37	REG300A23A	1					
-	45	REG370A23A	1					
	55	Diagon contact the						
	75	Please contact the	-					
	90	Delta factory						

Voltage		10%ED 10s	
	Drive	REG selecti	on
	kW	Model	Quantity
	0.7	REG075A43A	1
	1.5	REG075A43A	1
	2.2	REG075A43A	1
	3.7	REG075A43A	1
	4	REG075A43A	1
	5.5	REG075A43A	1
	7.5	REG075A43A	1
	11	REG075A43A	1
440V	15	REG110A43A	1
	18	REG150A43A	1
	22	REG185A43A	1
	30	REG220A43A	1
	37	REG300A43A	1
	45	REG370A43A	1
	55	REG450A43A	1
	75	REG550A43A	1
	90		
	110		
	132		
	160	Diagon contact the	
	185	Please contact the	-
	220	Delta factory	
	280		
	315		
	355		


Model selection method 3 (base on the load characteristics of applications)

Crane/Hoist Application

The equipment weighs 10 tons, drive model: VFD075CH43A, with a 5.5kW motor From the crane's specification we know


- 1. In high-speed operation, the time it takes from top to bottom is 9(m)/3.6(m/min) = 2.5(min) = 150(sec)
- 2. Assuming the motor efficiency is 85%, mechanical efficiency is 85%, and the drive and the REG2000's efficiencies are both 95%, the useful power output would be 5.5kW*0.85^2*0.95^2 = 3.57kW
- 3. When using the REG2000, and mains voltage is 380V, the current would be 3.57kW/(sqrt(3)*380V) = 5.4 A
- 4. From the table below, at 40%ED, and a working duration of 150s, the output current must be lower than 90% of the rated current to not cause overloading.
- 5. From the specification sheet, REG075A43A-21rated current is 10.5A, 10.5A*90% = 9.45A > 5.4A therefore, in this case, we can select REG075A43A-21

Elevator Application

In an elevator with 2 ton working load, a speed of 60m/min, floors from B1 - 4F, using 22kW motor, and a counterweight of 48%

- 1. The elevator takes 30s to reach 4F from B1, the whole trip takes 100s, then ED = 30/100 = 30%
- 2. Assuming the motor efficiency is 85%, mechanical efficiency is 85%, and the drive and the power feedback unit's efficiencies are both 95%, the useful power output would be 22kW*85%*85%*95%*95% = 14.3kW
- 3. When using the REG2000, and mains voltage is 380V, the current would be 14.3kW/(sqrt(3)*380V) = 21.8 A
- 4. From the table below, at 30%ED, and a working duration of 30s, the output current must be lower than 115% of the rated current to not cause overloading.

Time of Regeneration(sec.)

5. From the specification sheet,

REG110A43A-21 if rated current is 17A, 17A*115% = 19.55A < 21.8A, REG150A43A-21 if rated current is 20A, 20A*115% = 23A > 21.8A, Therefore, in this case, we can select REG150A43A-21.