Industrial Automation Headquarters
Delta Electronics, Inc.
No. 18, Xinglong Rd., Taoyuan District,
No. 18, Xinglong Ra.,. Taoyuan Districl,
Tayuan City 3008, Triwan
TEL: 886-3-362-6301/ /FAX: 886-3-371-630

Asia

Delta Electronics (Shanghai) Co., Ltd.
No. 182 Minyu Rd., Pudong Shanghai, P.R.C.
Post code : 201209
TEL- $86-21-6872-3988 / F A X \cdot 86-21-6872-3996$ Customer Service: 400-820-9595

Delta Electronics (Japan), Inc.
Tokyo Office
Industrial Automation Sales Department
Tokyo, Japan 105-0012
TEL: 81-3-5733-1155 / FAX: 81-3-5733-1255
Delta Electronics (Korea), Inc.
Seoul Office
1511, 219, Gasan Digital 1-Ro., Geumcheon-gu,
Seoul, 08501 South Korea
Seoul, 08501 South Korea
TEL: 82-2-515-5305/ FAX
: 82-2-515-5302
Delta Energy Systems (Singapore) Pte Ltd. 4 Kaki Bukit Avenue 1,\#05-04, Singapore 41793

D:
Delta Electronics (India) Pvt. Ltd.
Plot No. 43, Sector 35, HSIIDC Gurgaon
TEL: 91-124-4874900 / FAX : 91-124-4874945
Delta Electronics (Thailand) PCL
909 Soi 9 , Moo 4, Bangpoo Industrial Estate (E.P.Z)
Samutprakarn 10280, Thailand
TEL: 66-2709-2800 / FAX: 662-709-2827
Delta Energy Systems (Australia) Pty Ltd. Unit 20-21/45 Normanby Rd., Notting Hill Vic 3168, Australia

Americas
Delta Electronics (Americas) Ltd
Delta Electro
Raleigh ofire
P.O. Box 12173, 5101 Davis Drive
Research Triangle Park, NC 27709, U.S.A
Delta Greentech (Brasil) S/A
São Paulo Office
Rua Itapeva, $26-3^{\circ}$ Andar - Bela Vista
CEP: 5 TSJ11-3530-8642 / $55-11-3530$ - -864
Delta Electronics International Mexico S.A. de C.
Mexico Office
Via Dr. Gustavo Baz No. 2160, Colonia La Loma
54060 Tlalno
TEL: 52-55-2628-3015 \#3050/3052

EMEA

Delta Electronics (Netherlands) B.V.
Ee Witbogt 20,5652 AG Eindhoven, The Netherlands
MALL: Sales.AA FMEAQdeltaw
MAIL: Sales.IA.EMEA@deltaww.com
MAIL: Sales.IA.Benelux@deltaww.com
German Office
$\frac{\text { German Office }}{\text { Coesterweg 45, D-59494 Soest, German }}$
MAIL: Sales.IA.DACH@deltaww.com
Delta Electronics (France) S.A
Delta Electronics (France) S.A.
ZI du bois Chaland 215 rue des P Lisses 91056 Evry Cedex, France
MAIL: Sales.IA.FR@deltaww.com
Delta Electronics Solutions (Spain) S.L.U
Ctra. De Villaverde a Vallecas, 2651° Dcha Ed.
Hormigueras - P.I. de Vallecas 2031 .
Hormigueras - P.I. de Vallecas 28031 Madrid
C/LLull, 321-329 (Edifici CINC) | 22 @Barcrelona, 08019 Barcelona
Delta Electronics (Italy) SrI
Ufficio di Milano Via Senigallia
Ufficio di Milano Via Senigallia 18/2 20161 Milano (MI)
Miazza Grazioli 1800186 Roma, Italy
Delta Energy Systems LLC (CIS)
Vereyskaya Plaza II, office 112 Vereyskaya st.
17121357 Moscow, Russia
Delta Greentech Elektronik San. Ltd. Sti. (Turkey)
Serifali Mah. Hendem Cad. Kule Sok. No: 16-A
34775 Umraniye / Istanbul
MAIL: Sales.IA.Turkey@deltaww.con
Delta Energy Systems AG (Dubai BR) p.O. Box 185668, Gate 7, 3rd Floor, Hamarain Centre Dubai, United Arab Emirates

Delta High Performance Compact Drive MH300-L Series (for Lift Application) User Manual

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

\square Disconnect AC input power before connecting any wiring to the AC motor drive.
\square Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Do not touch the internal circuits and components.
\square There are highly sensitive MOS components on the printed circuit boards.
These components are especially sensitive to static electricity. Take anti-static measures before touching these components or the circuit boards.

- Never modify the internal components or wiring.
\square Ground the AC motor drive by using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
■ DO NOT install the AC motor drive in a location with high temperature, direct sunlight or inflammable materials or gases.
\boxtimes Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
च The rated voltage of power system to install motor drives is listed below. Ensure that the installation voltage is in the correct range when installing a motor drive.
For 230 V models, the range is between $170-264 \mathrm{~V}$.
For 460 V models, the range is between 323-528 V.
\square See table below for the short-circuit current capacity

Model Series (Power)	short-circuit current capacity
230 V	5 kA
460 V	5 kA

- Only qualified persons are allowed to install, wire and maintain the AC motor drives.
\boxtimes Even if the three-phase AC motor is stopped, a charge with hazardous voltages may still remain in the main circuit terminals of the $A C$ motor drive.
V If you store the AC motor drive in a not-charged condition for more than three months, the ambient temperature should not be higher than $30^{\circ} \mathrm{C}$. Storage longer than one year is not recommended and could result in the degradation of the electrolytic capacitors.
$\square \quad$ Pay attention to the following when transporting and installing this package (including wooden crate, wood stave and carton box).
1 If you need to sterilize or deworm the wooden crate or carton box, do not use steamed sterilization or you will damage the VFD. Use other methods to sterilize or deworm.

2 You may use high temperatures to sterilize or deworm. Leave the packaging materials in an environment of over $56^{\circ} \mathrm{C}$ for thirty minutes.
\boxtimes Connect the drive to a three-phase three-wire or three-phase four-wire Wye system to comply with UL standards.
च If the drive generates leakage current over AC 3.5 mA or DC 10 mA on a grounding conductor, compliance with local grounding regulations or IEC61800-5-1 standard is the minimum requirement for grounding.

NOTE

- In the pictures in this manual, the cover or safety shield is disassembled only when explaining the details of the product. During operation, install the top cover and wiring correctly according to the provisions. Refer to the operation descriptions in the manual to ensure safety.
- The figures in this instruction are only for reference and may be slightly different depending on your model, but it will not affect your customer rights.
- The content of this manual may be revised without prior notice. Consult our distributors or download the latest version at
http://www.deltaww.com/services/DownloadCenter2.aspx?secID=8\&pid=2\&tid=0\&CID=06\&itemID=060101 \&typeID=1\&downloadID=\&title=\&dataType=\&check=0\&hl=en-US.

Table of Contents

CHAPTER 1 INTRODUCTION 1-1
1-1 Nameplate Information 1-2
1-2 Model Name 1-3
1-3 Serial Number 1-3
1-4 Apply for After-sales Service by mobile Device 1-4
1-5 RFI Jumper 1-5
CHAPTER 2 DIMENSIONS 2-1
Frame C 2-1
Frame D 2-2
Frame E 2-3
Frame F 2-4
Digital Keypad 2-5
CHAPTER 3 INSTALLATION 3-1
CHAPTER 4 WIRING 4-1
4-1 System Wiring Diagram 4-3
4-2 Wiring 4-4
CHAPTER 5 MAIN CIRCUIT TERMINALS 5-1
5-1 Main Circuit Diagram 5-4
5-2 Main Circuit Terminals 5-5
Frame C 5-6
Frame D 5-7
Frame E 5-8
Frame F 5-9
CHPATER 6 CONTROL TERMINALS 6-1
CHAPTER 7 OPTIONAL ACCESSORIES 7-1
7-1 All Brake Resistors and Brake Units Used in AC Motor Drives 7-2
7-2 Non-fuse Circuit Breaker 7-4
7-3 Fuse Specification Chart 7-5
7-4 AC/DC Reactor. 7-6
7-5 Zero Phase Reactors 7-14
7-6 EMC Filter. 7-17
7-7 EMC Shield Plate 7-20
7-8 Capacitive Filter 7-23
CHAPTER 8 OPTION CARDS 8-1
8-1 Option Card Installation 8-2
8-2 EMM-D33A -- Three-point Digital Input/Three-point Digital Output Extension. 8-5
8-3 EMM-R2CA -- Relay Output Extension (Three-point N.C. Output Terminal) 8-6
8-4 CANopen Communication Cable/Digital Keypad RJ45 Extension Cable 8-7
CHAPTER 9 SPECIFICATION 9-1
9-1 230V Series 9-2
9-2 460V Series 9-3
9-3 Environment for Operation, Storage and Transportation 9-5
9-4 Derating for Ambient Temperature and Altitude 9-6
CHAPTER 10 DIGITAL KEYPAD 10-1
CHAPTER 11 SUMMARPY OF PARAMETERS SETTINGS 11-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS 12-00-1
00 Drive Parameters 12-00-1
01 Basic Parameters 12-01-1
02 Digital Input / Output Parameters 12-02-1
03 Analog Input / Output Parameters 12-03-1
04 Multi-step Speed Parameters 12-04-1
05 Motor Parameters 12-05-1
06 Protection Parameters 12-06-1
07 Special Parameters 12-07-1
09 Communication Parameters 12-09-1
11 Advanced Parameters 12-11-1
CHAPTER 13 WARNING CODES 13-1
CHAPTER 14 ERROR CODES 14-1
CHAPTER 15 AUTO-TUNING PROCESS 15-1
CHAPTER 17 PLC FUNCTION APPLICATIONS 17-1
CHAPTER 18 SAFE TORQUE OFF FUNCTION 18-1
18-1 Basic Function Description 18-2
18-2 Safe Torque Off Terminal Function Description 18-3
18-3 Wiring Diagram 18-4
18-4 Failure Rate of the Drive Safety Function 18-5
18-5 Reset the Parameter Settings 18-5
18-6 Timing Diagram Description 18-6

Chapter 1 Introduction

1-1 Nameplate Information

1-2 Model Name

1-3 Serial Number

1-4 Apply After Service by Mobile Device

1-5 RFI Jumper

After receiving the AC motor drive, check for the following. Inspect the unit after unpacking to ensure that it was not damaged during shipment. Make sure that the part number printed on the package matches the part number indicated on the nameplate.

1. Make sure that the mains voltage is within the range indicated on the nameplate. Install the AC motor drive according to the instructions in this manual.
2. Before applying power, make sure that all devices, including mains power, motor, control board, and digital keypad are connected correctly.
3. When wiring the $A C$ motor drive, make sure that the wiring for the input terminals " $R / L 1, S / L 2, T / L 3$ ", and the output terminals "U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
4. When power is applied, use the digital keypad (KPMH-LC01) to select the language and set parameters. When executing a trial run, begin with a low speed and then gradually increase the speed to the desired speed.

1-1 Nameplate Information

1-2 Model Name

1-3 Serial Number

11A 2317 T 18100001

2: MH300 series

1-4 Apply After Service by Mobile Device

1-4-1 Location of Service Link Label

Frame C-F

Service link label (Service Label) will be pasted on the area as below drawing shown.

1-4-2 Service Link Label

- QR code
http://service.deltaww.com/ia/repair?sn=serial number
- Serial number
- Web address of after-sales service

Scan QR Code to apply

1. Find out the QR code sticker (as above shown).
2. Use a Smartphone to run a QR Code reader APP.
3. Point your camera to the QR Code. Hold your camera steady so that the QR code comes into focus.
4. Access the Delta After Service website.
5. Fill your information into the column marked with an orange star.
6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find QR Code?

1. Open a web browser on your computer or smart phone.
2. Key in https://service.deltaww.com/ia/repair in address bar and press enter.
3. Fill your information into the columns marked with an orange star.
4. Enter the CAPTCHA and click "Submit" to complete the application.

1-5 RFI Jumper

The drive contains Varistors/MOVs that are connected from phase to phase and from phase to ground to protect the drive against mains surges or voltage spikes.

Because the Varistors/MOVs from phase to ground are connected to ground with the RFI jumper, removing the RFI jumper disables the protection.
(1) In models with a built-in EMC filter, the RFI jumper connects the filter capacitors to ground to form a return path for high frequency noise in order to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter.
(2) Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filters can trigger the RCD. Removing the RFI jumper can help, but the EMC performance of each drive is no longer guaranteed.

Frame C-F Screw Torque: $4-6 \mathrm{~kg}-\mathrm{cm} /[3.5-5.2 \mathrm{lb}-\mathrm{in}] /.[0.39-0.59 \mathrm{Nm}]$
Loosen the screw and remove the RFI jumper (as shown below). Fasten the screw again after you remove the RFI jumper.

Frame C-F (model with built-in EMC filter)
Remove the RFI jumper with a screwdriver (as shown below).

Isolating main power from ground:
When the power distribution system of the drive is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI jumper. Removing the RFI jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection
\boxtimes To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the drive during installation.
\square The diameter of the cables must comply with the local safety regulations.
\square The shield of shielded cables must be connected to the ground of the drive to meet safety regulations.
∇ The shield of shielded power cables can only be used as the ground for equipment when the aforementioned points are met.
\square When installing more drives, do not connect the grounds of the drives in series but connect each drive to ground. The following pictures show the correct and wrong ways to connect the grounds.

Pay particular attention to the following points:
\square Do not remove the RFI jumper while the power is on.
∇ Removing the RFI jumper also disconnects the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
∇ Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
∇ Do not remove the RFI jumper while conducting high voltage tests. When conducting a high voltage test to the entire facility, you must disconnect the mains power and the motor if the leakage current is too high.

Floating Ground System (IT Systems)

A floating ground system is also called an IT system, an ungrounded system, or a high impedance/resistance (greater than 30Ω) grounded system.
■ Disconnect the RFI jumper.
\square Check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits.
\square In some situations, the transformer and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase suppression.
\boxtimes Do not install an external EMC filter. The EMC filter is connected to ground through the filter capacitors, thus connecting the power input to ground. This is very dangerous and can easily damage the drive.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not remove the RFI jumper while there is power to the input terminal of the drive.
In the following four situations, you must remove the RFI jumper. This is to prevent the system from grounding through the RFI and filter capacitors and damaging the drive.

You must remove the RFI jumper

1. Grounding at a corner in a triangle configuration

2. Grounding at one end in a single-phase configuration

3. Grounding at a midpoint in a polygonal configuration

4. No stable neutral grounding in a three-phase autotransformer configuration

You can use the RFI jumper
Internal grounding through RFI capacitors, which reduces electromagnetic radiation. In a symmetrically grounding power system with higher EMC requirements, you can install an EMC filter. As a reference, the diagram on the right is a symmetrical grounding power system.

[This page intentionally left blank]

Chapter 2 Dimension

Frame C

C1: VFD11AMH23ANSLA; VFD17AMH23ANSLA; VFD9A0MH43ANSLA;
C2: VFD9A0MH43AFSLA;
Unit: mm [inch]

Frame	W	H	D	W 1	H 1	D 1	S 1
C 1	$87.0[3.43]$	$157.0[6.18]$	$167.0[6.57]$	$73.0[2.87]$	$144.5[5.69]$	$5.0[0.20]$	$5.5[0.22]$
C 2	$87.0[3.43]$	$157.0[6.18]$	$194.0[7.64]$	$73.0[2.87]$	$144.5[5.69]$	$5.0[0.20]$	$5.5[0.22]$

Detail A (Mounting Hole)

Detail B (Mounting Hole)

Chapter 2 Dimensions \| MH300-L

Frame D

D1: VFD25AMH23ANSLA; VFD13AMH43ANSLA; VFD17AMH43ANSLA;
D2: VFD13AMH43AFSLA; VFD17AMH43AFSLA;
Unit: mm [inch]

Frame	W	H	D	W 1	H 1	D 1	S 1
D 1	$109.0[4.29]$	$207.0[8.15]$	$169.0[6.65]$	$94.0[3.70]$	$193.8[7.63]$	$6.0[0.24]$	$5.5[0.22]$
D2	$109.0[4.29]$	$207.0[8.15]$	$202.0[7.95]$	$94.0[3.70]$	$193.8[7.63]$	$6.0[0.24]$	$5.5[0.22]$

Frame E

E1: VFD33AMH23ANSLA; VFD49AMH23ANSLA; VFD25AMH43ANSLA; VFD32AMH43ANSLA;
E2: VFD25AMH43AFSLA; VFD32AMH43AFSLA;

Frame	W	H	D	W 1	H 1	D 1	S 1
E 1	$130.0[5.12]$	$250.0[9.84]$	$200.0[7.87]$	$115.0[4.53]$	$236.8[9.32]$	$6.0[0.24]$	$5.5[0.22]$
E2	$130.0[5.12]$	$250.0[9.84]$	$234.0[9.21]$	$115.0[4.53]$	$236.8[9.32]$	$6.0[0.24]$	$5.5[0.22]$

See Detail B

Detail A (Mounting Hole)
S1

Detail B (Mounting Hole)

Chapter 2 Dimensions | MH300-L

Frame F

F1: VFD65AMH23ANSLA
Unit: mm [inch]

Frame	W	H	D	W 1	H 1	D 1	S 1
F 1	$175.0[6.89]$	$300.0[11.81]$	$207.0[8.15]$	$154.0[6.06]$	$279.5[11.00]$	$6.5[0.26]$	$8.4[0.33]$

See Detail B

Detail A (Mounting Hole)

Detail B (Mounting Hole)

Digital Keypad

KPMH-LC01
Unit: mm [inch]

W	W1	W2	W3	H	H1	H2
$68.0[2.67]$	$63.8[2.51]$	$45.2[1.78]$	$8.0[0.31]$	$46.8[1.84]$	$42.0[1.65]$	$26.0[1.02]$

H3	D	D1	D2	D3	D4	S1
$7.5[0.30]$	$36.1[1.41]$	$22.7[0.89]$	$7.9[0.30]$	$2.2[0.09]$	$1.3[0.05]$	M3 ${ }^{*} 0.5(2 \mathrm{X})$

[This page intentionally left blank]

Chapter 3 Installation

Minimum Mounting Clearance and Installation

■ Prevent fiber particles, scraps of paper, shredded wood, sawdust, metal particles, etc. from adhering to the heat sink.
■ Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separator between the AC motor drives to prevent mutual heating and to prevent the risk of accidental fire. Install the AC motor drive in Pollution Degree 2 environments only: normally only non-conductive pollution occurs and temporary conductivity caused by condensation is expected.
\square Mount the drive in an IP54 cabinet in order to maintain the Pollution Degree 2 or in a pollution-controlled environment.

The following figures are for reference only.

Airflow direction:
*-= inflow
Single drive installation

Side-by-side horizontal installation

Minimum mounting clearance

Installation method	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	Ambient temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	
				Max. (Without derating)	Max. (Derating)
Single drive installation	50	30	-	50	60
Side-by-side horizontal installation	50	30	30	50	60
Zero stack installation	50	30	0	40	50

NOTE

The minimum mounting clearances $\mathrm{A}-\mathrm{C}$ in the table above apply to AC motor drives installation. Failing to follow the minimum mounting clearances may cause the fan to malfunction and cause heat dissipation problems.

Frame	Airflow rate for cooling			Power Dissipation		
	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: $\mathrm{m}^{3} / \mathrm{hr}$)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	Total (Unit: W)
C	VFD11AMH23ANSLA	16.0	27.2	76.0	30.7	106.7
	VFD17AMH23ANSLA			108.2	40.1	148.3
	VFD9A0MH43ANSLA VFD9A0MH43AFSLA			93.1	42	135.1
D	VFD25AMH23ANSLA	23.4	39.7	192.8	53.3	246.1
	VFD13AMH43ANSLA VFD13AMH43AFSLA			132.8	39.5	172.3
	VFD17AMH43ANSLA VFD17AMH43AFSLA			164.7	55.8	220.5
E	VFD33AMH23ANSLA	53.7	91.2	244.5	79.6	324.1
	VFD49AMH23ANSLA			374.2	86.2	460.4
	VFD25AMH43ANSLA VFD25AMH43AFSLA			234.5	69.8	304.3
	VFD32AMH43ANSLA VFD32AMH43AFSLA			319.8	74.3	394.1
F	VFD65AMH23ANSLA	67.9	115.2	492.0	198.2	690.2

Derating for Ambient Temperature

Chapter 4 Wiring

4-1 System Wiring Diagram
4-2 Wiring

Chapter 4 Wiring | MH300-L

After removing the front cover, verify that the power and control terminals are clearly visible. Read the following precautions to avoid wiring mistakes.

च When wiring, choose wires that comply with local regulations for your safety.
\square Check the following items after you finish the wiring:

1. Are all connections correct?
2. Are there any loose wires?
3. Are there any short-circuits between the terminals or to ground?

4-1 System Wiring Diagram

Power input terminal	Please refer to Chapter 9 Specification Table in the user manual for detail.
NFB or fuse	There may be a large inrush current during power on. Refer to Section 7-2 NFB to select a suitable NFB or Section 7-3 Fuse Specification Chart.
Electromagnetic contactor	Switching the power ON/OFF before the magnetic contactor more than one per hour can damage the drive.
(input terminal)	When the mains power capacity is > 500kVA or when the drive is preceded by a capacitor bank, the instantaneous peaks voltage and current may destroy the drive. In that case it is recommended to install an AC input reactor that also improves the power factor and harmonics. The cable between reactor and drive should be < 10m. Please refer to Section 7-4.
AC reactor Zero-phase reactor	Used to reduce radiated emission, especially in environments with audio devices, and reduce input and output side interference. The effective range is AM band to 10MHz. Please refer to Section 7-5.
Erake resistor (BR)	Used to shorten the deceleration time of the motor. Please refer to Section 7-1.
filter	The wiring length of the motor affects switching current peaks. It is recommended to install an AC output reactor when the motor wiring length exceeds the value listed in Section 7-4.
Can be used to reduce electromagnetic	
interference.	
Please refer to Section 7-6.	

4-2 Wiring

It provide three-phase power

Figure 1

Chapter 4 Wiring | MH300-L

Figure 2
SINK (NPN) / SOURCE (PNP) Mode
(1) Sink Mode
with internal power $(+24 \mathrm{~V}$ DC $)$

(3) Sink Mode with external power

(4) Source Mode with external power

Figure 3
Applicable for frame C, D \& E:

1. وпतf the mann power cin use single-phase UPS or betpery.

Specifications or
Single-phase UPS and battery:
230V UPS: $100-230 V_{4}$
Batlery: 14D-325V
4604 IlPS 200 -3804
Batiery: $\mathbf{2 8 0}-537 \mathrm{~V}_{\mathrm{cc}}$

- Before Enabling the EPS, Iurn on MC3. keep the MC2 turning of.
- Yau need la tum an MCi before yaur turn on MC3. Make sure
 tumed off before ramoving the ballary and before turning on MC2
- MC a Magnelic Contactor
- Saq = Sequence

Sequenlial Diagrarn of Elavatar's Emargency Power Supply and Power Generating Direction
Notes on Emergency Power Supply (EPS):

1. When the EPS is enabled ($\mathrm{MI}=58$), the cooling fan stop running to prevent voltage decreasing of EPS.
2. When the EPS is enabled, the parameter setting cannot be saved. The system will lose its parameter setting after it is repower on.
3. When the EPS is enabled, the operating speed follows the setting of Pr.06-81.
4. When the EPS is enabled, low voltage protection and phase lose protection are disabled.
5. When the EPS is enabled, the DC-Bus voltage followa the setting of Pr.06-80.
[This page intentionally left blank]

Chapter 5 Main Circuit Terminals

5-1 Main Circuit Diagram

5-2 Main Circuit Terminals

च Securely fasten the main circuit terminal screws to prevent sparking caused by loose screws due to vibration.

ஏ When needed, only use an inductive filter at the motor output terminals U/T1, V/T2, W/T3 of the AC motor drive. DO NOT use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
$\boxtimes \quad$ DO NOT connect brake resistors directly to $+1 / D C+$ to $D C-,+2 / B 1$ to $D C-$ to prevent damage to the drive.
$\boxtimes \quad$ Ensure proper insulation of the main circuit wiring in accordance with the relevant safety regulations.

Main power terminals
$\boxtimes \quad R / L 1, S / L 2$ and T/L3 have no phase-sequence requirement; they can be connected in any sequence.
च Add a magnetic contactor (MC) at the power input to quickly cut off power and reduce malfunction when activating the AC motor drive protection function. Both ends of the MC should have an $\mathrm{R}-\mathrm{C}$ surge absorber.
\square Ensure that voltages and currents are within specification.
\boxtimes When using a general GFCI (Ground Fault Circuit Interrupter), select a sensitivity greater than or equal to 200 mA and greater than or equal to 0.1 sec . operation time to avoid nuisance tripping.
\boxtimes Use conduits or shielded cables for the power wiring, and ground both ends of the conduit or shielded cables.
$\boxtimes \quad$ DO NOT start or stop the drive by turning the power ON or OFF. Start and stop the drive with the RUN/STOP command. If you still need to run or stop the drive by turning the power ON or OFF, it is strongly recommended that you do so no more often than ONCE per hour.
\boxtimes To comply with UL standards, connect the drive to a three-phase three-wire or three-phase four-wire Wye system type of mains power system.

Output terminals for main circuit

च Use a well-insulated motor that is suitable for operation with an inverter.
$\boxtimes \quad$ When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3 respectively, the motor rotates counterclockwise (as viewed from the shaft end of the motor) when it receives a forward operation command. To permanently reverse the direction of rotation, exchange any two motor leads.

Terminals for connecting DC reactor, external brake resistor and DC circuit

$\square \quad$ These are the terminals for connecting the DC reactor to improve the power factor and harmonics. At delivery they are shorted by a jumper. Remove the jumper before connecting the DC reactor.
\square You must tightly fasten the jumper when it does not connect the DC reactor, use DC+/+1, +2/B1 to execute common DC BUS, or connect with a brake resistor; otherwise the drive might lose power or break the terminals.

\square Connect a brake resistor in applications with frequent deceleration, short deceleration time, too low braking torque, or increased braking torque.

$\boxtimes \quad$ Connect the external brake resistor to the terminals [+2/B1], [B2] on AC motor drives.
$\boxtimes \quad$ DO NOT short-circuit or connect a brake resistor directly to DC+/+1 and DC-, +2/B1 to DC-; otherwise the drive will be damaged.

च Connect DC+ and DC- in common DC BUS applications. Refer to Section 5-2 (Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.

Remove the front cover

Remove the front cover before connecting the main circuit terminals and control circuit terminals. Remove the cover according to the figure below.[a] The figure below shows the Frame D model for example. Removing the cover on the other frame sizes is similar.

Press the clip on both sides, and take out by rotating.

5-1 Main Circuit Diagram

It prowide three-phase

Terminals	Descriptions
R/L1, S/L2, T/L3	Mains input terminals three-phase
U/T1, V/T2, W/T3	Motor output terminals for connecting three-phase IM and PM motors
$+1,+2$	Connections for DC reactor to improve the power factor and harmonics. Remove the jumper when using a DC reactor.
DC+, DC-	Connections for brake unit (VFDB series) Common DC BUS
B1, B2	Connections for brake resistor (optional)
G	Ground connection, comply with local regulations.

5-2 Main Circuit Terminals

- The following additional terminals are needed when wiring. The additional terminal dimension should comply with Figure 1 below.
- After crimping the wire to the ring lug (must be UL approved), UL and CSA approved R/C (YDPU2), install heat shrink tubing rated at a minimum of $600 \mathrm{~V}_{\mathrm{AC}}$ insulation over the live part. Refer to Figure 2 below.

Figure 1.

Figure 2.

Dimensions of Ring Lug

The part \# of the ring terminals (produced by K.S. Terminals) in the table below are for reference only. You can buy other ring terminals of your choice to match with different frame sizes.

Frame	AWG	Vendor P/N	$\begin{gathered} \text { A } \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} C \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} \mathrm{d} 2 \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \text { F } \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} W \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{MAX}) \end{gathered}$
C	12	RNBS5-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	10.5	1.2
	10	RNBS5-4									
	8	RNBS8-4									
D	10	RNBS5-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	10.5	1.2
	8	RNBS8-4									
E	6	RNB14-5	27.1	6.1	10.5	11.5	5.3	13.0	6.5	12.6	1.7
	4	RNBS22-5									
F	2	RNBS38-6	35.0	9.0	13.3	14.0	6.2	13.0	10.0	19.5	1.8

Chapter 5 Main Circuit Terminals | MH300-L

Frame C

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, , DC-, DC+/+1, +2/B1, B2			terminals ${ }^{-}$		
	Max. Wire Gauge	Min. Wire Gauge	Torque $(\pm 10 \%)$	Max. Wire Gauge	Min. Wire Gauge	Torque ($\pm 10 \%$)
VFD11AMH23ANSLA	$10 \mathrm{~mm}^{2}$ [8 AWG]	$6 \mathrm{~mm}^{2}$ [10 AWG]	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$	$6 \mathrm{~mm}^{2}$ [10 AWG]	$\begin{gathered} 6 \mathrm{~mm}^{2} \\ \text { [10 AWG] } \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$
VFD17AMH23ANSLA		$10 \mathrm{~mm}^{2}$ [8 AWG]		$10 \mathrm{~mm}^{2}$ [8 AWG]	$10 \mathrm{~mm}^{2}$ [8 AWG]	
VFD9A0MH43ANSLA		$4 \mathrm{~mm}^{2}$		$4 \mathrm{~mm}^{2}$	$4 \mathrm{~mm}^{2}$	
VFD9A0MH43AFSLA		[12 AWG]		[12 AWG]	[12 AWG]	

Frame D

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- Model VFD25AMH23ANSLA install at Ta $45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, , DC-, DC+/+1, +2/B1, B2			terminals		
	Max. Wire Gauge	Min. Wire Gauge	Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$
VFD25AMH23ANSLA	$10 \mathrm{~mm}^{2}$ [8 AWG]	$10 \mathrm{~mm}^{2}$ [8 AWG]	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$	10 mm ${ }^{2}$ [8 AWG]	$10 \mathrm{~mm}^{2}$ [8 AWG]	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$
VFD13AMH43ANSLA		$6 \mathrm{~mm}^{2}$		$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	
VFD13AMH43AFSLA		[10 AWG]		[10 AWG]	[10 AWG]	
VFD17AMH43ANSLA		$10 \mathrm{~mm}^{2}$ [8 AWG]		$10 \mathrm{~mm}^{2}$ [8 AWG]	$10 \mathrm{~mm}^{2}$ [8 AWG]	
VFD17AMH43AFSLA						

Chapter 5 Main Circuit Terminals | MH300-L

Frame E

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- Model VFD33AMH23ANSLA install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- Model VFD49AMH23ANSLA install at Ta $35^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- Model VFD32AMH43ANSLA and VFD32AMH43AFSLA install at Ta $45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installing. The wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.
- ** These drives must be wired with the specified ring terminal dimensions.

Models	Main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, , DC-, DC+/+1, +2/B1, B2			terminals		
	Max. Wire Gauge	Min. Wire Gauge	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$	Max. Wire Gauge	Min. Wire Gauge	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$
VFD33AMH23ANSLA	$16 \mathrm{~mm}^{2}$ [6 AWG]	$16 \mathrm{~mm}^{2}$ [6 AWG]	$\begin{gathered} \mathrm{M} 5 \\ 25 \mathrm{Kg}-\mathrm{cm} \\ {[21.7 \mathrm{lb}-\mathrm{in} .]} \\ {[2.45 \mathrm{Nm}]} \end{gathered}$	$16 \mathrm{~mm}^{2}$ [6 AWG]	$16 \mathrm{~mm}^{2}$ [6 AWG]	$\begin{gathered} \text { M5 } \\ 25 \mathrm{Kg}-\mathrm{cm} \\ {[21.7 \mathrm{lb}-\mathrm{in} .]} \\ {[2.45 \mathrm{Nm}]} \end{gathered}$
VFD49AMH23ANSLA**	$25 \mathrm{~mm}^{2}$ [4 AWG]	$25 \mathrm{~mm}^{2}$ [4 AWG]		$25 \mathrm{~mm}^{2}$ [4 AWG]		
VFD25AMH43ANSLA	$16 \mathrm{~mm}^{2}$ [6 AWG]	$16 \mathrm{~mm}^{2}$ [6 AWG]		$16 \mathrm{~mm}^{2}$ [6 AWG]		
VFD25AMH43AFSLA						
VFD32AMH43ANSLA						
VFD32AMH43AFSLA						

Frame F

- Model VFD65AMH23ANSLA install at Ta $35^{\circ} \mathrm{C}$ above environment, select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation.
- The wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main circuit terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, , DC-, DC+/+1, +2/B1, B2			terminals\oplus		
	Max. Wire Gauge	Min. Wire Gauge	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$	Max. Wire Gauge	Min. Wire Gauge	Torque ($\pm 10 \%$)
VFD65AMH23ANSLA	$35 \mathrm{~mm}^{2}$ [2 AWG]	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ {[2 \mathrm{AWG}]} \end{gathered}$	$\begin{gathered} \mathrm{M} 6 \\ 40 \mathrm{Kg}-\mathrm{cm} \\ {[34.7 \mathrm{lb}-\mathrm{in} .]} \\ {[3.92 \mathrm{Nm}]} \end{gathered}$	$35 \mathrm{~mm}^{2}$ [2 AWG]	$16 \mathrm{~mm}^{2}$ [6 AWG]	$\begin{gathered} \mathrm{M} 6 \\ 40 \mathrm{Kg}-\mathrm{cm} \\ {[34.7 \mathrm{lb}-\mathrm{in} .]} \\ {[3.92 \mathrm{Nm}]} \end{gathered}$

[This page intentionally left blank]

Chapter 6 Control Terminals

Analog input terminals (AVI, ACI, ACM)

च Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (less than 20 m) with proper grounding. If the noise is inductive, connecting the shield to the ACM terminal can reduce interference.
■ Use twisted-pair wire for weak analog signals.
\square If the analog input signals are affected by noise from the drive, connect a capacitor and ferrite core as shown in the following diagram.

Contact input terminals (MI1-MI7, DCM, +24V)
(1) Sink Mode with internal power (+24 Voc)

(3) Sink Mode with external power

2) Source Mode with internal power (+24 V DC)

(4) Source Mode with external power

\boxtimes When the photo coupler is using the internal power supply, the switch connection for Sink and Source modes are as shown in the picture above: MI-DCM: Sink mode, MI-+24 V: Source mode.

Transistor output terminals (MO1, MO2, MCM)

\square Make sure to connect the digital outputs to the correct polarity. See the wiring diagram when connecting a relay to the digital output, connect a surge absorber across the coil, and check the polarity.

Wiring precautions:

- The default condition is $+24 \mathrm{~V} / \mathrm{S} 1 / \mathrm{S} 2$ shorted by jumper (as shown in figure 1 . on upper left side), please refer to Chapter 4 WIRING for more details.
- Power source of the safety function: +24 V (as shown in figure 2 . on upper left side), STO use only.
- Relay terminals are on a screw clamp terminal block (See section A on the upper left side).

1. Tighten the wiring with slotted screwdriver, which is 3.5 mm (wide) $\times 0.6 \mathrm{~mm}$ (thick)
2. The ideal length of stripped wire at the connection side is $6-7 \mathrm{~mm}$.
3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

- Control terminals are on a spring clamp terminal block (See section B on the upper left side).

1. Tighten the wiring with slotted screwdriver, which is 2.5 mm (wide) $\times 0.4 \mathrm{~mm}$ (thick)
2. The ideal length of stripped wire at the connection side is 9 mm .
3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

Control Terminals Wiring Specification

Function name	Control Terminals Wiring Specification	Stripping Length(mm)	Max.Wire Size	Min. Wire Size	Torque
Repay Terminals	Solid	6-7	$1.5 \mathrm{~mm}^{2}$ [16AWG]	$\begin{gathered} 0.2 \mathrm{~mm}^{2} \\ \text { [24AWG] } \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{Kg}-\mathrm{cm} \\ {[4.3 \mathrm{lb}-\mathrm{in} .]} \\ \text { [0.49 Nm] } \\ \hline \end{gathered}$
	Strand				
Control Terminals	Solid	9	$0.75 \mathrm{~mm}^{2}$	$0.25 \mathrm{~mm}^{2}$ [24AWG]	
	Strand		[18AWG]		
	Stranded with ferrules with plastic sleeve	9	$\begin{gathered} 0.5 \mathrm{~mm}^{2} \\ \text { [20AWG] } \end{gathered}$		

Unit: mm

Models and Sizes of Non-Insulated Terminals						
AWG	VENDOR	VENDOR P/N	A(MAX)	B(MAX)	D(MAX)	W(MAX)
$0.25 \mathrm{~mm}^{2}$ $[24 \mathrm{AWG}]$	PHOENIX CONTACT	Al $0,25-8$ YE	12.5	8	2.6	1.1
$0.34 \mathrm{~mW}^{2}$ $[22 \mathrm{AWG}]$	PHOENIX CONTACT	Al $0,34-8$ TQ	12.5	8	3.3	1.3
$0.5 \mathrm{~mm}^{2}$ $[20 \mathrm{AWG}]$	PHOENIX CONTACT	Al $0,5-8 \mathrm{WH}$	14	8	3.5	1.4

Models and Specifications of Crimping Tools:
CRIMPFOX 10S - 1212045, Manufacturer: PHOENIX CONTACT
DNT13-0101, Manufacturer: DINKLE

Terminals	Terminal Function	Description
+24V	Digital control signal common (Source)	+24V $\pm 10 \% 100 \mathrm{~mA}$
MI1 MI7	Multi-function input 1-7	Refer to Pr.02-01-Pr.02-07 to program the multi-function inputs MI1-MI7. Source Mode ON : the activation current is $3.3 \mathrm{~mA} \geq 11 \mathrm{VDC}$ OFF: cut-off voltage $\leq 5 \mathrm{VDC}$ Sink Mode ON : the activation current is $3.3 \mathrm{~mA} \leq 13 \mathrm{VDC}$ OFF: cut-off voltage $\geq 19 \mathrm{VDC}$ - When Pr.02-00 $=0$, MI1 and MI2 can be programmed. - When Pr.02-00 $\neq 0$, the function of MI1 and MI2 is acc. to Pr.02-00 setting. - When Pr.02-07 = 0, MI7 is pulse input with max. frequency 33kHz.
DFM	Digital frequency meter	DFM is a pulse-signal output; Duty-cycle: 50\% Min. load impedance RL: 1k $/$ /100pf Max. current: 30mA Max. capacitive load: 100pF
DCM (1)	Digital frequency signal common (Sink)	Max. voltage: $30 \mathrm{~V}_{\mathrm{DC}} \pm 1 \%$ (when $30 \mathrm{~V}_{\mathrm{DC}} / 30 \mathrm{~mA} / \mathrm{R}_{\mathrm{L}}=100 \mathrm{pf}$) Max. output frequency: 33 kHz

Terminals	Terminal Function	Description
DCM (2)	Digital frequency signal common (Sink), it can switch to SGND	Internal current limiting resistor $\mathrm{R}: \geq 1 \mathrm{~K} \Omega$ Output load impedance R_{L} Capacitive load ≤ 100 pf Resistive load $\geq 1 \mathrm{k} \Omega$, resistance determine the output voltage value. DFM-DCM voltage $=$ external voltage * $\left(R_{L} /\left(R_{L}+R\right)\right)$
MO1	Multi-function Output 1 (photo coupler)	Programmable open-collector outputs, see Pr. 02-16 and Pr. 02-17.
MO2	Multi-function Output 2 (photo coupler)	
MCM	Multi-function Output Common	Max 48 Voc 50 mA
RA	Multi-function relay output 1 (Relay N.O. a)	Programmable relay output, see Pr. 02-13. Resistive Load $3 \text { A (N.O.) / } 3 \text { A (N.C.) } 250 \mathrm{~V}_{\mathrm{AC}}$
RB	Multi-function relay output 1 (Relay N.C. b)	5 A (N.O.) / 3 A (N.C.) 30 VDC Inductive Load (COS 0.4)
RC	Multi-function relay common (Relay)	$\begin{aligned} & 1.2 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 1.2 \mathrm{~A}(\mathrm{~N} . \mathrm{C} .) 250 \mathrm{~V}_{\mathrm{AC}} \\ & 2.0 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 1.2 \mathrm{~A}(\mathrm{~N} . \mathrm{C} .) 30 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$ Various kinds of monitor signals output, e.g.: operation, frequency attained, overload indication etc.
+10V	Potentiometer power supply	$+10.5 \pm 0.5 \mathrm{VDC} / 20 \mathrm{~mA}$
AVI		Programmable analog input, see Pr.03-00. Impedance: 20k Ω Range 0-Max. Output Frequency (Pr.01-00): $0-+10 \mathrm{~V} /-10-+10 \mathrm{~V}$ Range switching by Pr.03-00, Pr.03-28.
ACI	Analog current input	Programmable analog input, see Pr.03-01. Impedance: 250 Range 0 - Max. Output Frequency (Pr. 01-00): $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA} / 0-10 \mathrm{~V}$ Range switching by Pr.03-01, Pr.03-29.

Terminals	Terminal Function	Description
AFM	Multi-function analog voltage output	Switch: The AFM default is $0-10 \mathrm{~V}$ (voltage mode). Use the switch and Pr.03-31 to change to current mode ($0-20 \mathrm{~mA} / 4-20 \mathrm{~mA}$). You must follow the indication on the back side of the front cover or page 6-1 of the user manual when using the switch. Voltage mode Range: 0-10 V (Pr. 03-31=0) corresponding to the max. operating range of the control object Max. output current : 2 mA Max. Load: 5 k Ω Current mode Range: 0-20 mA (Pr.03-31=1)/4-20 mA (Pr.03-31=2) corresponding to the maximum operating range of the control object Max. load: 500Ω
ACM	Analog Signal Common	Common for analog terminals
S1,S2	Default: S1/S2 shorted for +24 V Rated voltage: $24 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$; Maximum voltage: $30 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$ Activation current: $6.67 \mathrm{~mA} \pm 10 \%$ STO activation mode	
DCM	Input voltage level: S1-DCM > 0 VDc or S2-DCM < 5 VDC STO response time $\leq 20 \mathrm{~ms}$. S1/S2 operates until the AC motor drive stops outputting current. STO cut-off mode Input voltage level: S1-DCM > 11 VDC and S2-DCM $<30 \mathrm{~V}_{\mathrm{DC}}$ Power removal safety function according to EN 954-1 and IEC/EN 61508 Note: refer to Chapter 17 SAFE TORQUE OFF FUNCTION for more information.	
SG+	Modbus RS-485 Note: Please refer to Chapter 12 DESCRIPTION OF PARAMETER SETTINGS for more information.	
SG-		
SGND		
RJ-45	Pin1: CAN_H Pin2: CAN_L Pin3, 7: SGND Pin4: SG- Pin5: SG+ Pin6: Reserved Pin8: +10 VS	

Chapter 7 Optional Accessories

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives

7-2 Non-fuse Circuit Breaker

7-3 Fuse Specification Chart
7-4 AC/DC Reactor
7-5 Zero Phase Reactors

7-6 EMC Filter

7-7 EMC Shield Plate

7-8 Capacitive Filter

Chapter 7 Optional Accessories | MH300-L

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive substantially improves the drive's performance. Select accessories according to your need or contact your local distributor for suggestions.

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives

230V three-phase

Model	Applicable Motor		*1 125\% Braking Torque / 10\% ED						Max. Braking Torque		
	HP	kW	*2 Braking Torque (kg-m)	Resistor value spec. for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
					${ }^{* 3}$ Part No.	Amount	Usage				
VFD11AMH23ANSLA	3	2.2	1.5	300W 70ת	BR300W070	1	-	5.4	38.0	10	3.8
VFD17AMH23ANSLA	5	3.7	2.5	400W 40ת	BR400W040	1	-	9.5	19.0	20	7.6
VFD25AMH23ANSLA	7.5	5.5	3.7	1000W 20Ω	BR1K0W020	1	-	19	16.5	23	8.7
VFD33AMH23ANSLA	10	7.5	5.1	1000W 20Ω	BR1K0W020	1	-	19	14.6	26	9.9
VFD49AMH23ANSLA	15	11	7.4	1500W 13Ω	BR1K5W013	1	-	29	12.6	29	11.0
VFD65AMH23ANSLA	20	15	10.2	2000W 8.6Ω	BR1K0W4P3	2	$\begin{array}{\|c\|} \hline 2 \mathrm{in} \\ \text { series } \end{array}$	44	8.3	46	17.5

460V three-phase

Model	Applicable Motor		*1 125\% Braking Torque /10\% ED						Max. Braking Torque		
	HP	kW	*2 Braking Torque (kg-m)	Resistor value spec. for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
					*3 Part No.	Amount	Usage				
VFD9A0MH43ANSLA VFD9A0MH43AFSLA	5	3.7	2.5	400W 150』	BR400W150	1		5.1	84.4	9	6.8
VFD13AMH43ANSLA VFD13AMH43AFSLA	7.5	5.5	3.7	1000W 75Ω	BR1K0W075	1		10.2	50.7	15	11.4
VFD17AMH43ANSLA VFD17AMH43AFSLA	10	7.5	5.1	1000W 75ת	BR1K0W075	1		10.2	40.0	19	14.4
VFD25AMH43ANSLA VFD25AMH43AFSLA	15	11	7.4	1500W 43ת	BR1K5W043	1		17.6	33.0	23	17.5
VFD32AMH43ANSLA VFD32AMH43AFSLA	20	15	10.2	2000W 32ת	BR1K0W016	2	$\begin{gathered} 2 \mathrm{in} \\ \text { series } \end{gathered}$	24	26.2	29	22.0

*1 Standard braking torque is 125%. Because of the limited resistor power, the longest operation time for 10% ED is 10 sec. (on: 10 sec . / off: 90 sec .).
*2 Calculation for braking torque is for a four-pole motor (1800 rpm).
*3 Resistors of 400 W or lower should be fixed to the frame and at a surface temperature below $250^{\circ} \mathrm{C}\left(400^{\circ} \mathrm{C}\right)$.
Resistors of 1000 W and above should be fixed on a surface with temperature below $600^{\circ} \mathrm{C}$. If the temperature is higher than the resistor's temperature limit, it will be required to install heat dissipating system or use a resistor with higher power.

NOTE

1. Select the resistance value, power and brake usage (ED \%) acc. to Delta rules.

Definition for Brake Usage ED\%

Explanation: ED (\%) is defined to allow enough time for the brake unit and brake resistor to dissipate the heat generated by braking. Recommended cycle time T0 is one minute.

For safety, install a thermal overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) before the drive for additional protection. The thermal overload relay protects the brake resistor from damage due to frequent or continuous braking. Under such circumstances, turn off the power to prevent damage to the brake resistor, brake unit and drive.
2. Any damage to the drive or other equipment caused by using brake resistors and brake modules that are not provided by Delta voids the warranty.
3. Consider environmental safety factors when installing the brake resistors. If you use the minimum resistance value, consult local dealers for the power calculation.
4. When using more than two brake units, the equivalent resistor value of the parallel brake unit cannot be less than the value in the column "Minimum Resistor Value (Ω)". Read the wiring information in the brake unit user manual thoroughly prior to operation. Visit the following links to get the instruction sheets for the wiring in the brake unit:

- VFDB2015 / 2022 / 4030 / 4045 / 5055 Braking Modules Instruction Sheet
http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA IA-MDS VFDB I EN 20070719.pdf
- VFDB4110 / 4160 / 4185 Braking Modules Instruction Sheet
http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA IA-MDS VFDB4110-4160-4185 I EN 20 101011.pdf
- VFDB6055 / 6110 / 6160 / 6200 Braking Modules Instruction Sheet
http://www.deltaww.com/filecenter/Products/download/06/060101/Option/DELTA IA-MDS VFDB6055-6110-6160-6200 I
TSE 20121030.pdf

5. Thermal Overload Relay (TOR): Choosing a thermal overload relay is based on whether its overload capacity is appropriate for the MH300. The standard braking capacity of the MH300 is 10% ED (Tripping time=10 s). As shown in the figure below, the thermal overload relay continuously operates for 10 seconds and it can withstand a 260% overload (Host starting). For example, a $460 \mathrm{~V}, 15 \mathrm{~kW}$ MH300 has a braking current of 24 A (refer to the tables in this section), so it can use the thermal overload relay with a rated current of $10 \mathrm{~A}(10 * 260 \%=26 A>24 A)$.

Chapter 7 Optional Accessories | MH300-L

7-2 Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a.

Model	Voltage / three-phase	Current Input / Output (Max.)	Breaker Rating Input (A)
VFD11AMH23ANSLA	230V / three-phase	13.2 A / 11.0 A	40
VFD17AMH23ANSLA		20.4 A / 17.0 A	60
VFD25AMH23ANSLA		30.0 A / 25.0 A	63
VFD33AMH23ANSLA		39.6 A / 33.0 A	90
VFD49AMH23ANSLA		58.8 A / 49.0 A	125
VFD65AMH23ANSLA		78.0 A / 65.0 A	160

Model	Voltage / three-phase	Current Input / Output (Max.)	Breaker Rating Input (A)
VFD9A0MH43ANSLA VFD9A0MH43AFSLA	460V / three-phase	9.9 A / 9.0 A	30
VFD13AMH43ANSLA VFD13AMH43AFSLA		14.3 A / 13.0 A	32
VFD17AMH43ANSLA VFD17AMH43AFSLA		19.3 A / 17.5 A	45
VFD25AMH43ANSLA VFD25AMH43AFSLA		27.5 A / 25.0 A	60
VFD32AMH43ANSLA VFD32AMH43AFSLA		35.2 A / 32.0 A	80

7-3 Fuse Specification Chart

\square Fuse specifications lower than the table below are allowed.
$\boxtimes \quad$ For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. Use UL classified fuses to fulfill this requirement.
$\square \quad$ For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. Use UL classified fuses to fulfill this requirement.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Model } & \text { Voltage / three-phase } & \text { Current Input / Output } \\ \text { (Max.) }\end{array}\right)$ Branch Circuit Fuses Output (A)

7-4 AC/DC Reactor

Installing an AC reactor on the input side of an AC motor drive can increase line impedance, improve the power factor, reduce input current, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes. For example, when the main power capacity is higher than 500 kVA , or when using a switching capacitor bank, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor on the input side of the AC motor drive protects it by suppressing surges.

Installation

Install an AC input reactor in series with the main power to the three input phases R S T as shown below:

230V, 50-60Hz / Three-Phase

Model	Rated Current (Arms)	Saturation Current (Arms)	AC Reactor		DC Reactor	
			Input/ Output Inductor (mH)	Input Reactor Delta Part \#	Inductor (mH)	Delta Part \#
VFD11AMH23ANSLA	11.0	22.0	1.152	DR011A0115	2.662	DR011D0266
VFD17AMH23ANSLA	17.0	34.0	0.746	DR017AP746	1.722	DR017D0172
VFD25AMH23ANSLA	25.0	50.0	0.507	DR025AP507	1.172	DR025D0117
VFD33AMH23ANSLA	33.0	66.0	0.32	DR033AP320	0.851	DR033DP851
VFD49AMH23ANSLA	49.0	98.0	0.216	DR049AP215	0.574	DR049DP574
VFD65AMH23ANSLA	65.0	130.0	0.163	DR065AP162	0.432	DR065DP432

460V, 50-60Hz / Three-Phase

Model	Rated Current (Arms)	Saturation Current (Arms)	AC Reactor		DC Reactor	
			Input/ Output Inductor (mH)	Input Reactor Delta Part \#	Inductor (mH)	Delta Part \#
VFD9A0MH43ANSLA VFD9A0MH43AFSLA	9.0	18.0	2.7	DR009A0270	6.236	DR009D0623
VFD13AMH43ANSLA VFD13AMH43AFSLA	13.0	26.0	1.174	DR018A0117	4.677	DR012D0467
VFD17AMH43ANSLA VFD17AMH43AFSLA	17.5	35.0	1.174	DR018A0117	3.119	DR018D0311
VFD25AMH43ANSLA VFD25AMH43AFSLA	25.0	50.0	0.881	DR024AP881	2.338	DR024D0233
VFD32AMH43ANSLA VFD32AMH43AFSLA	32.0	64.0	0.66	DR032AP660	1.754	DR032D0175

AC input reactor dimension and specification:

Tipromis liturn idiz m

Screw Location	Torque
Terminal	$5.32-7.09 \mathrm{~kg}-\mathrm{cm} /[6.12-8.16 \mathrm{lb}-\mathrm{in}] /.[0.6-0.8 \mathrm{Nm}]$
PE bolt	$8.86-10.63 \mathrm{~kg}-\mathrm{cm} /[10.2-12.24 \mathrm{lb}-\mathrm{in}] /.[1.0-1.2 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	D1*D2	E	G1	G2	PE D
DR011A0115	120	120	88	$6^{* 12}$	60	80.5	60	M4
DR017AP746	120	120	93	$6^{* 12}$	65	80.5	60	M4
DR025AP507	150	150	112	$6^{* 12}$	88	107	75	M4
DR033AP320	150	150	112	$6 * 12$	88	107	75	M4

14rпinis a nrix
Tiphleniry lorphe H \mathbf{H}

Screw Location	Torque
Terminal	$10.63-12.4 \mathrm{~kg}-\mathrm{cm} /[12.24-14.28 \mathrm{lb}-\mathrm{in}] /.[1.2-1.4 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	D1*D2	H	G	G1	Q	M	PE D
DR049AP215	180	195	160	$6 * 12$	115	85	122	16	$1.2-1.4$	M4
DR065AP163	180	205	160	$6 * 12$	115	85	122	35	$2.5-3.0$	M4

Screw Location	Torque
Terminal	$5.32-7.09 \mathrm{~kg}-\mathrm{cm} /[6.12-8.16 \mathrm{lb}-\mathrm{in}] /.[0.6-0.8 \mathrm{Nm}]$
PE bolt	$8.86-10.63 \mathrm{~kg}-\mathrm{cm} /[10.2-12.24 \mathrm{lb}-\mathrm{in}] /.[1.0-1.2 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	D1*D2	E	G1	G2	PE D
DR009A0270	150	150	88	$6^{* 12}$	74	107	75	M4
DR018A0117	150	155	112	$6^{* 12}$	88	107	75	M4
DR024AP881	150	155	112	$6^{* 12}$	88	107	75	M4
DR032AP660	180	175	138	$6^{* 12}$	114	122	85	M6

A DC reactor can also improve the power factor, reduce input current, and reduce interference generated from the motor drive. A DC reactor stabilizes the DC BUS voltage. Compared to an AC input reactor, the advantages are smaller size, lower price, and lower voltage drop (lower power dissipation).

Installation

Install the DC reactor between terminals +1 and +2 . Remove the jumper, shown below, before installing the $D C$ reactor.

It provlde three-phase power

Chapter 7 Optional Accessories | MH300-L

DC reactor dimension and specification:

DC reactor Delta Part \#	Rated Current (Arms)	Saturation current (Arms)	DC reactor (mH)	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$
DR011D0266	11	18	2.662	79	92	112	64 ± 2	69.5 ± 2	9.5*5.5
DR017D0172	17	28.8	1.722	79	112	112	64 ± 2	89.5 ± 2	9.5*5.5
DR025D0117	25	43.2	1.172	99	105	128	79 ± 2	82.5 ± 2	9.5*5.5
DR033DP851	33	55.8	0.851	117	110	156	95 ± 2	87 ± 2	10*6.5
DR049DP574	49	84.6	0.574	117	120	157	95 ± 2	97 ± 2	10*6.5
DR065DP432	65	111.6	0.432	117	140	157	95 ± 2	116.5 ± 2	10*6.5
DR009D0623	9	14.58	6.236	79	112	112	64 ± 2	89.5 ± 2	9.5*5.5
DR012D0467	12	19.8	4.677	99	105	128	79 ± 2	82.5 ± 2	9.5*5.5
DR018D0311	18	30.6	3.119	117	110	144	95 ± 2	87 ± 2	10*6.5
DR024D0233	24	41.4	2.338	117	120	144	95 ± 2	97 ± 2	10*6.5
DR032D0175	32	54	1.754	117	140	157	95 ± 2	116.5 ± 2	10*6.5

Length of Motor Cable

1. Leakage current affects the motor and remedies

Due to larger parasitic capacitances in longer motor cables, longer cables increase the leakage current. This can activate the over-current protection and display the incorrect current. In the worst case, it can damage the drive.
If more than one motor is connected to the AC motor drive, the total motor cable length is the sum of the cable length from the AC motor drive to each motor.
For 460 V series AC motor drives, when an overload relay is installed between the drive and the motor to protect the motor from overheating, the connecting cable must be shorter than 50 m .
However, the overload relay could still malfunction. To prevent this, install an AC output reactor (optional) to the drive and/or lower the carrier frequency setting (Pr.00-17).
2. Surge voltage affects the motor and remedies

When a PWM signal from an AC motor drive drives the motor, the motor terminals can easily experience surge voltages (dv/dt) due to IGBT switching and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages ($\mathrm{dv} / \mathrm{dt}$) may reduce motor insulation quality. To prevent this, follow the rules listed below.
a. Use a motor with enhanced insulation.
b. Connect an output reactor (optional) to the output terminals of the AC motor drive.
c. Reduce the motor cable length to the values in the table below.

The suggested motor shielded cable length in the following table complies with IEC 60034-17, which is suitable for motors with a rated voltage $\leq 500 \mathrm{~V}_{\mathrm{AC}}$ and with an insulation level of $\geq 1.35 \mathrm{kV}_{\mathrm{p}-\mathrm{p}}$

$230 V$ three-phase Model	Rated current (Arms)	Without AC reactor		With AC reactor	
		Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)	
VFD11AMH23ANSLA	12.5	50	75	75	115
VFD17AMH23ANSLA	19.5	50	75	75	115
VFD25AMH23ANSLA	27.0	50	75	75	115
VFD33AMH23ANSLA	36.0	100	150	150	225
VFD49AMH23ANSLA	51.0	100	150	150	225
VFD65AMH23ANSLA	69.0	100	150	150	225

460V three-phase Model	Rated current (Arms)	Without AC reactor Shielded Cable (meter)		Non-shielded cable (meter)	Shielded Cable (meter)
VFD9AMMH43AFLLA	10.5	50	75	75	115
VFD13AMH43ANSLA VFD13AMH43AFSLA	14.5	50	75	75	115
VFD17AMH43ANSLA	19.8	100	150	150	225
VFD17AMH43AFSLA					

7-5 Zero Phase Reactors

You can also suppress interference by installing a zero phase reactor at the main input or the motor output of the drive, depending on the location of the interference. Delta provides two types of zero phase reactors to solve interference problems.
A. Casing with mechanical fixed part

This solution is for the main input/motor output side and can withstand higher loading, and be used at higher frequencies. You can get higher impedance by increasing the number of turns.

Model	A	B	C	D	E	F	G(Ø)	To use w/
RF008X00A	99	73	36.5	29	56.5	86	5.5	Motor cable

B. Casing without mechanical fixed part

This solution has higher performance: high initial magnetic permeability, high saturation induction density, low iron loss and perfect temperature characteristic. If the zero phase reactor does not need to be fixed mechanically, use this solution.

Unit: mm

Model	A	B	C
T60006L2040W453	22.5	43.1	18.5
T60006L2050W565	36.3	53.5	23.4

Installation

During installation, pass the cable through at least one zero phase reactor.
Use a suitable cable type (insulation class and wire section) so that the cable passes easily through the zero phase reactor. Do not pass the grounding cable through the zero phase reactor; only pass the motor wire through the zero phase reactor.

With longer motor cables the zero phase reactor can effectively reduce interference at the motor output. Install the zero phase reactor as close to the output of the drive as possible. Figure A shows the installation diagram for a single turn zero phase reactor. If the wire diameter allows several turns, Figure B shows the installation of a multi-turn zero phase reactor. The more turns, the better the noise suppression effect.

Figure A: Single turn wiring diagram of a shieling wire with a zero phase reactor

Figure B: Multi-Turn Zero Phase Reactor

Installation notices

Install the zero phase reactor at the output terminal of the frequency converter (U.V.W.). After the zero phase reactor is installed, it reduces the electromagnetic radiation and load stress emitted by the wiring of the frequency converter. The number of zero phase reactors required for the drive depends on the wiring length and the drive voltage.

The normal operating temperature of the zero phase reactor should be lower than $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. However, when the zero phase reactor is saturated, its temperature may exceed $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. In this case, increase the number of zero phase reactors to avoid saturation. The following are reasons that might cause saturation of the zero phase reactors: the drive wiring is too long, the drive has several sets of loads, the wiring is in parallel, or the drive uses high capacitance wiring. If the temperature of the zero phase reactor exceeds $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ during the operation of the drive, increase the number of zero phase reactors.

Recommended max. wiring gauge when installing zero phase reactor

Model \# of Zero Phase Reactor	Max, Wire Gauge or LUG width	Max. Wire Gauge AWG (1Cx3)		Max. Wire Gauge AWG (1Cx4)	
		$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
RF008X00A	13 mm	3 AWG	1 AWG	3 AWG	1 AWG
T600006L2040W453	11 mm	9 AWG	4 AWG	6 AWG	6 AWG
T600006L2050W565	16 mm	1 AWG	$2 / 0$ AWG	1 AWG	$1 / 0$ AWG

Zero Phase Reactor for Signal Cable

To solve interference problems between signal cables and electric devices, install a zero phase reactor on signal cable. Install it on the signal cable which is the source of the interference to suppress the noise for a better signal. The model names and dimensions are in the table below.

Model	A	B	C
T60004L2016W620	10.7	17.8	8.0
T60004L2025W622	17.5	27.3	12.3

Unit: mm

7-6 EMC Filter

Frame	Model \#	Input Current (A)	Filter model \#	Recommended model of zero-phase reactor		Conducted emission maximum motor cable length				Radiated emission maximum motor cable length		
						$\begin{gathered} \mathrm{C} 1 \\ 30 \mathrm{~m} \end{gathered}$			$\begin{gathered} \mathrm{C} 2 \\ 100 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ 100 \mathrm{~m} \end{gathered}$		
						Position to place zero phase reactor						
				DELTA	$V_{\text {AC }}$	*1	*2	*3	N/A	*1	*2	*3
C	VFD11AMH23ANSLA	15	EMF24AM23B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
C	VFD17AMH23ANSLA	23.4	EMF24AM23B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
C	VFD9A0MH43ANSLA	11.6	EMF12AM43B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
D	VFD25AMH23ANSLA	32.4	EMF33AM23B	RF008X00A	T60006L2050W565	\checkmark	\checkmark		NA	\checkmark	\checkmark	
D	VFD13AMH43ANSLA	16.0	EMF23AM43B	RF008X00A	T60006L2050W565	\checkmark	\checkmark	\checkmark	NA	\checkmark	\checkmark	\checkmark
D	VFD17AMH43ANSLA	21.8	EMF23AM43B	RF008X00A	T60006L2050W565	\checkmark	\checkmark	\checkmark	NA	\checkmark	\checkmark	\checkmark
E	VFD33AMH23ANSLA	43.2	B84143D0050R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD49AMH23ANSLA	61.2	B84143D0075R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD25AMH43ANSLA	30.8	B84143D0050R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD32AMH43ANSLA	39.6	B84143D0050R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
F	VFD65AMH23ANSLA	82.8	B84143D0090R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark

Filter Dimension

EMF24AM23B; EMF33AM23B;
EMF12AM43B; EMF23AM43B;

Unit: mm [inch]

TDK B84143D0075R127 (75A), TDK B84143D0090R127 (90A)

7-7 EMC Shield Plate

EMC Shield Plate (for use with shielded cable)

Frame | Model of EMC Shield Plate |
| :---: |
| C |
| D |
| MKM-EPC |
| MKM-EPD |
| M |
| MKM-EPE |

Installation

(Frame D model as an example)

1. As shown on the right figures, fix the iron plate on the $A C$ motor drive.

Torque value:

Frame	Screw	Torque
C	M4	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.59-0.78 \mathrm{Nm}]$
D	M3	$4-6 \mathrm{~kg}-\mathrm{cm} /[3.5-5.2 \mathrm{lb}-\mathrm{in}] /.[0.39-0.59 \mathrm{Nm}]$
E	M3	$4-6 \mathrm{~kg}-\mathrm{cm} /[3.5-5.2 \mathrm{lb}-\mathrm{in}] /.[0.39-0.59 \mathrm{Nm}]$
F	M4	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.59-0.78 \mathrm{Nm}]$

2. After selecting a suitable R-clip according to the wire gauge used, fix the R-clip on the shield plate.

Screw	Torque
M 4	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.59-0.78 \mathrm{Nm}]$

Scew

M4
$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.59-0.78 \mathrm{Nm}]$

Chapter 7 Optional Accessories | MH300-L

Recommended wire mounting method

Frame	Model of EMC Shield Plate	Reference figure
C	MKM-EPC	
D	MKM-EPD	
E	MKM-EPE	
F	MKM-EPF	

7-8 Capacitive Filter

Installation diagram:

The capacitive filter (CXY101-43A) is a simple filter that supports basic filtering and noise interference reduction.

Capacitive filter and drive wiring figure:

Specification:

Model	Capacitance	Temperature range
CXY101-43A	$\mathrm{Cx}: 1 \mu \mathrm{~F} \pm 20 \%$ $\mathrm{Cy}: 0.1 \mu \mathrm{~F} \pm 20 \%$	$-40-+85^{\circ} \mathrm{C}$

Dimensions:
CXY101-43A Unit : mm [inch]

Chapter 8 Option Cards

8-1 Option Card Installation

8-2 EMM-D3R2CA -- Three-point Digital Input/Relay Output Extension (Two-point N.C. Output Terminal)

8-3 CANopen Communication Cable/
 Digital Keypad RJ45 Extension Cable

Chapter 8 Option Cards | MH300-L

The option cards in this chapter are optional items. Select the applicable option cards for your motor drive, or contact your local distributor for suggestions. The option cards can significantly improve the efficiency of the motor drive. To prevent damage to the motor drive during installation, remove the digital keypad and the cover before wiring.

8-1 Option Card Installation

The mounting position and connection method corresponding to each option card is listed as the table below. For detailed information, refer to following sections.

option card	Model	Function	installation	Connection	chapter
I/O + Relay card	EMM-D3R2CA	Digital Card - 3in + Relay (2 c point $)$			

8-1-1 I/O Card Installation

Installation method: Use connector to fit the option card on the control board

1. As shown in the Figure 8-1, switch off the power of the motor drive, and then remove the front cover.
2. Mounting the connector: as shown in the Figure 8-2, aim the adapter/ option card at the connector on the control board and then insert it to the connector.
3. Assembling support frame: as shown in the Figure 8-3, aim the two clips at the two slots on the motor drive and then press downward to have the two clips engage the slots.
4. Assembling the adpapter/ option card: As shown in the figure 8-4, have the terminal block of the adaper/ option facing up, aim the two holes of the adapter/ option card to the position column and press downard so that the three clips are engage the adapter/ option card.
5. As shown in the Figure 8-5, make sure that three clips are properly engage the adapter/ option card and then fasten the screw. (Suggested torque value: $4-6 \mathrm{~kg}-\mathrm{cm}[3.5-5.2 \mathrm{lb}-\mathrm{in}].[0.39-0.59 \mathrm{Nm}]$)
6. As shown in the Figure 8-6, assembly is completed.

Figure 8-1
Figure 8-2

Chapter 8 Option Cards | MH300-L

Note:

- The option cards listed below must connect to ground when wiring. The ground terminal is enclosed with option card as shown in Figure 8-7.

1. EMM-D3R2CA

A

Figure 8-7

- Installation:

The B side of the ground terminal connects to the ground terminal block on option card as No. 4 of EMM-D3R2CA shown in Figure 8-8. See each section in Chapter 8 for ground terminal blocks of the other option cards. The A side of the ground terminal connects to the PE on the drive as the red circles shown in Figure 8-9.

Figure 8-8
Frame C~F

Figure 8-9

8-2 EMM-D3R2CA

- Product Profile

Wire: $0.25 \mathrm{~mm}^{2}$ [24 AWG] $-1.5 \mathrm{~mm}^{2}$ [16 AWG]
Stripping length: 6 mm
Torque: $5 \mathrm{~kg}-\mathrm{cm} /$ [4.3 lb-in.] / [0.49 Nm]

Digital I/O \& Relay Extension Card	Terminals	Descriptions
	24V, DCM	Output power: $+24 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%<30 \mathrm{~mA}$
	MI10-MI12	Refer to Pr. 02-26-Pr. 02-28 to program the multi-function inputs MI10-MI12. Source Mode ON : the activation current is $3.3 \mathrm{~mA} \geq 11 \mathrm{VDC}$ OFF: cut-off voltage $\leq 5 \mathrm{~V}$ DC Sink Mode ON : the activation current is $3.3 \mathrm{~mA} \leq 13 \mathrm{~V} \mathrm{DC}$ OFF: cut-off voltage $\geq 19 V_{D C}$
	PE	Grounding terminal. To decrease noise, properly ground this terminal.
	RA10-RA11 RB10-RB11 RC10-RC11	Refer to Pr. 02-36-Pr. 02-37 to program the multi-function Resistive Load: $\begin{aligned} & 3 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 3 \mathrm{~A} \text { (N.C.) } 250 \mathrm{~V}_{\mathrm{AC}} \\ & 5 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 3 \mathrm{~A} \text { (N.C.) } 30 \mathrm{~V}_{\mathrm{AC}} \end{aligned}$ Function: outputs the monitor signals, such as drive in operation, frequency reached, or overload indication.

8-3 CANopen Communication Cable/Digital Keypad RJ45 Extension Cable

Title	Part No.	L	
		mm	inch
1	UC-CMC005-01A	300	11.8
2	UC-CMC010-01A	500	19.6
3	UC-CMC015-01A	1000	39
4	UC-CMC020-01A	2000	59
5	UC-CMC030-01A	3000	78.7
6	UC-CMC050-01A	5000	118.1
7	UC-CMC100-01A	10000	196.8
8	UC-CMC200-01A	20000	393.7
9			787.4

- CANopen Dimension

Model: TAP-CN03

NOTE

For more information on CANopen, please refer to the CANopen user manual or download related manuals from the Delta website: http://www.deltaww.com

Chapter 9 Specification

9-1 230V Series
9-2 460V Series
9-3 Environment for Operation, Storage and Transportation
9-4 Derating of Ambient Temperature and Altitude

9-1 230V Series

230V, three-phase

Frame		C		D	E		F
Model VFD__-_-_-__SLA		11AMH23AN	17AMH23AN	25AMH23AN	33AMH23AN	49AMH23AN	65AMH23AN
Applicable Motor Output (kW)		2.2	3.7	5.5	7.5	11	15
Applicable Motor Output (HP)		3	5	7.5	10	15	20
	Rated Output Capacity (kVA)	4.2	6.5	9.5	12.6	18.7	24.8
	Rated Output Current (A)	11.0	17.0	25.0	33.0	49.0	65.0
	Carrier Frequency (kHz)	2-15 (Default: 8)					
$\begin{aligned} & \text { 흘. 으 } \\ & \text { 흐뭄 } \end{aligned}$	Rated Input Current (A)	13.2	20.4	30.0	39.6	58.8	78.0
	Rated Voltage / Frequency	three-phase, AC 200V-240V (-15 \% -+10 \%), $50 / 60 \mathrm{~Hz}$					
	Operating Voltage Range (V_{AC})	170-265					
	Frequency Range (Hz)	47-63					
	Weight (kg)	1.24	1.24	2.07	3.97	3.97	6.30
	Cooling Method	Fan cooling					
	EMC Filter	Optional					
	Ingress Protection Rating	IP20					

NOTE

- The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram for Pr.06-55 for more information.
- When a load is a shock or impact load, use a higher level model.

9-2 460V Series

460V, three-phase

Frame		C 9A0MH43		D				E			
Model VFD_______SLA		9AOMH43		13AMH43 \square		17AMH43 \square		25AMH43 \square		32AMH43 \square	
		AN	AF								
	pplicable Motor Output (kW)	3.7		5.5		7.5		11		15	
Applicable Motor Output (HP)		5		7.5		10		15		20	
	Rated Output Capacity (KVA)	6.9		9.9		13.3		19.1		24.4	
	Rated Output Current (A)	9.0		13.0		17.5		25.0		32.0	
	Carrier Frequency (kHz)	2-15 (Default: 8)									
$\begin{aligned} & \text { 흘 } \\ & \text { 을 } \\ & \underline{C} \end{aligned}$	Rated Input Current (A)	9.9		14.3		19.3		27.5		35.2	
	Rated Voltage / Frequency	three-phase AC 380V-480V (-15\%-+10\%), $50 / 60 \mathrm{~Hz}$									
	Operating Voltage Range (V_{AC})	323-528									
	Frequency Range (Hz)	47-63									
	Weight (kg)	1.24	1.84	2.07	2.93	2.07	2.93	3.97	5.19	3.97	5.19
	Cooling Method	Fan cooling									
EMC Filter		AN: Optional AF: Built-in									
	Ingress Protection Rating	IP20									

NOTE

- The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram for Pr.06-55 for more information.
- When a load is a shock or impact load, use a higher level model.

General Specifications

Control Characteristics	Control Method	V/F, SVC
	Applied Motor	IM (Induction Motor)
	Max. Output Frequency	0.00-599.00Hz
	Starting Torque	150 \% / 3 Hz
	Speed Control Range	1:50
	Overload Capability	$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$
	Frequency Setting Signal	$\begin{aligned} & 0-+10 \mathrm{~V} /+10 \mathrm{~V}--10 \mathrm{~V} \\ & 4-20 \mathrm{~mA} / 0-+10 \mathrm{~V} \\ & 1 \text { channel pulse input (} 33 \mathrm{kHz} \text {), } 2 \text { channel pulse output (} 33 \mathrm{kHz} \text {) } \end{aligned}$
	Main Function	Fast start-up, Momentary power loss ride thru, Over-torque detection, 16 -step speed (max.), Accel./decal. time switch, S-curve accel/decel, three-wire sequence, JOG frequency, Upper/lower limits for frequency reference, DC injection braking at start and stop, Built-in PLC (5 K steps), MODBUS and CAN are integrated as standard
Protection Characteristics	Motor Protection	Over-current, Over-voltage, Over-temperature, Phase loss, Over-load
	Stall Prevention	Stall prevention during acceleration, deceleration and running (independent settings)
Accessory	I/O extension cards	EMM-D3R2CA (Digital/Relay Card - 3 input and 2 relay C output)
Certifications		UL, CE, C-Tick, RoHS, REACH, TUV(SIL2)

9-3 Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/ inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.

	Installation location	IEC60364-1/ IEC60664-1	Pollution degree 2, Indo	or use only
		Operation	IP20 / UL Open Type	$\begin{array}{\|l\|l\|} \hline-20-50^{\circ} \mathrm{C} & \\ -20-60^{\circ} \mathrm{C} & \text { (Derating required) } \end{array}$
	Surrounding		Installed side by side	$-20-55^{\circ} \mathrm{C}$ (Derating required)
	Temperature	Storage	$-40-85^{\circ} \mathrm{C}$	
		Transportation	$-20-70^{\circ} \mathrm{C}$	
		Non-condensation, non-fr	zen	
		Operation	Max. 90 \%	
Environment		Storage / Transportation	Max. 95 \%	
	Humid	No condense water		
		Operation	$86-106 \mathrm{kPa}$	
		Storage / Transportation	70-106 kPa	
		IEC 60721-3-3		
		Operation	Class 3C2; Class 3S2	
	Pollution Level	Storage	Class 2C2; Class 2S2	
		Transportation	Class 1C2; Class 1 S2	
		Concentrate prohibited		
	Altitude	Operable at altitude below	1000 m (derating if ope	rated over 1,000 m)
Package	Storage	ISTA procedure 1A (accor	ding to weight) IEC 6006	8-2-31
Drop	Transportation			
	Operating	1.0 mm , peak to peak val $13.2-55 \mathrm{~Hz}$; 1.0 G range	ue range from $2-13.2 \mathrm{H}$ from $55-512 \mathrm{~Hz}$; Comply	; 0.7 G-1.0 G range from with IEC 60068-2-6
Vibration	Non-operating	$\begin{array}{\|l} 2.5 \text { G Peak } \\ 5 \mathrm{~Hz}-2 \mathrm{kHz} \\ 0.015 \text { " Displacement Max } \end{array}$		

9-4 Derating of Ambient Temperature and Altitude

- Derating of Ambient Temperature

At the rated current the ambient temperature is $-10^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$.
Over $50^{\circ} \mathrm{C}$, decrease the rated current $2.5 \% /{ }^{\circ} \mathrm{C}$ up to $60^{\circ} \mathrm{C}$.

- Derating of Altitude

Defrating for Altiturde

For IP20 / UL Open Type

Current derating at ambient temperature								
Ambient temperature						$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
Operating altitude above sea level (m)	$0-1000$	100%						
	$1001-1500$	$1501-2000$	100%	95%				
	100%	90%						

Operating Conditions	Ambient Temperature Limits
IP20 / UL Open Type	When the AC motor drive is operating at the rated current, the ambient temperature has to be between $-20^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$. When the temperature is over 50 ${ }^{\circ} \mathrm{C}$, for every increase by $1^{\circ} \mathrm{C}$, decrease 2.5% of the rated current. The maximum allowable temperature is $60^{\circ} \mathrm{C}$.
	If the AC motor drive is installed at altitude $0-1000 \mathrm{~m}$, follow normal operation restriction. If it is installed at altitude $1000-2000 \mathrm{~m}$, decrease 1% of rated current or lower $0.5^{\circ} \mathrm{C}$ of temperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 2000 m. Contact Delta for more information if you need to use this motor drive at an altitude of 2000 m or higher.

[This page intentionally left blank]

Chapter 10 Digital Keypad

KPMH-LC01 keyboard panel

Main Display Area
Displays Frequency, Current, Voltage,
Steering, User-defined Units, Errors,
and more.

Status Display Area

Run Key
Starts the drive.

Stop / Reset Key
Stops the drive and resets after error.

Descriptions of Keypad Functions

Displayed items	Descriptions

Displayed items	Descriptions
$\substack{\text { RUN } \\ \text { RWD } \\ \text { REV }}$	

Keypad operation process

A. Main Page Selection

 Note: Press in page selection mode [1F to enter parameters setting

Setting parameters

NOTE : In the parameter setting mode, you can press to return the selecting mode.
To shift data
START
FCMD \Rightarrow FHGC \Rightarrow FCDD
\square 圈
\checkmark 图
Setting direction (When operation source is digital keypad)

Setting PLC Mode

B. F Page (Frequency command setting page)

General Mode 1
(maximum operating frequency Pr.01-00 is 2 digits; for example Pr.01-00 $=60.00 \mathrm{~Hz}$)

General Mode 2
(maximum operating frequency Pr.01-00 is 3 digits; for example Pr.01-00 $=599.0 \mathrm{~Hz}$)

C. Parameter setting

C-1. Unsigned parameter (parameter setting range $\geqq 0$) (E.g.: Pr. 01-00)

1. Without using the left shift key: rotate the digital dial to select and adjust the parameters.
2. Using the left shift key: After you press the left shift key, and the last digit starts to blink. Press the left shift key to move the blinking cursor to the digit to adjust, and increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9 . Decrease the value by rotating the digital dial counter-clockwise. The value goes to 9 after 0 .

For example: the default setting for Pr.01-00 is 60.00 . Pressing the left shift key causes the blinking cursor to move one digit to the left:

The upper setting limit for Pr.01-00 is 599.00. If you set a value greater than 599.00, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (599.00) for a second to remind you of the incorrect setting. The setting remains as the original value and the cursor returns to the last digit.

C-2. Signed parameter setting status 1

(Parameter setting range has no or one decimal place, e.g.: 03-03)

1. Without using the left shift key: rotate the digital dial to select and adjust the parameters.
2. Using left shift key: After pressing left shift key, the last digit starts to blink. Press the left shift key to move to the digit to adjust, and increase the value by rotating the digital dial clockwise.
The value goes back to 0 after 9 . Decrease the value by rotating the digital dial counter-clockwise, and the value goes to 9 after 0 .
3. Press left shift button to shift the blinking cursor one digit to the left. When you shift to the first digit and press the digital dial, the digit " 0 " changes to "-" (minus).

For example: the default setting for Pr.03-03 is 0.0 . If the value should be -100 , then use the left shift key to shift the blinking cursor to the hundreds digit. Rotate the digital dial clockwise to 1 , and then press left shift to move to the first digit. Rotate the digital dial from'0' to ' - '.

The upper limit for Pr.03-03 is 100.0 and lower limit is -100.0 . If the value is more than 100.0 or less than -100.0, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (100.0) or lower limit (-100.0) for a second to remind you of the incorrect setting. The setting value remains as the original set value, and the cursor returns to the last digit.

C-3. Signed parameter setting status 2

(The parameter setting range has 2 decimal places; for example: Pr.03-74)
Do not use the left shift key: rotate the digital dial to select and adjust the parameters.
Use the left shift key: After pressing left shift key, and the last digit starts to blink. Press the left shift key to move to the digit to adjust, and then increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9 . Decrease the value by rotating the digital dial counter-clockwise, and the value goes to 9 after 0 .

Press left shift button to shift the blinking cursor one digit to the left. When you shift to the first digit and press the digital dial, the digit " 0 " changes to " - " (minus).

Note: When the parameter value can be set to 2 decimal places, and the set value has hundred digits, then you cannot shift the blinking cursor with the left shift key.

For example: change Pr.03-74 from -100 to 100

The upper limit for Pr.03-74 is 100.00 and lower limit is -100.00 . If you set a value of more than 100.0 or less than -100.0, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (100.0) or lower limit (-100.0) (only 1 decimal) for a second to remind you of the incorrect setting. The setting value remains as the original set value. The cursor returns to the last digit.
D. To Copy Parameters

Choose FILE1, FILE2, FILE3 or FILE4 to gaye.

- Zuy:

Reference Table for the 16 -segment LED Display of the Digital Keypad

Number	0	1	2	3	4	5	6	7	8	9
Eleven- Segment Display	[7]	1	\square	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	I-1	$[$	[-]	7	\square	\square
Number	A	B	C	D	E	F	G	H	1	J
Eleven- Segment Display	F	IV	${ }^{-}$	II	[-	Γ^{-}	[-]	H	T	L. ${ }^{\text {L }}$
Number	K	L	M	N	0	P	Q	R	S	T
Eleven- Segment Display	H	\underline{L}	M 1	M 1	\square	[-7	「7 1	Fir	\square	T
Number	U	V	W	X	Y	Z				
Eleven- Segment Display	! 1	I' ${ }^{1}$	1.1	关	-1	-7				
Number	b	c	d	e	f	h	i	j	n	0
Eleven- Segment Display	[1]	[-	\square	\underline{L}	\dagger	\cdots	1	1	Γ	[]
Number	q	r	t	u	v	w				
$\begin{array}{\|c} \hline \begin{array}{c} \text { Eleven- Segment } \\ \text { Display } \end{array} \\ \hline \end{array}$	\square	Γ	L.	L.]	L.	U				

Chapter 11 Summary of Parameter Settings

This chapter provides a summary of parameter (Pr.) setting ranges and defaults. You can set, change, and reset parameters through the digital keypad.

NOTE

N : You can set this parameter during operation

00 Drive Parameters

	Pr.	Explanation	Settings	Default
	00-00	Identity code of the AC motor drive	206: 230 V, Three-phase, 3 HP 207: 230 V, Three-phase, 5 HP 208: 230 V, Three-phase, 7.5 HP 209: 230 V, Three-phase, 10 HP 210: 230 V , Three-phase, 15 HP 211: 230 V , Three-phase, 20 HP 407: 460 V, Three-phase, 5 HP 408: 460 V , Three-phase, 7.5 HP 409: 460 V , Three-phase, 10 HP 410: 460 V , Three-phase, 15 HP 411: 460 V , Three-phase, 20 HP	Read only
	00-01	Display AC motor drive rated current	Display by models	Read only
	00-02	Parameter reset	0 : No function 1: Parameter write protection 5: Reset kWH display to 0 6: Reset PLC 7: Reset CANopen index (slave) 9: All parameters are reset to defaults (base frequency is 50 Hz) 10: All parameters are reset to defaults (base frequency is 60 Hz)	0
N	00-03	Start-up display selection	0: F (Frequency command) 1: H (output frequency) 2: U (user-defined, see Pr.00-04) 3: A (output current)	0
N	00-04	Content of multi-function display (user-defined)	0 : Output current (A) (unit: Amps) 1: Counter value (c) (unit: CNT) 2: Actual output frequency (H.) (unit: Hz) 3: DC BUS voltage (V) (unit: V_{DC}) 4: Output voltage (E) (unit: V_{AC})	3

	Pr.	Explanation	Settings	Default
			5: Output power angle (n) (unit: deg) 6: Output power in kW (P) (unit: kW) 7: Motor speed (unit: rpm) 8: Estimated output torque percentage, motor's rated torque is 100\% (t) (unit: \%) 11: Signal value of AVI analog input terminal (1.) (unit: \%) 12: Signal value of ACI analog input terminal (2.) (unit: \%) 14: IGBT temperature (i.) (unit: ${ }^{\circ} \mathrm{C}$) 15: CAP temperature (i.) (unit: ${ }^{\circ} \mathrm{C}$) 16: Digital input status (ON / OFF) (i) 17: Digital output status ON / OFF (o) 18: Multi-step speed that is executing (S) 19: Digital input CPU pin status (d) 20: Digital output CPU pin status (0.) 25: Overload count (0.00-100.00\%) (o.) (unit: \%) 26: GFF ground fault (G.) (unit: \%) 27: DC BUS voltage ripple (r.) (unit: $V_{D C}$) 30: Output user-defined parameter (U) 35: Control mode: $0=$ Speed control mode (SPD) 36: Present operating carrier frequency (J.) (unit: Hz) 38: Drive status (6.) 41: kWH display (J) (unit: kWh) 47: Master frequency value (A) (unit: Hz)	
	00-06	Firmware version	Read only	\#.\#
N	00-07	Parameter protection password input	$0-65535$ $0-3$ (number of wrong password attempts)	0
N	00-08	Parameter protection password setting	$0-65535$ 0: No password protection / password is entered correctly (Pr.00-07) 1: Password has been set	0
	00-11	Speed control mode	$\begin{aligned} & \text { 0: VF (IM V/F control) } \\ & \text { 2: SVC } \end{aligned}$	0
	00-17	Carrier frequency	2-15 kHz	8
	00-19	PLC command mask	bit 0: Control command forced by PLC control bit 1: Frequency command forced by PLC control	Read only
N	00-20	Master frequency command (AUTO) source	0: Digital keypad 1: RS-485 serial communication 2: External analog input (Refer to Pr.03-00) 3: External terminals 6: CANopen input Note: It is valid only when using with KPC-CC01.	0

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Explanation	Settings	Default
N	00-21	Operation command (AUTO) source	0 : Digital keypad 1: External terminals 2: Communication RS-485 input 3: CANopen input Note: It is valid only when using with KPC-CC01.	0
N	00-48	Display filter time (Current)	0.001-65.535 sec.	0.100
N	00-49	Display filter time (Keypad)	0.001-65.535 sec.	0.100
	00-50	Software version (Date)	Read only	\#\#\#\#\#

01 Basic Parameters

02 Digital Input / Output Parameters

Pr.	Explanation	Settings	Default
02-00	Two-wire / Three-wire operation control	0 : No function 1: Two-wire mode 1, power on for operation control (M1: FWD/STOP, M2: REV/STOP) 2: Two-wire mode 2, power on for operation control (M1: RUN/STOP, M2: FWD/REV) 3: Three-wire, power on for operation control (M1: RUN, M2: REV/FWD, M3: STOP) 4: Two-wire mode 1, Quick Start (M1: FWD/STOP, M2: REV/STOP) 5: Two-wire mode 2, Quick Start (M1: RUN/STOP, M2: FWD/REV) 6: Three-wire, Quick Start (M1: RUN, M2: REV/FWD, M3: STOP) IMPORTANT 1. In the Quick Start mode, terminal output stays in a ready state, and the drive responds to the command immediately. 2. When using the Quick Start function, the output terminal has higher potential voltage.	1
02-01	Multi-function input command 1 (MI1)	0 : No function 1: Multi-step speed command 1 / multi-step position	0
02-02	Multi-function input command 2 (MI2)	command 1 2: Multi-step speed command 2 / multi-step position	0
02-03	Multi-function input command 3 (MI3)	command 2 3: Multi-step speed command 3 / multi-step position	1
02-04	Multi-function input command 4 (MI4)	command 3 4: Multi-step speed command 4 / multi-step position	2
02-05	Multi-function input command 5 (MI5)	command 4 5: Reset	3
02-06	Multi-function input command 6 (MI6)	6: JOG operation 7: Acceleration / deceleration speed inhibit	4
02-07	Multi-function input command 7 (MI7)	8: $1^{\text {st }}, 2^{\text {nd }}$ acceleration / deceleration time selection 9: $3^{\text {rd }}, 4^{\text {th }}$ acceleration $/$ deceleration time selection	49
02-26	Multi-function input command 10 (MI10)	10: EF Input (Pr.07-20) 11: Base Block (B.B.) input from external	0
02-27	Multi-function input command 11 (MI11)	12: Output stop 15: Rotating speed command from AVI	0
02-28	Multi-function input command 12 (MI12)	16: Rotating speed command from ACI 18: Forced to stop (Pr.07-20)	0

	Pr.	Explanation	Settings	Default
			24: FWD JOG command 25: REV JOG command 28: Emergency stop (EF1) 29: Signal confirmation for Y-connection 30: Signal confirmation for Δ-connection 38: Disable EEPROM writing function 40: Force coasting to stop 49: Enable Drive 51: Selection for PLC mode bit 0 52: Selection for PLC mode bit 1 53: Trigger CANopen quick stop 57: Creaping Optimization leveling signal 58: Emergency power mode detection 59: Magnetic contactor error detection 60: Mechanical brake error detection 61: Power loss signal	
N	02-11	Multi-function input response time	0.000-30.000 sec.	0.005
N	02-12	Multi-function input mode selection	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
N	02-13	Multi-function output 1 (Relay 1)	0: No function 1: Indication during RUN 2: Operation speed reached 3: Desired frequency reached 1 (Pr.02-22) 4: Desired frequency reached 2 (Pr.02-24) 5: Zero speed (Frequency command) 6: Zero speed, includes STOP (Frequency command) 7: Over-torque 1 (Pr.06-06-06-08) 9: Drive is ready 10: Low voltage warning (LV) (Pr.06-00) 11: Malfunction indication 12: Mechanical brake signal (Pr.02-39-Pr.02-42) 13: Over-heat warning (Pr.06-15) 16: Slip error (oSL) 19: External interrupt B.B. input (Base Block) 20: Warning output 21: Over-voltage 22: Over-current stall prevention 23: Over-voltage stall prevention 24: Operation source	11
N	02-16	Multi-function output 2 (MO1)		0
N	02-17	Multi-function output 3 (MO2)		0
N	02-36	Output terminal of extension card (MO10) or (RY10)		0
N	02-37	Output terminal of extension card (MO11) or (RY11)		0
N	02-38	Output terminal of extension card (MO12) or (RY12)		0

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Explanation	Settings	Default
			25: Forward command 26: Reverse command 27: Output when current \geq Pr.02-41 28: Output when current < Pr.02-41 31: Y-connection for the motor coil 32: Δ-connection for the motor coil 33: Zero speed (actual output frequency) 34: Zero speed includes stop (actual output frequency) 35: Error output selection 1 (Pr.06-23) 36: Error output selection 2 (Pr.06-24) 37: Error output selection 3 (Pr.06-25) 38: Error output selection 4 (Pr.06-26) 40: Speed reached (including STOP) 44: Low current output (use with Pr.06-71-06-73) 45: UVW output electromagnetic valve ON/OFF switch 50: Output control for CANopen 56: Power generation direction and status verification 57: Power generation direction 58: EPS MODE 67: Analog input level reached 75: Motor-controlled magnetic contactor output	
N	02-18	Multi-function output direction	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
N	02-21	Digital output gain (DFM)	1-55	1
N	02-22	Desired frequency reached 1	0.00-599.00 Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
N	02-23	Width of desired frequency reached 1	0.00-599.00 Hz	2.00
N	02-24	Desired frequency reached 2	0.00-599.00 Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
N	02-25	Width of desired frequency reached 2	0.00-599.00 Hz	2.00
N	02-30	Turn On Delay of Magnetic Contactor between Drive and Motor	0.010-65.000 sec.	0.200
N	02-31	Turn Off Delay of Magnetic Contactor between Drive and Motor	0.010-65.000 sec.	0.200
N	02-32	Motor Magnetic Contactor Error Detection Time Setting	0.00-10.00 sec.	0.00

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Explanation	Settings	Default
N	02-33	Mechanical Brake Error Detection Time Setting	0.00-10.00 sec.	0.00
N	02-35	External operation control selection after reset and activation	0: Disable 1: Drive runs if the RUN command remains after reset or reboot.	0
	02-39	Brake Release Delay Time When Elevator Starts	0.010-65.000 sec.	0.250
	02-40	Brake Contracting Delay Time When Elevator Stops	0.010-65.000 sec.	0.250
	02-41	Output Current Level Setting for External Terminals	0-100\% (Rated current of drive \%)	0
N	02-42	Check Torque Output Function	0: Disable 1: Enable	0
	02-50	Display the status of multi-function input terminals	Monitor the status of multi-function input terminals	Read only
	02-51	Display the status of multi-function output terminals	Monitor the status of multi-function output terminals	Read only
	02-52	Display external multi-function input terminals used by PLC	Monitor the status of PLC input terminals	Read only
	02-53	Display external multi-function output terminals used by PLC	Monitor the status of PLC output terminals	Read only
	02-54	Display the Frequency command executed by the external terminal	Read only	Read only
	02-70	IO card type	9: EMM-D3R2CA	Read only
N	02-82	Initial Frequency command (F) mode after stop	0 : Use current Frequency command 1: Use zero Frequency command 2: Refer to Pr.02-83 to set up	0
N	02-83	Initial Frequency command (F) setting after stop	$0.00-599.0 \mathrm{~Hz}$	60.00

Chapter 11 Summary of Parameter Settings | MH300-L

03 Analog Input / Output Parameters

	Pr.	Explanation	Settings	Default
N	03-00	Analog input selection (AVI)	0 : No function 1: Frequency command	1
N	03-01	Analog input selection (ACI)		0
N	03-03	Analog input bias (AVI)	-100.0-100.0\%	0
N	03-04	Analog input bias (ACI)	-100.0-100.0\%	0
N	03-07	Positive / negative bias mode (AVI)	0 : No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Bias serves as the center	0
N	03-08	Positive / negative bias mode (ACI)		
N	03-10	Reverse setting when analog signal input is negative frequency	0 : Negative frequency input is not allowed. The digital keypad or external terminal controls the forward and reverse direction. 1: Negative frequency input is allowed. Positive frequency = run in forward direction; negative frequency = run in reverse direction. The digital keypad or external terminal control cannot switch the running direction.	0
N	03-11	Analog input gain (AVI)	-500.0-500.0\%	100.0
N	03-12	Analog input gain (ACI)	-500.0-500.0\%	100.0
N	03-15	Analog input filter time (AVI)	0.00-20.00 sec.	0.01
N	03-16	Analog input filter time (ACI)	0.00-20.00 sec.	0.01
N	03-18	Analog input addition function	0 : Disable (AVI, ACI) 1: Enable	0
	03-19	Signal loss selection for analog input 4-20 mA	0: Disable 1: Continue operation at the last frequency 2: Decelerate to 0 Hz 3: Stop immediately and display "ACE"	0
N	03-20	Multi-function output (AFM)	0: Output frequency (Hz) 1: Frequency command (Hz) 2: Motor speed (Hz) 3: Output current (rms) 4: Output voltage	0
N	03-21	Analog output gain (AFM)	0.0-500.0\%	100.0
N	03-22	Analog output in REV direction (AFM)	0 : Absolute value of output voltage 1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$ 2: Reverse output $5-0 \mathrm{~V}$; forward output $5-10 \mathrm{~V}$	0
N	03-27	AFM output bias	-100.00-100.00\%	0.00

	Pr.	Explanation	Settings	Default
N	03-28	AVI terminal input selection	$\begin{aligned} & \text { 0: } 0-10 \mathrm{~V} \\ & \text { 3: -10-10 V (Pr.03-69-03-74 are valid) } \end{aligned}$	0
N	03-29	ACI terminal input selection	$\begin{aligned} & 0: 4-20 \mathrm{~mA} \\ & 1: 0-10 \mathrm{~V} \\ & 2: 0-20 \mathrm{~mA} \end{aligned}$	0
	03-30	Display the analog output terminals used by PLC	Monitor the status of PLC analog output terminals	Read only
N	03-31	AFM output selection	0: 0-10 V output 1: 0-20 mA output 2: 4-20 mA output	0
N	03-32	AFM DC output setting level	0.00-100.00\%	0.00
N	03-35	AFM filter output time	0.00-20.00 sec.	0.01
N	03-39	VR input selection	0: Disable 1: Frequency command	1
N	03-44	Multi-function MO output by AI level source	0 : AVI 1: ACI 3: Extension card input terminal AI10 4: Extension card input terminal Al11	0
N	03-45	Al upper level 1	-100.00-100.00\%	50.00
N	03-46	Al lower level 2	-100.00-100.00\%	10.00
N	03-57	ACI lowest point	$\begin{aligned} & \text { Pr.03-29 = 1, 0.00-10.00 V } \\ & \text { Pr.03-29 } \neq 1,0.00-20.00 \mathrm{~mA} \end{aligned}$	4.00
N	03-58	ACI proportional lowest point	0.00-100.00\%	0.00
N	03-59	ACI mid-point	$\begin{aligned} & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-29 \neq 1,0.00-20.00 \mathrm{~mA} \end{aligned}$	12.00
N	03-60	ACI proportional mid-point	0.00-100.00\%	50.00
N	03-61	ACl highest point	$\begin{aligned} & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-29 \neq 1,0.00-20.00 \mathrm{~mA} \end{aligned}$	20.00
N	03-62	ACl proportional highest point	0.00-100.00\%	100.00
N	03-63	AVI voltage lowest point	0.00-10.00 V	0.00
N	03-64	AVI voltage proportional lowest point	-100.00-100.00\%	0.00
N	03-65	AVI voltage mid-point	0.00-10.00 V	5.00
N	03-66	AVI voltage proportional mid-point	-100.00-100.00\%	50.00
N	03-67	AVI voltage highest point	0.00-10.00 V	10.00

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Explanation	Settings	Default
N	03-68	AVI voltage proportional highest point	-100.00-100.00\%	100.00
N	03-69	Negative AVI voltage lowest point	$\begin{aligned} & -10.00-0.00 \mathrm{~V} \\ & \text { (valid when Pr. } 03-28 \text { sets as }-10-10 \mathrm{~V} \text {) } \end{aligned}$	0.00
N	03-70	Negative AVI voltage proportional lowest point	-100.00-100.00\% (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	0.00
N	03-71	Negative AVI voltage mid-point	$\begin{aligned} & -10.00-0.00 \mathrm{~V} \\ & \text { (valid when Pr. } 03-28 \text { sets as }-10-10 \mathrm{~V} \text {) } \end{aligned}$	-5.00
N	03-72	Negative AVI voltage proportional mid-point	-100.00-100.00\% (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	-50.00
N	03-73	Negative AVI voltage highest point	$\begin{aligned} & -10.00-0.00 \mathrm{~V} \\ & \text { (valid when Pr. } 03-28 \text { sets as }-10-10 \mathrm{~V} \text {) } \end{aligned}$	-10.00
N	03-74	Negative AVI voltage proportional highest point	-100.00-100.00\% (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	-100.00

04 Multi-step Speed Parameters

	Pr.	Explanation	Settings	Default
N	04-00	$1^{\text {st }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-01	$2^{\text {nd }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-02	$3{ }^{\text {rd }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-03	$4^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-04	$5^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-05	$6^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-06	$7^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-07	$8^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-08	$9^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-09	$10^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-10	$11^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-11	$12^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-12	$13^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-13	$14^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-14	$15^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-50	PLC buffer 0	0-65535	0
N	04-51	PLC buffer 1	0-65535	0
N	04-52	PLC buffer 2	0-65535	0
N	04-53	PLC buffer 3	0-65535	0
N	04-54	PLC buffer 4	0-65535	0
N	04-55	PLC buffer 5	0-65535	0
N	04-56	PLC buffer 6	0-65535	0
N	04-57	PLC buffer 7	0-65535	0
N	04-58	PLC buffer 8	0-65535	0
N	04-59	PLC buffer 9	0-65535	0
N	04-60	PLC buffer 10	0-65535	0
N	04-61	PLC buffer 11	0-65535	0
N	04-62	PLC buffer 12	0-65535	0
N	04-63	PLC buffer 13	0-65535	0
N	04-64	PLC buffer 14	0-65535	0
N	04-65	PLC buffer 15	0-65535	0
N	04-66	PLC buffer 16	0-65535	0
N	04-67	PLC buffer 17	0-65535	0
N	04-68	PLC buffer 18	0-65535	0
N	04-69	PLC buffer 19	0-65535	0

Chapter 11 Summary of Parameter Settings | MH300-L

05 Motor Parameters

Pr.	Explanation	Settings	Default
05-00	Motor parameter auto-tuning	0 : No function 1: Dynamic test for an induction motor (IM) 2: Static test for an induction motor (IM)	0
05-01	Full-load current for an induction motor (A)	10-120\% of the drive's rated current	\#.\#\#
05-02	Rated power for an induction motor (kW)	0.00-655.35 kW	\#.\#\#
05-03	Rated speed for an induction motor (rpm)	$\begin{aligned} & 0-65535 \mathrm{rpm} \\ & 1710(60 \mathrm{~Hz}, 4 \text { poles }) ; 1410(50 \mathrm{~Hz}, 4 \text { poles }) \end{aligned}$	1710
05-04	Number of poles for an induction motor	2-20	4
05-05	No-load current for an induction motor (A)	0.00-Pr.05-01 default	\#.\#\#
05-06	Stator resistance (Rs) for an induction motor	0.000-65.535 Ω	\#.\#\#\#
05-07	Rotor resistance (Rr) for an induction motor	0.000-65.535 Ω	\#.\#\#\#
05-08	Magnetizing inductance (Lm) for an induction motor	$0.0-6553.5 \mathrm{mH}$	\#.\#
05-09	Stator inductance (Lx) for an induction motor	$0.0-6553.5 \mathrm{mH}$	\#.\#
05-23	Frequency for Y-connection I Δ-connection switch for an induction motor	$0.00-599.00 \mathrm{~Hz}$	60.00
05-24	Y-connection / Δ-connection switch for an induction motor	0: Disable 1: Enable	0
05-25	Delay time for Y -connection / Δ-connection switch for an induction motor	0.000-60.000 sec.	0.200
05-26	Accumulated Watt-second for a motor in low word (W-sec.)	Read only	\#.\#
05-27	Accumulated Watt-second for a motor in high word (W-sec.)	Read only	\#.\#
05-28	Accumulated Watt-hour for a motor (W-hour)	Read only	\#.\#
05-29	Accumulated Watt-hour for a motor in low word (kW-hour)	Read only	\#.\#

Pr.	Explanation	Settings	Default
$05-30$	Accumulated Watt-hour for a motor in high word (kW-hour)	Read only	\#.\#
$05-31$	Accumulated motor operation time (minutes)	$0-1439$	0
$05-32$	Accumulated motor operation time (days)	$0-65535$	0

06 Protection Parameters

	Pr.	Explanation	Settings	Default
N	06-00	Low voltage level	230V: 150.0-220.0 VD 460V: 300.0-440.0 VDC	$\begin{aligned} & 180.0 \\ & 360.0 \end{aligned}$
N	06-01	Over-voltage stall prevention	$\begin{aligned} & \text { 0: Disabled } \\ & 230 \mathrm{~V}: 0.0-450.0 \mathrm{~V} D \\ & 460 \mathrm{~V}: 0.0-900.0 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
N	06-02	Selection for over-voltage stall prevention	0 : Traditional over-voltage stall prevention 1: Smart over-voltage stall prevention	0
N	06-03	Over-current stall prevention during acceleration	$\begin{aligned} & 0-200 \% \\ & \text { (} 100 \% \text { corresponds to the rated current of the drive) } \end{aligned}$	180
N	06-04	Over-current stall prevention during operation	0-200\% (100% corresponds to the rated current of the drive)	180
N	06-05	Acceleration / deceleration time selection for stall prevention at constant speed	0 : By current acceleration / deceleration time 1: By the $1^{\text {st }}$ acceleration / deceleration time 2: By the $2^{\text {nd }}$ acceleration / deceleration time 3: By the $3^{\text {rd }}$ acceleration / deceleration time 4: By the $4^{\text {th }}$ acceleration / deceleration time 5: By auto-acceleration / auto-deceleration	0
N	06-06	Over-torque detection selection (motor)	0 : No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN	0
N	06-07	Over-torque detection level (motor)	10-250\% (100\% corresponds to the rated current of the drive)	120
N	06-08	Over-torque detection time (motor)	$0.1-60.0 \mathrm{sec}$.	0.1
N	06-12	Current limit	$0-250 \%$ (100% corresponds to the rated current of the drive)	150
N	06-13	Electronic thermal relay selection 1 (motor)	0: Inverter motor (with external forced cooling) 1: Standard motor (motor with fan on shaft) 2: Disable	2
N	06-14	Electronic thermal relay action time 1 (motor)	30.0-600.0 sec.	60.0
N	06-15	Temperature level overheat (OH) warning	$0.0-110.0^{\circ} \mathrm{C}$	105.0

Pr.	Explanation	Settings	Default
06-16	Stall prevention limit level	0-100\% (refer to Pr.06-03-06-04)	100
06-17	Fault record 1	0 : No fault record 1: Over-current during acceleration (ocA) 2: Over-current during deceleration (ocd) 3: Over-current during constant speed (ocn) 4: Ground fault (GFF) 6: Over-current at stop (ocS) 7: Over-voltage during acceleration (ovA) 8: Over-voltage during deceleration (ovd) 9: Over-voltage during constant speed (ovn) 10: Over-voltage at stop (ovS) 11: Low-voltage during acceleration (LvA) 12: Low-voltage during deceleration (Lvd) 13: Low-voltage during constant speed (Lvn) 14: Low-voltage at stop (LvS) 15: Phase loss protection (orP) 16: IGBT overheat (oH 1) 18: TH1 open: IGBT overheat protection error (tH 1 o) 21: Drive overload (oL) 22: Electronic thermal relay protection 1 (EoL1) 26: Over-torque 1 (ot1) 28: Low current (uC) 31: Memory read-out error (cF2) 33: U-phase current detection error (cd1) 34: V-phase current detection error (cd2) 35: W-phase current detection error (cd3) 36: Clamp current detection error (Hd0) 37: Over-current detection error (Hd1) 40: Auto-tuning error (AUE) 41: PID feedback loss (AFE) 48: Analog current input loss (ACE) 49: External fault input (EF) 50: Emergency stop (EF1) 51: External Base Block (B.B.) 52: Password error (Pcod) 54: Communication error (CE1) 55: Communication error (CE2) 56: Communication error (CE3) 57: Communication error (CE4) 58: Communication time-out (CE10) 61: Y-connection / Δ-connection switch error (ydc)	Read only
06-18	Fault record 2		Read only
06-19	Fault record 3		Read only
06-20	Fault record 4		Read only
06-21	Fault record 5		Read only
06-22	Fault record 6		Read only

Pr.	Explanation	Settings	Default
		62: Deceleration energy backup error (dEb) $63: ~ S l i p ~ e r r o r ~(o S L) ~$	

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Explanation	Settings	Default
N	06-61	Software detection GFF filter time	0.00-655.35 sec.	0.10
	06-63	Operation time of fault record 1 (Days)	0-65535 days	Read only
	06-64	Operation time of fault record 1 (Minutes)	0-65535 min.	Read only
	06-65	Operation time of fault record 2 (Days)	0-65535 days	Read only
	06-66	Operation time of fault record 2 (Minutes)	0-65535 min.	Read only
	06-67	Operation time of fault record 3 (Days)	0-65535 days	Read only
	06-68	Operation time of fault record 3 (Minutes)	0-65535 min.	Read only
	06-69	Operation time of fault record 4 (Days)	0-65535 days	Read only
	06-70	Operation time of fault record 4 (Minutes)	0-65535 min.	Read only
N	06-71	Low current setting level	0.0-100.0\%	0.0
N	06-72	Low current detection time	0.00-360.00 sec.	0.00
N	06-73	Low current action	0 : No function 1: Warn and coast to stop 2: Warn and ramp to stop by the $2^{\text {nd }}$ deceleration time 3: Warn and continue operation	0
N	06-80	Emergency power voltage in operation	280.0-537.0 V ${ }_{\text {DC }}$	300.0
	06-81	Emergency power speed in operation	0.00-599.00 Hz	Read only
	06-82	Emergency power capacity in operation	0.0-100.0 KVA	0.0
N	06-83	EPS mode selection	0 : Operate by current command direction. 1: Run in the running direction of power generation mode. Execute the power generation direction detection when running in power generation mode. 2: After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode ($M O=57$) confirmation and the direction of power generation does not maintain.) Execute the power generation direction detection each time	0

Pr.	Explanation	Settings	Default
		whenever running. 3: After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode ($M O=57$) confirmation and the direction of the power generation does not maintain.) Execute the power generation direction detection only one time when running. 4: Run by the direction of power generation mode. Execute the power generation direction detection when running in normal mode.	
06-84	Power generation direction search time	0.0-5.0 sec.	1.0
06-85	UPS output delay time	0.0-10.0 sec.	1.0
06-86	Power factor kevel for determining the power generation direction	$0.0-150.0^{\circ}$	70.0
06-87	Reference level of the power factor when running	0.0-200.0 ${ }^{\circ}$	Read only
06-88	Power generation direction	0 : Forward running 1: Reverse running	Read only
06-89	Delay time on stopping UPS output	0.0-60.0 sec.	3.0
06-90	Operation time of fault record 5 (Day)	0-65535 days	Read only
06-91	Operation time of fault record 5 (Min.)	0-65535 min.	Read only
06-92	Operation time of fault record 6 (Day)	0-65535 days	Read only
06-93	Operation time of fault record 6 (Min.)	0-65535 min.	Read only

Chapter 11 Summary of Parameter Settings | MH300-L

07 Special Parameters

	Pr.	Explanation	Settings	Default
N	07-00	Software brake level	$\begin{aligned} & 230 \mathrm{~V}: 350.0-450.0 \mathrm{~V} \mathrm{VC} \\ & 460 \mathrm{~V}: 700.0-900.0 \mathrm{~V} \mathrm{VC} \end{aligned}$	$\begin{aligned} & 370.0 \\ & 740.0 \end{aligned}$
N	07-01	DC brake current level	0-100 \%	30
N	07-02	DC brake time at Start-up	$0.0-60.0 \mathrm{sec}$.	0.7
N	07-03	DC brake time at stop	$0.0-60.0 \mathrm{sec}$.	0.7
N	07-04	DC brake frequency at stop	0.00-599.00 Hz	0.00
N	07-05	Voltage increasing gain	1-200 \%	100
N	07-06	Restart after momentary power loss	0 : Stop operation 1: Speed tracking by the speed before the power loss 2: Speed tracking by the minimum output frequency	0
N	07-07	Allowed power loss duration	$0.0-20.0 \mathrm{sec}$.	2.0
N	07-08	Base block time	$0.1-5.0 \mathrm{sec}$.	0.5
N	07-09	Current limit of speed tracking	20-200 \%	100
N	07-10	Restart after fault action	0: Stop operation 1: Speed tracking by current speed 2: Speed tracking by minimum output frequency	0
N	07-11	Number of times of auto-restart after fault	0-10	0
N	07-12	Speed tracking during start-up	0: Disable 1: Speed tracking by maximum output frequency 2: Speed tracking by motor frequency at start 3: Speed tracking by minimum output frequency	0
N	07-13	dEb function selection	0: Disable 1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored. 2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored.	0
N	07-15	Dwell time at acceleration	0.00-600.00 sec.	0.00
N	07-16	Dwell frequency at acceleration	0.00-599.00 Hz	0.00
N	07-17	Dwell time at deceleration	0.00-600.00 sec.	0.00
N	07-18	Dwell frequency at deceleration	0.00-599.00 Hz	0.00
N	07-19	Fan cooling control	0 : Fan always ON 1: Fan is OFF after the AC motor drive stops for one minute. 2: Fan is ON when the AC motor drive runs; fan is OFF when the AC motor drive stops. 3: Fan turns ON when the temperature reaches around $60^{\circ} \mathrm{C}$.	3

Chapter 11 Summary of Parameter Settings | MH300-L

	Pr.	Explanation	Settings	Default
N	07-20	Deceleration of emergency or forced stop	0: Coast to stop 1: Stop by the $1^{\text {st }}$ deceleration time 2: Stop by the $2^{\text {nd }}$ deceleration time 3: Stop by the $3^{\text {rd }}$ deceleration time 4: Stop by the $4^{\text {th }}$ deceleration time 5: System deceleration 6: Automatic deceleration	0
N	07-21	Automatic energy-saving setting	0: Disable 1: Enable	0
N	07-22	Energy-saving gain	10-1000\%	100
N	07-23	Automatic voltage regulation (AVR) function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
N	07-24	Torque command filter time (V/F and SVC control mode)	0.001-10.000 sec.	0.050
N	07-25	Slip compensation filter time (V/F and SVC control mode)	0.001-10.000 sec.	0.100
N	07-26	Torque compensation gain	0-10	1
N	07-27	Slip compensation gain (V/F and SVC control mode)	$0.00-10.00$ (default value is 1 in SVC mode)	0.00
N	07-29	Slip deviation level	$\begin{aligned} & 0.0-100.0 \% \\ & 0: \text { No detection } \end{aligned}$	0
N	07-30	Slip deviation detection time	$0.0-10.0 \mathrm{sec}$.	1.0
N	07-31	Slip deviation action	0 : Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
N	07-32	Motor shock compensation factor	0-10000	1000
N	07-33	Auto-restart interval of fault	0.0-6000.0 sec.	60.0
N	07-34	Slip compensation gain \% (power generation mode)	0.0-100.0 \%	0.0
N	07-35	Slip compensation gain \% (electricity mode)	0.0-100.0 \%	0.0
N	07-36	Maximum slip frequency	0.00-200.00 Hz	0.00

Chapter 11 Summary of Parameter Settings | MH300-L

09 Communication Parameters

	Pr.	Explanation	Settings	Default
N	09-00	Communication address	1-254	1
N	09-01	COM1 transmission speed	4.8-115.2 kbps	9.6
N	09-02	COM1 transmission fault treatment	0 : Warn and continue operation 1: Display error and ramp to stop 2: Display error and coast to stop 3: No warning, no error displayed and continue operation	3
N	09-03	COM1 time-out detection	$0.0-100.0 \mathrm{sec}$.	0.0
N	09-04	COM1 communication protocol	1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 702 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11: 802 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 802 (RTU)	1
N	09-09	Communication response delay time	$0.0-200.0 \mathrm{~ms}$	2.0
N	09-33	PLC command force to 0	0-65535	0
	09-35	PLC address	1-254	2
	09-36	CANopen slave address	$\begin{aligned} & \text { 0: Disable } \\ & 1-127 \end{aligned}$	0
	09-37	CANopen speed	0: 1 Mbps 1: 500 Kbps 2: 250 Kbps 3: 125 Kbps 4: 100 Kbps (Delta only) 5: 50 Kbps	0

Pr.	Explanation	Settings	Default
09-39	CANopen warning record	bit 0: CANopen software disconnection 1 (CANopen guarding time-out) bit 1: CANopen software disconnection 2 (CANopen heartbeat time-out) bit 3: CANopen SDO time-out bit 4: CANopen SDO buffer overflow bit 5: CANopen hardware disconnection warning (Can Bus OFF) bit 6: Error protocol for CANopen	0
09-40	CANopen decoding method	0: Delta-defined decoding method 1: CANopen standard DS402 protocol	1
09-41	CANopen communication status	0: Node reset 1: Com reset 2: Boot up 3: Pre-operational 4: Operation 5: Stopped	Read only
09-42	CANopen control status	0 : Not ready for use 1: Inhibit start 2: Ready to switch on 3: Switched on 4: Enable operation 7: Quick stop active 13: Error reaction activation 14: Error state	Read only
09-43	CANopen reset index	bit 0 : CANopen reset, internal address 20XX is 0 bit 1: CANopen reset, internal address 264X is 0 bit 2: CANopen reset, internal address 26AX is 0 bit 3: CANopen reset, internal address 60XX is 0	65535

11 Parameter Settings | MH300-L
11 Advanced Parameters

Pr.	Explanation	Settings	Default
$\boldsymbol{N} 11-41$	PWM mode selection	0: two-phase 2: Space vector	0
	System control flag	0000-FFFFh	0000

Chapter 12 Description of Parameter Settings

00 Drive Parameters
\mathcal{N} You can set this parameter during operation.

5月-7. 8 Identity Code of the AC Motor Drive

Default: \#.\#
Settings Read Only

7昌-7 Display AC Motor Drive Rated Current

Default: \#.\#
Settings Read Only
[1] Pr.00-00 displays the identity code of the AC motor drive. Use the following specification table to check if the Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code of the motor.

| | 230V Series: Three-Phase | | | | | 460V Series: Three-Phase | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | C | | D | E | | F | C | D | | E | |
| kW | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 3.7 | 5.5 | 7.5 | 11 | 15 |
| HP | 3 | 5 | 7.5 | 10 | 15 | 20 | 5 | 7.5 | 10 | 15 | 20 |
| Identity Code | 206 | 207 | 208 | 209 | 210 | 211 | 407 | 408 | 409 | 410 | 411 |
| Rated Current | 11 | 17 | 25 | 33 | 49 | 65 | 9 | 13 | 17 | 25 | 32 |

7ת-9 Parameter Reset

Default: 0

Settings	$0:$ No Function
1: Parameter write protection	
5: Reset kWH display to 0	
	6: Reset PLC
	7: Reset CANopen index (Slave)
9: All parameters are reset to defaults (base frequency is 50 Hz)	
10: All parameters are reset to defaults (base frequency is 60 Hz)	

[1] 1: All parameters are read-only except Pr.00-02, 00-07, and 00-08. You must set Pr.00-02 to 0 before changing other parameter settings.5: You can set the kWh displayed value to 0 even when the drive is operating. Reset Pr.05-26, 05-27, 05-28, 05-29, 05-30 to 0.
6: Clear internal PLC program (including the related settings for PLC internal CANopen master)
@ 7: Reset the related settings for CANopen slave.
[1] 9 or 10: All parameters are reset to defaults. If password is set in Pr.00-08, enter the password set in Pr.00-07 to reset to defaults.
(1) 6, 9, 10: Reboot the motor drive after you finish setting.

78- 3 Start-up Display Selection

Default: 0
Settings 0: F (Frequency command)
1: H (output frequency)
2: U (user-defined) (refer to Pr.00-04)
3: A (output current)
LIal Determines the start-up display page. User-defined display selection is according to the setting in Pr.00-04.

59-94 Content of Multi-function Display (User-Defined)

Default: 3

```
Settings 0: Display output current (A) (Unit: Amps)
    1: Display counter value (c) (Unit: CNT)
    2: Display actual output frequency (H.) (Unit: Hz)
    3: Display DC BUS voltage (v) (Unit: VDC)
    4: Display output voltage of U, V, W (E) (Unit: VAC)
    5: Display output power angle of U, V, W (n) (Unit: deg)
    6: Display output power of U, V, W (P) (Unit: kW)
    7: Display motor speed rpm (r) (Unit: rpm)
    8: Display estimated output torque %, motor's rated torque is 100% (Unit: %)
    11: Display signal value of AVI analog input terminal (1.) (Unit: %)
    12: Display signal value of ACI analog input terminal (2.) (Unit: %)
    14: Display IGBT temperature (i.) (Unit: }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ )
    15: Display CAP temperature (i.) (Unit: }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ )
    16: Display digital input status (ON / OFF) (i)
    17: Display digital output status (ON / OFF) (o)
    18: Display multi-step speed that is executing (S)
    19: Display corresponding CPU pin status of digital input (d)
    20: Display corresponding CPU pin status of digital output (0.)
    25: Display overload count (0.00-100.00%) (o.) (Unit: %)
    26: Display GFF Ground Fault (G.) (Unit: %)
    27: Display DC BUS voltage ripple (r.) (Unit: VDC)
    30: Display user-defined output (U)
    35: Display control mode:
        0 = speed control mode (SPD)
    36: Display present operating carrier frequency (Hz) (J.)
    38: Display drive status (6.)
    41: Display kWH (J) (Unit: kWh)
    47: Display master frequency value (A ) (Unit: Hz)
```


Explanation 1

［a］It can also display negative values when setting analog input bias（Pr．03－03－03－10）．
凹】 Example：Assume that AVI input voltage is 0 V ， $\operatorname{Pr} .03-03$ is 10.0% ，Pr．03－07 is 4 （Bias serves as the center），and Pr．03－10 is 1 allowing negative frequency input．

Explanation 2

Ex Example：If MI1 and MI6 are ON，the following table shows the status of the terminals．
Normally opened contact（N．O．）：（0：OFF，1：ON）

Terminal	MI7	MI6	MI5	MI4	MI3	MI2	MI1
Status	0	1	0	0	0	0	1

凹】 The value is 0000000000100001 in binary and 0021 H in HEX．When Pr．00－04 is set to＂ 16 ＂or＂ 19 ＂， the u page on the keypad displays 0021 h ．
［a］The setting 16 is the ON／OFF status of digital input according to Pr．02－12 setting and the setting 19 is the corresponding CPU pin ON／OFF status of the digital input．
When MI1／MI2 default setting is two－wire／three－wire operation control（Pr．02－00 $=0$ ），and MI3 is set as three－wire，it is not affected by Pr．02－12．
You can set 16 to monitor the digital input status，and then set 19 to check if the circuit is normal．

Explanation 3

［a］Example：Assume that RY：Pr．02－13 is set to 9 （Drive is ready）．After the drive applies power，if there is no other abnormal status，the contact is ON．The display status is shown below．
Normally opened contact（N．O．）：

Terminal	MO2	MO1	RY1
Status	0	0	1

Ifl If Pr．00－04 is set to 17 or 20 ，it displays in hexadecimal＂ 0001 h ＂with LED u page is ON on the keypad．
［a］The setting 17 is the ON／OFF status of digital output according to Pr．02－18 setting and the setting 20 is the corresponding CPU pin ON／OFF status of the digital output．
$\llbracket \rrbracket$ You can set 17 to monitor the digital output status，and then set 20 to check if the circuit is normal．

Explanation 4

© Setting value 8： 100% means the motor rated torque．
Motor rated torque $=($ motor rated power $\times 60 / 2 \pi) /$ motor rated rotating speed．

Explanation 5

Setting value 25：when display value reaches 100.00% ，the drive shows＂oL＂as an overload warning．

Explanation 6

Setting value 38：
bit 0 ：The drive is running forward．
bit 1：The drive is running backward．
bit 2：The drive is ready．
bit 3：Errors occurred on the drive．
bit 4：The drive is running．
bit 5：Warnings occurred on the drive．

Settings Read only
N
Default: 0
Settings 0-65535
0-3 (number of wrong password attempts)
1 Allows you to enter your password (which is set in Pr.00-08) to unlock the parameter protection and to change parameters.
Be sure to record the password for later use after you set this parameter.
[1] Pr.00-07 and Pr.00-08 are used to prevent personnel from setting other parameters by accident. If you forget the password, clear the password setting by entering 9999 and pressing the ENTER key, then enter 9999 again and press ENTER within 10 seconds. After decoding, all the settings return to default.
When setting is under password protection, all the parameters read 0, except Pr.00-08.

5月-88 Parameter Protection Password Setting

Default: 0
Settings 0-65535
0: No password protection or password is entered correctly (Pr.00-07)
1: Password has been set
1 This parameter is for setting the password protection. Password can be set directly the first time. After you set the password, the value of Pr.00-08 is 1 , which means password protection is activated. At this time, if you want to change any of the parameter settings, you must enter the correct password in Pr.00-07 to deactivate the password temporarily, and this would make Pr.00-08 become 0. After you finish setting the parameters, reboot the motor drive and the password is activated again.
[1] Entering the correct password in Pr.00-07 only temporarily deactivates the password. To permanently deactivate password protection, set Pr.00-08 to 0 manually. Otherwise, password protection is always reactivated after you reboot the motor drive.
1 The keypad copy function works only when the password protection is deactivated (temporarily or permanently), and the password set in Pr.00-08 cannot be copied to the keypad. So when copying parameters from the keypad to the motor drive, set the password manually again in the motor drive to activate password protection.

Password Setthry $100-00^{\circ}$	Password Forgotton $00-07$	Pas*word Incorrect
Oisplays 1 after correct password le entared to Pr.00-08.\qquad	Enter 9989 and press ENTER. then enter 9899 again within 10 seconds and press ENTER. Then all paramelers will reset to factory settings.	3 chences of pessword input: Incortact passward 1: dieplays "01" Incorract passward 2: dieplay日 "O2" Incorract pasewnard 3: displays "O3" Incorrect password 4: "Pcode"(blinking)
		Keypad will be locked after 3 wrong attempted passwords. To re-activate the keypad, please reboot the drive and input the correct password.

Decode Flow Chart

7月 - : ! Speed Control Mode

Default: 0
Settings 0: V/F (IM V/F control)
2: SVC
1 Determines the control mode of the AC motor drive:
0 : IM V/F control: user can design proportion of V/F as required and control multiple motors simultaneously.
2: IM sensorless vector control: get the optimal control by the auto-tuning of motor parameters.
When Pr.00-10 $=0$ and set Pr.00-11 to 0 , the V/F control diagram is shown as follows:

When Pr.00-10 $=0$ and set Pr.00-11 to 2, the sensorless vector control diagram is shown as follows:

78-:7 Carrier Frequency

Default: 8

Settings $2-15 \mathrm{kHz}$

1 Determinates the PWM carrier frequency for the AC motor drive.

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
2 kHz				$\begin{aligned} & N W+ \\ & \text { WNO } \end{aligned}$
8 kHz				
15 kHz				

$\mathbb{1}$ From the table, you see that the PWM carrier frequency has significant influences on the electromagnetic noise, the AC motor drive heat dissipation, and the motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency to reduce the temperature rise. Although the motor has quiet operation in the higher carrier frequency, consider the entire wiring and interference.
1 When the carrier frequency is higher than the default, decrease the carrier frequency to protect the drive. Refer to Pr.06-55 for related setting and details.

98-9

PLC Command Mask

Default: Read Only
Settings bit 0: Control command forced by PLC control
bit 1: Frequency command forced by PLC control
$1 \mathbb{1}$ Determines if frequency command or control command is locked by the PLC.

89-3日 Master Frequency Command (AUTO) Source

Settings 0: Digital keypad
1: RS-485 serial communication
2: External analog input (Refer to Pr.03-00)
3: External terminals
6: CANopen input
Note: It is valid only when using with KPC-CC01.
$\mathbb{1}$ You can switch the AUTO / HAND mode with the keypad KPC-CC01 (optional).
[a] Pr.00-20 and Pr.00-21 are for setting the frequency source and operation source in AUTO mode. Pr.00-30 and Pr.00-31 are for setting the frequency source and operation source in HAND mode.
[a] The default for the frequency source or operation source is for AUTO mode. It returns to AUTO mode whenever you cycle the power. If you use a multi-function input terminal to switch between AUTO and HAND mode, the highest priority is the multi-function input terminal. When the external terminal is OFF, the drive does not accept any operation signal and cannot execute JOG.

5月-2 : Operation Command (AUTO) Source

Default: 0
Settings 0: Digital keypad
1: External terminals.
2: Communication RS-485 input
3: CANopen input
Note: It is valid only when using with KPC-CC01.
Determines the operation frequency source in AUTO mode.When you control the operation command by the keypad KPC-CC01 (optional), keys RUN, STOP and JOG (F1) are valid.

9月-48 Display Filter Time (Current)

Default: 0.100
Settings $0.001-65.535 \mathrm{sec}$.
Minimizes the current fluctuation displayed by digital keypad.

79-48 Display Filter Time (Keypad)

Default: 0.100
Settings $0.001-65.535 \mathrm{sec}$.
Minimizes the value fluctuation displayed by digital keypad.

50-50 Software Version (Date)

Default: \#\#\#\#\#
Settings Read only
1 Displays the current drive software version by date.
[This page intentionally left blank]

I: 9 Maximum Operation Frequency of Motor 1

Default: 60.00 / 50.00
Settings $\quad 00.00-599.00 \mathrm{~Hz}$
Determines the drive's maximum operation frequency range. This setting corresponds to the maximum value for the analog input frequency setting signal ($0-10 \mathrm{~V}, 4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}, \pm 10 \mathrm{~V}$).

if \boldsymbol{f} : Output Frequency of Motor 1

Default: 60.00 / 50.00
Settings $00.00-599.00 \mathrm{~Hz}$
Set this value according to the motor's rated frequency from the motor's nameplate. If the motor's rated frequency is 60 Hz , set the value to 60 Hz . If the motor's rated frequency is 50 Hz , set the value to 50 Hz .

B: - 1 O 1

Default: 220.0 / 440.0
Settings 230 V series: $0.0-255.0 \mathrm{~V}$ 460 V series: $0.0-510.0 \mathrm{~V}$

Set this value according to the rated voltage of the motor from the motor's nameplate. If the motor's rated voltage is 220 V , set the value to 220.0 V . If the motor's rated voltage is 200 V , set the value to 200.0 V.
[4] There are a wide variety of motors, but the power system for each country is different. The convenient and economical way to solve this problem is to use an AC motor drive, which can deal with different voltages and frequencies, while supporting the original characteristics and life of the motor.

II 13 Mid-point Frequency 1 of Motor 1

Default: 3.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
B: 14 Mid-point Voltage 1 of Motor 1
Default: 11.0 / 22.0
Settings 230 V series: $0.0 \mathrm{~V}-240.0 \mathrm{~V}$
460 V series: $0.0 \mathrm{~V}-480.0 \mathrm{~V}$

18: 5 Mid-point Frequency 2 of Motor 1

Default: 0.50
Settings $0.00-599.00 \mathrm{~Hz}$
7: 76 Mid-point Voltage 2 of Motor 1
Default: 2.0 / 4.0
Settings 230 V series: $0.0 \mathrm{~V}-240.0 \mathrm{~V}$
460 V series: $0.0 \mathrm{~V}-480.0 \mathrm{~V}$
[1:7 Minimum Output Frequency of Motor 1
Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

19:-88

Minimum Output Voltage of Motor 1
Default: 0.0 / 0.0
Settings 230 V series: $0.0 \mathrm{~V}-240.0 \mathrm{~V}$
460 V series: $0.0 \mathrm{~V}-480.0 \mathrm{~V}$
7: 9 Start-up Frequency
Default: 0.50
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
When start frequency is higher than the minimum output frequency, drive's output is from the starting frequency to the setting frequency. Refer to the following diagram for details.
Fcmd = frequency command;
Fstart = start frequency (Pr.01-09);
fstart = actual start frequency of drive;
Fmin $=4$ th output frequency setting (Pr.01-07);
Flow = output frequency lower limit (Pr.01-11)
(1)] When Fcmd > Fmin and Fcmd < Fstart:

If Flow < Fcmd, drive runs directly by Fcmd.
If Flow \geq Fcmd, drive runs by Fcmd, then rise to Flow according to acceleration time.
[1] The output frequency goes directly to 0 when decelerating to Fmin.

Default: 599.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

B: : : Output Frequency Lower Limit

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
1 Use the upper and lower limit output frequency settings to limit the actual output frequency. If the frequency setting is higher than the upper limit (Pr.01-10), the drive uses the upper limit frequency. If the output frequency is lower than lower limit (Pr.01-11) and frequency setting is higher than minimum frequency (Pr.01-07), the drive uses the lower limit frequency. Set the upper limit frequency $>$ lower limit frequency (Pr.01-10 setting value must be > Pr.01-11 setting value).
[a] The upper output frequency limits the maximum output frequency of the drive. If the frequency setting is higher than Pr.01-10, the Pr.01-10 setting limits the output frequency.
\llbracket When the drive starts the slip compensation function (Pr.07-27) or PID feedback control, the drive output frequency may exceed frequency command but is still limited by this setting.

Rel Related parameters: Pr.01-00 Maximum Operation Frequency.

[1] The lower output frequency limits the minimum output frequency of the drive. When the drive frequency command is lower than this setting, the lower limit of the frequency limits the drive output frequency.
1 When the drive starts, it operates from the minimum output frequency (Pr.01-07) and accelerates to the setting frequency. It is not limited by the lower output frequency settings.
$\mathbb{C} \mathbb{1}$ Use the output frequency upper and lower limit settings to prevent operator misuse, overheating caused by operating at a too low frequency, or damage caused by excessive speed.
Ial If the output frequency upper limit setting is 50 Hz and the frequency setting is 60 Hz , the maximum output frequency is 50 Hz .
(1) If the output frequency lower limit setting is 10 Hz and the minimum operation frequency setting (Pr.01-07) is 1.5 Hz , the drive operates at 10 Hz when the frequency command is greater than Pr.01-07 and less than 10 Hz . If the frequency command is less than Pr.01-07, the drive stays in ready status with no output.
(1) If the frequency output upper limit is 60 Hz and the frequency setting is also 60 Hz , only the Frequency command is limited in 60 Hz . The actual frequency output may exceed 60 Hz if the drive starts the slip compensation function.

A: : 2
 Acceleration Time 1

Default: 2.00

7: : 3 Deceleration Time 1

Default: 2.00

If : 14 Acceleration Time 2

日: ! 5
 Deceleration Time 2

B! ! 6
Acceleration Time 3

19:3
 JOG Acceleration Time

Default: 10.00
Settings $0.00-600.00 \mathrm{sec}$.
[1]. Use the acceleration time to determine the time required for the AC motor drive to accelerate from 0 Hz to maximum output frequency (Pr.01-00).
[a] Select the acceleration and deceleration time 1, 2, 3, and 4 with the multi-function input terminals settings. The defaults are acceleration and deceleration time 1 . With the enabled torque limits and stall prevention functions, the actual acceleration and deceleration time are longer than the above action time.
$[\mathbb{L}$ Note that setting the acceleration and deceleration time too short may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention).
[a] Note that setting the acceleration time too short may cause motor damage or trigger drive protection due to over-current during acceleration.
[1] Note that setting the deceleration time too short may cause motor damage or trigger drive protection due to over-current during deceleration or over-voltage.
[】 Use suitable brake resistors (refer to Chapter 07 Optional Accessories) to decelerate in a short time and prevent over-voltage.
[a] When you enable Pr.01-24-Pr.01-27 (S-curve acceleration and deceleration begin and arrival time), the actual acceleration and deceleration time are longer than the setting.

B:-32

JOG Frequency
Default: 6.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
ad You can use both the external terminal JOG and F1 key on the optional keypad KPC-CC01 to set the JOG function. When the JOG command is ON, the AC motor drive accelerates from 0 Hz to the JOG frequency (Pr.01-22). When the JOG command is OFF, the AC motor drive decelerates from the JOG frequency to stop. The JOG acceleration and deceleration time (Pr.01-20, Pr.01-21) are the time to accelerate from 0.0 Hz to the JOG frequency (Pr.01-22). You cannot execute the JOG command when the AC motor drive is running. When the JOG command is executing, other operation commands are invalid.

1 This function does not require the external terminal switching function; it switches the acceleration and deceleration time automatically by the Pr.01-23 setting. If you set the external terminal, it is based on the external terminal first, and not on Pr.01-23.
When using this function, set the S-curve acceleration time to 0 .

$1^{\text {st }} / 4^{\text {th }}$ Acceleration/Deceleration Frequency Switching

S-curve Acceleration Begin Time S1

S-curve Acceleration Arrival Time S2

S-curve Deceleration Begin Time S3

S-curve Deceleration Arrival Time S4
Default: 1.00
Settings $0.00-25.00 \mathrm{sec}$.
1 Sets a slow start when the drive begins to accelerate at the start. The acceleration and deceleration curve adjust the S-curve acceleration and deceleration according to the parameter value. When you enable this function, the drive has a different acceleration and deceleration curve based on the acceleration and deceleration time.
[10] The S-curve function is disabled when you set the acceleration and deceleration time to 0 .
(1) When Pr.01-12, 01-14, 01-16, 01-18 \geq Pr.01-24 and Pr.01-25, the actual acceleration time $=\operatorname{Pr} .01-12,01-14,01-16,01-18+(\operatorname{Pr} .01-24+\operatorname{Pr} .01-25) / 2$.
[1] When Pr.01-13, 01-15, 01-17, 01-19 \geq Pr.01-26 and Pr.01-27, the actual deceleration time $=\operatorname{Pr} .01-13,01-15,01-17,01-19+(\operatorname{Pr} .01-26+\operatorname{Pr} .01-27) / 2$.

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
Sets the AC drive's skip frequency. The drive's frequency setting skips these frequency ranges. However, the frequency output is continuous. There are no limits for these six parameters and you can combine them. Pr.01-28 does not need to be greater than Pr.01-29; Pr.01-30 does not need to be greater than Pr.01-31; Pr.01-32 does not need to be greater than Pr.01-33. Pr.01-28-01-33 can be set as required. There is no size distinction among these six parameters.
[a] These parameters set the skip frequency ranges for the AC motor drive. You can use this function to avoid frequencies that cause mechanical resonance. The skip frequencies are useful when a motor has resonance vibration at a specific frequency bandwidth. Skipping this frequency avoids the vibration. There are three frequency skip zones available. You can set the Frequency command (F) within the range of skip frequencies. Then the output frequency (H) is limited to the lower limit of skip frequency ranges.
1 When accelerating and decelerating, the output frequency still passes through the skip frequency ranges.

7: 3 : Zero-speed Mode

Settings 0: Output waiting
1: Zero-speed operation
2: Fmin (Refer to Pr.01-07)
1 When the frequency command of drive is less than Fmin (Pr.01-07), the drive operates using this parameter.
(1) 0: the AC motor drive is in waiting mode without voltage output from terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
[1] 1: the drive executes the DC brake by Vmin (Pr.01-08 and Pr.01-42) in V/F and SVC modes.
[1] 2: the AC motor drive runs using Fmin (Pr.01-07) and Vmin (Pr.01-08, Pr.01-42) in V/F and SVC modes.

18: -46 Time for CANopen Quick Stop
In V/F and SVC modes:

Default: 1.00

Settings $0.00-600.00 \mathrm{sec}$.

[1] Use this to set the time to decelerate from the maximum operation frequency (Pr.01-00) to 0.00 Hz by CANopen control.

7;-7; Leveling Speed Switch
Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[10] When the drive decelerates from S4 to S5, it switches the frequency to reach a smooth stop.
\square Set the speed for Pr.01-07 to the same as that for elevator.

Default: 1.00
Settings $0.00-25.00 \mathrm{sec}$.
It activates S-curve deceleration. The drive's deceleration curves act at different speed according to the original deceleration time.
[a] The Actual Deceleration Time $=$ Pr.01-73 deceleration time + Pr.01-72.
18: 73 Deceleration Time when Operating without RUN Command
Default: 2.00
Settings $0.00-25.00 \mathrm{sec}$.
1 When you cancel RUN command, the drive decelerates according to the dEB deceleration time in this parameter setting.

Friquency

BL-8日
 Two-wire / Three-wire Operation Control

Default: 1
Settings 0: No function
1: Two-wire mode 1, power on for operation control
(M1: FWD / STOP, M2: REV / STOP)
2: Two-wire mode 2, power on for operation control (M1: RUN / STOP, M2: FWD / REV)
3: Three-wire, power on for operation control (M1: RUN, M2: REV / FWD, M3: STOP)
4: Two-wire mode 1, Quick Start (M1: FWD / STOP, M2: REV / STOP)
5: Two-wire mode 2, Quick Start (M1: RUN / STOP, M2: FWD / REV)
6: Three-wire, Quick Start (M1: RUN, M2: REV / FWD, M3: STOP)

IMPORTANT

1. In the Quick Start function, terminal output stays in ready status, and the drive responds to the command immediately.
2. When using the Quick Start function, the output terminal has higher potential voltage.
\llbracket In the Quick Start function, the output remains ready for operation. The drive responds to the Start command immediately.
1 When using the Quick Start function, there is greater potential voltage on the output terminals.
\mathbb{L} This parameter sets the configuration of the external drive operation control and the Quick Start function. There are six different control modes listed in the following table.

Pr. 02-00	External Terminal Control Circuits	
Setting value: 1 Two-wire FWD / STOP REV / STOP	FWDISTOP 00 REVISTOPG 00	MIT "OPEN": STOP 'CLOSE': FWD MI2 -OPEN": STOP "CLDSE': REV
Setting value: 2 Two-wire RUN / STOP FWD / REV	RUN/STOP σ O FWDIREV * oo	

Pr. 02-00	External Terminal Control Circuits
Setting value: 3 Three-wire	STOP* RLUN MII 'CLOSE': RUN - MIS 'OREN: STOP
Setting value: 4 Two-wire Quick Start	FWDISTOP Co MII "OPEN':STOP 'CLOSE'FWWD REVISTOP 00 MIZ -OPEN":STOP -OCM "CLOSE': REV
Setting value: 5 Two-wire Quick Start	
Setting value: 6 Three-wire Quick Start	STOP R RUN MIT 'CLOSE': RUN MIS 'OPEN': STOP - REYíIFD MI2 REW/FWD: OPEN': FWD OCM 'CLOSE': REV man: 1

92-n!
[2- 8^{3}

Multi-function Input Command 1 (MI1)
Multi-function Input Command 2 (MI2)
Default: 0
BE- 3 Multi-function Input Command 3 (MI3)
Default: 1
M2- 4 Multi-function Input Command 4 (MI4)
Default: 2
BE
Default: 3
M2-96 Multi-function Input Command 6 (MI6)
Default: 4

Default: 49

Multi-function Input Command 10 (MI10)
Multi-function Input Command 11 (MI11)
Multi-function Input Command 12 (MI12)
Default: 0
$\begin{array}{ll}\text { Settings } & 0 \text { : No function } \\ & 1 \text { : Multi-step speed command } 1 / \text { multi-step position command } 1\end{array}$

2: Multi-step speed command 2 / multi-step position command 2
3: Multi-step speed command 3 / multi-step position command 3
4: Multi-step speed command 4 / multi-step position command 4
5: Reset
6: JOG operation (by KPC-CC01 or external control)
7: Acceleration / deceleration speed inhibit
8: The first and second acceleration / deceleration time selection
9: The third and fourth acceleration / deceleration time selection
10: EF input (Pr.07-20)
11: B.B. input from external (Base Block)
12: Output stop
15: Rotating speed command from AVI
16: Rotating speed command from ACl
18: Forced to stop (Pr.07-20)
24: FWD JOG command
25: REV JOG command
28: Emergency stop (EF1)
29: Signal confirmation for Y-connection
30: Signal confirmation for Δ-connection
38: Disable write EEPROM function
39: Torque command direction
40: Force coasting to stop
49: Enable Drive
51: Selection for PLC mode bit 0
52: Selection for PLC mode bit 1
53: Trigger CANopen quick stop
57: Creaping Optimization leveling signal
58: Emergency power mode detection
59: Detection of Magnetic
60: Mechanical brake error detection
61: Power down signal
1 This parameter selects the functions for each multi-function terminal.
(1) When Pr.02-00 $=0$, you can set multi-function options with the multi-function input terminals MI1, MI2.
$\mathbb{1}$ When Pr.02-00 $\neq 0$, the multi-function input terminals MI1, MI2 work in accordance with the setting values for Pr.02-00.
Example:
If Pr. 02-00 = 1: multi-function input terminal MI1 = FWD / STOP,
multi-function input terminal MI2 $=$ REV $/$ STOP.
If Pr. 02-00 $=2$: multi-function input terminal MI1 $=$ RUN $/$ STOP,
multi-function input terminal MI2 $=$ FWD $/$ REV.
[10. When multi-function input terminal $\mathrm{MI} 7=0, \mathrm{MI} 7$ is designated as a pulse input terminal.
Ind If Pr.02-00 is set to three-wire operation control, terminal MI3 is for the STOP contact. The function set previously for this terminal is automatically invalid.

Summary of function settings
Take the normally opened contact (N.O.) for example, ON: contact is closed, OFF: contact is open.

Settings	Functions	Descriptions
7	Acceleration / deceleration speed inhibit	When you enable this function, the drive stops acceleration or deceleration immediately. After you disable this function, the AC motor drive starts to accelerate or decelerate from the inhibit point.
8	The first, second acceleration / deceleration time selection	You can select the acceleration and deceleration time of the drive with this function, or from the digital status of the terminals; there
9	The third, fourth acceleration / deceleration time selection	are four acceleration and deceleration selections.
10	EF input (EF: External Fault)	For external fault input. The drive decelerates according to the Pr.07-20 setting, and the keypad shows "EF" (it shows the fault record when an external fault occurs). The drive keeps running until the fault is cleared (terminal status restored) after RESET.
11	B.B. input from external (B.B.: Base Block)	ON: the output of the drive stops immediately. The motor is in free run and the keypad displays the B.B. signal. Refer to Pr.07-08 for details.
12	Output stop (output pause)	When the switch is ON, output of the drive stops immediately and the motor is in free run status. The drive is in output waiting status until the switch is turned to OFF, and then the drive restarts and runs to the current setting frequency.

Settings	Functions	Descriptions
15	Rotating speed command from AVI	ON: force the source of the frequency to be AVI. If the rotating speed commands are set to AVI and ACl at the same time, the priority is AVI > ACI.
16	Rotating speed command from ACl	ON: force the source of the frequency to be ACl . If the rotating speed commands are set to AVI and ACl at the same time, the priority is AVI > ACI.
18	Forced to stop	ON: the drive ramps to stop according to the Pr.07-20 setting.
24	FWD JOG command	This function is valid when the source of the operation command is external terminal. ON: the drive executes forward JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete.
25	REV JOG command	This function is valid when the source of the operation command is external terminal. ON: the drive executes reverse JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete.
28	Emergency stop (EF1)	ON: the output of the drive stops immediately, displays "EF1" on the keypad, and the motor is in free run status. The drive keeps running until the fault is cleared after you press RESET on the keypad (EF: External Fault). Voltage
29	Signal confirmation for Y-connection	When the control mode is V/F, ON: the drive operates by the first V/F.
30	Signal confirmation for Δ-connection	When the control mode is V/F, ON: the drive operates by the second V/F.
38	Disable EEPROM write function (parameters memory disable)	ON: writing to EEPROM is disabled. Changed parameters are not saved after power off.
40	Force coasting to stop	ON: during operation, the drive free runs to stop.

Settings	Functions	Descriptions		
49	Enable drive	When the drive is enabled, the RUN command is valid. When the drive is disabled, the RUN command is invalid. When the drive is operating, the motor coasts to stop. This function varies with $\mathrm{MO}=45$.		
51	Selection for PLC mode (bit $0)$	PLC status	bit 1	bit 0
		Disable PLC function (PLC 0)	0	0
52	Selection for PLC mode (bit 1)	Trigger PLC to operate (PLC 1)	0	1
		Trigger PLC to stop (PLC 2)	1	0
		No function	1	1
53	Trigger CANopen Quick Stop	When this function is enabled under CANopen control, it changes to Quick Stop. Refer to Chapter 15 CANopen Overview for more details.		
57	Creaping Optimization leveling signal	When the elevator runs to leveling area, the controller sends a leveling signal to the drive to make it stop within effective distance (Pr.01-77).		
58	Emergency power mode detection	If the drive runs during power lose and detects DC voltage is lower than Lv limit, the drive stops running. At this time, shut down the normal power supply electromagnetic valve, generate the emergency power, then set the terminal of this parameter setting to closed and enter RUN command again. The drive runs according to the internal secured frequency set.		
59	Detection of Magnetic contactor	Uses for magnetic contactor ON/OFF feedback signal. When the drive receives RUN command after Pr.02-30 release time, it switches its corresponding multi-function output terminal (setting value $=75$) to ON. Then the drive begins to confirm whether the contact for this parameter setting receives magnetic contactor's normal signal (closed) according to Pr.02-32 magnetic contactor detection time. If the drive does not close within Pr.02-32 release time, it means that magnetic contactor is abnormal, and the drive displays error code 74 (MCF).		
60	Mechanical brake error detection	When the drive receives RUN command after Pr.02-39 release time, it switches its corresponding multi-function output terminal (setting value $=12$) to ON. Then the drive begins to confirm whether the contact for this parameter setting receives brake's normal signal (closed) according to Pr.02-33 mechanical brake detection time. If the drive does not close within Pr.02-33 release time, it means that mechanical brake is abnormal, and the drive displays error code 75 (MBF).		

Settings	Functions	Descriptions
61	Power down signal	When system power loses, host controller must enter this signal to inform the drive. When the drive receives this signal after Pr.06~85sec., MO $=58$ signal closes.

[2]- : : Multi-function Input Response Time

Default: 0.005
Settings $0.000-30.000 \mathrm{sec}$.
[1] Use this parameter to set the response time of the digital input terminals MI1-MI7.
\square This function is to delay and confirm the digital input terminal signal. The time for delay is also the time for confirmation. The confirmation prevents interference that could cause error in the input to the digital terminals. But in the meanwhile, it delays the response time though confirmation improves accuracy.

日コ- 2 Multi-function input mode selection

Default: 0000
Settings 0000h-FFFFh (0: N.O.; 1: N.C.)
1 This parameter setting is in hexadecimal.
Ind This parameter sets the status of the multi-function input signal (0 : normally open; 1: normally closed) and it is not affected by the status of SINK / SOURCE.
(1) bit 0-bit 6 correspond to MI1-MI7.
[1] The default for bit 0 (MI1) is FWD terminal, and the default for bit 1 (MI2) is REV terminal. You cannot use this parameter to change the input mode when Pr. 02-00 $\neq 0$.
M You can change the terminal ON / OFF status through communications.
For example: MI3 is set to 1 (multi-step speed command 1) and MI4 is set to 2 (multi-step speed command 2). Then the forward + second step speed command $=1001_{2}=9_{10}$.
(1) As long as Pr.02-12 = 9 is set through communications, there is no need to wire any multi-function terminal to run forward with the second step speed.

bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
MI7	MI 6	MI 5	MI 4	MI 3	MI 2	MI 1

BI-:3
 Multi-function Output 1 (Relay1)

Default: 11

Multi-function Output 2 (MO1)
Multi-function Output 3 (MO2)
Output Terminal of Extension Card (MO10) or (RY10)
Output Terminal of Extension Card (MO11) or (RY11)
Output Terminal of Extension Card (MO12) or (RY12)
Default: 0
Settings 0: No function
1: Indication during RUN
2: Operation speed reached
3: Desired frequency reached 1 (Pr.02-22)

4: Desired frequency reached 2 (Pr.02-24)
5: Zero speed (Frequency command)
6: Zero speed, includes STOP (Frequency command)
7: Over-torque 1 (Pr.06-06-06-08)
9: Drive is ready
10: Low voltage warning (LV) (Pr. 06-00)
11: Malfunction indication
12: Mechanical brake signal (Pr. 02-39-Pr. 02-42)
13: Over-heat warning (Pr. 06-15)
16: Slip error (oSL)
19: External interrupt B.B. input (Base Block)
20: Warning output
21: Over-voltage
22: Over-current stall prevention
23: Over-voltage stall prevention
24: Operation source
25: Forward command
26: Reverse command
27: Output when current $>=\operatorname{Pr} .02-41$
28: Output when current < Pr.02-41
31: Y-connection for the motor coil
32: Δ-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed include stop (actual output frequency)
35: Error output selection 1 (Pr. 06-23)
36: Error output selection 2 (Pr. 06-24)
37: Error output selection 3 (Pr. 06-25)
38: Error output selection 4 (Pr. 06-26)
40: Speed reached (including STOP)
44: Low current output (use with Pr.06-71-Pr.06-73)
45: UVW output electromagnetic valve ON / OFF switch
50: Output control for CANopen
56: Power generation direction and status verify
57: Power generation direction
58: EPS MODE
67: Analog input level reached
75: Motor-controlled magnetic contactor outputUse this parameter to set the function of the multi-function terminals.

Summary of function settings
Take the normally open contact (N.O.) for example, ON: contact is closed, OFF: contact is open.

Settings	Functions	Descriptions
0	No Function	Output terminal with no function
1	Indication during RUN	Active when the drive is not at STOP.
2	Operation speed reached	Active when output frequency of the drive reaches the setting frequency.
3	Desired frequency attained 1 (Pr. 02-22)	Active when the desired frequency (Pr.02-22) reached.
4	Desired frequency attained 2 (Pr. 02-24)	Active when the desired frequency (Pr.02-24) reached.
5	Zero speed (Frequency command)	Active when frequency command $=0$ (the drive must be in RUN status).
6	Zero speed, includes STOP (Frequency command)	Active when frequency command = 0 or stopped.
7	Over-torque 1	Active when the drive detects over-torque. Pr.06-07 sets the over-torque detection level (motor 1), and Pr.06-08 sets the over-torque detection time (motor 1). Refer to Pr.06-06-06-08.
9	Drive is ready	Active when the drive is ON with no error detected.
10	Low voltage warn (LV)	Active when the DC BUS voltage is too low (refer to Pr.06-00 Low Voltage Level).
11	Malfunction indication	Active when fault occurs (except Lv stop).
12	Mechanical brake signal	When the drive runs after Pr.02-39 delay time, this contact is closed. Use this function with DC brake and use "b"(N.C) contact. (Refer to Pr.02-39-Pr.02-42)
13	Over-heat warning	Active when IGBT or heat sink overheats; to prevent the drive from shutting down due to over-heating (refer to Pr.06-15).
16	Slip error (oSL)	Active when the slip error is detected.
19	External interrupt B.B. input (Base Block)	Active when external interrupt (B.B.) stop output occurs in the drive.
20	Warning output	Active when a warning is detected.
21	Over-voltage	Active when over-voltage is detected.
22	Over-current stall prevention	Active when over-current stall prevention is detected.
23	Over-voltage stall prevention	Active when over-voltage stall prevention is detected.

Settings	Functions	Descriptions
24	Operation source	Active when the source of operation command is controlled by the digital keypad (Pr.00-21 = 0).
25	Forward command	Active when the operation direction is forward.
26	Reverse command	Active when the operation direction is reverse.
27	Output when current >= Pr.02-41	Active when current is >=Pr.02-41

Settings	Functions	Descriptions			
50	Output control for CANopen	Control the multi-function output terminals through CANopen. The mapping table of the CANopen DO is shown in the following table:			
		Physical terminal	Setting for related parameters	Attribute	Corresponding index
		RY1	Pr.02-13 $=50$	RW	2026-41 bit 0 of initial value 0×01
		MO1	Pr.02-16 = 50	RW	2026-41 bit 3 of initial value 0×01
		MO2	Pr.02-17 $=50$	RW	2026-41 bit 4 of initial value 0×01
		Refer to Section 15-3-5 for more information.			
56	Power generation direction and status verify	When finish searching the power generating mode, this switch will be closed.			
57	Power generation direction	When the running direction of the power generating mode is forward, this switch will be closed.			
58	EPS MODE	When receiving signals from the upper drive, (Pr.02-01 =61), there will be a few seconds of delay (Pr.06-85), then this switch will be closed.			
67	Analog input level reached output	The multi-function output terminals operate when the analog input level is between the high level and the low level. Pr.03-44: Select one of the analog input channels (AVI, ACI) to be compared. Pr.03-45: The high level for the analog input, default is 50%. Pr.03-46: The low level for the analog input, default is 10%. If analog input > Pr.03-45, the multi-function output terminal operates. If analog input < Pr.03-46, the multi-function output terminal stops output.			
75	Motor-controlled magnetic contactor output	When the drive receives that multi-function input terminal is set to 49 (drive enable), this contact is closed. (Refer to Pr.02-30 and Pr.02-31)			

(62-18
 Multi-function Output Direction

Default: 0000
Settings 0000h-FFFFh (0:N.O.; 1:N.C.)
Iad This parameter is in hexadecimal.
\square This parameter is set by a bit. If the bit is 1 , the corresponding multi-function output acts in an opposite way.

Example:

10 Assume Pr.02-13 = 1 (indication when the drive is operating). If the output is positive, the bit is set to 0 , and then Relay is ON when the drive runs and is OFF when the drive stops. On the contrary, if the output is negative, and the bit is set to 1 , then the Relay is OFF when the drive runs and is ON when
the drive stops．

bit 4	bit 3	bit 2	bit 1	bit 0
MO 2	MO1	reserved	reserved	RY

52－を
 Digital Output Gain（ DFM ）

Default： 1
Settings 1－55
Sets the signal for the digital output terminals（DFM－DCM）and the digital frequency output（pulse，work period $=50 \%$ ）．The output pulse per second $=$ output frequency X Pr．02－21．

Default： 60.00 ／ 50.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
日コ一き Width of the Desired Frequency Attained 1
Default： 2.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

Desired Frequency Attained 2
Default： 60.00 ／ 50.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

$\mathcal{A I}$ DS Width of the Desired Frequency Attained 2

Default： 2.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
Once the output speed（frequency）reaches the desired speed（frequency），if the corresponding multi－function output terminal is set to 3－4（Pr．02－13，Pr．02－36，and Pr．02－37），this multi－function output terminal is＂closed＂．

Magnetic Contact Error Detection Time Setting
Mechanical Brake Error Detection Time Setting
Default: 0.00
Settings $0.00 \sim 10.00 \mathrm{sec}$.

Magnetic Contact Feedback Error

1. MI terminal setting 59 (magnetic contact feedback signal)
2. MO terminal setting 75 (magnetic contact output signal)
3. Setting Pr.02-32 (magnetic contact error detection time)
4. When magnetic contact output signal and feedback signal are not in the same level and exceeds the setting time for Pr.02-32, "Contractor Fail (MCF)" displays with an error code 74.
5. Homing condition: magnetic contact output signal and feedback signal are in the same level.

Mechanical Brake Feedback Error

1. MI terminal setting 60 (mechanical brake feedback signal)
2. MO terminal setting 12 (mechanical brake output signal)
3. Setting Pr.02-33 (mechanical brake error detection time)
4. When mechanical brake output signal and feedback signal are not in the same level and exceeds the setting time for Pr.02-33, "Mech. Brake Fail (MbF)" displays with an error code 75.
5. Homing condition: mechanical brake output signal and feedback signal are in the same level.

Rコー35 External Operation Control Selection after Reset and Activate

Default: 0
Settings 0: Disable
1: Drive runs if the RUN command remains after reset or reboot.

Set value as 1 :
1 Status 1: After the drive is powered on and the external terminal for RUN stays ON, the drive runs.

1 Status 2: After clearing a fault once a fault is detected and the external terminal for RUN stays ON, you can run the drive by pressing the RESET key.

Brake Release Delay Time When Elevator Starts Brake Contracting Delay Time When Elevator Stops

Default: 0.250
Settings $0.010 \sim 65.000 \mathrm{sec}$.

Start-up Time Sequence

As below diagram shows, magnetic contact attracts when the drive is enabled. After Pr.02-30 delay time, DC brake starts to make the drive output and maintain motor's speed at 0 . The mechanical brake releases after Pr.02-39 delay time. Elevator starts to lift (rotation speed starts increasing) when DC brake stops (Pr.07-02).

Stop Time Sequence

As below diagram shows, DC brake starts when elevator stops to lift (rotation speed decreases to 0) to make the drive output and maintain the motor's speed at 0 . The mechanical brake contracts after Pr.02-40 delay time. When DC brake stops (Pr.07-03) and after Pr.02-31 delay time, motor magnetic contact releases and time sequence stops.

B2-4; Output Current Level Setting for External Terminals

Default: 0
Settings $0 \sim 100 \%$ (Rated current of drive \%)
(1] When output current is >=Pr.02-41, it will activate multi-function output terminal (Pr.02-13, 16, 17, 36, 37,38 is set to 27).
[1] When output current is < Pr.02-41, it will activate multi-function output terminal (Pr.02-13, 16, 17, 36, 37,38 is set to 28).

Default: 0
Settings 0: Disable
1: Enable
[1] When the drive receives the operation signal, the drive will check if there is torque output. When this function is enabled, it will release mechanical brake after confirming that there is torque output.

Sequence Diagram

Maty Display the Status of Multi-function Input Terminal

> Default: Read only

[1] Example:
When Pr.02-50 displays 0034h (hex) (that is, the value is 52 (decimal) and 0110100 (binary)), it means that MI3, MI5 and MI6 are ON.

$$
\left.\begin{array}{l}
0=\text { OFF } \\
1=\text { ON } \\
\text { Setting } \\
=\text { bit } 5 \times 2^{5}+\text { bit } 4 \times 2^{4}+\text { bit } 2 \times 2^{2} \\
=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2} \\
=32+16+4 \\
=52
\end{array} \quad \begin{array}{lll}
\text { NOTE } & \begin{array}{llr}
2^{6}=64 \\
2^{3}=8
\end{array} & 2^{5}=4 \\
2^{5}=32 & 2^{1}=2 & 2^{4}=16 \\
2^{0}=1
\end{array}\right] .
$$

P2-5 : Status of Multi-function Output Terminal

Default: Read only
Settings Monitor the status of the Multi-function Output Terminal

Example:
When Pr.02-51 displays 0009h (hex) (that is, the value is 9 (decimal) and 01001 (binary)), it means that Relay and MO1 are ON.

日コーラき Display External Multi－function Input Terminals Used by PLC
Default：Read only
Settings Monitor the status of the PLC input terminals

| NOTE | | |
| :--- | :--- | :--- | :--- |
| $2^{6}=64$ | $2^{5}=32$ | $2^{4}=16$ |
| $2^{3}=8$ | $2^{2}=4 \quad 2^{1}=2$ | $2^{0}=1$ |

（1）Example：
When Pr．02－52 displays 0034 h（hex）（that is，the value is 52 （decimal）and 0110100 （binary）），it means that MI3，MI5 and MI6 are used by PLC．
bit

$$
0=O F F
$$

$$
1=O N
$$

Setting

$$
=\text { bit } 5 \times 2^{5}+\text { bit } 4 \times 2^{4}+\text { bit } 2 \times 2^{2}
$$

$$
=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}
$$

$$
=32+16+4
$$

$$
=52
$$

Default：Read only
Settings Monitor the status of the PLC output terminals

[1] Example:
When Pr.02-53 displays 0009h (hex) (that is, the value is 9 (decimal) and 01001 (binary)), it means that Relay and MO1 are used by PLC.

Settings Read only
When you set the source of the Frequency command as the external terminal, if Lv or Fault occurs, the
external terminal Frequency command is saved in this parameter.

7E-7日 IO Card Types

Default: Read only
Settings 09: EMM-D3R2CA

Be-82 Initial Frequency Command (F) Mode after Stop

Default: 0
Settings 0: Use current Frequency command
1: Use zero Frequency command
2: Refer to Pr.02-83 to set up
[This page intentionally left blank]

03 Analog Input／Output Parameters
 You can set this parameter during operation．

日3－9日
 Analog Input Selection（AVI）

Default： 1
35－！：Analog Input Selection（ACI）
Default： 0

Settings	$0:$ No function
	1：Frequency command

1：Frequency command
\Perp When you use analog input as the PID reference target input，you must set Pr．00－20 to 2 （external analog input）．
Setting method 1：Pr．03－00－03－01 set 1 as PID reference target input．
$\llbracket \square$ When you use the Frequency command，the corresponding value for $0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}$ is $0-$ maximum operation frequency（Pr．01－00）．
When the settings for Pr．03－00－Pr．03－01 are the same，the highest priority is AVI．

13－73 Analog Input Bias（AVI）

Default： 0
Settings－100．0－100．0 \％
Sets the corresponding AVI voltage for the external analog input 0.

Analog Input Bias（ACI）
Default： 0
Settings－100．0－100．0 \％
1 Sets the corresponding ACl voltage for the external analog input 0.
Positive／Negative Bias Mode（AVI）
N $9-98$
Positive／Negative Bias Mode（ACI）
Default： 0
Settings 0：No bias
1：Lower than or equal to bias
2：Greater than or equal to bias
3：The absolute value of the bias voltage while serving as the center
4：Bias serves as the center
［1］In a noisy environment，use negative bias to provide a noise margin．Do NOT use less than 1 V to set the operation frequency．

Reverse Setting when Analog Signal Input is Negative Frequency
Default： 0
Settings 0：Negative frequency input is not allowed．The digital keypad or external terminal controls the forward and reverse direction．
1：Negative frequency input is allowed．Positive frequency＝run in forward direction；negative frequency＝run in reverse direction．The digital keypad or external terminal control cannot switch the running direction．

Use Pr.03-10 to enable running in the reverse direction command when a negative frequency (negative bias and gain) is input to the AVI or ACI analog signal input.
1 Condition for negative frequency (reverse)

1. $\operatorname{Pr} .03-10=1$
2. Bias mode $=$ Bias serves as the center
3. Corresponded analog input gain <0 (negative); this makes the input frequency negative.

In using the additional analog input function (Pr.03-18 = 1), when the analog signal is negative after the addition, you can set this parameter to allow or not allow the reverse direction. The result after adding is restricted by the "Condition for negative frequency (reverse)".

In the diagram below: Black line: Curve with no bias. Gray line: curve with bias Diagram 01

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=100 \%$
Diagram 02

$$
\text { Pr.03-11 Analog input Gain }(A V I)=100 \%
$$

Diagram 03

Diagram 04

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=100 \%$

Diagram 05

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=100 \%$

Diagram 07

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) $=100 \%$

Diagram 08

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(\mathrm{AVI})=100 \%$

	Frequency	Pr.03-03=-10\% Pr.03-07-03-08 (Positive/Negative Bias Mode)

Pr.03-11 Analog input Gain $(\mathrm{AVI})=100 \%$

Diagram 10

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=100 \%$

Diagram 11

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=100 \%$

Chapter 12 Description of Parameter Settings | MH300-L

Diagram 13

Diagram 14

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=100 \%$

Diagram 16

Diagram 17

Pr.03-11 Analog input Gain $(A V I)=100 \%$

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) $=100 \%$

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Chapter 12 Description of Parameter Settings | MH300-L

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(\mathrm{AVI})=111.1 \%$ $10 / 9=111.1 \%$

Diagram 19

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(\mathrm{AVI})=111.1 \%$

$$
10 / 9=111.1 \%
$$

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(\mathrm{AVI})=111.1 \%$
$10 / 9=111.1 \%$

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=111.1 \%$
10/9 = 111.1\%

Diagram 22

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=111.1 \%$ $10 / 9=111.1 \%$

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control

Pr.03-11 Analog input Gain $(\mathrm{AVI})=111.1 \%$ $10 / 9=111.1 \%$

Diagram 25

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain $(A V I)=111.1 \%$ $10 / 9=111.1 \%$

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-X \mathrm{~V}} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain:
Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 26

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Diagram 28

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{X} \mathrm{V})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain:
Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain:
Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%$
Calculate the gain:
Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 30

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad
or external terminal control.
Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \begin{aligned} \therefore 03-03 & =\frac{-1.11}{10} \times 100 \% \\ & =-11.1 \%\end{aligned}$
Calculate the gain:
Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 32

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
$\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \begin{aligned} \therefore 03-03 & =\frac{-1.11}{10} \times 100 \% \\ & =-11.1 \%\end{aligned}, ~$
Calculate the gain:
Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

33-16

Analog Input Filter Time (ACI)
Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.
[a] Use these input delays to filter a noisy analog signal.
1 When the time constant setting is too large, the control is stable but the control response is slow. When the time constant setting is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting based on the control stability or the control response.

Default: 0
Settings 0: Disable (AVI, ACI)
1: Enable
1: Example: Pr.03-00 $=$ Pr.03-01 $=1$ Frequency command $=A V I+A C I$
1 ded 0 and the analog input setting are the same: the priority for $A V I$ and $A C I$ is $A V I>A C I$.
Frequency
F command $=[(\text { ay } \pm \text { bias }) * \text { gain }]^{*} \frac{\text { Fmax (01-00) }}{10 \mathrm{~V} \text { or } 16 \mathrm{~mA} \text { or } 20 \mathrm{~mA}}$
F command: the corresponding frequency for 10 V or 20 mA ay: 040V, 4-20mA, 0-20mA bia@: Pr. D3-03, Pr. D3-04
gain: Pr. 03-11, Pr. 03-12

- Voltage

63-19
Signal Loss Selection for Analog Input 4-20 mA
Default: 0

Settings	0: Disable
	1: Continue operation at the last frequency
	2: Decelerate to 0 Hz
	3: Stop immediately and display "ACE"

[1a Determines the treatment when the $4-20 \mathrm{~mA}$ signal is lost, when ACIc ($\operatorname{Pr} .03-29=0$).
When Pr.03-29 $\neq 0$, the voltage input to ACI terminal is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$, and $\operatorname{Pr} .03-19$ is invalid.
\square When the setting is 1 or 2 , the keypad displays the warning code "ANL". It keeps blinking until the ACI signal is restored.
$\mathbb{1}$ When the motor drive stops, the warning condition does not continue to exist, so the warning disappears.

Default: 0
Settings 0-4
Function Chart

Settings	Functions	Descriptions
0	Output frequency (Hz)	Maximum frequency Pr.01-00 is processed as 100%.
1	Frequency command (Hz)	Maximum frequency Pr.01-00 is processed as 100%.
2	Motor speed (Hz)	Maximum frequency Pr.01-00 is processed as 100%.

wwwowidnaher.ir

Settings	Functions	Descriptions
3	Output current（rms）	$(2.5 \times$ rated current $)$ is processed as 100%.
4	Output voltage	$(2 \times$ rated voltage $)$ is processed as 100%.

［コーコ！Analog Output Gain（AFM）

Default： 100.0

Settings 0－500．0 \％

［a］Adjusts the voltage level outputted to the analog meter from the analog signal（Pr．03－20）output terminal AFM of the drive．

Analog Output in REV Direction（AFM）
Default： 0
Settings 0：Absolute value of output voltage
1：Reverse output 0 V ；forward output $0-10 \mathrm{~V}$
2：Reverse output 5－0 V；forward output 5－10 V

Analog output direction selection

N 33－27AFM Output Bias

Default： 0.00
Settings－100．00－100．00\％
（1）Example 1：AFM $0-10 \mathrm{~V}$ is set to the output frequency，the output equation is
$10 \mathrm{~V} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+10 \mathrm{~V} \times 03-27$
［1］Example 2：AFM $0-20 \mathrm{~mA}$ is set to the output frequency，the output equation is
$20 \mathrm{~mA} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+20 \mathrm{~mA} \times 03-27$
［a］Example 3：AFM 4－20 mA is set to the output frequency，the output equation is

$$
4 \mathrm{~mA}+16 \mathrm{~mA} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+16 \mathrm{~mA} \times 03-27
$$

Id This parameter sets the corresponding voltage for the analog output 0 ．

13－28 AVI Terminal Input Selection

Default： 0
Settings $0: 0-10 \mathrm{~V}$
3：－10－10 V（Pr．03－69－03－74 are valid）

~3-23 ACI Terminal Input Selection

Default: 0
Settings $\quad 0: 4-20 \mathrm{~mA}$
1: 0-10 V
2: $0-20 \mathrm{~mA}$
1 When you change the input mode, verify that the external terminal switch position (ACI) is correct.

19-3 9 Display the Analog Output Terminals Used by PLC

Default: Read only
Settings Monitor the status of the PLC analog output terminals
bit 1: AFM
bit 2: AO10
bit 3: AO11

Example:
When Pr.03-30 displays 000Ah (hex) (that is, the value is 10 (decimal) and 1010 (binary)), it means that AFM and AO11 are used by PLC.

173-3:AFM Output Selection

Default: 0
Settings 0 : $0-10 \mathrm{~V}$ output
1: $0-20 \mathrm{~mA}$ output
2: 4-20 mA output
N

Settings 0.00-100.00 \%

AFM Filter Output Time
Default: 0.01
Settings $0.00-20.00 \mathrm{sec}$.

N点 - -

VR Input Selection
Default: 1
$\begin{array}{ll}\text { Settings } & 0: \text { Disable } \\ & 1: \text { Frequency command }\end{array}$

73-44

Multi-function MO Output by AI Level Source
Default: 0
Settings 0: AVI
1: ACI
3: Extension card input terminal Al10
4: Extension card input terminal Al11

73-45AI Upper Level 1

Default: 50.00
Settings -100.00-100.00\%

53-45Al Lower Level 2

Default: 10.00
Settings -100.00-100.00\%
[®】 Multi-function output terminal 67 must work with Pr.03-44 to select input channels. When analog input level is higher than Pr.03-45, multi-function output acts; when analog input level is lower than Pr.03-46, multi-function output terminals stop outputting.
\square When setting levels, Al upper level must be higher than AI lower level.

B5-57 ACI Lowest Point

Default: 4.00
Settings Pr.03-29 = 1, 0.00-10.00 V
Pr.03-29 $\neq 1,0.00-20.00 \mathrm{~mA}$

93-58ACI Proportional Lowest Point

Default: 0.00
Settings 0.00-100.00\%
N 3 -5 9 ACl Mid-point
Default: 12.00
Settings Pr.03-29 = 1, 0.00-10.00 V
Pr.03-29 $=1,0.00-20.00 \mathrm{~mA}$
(Pr.03-29 $\neq 1,0.00-20.00 \mathrm{~mA}$

53-6. ACI Proportional Mid-point

Default: 50.00
Settings $0.00-100.00 \%$

73-6 : ACI Highest Point

Default: 20.00
Settings Pr.03-29 $=1,0.00-10.00 \mathrm{~V}$
Pr.03-29 $\neq 1,0.00-20.00 \mathrm{~mA}$
53-62 ACI Proportional Highest Point
Default: 100.00
Settings $0.00-100.00 \%$
1 When Pr.03-29 = 1, the ACl setting is $0-10 \mathrm{~V}$ and the unit is voltage (V).
When $\operatorname{Pr} .03-29 \neq 1$, the ACl setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is current (mA).
1 When you set the analog input ACI to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency).
[1] The requirement for these three parameters (Pr.03-57, Pr.03-59 and Pr.03-61) is Pr.03-57 < Pr.03-59 < Pr.03-61. The values for three proportional points (Pr.03-58, Pr.03-60 and Pr.03-62) have no limits. There is a linear calculation between two points.
[1 The output \% becomes 0% when the ACI input value is lower than lowest point setting.
For example:
If Pr.03-57 = 2 mA ; Pr.03-58 = 10\%, then the output becomes 0% when the AVI input is $\leq 2 \mathrm{~mA}$.
If the ACl input swings between 2 mA and 2.1 mA , the drive's output frequency oscillates between 0% and 10%.

[3-63 AVI Voltage Lowest Point

Default: 0.00
Settings $0.00-10.00 \mathrm{~V}$
63-64
AVI Voltage Proportional Lowest Point
Default: 0.00
Settings -100.00-100.00\%
[3-65 AVI Voltage Mid-point
Default: 5.00
Settings $0.00-10.00 \mathrm{~V}$
73-65
AVI Voltage Proportional Mid-point
Default: 50.00
Settings -100.00-100.00\%
13-67AVI Voltage Highest Point
Default: 10.00
Settings $0.00-10.00 \mathrm{~V}$

53－68 AVI Voltage Proportional Highest Point

Default： 100.00
Settings－100．00－100．00\％
［a］When you set the positive voltage AVI to the Frequency command，100\％corresponds to Fmax （Pr．01－00 Maximum Operation Frequency）and the motor runs in the forward direction．
［4］The requirement for these three parameters（Pr．03－63，Pr．03－65 and Pr．03－67）is Pr．03－63＜Pr．03－65＜ Pr．03－67．The values for three proportional points（Pr．03－64，Pr．03－66 and Pr．03－68）have no limits． There is a linear calculation between two points．

1 The output \％becomes 0% when the positive voltage AVI input value is lower than lowest point setting． For example：
If Pr．03－63＝ 1 V ；Pr．03－64 $=10 \%$ ，then the output becomes 0% when the AVI input is $\leq 1 \mathrm{~V}$ ．
If the AVI input swings between 1 V and 1.1 V ，the drive＇s output frequency oscillates between 0% and 10\％．

－ $\mathbf{B - 5 9}$

Negative AVI Voltage Lowest Point
Default： 0.00
Settings $0.00-10.00 \mathrm{~V}$
（valid when Pr．03－28 sets as $-10-10 \mathrm{~V}$ ）

日3－7日

Negative AVI Voltage Proportional Lowest Point
Default： 0.00
Settings－100．00－100．00\％
（valid when Pr．03－28 sets as $-10-10 \mathrm{~V}$ ）

19－7：Negative AVI Voltage Mid－point

Default：－5．00
Settings $0.00-10.00 \mathrm{~V}$
（valid when Pr．03－28 sets as $-10-10 \mathrm{~V}$ ）

［1］－9 Negative AVI Voltage Proportional Mid－point

Default：－50．00
Settings－100．00－100．00\％
（valid when Pr．03－28 sets as $-10-10 \mathrm{~V}$ ）

N 73－7〕Negative AVI Voltage Highest Point
Default：－10．00
$\begin{array}{ll}\text { Settings } & 0.00--10.00 \mathrm{~V} \\ & \text {（valid when Pr．} 03-28 \text { sets as }-10-10 \mathrm{~V} \text { ）}\end{array}$
－ $\mathbf{+ 3}$－74
Negative AVI Voltage Proportional Highest Point

Settings－100．00－100．00\％
（valid when Pr．03－28 sets as $-10-10 \mathrm{~V}$ ）

1 When you set the negative voltage AVI to the Frequency command, - 100% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency) and the motor runs in the reverse direction.
[1] The requirement for these three parameters (Pr.03-69, Pr.03-71 and Pr.03-73) is Pr.03-69 < Pr.03-71 < Pr.03-73. The values for three proportional points (Pr.03-70, Pr.03-72 and Pr.03-74) have no limits. There is a linear calculation between two points.
[1] The output \% becomes 0\% when the negative AVI input value is lower than the lowest point setting.
For example:
If Pr.03-69 = - 1 V ; Pr.03-70 $=10 \%$, then the output becomes 0% when the AVI input is $\geq-1 \mathrm{~V}$.
If the AVI input swings between -1 V and -1.1 V , drive's output frequency oscillates between 0% and 10\%.

04 Multi-Step Speed Parameters \wedge You can set this parameter during operation.
时-8日
$1^{\text {st }}$ Step Speed Frequency
 $2^{\text {nd }}$ Step Speed Frequency
~ $84-8 \mathrm{~F}$
$3^{\text {rd }}$ Step Speed Frequency

- $84-03$
$4^{\text {th }}$ Step Speed Frequency
* $84-84$
$5^{\text {th }}$ Step Speed Frequency
- 84-05
$6^{\text {th }}$ Step Speed Frequency
- 84 - 85
$7^{\text {th }}$ Step Speed Frequency
N $\overline{1 / 4}-78^{\text {th }}$ Step Speed Frequency

μ - 84
$10^{\text {th }}$ Step Speed Frequency

$11^{\text {th }}$ Step Speed Frequency
$12^{\text {th }}$ Step Speed Frequency
$13^{\text {th }}$ Step Speed Frequency
$14^{\text {th }}$ Step Speed Frequency
$15^{\text {th }}$ Step Speed Frequency

Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
\llbracket Use the multi-function input terminals (refer to settings 1-4 of Pr.02-01-02-07 and Pr.02-26-02-28 Multi-function Input Command) to select multi-step speed command (the maximum is $15^{\text {th }}$ step speed). Pr.04-00 to Pr.04-14 sets the multi-step speed frequency as shown in the following diagram.
1 The external terminal/digital keypad/communication controls the RUN and STOP commands with Pr.00-21.
[1] You can set each multi-step speed between $0.00-599.00 \mathrm{~Hz}$ during operation.
1 Explanation for the timing diagram of the multi-step speed and external terminals The related parameter settings are:

1. Pr.04-00-04-14: sets the $1^{\text {st }}-15^{\text {th }}$ multi-step speed (to set the frequency of each step speed).
2. Pr.02-01-02-07 and Pr.02-26-02-28: sets the multi-function input terminals (multi-step speed command 1-4).
[1] Related parameters:

- Pr.01-22 JOG frequency setting
- Pr.02-01 multi-function input command 1 (MI1)
- Pr.02-02 multi-function input command 2 (MI2)
- Pr.02-03 multi-function input command 3 (MI3)
- Pr.02-04 multi-function input command 4 (MI4)

Speed selection via External Terminals

Default: 0
Settings 0-65535
[1] You can combine the PLC buffer with the built-in PLC function for a variety of applications.

日5-明
 Motor Parameter Auto-Tuning

Default: 0
$\begin{array}{ll}\text { Settings } & 0: \text { No function } \\ & \text { 1: Dynamic test for an induction motor (IM) } \\ & \text { 2: Static test for an induction motor (IM) }\end{array}$
55-7! Full-load Current for an Induction Motor (A)
Unit: Ampere
Default: \#.\#\#
Settings 10-120 \% of drive's rated current
1 Sets this value according to the rated current of the motor as indicated on the motor nameplate. The default is 90% of the drive's rated current.

Example: The rated current for a $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ motor is 25 A . The default is 22.5 A .
The setting range is $2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$.

55-93 Rated Power for an Induction Motor (kW)

Default: \#.\#\#
Settings $0.00-655.35 \mathrm{~kW}$
Sets the rated power for motor 1 . The default is the drive's power value.

55-93 Rated Speed for an Induction Motor (rpm)

Default: 1710
$\begin{array}{ll}\text { Settings } & 0-65535 \mathrm{rpm} \\ & 1710(60 \mathrm{~Hz} 4 \text { poles); } 1410(50 \mathrm{~Hz} 4 \text { poles })\end{array}$
Sets the rated speed for the motor as indicated on the motor nameplate.
55-94 Number of Poles for an Induction Motor
Default: 4
Settings 2-20
Sets the number of poles for the motor (must be an even number).
1 Set up Pr.01-01 and Pr.05-03 before setting up Pr.05-04 to make sure the motor operates normally.

55-75 No-load Current for an Induction Motor (A)

Unit: Ampere
Default: \#.\#\#
Settings 0.00-Pr.05-01 Default
[1] The default is 40% of the motor's rated current.

55-96 Stator Resistance (Rs) for an Induction Motor
[95-7 Rotor Resistance (Rr) for an Induction Motor
Default: \#.\#\#\#
Settings $0.000-65.535 \Omega$

Stator Inductance (Lx) for an Induction Motor
Default: \#.\#
Settings $0.0-6553.5 \mathrm{mH}$

55-23

Frequency for Y-connection / \triangle-connection Switch for an Induction Motor
Default: 60.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

Default: 0
Settings 0: Disable
1: Enable
N 8 5-35 Delay Time for Y-connection/ \triangle-connection Switch for an Induction Motor
Default: 0.200
Settings $0.000-60.000 \mathrm{sec}$.
$[$ You can apply Pr.05-23-Pr.05-25 in a wide range of motors, and the motor coil executes the Y-connection / Δ-connection switch as required. The wide range motors are related to the motor design. In general, the motor has higher torque with low speed Y-connection and has higher speed with high speed Δ-connection
1 Pr.05-24 enables and disables the switch of Y-connection / Δ-connection.
$\mathbb{C l}$ When you set Pr.05-24 as 1, the drive uses the Pr.05-23 setting and current motor frequency, and switches the current motor to Y -connection or Δ-connection. You can switch the relevant motor parameter settings simultaneously.
10. Pr.05-25 sets the switch delay time of Y-connection / Δ-connection.

1 When the output frequency reaches the Y-connection / Δ-connection switch frequency, the drive delays according to Pr.05-25 before activating the multi-function output terminals.

Y- \triangle connection switch: can be used for wide range motor
Y-connection for low speed: higher torque can be used for rigid tapping
\triangle-connection for high speed: higher torque can be used for high-speed drilling

55－96 Accumulative Watt－second for a Motor in Low Word（W－sec．）
Accumulative Watt－second for a Motor in High Word（W－sec．）
Accumulative Watt－hour for a Motor（W－Hour）
Accumulative Watt－hour for a Motor in Low Word（kW－Hour）
Accumulative Watt－hour for a Motor in High Word（kW－Hour）
Default：\＃．\＃
Settings Read only
［1］Pr．05－26－05－30 records the amount of power the motors consume．The accumulation begins when the drive is activated and the record is saved when the drive stops or turns OFF．The amount of consumed watts continues to accumulate when the drive is activated again．To clear the accumulation，set Pr．00－02 as 5 to return the accumulation record to 0 ．
［4］The accumulated total watts of the motor per second $=$ Pr．05－27 $\times 65536+\operatorname{Pr} .05-26$ Example：when Pr．05－26＝2548．1 and Pr．05－27＝15．2，the accumulated total watts of the motor per second $=15.2 \times 65536+2548.1=996147.2+2548.1=998695.3$
[1] The accumulated total kilowatts of the motor per hour $=$ Pr.05-30 $\times 65536+\operatorname{Pr} .05-29$
Example: when Pr.05-29 = 3361.4 and Pr. $05-30=11.2$, the accumulated total kilowatts of the motor per hour $=11.2 \times 65536+3361.4=734003.2+3361.4=737364.6$

55-3 : Accumulative Motor Operation Time (Min.)
Default: 0
Settings 0-1439
19-32 Accumulative Motor Operation Time (Day)
Default: 0
Settings 0-65535
[1 Use Pr.05-31 and Pr.05-32 to record the motor operation time. To clear the operation time, set Pr.05-31 and Pr.05-32 as 00 . An operation time shorter than 60 seconds is not recorded.

56-98 Low Voltage Level

Default:

Settings	$230 \mathrm{~V}: 150.0-220.0 \mathrm{~V}_{\mathrm{DC}}$	180.0
460V: $300.0-440.0 \mathrm{VDC}$	360.0	

1 Sets the Low Voltage (LV) level. When the DC BUS voltage is lower than Pr.06-00, the drive stops output and the motor free runs to a stop.
[1] If the LV fault is triggered during operation, the drive stops output and the motor free runs to a stop. There are three LV faults, LvA (LV during acceleration), Lvd (LV during deceleration), and Lvn (LV in constant speed) that are triggered according to the status of acceleration or deceleration. You must press RESET to clear the LV fault. The drive automatically restarts if you set to restart after momentary power loss (refer to Pr.07-06 Restart after Momentary Power Loss and Pr.07-07 Allowed Power Loss Duration for details).
[1] If the LV fault is triggered when the drive is in STOP status, the drive displays LvS (LV during stop), which is not recorded, and the drive restarts automatically when the input voltage is higher than the LV level of 30 V (230 V series) or 60 V (460 V series).

56-7 : Over-voltage Stall Prevention

Settings	$0:$ Disabled	Default:
	$230 \mathrm{~V}: 0.0-450.0 \mathrm{VDC}$	
	$460 \mathrm{~V}: 0.0-900.0 \mathrm{VDC}$	

1 Setting Pr.06-01 to 0.0 disables the over-voltage stall prevention function (connected with braking unit or braking resistor). Use this setting when braking units or resistors are connected to the drive.
[1] Setting Pr.06-01 to a value > 0 enables the over-voltage stall prevention. This setting refers to the power supply system and loading. If the setting is too low, then over-voltage stall prevention is easily activated, which may increase deceleration time.
[1] Related parameters:
Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Deceleration Time 1-4, Pr.02-13 Multi-function Output 1 (Relay 1), Pr.02-16-Pr.02-17 Multi-function Output 2-3 (MO1, 2), and Pr.06-02 Selection for Over-voltage Stall Prevention.

50-82 Selection for Over-voltage Stall Prevention

Default: 0

Settings 0: Traditional over-voltage stall prevention

1: Smart over-voltage stall prevention
Uld Use this function when you are unsure about the load inertia. When stopping under normal load, the over-voltage does not occur during deceleration and meet the deceleration time setting. Sometimes it may not stop due to over-voltage during decelerating to STOP when the load regenerative inertia increases. In this case, the AC motor drive extends the deceleration time automatically until the drive stops.
[1] When you set Pr.06-02 to 0, during deceleration the motor exceeds the synchronous speed due to load inertia. In this case, the motor becomes an electrical generator. The DC BUS voltage may exceed its maximum allowable value due to motor regeneration in some situations, such as loading inertia being too high or deceleration time being set too short. When you enable traditional over-voltage stall prevention and the DC BUS voltage detected is too high, the drive stops decelerating (output frequency remains unchanged) until the DC BUS voltage drops below the setting value.

\square When you set Pr.06-02 to 1, to use smart over-voltage stall prevention during deceleration, the drive maintains the DC BUS voltage when decelerating and prevents the drive from OV.

$\mathbb{1}$ When you enable the over-voltage stall prevention, the drive's deceleration time is longer than the
setting. If you encounter any problem with deceleration time, refer to the following guides for troubleshooting.

1. Increase the deceleration time to a suitable value.
2. Install a brake resistor (refer to Section 7-1 All Brake Resistors and Brake Units Used in AC Motor Drives for details) to dissipate the electrical energy that is generated from the motor.
Related parameters:
Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Deceleration Time 1-4, Pr.02-13 Multi-function Output 1 (Relay 1), Pr.02-16-Pr.02-17 Multi-function Output 2-3 (MO1, 2), and Pr.06-01 Over-voltage Stall Prevention.

56-93 Over-current Stall Prevention during Acceleration

Default: 180
Settings $0-200 \%$ (100% corresponds to the rated current of the drive)
This parameter only works in VF and SVC modes.
[a] If the motor load is too large or the drive's acceleration time is too short, the output current of the drive may be too high during acceleration, and it may cause motor damage or trigger protection functions (OL or OC). Use this parameter to prevent these situations.
[a] During acceleration, the output current of the drive may increase abruptly and exceed the setting value of Pr.06-03. In this case, the drive stops accelerating and keeps the output frequency constant, and then continues to accelerate until the output current decreases.
1 When you enable the over-current stall prevention, the drive's acceleration time is longer than the setting.
[a] When the over-current stall prevention occurs because the motor capacity is too small or operates in the default, decrease the Pr.06-03 setting value.
When you encounter any problem with the acceleration time, refer to the following guides for troubleshooting.

1. Increase the deceleration time to a suitable value.
2. Related parameters: Pr.01-12, 01-14, 01-16, 01-18 Acceleration Time 1-4), Pr.02-13 Multi-function Output 1 (Relay 1), Pr.02-16-02-17 Multi-function Output 2-3 (MO1, 2).

$110]$ This parameter only works in VF and SVC modes.
\square This is a protection for the drive to decrease output frequency automatically when the motor overloads abruptly during constant motor operation.
If If the output current exceeds the setting value of Pr.06-04 when the drive is operating, the drive decreases output frequency (according to Pr.06-05) to prevent the motor from stalling. If the output current is lower than the setting value of Pr.06-04, the drive accelerates (according to Pr.06-05) again to the setting frequency.

Accel. / Decel. Time Selection for Stall Prevention at Constant Speed
Default: 0
Settings 0: By current acceleration / deceleration time
1: By the $1^{\text {st }}$ acceleration / deceleration time
2: By the $2^{\text {nd }}$ acceleration / deceleration time
3: By the $3^{\text {rd }}$ acceleration / deceleration time
4: By the $4^{\text {th }}$ acceleration/ deceleration time
5: By auto-acceleration / auto-deceleration
$1 \mathbb{1}$ Sets the acceleration/deceleration time selection when stall prevention occurs at constant speed.
N 56-96 Over-torque Detection Selection (Motor)
Default: 0
Settings 0 : No function
1: Continue operation after over-torque detection during constant speed operation
2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN
Over-torque Detection Level (Motor)
Default: 120
Settings $\quad 10-250 \%$ (100% corresponds to the rated current of the drive)
N 56-98 Over-torque Detection Time (Motor)

1 When the output current exceeds over-torque detection level (Pr.06-07) and also exceeds over-torque detection time (Pr.06-08), the over-torque detection follows the settings for Pr.06-06.
[1] When you set Pr.06-06 to 1 or 3 , an ot1 warning displays while the drive keeps running. The warning remains on until the output current is smaller than 5% of the over-torque detection level.

1 When you set Pr.06-06 to 2 or 4 , an ot 1 warning displays and the drive stops running after over-torque detection. The drive keeps running after you manually reset it.

75-: 5 Current Limit

Default: 150
Settings $0-250 \%$ (100% corresponds to the rated current of the drive)
Sets the maximum output current of the drive.

96-! 5 Electronic Thermal Relay Selection 1 (Motor)

Default: 2
$\begin{array}{ll}\text { Settings } & 0: \text { Inverter motor (with external forced cooling) } \\ & \text { 1: Standard motor (motor with fan on the shaft) } \\ & \text { 2: Disable }\end{array}$
(1) Prevents self-cooled motor from overheating under low speed. Use an electronic thermal relay to limit the drive's output power.Setting the parameter to 0 is suitable for an inverter motor (motor fan using an independent power
supply). For this kind of motor, there is no significant correlation between cooling capacity and motor speed. Therefore, the action of electronic thermal relays remain stable in low speed to ensure the load capability of the motor in low speed.
1 Setting the parameter to 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is lower in low speed; therefore, the action of an electronic thermal relay reduces the action time to ensure the life of motor.
[4] When the power is cycled frequently, if the power is switched OFF, the electronic thermal relay protection is reset; therefore even setting the parameter to 0 or 1 may not protect the motor well. If there are several motors connected to one drive, install an electronic thermal relay in each motor.

56-: 14 Electronic Thermal Relay Action Time 1 (Motor)

Default: 60.0
Settings $30.0-600.0 \mathrm{sec}$.
Set the parameter to 150% of motor rated current and use with the setting of Pr.06-14 to prevent motor damage due to overheating. When it reaches the setting, the drive displays "EoL1", and the motor free runs to stop.
[1] Use this parameter to set the action time of the electronic thermal relay. It works based on the I2t characteristic curve of electronic thermal relay, the output frequency and current of the drive, and the operation time to prevent the motor from overheating.

11 The action of electronic thermal relay depends on the settings of Pr.06-13.

1. Pr. $06-13$ is set to 0 (using inverter motor):

When output current of drive is higher than 150% of motor rated current (refer to motor cooling curve with independent fan), the drive will starts to count the time. The electronic thermal relay will acts when the accumulated time exceeds Pr.06-14.
2. Pr. 06-13 is set to 1 (using standard motor):

When the output current of the drive is higher than 150% of the motor rated current (refer to the motor cooling curve with shaft-fixed fan), the drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr.06-14.
The actual electronic thermal relay action time adjusts according to the drive output current (shown as the motor loading rate \%). The action time is short when the current is high, and the action time is long when the current is low. Refer to the following chart:

Operation time

(sec.)

Temperature Level Overheat (OH) Warning
Default: 105.0
Settings $\quad 0.0-110.0^{\circ} \mathrm{C}$
[ad The default of this parameter is $105^{\circ} \mathrm{C}$. When using Sensorless control mode, the OH warning is disabled if Pr.06-15 is not reduced. When the temperature reaches $100^{\circ} \mathrm{C}$, the drive stops with an IGBT overheat fault.

75-9 Stall Prevention Limit Level

Default: 100
Settings 0-100\% (Refer to Pr.06-03, Pr.06-04)
Sets the over-current stall prevention level when operation frequency is larger than Pr.01-01.
Example: When Pr.06-03 = 150\%, Pr.06-04 = 100\% and Pr.06-16 = 80\%.
The over-current stall prevention level during acceleration:
Pr. 06-03 * Pr. 06-16 = $150 \times 80 \%=120 \%$.
The over-current stall prevention level during operation:
Pr.06-04 *Pr.06-16 $=100 \times 80 \%=80 \%$.
Fault Record 1
Fault Record 2
Fault Record 3

Fault Record 4

Fault Record 5
Fault Record 6
Default: 0
Settings 0: No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during constant speed (ocn)
4: Ground fault (GFF)
6: Over-current at stop (ocS)

7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Phase loss protection (orP)
16: IGBT overheat (oH 1)
18: TH1 open: IGBT overheat protection error(tH 1 o)
21: Drive overload (oL)
22: Electronic thermal relay protection 1 (EoL1)
26: Over-torque 1 (ot1)
28: Low current (uC)
31: Memory read-out error (cF2)
33: U-phase current detection error (cd1)
34: V-phase current detection error (cd2)
35: W-phase current detection error (cd3)
36: Clamp current detection error (HdO)
37: Over-current detection error (Hd1)
40: Auto-tuning error (AUE)
41: PID feedback loss (AFE)
48: Analog current input loss (ACE)
49: External fault input (EF)
50: Emergency stop (EF1)
51: External Base Block (B.B.)
52: Password error (Pcod)
54: Communication error (CE1)
55: Communication error (CE2)
56: Communication error (CE3)
57: Communication error (CE4)
58: Communication time-out (CE10)
61: Y-connection / Δ-connection switch error (ydc)
62: Deceleration Energy Backup Error (dEb)
63: Slip error (oSL)
72: Channel 1 (S1-DCM) safety loop error (STL1)
74: Electromagnetic valve error
75: Mechanical brake error
76: Safe Torque Off (STo)
77: Channel 2 (S2-DCM) safety loop error (STL2)
78: Internal loop error (STL3)

79: U-phase over-current before run (Uoc)
80: V-phase over-current before run (Voc)
81: W-phase over-current before run (Woc)
82: U-phase output phase loss (OPHL)
83: V-phase output phase loss (OPHL)
84: W-phase output phase loss (OPHL)
87: Drive overload in low frequency (oL3)
101: CANopen software disconnect 1 (CGdE)
102: CANopen software disconnect 2 (CHbE)
104: CANopen hardware disconnect (CbFE)
105: CANopen index setting error (CldE)
106: CANopen station number setting error (CAdE)
107: CANopen memory error (CFrE)
127: Software version error (CP33)
140: GFF detected when power on (Hd6)
141: GFF before run (BGFF)
142: Auto-tuning error 1 (DC test stage) (AUE1)
143: Auto-tuning error 2 (High frequency test stage) (AUE2)
144: Auto-tuning error 3 (Rotary test stage) (AUE3)
1 When the fault occurs and forces stopping, the fault is recorded in this parameter.
1 During stop with low voltage Lv (LvS warning), there is no error record. During operation with mid-low voltage Lv (LvA, Lvd, Lvn error), there is a record.
$\mathbb{\square} \rrbracket$ When dEb function is valid and enabled, the drive executes dEb and record fault code 62 to Pr.06-17-Pr.06-22 simultaneously.

76-3 Fault Output Option 1

N6-34 Fault Output Option 2

N ME- S 5 Fault Output Option 3
N 56-25 Fault Output Option 4
Default: 0
Settings 0-65535 (refer to bit table for fault code)
Use these parameters with multi-function output terminal (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals activate. Convert the binary value to decimal value before you enter the value for Pr.06-23-Pr.06-26.

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault record							
1: Over-current during acceleration (ocA)	\bullet						
2: Over-current during deceleration (ocd)	\bullet						
3: Over-current during constant speed (ocn)	\bullet						
4: Ground fault (GFF)	\bullet						

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
6: Over-current at stop (ocS)	-						
7: Over-voltage during acceleration (ovA)		\bullet					
8: Over-voltage during deceleration (ovd)		-					
9: Over-voltage during constant speed (ovn)		\bullet					
10: Over-voltage at stop (ovS)		-					
11: Low-voltage during acceleration (LvA)		-					
12: Low-voltage during deceleration (Lvd)		\bullet					
13: Low-voltage during constant speed (Lvn)		-					
14: Low-voltage at stop (LvS)		-					
15: Phase loss protection (orP)		\bullet					
16: IGBT overheat (oH1)			-				
18: TH1 open: IGBT overheat protection error (tH1o)			\bullet				
21: Drive overload (oL)			\bullet				
22: Electronic thermal relay protection 1 (EoL1)			-				
26: Over-torque 1 (ot1)			-				
28: Low current (uC)	-						
31: Memory read-out error (cF2)				\bullet			
33: U-phase current detection error (cd1)				\bullet			
34: V-phase current detection error (cd2)				\bullet			
35: W-phase current detection error (cd3)				-			
36: Clamp current detection error (Hd0)				\bullet			
37: Over-current detection error (Hd1)				\bullet			
40: Auto-tuning error (AUE)				\bullet			
41: PID feedback loss (AFE)					\bullet		
48: Analog current input loss (ACE)					\bullet		
49: External fault input (EF)						-	
50: Emergency stop (EF1)						-	
51: External Base Block (B.B.)						\bullet	
52: Password error (Pcod)				\bullet			
54: Communication error (CE1)							\bullet
55: Communication error (CE2)							-
56: Communication error (CE3)							-
57: Communication error (CE4)							\bullet
58: Communication time-out (CE10)							\bullet
61: Y-connection / Δ-connection switch error (ydc)						-	
62: Deceleration Energy Backup Error (dEb)		\bullet					
63: Slip error (oSL)						\bullet	

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
72: Channel 1 (S1-DCM) safety loop error (STL1)				\bullet			
74: Electromagnetic valve error				\bullet			
75: Mechanical brake error				\bullet			
76: Safe Torque Off (STo)				\bullet			
77: Channel 2 (S2-DCM) safety loop error (STL2)				\bullet			
78: Internal loop error (STL3)				\bullet			
79: U-phase over-current before run (Uoc)	\bullet						
80: V-phase over-current before run (Voc)	\bullet						
81: W-phase over-current before run (Woc)	\bullet						
82: U-phase output phase loss (OPHL)	\bullet						
83: V-phase output phase loss (OPHL)	\bullet						
84: W-phase output phase loss (OPHL)	\bullet						
87: Drive overload in low frequency (oL3)			\bullet				
101: CANopen software disconnect 1 (CGdE)							\bullet
102: CANopen software disconnect 2 (CHbE)							\bullet
104: CANopen hardware disconnect (CbFE)							\bullet
105: CANopen index setting error (CIdE)							\bullet
106: CANopen station number setting error (CAdE)							\bullet
107: CANopen memory error (CFrE)							\bullet
127: Software version error (CP33)				\bullet			
140: GFF detected when power on (Hd6)				\bullet			
141: GFF before run (BGFF)				\bullet			
142: Auto-tuning error 1 (DC test stage) (AUE1)				\bullet			
143: Auto-tuning error 2 (High frequency test stage)							
(AUE2)				\bullet			
144: Auto-tuning error 3 (Rotary test stage) (AUE3)				\bullet			

日6-3 : Frequency Command for Malfunction

Default: Read only
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[a] When a malfunction occurs, check the current Frequency command. If it happens again, it overwrites the previous record.

[^0]156-33 Output Voltage at Malfunction
Default: Read only
Settings $0.0-6553.5 \mathrm{~V}$
1 When a malfunction occurs, check the current output voltage. If it happens again, it overwrites the previous record.

75-34 DC Voltage at Malfunction
Default: Read only
Settings $0.0-6553.5 \mathrm{~V}$
1 When a malfunction occurs, check the current DC voltage. If it happens again, it overwrites the previous record.

56-35 Output Current at Malfunction

Default: Read only
Settings $0.00-655.35 \mathrm{Amp}$
1 When a malfunction occurs, check the current output current. If it happens again, it overwrites the previous record.

Default: Read only
Settings $-3276.7-3276.7^{\circ} \mathrm{C}$
When a malfunction occurs, check the current IGBT temperature. If it happens again, it overwrites the previous record.

56-37 Capacitance Temperature at Malfunction
Default: Read only
Settings $-3276.7-3276.7^{\circ} \mathrm{C}$
When a malfunction occurs, check the current capacitance temperature. If it happens again, it overwrites the previous record.

55-38 Motor Speed in rpm at Malfunction
Default: Read only
Settings -3276.7-3276.7 rpm
[4] When a malfunction occurs, check the current motor speed in rpm. If it happens again, it overwrites the previous record.

55-45 Status of the Multi-function Input Terminal at Malfunction
Default: Read only
Settings 0000h-FFFFh
56-\%: Status of the Multi-function Output Terminal at Malfunction
Default: Read only
Settings 0000h-FFFFh
[1] When a malfunction occurs, check the current status of the multi-function input/output terminals. If it
happens again, it overwrites the previous record.

M6- $\%$ Drive Status at Malfunction

Default: Read only
Settings 0000h-FFFFh
[1] When a malfunction occurs, check the current drive status (communication address 2101H). If it happens again, it overwrites the previous record.

56-4 STO Latch Selection

Default: 0
Settings 0: STO Latch
1: STO no Latch
[1] Pr.06-44 = 0: STO Alarm Latch. After you clear the cause of the STO Alarm, use a Reset command to clear the STO Alarm.
(1) Pr.06-44 = 1: STO Alarm no Latch. After you clear the cause of the STO Alarm, the STO Alarm clears automatically.
1 All of the STL1-STL3 errors are "Alarm Latch" mode (in STL1-STL3 mode, the Pr.06-44 function is not effective).

P6-45 Output Phase Loss Detection Action (OPHL)

Default: 3

Settings	$0:$ Warn and continue operation
	1: Warn and ramp to stop
	2: Warn and coast to stop
	3: No warning

11. The OPHL protect function is active when the setting is not 3 .

75-46 Detection Time for Output Phase Loss
Default: 0.500
Settings $0.000-65.535 \mathrm{sec}$.

G6-47

Current Detection Level for Output Phase Loss
Default: 1.00
Settings $0.00-100.00 \%$
DC Brake Time for Output Phase Loss
Default: 0.000
Settings $0.000-65.535 \mathrm{sec}$.
\square Setting Pr.06-48 to 0 disables the OPHL detection function.
[1] Status 1: The drive is in operation
When any phase is less than the Pr.06-47 setting, and exceeds the Pr.06-46 setting time, the drive executes according to the Pr.06-45 setting.

(1) Status 2: The drive is in STOP; Pr.06-48 = 0; Pr.07-02 $=0$

After the drive starts, the DC brake operates according to Pr.07-01 and Pr.07-02. During this period, OPHL detection is not active. After the DC brake action is completed, the drive starts to run, and enables the OPHL protection as mentioned above for status 1 .

[1] Status 3: The drive is in STOP; Pr.06-48 $=0$; Pr.07-02 $=0$
When the drive starts, it executes Pr.06-48 first, and then executes Pr.07-02 (DC brake). The DC brake current level in this state includes two parts: one is 20 times the Pr.06-47 setting value in Pr.06-48 setting time; the other is the Pr.07-01 setting value in Pr.07-02 setting time. In this period, if an OPHL happens within the time for Pr.06-48, the drive executes the Pr.06-45 setting after the drive starts counting for half the time of Pr.06-48.

Status 3-1: Pr.06-48 $\neq 0$. Pr. $07-02 \neq 0$ (No OPHL detected before operati on)

Status 3-2: Pr.06-48 $\neq 0$, Pr. $07-02 \neq 0$ (OPHL detected before operation)

[1] Status 4: The drive is in STOP; Pr.06-48 $=0$; Pr.07-02 $=0$
When the drive starts, it executes Pr.06-48 as the DC brake. The DC brake current level is 20 times the Pr.06-47 setting value. In this period, if an OPHL happens within the time for Pr.06-48, the drive executes the Pr.06-45 setting after the drive starts counting for half the time of Pr.06-48.

Status 4-1: Pr.06-48 $\neq 0, \operatorname{Pr} 07-02=0$ (NO OPHL detected before operallon:

Status 4-2: Pr.06-48才0, Pr.07-02 $=0$ (OPHL derected before operallon?

56-53 Detected Input Phase Loss Action (OrP)

Default: 0

Settings	$0:$ Warn and ramp to stop
	$1:$ Warn and coast to stop

[1]
The drive executes the input phase loss protection according to Pr.06-53.

95-55 Derating Protection

Default: 0
Settings 0: Constant rated current and limit carrier wave by load current and temperature
1: Constant carrier frequency and limit load current by setting carrier wave
2: Constant rated current (same as setting 0), but close current limit
1 Allowable maximum output frequency and the minimum carrier wave limit in control mode:
For VF and SVC modes:
When the maximum output frequency is 599 Hz , the minimum carrier wave is 6 k .
[a] Setting 0:
When the operating point is greater than the derating curve (when the operating carrier wave is greater than the rated carrier wave), the rated current is constant, and carrier frequency (Fc) output by the drive decreases automatically according to the ambient temperature, overload output current and overload time. If overloads are not frequent, and the concern is only about the carrier frequency operating with the rated current for a long time, and changes to the carrier wave due to short overload are acceptable, set to 0 . Refer to the following diagram for the level of carrier frequency.
[a] Setting 1:
When the operating point exceeds derating curve 1, the carrier frequency is fixed to the set value. Select this mode if the change of carrier wave and motor noise caused by ambient temperature and frequent overload are not acceptable. Refer to Pr.00-17.
[a] Setting 2:
The protection method and action are the same as setting it to 0 , but this disables the current limit when output current is the derating ratio $\times 180 \%$ (default value).
The advantage is that this can provide a higher starting output current when the carrier frequency setting is higher than the default. The disadvantage is that the carrier wave derates easily when it overloads.
[4] Example: when Pr.06-55 = 0 or 1, over-current stall prevention level $=$ ratio*Pr.06-03. When Pr.06-55 $=$ 2, over-current stall prevention level = Pr.06-03. Use with the setting for Pr.00-17.

【】 The derating is also affected by the ambient temperature. Refer to the ambient temperature derating curve.

Ambient temperature derating curve for general control

Default: 60.0
Settings 0.0-6553.5 \%

- +5 -5

Software Detection GFF Filter Time
Default: 0.10
Settings $0.00-655.35 \mathrm{sec}$.
1 When the drive detects the unbalanced three-phase output current is higher than the setting for Pr.06-60, GFF protection activates. The drive then stops output.

Operation Time of Fault Record 1 (Day)
Operation Time of Fault Record 2 (Day)
Operation Time of Fault Record 3 (Day)
Operation Time of Fault Record 4 (Day)
Operation Time of Fault Record 5 (Day)
Operation Time of Fault Record 6 (Day)
Default: Read only
Settings 0-65535 days
76-6\% Operation Time of Fault Record 1 (Min.)

56-65 Operation Time of Fault Record 2 (Min.)
56-58 Operation Time of Fault Record 3 (Min.)
56-7 Operation Time of Fault Record 4 (Min.)
55-9: Operation Time of Fault Record 5 (Min.)
56-93 Operation Time of Fault Record 6 (Min.)
Default: Read only
Settings 0-65535 min.
凹】 If there is any malfunction when the drive operates, Pr.06-17-06-22 records the malfunctions, and Pr.06-63-06-70 records the operation time for four sequential malfunctions. Check if there is any problem with the drive according to the interval of the recorded fault.

Example:
The first error: ocA occurs after motor drive operates for 1000 minutes.
The second error: ocd occurs after another 1000 minutes.
The third error: ocn occurs after another 1000 minutes.
The fourth error: ocA occurs after another 1000 minutes.
The fifth error: ocd occurs after another 1000 minutes.
The sixth error: ocn occurs after another 1000 minutes.
Then Pr.06-17-06-22 and Pr.06-63-06-70 are recorded as follows:

	$1^{\text {st }} f a u l t$	$2^{\text {nd }}$ fault	$3^{\text {rd }}$ fault	$4^{\text {th }}$ fault	$5^{\text {th }}$ fault	$6^{\text {th }}$ fault
Pr.06-17	ocA	ocd	ocn	ocA	ocd	ocn
Pr.06-18	0	ocA	ocd	ocn	ocA	ocd
Pr.06-19	0	0	ocA	ocd	ocn	ocA

	$1^{\text {st }}$ fault	$2^{\text {nd }}$ fault	$3^{\text {rd }}$ fault	$4^{\text {th }}$ fault	$5^{\text {th }}$ fault	$6^{\text {th }}$ fault
Pr．06－20	0	0	0	ocA	ocd	ocn
Pr．06－21	0	0	0	0	ocA	ocd
Pr．06－22	0	0	0	0	0	ocA
Pr．06－63	1000	560	120	1120	680	240
Pr．06－64	0	1	2	2	3	4
Pr．06－65	0	1000	560	120	1120	680
Pr．06－66	0	0	1	2	2	3
Pr．06－67	0	0	1000	560	120	1120
Pr．06－68	0	0	0	1	2	2
Pr．06－69	0	0	0	1000	560	120
Pr．06－70	0	0	0	0	1	2

※ By examining the time record，you can see that that the last fault（Pr．06－17）happened after the drive ran for 4 days and 240 minutes．

56－7 ：Low Current Setting Level

Default： 0.0
Settings 0．0－100．0 \％
196－72 Low Current Detection Time
Default： 0.00
Settings $0.00-360.00 \mathrm{sec}$ ．

96－9 9 Low Current Action

Default： 0
Settings 0 ：No function
1 ：Warn and coast to stop
2 ：Warn and ramp to stop by the second deceleration time
3 ：Warn and continue operation
1 The drive operates according to the setting for Pr．06－73 when the output current is lower than the setting for Pr．06－71 and when the time of the low current exceeds the detection time for Pr．06－72．Use this parameter with the external multi－function output terminal 44 （for low current output）．
1 The low current detection function does not execute when drive is in sleep or standby status．

要－要念

Emergency Power Voltage in Operation
Default： 300.0
Settings 280．0－537．0 V
\pm The output voltage for the external emergency power．

畕－

Default：Read only
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

Default: 0.0

Settings $0.0-100.0 \mathrm{kVA}$

Ind The power capacity for the external emergency power.
$\mathbb{1} \mathbb{1}$ When using EPS as an emergency power system, you must enter the power capacity of emergency power. When using emergency power, the drive calculates elevators' running speed according to the calculation formula below.

$$
\begin{aligned}
& V_{c ̧ M_{-} \text {nut }}=\frac{06-82 \times 0.5}{\sqrt{3} \times I_{\text {mpior. . rated }}} \\
& f_{\text {cra }- \text { lint } t}=\frac{V_{\text {cpx }} \text { max }}{01-02} \times 01-01 \times 0.5 \\
& I_{\text {mower ruted }}=05-01 \text { (Induction Motor) }
\end{aligned}
$$

When Frequency command $>$ fEPS, the running speed of EPS emergency power: fEPS.
When Frequency command $\leq f E P S$, the running speed of EPS emergency power: runs according to the current Frequency command.

[8-8 EPS Mode Selection

Default: 0
Settings 0: Operate by current command direction.
1: Run in the running direction of power generation mode. Execute the power generation direction detection when running in power generation mode.
2: After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode ($M O=57$) confirmation and the direction of power generation does not maintain.) Execute the power generation direction detection each time whenever running.
3: After determining the power generation direction, the host controller sends a running direction command. (When at STOP, the direction of power generation mode ($\mathrm{MO}=57$) confirmation and the direction of the power generation maintain.) Execute the power generation direction detection only one time when running.
4: Run by the direction of power generation mode. Execute the power generation direction detection when running in normal mode.
【a This parameter is enabled when the EPS function at the external terminal is activated.
$1 \mathbb{1}$ 4: (the motor has a gear box.)

1. Run in normal mode and when reaching the largest power factor, the value of this power factor is recorded in Pr.06-87.
2. The value of the power factor detected at the direction of the power generation is compared to the setting value at Pr.06-86. If the detected power factor is larger than Pr.06-86, the current moving direction (upward or downward) is recorded in Pr.06-88
3. Therefore, when in EPS mode, the elevator moves in the direction stored in Pr.06-88.

Related parameters: Pr.02-01-Pr.02-07 multi-function input terminal (58: Emergency power mode detection), Pr.02-16-Pr.02-17 multi-function output terminals (56: Power generation direction and status verification, 57: Power generation direction), Pr.02-30 Turn On Delay of Magnetic Contactor between Drive and Motor, Pr.02-31 Turn Off Delay of Magnetic Contactor between Drive and Motor, Pr.02-39 Brake Release Delay Time When Elevator Starts, Pr.02-40 Brake Contracting Delay Time When Elevator Stops, Pr.07-01 DC Brake Current Level, Pr.07-02 DC Brake Time at Start-up and Pr.07-03 DC Brake Time at Stop.

1 If parameter = 1 , when you enter FWD or REV running signal, the drive automatically detects the elevator's load status to make the elevator run in power re-generation direction (motor is the electricity generator) according to the running direction after detection rather than the user's current command direction in order to avoid voltage decrease in EPS emergency power.
V/F and SVC control mode: within the time limit for Pr.06-84, the drive uses FWD and REV to determine the elevator's load status to make the elevator run in power re-generation direction (motor is the electricity generator). (Refer to the auto-detection time sequence diagram below)

Time Sequence Diagram for Elevators' Emergency Power Supply and Power Generation

A 02－30：Magnetic Conlactor（MC）ON Delay Time Between Drive and Motor；
B 02－39：Mectanical Brake Release Delay Time When Elevator Starts；
C 07－02：DC Brake Time at RUN：
D 06－84：Electricity Generation Direction Search Time：
E 02－40：Mechanical Brake Conlracting Delay Time When Elevator Stops；
F 07－03：DC Brake Time at Stop；
G 02－31：Magnetic Contactor（MC）OFF Delay Time Between Drive and Motor
Auto－detection Time Sequence Diagram

店－

Default： 1.0
Settings $\quad 0.0-5.0 \mathrm{sec}$ ．
1 Time for detecting power generation direction．

Default： 1.0
Settings $0.0-10.0 \mathrm{sec}$ ．
后－百畐 Delay Time on Stopping UPS Output
Default： 3.0
Settings $0.0-60.0 \mathrm{sec}$ ．
1 Pr．06－85：When the power loses，the electromagnetic valve outputs a MI signal to notify the motor drive to enable UPS function．After Pr．06－85 delay time，a MO signal activates the UPS electromagnetic valve．
1 Pr．06－89：When the controller disables the emergency power mode，the MO signal stops outputting after Pr．06－89 delay time to deactivate the UPS function．
1 Related parameters：Pr．02－01－Pr．02－07 multi－function input terminal（61：Power loss signal）， Pr．02－16－Pr．02－17 multi－function output terminal（58：EPS mode）．

高－要 Power Factor Level for Determining the Power Generation Direction

Default： 70.0
Settings 0．0－150．0
1 If power factor is larger than the setting value in this parameter when running，the power generation direction is the running direction．

Default：Read only
Settings 0．0－200．0
The largest power factor when running．

它息 要
 Power Generation Direction

Default：Read only
Settings 0：Forward running
1：Reverse running

Software Brake Level

Default：
Settings $230 \mathrm{~V}: 350.0-450.0 \mathrm{~V}_{\mathrm{DC}} \quad 370.0$
460 V：700．0－900．0 VDC
740.0

Sets the brake transistor level for the DC BUS voltage．Choose a suitable brake resistor to achieve the best deceleration．Refer to Chapter 7 Optional Accessories for information about brake resistors．

77－7！DC Brake Current Level

Default： 30
Settings 0－100 \％
10 Sets the level of the DC brake current output to the motor during start－up and stop．When you set the DC brake current percentage，the rated current is regarded as 100% ．Start with a low DC brake current level，and increase it slowly until the proper brake torque is reached．However，to avoid burning the motor，the DC brake current can NOT exceed the rated current．Therefore，DO NOT use the DC brake for mechanical retention，otherwise injury or accident may occur．

17－7 DC Brake Time at Start－up

Default： 0.7
Settings $0.0-60.0 \mathrm{sec}$ ．
Ine motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself．If you use the drive with the motor rotating，it may cause motor damage or trigger drive protection due to over－current．This parameter outputs DC current，generating torque to force the motor stop to get a stable start before motor operation．This parameter determines the duration of the DC brake current output to the motor when the drive starts up．Setting this parameter to 0.0 disables the DC brake at start－up．

77－7〕DC Brake Time at Stop

Default： 0.7
Settings $0.0-60.0 \mathrm{sec}$ ．
1 The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself．This parameter outputs DC current，generating torque to force the drive stop after the drive stops output to make sure that the motor stops．

79－7 DC Brake Frequency at STOP

Default： 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
［1］This parameter determines the start frequency of the DC brake before the drive ramps to stop．When this setting is less than Pr．01－09（Start－up Frequency），the start frequency of the DC brake starts from the minimum frequency．

1 Use the DC brake before running the motor when the load is movable at stop, such as with fans and pumps. The motor is in free operating status and in unknown rotation direction before the drive starts up. Execute the DC brake before you start the motor.
1 Use DC Brake at STOP when you need to brake the motor quickly or to control the positioning, such as with cranes or cutting machines.

77-95V Voltage Increasing Gain

Default: 100

Settings 1-200 \%

When using speed tracking, adjust Pr.07-05 to slow down the increasing voltage gain if there are errors such as oL or oc; however, the speed tracking time will be longer.

[7-76 Restart after Momentary Power Loss

Default: 0
Settings 0: Stop operation
1: Speed tracking by the speed before the power loss
2: Speed tracking by the minimum output frequency
\square Determines the operation mode when the drive restarts from a momentary power loss.
$\mathbb{1}$ The power system connected to the drive may power off momentarily for many reasons. This function allows the drive to keep outputting after the drive is repowered and does not cause the drive to stop.
10] 1: Frequency tracking begins before momentary power loss and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous.
Uld Use this setting when there is a lot of inertia with little resistance on the motor load. For example, in equipment with a large inertia flywheel, there is NO need to wait until the flywheel stops completely after a restart to execute the operation command; therefore, it saves time.
1 2: Frequency tracking starts from the minimum output frequency and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is little inertia and large resistance.

17-77 Allowed Power Loss Duration

Default: 2.0

Settings $0.0-20.0 \mathrm{sec}$.

1. Determines the maximum time of allowable power loss. If the duration of a power loss exceeds this parameter setting, the AC motor drive stops output.
1 Pr.07-06 is valid when the maximum allowable power loss time is ≤ 20 seconds and the $A C$ motor drive
displays "LU". If the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 20 seconds, the operation mode set in Pr.07-06 does not execute.

77-98 Base Block Time

Default: 0.5
Settings $\quad 0.1-5.0 \mathrm{sec}$.
$\left[\begin{array}{l}\text { When momentary power loss is detected, the AC motor drive blocks its output and then waits for a }\end{array}\right.$ specified period of time (determined by Pr.07-08, called Base Block Time) before resuming operation. Set this parameter to the time that allows the residual voltage at the output side to decrease to 0 V before activating the drive again.

77-9 Current Limit of Speed Tracking

Default: 100
Settings 20-200 \%
Iad The AC motor drive executes speed tracking only if the output current is greater than the value set in Pr.07-09.
\square The maximum current for speed tracking affects the synchronous time. The larger the parameter setting is, the faster the synchronization occurs. However, if the parameter setting is too large, the overload protection function may be activated.

57-19 Restart after Fault Action

Default: 0
Settings 0: Stop operation
1: Speed tracking by current speed
2: Speed tracking by minimum output frequency
1 Faults include bb, oc, ov, occ. To restart after oc, ov, occ, you can NOT set Pr.07-11 to 0 .

B7- : : Number of Times of Auto-restart after Fault

Default: 0

Settings 0-10

\square After fault (allowed fault: oc, ov, occ) occurs, the AC motor drive can be reset / restarted automatically up to 10 times.
If the number of faults exceeds the Pr.07-11 setting, the drive does not reset and restart until you press "RESET" manually and execute the operation command again.

[7- ; $\mathbf{7}$ Speed Tracking during Start-up

Default: 0
Settings 0: Disable
1: Speed tracking by maximum output frequency
2: Speed tracking by motor frequency at start
3: Speed tracking by minimum output frequency
1 Speed tracking is suitable for punch, fans and other large inertia loads. For example, a mechanical punch usually has a large inertia flywheel, and the general stop method is coast to stop. If it needs to be restarted again, the flywheel may take 2-5 minutes or longer to stop. This parameter setting allows you to start the flywheel operating again without waiting until the flywheel stops completely.

17-13dEb Function Selection

Default: 0
Settings 0: Disable
1: dEb with auto-acceleration/auto-deceleration, the drive does not output the frequency after the power is restored.
2: dEb with auto-acceleration/ auto-deceleration, the drive outputs the frequency after the power is restored.
1 dEb (Deceleration Energy Backup) lets the motor decelerate to stop when momentary power loss occurs. When the power loss is instantaneous, use this function to let the motor decelerate to zero speed. If the power recovers at this time, the drive restarts the motor after the dEb return time.
1 Lv return level: Default value depends on the drive power model.
Frame C, D = Pr.06-00 + $60 \mathrm{~V} / 30 \mathrm{~V}$ (220 V series)
Frame E and above $=$ Pr. $06-00+80 \mathrm{~V} / 40 \mathrm{~V}$ (220V series)
[1] Lv level: Default is Pr.06-00.
During dEb operation, other protection, such as ryF, ov, oc, occ, and EF may interrupt it, and these error codes are recorded.
$[\square]$ The STOP (RESET) command does not work during the dEb auto-deceleration, and the drive continues decelerating to stop. To make the drive coast to stop immediately, use another function (EF) instead.
1 The B.B. function does not work when executing dEb. The B.B. function is enabled after the dEb function finishes.
[1] Even though the Lv warning does not display during the dEb operation, if the DC BUS voltage is lower than the Lv level, MO = 10 (Low voltage warning) still operates.
1 The following explains the dEb action:
When the DC voltage drops below dEb setting level, the dEb function starts to work (soft start relay remains closed), and the drive executes auto-deceleration.

- Situation 1:

Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.
Pr.07-13 = 1 and power recovers.
When the power recovers and DC BUS voltage exceeds the dEb return level, the drive linearly decelerates to 0 Hz and stops. The keypad displays the "dEb" warning until you manually reset it, so that you can see the reason for the stop.

- Situation 2:

Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.

Pr.07-13 = 2 and power recovers.
During the dEb deceleration (includes 0 Hz run), if the power recovers higher than dEb return level, the drive maintains the frequency for three seconds and then accelerates again. The dEb warning on the keypad clears automatically.

- Situation 3:

Power supply unexpected shut down / power loss.
Pr.07-13 = 1 and power does not recover.
The keypad displays the "dEb" warning and stops after decelerating to the lowest running frequency. When the DC BUS voltage is lower than the Lv level, the drive disconnects the soft start relay until the power completely runs out.

- Situation 4:

Power supply unexpected shut down / power loss.
Pr.07-13 = 2 and power does not recover.
The drive decelerates to 0 Hz . The DC BUS voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The keypad displays "dEb" warning until the drive completely runs out of power.

- Situation 5:

Pr.07-13 = 2 and power recovers after the DC BUS voltage is lower than the Lv level.
The drive decelerates to 0 Hz . The DC BUS voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The soft start relay closes again after the power recovers and the DC BUS voltage is higher than the Lv return level. When the DC BUS voltage is higher than the dEb return level, the drive maintains the frequency for three seconds and starts to accelerate linearly, and the dEb warning on the keypad clears automatically.

77-15 Dwell Time at Acceleration

Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.

77-17 Dwell Time at Deceleration

Default: 0.00
Settings $0.00-600.00 \mathrm{sec}$.
N B7-16 Dwell Frequency at Acceleration
Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$

77-18

Dwell Frequency at Deceleration
Default: 0.00
Settings $\quad 0.00-599.00 \mathrm{~Hz}$
[1] The Dwell temporarily maintains stable output frequency. Use this parameter for cranes, elevators, and so on.
1 When the load is heavier, use Pr.07-15-Pr.07-18 to avoid OV or OC protection.

Dwell at accel./decel.

77-19 Fan Cooling Control

Default: 3

Settings 0: Fan always ON

1: Fan is OFF after the AC motor drive stops for one minute.
2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF.

3: Fan turns ON when the temperature reaches around $60^{\circ} \mathrm{C}$
[1] Use this parameter to control the fan.
© $\mathbb{1}$: Fan runs immediately when the drive power is turned ON .
[1] 1: Fan runs when AC motor drive runs. One minute after AC motor drive stops, the fan is OFF.
[1] 2: Fan runs when AC motor drive runs and stops immediately when AC motor drive stops.
10 3: When temperature of the IGBT or capacitance is higher than $60^{\circ} \mathrm{C}$, the fan runs.
When the temperature of the IGBT and capacitance both are lower than $40^{\circ} \mathrm{C}$, the fan stops.

N 7-3 Deceleration of Emergency or Forced Stop

Default: 0

Settings	$0:$ Coast to stop
1: Stop by the first deceleration time	
2: Stop by the second deceleration time	
3: Stop by the third deceleration time	
4: Stop by the fourth deceleration time	
5: System deceleration	
6: Automatic deceleration	

[1] When the multi-function input terminal is set to EF input (setting 10) or forced to stop (setting 18) and the terminal contact is ON , the drive stops according to the setting of this parameter.

17-2 : Automatic Energy-saving Setting

Default: 0
Settings 0: Disable
1: Enable
[0] When energy-saving is enabled, the motor acceleration operates with full voltage. During constant speed operation, it automatically calculates the best voltage value according to the load power. This function is not suitable for fluctuating loads or loads which are nearly full during operation.
[a] When the output frequency is constant (that is, constant operation), the output voltage decreases automatically as the load decreases. Therefore, the drive operates with minimum multiplication of voltage and current (electric power).

[7-3 Energy-saving Gain

Default: 100
Settings 10-1000 \%
[a] When Pr.07-21 is set to 1 , use this parameter to adjust the energy-saving gain. The default is 100%. If the result is not satisfactory, adjust it by decreasing the setting value. If the motor oscillates, then increase the setting value.

1 In certain applications such as high speed spindles, the temperature rise in the motor is a major concern. When the motor is not in working state, reduce the motor current to a lower level. Reduce this parameter setting to meet this requirement.

Default: 0

Settings 0: Enable AVR
1: Disable AVR
2: Disable AVR during deceleration

Ind The rated voltage of a 220 V motor is usually $\mathrm{AC} 200 \mathrm{~V}, 60 \mathrm{~Hz} / 50 \mathrm{~Hz}$, and the input voltage of the AC motor drive may vary from AC 180 V to $264 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Therefore, when the AC motor drive is used without the AVR function, the output voltage is the same as the input voltage. When the motor runs at the voltage exceeding $12 \%-20 \%$ of the rated voltage, it causes higher temperatures, damaged insulation, and unstable torque output, which result in losses due to shorter motor lifetime.
Id The AVR function automatically regulates the output voltage of the AC motor drive to the motor rated voltage. For example, if the V/F curve is set at AC $200 \mathrm{~V}, 50 \mathrm{~Hz}$ and the input voltage is at AC 200-264 V , then the drive automatically reduces the output voltage to the motor to a maximum of $\mathrm{AC} 200 \mathrm{~V}, 50$ Hz . If the input voltage is at AC 180-200 V, the output voltage to motor and input power are in direct proportion.
0 : When the AVR function is enabled, the drive calculates the output voltage according to the actual DC BUS voltage. The output voltage does NOT change when the DC BUS voltage changes.
1 1: When the AVR function is disabled, the drive calculates the output voltage according to the actual DC BUS voltage. The DC BUS voltage changes the output voltage, and may cause insufficient or over-current or shock.
11 2: The drive disables the AVR function when decelerating to stop, and may accelerate to brake.
1 When the motor ramps to stop, the deceleration time is shorter when setting this parameter to 2 with auto-acceleration and deceleration, and the deceleration is quicker and more stable.

[7- $\mathbf{7}$ - Torque Command Filter Time (V/F and SVC Control Mode)

Default: 0.050
Settings $0.001-10.000 \mathrm{sec}$.
1 When the setting is too long, the control is stable but the control response is delayed. When the setting is too short, the response is quicker but the control may be unstable. Adjust the setting according to the stability of the control and response time.

79-95Slip Compensation Filter Time (V/F and SVC Control Mode)

Default: 0.100
Settings $0.001-10.000 \mathrm{sec}$.
$110]$ Change the compensation response time with Pr.07-24 and Pr.07-25.
1 If you set Pr.07-24 and Pr.07-25 to 10 seconds, the compensation response time is the slowest; however, the system may be unstable if you set the time too short.

17-26 Torque Compensation Gain

Default: 1

Settings 0-10

[1] With a large motor load, a part of drive output voltage is absorbed by the stator winding resistor; therefore, the air gap magnetic field is insufficient. This causes insufficient voltage at motor induction and results in excessive output current but insufficient output torque. Auto-torque compensation can automatically adjust the output voltage according to the load and keep the air gap magnetic fields stable to get the optimal operation.

In In the V/F control, the voltage decreases in direct proportion with decreasing frequency. It reduces the torque decrease at low speed due to the AC while the DC resistor is unchanged. The auto-torque compensation function increases the output voltage at low frequency to get a higher starting torque.
[1] When the compensation gain is set too high, it may cause motor over-flux and result in a too large output current, overheating the motor or triggering the protection function.

N 17- ?

	Default: 0.00
Settings $0.00-10.00$	(Default value is 1 in SVC mode)

[1] The induction motor needs constant slip to produce magnetic torque. It can be ignored at higher motor speeds, such as rated speed or 2-3 \% of slip.
\mathbb{L} In operation, the slip and the synchronous frequency are in reverse proportion to produce the same magnetic torque. The slip is larger with the reduction of the synchronous frequency. The motor may stop when the synchronous frequency decreases to a specific value. Therefore, the slip seriously affects the motor speed accuracy at low speed.
Ild In another situation, when you use an induction motor with the drive, the slip increases when the load increases. It also affects the motor speed accuracy.
[1] Use this parameter to set the compensation frequency, and reduce the slip to maintain the synchronous speed when the motor runs at the rated current in order to improve the accuracy of the drive. When the drive output current is higher than Pr.05-05 (No-load Current for an Induction Motor (A)), the drive compensates the frequency with this parameter.
[a] This parameter is set to 1.00 automatically when Pr.00-11 (Speed Control Mode) is changed from V/F mode to vector mode. Apply the slip compensation after load and acceleration. Increase the compensation value from small to large gradually; add the output frequency with motor rated slip * Pr.07-27 (Slip Compensation Gain) when the motor is at the rated load. If the actual speed ratio is slower than expected, increase the parameter setting value; otherwise, decrease it..

(7)-29 Slip Deviation Level

Default: 0

Settings	$0.0-100.0 \%$
	$0:$ No detection

Settings $0.0-10.0 \mathrm{sec}$.

17-3:Slip Deviation Action

Default: 0
Settings 0: Warn and continue operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
10 Parameters Pr.07-29-Pr.07-31 set the allowable slip level/time and the over-slip action when the drive is running.

Motor Shock Compensation Factor
Default: 1000
Settings 0-10000
1 If there are current wave motions in the motor in some specific area, setting this parameter can effectively improve this situation.

17-3 3 Auto-restart Interval of Fault

Default: 60.0
Settings $0.0-6000.0 \mathrm{sec}$.
When a reset/restart occurs after a fault, the drive uses Pr.07-33 as a timer and starts counting the number of faults within this time period. Within this period, if the number of faults does not exceed the setting for Pr.07-11, the counting clears and starts from 0 when the next fault occurs.
Slip Compensation Gain \% (electricity mode)

Default: 0.0
Settings 0.0-100.0 \%
1 In V/F mode, you do not have to set Pr.07-27. You can set Pr.07-34 and Pr.07-35 directly according to different compensation needs for power generation mode and electricity mode.
1 In SVC mode, you must set Pr.07-27 first, and then set Pr.07-34 and Pr.07-35 according to different compensation needs for power generation mode and electricity mode.
1 In V/F mode, multiply the result from dividing the output current and rated current by the slip level, and then multiply this result by the percentage of Pr.07-34 and Pr.07-35 again to gain the slip level. In SVC mode, multiply the slip compensation generating from parameters for motor winding, output current, rated current and no-load current by the percentage of Pr.07-34 and Pr.07-35 to gain the slip compensation level.
[0] Related parameters:

- Pr.05-05 No-load Current for an Induction Motor (A)
- Pr.07-27 Slip Compensation Gain

Default: 0.00
Settings $0.00-200.0 \mathrm{~Hz}$
[1] Limits the upper limits for the slip.
1×1 If the settings for this parameter are too high, the feedback error malfunctions.
[This page intentionally left blank]

09 Communication Parameters

When using communication devices, connect AC drive with PC by using Delta IFD6530 or IFD 6500.

You can set this parameter during operation.

93-9.7 Communication Address

Default: 1

Settings 1-254

If RS-485 serial communication controls the AC motor drive, you must set the communication address for this drive in this parameter. Each AC motor drive's communication address must be different.N $\mathbf{8 9}$ - 1 : COM1 Transmission Speed
Default: 9.6
Settings $4.8-115.2 \mathrm{Kbps}$
[1] Sets the transmission speed of the computer and the drive.
(1) Options are 4.8 Kbps , 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, or 115.2 Kbps ; otherwise, the transmission speed is set to the default 9.6 Kbps .

19-92 COM1 Transmission Fault Treatment

Default: 3
Settings 0: Warn and continue operation
1: Display error and ramp to stop
2: Display error and coast to stop
3: No warning, no error displayed and continue operation
[0] Sets the response for Modbus communication errors in with the host. Set the detection time in Pr.09-03.
[a] When a transmission error occurs (for example, the error code CE10 is displayed), the error remains even if the transmission status returns to normal, and does not clear automatically. In this case, set a reset command (Reset) to clear the error.

89-73 COM1 Time-out Detection

Settings $0.0-100.0 \mathrm{sec}$.
[a] Sets the communication time-out.

78-74COM1 Communication Protocol

Default: 1

$$
\begin{aligned}
& \text { Settings 1:7N2 (ASCII) } \\
& \text { 2: 7E1 (ASCII) } \\
& \text { 3: } 701 \text { (ASCII) } \\
& \text { 4: 7E2 (ASCII) } \\
& \text { 5: } 7 \mathrm{O} 2 \text { (ASCII) } \\
& \text { 6: 8N1 (ASCII) } \\
& \text { 7: 8N2 (ASCII) } \\
& \text { 8: 8E1 (ASCII) } \\
& \text { 9: } 801 \text { (ASCII) } \\
& \text { 10: 8E2 (ASCII) } \\
& \text { 11: } 8 \mathrm{O} 2 \text { (ASCII) } \\
& \text { 12: 8N1 (RTU) } \\
& \text { 13: 8N2 (RTU) } \\
& \text { 14: 8E1 (RTU) } \\
& \text { 15: } 801 \text { (RTU) } \\
& \text { 16: 8E2 (RTU) } \\
& \text { 17: } 8 \mathrm{O} 2 \text { (RTU) }
\end{aligned}
$$

(1) Control by PC (Computer Link)

When using the RS-485 serial communication interface, you must specify each drive's communication address in Pr.09-00. The computer then implements control using the drives' individual address.
\square Modbus ASCII (American Standard Code for Information Interchange): Each byte data is the combination of two ASCII characters. For example, one byte of data: 64 Hex, shown as ' 64 ' in ASCII, consists of ' 6 ' (36 Hex) and '4' (34Hex).

1. Code Description

Communication protocol is in hexadecimal, ASCII: "0" ... "9", "A" ... "F", every hexadecimal value represent an ASCII code. For example:

Character	$' 0 '$	$' 1 '$	$' 2 '$	$' 3 '$	$' 4 '$	$' 5 '$	$' 6 '$	$' 7$
ASCII code	30 H	31 H	32 H	33 H	34 H	35 H	36 H	37 H

Character	'8'	$' 9 '$	'A'	'B'	'C'	'D'	'E'	' F '
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

2. Data Format

10-bit character frame (For ASCII):
(7, N, 2)

(7, E, 1)

(7, O, 1)

11-bit character frame (For RTU):
($8, \mathrm{~N}, 2$)

(8, E, 1)

(8, O, 1)

3. Communication Protocol

Communication Data Frame
ASCII mode :

STX	Start character = ': ' (3AH)
Address Hi	Communication address: one 8-bit address consists of 2 ASCII codes
Address Lo	
Function Hi	Command code: one 8-bit command consists of 2 ASCII codes
Function Lo	
DATA ($\mathrm{n}-1$)	Contents of data: $\mathrm{N} \times 8$-bit data consists of 2 n ASCII codes $\mathrm{N} \leq 16$, maximum of 32 ASCII codes (20 sets of data)
.......	
DATA 0	
LRC CHK Hi	LRC checksum: one 8-bit checksum consists of 2 ASCII codes
LRC CHK Lo	
END Hi	End characters: END Hi $=$ CR (ODH), END Lo $=$ LF (OAH)
END Lo	

RTU mode:

START	Defined by a silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA $(\mathrm{n}-1)$	Contents of data:
$\ldots \ldots .$.	$\mathrm{N} \times$ 8-bit data, $\mathrm{n} \leq 16$

Communication Address (Address)

00 H : broadcast to all AC motor drives
01H: AC motor drive of address 01
OFH: AC motor drive of address 15
10H: AC motor drive of address 16
:
FEH: AC motor drive of address 254
Function code (Function) and DATA (Data characters)
03H: read data from a register
06H: write to a single register

Example: Reading two continuous data from register address 2102H. AMD address is 01 H .

ASCII mode:
Command Message

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'3'
Starting register	'2'
	'1'
	'0'
	'2'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

Response Message

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'3'
Number of register (count by byte)	'0'
	'4'
Content of starting register 2102H	'1'
	'7'
	'7'
	'0'
Content of register 2103H	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:

Command Message

Address	01 H
Function	03 H
Starting data register	21 H
	02 H
Number of register	00 H
(count by world)	02 H
CRC CHK Low	6 FH
CRC CHK High	F7H

Response Message
$\left.\begin{array}{|c|c|}\hline \text { Address } & 01 \mathrm{H} \\ \hline \text { Function } & 03 \mathrm{H} \\ \hline \text { Number of register } \\ \text { (count by byte) }\end{array}\right] 04 \mathrm{H}$,

06 H : single write, write single data to a register.
Example: Writing data $6000(1770 \mathrm{H})$ to a register 0100 H . AMD address is 01 H .

ASCII mode:

Command Message

STX	$\because \prime$
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'

Response Message

STX	':'
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'

LRC Check	'7'
	'1'
END	CR
	LF

LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command Message

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC CHK Low	86 H
CRC CHK High	22 H

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC CHK Low	86 H
CRC CHK High	22 H

10 H : write multiple registers (write multiple data to registers) The system can write up to 20 sets of data simultaneously.

Example: Set the multi-step speed of an AC motor drive (address is 01 H):

$$
\text { Pr.04-00 }=50.00(1388 \mathrm{H}), \text { Pr.04-01 }=40.00(0 \mathrm{FAOH})
$$

ASCII Mode:

Command Message

STX	' ${ }^{\prime}$
	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Target register	'0'
	'5'
	'0'
	'0'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
Number of register (count by Byte)	'0'
	'4'
The first data content	'1'
	'3'
	'8'
	'8'
The second data content	'0'
	'F'
	'A'
	'0'
LRC Check	'9'
	'A'
END	CR
	LF

Response Message

STX	' ${ }^{\prime}$
ADR 1	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Target register	'0'
	'5'
	'0'
	'0'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'E'
	'8'
END	CR
	LF

RTU mode:
Command Message:
Response Message

ADR	01 H
CMD	10 H
Target register	05 H
	00 H
(count by word)	00 H
Quantity of data (bytes)	02 H
The first data content	04
	13 H
The second data content	88 H
	0 FH
CRC Check Low	A 0 H
CRC Check High	'A'

ADR	01 H
CMD 1	10 H
Target register	05 H
	00 H
Number of register	
(count by word)	00 H
CRC Check Low	02 H
CRC Check High	41 H

Checksum
ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up, the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

Example:

$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is $\underline{\mathrm{D} 7} \mathrm{H}$.

RTU mode:
CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8 -bit byte of the command message with the low order byte of the 16 -bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right, fill MSB with zero filling, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right, fill MSB with zero filling, Exclusive OR the CRC register with the polynomial value A 001 H , then repeat step 3.

Step 5: Repeat step 3 and 4 until you perform eight shifts. This processes a complete 8 -bit byte will have been processed.

Step 6: Repeat step 2 through 5 for the next 8-bit byte of the command message. Continue doing this until all bytes are processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, that is. the lower order byte is transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leqslant the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)
\{

> int j;
unsigned int reg_crc=0Xffff;
while(length--)
reg_crc ${ }^{\wedge}=$ *data++;
for $(j=0 ; j<8 ; j++)\{$
if(reg_crc \& $0 x 01)\{\quad / * \operatorname{LSB}(b 0)=1$ */
reg_crc=(reg_crc>>1)^0Xa001; \}else\{
reg_crc=reg_crc >>1;
\}
\}
\}
return reg_crc; // return register CRC

```
}
```


4. Address list

Content	Register		Function
AC motor drive parameters	GGnnH	GG is the parameter group, nn is the parameter number, for example, the address of Pr.04-01 is 0401 H .	
Command write only	2000H	bit 1-0	00B: No function
			01B: Stop
			10B: Run
			11B: JOG + RUN
		bit 5-4	00B: No function
			01B: FWD
			10B: REV
			11B: Change direction
		bit 7-6	00B: $1^{\text {st }}$ acceleration / deceleration
			01B: $2^{\text {nd }}$ acceleration / deceleration
			10B: $3^{\text {rd }}$ acceleration / deceleration
			11B: $4^{\text {th }}$ acceleration / deceleration
		bit 11-8	000B: Master speed
			0001B: $1^{\text {st }}$ Step speed frequency
			0010B: $2^{\text {nd }}$ Step speed frequency
			0011B: $3^{\text {rd }}$ Step speed frequency
			0100B: $4^{\text {th }}$ Step speed frequency
			0101B: $5^{\text {th }}$ Step speed frequency
			0110B: $6^{\text {th }}$ Step speed frequency
			0111B: $7^{\text {th }}$ Step speed frequency
			1000B: $8^{\text {th }}$ Step speed frequency

Content	Register	Function	
			1001B: $9^{\text {th }}$ Step speed frequency
			1010B: $10^{\text {th }}$ Step speed frequency
			1011B: $11^{\text {th }}$ Step speed frequency
			1100B: $12^{\text {th }}$ Step speed frequency
			1101B: $13^{\text {th }}$ Step speed frequency
			1110B: $14^{\text {th }}$ Step speed frequency
			1111B: $15^{\text {th }}$ Step speed frequency
		bit 12	1: Enable bit 06-11 function
	2001H	Frequency command (XXX. XX Hz)	
	2002H	bit 0	1: EF (external fault) on
		bit 1	1: Reset
		bit 2	1: B.B. ON
Status monitor read only	2100H	High byte: Warn code Low Byte: Error code	
	2101H	bit 1-0	AC motor drive operation status 00B: Drive stops 01B: Drive decelerating 10B: Drive standby 11B: Drive operating
		bit 2	1: JOG command
		bit 4-3	Operation direction 00B: FWD run 01B: From REV run to FWD run 10B: From FWD run to REV run 11B: REV run
		bit 8	1: Master frequency controlled by communication interface
		bit 9	1: Master frequency controlled by analog signal
		bit 10	1: Operation command controlled by communication interface
		bit 11	1: Parameter locked
		bit 12	1: Enable to copy parameters from keypad
	2102H	Frequency command (XXX. XX Hz)	
	2103H	Output frequency (XXX. ${ }^{\text {a }}$ (Hz)	
	2104H	Output current (XX.XX A). When current is higher than 655.35, it shifts the decimal as (XXX.XA). The decimal can refer to High byte of 211F.	
	2105H	DC BUS voltage (XXX. ${ }^{\text {V }}$)	
	2106H	Output voltage (XXX. ${ }^{\text {V V }}$)	
	2107H	Current step number of multi-step speed operation	
	2109H	Counter value	
	210AH	Power factor angle (XXX. X)	
	210FH	Power output (X.XXX kWH)	
	2116H	Multi-function display (Pr.00-04)	
	211BH	Maximum Operation Frequency (Pr.01-00) or Maximum User-defined Value (Pr.00-26) When Pr.00-26 is 0 , this value is equal to Pr.01-00 setting When Pr.00-26 is not 0 , and the command source is keypad, this value = Pr.00-24 * Pr.00-26 / Pr. 01-00. When Pr.00-26 is not 0 , and the command source is 485 , this value $=$ Pr.09-10 * Pr.00-26 / Pr.01-00.	
	211FH	High byte: decimal of current value (display)	
	2200H	Display output current (A). When current is higher than 655.35, it shifts the decimal as (XXX.X A). The decimal can refer to High byte of 211F.	
	2201H	Display counter value (c)	
	2202H	Actual output frequency (XXXXX Hz)	
	2203H	DC BUS voltage (XXX. ${ }^{\text {V } V \text {) }}$	
	2204H	Output voltage (XXX.X V)	
		$\begin{array}{r} 12-0 . \\ \text { WWW } \end{array}$	maher.ir

5. Exception response:

When the drive is using the communication connection, if an error occurs, the drive responds to the error code and sets the highest bit (bit 7) of code to 1 (function code AND 80H) then responds to the control system to signal that an error occurred.
If the keypad displays "CE-XX" as a warning message, " XX " is the error code at that time. Refer to the table of error codes for communication error for reference.

Example:

ASCII mode:
RTU mode:

STX	\ddots	Address	01 H
Address	$' 0 '$	Function	86 H
	$' 1 '$	Exception code	02 H
Function	$' 8 '$	CRC CHK Low	C3H
	$' 6 '$	CRC CHK High	A1H

ASCII mode:
RTU mode:

Exception code	'0'
	'2'
LRC CHK	'7'
END	CR
	LF

The explanation of error codes

Error code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Failure to execute this function code

59-98 Communication Response Delay Time

Default: 2.0
Settings $\quad 0.0-200.0 \mathrm{~ms}$
[1] Sets the response delay time after the AC motor drive receives a communication command as shown in the following.

59-3〕 PLC Command Force to 0

Default : 0

Setting 0-65535

Defines whether the Frequency command or the Speed command must be cleared to zero or not before the PLC starts the next scan.

bit	Explanation
bit 0	Before PLC scan, set the PLC target frequency $=0$
bit 1	Before PLC scan, set the PLC target torque $=0$
bit 2	Before PLC scan, set the speed limit of torque control mode $=0$

59-35 PLC AddressDefault: 2Settings 1-254
199-36CANopen Slave AddressDefault: 0
Settings 0: Disable1-127
193-37 CANopen Speed
Default: 0
Settings 0:1 Mbps
1: 500 kbps
2: 250 kbps
3: 125 kbps
4: 100 kbps (Delta only)
5: 50 kbps
73-39 CANopen Warning Record
Default: 0
Settings bit 0: CANopen software disconnection 1 (CANopen Guarding Time-out)
bit 1: CANopen software disconnection 2 (CANopen Heartbeat Time-out)
bit 3: CANopen SDO time-outbit 4: CANopen SDO buffer overflowbit 5: CANopen hardware disconnection warning (Can Bus OFF)bit 6: Error protocol for CANopen
日9-4 CANopen Decoding Method
Default: 1
Settings 0: Use Delta-defined decoding method
1: Use CANopen Standard DS402 protocol
93-1; CANopen Communication Status
Default: Read Only
Settings 0: Node Reset State
1: Com Reset State
2: Boot up State3: Pre-operation State4: Operation State5: Stop State

Settings 0: Not ready for use state
1: Inhibit start state
2: Ready to switch on state
3: Switched on state
4: Enable operation state
7: Quick stop active state
13: Error reaction activation state
14: Error state
日9-43 CANopen Reset Index
Default: 65535
Settings bit 0: CANopen reset, the internal address 20XX is 0 bit 1: CANopen reset, the internal address 264 X is 0
bit 2: CANopen reset, the internal address 26AX is 0
bit 3: CANopen reset, the internal address 60XX is 0
[This page intentionally left blank]

12-09-14

11 Advanced Parameters

N You can set this parameter during operation.
In this parameter group, ASR stands for Adjust Speed Regulator

: :-4 : PWM Mode Selection

Default: 0
Settings 0: Two-phase
2: Space vector
Two-phase mode: effectively reduces the drive power component losses and provides better performance in long wire applications.
Lel Space vector mode: effectively reduces the power loss and electromagnetic noise of the motor.
N
Default: 0000
Settings 0000-FFFFh

bit No.	Function	Description
0	Reserved	
1	FWD / REV action control	0: FWD / REV cannot be controlled by Pr.02-12 bit 0 \& 1. 1: FWD / REV can be controlled by Pr.02-12 bit 0 \& 1.
$2-15$	Reserved	

[This page intentionally left blank]

Chapter 13 Warning Codes

KPMH-LC01 digital keypad

ID No.	Display	Descriptions
1	[-	Modbus function code error (illegal function code) Corrective Actions - Check if the function code is correct. (function code must be 03, 06, 10, 63)
2	-	Modbus data address error (illegal data address (00 H to 254 H)) Corrective Actions Check if the communication address is correct.
3	[-I	Modbus data error (illegal data value) Corrective Actions Check if the data value exceeds the maximum or minimum value.
4	[-E - -	Modbus communication error (data is written to read-only address) Corrective Actions Check if the communication address is correct.
5	$\left[\begin{array}{lll}\square \\ \square & 1 \\ \hline-0 & \end{array}\right.$	Modbus transmission time-out
6	$\left[\begin{array}{lll}\square-7 & 1 \\ \hline-0 & \\ \hline\end{array}\right.$	Keypad transmission time-out
7	- -1	Keypad COPY error 1 Keypad simulation error: includes communication delays, communication error (keypad received error FF86) and parameter value error.
8	O-	Keypad COPY error 2 Keypad simulation done: parameter write error.

ID No.	Display		Descripti	
9	\|	IGBT is over-heated above protection level 3~10 HP: $90^{\circ} \mathrm{C}$		
		Frame	MH300-L	OH 1
		C	VFD11AMH23ANSLA	100
		C	VFD17AMH23ANSLA	105
		D	VFD25AMH23ANSLA	
		E	VFD33AMH23ANSLA	115
		E	VFD49AMH23ANSLA	
		F	VFD65AMH23ANSLA	
		C	VFD9A0MH43ANSLA	115
		C	VFD9A0MH43AFSLA	
		D	VFD13AMH43ANSLA	105
		D	VFD13AMH43AFSLA	
		D	VFD17AMH43ANSLA	110
		D	VFD17AMH43AFSLA	
		E	VFD25AMH43ANSLA	115
		E	VFD25AMH43AFSLA	
		E	VFD32AMH43ANSLA	
		E	VFD32AMH43AFSLA	
		Corrective Actions ■ Ensure that the ambient temperature falls within the specified temperature range. - Make sure the ventilation holes are not obstructed. - Remove any foreign objects from the heat sink and check for possible dirt in the heat sink. - Check the fan and clean it. - Provide enough space for adequate ventilation.		
12	Finl	ACI signal loss when Pr.03-19 is set to 1 or 2.		
13	+-5	Low current		
14	FIl!	Motor parameters auto-tuning error Corrective Actions - Verify that the motor wiring is correct. - Verify that the motor capacity and parameters are correct		
19	F-M	Input phase loss		

ID No．	Display	Descriptions
20	－1	When the output current exceeds the over－torque detection level（Pr．06－07）and also exceeds Pr．06－08；when Pr．06－06 is set as 1 or 3，the keypad displays a warning without an error record；when Pr．06－06 is set as 2 or 4 ，it displays an error，stops running and displays an error record． Corrective Actions －Check if the motor is overloaded． ■ Verify that the motor rated current in Pr．05－01 is correct． ■ Increase the motor capacity．
22	－1	Motor over－heating
24	［0］	Over－slip
25	－1！	Auto tuning processing
28	¢751）	Output phase loss
30	［－I	Keypad COPY error 3 Keypad copy between different power range drives
36	－	CANopen guarding time－out 1
37	「－7	CANopen heartbeat time－out 2
39	［－5\％	CANopen bus off
40		CANopen index error
41	「－7	CANopen station address error
42	「5\％	CANopen memory error
43	ו-	CANopen SDO transmission time－out
44	וֹ	CANopen SDO received register overflow
45	「－1\％	CANopen boot up fault
46	"-	CANopen protocol format error

ID No.	Display	Descriptions
50	-	PLC download error, opposite data defect.
51	[-]	PLC download and save error
52	F-7	Data error during PLC operation
53	F-5	PLC download function code error
54	「-7)	PLC register overflow
55	F-5\%	PLC operation function code error
56	וֹ	PLC check_sum error
57	F-5]	PLC end command is missing
58	$\stackrel{\square}{\square}$	PLC MCR command error
59	F-7	PLC download failure
60	F-5	PLC scan time failure
75	EFFFomer	Default setting error
76	EFF	Serious internal error
90		Copy PLC: password error
91		Copy PLC: read mode error
92	$\Gamma_{\square}^{\square} \square^{-71}$	Copy PLC: write mode error
93		Copy PLC: version error
94	[-F	Copy PLC: capacity size error
95	[-F\| \square^{\square}	Copy PLC: you must disable the PLC function.
96	[-7)	Copy PLC: time-out

Chapter 14 Error Codes

KPMH-LC01 digital keypad

* Refer to settings for Pr.06-17-Pr.06-22 and Pr.14-70-Pr.14-73.

ID No.	Display	Descriptions
1	-	Over-current during acceleration (output current exceeds triple the rated current during acceleration). Corrective Actions - Short-circuit at motor output: check for possible poor insulation at the output. - Acceleration time is too short: increase acceleration time. ■ AC motor drive output power is too low: replace the AC motor drive with a higher power model.
2	-15	Over-current during deceleration (output current exceeds triple the rated current during deceleration). Corrective Actions - Short-circuit at motor output: check for possible poor insulation at the output. ■ Deceleration time is too short: increase the deceleration time. - AC motor drive output power is too low: replace the AC motor drive with a higher power model.
3	[1]	Over-current during steady operation (output current exceeds triple the rated current during constant speed). Corrective Actions ■ Short-circuit at motor output: check for possible poor insulation at the output. - AC motor drive output power is too low: replace the AC motor drive with a higher power model.

ID No.	Display	Descriptions
4	F\% 5	Ground fault. When one of the output terminal(s) is grounded, the short circuit current is more than 50% of the AC motor drive rated current. NOTE: the short circuit protection is provided for the AC motor drive protection, not to protect you. Corrective Actions Check the wiring connections between the AC motor drive and the motor for possible short circuits, as well as the connections to ground. - Check whether the IGBT power module is damaged. - Check for possible poor insulation at the output.
6	-	Over-current at stop. Hardware failure in current detection. Corrective Actions Return the unit to the default.
7	-	DC BUS over-voltage during acceleration (230V: 450 V DC; $460 \mathrm{~V}: 900 \mathrm{~V}_{\mathrm{DC}}$) Corrective Actions Check if the input voltage spiked above the rated AC motor drive input voltage range. ■ Check for possible voltage transients. - If the DC BUS is over-voltage due to the regenerative voltage, increase the acceleration time or add an optional brake resistor.
8	-	DC BUS over-voltage during deceleration ($230 \mathrm{~V}: 450 \mathrm{VD} ; 460 \mathrm{~V}: 900 \mathrm{~V}_{\mathrm{DC}}$) Corrective Actions Check if the input voltage spiked above the rated AC motor drive input voltage range. ■ Check for possible voltage transients. ■ If the DC BUS is over-voltage due to regenerative voltage, increase the deceleration time or add an optional brake resistor.
9	[0.	DC BUS over-voltage at constant speed ($230 \mathrm{~V}: 450 \mathrm{~V}$ DC; $460 \mathrm{~V}: 900 \mathrm{~V}_{\mathrm{DC}}$) Corrective Actions Check if the input voltage spiked above the rated AC motor drive input voltage range. Check for possible voltage transients.
10	- I-	Over-voltage at stop. Hardware failure in voltage detection. Corrective Actions Check if the input voltage spiked above the rated AC motor drive input voltage range. ■ Check for possible voltage transients.

ID No.	Display	Descriptions
11	1-7-7	DC BUS voltage is less than Pr.06-00 during acceleration. Corrective Actions Check if the input voltage is normal. ■ Check for possible sudden changes in load. - Check the setting of Pr.06-00.
12	1. ${ }^{-1}$	DC BUS voltage is less than Pr.06-00 during deceleration. Corrective Actions ■ Check if the input voltage is normal. ■ Check for possible sudden changes in load. - Check the setting of Pr.06-00.
13	ו-	DC BUS voltage is less than Pr.06-00 at constant speed. Corrective Actions ■ Check if the input voltage is normal. ■ Check for possible sudden changes in load. - Check the setting of Pr.06-00.
14	1-5	DC BUS voltage is less than Pr.06-00 at stop. Corrective Actions - Check if the input voltage is normal. ■ Check for possible sudden changes in load. ■ Check the setting of Pr.06-00.
15	[-7	Phase loss protection Corrective Actions Check if there is any phase loss in the three-phase model or in the one-phase input application.
16	-1	IGBT is overheated above the protection level. Corrective Actions Ensure that the ambient temperature falls within the specified temperature range. - Make sure the ventilation holes are not obstructed. - Remove any foreign objects from the heat sink and check for possible dirt in the heat sink. - Check the fan and clean it. - Provide enough space for adequate ventilation.
18	E1818	IGBT Hardware Error Corrective Actions Return the unit to the default.

ID No.	Display	Descriptions
21	\square	Overload; the AC motor drive detects excessive drive output current. Corrective Actions ■ Check if the motor is overloaded. ■ Change to the next power level with a higher value for the AC motor drive model.
22	Erill	Electronic thermal relay 1 protection Corrective Actions ■ Check the setting of the electronic thermal relay (Pr.06-14). ■ Change to the next power level with a higher value for the motor model.
26	$\square 1$	When the output current exceeds the over-torque detection level (Pr.06-07) and also exceeds Pr.06-08; when Pr.06-06 is set as 1 or 3, the keypad displays a warning without an error record; when Pr.06-06 is set as 2 or 4, it displays an error, stops running, and displays an error record. Corrective Actions - Check if the motor is overloaded. - Verify that the motor rated current in Pr.05-01 is correct. - Increase the motor capacity.
28	- ${ }^{\text {L- }}$	Low current detection. Corrective Actions Check Pr. 06-71, Pr. 06-72, Pr. 06-73.
31	[-7	Cannot read internal EEPROM. Corrective Actions - Press the RESET key to reset to the default. ■ If the fault code still displays on the keypad, return the unit to the default.
33	-	U-phase current error Corrective Actions Cycle the power to the drive. If the fault code still displays on the keypad, return the unit to the default.
34	-1000	V-phase current error Corrective Actions Cycle the power to the drive. ■ If the fault code still displays on the keypad, return the unit to the default.
35]	W-phase current error Corrective Actions - Cycle the power to the drive. ■ If the fault code still displays on the keypad, return the unit to the default
36]	CC (current clamp) hardware error Corrective Actions Cycle the power. ■ If the fault code still displays on the keypad, return the unit to the default.

ID No.	Display	Descriptions
37	\|	OC hardware error Corrective Actions - Cycle the power. ■ If the fault code still displays on the keypad, return the unit to the default.
40	Filo:	Motor parameters auto-tuning error Corrective Actions - Verify that the motor wiring is correct. - Verify that the motor capacity and parameters are correct. ■ Try auto-tuning again.
48	FiF	ACI loss Corrective Actions - Check the wiring for ACI. ■ Check if the ACl signal is less than 4 mA .
49	E F	External Fault: when the multi-function input terminal (EF) is active, the AC motor drive stops output. Corrective Actions Press the RESET key after you clear the fault.
50	E- \square_{0}^{-1}	Emergency stop: when the multi-function input terminal (EF1) is active, the AC motor drive stops output. Corrective Actions - Press the RESET key after you clear the fault.
51	-1-	External Base Block: when the multi-function input terminal (B.B.) is active, the AC motor drive stops output. Corrective Actions Deactivate the external input terminal (B.B.) to operate the AC motor drive again.
52		Keypad is locked after you enter the wrong password three times. Corrective Actions - Refer to Pr.00-07 and Pr.00-08. ■ Cycle the power, and then enter the correct password.
54	E- $\square_{0} 1$	Modbus function code error (illegal function code) Corrective Actions Check if the function code is correct (function code must be $03,06,10,63$).
55	[-E	Modbus data address error (illegal data address $00 \mathrm{H}-254 \mathrm{H}$) Corrective Actions Check if the data address is correct.
56	$\left[\begin{array}{l}-\square\end{array}\right]$	Modbus data error (illegal data value) Corrective Actions Check if the data value exceeds the maximum or minimum value.

ID No.	Display	Descriptions
57		Modbus communication error (data is written to read-only address) Corrective Actions
Corrective Actions		

ID No.	Display	Descriptions
75	MCT:	Mechanical brake error Corrective Actions - Check if the mechanical brake signal is correct. ■ Check if the detection time setting of mechanical brake (Pr.02-33) is correct.
76	IT	Safe Torque Off function active Corrective Actions - Check the wiring of the S1 and S2 terminals. - Reset the emergency switch (ON: activated) and cycle the power. - Check that the input voltage maintains at least 11 V . - Check the wiring of the S1/ S2 and +24 V terminals. ■ After you make sure all the wiring is correct, if STO fault still exists after cycling the power, please contact Delta.
77	-	S2-DCM internal loop detection error Corrective Actions - Check the wiring of the S 2 terminal. - Reset the emergency switch (ON: activated) and cycle the power. ■ Check that the input voltage maintains at least 11 V . - Check the wiring of the S 2 and +24 V terminals. - After you make sure all the wiring is correct, if STL2 fault still exists after cycling the power, please contact Delta.
78	[S1-DCM \& S2-DCM internal loop detection error Corrective Actions After you make sure all the wiring is correct, if STL3 fault still exists after cycling the power, please contact Delta.
79	E-	U-phase short circuit
80	-	V-phase short circuit
81	[-]	W-phase short circuit
82	[-7	Output phase loss 1 (Phase U) Output phase loss 2 (Phase V) Output phase loss 3 (Phase W) Corrective Actions
83	-	Check the motor internal wiring and change the motor if there is still an error. Check the cable condition.

ID No.	Display	Descriptions
84	-1]	Choose a three-phase motor, and make sure the capacity of the drive and motor match. - Check the control board cable. ■ Verify that the three-phase current is balanced. If it is balanced and the OPHL fault still exists, return the unit to the default.
87	-11	Over-load protection at low frequency
101	-	CANopen guarding error Corrective Actions ■ Increase the guarding time (Index 100C). ■ Check the communication wiring and grounding. Use a 90-degree wiring layout or separation from the main circuit to prevent interference. ■ Make sure the communication wiring is serial. ■ Use a dedicated CANopen cable and install a terminating resistor. ■ Check the condition of the communication cable or replace with a new cable.
102	[-\%	CANopen heartbeat error Corrective Actions - Increase the Heartbeat time (Index 1016). ■ Check the communication wiring and grounding. Use a 90-degree wiring layout or separation from the main circuit to prevent interference. ■ Make sure the communication wiring is serial. - Use a dedicated CANopen cable and install a terminating resistor. - Check the condition of the communication cable or replace with a new cable.
104	以	CANopen bus off error Corrective Actions - Re-install the CANopen card. ■ Check the communication wiring and grounding. Use a 90-degree wiring layout or separation from the main circuit to prevent interference. ■ Make sure the communication wiring is serial. ■ Use a dedicated CANopen cable and install a terminating resistor. ■ Check the condition of the communication cable or replace with a new cable.
105	[-\%	CANopen index error Corrective Actions Reset the CANopen index (Pr.00-02 = 7).
106	- \%	CANopen station address error Corrective Actions ■ Disable CANopen (Pr.09-36 = 0). - Reset the CANopen setting (Pr.00-02 = 7). ■ Reset the station address (Pr.09-36).

ID No.	Display	Descriptions
107	[5\%	CANopen memory error Corrective Actions - Disable CANopen (Pr.09-36 = 0). - Reset the CANopen setting (Pr.00-02 = 7). ■ Reset the station address (Pr.09-36).
111	i E K	InnerCOM time-out failure
121	[-70]	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
123	-	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
124	[Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
126	-1900	Internal communication error Corrective Actions If the fault still appears after pressing RESET, return the unit to the default.
127	I-	Firmware version error
140	-	GFF detected at power on
141	-	GFF occurs before running
142	-	Auto-tune error 1 (in DC test stage)
143	F-	Auto-tune error 2 (high frequency test stage)
144	Find	Auto-tune error 3 (rotary test stage)

[This page intentionally left blank]

Chapter 15 Auto-tuning Process

Flow chart

Fine tuning for elevators' performance

Stage	Function	Pr.	Explanation	Settings	Default
Starting	Delay Time	02-30	Turn On Delay of Magnetic Contactor between Drive and Motor	0.010-65.000 sec.	0.200
		02-39	Brake Release Delay Time When Elevator Starts	0.010-65.000 sec.	0.250
	Start-up Adjustment	01-04	Mid-point Voltage 1 of Motor 1	230 V series:0.0-240.0 V 460 V series:0.0-480.0 V	$\begin{aligned} & 11.0 \\ & 22.0 \end{aligned}$
		01-06	Mid-point Voltage 2 of Motor 1	230 V series:0.0-240.0 V 460 V series:0.0-480.0 V	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$
		01-08	Minimum Output Voltage of Motor 1	230 V series:0.0-240.0 V 460 V series:0.0-480.0 V	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
	Torque check	02-41	Output Current Level Setting for External Terminals	0-100\%	0
		02-42	Check Torque Output Function	0:Disable 1:Enable	0
	DC Brake	07-01	DC Brake Current Level	0-100 \%	30
		07-02	DC Brake Time at Start-up	0.0-60.0 sec.	0.7
Accelerating	Multi-Step Speed	01-12	Acceleration Time 1	$0.00-600.00 \mathrm{sec}$.	2.00
		01-24	S-curve Acceleration Begin Time S1	0.00-25.00 sec.	1.00
		01-25	S-curve Acceleration Arrival Time S2	0.00-25.00 sec.	1.00
Decelerating	Multi-Step Speed	01-13	Deceleration Time 1	0.00-600.00 sec.	2.00
		01-26	S-curve Deceleration Begin Time S3	0.00-25.00 sec.	1.00
		01-27	S-curve Deceleration Arrival Time S4	0.00-25.00 sec.	1.00

Stage	Function	Pr.	Explanation	Settings	Default
Leveling	Elevator Parking	01-71	Leveling Speed Switch	0.00-599.00 Hz	0.00
		01-72	Lower than Leveling Speed S5	0.00-25.00 sec.	1.00
		01-73	Deceleration Time when Operating without RUN Command	0.00-25.00 sec.	2.00
Stopping	Delay Time	02-40	Brake Contracting Delay Time When Elevator Stops	0.010-65.000 sec.	0.250
		02-31	Turn Off Delay of Magnetic Contactor between Drive and Motor	0.010-65.000 sec.	0.200
	Torque check	02-41	Output Current Level Setting for External Terminals	0-100\% (Rated current of drive \%)	0
		02-42	Check Torque Output Function	0: Disable 1: Enable	0
	DC Brake	07-01	DC Brake Current Level	0-100 \%	30
		07-03	DC Brake Time at Stop	0.0-60.0 sec.	0.7

- Explanations for the Auto-tuning Steps

Step1. Basic Parameters Settings

■ Make sure that Pr.00-00 (identity code of the AC motor drive) matches with the nameplate indicated on the AC motor drive.

■ Reset all parameters to defaults (set Pr.00-02 to 9 or 10).

Pr.00-02	0: No function
Parameter Reset	1: Parameter write protection
	5: Reset kWH display to 0
	6: Reset PLC
	7: Reset CANopen index (slave)
	9: All parameters are reset to defaults.
	(Base frequency $=50 \mathrm{~Hz}$)
	10: All parameters are reset to defaults.
	(Base frequency $=60 \mathrm{~Hz}$)

■ Master Frequency Command Source: User-defined. (Pr.00-20)

Pr.00-20	0: Digital keypad
Master Frequency Command	1: RS-485 serial communication
Source	2: External analog input (Refer to Pr.03-00)
	3: External UP / DOWN terminal
	6: CANopen input

Note: It is valid only when using with KPC-CC01.

■ Operation Command Source: User-defined. (Pr.00-21)

Pr.00-21	$0:$ Digital keypad
Operation Command Source	1 : External terminals
	$2:$ Communication RS-485 input
	3: CANopen input

Note: it is valid only when using with KPC-CC01.
MI/MO External Terminal Settings
Refer to Pr.02-01-Pr.02-07 for the external input terminals MI1-MI7.
NOTE: The default for Pr.02-07 is 49 (Enable Drive). Disable this function if you do not need to use it.

Pr.02-01-Pr.02-07	0 : No function
	1: multi-step speed command 1 / multi-step position command 1
	2: multi-step speed command 2 / multi-step position command 2
	3: multi-step speed command 3 / multi-step position command 3
	4: multi-step speed command 4 / multi-step position command 4
	5: Reset
	6: JOG operation
	7: Acceleration / deceleration speed inhibit
	8: 1 st, 2nd acceleration / deceleration time selection
	9: 3rd, 4th acceleration / deceleration time selection
	10: EF input (Pr.07-20)
	11: Base Block (B.B.) input from external
	12: Output stop
	15: Rotating speed command form AVI
	16: Rotating speed command form ACI
	18: Forced to stop (Pr.07-20)
	24: FWD JOG command
	25: REV JOG command
	28: Emergency stop (EF1)
	29: Signal confirmation for Y-connection
	30: Signal confirmation for Δ-connection
	38: Disable EEPROM writing function
	40: Force coasting to stop
	49: Enable Drive
	51: Selection for PLC mode bit 0
	52: Selection for PLC mode bit 1
	53: Trigger CANopen quick stop

	58: Emergency power mode detection
	59: Magnetic contactor error detection
$60:$ Mechanical brake error detection	
	$61:$ Power loss signal

Refer to Pr.02-16 and Pr.02-17 for the settings for MO1-MO7.

Pr.02-16-Pr.02-17	0 : No function
	1: Indication during RUN
	2: Operation speed reached
	3: Desired frequency reached 1 (Pr.02-22)
	4: Desired frequency reached 2 (Pr.02-24)
	5: Zero speed (Frequency command)
	6: Zero speed, include STOP (Frequency command)
	7: Over-torque (Pr.06-06-06-08)
	9: Drive is ready
	10: Low voltage warning (LV) (Pr.06-00)
	11: Malfunction indication
	12: Mechanical brake signal (Pr.02-39, Pr.02-40)
	13: Over-heat warning (Pr.06-15)
	16: Slip error (oSL)
	19: External interrupt B.B. input (Base Block)
	20: Warning output
	21: Over-voltage
	22: Over-current stall prevention
	23: Over-voltage stall prevention
	24: Operation source
	25: Forward command
	26: Reverse command
	27: Output when current \geq Pr.02-41
	28: Output when current < Pr.02-41
	31: Y-connection for the motor coil
	32: Δ-connection for the motor coil
	33: Zero speed (actual output frequency)
	34: Zero speed includes stop (actual output frequency)
	35: Error output selection 1 (Pr.06-23)
	36: Error output selection 2 (Pr.06-24)
	37: Error output selection 3 (Pr.06-25)
	38: Error output selection 4 (Pr.06-26)
	40: Speed reached (including STOP)
	44: Low current output (use with Pr.06-71-Pr.06-73)
	45: UVW output electromagnetic valve ON/OFF switch
	50: Output control for CANopen

56: Power generation direction and status verification
57: Power generation direction
58: EPS MODE
67: Analog input level reached
75: Motor-controlled magnetic contactor output

Step 2. Motor tuning

- Set the parameters according to the motor type (IM)

■ Motor auto-tuning: Set the Operation Command source to the digital keypad (Pr.00-21=0, refer to step 1)
■ Control method: Set Pr.00-11.

Pr.00-11	$0:$ VF (IM V/F control)
Speed Control Mode	2: SVC

■ Enter the motor nameplate information into Pr.01-00-01-02.

Pr.01-00 Maximum Operation Frequency of Motor 1	$0.00-599.00 \mathrm{~Hz}$
Pr.01-01 Output Frequency of Motor 1 $0.00-599.00 \mathrm{~Hz}$	

Pr.01-02	230 V series: $0.0-255.0 \mathrm{~V}$
Output Voltage of Motor 1	460 V series: $0.0-510.0 \mathrm{~V}$

【IM (Induction Motor)】

- Motor auto-tuning: Set the Operation Command source to the digital keypad (Pr.00-21=0, refer to step 1) and set Pr.05-00=2

Pr.05-00	0 : No function
Motor Parameter Auto-tuning	1: Dynamic test for an induction motor (IM) 2: Static test for an induction motor (IM)

NOTE 1: You do not need to release the brake in this auto-tuning operation. Make sure that the electromagnetic valve is ON when it is installed between the AC motor drive and the motor. When Pr.05-00 is set to 2, you must enter the motor no-load current in Pr.05-05. The digital keypad displays the warning message "Auto tuning" until auto-tuning is finished. Then, it saves the measured results in Pr.05-06-Pr.05-09.

NOTE 2: The automatic measurement of an IM motor (induction motor) can also perform dynamic measurements.

Pr.05-01	$10-120 \%$ of the drive's rated current
Full-load Current for an Induction	
Motor (A)	

Pr.05-02 Rated Power for an Induction Motor (kW)	$0.00-655.35 \mathrm{~kW}$
Pr.05-03 Rated Speed for an Induction Motor (rpm)	$0-6553 \mathrm{rpm}$
Pr.05-04 Number of Poles for an Induction Motor	$2-20$

Step 3. Multi-Step Speed settings

Multi-step speed settings

■ Confirm the total number of speed steps (high speed, middle speed, low speed, creep, inspection and level auto-learning)

- Make sure that the step speed settings and the corresponding terminal actions for the multi-function input commands are correct (MI3-MI6).
■ Set the multi-step speeds in Pr.04-00-Pr.04-14

Pr.04-00 to Pr.04-14 settings	$1^{\text {st }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
	$2^{\text {nd }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
	$3^{\text {rd }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
	$4^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
	$5^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
	$6^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
	$7^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
$8^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$	
	$9^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
$10^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$	
	$11^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$
$12^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$	
$13^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$	
$14^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$	
$15^{\text {th }}$ Step Speed Frequency	$0.00-599.00 \mathrm{~Hz}$	

NOTE:

It is recommended that you set the maximum operating frequency to the half of maximum operating frequency before confirming each step speed setting and the corresponding terminal actions for the multi-function input commands.

- Set the acceleration/deceleration with Pr.01-23 $=08$ (first and second acceleration/ deceleration time selection) and $=09$ (third and fourth acceleration/deceleration time selection) for the multi-function input command Pr.02-01-02-07.
■ Set the acceleration/deceleration time: Pr.01-12-Pr.01-19.

Pr.01-12 to Pr.01-19 settings	Acceleration Time 1	$0.00-600.00 \mathrm{sec}$.
	Deceleration Time 1	$0.00-600.00 \mathrm{sec}$.
	Acceleration Time 2	$0.00-600.00 \mathrm{sec}$.
	Deceleration Time 2	$0.00-600.00 \mathrm{sec}$.
	Acceleration Time 3	$0.00-600.00 \mathrm{sec}$.
	Deceleration Time 3	$0.00-600.00 \mathrm{sec}$.
	Acceleration Time 4	$0.00-600.00 \mathrm{sec}$.
	Deceleration Time 4	$0.00-600.00 \mathrm{sec}$.

NOTE:

It is recommended that you set the Pr.01-73 (deceleration time) to the smallest value for the trial run to ensure all the actions are correct, then increase it for the final test.

■ JOG Acceleration/Deceleration Time Setting: Pr.01-20-Pr.01-22

Pr.01-20 to Pr.01-22 settings	JOG Acceleration Time	$0.00-600.00 \mathrm{sec}$.
	JOG Deceleration Time	$0.00-600.00 \mathrm{sec}$.
	JOG Frequency	$0.00-600.00 \mathrm{sec}$.

■ S-curve Setting: Pr.01-24-Pr.01-34, Pr.01-71, Pr.01-72

$\begin{aligned} & \text { Pr.01-24-Pr.01-34, Pr.01-71, } \\ & \text { Pr.01-72 settings } \end{aligned}$	S-curve Acceleration Begin Time S1	0.00-25.00 sec.
	S-curve Acceleration Arrival Time S2	0.00-25.00 sec.
	S-curve Deceleration Begin Time S3	0.00-25.00 sec.
	S-curve Deceleration Arriva Time S4	0.00-25.00 sec.
	Zero-speed mode	0 : Output waiting 1: Zero-speed operation 2: Fmin (refer to Pr.01-07)
	Leveling Speed Switch	$0.00-599.00 \mathrm{~Hz}$
	Lower than Leveling Speed S5	0.00-25.00 sec.

NOTE:

It is recommended that you set the S-curve time to 0 for the trial run to ensure all the actions are correct, and then increase it for the final test.

Step 4. Trial run

Use the trial run after you complete Step 1 to Step 3 above to check if the motor runs normally after executing the inspection with a loaded motor. At the same time, check if the multi-function output terminal operations are correct (such as whether the action of the brake release and electromagnetic valve match the host controller).

Also check the speed, current value, and check for noise in the carriage and other noise sources when switching between each step.

Step 5. Elevator tuning

1. Enable slip compensation

To disable the slip compensation, set Pr.07-27 $=0$, Pr.07-34 $=0$ and Pr.07-35 $=0$.
To enable the slip compensation, set Pr.07-27 >0, Pr.07-34 >0 and Pr.07-35>0.
Adjust the settings in Pr.07-27, Pr.07-34 and Pr.07-35.

Pr.07-27	$0.00-10.00$
Slip Compensation Gain	

Pr.07-34	$0.0-100.0 \%$
Slip compensation gain \%	
(Power generation mode)	

Pr.07-35	$0.0-100.0 \%$
Slip compensation gain \%	
(Electricity mode)	

2. Start-up Adjustment

Adjust the minimum output voltage to avoid start-up failure.
V/F control: Adjust settings in Pr.01-04, Pr.01-06, Pr.01-08.
SVC control: Adjust settings in Pr.01-08.

Pr.01-04	230 V series : 0.0 V-240.0 V
Mid-point voltage 1 of motor 1	460 V series : 0.0 V-480.0 V
Pr.01-06	230 V series : 0.0 V-240.0 V
Mid-point voltage 2 of motor 1	460 V series : 0.0 V-480.0 V
Pr.01-08	230 V series : 0.0 V-240.0 V
Minimum output voltage of motor 1	460 V series : 0.0 V-480.0 V

3. Adjust DC brake

Adjust settings in Pr.07-01, Pr.07-02, Pr.07-03.

Pr. $07-01$	$0-100 \%$
DC brake current level	

Pr. $07-02$	$0.0-60.0 \mathrm{sec}$.			
DC brake time at start-up		\quad	Pr. $07-03$	$0.0-60.0 \mathrm{sec}$.
:---	:---			
DC brake time at stop				

4. Adjust elevator parking

Adjust settings in Pr.01-71, Pr.01-72, Pr.01-73.

Pr.01-71	$0.00-599.00 \mathrm{~Hz}$
Leveling Speed Switch	

Pr.01-72	$0.00-25.00 \mathrm{sec}$.
Lower than Leveling Speed S5	

Pr.01-73	$0.00-25.00 \mathrm{sec}$.
Deceleration Time when Operating without RUN Command	

Chapter 16 CANopen Overview

16-1 CANopen Overview
16-2 Wiring for CANopen
16-3 CANopen Communication Interface Descriptions
16-3-1 CANopen Control Mode Selection
16-3-2 DS402 Standard Control Mode
16-3-3 By Using Delta Standard
16-3-4 DI/DO AI are controlled through CANopen
16-4 CANopen Supporting Index
16-5 CANopen Fault Codes
16-6 CANopen LED Function

The built-in CANopen function is a kind of remote control. You can control the AC motor drive using the CANopen protocol. CANopen is a CAN-based higher layer protocol that provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). It also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to the CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation.

Delta CANopen supported functions:

- Supports CAN2.0A Protocol
- Supports CANopen DS301 V4.02
- Supports DSP-402 V2.0

Delta CANopen supported services:

- PDO (Process Data Objects): PDO1-PDO4
- SDO (Service Data Objects):

Initiate SDO Download;
Initiate SDO Upload;
Abort SDO;
You can use the SDO message to configure the slave node and access the Object Dictionary in every node.

- SOP (Special Object Protocol):

Supports default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;
Supports SYNC service;
Supports Emergency service.

- NMT (Network Management):

Supports NMT module control;
Supports NMT Error control;
Supports Boot-up.

Delta CANopen does not support this service:

- Time Stamp service

16-1 CANopen Overview

- CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover the application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

RJ45 Pin Definition

PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground / $0 \mathrm{~V} / \mathrm{V}$ -
6	CAN_GND	Ground / $0 \mathrm{~V} / \mathrm{N}$ -

CANopen Communication Protocol contains the following services:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Objects)
- EMCY (Emergency Object)

NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. A network has only one NMT master, and the other nodes are slaves. All CANopen nodes have a present NMT state, and the NMT master can control the state of the slave nodes. The following shows the state diagram of a node:

(1) After power is applied, start in the auto-initialization state

A: NMT
(2) Automatically enter the pre-operational state

B: Node Guard
(3) (6) Start remote node

C: SDO
(4) (7) Enter the pre-operational state

D: Emergency
(5) (8) Stop remote node

E: PDO
(9) (10) (11) Reset node

F: Boot-up
(12) (13) (14) Reset communication
(15) Automatically enter reset application state
(16) Automatically enter reset communication state

	Initializing	Pre-Operational	Operational	Stopped
PDO			O	
SDO		0	O	
SYNC		0	O	
Time Stamp		0	O	
EMCY		0	O	
Boot-up	O			
NMT		O	O	O

SDO (Service Data Objects)

Use SDO to access the Object Dictionary in every CANopen node using the Client/Server model. One SDO has two COB-IDs (request SDO and response SDO) to upload or download data between two nodes. There is no data limit for SDOs to transfer data, but it must transfer data by segment when the data exceeds four bytes with an end signal in the last segment. The MH300-L series does not currently support segment transmission.

The Object Dictionary (OD) is a group of objects in a CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path in the OD is the index and sub-index; each object has a unique index in the OD, and has a sub-index if necessary. The following shows the request and response frame structure of SDO communication:

PDO (Process Data Objects)

PDO communication can be described by the producer/consumer model. Each node of the network listens to the messages of the transmission node and distinguishes whether the message has to be processed or not after receiving the message. A PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and an RxPDO. PDOs are transmitted in a non-confirmed mode. All transmission types are listed in the following table:

Type Number	PDO				
	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only
0		\bigcirc	\bigcirc		
1-240	\bigcirc		\bigcirc		
241-251	Reserved				
252			\bigcirc		\bigcirc
253				\bigcirc	\bigcirc
254				\bigcirc	
255				\bigcirc	

Type number 0 indicates the synchronous aperiodic message between two PDO transmissions. Type number 1-240 indicates the number of SYNC message between two PDO transmissions. Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC. Type number 253 indicates the data is updated immediately after receiving RTR. Type number 254: Delta CANopen does not support this transmission format. Type number 255 indicates the data is an asynchronous aperiodic transmission.

All PDO transmission data must be mapped to the index with Object Dictionary.

EMCY (Emergency Object)

When errors occur inside the hardware, an emergency object is triggered. An emergency object is only sent when an error occurs. As long as there is nothing wrong with the hardware, there is no emergency object warning of an error message.

16-2 Wiring for CANopen

Use an external CANopen communication splitter box (MKCB-HUB01) for built-in CANopen wiring to connect CANopen to an MH300-L. The link uses an RJ45 cable. You must terminate the two farthest ends with 120Ω terminating resistors as shown in the picture below.

16-3 CANopen Communication Interface Descriptions

16-3-1 CANopen Control Mode Selection

There are two control modes for CANopen: the DS402 standard (Pr.09-40 set to 1) is the default, and the Delta's standard setting (Pr.09-40 set to 0). The following table shows the control mode definitions:

CANopen control mode	Control mode Speed		Operation control		Other	
	Index	Description	Index	Description	Index	Description
$\begin{gathered} \text { DS402 } \\ \text { Pr.09-40=1 } \end{gathered}$	6042-00	Target rotating speed (RPM)	6040-00	Operation Command	605A-00	Quick stop processing mode
	-----	-----	-----	-----	605C-00	Disable operation processing mode
Delta StandardPr.09-40=0	2060-03	Target rotating speed (Hz)	2060-01	Operation Command	-----	---
	-----	---	-----	--	--	---

You can use some indices in either DS402 or Delta's standard.
For example:

1. Indices that are defined as RO attributes.
2. The corresponding index of available parameter groups: (2000-00-200E-XX)
3. Accelerating/Decelerating Index: 604F 6050

16-3-2 DS402 Standard Control Mode

16-3-2-1 Related set up for an AC motor drive (following the DS402 standard)
If you want to use the DS402 standard to control the motor drive, follow these steps:

1. Wire the hardware (refer to Section 16-2 Wiring for CANopen).
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control.
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set DS402 for the control mode: Pr.09-40 = 1
5. Set the CANopen station: set the CANopen station (range 1-127, 0 is the disable CANopen slave function) with Pr.09-36. Note: set Pr.00-02 $=7$ to reset if the station number error CAdE or CANopen memory error CFrE appears.
6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: $1 \mathrm{M}(0), 500 \mathrm{~K}(1), 250 \mathrm{~K}(2), 125 \mathrm{~K}(3)$, $100 \mathrm{~K}(4)$ or $50 \mathrm{~K}(5)$).
7. Set the multiple input functions to Quick Stop. You can also choose enable or disable; the default setting is disabled. If it is necessary to enable the function, set MI terminal to 53 in one of the following parameters: Pr.02-01-02-07 or Pr.02-26-02-28. Note: This function is available in DS402 only.

16-3-2-2 The status of the motor drive (by following DS402 standard)
According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

3 blocks

1. Power Disable: without PWM output
2. Power Enable: with PWM output
3. Fault: one or more errors have occurred.

9 status

1. Start: power on
2. Not Ready to Switch On: the motor drive is initiating.
3. Switch On Disable: occurs when the motor drive finishes initiating.
4. Ready to Switch On: warming up before running.
5. Switch On: the motor drive has the PWM output, but the reference command is not effective.
6. Operation Enable: able to control normally.
7. Quick Stop Active: when there is a Quick Stop request, stop running the motor drive.
8. Fault Reaction Active: the motor drive detects conditions which might trigger error(s).
9. Fault: one or more errors have occurred in the motor drive.

When the motor drive turns on and finishes the initiation, it remains in Ready to Switch On status. To control the operation of the motor drive, change to Operation Enable status. To do this, set the control word's bit0-bit3 and bit7 of the Index 6040H and pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described below:

Index 6040

$15-9$	8	7	$6-4$	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

Index 6041

$15-14$	$13-12$	11	10	9	8	7	6	5	4	3	2	1	0
Reserved Operation	Internal limit active	Target reached	Remote Reserved	Warning	Switch on onsabled	Quick stop	Voltage enabled	Fault	Operation enable	Switch on	Ready to switch on		

Set command $6040=0 \times E$, and then set another command $6040=0 \times F$. Then you can switch the motor drive to Operation Enable. The Index 605A determines the direction of the lines from Operation Enable when the control mode changes from Quick Stop Active. When the setting value is $5-7$, both lines are active, but when the setting value of 605A is not $5-7$, once the motor drive is switched to Quick Stop Active, it is not able to switch back to Operation Enable.

Index	Sub	Definition	Default	R/W	Size	Unit	PDO Map	Mode	note
605Ah	0	Quick stop option code	2	RW	S16		No		0 : Disable drive function
									1: Slow down on slow down ramp
									2: Slow down on quick stop ramp
									5: Slow down on slow down ramp and stay in Quick Stop
									6: Slow down on quick stop ramp and stay in Quick Stop
									7: Slow down on the current limit and stay in Quick Stop

Chapter 16 CANopen Overview | MH300-L

When the control section switches from Power Enable to Power Disable, use 605C to define the stop method.

Index	Sub	Definition	Default	R/W	Size	Unit	PDO Map	Mode	note
605 Ch	0	Disable operation option code	1	RW	S16		No	0: Disable drive function 1:Slow down with slow down ramp; disable the drive function.	

16-3-2-3 Various mode control method (by following DS402 standard)

Speed mode:

1. Set MH300-L to speed control mode: set Index6060 to 2 .
2. Switch to Operation Enable mode: set $6040=0 x E$, and then set $6040=0 x F$.
3. Set the target frequency: set target frequency for 6042, since the operation unit of 6042 is rpm, a transform is required:

$$
\begin{array}{ll}
\mathrm{n}=\mathrm{f} \times \frac{120}{\mathrm{p}} & \begin{array}{l}
\mathrm{n}: \text { rotation speed (rpm) (rounds/minute) } \\
\mathrm{p}: \text { number of poles in the motor (Pole) } \\
\mathrm{f}: \text { rotation frequency }(\mathrm{Hz})
\end{array}
\end{array}
$$

For example:
Set $6042 \mathrm{H}=1500$ (rpm), if the number of poles is 4 (Pr.05-04 or Pr.05-16), then the motor drive's operation frequency is $1500(120 / 4)=50 \mathrm{~Hz}$. The 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter-clockwise.
4. To set acceleration and deceleration: use 604F (Acceleration) and 6050 (Deceleration).
5. Trigger an ACK signal: in the speed control mode, the bit 6-4 of Index 6040 needs to be controlled. It is defined below:

Speed mode (Index $6060=2$)

Index 6040			SUM
bit 6	bit 5	bit 4	
1	0	1	Locked at the current signal.
1	1	1	Run to reach targeting signal.
Other			Decelerate to 0 Hz.

NOTE 01: Read 6043 to get the current rotation speed (unit: rpm).
NOTE 02: Read bit 10 of 6041 to find if the rotation speed has reached the targeting value (0 : Not reached; 1: Reached).

16-3-3 By Using Delta Standard

16-3-3-1 Related set up for an AC motor drive
Follow the steps below:

1. Wire the hardware (refer to Section 16-2 Wiring for CANopen).
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control.
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set Delta Standard as the control mode: Pr.09-40 $=0$.
5. Set the CANopen station: set Pr.09-36; the range is between 1-127. When Pr.09-36 = 0, the CANopen slave function is disabled. Note: if an error appears (CAdE or CANopen memory error) as you complete the station setting, set Pr.00-02 $=7$ to reset.
6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: $1 \mathrm{M}(0), 500 \mathrm{~K}(1), 250 \mathrm{~K}(2), 125 \mathrm{~K}(3)$, $100 \mathrm{~K}(4)$ and $50 \mathrm{~K}(5))$.

16-3-3-2 Various mode control method

Speed Mode:

1. Set MH300-L to speed control mode: set index $6060=2$ or index 2060-02 $=0$.
2. Set the target frequency: set 2060-03, unit is Hz , with 2 decimal places. For example 1000 is 10.00 Hz .
3. Operation control: set $2060-01=008 \mathrm{H}$ for server on, and set $2060-01=0081 \mathrm{H}$ for running.

16-3-4 DI/DO AI are controlled through CANopen
To control the DO of the motor drive through CANopen, follow these steps:

1. Define the DO to be controlled by CANopen. For example, set Pr.02-13 $=50$ to control RY1.
2. To control DO, use control Index 2026-41. To set RY1 as ON, set bit 0 of Index 2026-41 = 1, then RY1 outputs 1. To control AFM output $=50.00 \%$, set Index $2026-\mathrm{A} 1=5000$, then AFM outputs 50%.

The following table shows the mapping of CANopen DI DO AI:
DI:

Terminal	Related Parameters	R/W	Mapping Index
MI 1	Pr.02-01	RO	$2026-01$ bit 2
MI 2	Pr.02-02	RO	$2026-01$ bit 3
MI 3	Pr.02-03	RO	$2026-01$ bit 4
MI 4	Pr.02-04	RO	$2026-01$ bit 5
MI 5	Pr.02-05	RO	$2026-01$ bit 6
MI 6	Pr.02-06	RO	$2026-01$ bit 7
MI 7	Pr.02-07	RO	$2026-01$ bit 8
MI 10	Pr.02-26	RO	$2026-01$ bit 10
MI 11	Pr.02-27	RO	$2026-01$ bit 11
MI 12	Pr.02-28	RO	$2026-01$ bit 12

DO:

Terminal	Related Parameters	R/W	Mapping Index
RY1	Pr.02-13 $=50$	RW	$2026-41$ bit 0
MO1	Pr.02-16 $=50$	RW	$2026-41$ bit 3
MO2	Pr.02-17 $=50$	RW	$2026-41$ bit 4
MO10 (RY10)		RW	$2026-41$ bit 5
MO11 (RY11)		RW	$2026-41$ bit 6
MO12 (RY12)		RW	$2026-41$ bit 7

AI:

Terminal	Related Parameters	R/W	Mapping Index
AVI	$==$	RO	Value of 2026-61
ACI	$==$	RO	Value of 2026-62
Al10	$==$	RO	Value of 2026-64
Al11	$==$	RO	Value of 2026-65

Chapter 16 CANopen Overview | MH300-L

16-4 CANopen Supporting Index

CANopen Remote IO mapping

Index	Sub	R/W	Definition
2026H	01h	R	Each bit corresponds to different input terminals.
	02h	R	Each bit corresponds to different input terminals.
	03h-40h	R	Reserved
	41h	RW	Each bit corresponds to different output terminals.
	42h-60h	R	Reserved
	61h	R	AVI (\%)
	62h	R	ACI (\%)
	63h	R	Reserved
	64h		Al10 (\%)
	65h		Al11 (\%)
	66h-A0h	R	Reserved
	A1h	RW	AFM (\%)

Index $2026-01$	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit8	bit9	bit10	bit11	bit12	bit13	bit14	bit15
1	MI1	MI2	MI3	MI4	MI5	MI6	MI7									
2											MI10	MI11	MI12			

1: Control broad I/O
2: Add external card, EMM-D3R2CA (D1022 = 9)

Index $2026-41$	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit8	bit9	bit10	bit11	bit12	bit13	bit14	bit15
1	RY1			MO1	MO2											
2						RY10	RY11									

1: Control broad I/O
2: Add external card, EMM-D3R2CA (D1022 = 9)

Delta Standard Mode

Index	sub	R/W	Size	Descriptions			Speed Mode
				bit	Definition	Priority	
2060h	00h	R	U8				
	01h	RW	U16	0	Ack	4	$\begin{aligned} & \text { 0: fcmd =0 } \\ & \text { 1: fcmd = Fset (Fpid) } \end{aligned}$
				1	Dir	4	0: FWD run command 1: REV run command
				2			
				3	Halt		0 : Drive runs until target speed is reached 1: Drive stops by declaration setting
				4	Hold		0 : Drive runs until target speed is reached 1: Frequency stop at current frequency
				5	JOG		0:JOG OFF Pulse 1: JOG RUN
				6	QStop		Quick Stop
				7	Power		0: Power OFF 1: Power ON
				14-8	Cmd SW		Multi-step frequency switching
				15			Pulse 1: Fault code cleared
	02h	RW	U16				
	03h	RW	U16				Speed command (unsigned decimal)
	04h	RW	U16				
	05h	RW	S32				
	06h	RW					
	07h	RW	U16				
	08h	RW	U16				
2061h	01h	R	U16	0	Arrive		Frequency reached
				1	Dir		0: Motor FWD run 1: Motor REV run
				2	Warn		Warning
				3	Error		Error detected
				4			
				5	JOG		JOG
				6	QStop		Quick stop
				7	Power ON		Switch ON
				15-8			
	02h	R					
	03h	R	U16				Actual output frequency
	04h	R					
	05h	R	S32				Actual position (absolute)
	06h	R					
	07h	R	S16				Actual torque

Chapter 16 CANopen Overview | MH300-L

DS402 Standard

Index	Sub	Definition	Default	R/W	Size	Unit	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	Mode	Note
6007h	0	Abort connection option code	2	RW	S16		Yes		0: No action
									2: Disable voltage
									3: Quick Stop
603Fh	0	Error code	0	R0	U16		Yes		
6040h	0	Control word	0	RW	U16		Yes		
6041h	0	Status word	0	R0	U16		Yes		
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl	
6043h	0	v velocity demand	0	RO	S16	rpm	Yes	vl	
6044h	0	vl control effort	0	RO	S16	rpm	Yes	vl	
604Fh	0	vl ramp function time	10000	RW	U32	1 ms	Yes	vl	Unit must be 100 ms , and check if the setting is 0 .
6050h	0	vi slow down time	10000	RW	U32	1 ms	Yes	vl	
6051h	0	vl quick stop time	1000	RW	U32	1 ms	Yes	vl	
605Ah	0	Quick stop option code	2	RW	S16		No		0 : Disable drive function
									1: Slow down on slow down ramp
									2: Slow down on quick stop ramp
									5: Slow down on slow down ramp and stay in QUICK STOP
									6: Slow down on quick stop ramp and stay in QUICK STOP
605Ch	0	Disable operation option code	1	RW	S16		No		0 : Disable drive function 1: Slow down with slow down ramp; disable the drive function
6061h	0	Mode of operation display	2	RO	S8		Yes		Same as above

16-5 CANopen Fault Codes

(1) Display error signal
(2) Abbreviation for error code

The code displays as shown on KPMH-LC01
(3) Display error description

* Refer to settings for Pr.06-17-Pr.06-22.

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
1		0001H	Over-current during acceleration	1	2213H
2	Fault \quad Hand ocd Oc at decel	0002H	Over-current during deceleration	1	2213H
3	FaultHaND ocn Oc at normal SPD	0003H	Over-current during steady operation	1	2214H
4	Fault \quad GAND GFF Ground fault	0004H	Ground fault. When one of the output terminal(s) is grounded, the short circuit current is more than 50% of the AC motor drive rated current. Note: the short circuit protection is provided for the AC motor drive protection, not to protect you.	1	2240H
6	Fault ocS Oc at stop	0006H	Over-current at stop. Hardware failure in current detection.	1	2214H
7	ovA Ov at accel	0007H	Over-current during acceleration. Hardware failure in current detection.	2	3210 H
8	Fault ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	2	3210 H

Chapter 16 CANopen Overview | MH300-L

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
9	Fault ovn Ov at normal SPD	009H	DC BUS over-voltage at constant speed.	2	3210 H
10	Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in voltage detection.	2	3210 H
11	Fault LvA Lv at accel	000BH	DC BUS voltage is less than Pr.06-00 during acceleration.	2	3220 H
12	Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr.06-00 during deceleration.	2	3220 H
13	Fault Lvn Lv at normal SPD	000DH	DC BUS voltage is less than Pr.06-00 at constant speed.	2	3220 H
14	Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop.	2	3220 H
15	Fault \quad HaND OrP Phase Lacked	000FH	Phase loss protection	2	3130 H
16	HAND Fault oH1 IGBT over heat	0010H	IGBT is overheated above the protection level.	3	4310H
18	Fault HaND tH1o Thermo 1 open	0012H	IGBT over-heating protection error	3	FFOOH

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
21	Fault oL Inverter oL	0015H	Overload; the AC motor drive detects excessive drive output current.	1	2310 H
22	Fault \quad EoL1 ThaND Thermal relay 1	0016H	Electronic thermal relay 1 protection	1	2310H
26	Fault \quad HaNo ot1 Over torque 1	001AH	When the output current exceeds the over-torque detection level (Pr.06-07) and also exceeds Pr.06-08; when Pr.06-06 is set as 1 or 3 , the keypad displays a warning without an error record; when Pr.06-06 is set as 2 or 4, it displays an error, stops running and displays an error record.	3	8311H
28	Fault \quad uC UAND Under torque 1	001CH	Low current detection	1	8321H
31	Fault \quad hand cF2 EEPROM read Err	001FH	Cannot read internal EEPROM.	5	5530 H
33	Fault \quad hand cd1 las sensor Err	0021H	U-phase current error	1	FF04H
34	Fault \quad Hano Cd2 2 Ibs sensor Err	0022H	V-phase current error	1	FF05H
35		0023H	W-phase current error	1	FF06H

Chapter 16 CANopen Overview | MH300-L

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
36		0024H	CC (current clamp) hardware error	5	FF07H
37		0025H	OC hardware error	5	FF08H
40	Fault hañ AUE Auto tuning Err	0028H	Motor parameters auto-tuning error	1	FF21H
48		0030H	ACI loss	1	FF25H
49	Fault EF ExaNo External Fault	0031H	External Fault; when the multi-function input terminal (EF) is active, the AC motor drive stops output.	5	9000 H
50	Fault \quad HaND Em1 Emergency stop	0032H	Emergency stop; when the multi-function input terminal (EF1) is active, the AC motor drive stops output.	5	9000 H
51	Fault \quad HaND bb Base block	0033H	External Base Block; when the multi-function input terminal (B.B.) is active, the AC motor drive stops output.	5	9000 H
52	Fault HaND Pcod Password Error	0034H	Keypad is locked after you enter the wrong password three times.	5	FF26H
54	Fault cE1 Modbus CMD err	0036H	Modbus function code error (illegal function code)	4	7500H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
55	Fault cE2 Modbus ADDR err	0037H	Modbus data address error [illegal data address ($00 \mathrm{H}-254 \mathrm{H}$)]	4	7500H
56	Fault \quad cE3 Modbus DATA err	0038H	Modbus data error (illegal data value)	4	7500H
57	Fault \quad cE4 Modbus slave FLT	0039H	Modbus communication error (data is written to read-only address)	4	7500H
58	Fault cE10 Modbus time out	003AH	Modbus transmission time-out	4	7500H
59	Fault CP1 Keypad Time Out	003BH	Keypad transmission time-out	4	7500H
61	Fault ydc Y-delta connect	003DH	Y-connection / Δ-connection switch error	2	3330 H
62	$\begin{aligned} & \text { Fault } \quad \text { dEb } \\ & \text { Dec. Energy back } \end{aligned}$	003EH	Energy regeneration when decelerating	2	FF27H
63	Fault oSL Over slip Error	003FH	Motor slip exceeds Pr.07-29 setting and exceeds Pr.07-30 time setting.	7	FF28H
72	Fault STL1 STOND STO Loss 1	0048H	S1-DCM internal loop detection error	5	FF30H

Chapter 16 CANopen Overview | MH300-L

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
74	Fault MCF Control Fail	004AH	Electromagnetic valve error	5	FF2FH
75	Fault MBF Mech. Brake Fail	004BH	Mechanical brake error	5	7110H
76		004CH	Safe Torque Off function active	5	FF31H
77	Fault STL2 STO Loss 2	004DH	S2-DCM internal loop detection error	5	FF32H
78	 Fault STL3 STO Loss 3	004EH	S1-DCM \& S2-DCM internal loop detection error	5	FF33H
79	Fault Aond U phase oc	0050H	U-phase short circuit	1	FF2BH
80	Fault hano boc phase oc	0051H	V-phase short circuit	1	FF2CH
81	Fault \quad coc Whano Whase oc	0050H	W-phase short circuit	1	FF2DH
82	Fault oPL1 U phase lacked	0052H	Output phase loss 1 (Phase U)	2	2331H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
83		0053H	Output phase loss 2 (Phase V)	2	2332H
84	Fault oPL3 W phase lacked	0054H	Output phase loss 3 (Phase W)	2	2333H
87	Fault oL3 Derating Error	0057H	Over-load protection at low frequency	0	8A00H
101	Fault \quad CGdE Guarding T-out	0065H	CANopen guarding error	4	8130H
102	Fault $\mathrm{CHbE}^{\text {HaND }}$ Heartbeat T-out	0066H	CANopen heartbeat error	4	8130H
104	Fault CbFE CAN/S bus off	0068H	CANopen bus off error	4	8140H
105	FaultCIdE CAND CAN Idx exceed	0069H	CANopen index error	4	8100 H
106	Fault ${ }^{\text {CAdE }}$ CAN/S add. set	006AH	CANopen station address error	4	8100H
107	Fault CFrE CAN/S FRAM fail	006BH	CANopen memory error	4	8100 H

Chapter 16 CANopen Overview | MH300-L

Setting*	Display	Fault code	Description	CANopen fault register (bit 0-7)	CANopen fault code
111	NHㅜㅜㅇ Fault letE IncCOM Time Out	006FH	InrCOM internal communication special error code	4	7500H
127	Fault \quad CP33 CP 33	0081H	Firmware version error	7	FF3CH
140	Fault Hd6 GFF HW error	008EH	GFF detected at power on	1	2240 H
141	Fault BG FF BeforeRUN GFF	0090H	GFF occurs before running	1	2240 H
142	Fault AUE1 Auto tuning Err1	0091H	Auto-tune error 1 (in DC test stage)	1	FF3DH
143	Fault haNo AUE2 Auto tuning Err2	0092H	Auto-tune error 2 (high frequency test stage)	1	FF3EH
144	Fault AUE3 Auto tuning Err3	0093H	Auto-tune error 3 (rotary test stage)	1	FF3FH

16-6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.

RUN LED:

ERR LED:

LED status	Condition / Status
OFF	No Error
Single flash	One Message failure
Double flash	Guarding failure or heartbeat failure
Triple flash	SYNC failure
ON	Bus off

[This page intentionally left blank]

Chapter 17 PLC Function Applications

17-1 PLC Summary
17-2 Notes Before Using a PLC
17-3 Turn on
17-4 Basic Principles of PLC Ladder Diagrams
17-5 Various PLC Device Functions
17-6 Introduction to the Command Window
17-7 Error Display and Handling
17-8 Explanation of PLC Speed Mode Control
17-9 Count Function Using Pulse Input

17-1 PLC Summary

17-1-1 Introduction

The commands provided by the MH300-L built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the use of basic commands and application commands, follow the operating methods of Delta's PLC DVP series.

17-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's software program for the DVP and MH300-L programmable controllers in Windows operating system environment. In addition to general PLC program design and general Windows editing functions (such as cut, paste, copy, and multiple windows), WPLSoft also provides many features such as Chinese/English annotation editing, registry editing, settings, file reading, saving, and contact graphic monitoring and settings.

Table 17-1 lists the basic requirements for installing the WPLSoft editing software:

Item	System requirements
Operating system	Windows $^{\circledR}$ XP / Vista / 7 (32-bit / 64-bit) / 8/10 (64-bit)
CPU	At least Pentium 90
Memory	At least 16 MB (it is recommend at least 32 MB)
Hard drive	Hard drive capacity: at least 100 MB of free space One optical drive (to install this software)
Display	Resolution: 640×480, at least 16 colors; it is recommended that the screen area be set at 800×600 pixels.
Mouse	Ordinary mouse or Windows-compatible pointing device
Printer	Printer with Windows driver software
RS-485 port	Must have at least an RS-485 port to link to the PLC
USB port	The USB port on the drive can be connected to the PLC

Table 17-1

17-2 Notes Before Using a PLC

1. The MH300-L provides two communication serial ports that you can use to download programs to the PLC (see Figure 17-1 below).
2. Channel 1 (USB port) communication format is the same as channel 2.
3. Channel 2 has a preset communication format of $7, \mathrm{~N}, 2,9600$; you can change to ASClI in Pr.09-01 (transmission speed) and Pr.09-04 (communication protocol).
4. The PLC preset is node 2; you can change the PLC node in Pr.09-35 (PLC address), but this address may not be the same as the drive's address setting in Pr.09-00 (communication address).

Figure 17-1
5. The host controller can simultaneously access data from the drive and the internal PLC, using the identifier for the node. For instance, if the drive node is 1 and the internal PLC node is 2 , then the host controller command depends on the node address:

- 01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in drive Pr.04-00.
- 02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0.

6. The PLC program is disabled when uploading/downloading programs.
7. Note that when using WPR commands to write parameters, you may modify values up to a maximum of 10^{9} times; otherwise, a memory write error occurs. The number of modifications depends on whether the parameter value has changed. If you do not change the value, it does not change the number of modifications; however, if the entered value is different from before, the number of modifications increases by one.
8. In the PLC Run and PLC Stop mode, you cannot set Pr.00-02 to the values 9 or 10, and cannot be
reset to the default value.
9. You can reset the PLC to the default value when you set Pr.00-02 to 6 .
10. The corresponding MI function is disabled when the PLC writes to input contact X.
11. When the PLC controls the drive operation, the control commands are entirely controlled by the PLC and are not affected by the setting for Pr.00-21.
12. When the PLC controls the drive's Frequency commands (FREQ commands), the Frequency commands are entirely controlled by the PLC, and are not affected by the setting for Pr.00-20 or the HAND ON/OFF configuration.
13. When the PLC controls the drive operation, if the keypad STOP setting is valid, this triggers an FStP error and causes the drive to stop.

17-3 Turn on

17-3-1 Connect the Drive to the PC

You start operating the PLC functions with the following steps:
After pressing the MENU key and choosing 4: PLC on the KPC-CC01 digital keypad (optional), press the ENTER key (see Figure 17-3 below).

Figure 17-3

1. Wiring: Connect the drive's RJ45 communication interface to a PC through the RS-485 cable.

Figure 17-4
2. PLC function usage

Digital keypad KPC-CC01 (optional)

PLC functions are as shown in Figure 17-5 on the left; select item 2 PLC Run to enable the PLC functions.
1: No function (Disable)
2: Enable PLC (PLC Run)
3: Stop PLC functions (PLC Stop)
Figure 17-5

Digital keypad (KPMH-LC01)

Select PLC1 to enter PLC mode setting.
PLC 0: Do not implement PLC functions
PLC 1: Initiate PLC Run
PLC 2: Initiate PLC Stop

Figure 17-6

■ The MH300-L automatically switches to PLC mode when the external multifunctional input terminals (MI1-MI7) are in PLC Mode selection bit 0 (51) or PLC Mode selection bit1 (52), and the terminal contact is closed or open. In this case, keypad switching is ineffective. The corresponding actions are listed in the following table.

PLC mode		PLC Mode selection	PLC Mode selection
Using KPC-CC01 (optional)	Using KPMH-LC01	bit1 (52)	b1)
Disable	PLC 0	OFF	OFF
PLC Run	PLC 1	OFF	ON
PLC Stop	PLC 2	ON	OFF
Maintain previous state	Maintain previous state	ON	ON

Table 17-2
Using the MH300-L digital keypad to implement the PLC functions
\square When the PLC screen switches to the PLC1 screen, this triggers one PLC action, and you control the PLC program start/stop by communications with WPLSoft.
\square When the PLC screen switches to the PLC2 screen, this triggers one PLC stop, and you control the PLC program start/stop by communications with WPLSoft.
$\square \quad$ The external terminal control method is the same as shown in Table 17-2 above.

NOTE

■ When the input/output terminals (MI1-MI7 Relay MO) are included in the PLC program, these input/output terminals are used only by the PLC. For example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (RA/RB/RC) operates according to the program. At this time, the multifunctional input/output terminal setting has no effect. Because these terminal functions are already being used by the PLC, you can determine the DI / DO / AO in use by the PLC by looking at Pr.02-52, 02-53, and 03-30.

- When the PLC's procedures use special register D1040, the corresponding AO contact AFM is occupied.
- Pr.03-30 monitors the state of action of the PLC function analog output terminals; bit 1 corresponds to the AFM action state.

17-3-2 I/O device explanation
Input devices:

Serial No.	X 0	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 10	X 11	X 12	X 13	X 14	X 15	X 16	X 17
$\mathbf{1}$	MI 1	MI 2	MI 3	$\mathrm{MI4}$	MI 5	$\mathrm{MI6}$	$\mathrm{MI7}$									
$\mathbf{2}$											MI 10	MI 11	MI 12			

1: Control I/O
2: Extension card EMM-D3R2CA (D1022=9)

Output devices:

Serial No.	Y 0	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 10	Y 11	Y 12	Y 13	Y 14	Y 15	Y 16	Y 17
$\mathbf{1}$	RY 1			MO 1	MO 2											
$\mathbf{2}$						RY 10	RY 11									

1: Control I/O |
2: Extension card EMM-D3R2CA (D1022=9)

RY1 / RY2 / RY3

RY10 / RY11 / RY12

Figure 17-7

17-3-3 Installing WPLSoft

See Delta's website where you can download the WPLSoft editing software:
http://www.delta.com.tw/product/em/download/download main.asp?act=3\&pid=3\&cid=1\&tpid=3
After you install WPLSoft, the WPLSoft program is located in the folder "C:IProgram FilesIDelta Industrial AutomationIWPLSoft x.xx".

17-3-4 Writing programs in WPLSoft

STEP 1:

You can run the editing software by double-clicking the WPL icon.

Figure 17-8
STEP 2 :
The WPL editing window appears after three seconds. When running WPLSoft for the first time, before you create a new project file, the menu bar shows only File, View, Communication, Options, and Help menus.

Figure 17-9

∇ NOTE

The next time you run WPLSoft, the program opens the last project file you edited. Figure 17-10 describes the main parts of the WPLSoft editing window.

Figure 17-10

STEP 3:

To open a new project file, on the Toolbar, click the New \square button (or press Ctrl+N).

Figure 17-11
\# NOTE
Alternatively, on the File menu, click New (Ctrl+N).

Figure 17-12

STEP 4:

This displays the Select a PLC Model dialog box where you can enter the Program Title, File Name, and select the device and communication settings.

Figure 17-13

In the Communication Setting dialog box, define the communication settings and then click OK.

Figure 17-14

\square NOTE

You must select RS232 for the type of connection setup in the Communication Setting dialog box when using USB to connect the motor drive (MH300-L series).

STEP 5:
You can then begin editing the program. There are two program editing methods: you can edit in the command mode, or edit in the ladder diagram mode.

Figure 17-15

| \quad Note

In the ladder diagram mode, you use the buttons on the function icon row on the toolbar.

Figure 17-16

Basic Operation

Example: Create the ladder diagram in the following picture.

Figure 17-17
Use the following steps to create the ladder diagram. These steps show you how to use both the mouse and the keyboard (F1-F12) to add functions.

1. The following picture shows the WPLSoft program after you create a new project file.

Figure 17-18
2. Add an always-open switch. On the toolbar click the always-open switch button 㷁 or press F1.

Figure 17-19

In the Input Device Instruction dialog box, select the device name (such as M), device number (such as 10) and enter comments (such as auxiliary coil). Click OK when finished.

Figure 17-20
3. Add an output coil. Click the output coil button ${ }^{\text {I T T }}$ or press F7.

In the Input Device Instruction dialog box, select the device name (such as \mathbf{Y}), the device number (such as $\mathbf{0}$) and enter comments (such as output coil).Click OK when finished.

Figure 17-21

Figure 17-22
4. Press Enter, and Input Instruction box appears. In the Input Instruction box, select END, or use the keyboard to type "END", and then click OK, as shown in Figure 17-23 and Figure 17-24.

Figure 17-23

Figure 17-24
5. Compile the program. On the toolbar, click the Compile button to compile the edited ladder diagram into a command program. After compiling, the number of rungs appear on the left side of the busbar.

Figure 17-25

17-3-5 Program download

After you compile your program, download it to the device. Click the Download button \boldsymbol{H}. WPLSoft downloads the program to the online PLC in the communication format that you specified for the communication settings.

17-3-6 Program monitoring

After you download the program, confirm that the PLC is in Run mode. On the Communication menu, click Online Mode , and then click Start Ladder Diagram Control (as shown in Figure 17-26). This allows you to supervise and operate the ladder diagram while online.

Figure 17-26

17-4 Basic Principles of PLC Ladder Diagrams

17-4-1 Schematic diagram for PLC ladder diagram program scanning

Output results are calculated on the basis of the ladder diagram configuration
(internal devices have real-time output before results are sent to an external output point)

Figure 17-27

17-4-2 Introduction to ladder diagrams

Ladder diagrams use a graphic language widely applied in automatic controls. They employ common electrical control circuit symbols. After you use a ladder diagram editor to create a ladder diagram program, the PLC program design is complete. Using a graphic format to control processes is very intuitive and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram mimic common electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as the conventional electrical control circuit elements (such as relays, coils, and contacts), a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1 , this may indicate that a coil is electrified; and if that bit is 0 , it indicates that the coil is not electrified. You can use a N.O. contact (Normally Open, or contact A) to directly read the value of the corresponding bit, and use a N.C. contact (Normally Closed, or contact B) to get the inverse of the bit's value. Multiple relays occupy multiple bits, and eight bits comprise one byte. Two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (as in addition/subtraction or displacement), it can use a byte, a word, or a double word. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process numerical values, these values are usually in the form of bytes, words, or double words (internally in the PLC).

The various internal devices in a PLC use a certain amount of memory in the PLC's storage area. When
you use these devices, the content of the corresponding storage area is read in the form of bits, bytes, or words.

The following table describes the internal devices in a PLC

Device Type	Description of Function
Input Relay	An input relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external input point. It serves as a terminal connecting with an external input switch and receiving external input signals. It is driven by external input signals, to which it assigns values of 0 or 1 . A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay. You cannot use WPLSoft to manually perform ON/OFF actions. You can use a relay's contacts (contacts A and B) an unlimited number of times in a program. An input relay with no input signal must be left idle and cannot be used for some other purpose. \square Input devices are indicated by X0, X1, X7, X10, X11, and so on. These devices are indicated with the symbol X, and a device's order is indicated with an octal number. Input point numbers are indicated in the main PLC and in extension devices.
Output Relay	An output relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external output point. It connects with an external load. It can be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one N.O. contact to connect with external loads or other contacts, and like the input contacts, you can use the output relay's contacts an unlimited number of times in a program. An output relay with no input signal is idle, but can be used by an internal relay if needed. $\square \quad$ Output devices are indicated by $\mathrm{Y} 0, \mathrm{Y} 1, \mathrm{Y} 7, \mathrm{Y} 10, \mathrm{Y} 11$, and so on. These devices are indicated with the symbol Y , and a device's order is indicated with an octal number. Output point numbers are indicated in the main PLC and in extension devices.
Internal Relay	Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponds to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. You can use an internal auxiliary relay's contacts an unlimited number of times in a program. Internal relays have no outputs to the outside, and their status must output through an output point. च Internal relay devices are indicated by: M0, M1-M799, and so on. These devices are indicated with the symbol M , and the device's order is indicated with a decimal number.
Counter	Counters perform counting operations. The setting value for a counter (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from OFF ON, this indicates that the counter receives an input pulse, and adds one to its count. There are 16 bits available in the counter. $\square \quad$ Counter device are indicated by: C0, C1-C79, and so on. These devices are indicated by the symbol C, and the device's order is indicated with a decimal number.
Timer	Timers perform timing for operations. The timer contains a coil, contact, and a time value register. When the coil is electrified, and the setting value for the timer is reached, the contact is actuated (contact A closes, contact B opens), and the timer's fixed value is given by the setting value. A timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact is no longer be actuated (contact A opens, contact B closes), and the original timing value returns to zero. च Timer devices are indicated by: T0, T1-T159, and so on. These devices are indicated by the symbol T , and the device's order is indicated with a decimal number.
Data Register	Data registers are used exclusively to store data and various parameters. When you use a PLC is to perform various types of sequence control, set time values, and count value controls, the PLC performs data processing and numerical operations and stores the operands, parameters, and results in data registers. Each data register contains 16 bits of binary data (one word). Two data registers with adjacent numbers can process double words. \square Data register devices are indicated by: D0, D1-D399, and so on. These devices are indicated by the symbol D, and the device's order is indicated with a decimal number.

Ladder diagram images and explanations
See the Section 17-4-2 "Introduction to ladder diagrams" for descriptions of devices.

Ladder diagram	Explanation of commands	Command	Using Device

Table 17-6

17-4-3 Overview of PLC ladder diagram editing

The program editing method in WPLSoft begins from the left busbar and proceeds to the right busbar (the right busbar is not visible in WPLSoft). Continue to the next row after completing each row; there are a maximum of 11 contacts on each row. If this is not sufficient, WPLSoft generates a continuous line to indicate the continued connection, so that you can add more devices. A continuous series of numbers is generated automatically and you can use identical input points repeatedly (as shown in Figure 17-28).

Figure 17-28
The PLC scans a ladder diagram programs from the upper left corner to the lower right corner. The coils and application command computing box are handled in the output, and in ladder diagram are placed on the farthest right of a rung. Taking Figure 17-29 below as an example, we can analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.
Explanation of command sequence

Figure 17-29

Chapter 17 PLC Function Applications | MH300-L

Explanation of basic structure of ladder diagrams
LD (LDI) command: an LD or LDI command appears at the start of a block. See Figure 17-30.

Figure 17-30

LDP and LDF use this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact (see Figure 17-31).

Figure 17-31

AND (ANI) command: a series configuration in which a single device is connected with one device or a block. See Figure 17-32.

Figure 17-32

ANDP, ANDF use this structure, but their action occurs at the rising and falling edge of a conducting contact.

OR (ORI) command: a single device is connected with one device or a block. See Figure 17-33.

Figure 17-33

\square NOTE

ORP, ORF use this structure, but their action occurs at the rising and falling edge of a conduction contact.

ANB command: a configuration in which one block is in series with one device or block. See Figure 17-34.

Figure 17-34

ORB command: a configuration in which one block is in parallel with one device or block. See Figure 1735.

Figure 17-35

D Note

In the case of ANB and ORB operations that connect a number of blocks, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: branching point memory for multiple outputs that enable multiple different outputs. The MPS command begins at a branching point, which refers to the intersection of horizontal and vertical lines. Control relies on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when editing a ladder diagram. You can use the structure of the ladder diagram to judge what kinds of contact memory commands are used.
MPS is indicated by use of the \rceil symbol. You can use this command consecutively up to eight times.
The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other parts of the ladder diagram, the original contact status must be read. MRD is indicated by the $卜$ symbol.
The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop operation); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded. MPP is indicated by the L symbol.
Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in Figure 17-36.

Figure 17-36

17-4-4 Common basic program design examples

Start, stop, and protection circuits

Some applications may require a brief close or brief break using a button to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations. This protective circuit may employ one of the following methods.

Example 1: Priority stop protective circuit
When the start N.O. contact $\mathrm{X} 1=\mathrm{ON}$, and the stop N.C. contact $\mathrm{X} 2=O F F, Y 1=O N$. If X 2 switches to ON , coil Y 1 is no longer electrified, and this is therefore referred to as priority stop. See Figure 17-37.

Figure 17-37

Example 2: Priority start protective circuit
When the start N.O. contact $\mathrm{X} 1=\mathrm{ON}$, and the stop N.C. contact $\mathrm{X} 2=\mathrm{OFF}, \mathrm{Y} 1=\mathrm{ON}$, and coil Y 1 is electrified and protected. If X2 switches to ON , coil Y 1 still protects the contact and continues to be electrified, and this is therefore referred to as priority start. See Figure 17-38.

Figure 17-38

Example 3: Setting (SET) and reset (RST) command protective circuit
Figure 17-39 shows a protective circuit composed of RST and SET commands.

- A priority stop occurs when you place the RST command after the SET command. Because the PLC executes programs from the top down, at the end of the program the state of Y1 indicates whether coil Y1 is electrified. When X1 and X2 both actuate, Y1 loses power, and this is therefore referred to as priority stop.
- A priority start occurs when you place the SET command after the RST command. When X 1 and X 2 both actuate, Y 1 electrifies, and this is therefore referred to as priority start.

Top priority of stop

Top priority of start

Figure 17-39

Commonly-used control circuits

Example 4: Conditional control
X 1 and X 3 respectively start and stop Y 1 ; and X 2 and X 4 respectively start and stop Y 2 . All have protective circuits. Because Y1's N.O. contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y 2 . The action of Y 1 is therefore a condition for the action of Y2, and Y1 must actuate before Y2 can actuate. See Figure 17-40.

Example 5: Interlocking control

Figure 17-41 shows an interlocking control circuit. Depending on which of the start contacts X 1 or X 2 becomes valid first, the corresponding output Y 1 or Y 2 actuates, and when one actuates, the other does not actuate. Y1 and Y2 cannot actuate at the same time (interlocking effect). Even if both X 1 and X 2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y 1 and Y 2 to actuate at same time. This ladder
diagram assigns priority only to Y 1 .

Figure 17-41

Example 6: Sequence control
If the N.C. contact of $Y 2$ in the interlocking control configuration from example 5 is put in series with the Y 1 circuit, to create an AND condition for actuation of Y 1 (see Figure 17-42), not only is Y 1 a condition for the actuation of Y 2 in this circuit, but the actuation of Y 2 also stops the actuation of Y 1 . This configuration confirms the actuation order of Y 1 and Y 2 .

Figure 17-42

Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T+\Delta T$
Figure 17-43 shows a very simple ladder diagram. When starting to scan the Y1 N.C. contact, because the Y 1 coil has lost power, the Y 1 N.C. contact is closed. When the Y 1 coil is then scanned, it is electrified, and the output is 1 . When the Y 1 N.C. contact is scanned in the next scanning cycle, because the Y1 coil is electrified, the Y1 NC contact is open, the Y1 coil then loses power, and the output is 0 . Following repeated scanning, the output of Y 1 coil has an oscillating waveform with a period of $\Delta T(O N)+\Delta T(O F F)$.

Figure 17-43

Oscillating circuit with a period of $n T+\Delta T$
The ladder diagram (Figure 17-44) shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which causes the output from Y 1 to oscillate as shown in the diagram below. The constant n is the timer's decimal setting value, and T is the clock cycle of the timer.

Figure 17-44

Example 8: Flashing circuit

Figure 17-45 shows an oscillating circuit of a type commonly used to cause an indicator to flash or a buzzer to buzz. It uses two timers to control the ON and OFF time of Y1 coil. Here constants n 1 and n 2 are the setting values of timers T 1 and T 2 , and T is the clock cycle of the timer.

Figure 17-45

Example 9: Triggering circuit
In Figure 17-46, a rising edge in input $X 0$ causes coil $M 0$ to generate a single pulse for ΔT (length of one scanning cycle), and coil Y 1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and N.C. contact M0 and N.C. contact Y 1 are both closed. This causes coil Y 1 to stay in an electrified state until there is another rising edge in input X 0 . This again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, and so on. You can see the sequence of these actions in the figure below. This type of circuit is commonly used to enable one input to perform two alternating actions. You can see from the time sequence in the diagram below that when input XO is a square wave signal with a period of T , the output of coil Y 1 is a square wave signal with a period of 2 T .

Figure 17-46
Example 10: Delay circuit
When input X 0 is ON , because the corresponding NC contact is OFF, the timer T10 is in a no power state, and output coil Y 1 is electrified. T 10 receives power and begins to count the time only after input X 0 is OFF, and output coil Y 1 is delayed for 100 seconds $(\mathrm{K} 1000 * 0.1 \mathrm{sec} .=$ 100 sec .) before losing power. You can see the sequence of actions in Figure 17-47.

Figure 17-47
Example 11: The open/close delay circuit is composed of two timers; output Y 4 has a delay no matter input XO is ON or OFF. See Figure 17-48.

Figure 17-48
Example 12: Extended timing circuit
In the circuit in the ladder diagram (Figure 17-49) on the left, the total delay time from the moment input X 0 closes to the time output Y 1 is electrified is $(\mathrm{n} 1+\mathrm{n} 2)^{\star} \mathrm{T}$, where T is the clock cycle. The timers are T11 and T12, and the clock cycle is T.

Figure 17-49

17-5 Various PLC Device Functions

Item	Specifications	Notes
Algorithmic control method	The program is stored internally, alternating back-and-forth scanning method.	
Input/output control method	When the scan starts again after ending (after execution to the END command), the input/output is immediately refreshed.	
Algorithmic processing speed	Basic commands (several μs s)	Application command (1 to several tens of $\mu \mathrm{s})$
Programming language	Command + ladder diagram	
Program capacity	5000 steps Input/output terminal	Digital input (X): 7, digital output (Y): 3 Analog input AI: 2, analog output AO: 1

Table 17-7

Type	Device	Item		Range		Function
	X	External input relay		X0-X17, 16 points, octal number	Total 32 points	Corresponds to external input point
	Y	External output relay		Y0-Y17, 16 points, octal number		Corresponds to external output point
		Auxiliary Relay	General Use	M0-M799, 800 points	Total 1080 points	Contact can switch ON/OFF within the program
	M		Special purpose	M1000-M1279, 280 points		
	T	Timer	100 ms timer	T0-T59, 160 points	$\begin{gathered} \text { Total } \\ 160 \\ \text { points } \end{gathered}$	Timers referred to by the TMR command; T contact with the same number switches ON when the time is reached.
	C	Counter	16-bit counter, general use	C0-C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number switches ON when the count is reached.
	T	Current timer value		T0-T159, 160 points		The contact switches ON when the time is reached.
	C	Current counter value		C0-C79, 16-bit counter 80 points		The counter contact switches ON when the count is reached.
	D	Data Register	Used to maintain power OFF	D0-D99, 100 points	$\begin{aligned} & \text { Total } \\ & 1020 \end{aligned}$	Used as data storage memory
			Special purpose	D100-D399, 300 points D1000-D1619, 620 points	points	
Constant	K	Decimal	Single-byte	Setting Range: K-32,768-K32,767		
			Double-byte	Setting Range: K-2,147,483	,648-K	2,147,483,647
	H	Hexadecimal	Single-byte	Setting Range: H0000-HFFFF		
			Double-byte	Setting Range: H00000000-HFFFFFFFF		
Serial communications port (program write/read)				RS-485/USB/keypad port		
Input/output				Two built-in analog inputs and one analog output		
High-speed counting				One built-in (MI7 or MI6+MI7) 32-bit high-speed counter		
Function extension module			Optional Accessories	EMM-D3R2CA		
Communication extension module			Built-in	CANopen (slave)		
			Optional Accessories			

Table 17-8

17-5-1 Introduction to device functions

Input/output contact functions

Input contact X has this function: input contact X is connected with an input device, and reads input signals entering the PLC. There are no restrictions on the number of times that the input contact A or B appear in the program. The ON/OFF state of input contact X changes as the input device switches between ON and OFF; you cannot use a peripheral device (WPLSoft) to force contact X ON or OFF.

Output contact Y functions

The output contact Y sends an ON/OFF signal to drive the load connected to output contact Y . There are two types of output contacts: relays and transistors. There are no restrictions on the number of times that contact A or B of an output contact Y appear in a program, but it is recommended that you use the number of output coil Y only once in a program; otherwise the output state when the PLC performs program scanning is determined by the program's final output Y circuit.

The output of $Y O$ is decided by circuit (2). that is, decided by ON/OFF of X10.

Figure 17-50

Numerical value, constant [K]/[H]

Constant	Single-byte	K	Decimal	K-32,768-K32,767
	Double-byte			K-2,147,483,648-K2,147,483,647
	Single-byte	H	Hexadecimal	H0000-HFFFF
	Double-byte			H00000000-HFFFFFFFFF

Table 17-9
The PLC uses five types of numerical values to implement calculations based on its control tasks; the following topics explain the use and function of the different numerical types.

Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Table 17-10 below explains terms related to binary numbers.

bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0.
Nibble	Comprised of a series of four bits (such as b3-b0); can be used to express a one- nibble decimal number 0-9 or hexadecimal number 0-F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a hexadecimal number with four nibbles: $0000-$ FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a hexadecimal number with eight nibbles: $00000000-F F F F F F F F$

The following diagram shows the relationship between bits, digits, nibbles, words, and double words in a binary system (see Figure 17-51).

Figure 17-51

Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers.
Example: External input: $\mathrm{X} 0-\mathrm{X7}, \mathrm{X} 10-\mathrm{X} 17 \ldots$...(Device number table)
External output: Y0-Y7, Y10-Y17...(Device number table)

Decimal Number, DEC

A PLC uses decimal numbers for the following purposes:
$\boxtimes \quad$ The setting values of timer T or counter C, such as TMR C0 K50 (K constant).
\square The numbers of devices including M, T, C, or D, such as M10 or T30 (device number).
■ An operand in an application command, such as MOV K123 D0 (K constant).

Binary Coded Decimal, BCD

Uses one nibble or four bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with four nibbles. These are used to read the input value of a rotating numerical switch to input or output a numerical value to a seven-segment display drive.

Hexadecimal Number, HEX

A PLC uses hexadecimal numbers as operands in application commands, such as MOV H1A2B D0 (H constant).

Constant K

PLC's usually prefixed decimal numbers with K , such as K 100 . This indicates that it is a decimal number with a numeric value of 100 .
Exceptions: You can combine K with a bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}$, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 represent 8 -, 12-, and 16-bit combinations.

Constant H

PLC's usually prefixed hexadecimal numbers with H , such as in the case of H 100 . This indicates a hexadecimal number with a numeric value of 100 .

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts A and B, and you can use the output relay contacts any number of times in a program. You can use an auxiliary relay M to configure the control circuit, but cannot use the auxiliary relay to directly drive an external load. There are two types of auxiliary relays:
Ordinary auxiliary relays: ordinary auxiliary relays all revert to the OFF state when a power outage occurs while the PLC is running, and remains in the OFF state when power is restored.
Special purpose auxiliary relays: each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

Timers use 100 ms as their timing unit. When the timing method is an upper time limit, and the current timer value = setting value, the timer output coil is energized. Timer setting values use decimal K values; you can also use the data register D as a setting value.
Actual timer setting time $=$ timing units * set value
Counter features

Item	
Type	General Type
CT Direction:	Up
Setting	$0-32,767$
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the setting value, it stops counting.
Output contact	When the count reaches the setting value, the contact switches ON and stays ON.
Reset	The current value reverts to 0 when an RST command is executed, and the contact reverts to OFF.
Contact actuation	All are actuated after the end of scanning.

Counter functions

When a counter's counting pulse input signal switches from OFF to ON, if the counter's current value is equal to the setting value, the output coil switches ON. The setting value can be either a decimal K or a data register D.

16-bit counter:
$\nabla \quad 16$-bit counter setting range: K0-K32,767. When K0 and K1 are identical, the output contact is immediately ON during the first count.
\square The current counter value is cleared from an ordinary counter when power to the PLC turns OFF.
च If you use the MOV command or WPLSoft to transmit a value greater than the setting value to the C0 current value register, when the next X1 switches from OFF to ON, the C0 counter contact changes to ON, and the current value changes to the setting value.
\square You can set a counter's setting value directly using a constant K , or indirectly using the value in register D (not including special data registers D1000-D1199 or D2000-D2799).
च If the setting value is a constant K , the value must be a positive number. If the setting value is from data register D , the value can be either a positive or negative number. If using a data register, and the current value is 32,767 , incrementing the count causes the count value to roll over to $-32,768$ as the count continues to accumulate.

Example

LD	X0
RST	C0
LD	X1
CNT	C0 K5
LD	C0
OUT	Y0

Figure 17-52

1. When $X O=O N$ and the RST command is executed, the current value of C 0 reverts to 0 , and the output contact reverts to OFF.
2. When X1 switches from OFF to ON, the current value of the counter is incremented by one (add one).
3. When the count in CO reaches the set value K 5 , the contact C 0 switches to ON , and the current value of $\mathrm{C} 0=$ setting value

Figure 17-53

17-5-2 Introduction to special relay functions (special M)
R/W column: RO means read only; RW means read and write.

Special M	Function Descriptions	R/W
M1000	Monitors N.O. contact (contact A). N.O. while RUN, contact A. This contact is ON while in the RUN state.	RO
M1001	Monitors N.C. contact (contact B). N.C. while RUN, contact B. This contact is OFF while in the RUN state.	RO
M1002	Initiates a forward pulse (the instant RUN is ON). Initial pulse, contact A. Produces a forward pulse when RUN begins; pulse width = scan cycle.	RO
M1003	Initiates a reverse pulse (the instant RUN is OFF). Initial pulse, contact A. Produces a reverse pulse when RUN ends; pulse width = scan cycle.	RO
M1004	--	RO
M1005	Drive malfunction instructions	RO
M1006	Drive has no output	RO
M1007	Drive direction FWD (0) / REV (1)	RO
$\begin{gathered} \text { M1008 } \\ - \\ \text { M1010 } \end{gathered}$	--	--
M1011	10 ms clock pulse, 5 ms ON / 5 ms OFF.	RO
M1012	100 ms clock pulse, $50 \mathrm{~ms} \mathrm{ON} / 50 \mathrm{~ms}$ OFF.	RO
M1013	1 sec . clock pulse, 0.5 s ON / 0.5 s OFF.	RO
M1014	1 min . clock pulse, 30 s ON / 30 s OFF.	RO
M1015	Frequency reached (when used with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018	--	--
M1019	--	--
M1020	Zero flag	RO
M1021	Borrow flag	RO
M1022	Carry flag	RO
M1023	Divisor is 0	RO
M1024	--	--
M1025	Drive frequency = set frequency (ON) Drive frequency $=0$ (OFF)	RW
M1026	Drive operating direction FWD (OFF)/REV (ON)	RW
M1027	Drive Reset	RW
M1028	--	--
M1029	--	--
M1030	--	--
M1031	--	--
M1032	--	--
M1033	--	--
M1034	--	--
M1035	--	--
M1036	--	--
M1037	--	--
M1038	MI7 single-phase or M16+MI7 AB-phase count begins	RW
M1039	Reset MI7 single-phase or M16+MI7 AB-phase count value	RW
M1040	Hardware power (Servo On)	RW
M1041	--	--
M1042	Quick Stop	RW
M1043	--	--
M1044	Pause (Halt)	RW
$\begin{gathered} \text { M1045 } \\ -\quad \\ \text { M1047 } \end{gathered}$	--	--

Special M	Function Descriptions	R/W
M1048	--	--
M1049	--	--
M1050	--	--
M1051	--	--
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053	--	--
M1054	--	--
M1055	--	--
M1056	Hardware already has power (Servo On Ready)	RO
M1057	--	--
M1058	On Quick Stopping	RO
M1059		--
-	--	RO
M1062		--
M1063	--	RO
-	--	RO
M1076		RO
M1077	485 read/write completed	
M1078	485 read/write error	

Table 17-11

17-5-3 Introduction to special register functions (special D)
R/W column: RO means read only; RW means read and write.

Special D	Function Descriptions	R/W
D1000	--	--
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	RO
$\begin{gathered} \text { D1004 } \\ -\quad \\ \text { D1009 } \end{gathered}$	--	--
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
D1012	Maximum scan time (units: 0.1 ms)	RO
$\begin{gathered} \text { D1013 } \\ -\quad \\ \text { D1017 } \end{gathered}$	--	--
D1018	Current integral value	RO
D1019	Force setting for PID I integral	RW
D1020	Output frequency ($0.00-599.00 \mathrm{~Hz}$)	RO
D1021	Output current (\#\#\#\#.\#A)	RO
D1022	AI AO DI DO extension card number 9: EMM-D3R2CA	--
D1023	Communication extension card number 0 : No extension card	RO
$\begin{gathered} \text { D1024 } \\ -\quad \\ \text { D1026 } \end{gathered}$	--	--
D1027	--	RO
D1028	AVI value (0.00-100.00\%)	RO
D1029	ACI value (0.00-100.00\%)	RO
D1030	--	--
D1031	Al10 value (0.00-100.00\%)	RO

Chapter 17 PLC Function Applications | MH300-L

Special D	Function Descriptions	R/W
D1032	Al11 value (0.00-100.00\%)	RO
$\begin{gathered} \text { D1033 } \\ - \\ \text { D1034 } \end{gathered}$	--	--
D1035	--	--
D1036	Servo error bit	RO
D1037	Drive output frequency	RO
D1038	DC BUS voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM (-100.00-100.00\%)	RW
D1041	Analog output value AO10 (0.00-100.00\%)	RW
D1042	Analog output value AO11 (0.00-100.00\%)	RW
D1043	--	--
D1044	--	-
D1045	--	--
$\begin{gathered} \text { D1046 } \\ -\quad \\ \text { D1049 } \end{gathered}$	--	--
D1050	Actual operation mode 0 : Speed	RO
D1051	--	--
D1052	--	--
D1053	--	RO
D1054	M17 current calculated count value (low word)	RO
D1055	M17 current calculated count value (high word)	RO
D1056	Rotational speed corresponding to MI7	RO
D1057	MI7's rotating speed ratio	RW
D1058	M17 refresh rate (ms) corresponding to rotating speed	RW
D1059	Number of nibbles of rotating speed corresponding to MI7 (0-3)	RW
D1060	Operation mode setting 0 : Speed	RW
D1061	485 COM1 communications time-out time (ms)	RW

Table 17-12

17-5-4 PLC Communication address

Device	Range	Type	Address (Hex)
X	$00-17($ Octal)	bit	$0400-040 \mathrm{FF}$
Y	$00-17($ Octal)	bit	$0500-050 \mathrm{~F}$
T	$00-159$	bit/word	$0600-069 \mathrm{~F}$
M	$000-799$	bit	$0800-0 \mathrm{~B} 1 \mathrm{~F}$
C	$1000-1279$	bit	0BE8-0CFF
D	$0-79$	bit/word	$0 E 00-0 \mathrm{E} 4 \mathrm{~F}$
D	$00-399$	word	$1000-118 \mathrm{~F}$

Table 17-13

Command codes

Function Code	Function Descriptions	Function target
H1	Coil status read	Y, M, T, C
H2	Input status read	X, Y, M, T, C
H3	Read single unit of data	T, C, D
H5	Force single coil status change	Y, M, T, C

H6	Write single unit of data	T, C, D
HF	Force multiple coil status change	Y, M, T, C
H10	Write multiple units of data	T, C, D

Table 17-14

NOTE

When PLC functions have been activated, the MH300-L can match the PLC and drive parameters; this method uses different addresses for drives (default station number is 1 ; PLC sets station number as 2).

17-6 Introduction to the Command Window

17-6-1 Overview of basic commands

- Ordinary commands

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
LD	Load contact A	X, Y, M, T, C	0.8
LDI	Load contact B	X, Y, M, T, C	0.8
AND	Connect contact A in series	X, Y, M, T, C	0.8
ANI	Connect contact B in series	X, Y, M, T, C	0.8
OR	Connect contact A in parallel	X, Y, M, T, C	0.8
ORI	Connect contact B in parallel	Y, T, C	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack		0.3

Table 17-15

- Output command

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
OUT	Drive coil	Y, M	1
SET	Action continues (ON)	Y, M	1
RST	Clear contact or register	Y, M, T, C, D	1.2

Table 17-16

- Timer, counter

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Table 17-17

- Main control command

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
MC	Common series contact connection	N0-N7	0.4
MCR	Common series contact release	N0-N7	0.4

Table 17-18

- Contact rising edge/falling edge detection command

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
LDP	Start of rising edge detection action	X, Y, M, T, C	1.1
LDF	Start of falling edge detection action	X, Y, M, T, C	1.1
ANDP	Rising edge detection series connection	X, Y, M, T, C	1.1
ANDF	Falling edge detection series connection	X, Y, M, T, C	1.1
ORP	Rising edge detection parallel connection	X, Y, M, T, C	1.1
ORF	Falling edge detection parallel connection	X, Y, M, T, C	1.1

Table 17-19

- Upper/lower differential output commands

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
PLS	Upper differential output	Y, M	1.2
PLF	Lower differential output	Y, M	1.2

Table 17-20

- Stop command

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
END	Program conclusion	N/A	0.2

Table 17-21

- Other commands

Command code	Function	OPERAND	Execution speed $(\mu \mathrm{s})$
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
P	Index	P	0.3

Table 17-22

17-6-2 Detailed explanation of basic commands

Command	Function					
LD	Load contact A					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
						-

Use the LD command for contact A starting at the left busbar or contact A starting at a Explanation contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.

Example | Ladder diagram: | Command code: | Description: |
| :--- | :--- | :--- |
| LD | X0 | Load Contact A of $\mathrm{X0}$ |

Command	Function					
LDI	Load contact B					
Operand	$\mathrm{X0}-\mathrm{X17}$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M} 0-\mathrm{M} 799$	$\mathrm{T0}-159$	$\mathrm{C} 0-\mathrm{C} 79$	$\mathrm{D} 0-\mathrm{D} 399$
						-
Explanation	Use the LDI command for contact B starting at the left busbar or contact B starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.					

Example	Command code:	Description:	
Ladder diagram:	LDI	X0	Load Contact B of XO
AND	X 1	Create a series connection to contact A	
of X 1			

Command	Cunction					
AND	Connect contact A in series					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
					-	

Use the AND command to create a series connection to contact A; its function is to first
 results before contact in order to perform "AND" operation; saves the results in the

| Example | Command code: | Description:
 Ladder diagram:
 LDI | X1 |
| :--- | :--- | :--- | :--- | | Load Contact B of X1 |
| :--- |
| Create a series |

Command	Function					
ANI	Connect contact B in series					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M} 0-\mathrm{M} 799$	$\mathrm{~T} 0-159$	$\mathrm{C} 0-\mathrm{C} 79$	$\mathrm{D} 0-\mathrm{D} 399$
						-

Use the ANI command to create a series connection to contact B; its function is to first
 read the current status of the designated series contact and the logical operation results before contact in order to perform "AND" operation; saves the results in the cumulative register.

Command code: Description:

LD	X1	Load Contact A of X 1
ANI	X0	Create a series connection to contact B of X0
OUT	Y1	Drive Y1 coil

Command	Function					
OR	Connect contact A in parallel					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M} 0-\mathrm{M} 799$	T0-159	$\mathrm{C} 0-\mathrm{C} 79$	$\mathrm{D} 0-\mathrm{D} 399$
						-

Use the OR command to establish a parallel connection to contact A; its function is to
Explanation first read the current status of the designated series contact and the logical operation results before contact in order to perform "OR" operation; saves the results in cumulative register.

Command	Function					
ORI	Connect contact B in parallel					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
						-

Use the ORI command to establish a parallel connection to contact B; its function is to
 first read the current status of the designated series contact and the logical operation results before contact in order to perform "OR" operation; saves the results in cumulative register.

Command code: Description:

LD	X0	Load Contact A of X0
ORI	X1	Create a series connection to contact B of X1
OUT	Y1	Drive Y1 coil

| Command | Function | | | |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| ANB | | | | |

Command	Function			
ORB	Parallel circuit block			
Operand	N/A			
Explanation	ORB performs an "OR" operation on the previously saved logic results and the current cumulative register content.			
Example	Ladder diagram:	Comma	code	Description:
		LD	X0	Load Contact A of X0
				Establish a parallel
		ANI	X1	connection to contact B of X1
		LDI	X2	Load Contact B of X2 Establish a parallel
		AND	X3	connection to contact A of X3
		ORB		Parallel circuit block
		OUT	Y1	Drive Y1 coil

Command	Function
MPS	

Command	Function
MRD	Read stack (pointer does not change)
Operand	N/A

Explanation Reads the stack content and saves to the cumulative register (the stack pointer does

Command	Function			
MPP	Read stack			
Operand	N/A			
Explanation	Retrieves the result of the previously-saved logical operation from the stack, and saves to the cumulative register (subtract one from stack pointer).			
Example		Command code		Description:
		LD	X0	Load Contact A of X0
		MPS		Save to the stack
		AND	X1	Create a series connection to contact A
		OUT	Y1	Drive Y1 coil
		MRD		Read the stack (pointer does not change)
				Create a series
		AND	X2	connection to contact A of X2
		OUT	M0	Drive M0 coil
		MPP		Read stack
		OUT	Y2	Drive Y2 coil
		END		Program conclusion

Command	Function							
OUT	Drive coil							
Operand	X0-X17	Y0-Y17	M0-M799	T0-159		C0-C79	D0-D399	
	-			-		-	-	
Explanation	Outputs the result of the logical operation before the OUT command to the designated element. Coil contact action:							
	Result:	Out command						
		Coil	Access Point:					
			Contact A (N.O.)		Contact B (N.C.)			
	FALSE	OFF	Not conducting		Conducting			
	TRUE	ON	Conducting		Not conducting			
Example	Ladder diagram: Y1			$$		Description: Load Contact B of XO		
				AND	X1	Establish a parallel connection to contact A of X1		
				OUT	Y1	Drive Y		

Command	Function					
SET	Action continues (ON)					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M0}$-M799	T0-159	C0-C79	D0-D399
	-			-	-	-

Sets the designated element to ON, and maintains it in an ON state, regardless of
whether the SET command is still driven. Use the RST command to set the element
as OFF.

Command	Function	
TMR	16-bit timer	
Operand	T-K	T0-T159, K0-K32,767
	T-D	T0-T159, D0-D399

Electrifies the designated timer coil, and the timer begins timing. The contact's action is as follows when the timing value reaches the designated setting value (timing value \geq setting value):
N.O. (Normally Open) contact
Closed
N.C. (Normally Closed) contact
Open

If the RST command is not executed, the status of the designated element remains unchanged.

Command	Function	
CNT	C-K	C0-C79, K0-K32,767
Operand	Counter	
	C-D	C0-C79, D0-D399

When you execute the CNT command from OFF to ON, switch the designated counter coil from no power to electrified and add one to the counter's count value. When the count reaches the designated value (count value = setting value), the contact has the following action:

N.O. (Normally Open) contact	Closed
N.C. (Normally Closed) contact	Open

After reaching the count value, the contact and count value both remain unchanged even with continued count pulse input. Use the RST command to restart or clear the count.

	Ladder diagram:				Command code:		Description:	
xample	X0				LD	X0	Loa	Contact A of X0
		CNT	C2	K100	CNT	C2 K100	C2	ounter

Command	Function						
LDP	Start of rising edge detection action						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159		C0-C79	D0-D399
							-
Explanation	The LDP command has the same use as LD, but its action is different. Its function is to save the current content while also saving the detected state of the rising edge of the contact to the cumulative register.						
Example	Ladder diagram:			Command code:		Description:	
						Start of detectio	ing edge
				AND	X1	Create contac	s connection to 1
				OUT	Y1	Drive Y	

Command	Function					
LDF	Start of falling edge detection action					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
						-

The LDF command has the same use as LD, but its action is different. Its function is to save
the current content while also saving the detected state of the falling edge of the contact to
the cumulative register.

Command	Function					
ANDP	Rising edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
						-
Explanation	Use the ANDP command for a contact rising edge detection series connection.					
Example	Ladder diagram: X0 \quad 1			Command code:LD X0 Load		ription: A of X0
				ANDP	X1 Risi series	detection ion
				OUT	Drive Y	

Command	Function					
ANDF	Falling edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
						-

Explanation	Use the ANDF command for a contact falling edge detection series connection.
Example	

Command	Function						
PLS	Upper differential output						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399	
	-			-	-	-	

Explanation

Upper differential output command: when X0 switches from OFF to ON (rising edge-

Timing diagram:

Command code: Description:

LD	X0	Load Contact A of X0
PLS	M0	M0 Upper differential output
LD	M0	Load Contact A of M0 SET
Y0	YO Action continues (ON)	

Command	Function						
PLF	Lower differential output						
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399	
	-			-	-	-	

Timing diagram:

Command code: Description:

LD	X0	Load Contact A of X0
PLF	M0	M0 Lower differential output
LD	M0	Load Contact A of M0 SET
Y0	Y0 Action continues $(O N)$	

Command	Function
END	End of Program
Operand	N/A

Explanation

An END command must be added to the end of a ladder diagram program or command program. The PLC scans the program from address 0 to the END command, and then returns to address 0 and begins scanning again.

Command	Function		
NOP			

Command	Function			
\mathbf{P}				

17-6-3 Overview of application commands

Classification	API	Command code		$\begin{gathered} P \\ \text { command } \end{gathered}$	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
Circuit control	01	CALL	-		Call a subprogram	3	-
	2	SRET	-	-	End a subprogram	1	-
	06	FEND	-	-	End a main program	1	-
Send comparison	10	CMP	DCMP		Compare set output	7	13
	11	ZCP	DZCP		Range comparison	9	17
	12	MOV	DMOV		Move data	5	
	15	BMOV	-		Send all	7	-
Four logical operations	20	ADD	DADD		BIN addition	7	13
	21	SUB	DSUB		BIN subtraction	7	13
	22	MUL	DMUL		BIN multiplication	7	13
	23	DIV	DDIV		BIN division	7	13
	24	INC	DINC		BIN add one	3	5
	25	DEC	DDEC		BIN subtract one	3	5
Rotational displacement	30	ROR	DROR		Right rotation	5	-
	31	ROL	DROL		Left rotation	5	-
Data Process	40	ZRST	-		Clear range	5	-
	49	-	DFLT		Convert BIN whole number to binary floating point number	-	9
Floating point operation	110	-	DECMP		Compare binary floating point numbers	-	13
	111	-	DEZCP		Compare binary floating point number range	-	17
	116	-	DRAD		Convert angle to diameter	-	9
	117	-	DDEG		Convert diameter to angle	-	9
	120	-	DEADD		Add binary floating point numbers	-	13
	121	-	DESUB		Subtract binary floating point numbers	-	13
	122	-	DEMUL		Multiply binary floating point numbers	-	13
	123	-	DEDIV		Divide binary floating point numbers	-	13
	124	-	DEXP		Find exponent of a binary floating point number	-	9
	125	-	DLN		Find natural logarithm of a binary floating point number	-	9
	127	-	DESQR		Find the square root of a binary floating point number	-	9
	129	-	DINT		Convert binary floating point number to BIN whole number	-	9
	130	-	DSIN		Find the sine of a binary floating point number	-	9
	131	-	DCOS		Find the cosine of a binary floating point number	-	9
	132	-	DTAN		Find the tangent of a binary floating point number	-	9
	133	-	DASIN		Find the arcsine of a binary floating point number	-	9
	134	-	DACOS		Find the arccosine of a binary floating point number	-	9
	135	-	DATAN		Find the arctangent of a binary floating point number	-	9
Floating point operation	136	-	DSINH		Find the hyperbolic sine of a binary floating point number	-	9
	137	-	DCOSH		Find the hyperbolic cosine of a binary floating point number	-	9
	138	-	DTANH		Find the hyperbolic tangent of a binary floating point number	-	9

Classification	API	Command code		Pcommand	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
Communication	150	MODRW	-		Modbus read/write	7	-
Calendar	160	TCMP	-		Compare calendar data	11	-
	161	TZCP	-		Compare calendar data range	9	-
	162	TADD	-		Calendar data addition	7	-
	163	TSUB	-		Calendar data subtraction	7	-
	166	TRD	-		Calendar data read	3	-
GRAY code	170	GRY	DGRY		Convert BIN to GRAY code	5	9
	171	GBIN	DGBIN		Convert GRAY code to BIN	5	9
Contact form logical operation	215	LD\&	DLD\&	-	Contact form logical operation LD\#	5	9
	216	LD\|	DLD\|	-	Contact form logical operation LD\#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD\#	5	9
	218	AND\&	DAND\&	-	Contact form logical operation AND\#	5	9
	219	ANDI	DANDI	-	Contact form logical operation AND\#	5	9
	220	AND^	DAND^	-	Contact form logical operation AND\#	5	9
	221	OR\&	DOR\&	-	Contact form logical operation OR\#	5	9
	222	OR\|	DOR\|	-	Contact form logical operation OR\#	5	9
	223	OR^	DOR^	-	Contact form logical operation OR\#	5	9
Contact form comparison command	224	LD =	DLD $=$	-	Contact form compare LD*	5	9
	225	LD <	DLD <	-	Contact form compare LD*	5	9
	226	LD >	DLD >	-	Contact form compare LD*	5	9
	228	LD < >	DLD < >	-	Contact form compare LD*	5	9
	229	LD = >	DLD $=>$	-	Contact form compare LD*	5	9
	230	LD $=$ <	DLD $=$ <	-	Contact form compare LD*	5	9
	232	AND $=$	DAND =	-	Contact form compare AND*	5	9
	233	AND <	DAND <	-	Contact form compare AND*	5	9
	234	AND >	DAND >	-	Contact form compare AND*	5	9
	236	AND < >	DAND < >	-	Contact form compare AND*	5	9
	237	AND $=>$	DAND $=>$	-	Contact form compare AND*	5	9
	238	AND $=$ <	DAND $=<$	-	Contact form compare AND*	5	9
	240	OR=	DOR=	-	Contact form compare OR*	5	9
	241	OR<	DOR <	-	Contact form compare OR*	5	9
	242	OR >	DOR >	-	Contact form compare OR*	5	9
	244	OR < >	DOR < >	-	Contact form compare OR*	5	9
	245	OR = >	DOR = >	-	Contact form compare OR*	5	9
	246	$\mathrm{OR}=<$	DOR $=$ <	-	Contact form compare OR*	5	9

Classification	API	Command code		P command	Function	STEPS	
		16 bit	32 bit			16-bit	32-bit
Floating point contact form	275	-	FLD =	-	Floating point number contact form compare LD*	-	9
	276	-	FLD <	-	Floating point number contact form compare LD*	-	9
	277	-	FLD >	-	Floating point number contact form compare LD*	-	9
Comparison command	278	-	FLD < >	-	Floating point number contact form compare LD*	-	9
	279	-	FLD = >	-	Floating point number contact form compare LD*	-	9
	280	-	FLD $=<$	-	Floating point number contact form compare LD*	-	9
	281	-	FAND =	-	Floating point number contact form compare AND*	-	9
	282	-	FAND <	-	Floating point number contact form compare AND*	-	9
	283	-	FAND >	-	Floating point number contact form compare AND*	-	9
	284	-	FAND < >	-	Floating point number contact form compare AND*	-	9
	285	-	FAND = >	-	Floating point number contact form compare AND*	-	9
	286	-	FAND = <	-	Floating point number contact form compare AND*	-	9
	287	-	FOR =	-	Floating point number contact form compare OR*	-	9
	288	-	FOR <	-	Floating point number contact form compare OR*	-	9
	289	-	FOR >	-	Floating point number contact form compare OR*	-	9
	290	-	FOR < >	-	Floating point number contact form compare OR*	-	9
	291	-	FOR = >	-	Floating point number contact form compare OR*	-	9
	292	-	FOR = <	-	Floating point number contact form compare OR*	-	9
Drive special command	139	RPR	-		Read servo parameter	5	-
	140	WPR	-		Write servo parameter	5	-
	262	-	DPOS		Set target	-	5

17-6-4 Detailed explanation of application commands

API	\square CALL	\mathbf{P}	S

Explanation ■ S: Call subprogram pointer

- The subprogram must end after the SRET command.
- Refer to the FEND command explanation and sample content for detailed command functions.

A contact-driven command is not needed. Automatically returns next command after CALL command.

- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

API			
06	FEND	-	End of a main program

bit device			Word device								16-bit command (1 STEP)			
X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FEND	Continuous execution type	-	

Notes on operand usage:
No operand
A contact-driven command is not needed.

Flag signal: none

This command indicates the end of the main program. It is the same as the END command when the PLC executes this command.

- The CALL command program must be written after the FEND command, and the SRET command is added to the end of the subprogram.
- When using the FEND command, an END command is also needed. However, the END command must be placed at the end, after the main program and subprogram.

CALL command process

API	D	CMP	\mathbf{P}	S1 S2	(S
10	D	Compare set output			

		de					ord	devic				16-bit co	mand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	CMP	Continuous	CMPP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D		*	*									DCMP	Continuous execution type	DCMPP	Pulse execution type
Notes on operand usage: The operand D occupies three consecutive points												Flag sign	l: none		

Explanation S1: Compare value 1. S2: Compare value 2. D: Results of comparison.

- Compares the size of the content of operand $\mathbf{S} 1$ and $\mathbf{S} 2$; stores the results of the comparison in \mathbf{D}.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.

When the designated device is Y 0 , it automatically occupies $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 . When $\mathrm{X} 10=\mathrm{ON}$, the CMP command executes, and Y 0 , Y 1 or Y 2 is ON . When $\mathrm{X} 10=\mathrm{OFF}$, the CMP command does not execute, and the state of $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 remain in the state prior to $\mathrm{X10}=\mathrm{OFF}$.

- For \geq, \leq, or \neq comparison results, use series and parallel connections among Y0-Y2.

- To clear results of comparison, use the RST or ZRST command.

	bit device			Word device								16-bit command (9 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*	*	*	*	*	*	*	ZCP	Continuous execution type	ZCPP	Pulse execution type
S2				*	*	*	*	*	*	*	*	32-bit command (17 STEP)			
S				*	*	*	*	*	*	*		DZCP	Continuous	DZCPP	Pulse
D		*	*										execution type		execution type
Notes on operand usage: The content value of operand S1 is less than the content value of S2 operand. The operand D occupies three consecutive points.												Flag signal: none			

Explanation

Example
 Example

S1: Lower limit of range comparison. S2: Upper limit of range comparison. S : Comparative value. D: Results of comparison.

- Compares value \mathbf{S} with the lower limit S1 and upper limit S2, and stores the results of the comparison in \mathbf{D}.
- When lower limit S1 > upper limit S2, the command uses the lower limit $\mathbf{S} 1$ to perform the comparison with S1 as the upper and lower limit.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.
- When the designated device is M0, it automatically occupies M0, M1 and M2.
- When $\mathrm{X} 0=\mathrm{ON}$, the ZCP command executes, and MO, M1 or M2 is ON. When $\mathrm{X} 0=\mathrm{OFF}$, the ZCP command does not execute, and the state of M0, M1 or M2 remains in the state prior to $\mathrm{X} 0=\mathrm{OFF}$.
- For \geq, \leq, or \neq comparison results, use series and parallel connections of MOM2.

- To clear results of comparison, use the RST or ZRST command.

		MOV		P	(S D					Move data					
	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MOV	Continuous	MOVP	Pulse
s				*	*	*	*	*	*	*	*				
D							*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: none												DMOV	Continuous execution type	DMOVP	$\begin{array}{\|c} \hline \text { Pulse } \\ \text { execution type } \\ \hline \end{array}$
												Flag signal: none			

Explanation
S: Data source. D: Destination of data movement.
Moves the content in \mathbf{S} to \mathbf{D}. When the command does not execute, the content of \mathbf{D} does not change.

Example

- When $\mathrm{X} 0=\mathrm{OFF}$, the content of D10 does not change; if $\mathrm{X} 0=O \mathrm{~N}$, the value K 10 is moved to data register D10.
When $\mathrm{X} 1=\mathrm{OFF}$, the content of D10 does not change; if $\mathrm{X} 1=\mathrm{ON}$, the current value of T0 is moved to data register D10.

API	\square	BMOV		\mathbf{P}	S
15	\square	D	Send all		

Explanation

Example 1

S: Initiate source device. D: Initiate destination device. n: Send block length.
Sends the content of n registers starting from the initial number of the device designated by \mathbf{S} to the n registers starting from the initial number of the device designated by \mathbf{n}; if the number of points referred to by n exceeds the range used by that device, sends only points within the valid range.

When $\mathrm{X} 10=\mathrm{ON}$, sends the content of registers D0-D3 to the four registers D20D23.

When sending from designated bit devices $\mathrm{KnX}, \mathrm{KnY}$, and KnM, \mathbf{S} and \mathbf{D} must have the same number of nibbles, which means n must be identical for source and destination.

API	D	ADD	\mathbf{P}	S1 S2	(D)	BIN addition

	bit device			Word device								16 -bit command (7 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ADD	Continuous	ADDP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*	DADD	Continuous execution type	DADDP	$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$
	s on	pe	nd	age	one							Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Refer to the following supplementary explanation			

- S1: Augend. S2: Addend. D: Sum.
- Adds S1 and S2 using the BIN method and stores result in D.
- The highest bit of any data defines the sign: bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic addition operations (for instance: 3+ (-9) =-6).
- Flag changes connected with the addition.

1. When calculation results are 0 , the zero flag M1020 is ON.
2. When calculation results are less than $-32,768$, the borrow flag M1021 is ON.
3. When calculation results are greater than 32,767, the carry flag M1022 is ON.

Example

16-bit BIN addition: When $\mathrm{XO}=\mathrm{ON}$, saves the result of the content of addend DO plus the content of augend D10 in the content of D20.

Remarks
Relationship between flag actions and negative/positive numbers:

16-bit:

32-bit:

API		SUB		S1 S2	S
21	\mathbf{D}	SU	BIN subtraction		

Explanation
 Explanation

S1: Minuend. S2: Subtrahend. D: Difference.

- Subtracts $\mathbf{S} 2$ from $\mathbf{S} 1$ using the BIN method and stores result in \mathbf{D}.
- The highest bit of any data defines the sign bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic subtraction operations.
Flag changes connected with subtraction.

1. When calculation results are 0 , the zero flag M1020 is ON.
2. When calculation results are less than $-32,768$, the borrow flag M1021 is ON.
3. When calculation results are greater than 32,767 , the carry flag M1022 is ON.

Example

- 16-bit BIN subtraction: When $\mathrm{X0}=\mathrm{ON}$, subtracts the content of D10 from the content of D0, and stores the difference in D20.

API	\mathbf{D}	MUL		S1 S2	S
22	D	BIN multiplication			

	bit device			Word device								16-bit command (7 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MUL	Continuous	MULP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*	DMUL	Continuous execution type	DMULP	Pulse execution type
Notes on operand usage: The 16 -bit command operand D occupies two consecutive points.												Flag signal: none			

Explanation

- S1: Multiplicand. S2: Multiplier. D: Product.

Multiplies S1 and S2 using the BIN method, and stores the product in D.
16-bit BIN multiplication operation:

Symbol bit = 0 refers to a positive value. Symbol bit = 1 refers to a negative value.

When \mathbf{D} is a bit device, $\mathrm{K} 1-\mathrm{K} 4$ can be designated as a hexadecimal number, which occupies two consecutive units.

When 16 -bit DO is multiplied by 16 -bit D10, the result is a 32 -bit product; the upper 16 bits are stored in D21, and the lower 16 bits are stored in D20. The bit at the farthest left indicates the sign of the result.

| API | | DIV | | $(S 1$ | S2 | D |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | BIN division | D |
| :--- |
| 23 |

		de					Vord	devic				16-bit co	mmand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DIV	Continuous	DIVP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*	DDIV	Continuous execution type	DDIVP	Pulse execution type
Notes on operand usage:												Flag signal: none			

Explanation
S1: Dividend. S2: Divisor. D: Quotient and remainder.
Divides S1 by S2 and stores the quotient and remainder in \mathbf{D} using the BIN method. The sign bit for S1, S2 and D must be kept in mind when performing a 16-bit operation.

16-bit BIN division:
Quotient Remainder

If \mathbf{D} is a bit device, $\mathrm{K} 1-\mathrm{K} 4$ can be designated as 16 bits, which occupy two consecutive units and yield the quotient and remainder.

Example
■ When $\mathrm{X} 0=\mathrm{ON}$, stores the quotient resulting from division of dividend DO by divisor D10 in D20, and the remainder in D21. The highest bit indicates the sign of the result.

| API | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 24 | D INC | P | D | BIN add one |

	bit device			Word device								16-bit command (3 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	INC	Continuous	INCP	Pulse execution type
D							*	*	*	*	*		execution type		
Notes on operand usage: none 32-bit command (5STEP)															
												DINC	Continuous execution type	DINCP	Pulse execution type
												Flag sig	al: none		

Explanation - If: Destination device. during each scanning cycle.

- Generally use this command as a pulse execution type command (INCP).
- During 16-bit operation, $32,767+1$ rolls over to $-32,768$. During 32 bit operation, $2,147,483,647+1$ rolls over to $-2,147,483,648$.

Example

- When X0 switches from OFF to ON, adds 1 to the content of D0.

API	D	DEC	\mathbf{P}	D	BIN subtract one
25	D	D			

	bit device			Word device								16-bit command (3 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DEC	Continuous	DECP	Pulse
D				*	*	*	*	*					execution type		execution type
Notes on operand usage: none 32-bit command (5 STEP)															
												DDEC	$\begin{gathered} \text { Continuous } \\ \text { execution type } \end{gathered}$	DDECP	Pulse execution type
												Flag signal: none			

Explanation
D: Destination device.

- If a command is not the pulse execution type, adds 1 to the content of device D during each scanning cycle.
- Generally use this command as a pulse execution type command (DECP).
- During 16-bit operation, $-32,768-1$ rolls over to 32,767 . During 32 bit operation, $-2,147,483,648-1$ rolls over to $2,147,483,647$.

Example
When X0 switches OFF to ON, subtracts 1 from the content of DO.

AP 30			OR	(-)			D	n			t	tation			
		dev					Vord	devic				16-bit co	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROR	Continuous	RORP	Pulse
D							*	*	*	*	*		execution type		execution type
n				*	*							32-bit command (9 STEP)			
Notes on operand usage: K4 (16-bit) is only valid if the operand D is designated as KnY or KnM. n operand $n=K 1-K 16$ (16-bit)												DROR	Continuous execution type	DRORP	Pulse execution type
												Flag signal: M1022 Carry flag			

Explanation ■ $\quad \begin{aligned} & \text { D: Device to be rotated. } \mathbf{n}: \text { Number of bits for one rotation. } \\ & \text { Rotates the device designated by } \mathbf{D} \text { to the right } \mathbf{n} \text { bits. }\end{aligned}$
Generally use this command as a pulse execution type command (RORP).

Example
When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a right rotation; the content of the bit indicated with * (see figure below) is sent to the carry flag signal M1022.

		dev					Vord	evic				16-bit	mand (5 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROL	Continuous	ROLP	Pulse
D							*	*	*	*			execution type		execution type
n				*	*							32-bit command (9 STEP)			
Notes on operand usage: K4 (16-bit) is only valid if the operand D is designated as KnY or KnM. n operand $n=1$ to 16 (16-bit)												DROL	Continuous execution type	DROLP	Pulse execution type
												Flag signal: M1022 Carry flag			

Explanation D: Device to be rotated. \mathbf{n} : Number of bits for one rotation.
Explanaion
Rotates the device designated by \mathbf{D} to the left \mathbf{n} bits.

- Generally use this command as a pulse execution type command (ROLP).

Example
When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a left rotation; the content of the bit indicated with * (see figure below) is sent to the carry flag signal M1022.

Rotate to the left

API	ZRST		(D1) D2	
40			(D1) D2	Clear range

	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	16-bit	Continuous		Pulse
D1		*	*						*	*	*	ZRST	execution type	ZRSTP	execution type
D2		*	*						*	*	*	32-bit command			
Note	ber	op	and			nu	er	per	d			-	-	-	-

Number of operand D_{1} operand \leq number of operand D_{2}.
Flag signal: none
the fund D_{1}, D_{2} must designate the same type of device. Refer to the function specifications table for each device in series for the Flag signal: none scope of device usage.

Explanation D1: Clear range's initial device. D2: Clear range's final device.
Explanation ■ When the number of operand D1 > number of operand D2, only the operand designated by D2 is cleared.

Example

When X0 is ON, clears auxiliary relays M300-M399, changes them to OFF.
When X 1 is ON , 16-bit clears counters $\mathrm{C} 0-\mathrm{C} 127$ (writes 0 , and clears and changes contact and coil to OFF).

- When X10 is ON, clears timer T0-T127 (writes 0, and clears and changes contact and coil to OFF).
- When X 3 is ON, clears the data in data registers D0-D100 (sets to 0).

Devices such as bit device Y, M and word device $\mathrm{T}, \mathrm{C}, \mathrm{D}$ can independently use the clear command (RST).

$\frac{\text { API }}{49}$	$\frac{1}{9}$		FLT	P	ST					Convert BIN whole number to binary decimal					
	bit device			Word device								16-bit command			
	X	Y	M									-	-	-	-
S		*	*						*	*	*				
D		*	*						*	*	*	32-bit command (9steps)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage. The operand D occupies two consecutive points.												DFLT	Continuous execution type	DFLTP	$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$

Explanation
S: Source device.
D: Result device.

- Converts a BIN whole number into a binary decimal value.

Example
When X11 is ON, converts the whole number corresponding to D0 and D1 into floating point numbers, and stores the result in D20 and D21.

$\begin{aligned} & \text { API } \\ & 110 \end{aligned}$		ECMP		(S1) $\mathbf{S}^{(1)}$	
110	D	ECMP	P	(S1) (S)	Compare binary floating point numbers

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*	-	-		-
S2				*	*						*	32-bit command (13 STEP)			
D				*	*						*	DECMP	$\left\|\begin{array}{c}\text { Continuous } \\ \text { execution type }\end{array}\right\|$	DECMPP	$\begin{array}{\|c\|} \hline \text { Pulse } \\ \text { execution type } \end{array}$
Notes on operand usage: The operand D occupies three consecutive points. Refer to the function specifications table for each device in series for the scope of device usage.												Flag signal: none			

Explanation $\quad \mathbf{S}_{1}$: Binary floating point number 1. \mathbf{S}_{2} : Binary floating point number 2. D: Results of comparison, occupies three consecutive points.

- Compares binary floating point number 1 with binary floating point number 2, and stores the result of comparison (>, =, <) in D.
- If the source operand $\mathbf{S}_{\mathbf{1}}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command converts the constant to a binary floating point number for the purpose of comparison.

When the designated device is M10, it automatically occupies M10-M12.
When $\mathrm{X} 0=\mathrm{ON}$, the DECMP command executes, and one of M10-M12 is ON. When X0=OFF, the DECMP command does not execute, and M10-M12 remains in the $X 0=O F F$ state.

- For \geq, \leq, or \neq comparison, use series and parallel connections for M10-M12.
- Use the RST or ZRST command to clear the result.

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*	,	-	-	-
S2				*	*						*				
S				*	*						*	32-bit com	mand (17 STEP)		
D		*	*									DEZCP	Continuous execution type	DEZCPP	Pulse execution type

Notes on operand usage:
The operand D occupies three consecutive points. Refer to the
Flag signal: none function specifications table for each device in series for the scope of device usage.
Explanation $\quad \mathbf{S}_{1}$: Lower limit for binary floating point number in range comparison. $\mathbf{S}_{\mathbf{2}}$: Upper limit for binary floating point number in range comparison. S: Comparison of binary floating point numerical values. D: Results of comparison, occupies three consecutive points.

- Compares binary floating point number \mathbf{S} with the lower limit value \mathbf{S}_{1} and the upper limit value \mathbf{S}_{2}; stores the results of comparison in \mathbf{D}.
- If the source operand $\mathbf{S}_{\mathbf{1}}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command converts the constant to a binary floating point number for the purpose of comparison.
- When the lower limit \mathbf{S}_{1} is greater than the upper limit \mathbf{S}_{2}, a command issues to perform comparison using the lower limit value \mathbf{S}_{1} as the upper and lower limit.

Example

When the designated device is M 0 , it automatically occupies $\mathrm{M} 0-\mathrm{M} 2$. When $\mathrm{XO}=\mathrm{ON}$, the DEZCP command executes, and one of M0-M2 is ON. When X0=OFF, the EZCP command does not execute, and M0-M2 remains in the $\mathrm{XO}=\mathrm{OFF}$ state.

■ Use the RST or ZRST command to clear the result.

API		RAD		S	D
116	\mathbf{D}	P	P		Convert angle to diameter

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
s				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DRAD	Continuous execution type	DRADP	$\begin{array}{\|c\|} \hline \text { Pulse } \\ \text { execution type } \end{array}$
												Flag signal: none			

Explanation \quad S: data source (angle). D: result of transformation (diameter).
Diameter $=$ Angle $\times(\pi / 180)$

Example

- When $\mathrm{XO}=\mathrm{ON}$, converts the angle of the designated binary floating point number (D1, D0) to radians and stores the result in (D11, D10); the result is a binary floating point number.

(S) | D1 | D0 | $\begin{array}{l}\text { Angle in degrees } \\ \text { Binary floating point }\end{array}$ |
| :--- | :--- | :--- |
| (D) | D11 | D10 | \(\begin{aligned} \& Angle in radians = degrees X(\pi / 180)

\& Binary floating point\end{aligned}\)

| API | D | DEG | \mathbf{P} | S |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 117 | \mathbf{D} | D | Convert diameter to angle | |

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit co	mand (9 STEP)		
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DDEG	Continuous execution type	DDEGP	$\begin{array}{\|c\|} \hline \text { Pulse } \\ \text { execution type } \end{array}$
												Flag signal: none			

Explanation
S: data source (diameter). D: results of transformation (angle).

- Uses the following formula to convert radians to an angle.
- Angle $=$ Diameter $\times(180 / \pi)$

Example
When $\mathrm{XO}=\mathrm{ON}$, angle of the designated binary floating point number (D1, D0) in radians is converted to an angle and stored in (D11, D10), with the content consisting of a binary floating point number.

(S)

Angle in radians
Binary floating point
(D)

Angle in degrees $=$ radians $X(180 / \pi)$
Binary floating point

API	D	EADD	P	(S1) \mathbf{S}_{2}	Add binary floating point numbers

		dev					ord	devic				16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*							32-bit command (9 STEP)			
D											*	DEADD	Continuous execution type	DEADDP	Pulse execution type
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												Flag signal: none			

Explanation \mathbf{S}_{1} : addend. $\mathbf{S}_{\mathbf{2}}$: augend. \mathbf{D} : sum.
Explanation adds the content of the register designated by \mathbf{S}_{2} to the content of the register designated by \mathbf{S}_{1}, and stores the result in the register designated by \mathbf{D}. Addition is performed entirely using binary floating point numbers.

- If the source operand \mathbf{S}_{1} or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in addition.
- In the situation when $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when the conditional contact is ON, the register performs addition once during each scan. You generally use pulse execution type commands (DEADDP) under ordinary circumstances. When $\mathrm{X} 0=\mathrm{ON}$, adds a binary floating point number (D1, D0) to a binary floating point number (D3, D2), and stores the results in (D11, D10).

When X2 =ON, adds a binary floating point number (D11, D10) to K1234 (which is automatically converted to a binary floating point number), and stores the results in (D21, D20).

121	D	ESUB	P	(S1 S ${ }_{\text {S }}$	Subtract binary floating point numbers

Notes on operand usage:
Refer to the function specifications table for each device in series Flag signal: none for the scope of device usage.
Explanation $\quad \mathbf{S}_{1}$: minuend. $\mathbf{S}_{\mathbf{2}}$: subtrahend. \mathbf{D} : difference.

- Subtracts the content of the register designated by \mathbf{S}_{2} from the content of the register designated by \mathbf{S}_{1}, and stores the difference in the register designated by D; subtraction is performed entirely using binary floating point numbers.
- If the source operand \mathbf{S}_{1} or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in subtraction.
- In the situation when \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is ON, the register performs subtraction once during each scan. You generally use pulse execution type commands (DESUBP) under ordinary circumstances.

Example

When $\mathrm{X} 0=\mathrm{ON}$, subtracts a binary floating point number (D1, D0) from a binary floating point number (D3, D2), and stores the results in (D11, D10).

X0	DESUB	D0	D2	D10

When X2 =ON, subtracts the binary floating point number (D1, D0) from K1234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

X2	DESUB	K1234	D0	D10

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit com	mand (13 STEP)		
D											*	DEMUL	Continuous execution type	DEMULP	Pulse execution type

Notes on operand usage:
Refer to the function specifications table for each device in series Flag signal: none for the scope of device usage.

Explanation $\quad \mathbf{S}_{1}$: multiplicand. $\mathbf{S}_{\mathbf{2}}$: multiplier. \mathbf{D} : product.
Explanation \square Multiplies the content of the register designated by \mathbf{S}_{1} by the content of the register designated by $\mathbf{S}_{\mathbf{2}}$, and stores the product in the register designated by \mathbf{D}; multiplication is performed entirely using binary floating point numbers.

- If the source operand \mathbf{S}_{1} or \mathbf{S}_{2} designates a constant K or H , the command converts that constant into a binary floating point number for use in multiplication.
- In the situation when \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if you employ a "continuous execution" command, when conditional contact is ON, the register performs multiplication once during each scan. You generally use pulse execution type commands (DEMULP) under ordinary circumstances.

When $\mathrm{X} 1=\mathrm{ON}$, multiplies the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the product in the register designated by (D21, D20).

- When $\mathrm{X} 2=\mathrm{ON}$, multiplies the binary floating point number (D1, D0) by K1234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

API	D	EDIV	P	S S_{1} (${ }^{\text {d }}$	Divide binary floating point numbers

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit co	mand (13 STEP)		
D											*	DEDIV	Continuous execution type	DEDIVP	Pulse execution type

Notes on operand usage:
Refer to the function specifications table for each device in series Flag signal: none for the scope of device usage.
Explanation \mathbf{S}_{1} : dividend. \mathbf{S}_{2} : divisor. \mathbf{D} : quotient.
Explanation ■ Divides the content of the register designated by \mathbf{S}_{1} by the content of the register designated by $\mathbf{S}_{\mathbf{2}}$ and stores the quotient in the register designated by \mathbf{D}; division is performed entirely using binary floating point numbers.

- If the source operand $\mathbf{S}_{\mathbf{1}}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in division.

Example
When $\mathrm{X} 1=\mathrm{ON}$, divides the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the quotient in the register designated by (D21, D20).

■ When X2 =ON, divides the binary floating point number (D1, D0) by K1,234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

X2	DEDIV	D0	K1234

| API | \square | EXP | \mathbf{P} | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 124 | \mathbf{D} | D | Find the exponent of a binary floating point number | |

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit co	mmand (9 STEP)		
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DEXP	Continuous execution type	DEXPP	$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$
												Flag signal: none			

Explanation
 Explanation

S: operation source device. D: operation results device.
Taking e $=2.71828$ as a base, \mathbf{S} is the exponent in the EXP operation:
[$\mathrm{D}+1, \mathrm{D}]=\operatorname{EXP}^{[\mathrm{s}+1, \mathrm{~s} \text {] }}$

- Valid regardless of whether the content of \boldsymbol{S} has a positive or negative value. The designated register D must have a 32 -bit data format. Performs the operation using floating point numbers, and converts \mathbf{S} to a floating point number.
Content of operand $\mathbf{D}=e^{s} ; e=2.71828, S$ is the designated source data.

Example

- When M0 is ON, converts the value of (D1, D0) to a binary floating point number, and stores the result in register (D11, D10).
- When M1 is ON, performs the EXP operation on the exponent of (D11, D10), converts the result to a binary floating point number and stores it in register (D21, D20).

| API | LN | \mathbf{P} | S |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 125 | D | Find the natural logarithm of a binary floating point | |

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DLN	Continuous execution type	DLNP	Pulse execution type
												Flag signal: none			

Explanation S: operation source device. D: operation results device.

- $[\mathbf{D}+1, \mathbf{D}]=\operatorname{EXP}^{[\mathbf{s}+1, \mathrm{~s}}$]
- Valid regardless of whether the content of \boldsymbol{S} has a positive or negative value. The designated register D must have a 32-bit data format. Performs the operation using floating point numbers, and converts \mathbf{S} to a floating point number.
- Content of operand $\mathbf{D}=e^{s} ; e=2.71828, \mathbf{S}$ is the designated source data.

Example

When M0 is ON, converts the value of (D1, D0) to a binary floating point number, and stores the result in register (D11, D10).

- When M1 is ON, performs the EXP operation on the exponent of (D11, D10); converts the result to a binary floating point number and stores it in register (D21, D20).

	bit device			Word device								16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DESQR	Continuous execution type	$\begin{gathered} \text { DESQR } \\ \hline \mathrm{P} \end{gathered}$	Pulse execution type
												Flag signa	I: none		

Explanation

Example
xample

S: source device for which square root is desired. D: result of finding square root.

- Finds the square root of the content of the register designated by \mathbf{S}, stores the result in the register designated by D. Square roots are performed entirely using binary floating point numbers.
- If the source operand \mathbf{S} refers to a constant K or H , the command converts that constant into a binary floating point number for use in the operation.
- When $\mathrm{X} 0=\mathrm{ON}$, finds the square root of the binary floating point number (D1, D0), and stores the result in the register designated by (D11, D10).

- When $\mathrm{X} 2=\mathrm{ON}$, finds the square root of $\mathrm{K} 1,234$ (which is automatically converted to a binary floating point number), and stores the result in (D11, D10).

API	D	INT	P	(S) D	Convert binary floating point number to BIN whole number

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S											*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DINT	$\begin{array}{\|c} \hline \text { Continuous } \\ \text { execution type } \end{array}$	DINTP	$\begin{array}{\|c\|} \hline \text { Pulse } \\ \text { execution type } \\ \hline \end{array}$
												Flag signal: none			

Explanation
S: the source device to be converted. D: results of conversion. number format to a BIN whole number, and stores the results in D. The BIN whole number floating point number is discarded.

- The action of this command is the opposite of that of command API 49 (FLT).

Example

When $\mathrm{X} 0=\mathrm{ON}$, converts the binary floating point number (D1, D0) into a BIN whole number, and stores the result in (D10); the BIN whole number floating point number is discarded.

$\begin{aligned} & \text { API } \\ & 130 \end{aligned}$		SIN		P	(S) D					Find the sine of a binary floating point number					
bit device				Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D										*		32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DSIN	$\begin{gathered} \text { Continuous } \\ \text { execution type } \end{gathered}$	DSINP	$\begin{array}{c\|} \hline \text { Pulse } \\ \text { execution type } \end{array}$

Explanation

- S: the designated source value. D: the SIN value result.
\mathbf{S} is the designated source in radians.
- The value in radians (RAD) is equal to (angle $\times \pi / 180$).
- Finds the SIN from the source value designated by \mathbf{S} and stores the result in \mathbf{D}. The following figure displays the relationship between the arc and SIN results:

Example

- When $\mathrm{X} 0=\mathrm{ON}$, finds the SIN value of the designated binary floating point number (D1, D0) in radians (RAD) and stores the result in (D11, D10), as a binary floating point number.

RAD value $=$ angle $\mathrm{X}(\pi / 180)$ binary floating point
(D) \square SIN value binary floating point

API		COS	\mathbf{P}	S	D	Find the cosine of a binary floating point number
131	\mathbf{D}	CO	\mathbf{P}			

Explanation $\square \quad \begin{aligned} & \text { S: the designated source value. D: the COS value result. } \\ & \text { Finds the COS of the source value designated by } \mathbf{S} \text { and stores it in } \mathbf{D} \text {. }\end{aligned}$
The following figure displays the relationship between the arc and COS results:

Example - When $\mathrm{X} 0=\mathrm{ON}$, finds the COS value of the designated binary floating point number (D1, D0) in radians and stores the result in (D11, D10), as a binary floating point number.

API		TAN		S	D	Find the tangent of a binary floating point number
132	D		\mathbf{P}			

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DTAN	$\begin{array}{\|c\|} \hline \hline \text { Continuous } \\ \text { execution type } \end{array}$	DTANP	$\begin{array}{\|c\|} \hline \text { Pulse } \\ \text { execution type } \end{array}$
												Flag signal: none			

The following figure displays the relationship between the arc and TAN results:

S: arc angle data
R : result (TAN value)

Example

- When $\mathrm{X} 0=\mathrm{ON}$, finds the TAN value of the designated binary floating point number
\square (D1, D0) in radians (RAD) and stores the result in (D11, D10), as a binary floating point number.

| API | ASIN | | P © | (S) | Find the arcsine of a binary floating point number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 133 | \mathbf{D} | A | P | | |

Explanation

S: the designated source (binary floating point number). D: the ASIN value result. ASIN value $=\sin ^{-1}$
The figure below shows the relationship between input data and result:

- When $\mathrm{X0}=\mathrm{ON}$, finds the ASIN value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage												DACOS	Continuous execution type	$\begin{array}{\|c\|} \hline \text { DACOS } \\ P \end{array}$	Pulse execution type

Explanation
S: the designated source (binary floating point number). D: the ACOS value result.
\square ACOS value $=$ Cos $^{-1}$
The figure below shows the relationship between input data and result:

- When $\mathrm{XO}=\mathrm{ON}$, finds the ACOS value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DATAN	Continuous execution type	DATANP	Pulse execution type

Explanation ■ S: the designated source (binary floating point number). D: the ATAN value result.
The figure below shows the relationship between input data and result:

Example

When $\mathrm{XO}=\mathrm{ON}$, finds the ATAN value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DSINH	Continuous execution type	DSINHP	Pulse execution type
												Flag signal: none			

Explanation - S: the designated source (binary floating point number). D: the SINH value result.

Example
When $\mathrm{XO}=\mathrm{ON}$, finds the SINH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

API	COSH	P	S	(D)	Find the hyperbolic cosine of a binary floating point number
137	\mathbf{D}				

		devis					Vord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DCOSHContinuous execution type DCOSHP			$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$
												Flag signal: none			

Explanation - S: the designated source (binary floating point number). D: the COSH value result.

Example

When $\mathrm{XO}=\mathrm{ON}$, finds the COSH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

API		TANH		S	(S)	Find the hyperbolic tangent of a binary floating point number
138	D	P				

		dev					ord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DTANH Continuous execution type DTANHP			Pulse execution type
												Flag signal: none			

Explanation S: the designated source (binary floating point number). D: the TANH value result.
Example TANH value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$

- When $\mathrm{X} 0=\mathrm{ON}$, finds the TANH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.

API	GRY	G	S	D	Convert BIN to GRAY code
170	D	\mathbf{P}			

		dev					Vord	devic				16-bit co	mmand (5 STEP)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	GRY	Continuous	GRYP	Pulse
S				*	*	*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: Refer to the function specifications table for each device in series for the scope of device usage.												DGRY	$\begin{array}{\|c\|} \hline \hline \text { Continuous } \\ \text { execution type } \\ \hline \end{array}$	DGRYP	$\begin{array}{\|c\|} \hline \text { Pulse } \\ \text { execution type } \\ \hline \end{array}$
												Flag signal: none			

Explanation

Converts the BIN value of the device designated by \mathbf{S} to a GRAY code, and stores the result in the device designated by \mathbf{D}.

- The valid range for \mathbf{S} is as shown below; if you exceed this range, it is an error, and the command does not execute.
16-bit command: 0-32,767
32-bit command: 0-2,147,483,647

Example

When $\mathrm{X} 0=\mathrm{ON}$, converts the constant K6513 to a GRAY code and stores it in D0.

\square

| API | GBIN | P | Convert GRAY code to BIN |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 171 | \mathbf{D} | D | Con |

	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				*	*	*	*	*	*	*	*
D							*	*	*	*	*

Notes on operand usage:
Refer to the function specifications table for each device in series

16-bit command (5 STEP)			
GBIN	Continuous execution type	GBINP	
Pulse execution type			
32-bit command (9 STEP) DGBIN Continuous execution type DGBINP Pulse execution type			

Flag signal: none

Explanation
S: source device storing GRAY code. D: device storing BIN value after conversion. Converts the GRAY code corresponding to the value of the device designated by \mathbf{S} that is transformed into a BIN value, and stores it in the device designated by D.

- This command converts the value of the absolute position encoder connected with the PLC's input (this encoder usually has an output value in the form of GRAY code) into a BIN value, and stores it in the designated register.
- The valid range of \mathbf{S} is as shown below; if you exceed this range, it is an error, and the command does not execute.
16-bit command: 0-32,767
32-bit command: 0-2,147,483,647

Example

When $\mathrm{X} 20=\mathrm{ON}$, converts the GRAY code of the absolute position encoder connected with input points $\mathrm{X} 0-\mathrm{X17}$ to a BIN value and stores it in D10.

	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*				
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \# , : , \& \|, ^												DLD\#	Continuous execution type	-	-

Refer to the function specifications table for each device in series for the range of device usage.

Flag signal: none

- \mathbf{S}_{1} : data source device $1 . \mathbf{S}_{2}$: data source device 2.
- This command compares the contents of \mathbf{S}_{1} and \mathbf{S}_{2}. When the result of comparison is not 0 , this command activates; when the result of comparison is 0 , this command does not activate.
- You can use the LD\# command directly to connect with the busbar.

API No.	16-bit commands	32-bit commands	Conditions for activation				Conditions for inactivation			
215	LD\&	DLD\&	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$=0$
216	LD\|	DLD\|	\mathbf{S}_{1}	\|	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	।	\mathbf{S}_{2}	$=0$
217	LD^ $^{\wedge}$	DLD^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

\&: logical AND operation.
|: logical OR operation.
\wedge : logical XOR operation.

Example

- When you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When you compare the content of D200 and D300 with the logical OR operation, and the result is not equal to 0 , and $\mathrm{X} 1=\mathrm{ON}$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.

		dev					ord	devic				16-bit com	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	AND\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit com	mand (9 STE		
Notes on operand usage: \#, : , \& , \|, ^ DAND\# $\begin{gathered}\text { Continuous } \\ \text { execution type }\end{gathered}$															

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none

Explanation
\mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.

- This command compares the contents of \mathbf{S}_{1} and \mathbf{S}_{2}. When the result of comparison is not 0 , this command activates; when the result of comparison is 0 , this command does not activate.
- The AND\# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	Conditions for activation				Conditions for inactivation			
218	AND\&	DAND	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$=0$
219	AND	DAND	\mathbf{S}_{1}	\mid	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\|	\mathbf{S}_{2}	$=0$
220	AND $^{\wedge}$	DAND $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

\&: logical AND operation.
|: logical OR operation.
\wedge : logical XOR operation.

Example

- When $\mathrm{X} 0=\mathrm{ON}$ and you compare the contents of CO and C 10 with the logical AND operation, and the result is not equal to 0 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When $\mathrm{X} 1=\mathrm{OFF}$ and you compare the contents D10 and D0 with the logical OR operation, and the result is not equal to 0 , then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When $\mathrm{X} 2=\mathrm{ON}$ and compare the contents of the 32-bit register D200 (D201) and the 32-bit register D100 (D101) with the logical XOR operation, and the result is not equal to 0 or $\mathrm{M} 3=\mathrm{ON}$, then $\mathrm{M} 50=\mathrm{ON}$.

| API
 $221-$
 223 | D | OR\# | | | S1 S2 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad Contact form logical operation OR\#

		dev					ord	devic				16-bit co	mand (5 STEP)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#,:,\&,\|,^\quad DOR\#Continuous execution type															

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none

Explanation
\mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.
This command compares the contents of \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$. When the result of comparison is not 0 , this command activates; when the result of comparison is 0 , this command does not activate.

- The OR\# command is an operation command in series with the contact.

API No.	16 -bit commands	32-bit commands	Conditions for activation				Conditions for inactivation			
221	OR\&	DOR\&	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$=0$
222	OR	DOR	\mathbf{S}_{1}	1	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\|	\mathbf{S}_{2}	$=0$
223	OR $^{\wedge}$	DOR^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

\&: logical AND operation.
|: logical OR operation.
\wedge : logical XOR operation.

- When $\mathrm{X} 1=\mathrm{ON}$ and you compare the contents of C 0 and C 10 with the logical AND operation, and the result is not equal to 0 , then $\mathrm{Y} 0=\mathrm{ON}$.
- When X2 and M30 are both equal to ON, or you compare the contents of the 32-bit register D10 (D11) and the 32-bit register D20 (D21) with the logical OR operation, and the result is not equal to 0 , or you compare the contents of the 32-bit counter C235 and the 32-bit register D200 (D201) with the logical XOR operation, and the result is not equal to 0 , then $\mathrm{M} 60=\mathrm{ON}$.

API				
${ }_{2}^{224}$	D	LD※	(S1) (S2)	Contact form compare LD*

	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	c	D	LD*	Continuous	-	
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
												DLD*	Continuous execution type	-	-

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none
\mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.

- This command compares the contents of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking API 224 (LD=) as an example, this command activates when the result of comparison is "equal", and does not activate when the result is "unequal".
- You can use the LD* directly to connect with the busbar.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	LD =	DLD $=$	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathbf{S}_{1} \neq \mathrm{S}_{\mathbf{2}}$
225	LD <	DLD <	$\mathbf{S}_{1}<\mathrm{S}_{2}$	$\mathrm{S}_{1} \leq \mathrm{S}_{2}$
226	LD >	DLD >	$S_{1}>S_{2}$	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$
228	LD < >	DLD < >	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
229	LD $=>$	DLD $=>$	$\mathrm{S}_{1} \leq \mathrm{S}_{2}$	$\mathrm{S}_{1}<\mathrm{S}_{2}$
230	LD $=$ <	DLD $=$ <	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$	$S_{1}>S_{2}$

Example

- When the content of C 10 is equal to K 200 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When the content of D200 is greater than $\mathrm{K}-30$, and $\mathrm{X} 1=\mathrm{ON}$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.

API $232-$ 238	D AND	S	S1 S2	Contact form compare AND*

	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	AND※	Continuous	-	
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
												DAND*	Continuous execution type	-	-

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none

Explanation
\mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.
Explanation
This command compares the contents of \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$. Taking API 232 (AND=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.

- The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND $=$	DAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $<$	DAND $<$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}$
234	AND $>$	DAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
237	AND $=>$	DAND $=>$	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$
238	AND $=<$	DAND $=<$	$\mathbf{S}_{\mathbf{1}} \geq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$

Example
When $\mathrm{X} 0=\mathrm{ON}$ and the current value of C 10 is also equal to K 200 , then $\mathrm{Y} 10=\mathrm{ON}$.

- When $\mathrm{X} 1=\mathrm{OFF}$ and the content of register D0 is not equal to $\mathrm{K}-10$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When $\mathrm{X} 2=\mathrm{ON}$ and the content of the 32-bit register D0 (D11) is less than 678,493 , or $\mathrm{M} 3=\mathrm{ON}$, then $\mathrm{M} 50=\mathrm{ON}$.

		,					Vord	devic				16-bit c	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR※	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit co	mand (9 STE		
Notes on operand usage: $※,:$, =, >, <, <>, \leq, \geq DOR※Continuous execution type															

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none

Explanation
\mathbf{S}_{1} : data source device $1 . \mathbf{S}_{2}$: data source device 2.
Explanation This command compares the contents of $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$. Taking API 240 (OR=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.

- The OR* command is a comparison command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	$\mathrm{OR}=$	DOR =	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$
241	OR <	DOR<	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathrm{S}_{1} \leq \mathrm{S}_{2}$
242	OR >	DOR>	$\mathrm{S}_{1}>\mathrm{S}_{2}$	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$
244	OR < >	DOR < >	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
245	OR = >	DOR = >	$\mathrm{S}_{1} \leq \mathrm{S}_{2}$	$\mathrm{S}_{1}<\mathrm{S}_{2}$
246	$\mathrm{OR}=<$	DOR = <	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathbf{S}_{1}>\mathbf{S}_{2}$

Example

When $\mathrm{X} 0=\mathrm{ON}$ and the current value of C 10 is also equal to K 200 , then $\mathrm{Y} 10=\mathrm{ON}$.

- When $\mathrm{X} 1=\mathrm{OFF}$ and the content of register D 0 is not equal to $\mathrm{K}-10$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When $\mathrm{X} 2=\mathrm{ON}$ and the content of the 32-bit register D0 (D11) is less than 678,493 , or $\mathrm{M} 3=\mathrm{ON}$, then $\mathrm{M} 50=\mathrm{ON}$.

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1									*	*	*	32-bit command (9 STEP)			
S2									*	*	*				
Notes on operand usage: $\not \ldots,:,=,>,<,<>, \leq, \geq$ Refer to the function specifications table for each device in series for the scope of device usage.												FLD※	execution type	-	-
												Flag signal: none			

Explanation $\quad \mathbf{S}_{1}$: data source device 1. \mathbf{S}_{2} : data source device 2 .

- This command compares the contents of \mathbf{S}_{1} and
\mathbf{S}_{2}. Taking "FLD=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FLD* command can directly input floating point numbers (for instance: F1.2) to the \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ operands, or store the floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
275	FLD $=$	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{1} \neq \mathbf{S}_{\mathbf{2}}$
276	FLD <	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}$
277	FLD $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geq \mathbf{S}_{\mathbf{2}}$
278	FLD < >	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
279	FLD $=>$	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$
280	FLD $=<$	$\mathbf{S}_{1} \geq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$

Example

- When the floating point number in register D200 (D201) is less than or equal to F1.2, and X1 is activated, then contact Y21 activates and remains in that state.

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1									*	*	*	32-bit command (9 STEP)			
S2									*	*	*				
S2									$*$		*	FAND※	Continuous execution type	-	-

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none
Explanation \mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.
Explanation - This command compares the contents of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking "FAND=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".

- The FAND* command can directly input floating point numbers (for instance: F1.2) to the \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND $=$	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
282	FAND $>$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}$
283	FAND $<$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geq \mathbf{S}_{\mathbf{2}}$
284	FAND $<>$	$\mathbf{S}_{1} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
285	FAND $<=$	$\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$
286	FAND $>=$	$\mathbf{S}_{\mathbf{1}} \geq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$

	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1									*	*	*				
S2									*	*	*	32-bit command (9 STEP)			
S2									*	*	*	FOR※	Continuous execution type	-	-

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none

- \mathbf{S}_{1} : data source device $1 . \mathbf{S}_{2}$: data source device 2.
- This command compares the contents of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking "FOR=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FOR* command can directly input floating point numbers (for instance: F1.2) to the \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
287	FOR =	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$
288	FOR <	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathrm{S}_{1} \leq \mathrm{S}_{2}$
289	FOR >	$\mathbf{S}_{1}>\mathbf{S}_{2}$	$\mathbf{S}_{1} \geq \mathbf{S}_{\mathbf{2}}$
290	FOR < >	$\mathrm{S}_{1} \neq \mathrm{S}_{\mathbf{2}}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
291	FOR = >	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{2}$
292	FOR = <	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathbf{S}_{1}>\mathbf{S}_{2}$

D100 (D101) is greater than or equal to $F 1.234$, then $\mathrm{M} 60=\mathrm{ON}$.

17-6-5 Detailed explanation of drive special application commands

$\begin{array}{\|l\|} \hline \text { API } \\ \hline 139 \\ \hline \end{array}$		RPR		P	(S1) S2					Read servo parameter					
	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	RPR	Continuous execution type	RPRP	Pulse execution type
S1				*	*						*				
S2											*	32-bit command			
Notes on operand usage: none												-	-	-	-
												Flag signal: none			

[^1]| $\begin{array}{\|l\|} \hline \text { API } \\ \hline 140 \\ \hline \end{array}$ | | WPR | | | (S1) (S2) | | | | | Write servo parameter | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | bit device | | | Word device | | | | | | | | 16-bit command (5 STEP) | | | |
| | X | Y | M | K | H | KnX | KnY | KnM | T | C | D | WPR | Continuous | WPRP | Pulse |
| S1 | | | | * | * | | | | | | * | | | | |
| S2 | | | | * | * | | | | | | * | 32 -bit co | mmand | | |
| Notes on operand usage: none | | | | | | | | | | | | - | - | - | - |

Explanation $\quad \mathbf{S}_{1}$: Data to write to specified page. \mathbf{S}_{2} : Parameter address of data to be written.

Example

- When the data in the MH300-L drive's parameter H01.00 is read and written to D0, data from H01.01 is read and written to D1.
- When $\mathrm{M} 0=\mathrm{ON}$, the content of D10 is written to the MH300-L drive Pr. 04.00 (first speed of multiple speed levels).
- When M1017=ON, the parameter has been written successfully.

■ The MH300-L's WPR command does not support writing to the 20XX address, but the RPR command supports reading of $21 \mathrm{XX}, 22 \mathrm{XX}$.

Recommendation Be cautious when using the WPR command. When writing parameters, most parameters are recorded when they are written, and these parameters may only be revised 10^{9} times: a memory write error may occur if parameters are written more than (MS) 10^{6} or (MH)10 ${ }^{9}$ times.
The number of times a parameter is written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

17-7 Error Display and Handling

Code	ID*	Description	Recommended error resolution
PLod	50	Data writing memory error	Check whether the program has an error and download the program again.
PLSv	51	Data write memory error during program execution	Cycle the power and download the program again.
PLdA	52	Program transmission error	Try uploading again; if the error persists, send it to the manufacturer for service.
PLFn	53	Command error while downloading program	Check whether the program has an error and download the program again.
PLor	54	Program exceeds memory capacity or no program.	Cycle the power and download the program again.
PLSF	55	Command error during program execution	Check whether the program has an error and download the program again.
PLEd	57	Check code error Crogram has no END stop command.	Check whether the program has an error and download the program again.
PLCr	58	MC command has been used continuously more than nine and download the program again	
times.	Check whether the program has an error and download the program again.		
PLSF	59	Download program error	Check whether the program has an error and download again.
PLC scan time excessively long	Check whether the program code has a writing error and download again.		

*ID: Warning code

17-8 Explanation of Each PLC Mode Control (Speed)

Speed control:
Register table for speed mode:
Control special M

Special M	Function Description	Attributes
M1025	Drive frequency = set frequency (ON) / drive frequency = 0 (OFF)	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick Stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Function Description	Attributes
M1015	Frequency reached (when used with M1025)	RO
M1056	Hardware already has power (Servo On Ready)	RO
M1058	On Quick Stopping	RO

Control special D

Special D	Function Description	Attributes
D1060	Operation mode setting (speed mode is 0)	RW

Status special D

Special D	Function Description	Attributes
D1037	Drive output frequency $(0.00-599.00 \mathrm{~Hz})$	RO
D1050	Actual operation mode (speed mode is 0$)$	RO

Speed mode control commands:

FREQ(P)

S1
S2
S3
Target speed The first acceleration time setting The first deceleration time setting

Example of speed mode control:
Before using speed control, if you use the FOC (magnetic field orientation) control method, you must first complete the setting of the electro-mechanical parameters.

1. Setting D1060 $=0$ shifts the drive to speed mode (default).
2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
3. Setting $\mathrm{M} 1040=1$, the drive is now excited, but the frequency is 0 .
4. Setting M1025 = 1, the drive Frequency command now jumps to the frequency designated by FREQ, and acceleration and deceleration is controlled on the basis of the acceleration time and deceleration time specified by FREQ.
5. Use M1052 to lock the current operation frequency.
6. Use M1044 to temporarily pause the operation, and the deceleration method uses the deceleration settings.
7. Use M1042 to perform Quick Stop, and deceleration is as fast as possible without causing an error. There may still be a jump error if the load is too large.
8. Control user rights: M1040 (Servo On) > M1042 (Quick Stop) > M1044 (Halt) > M1052 (LOCK)

17-9 Count Function Using Pulse Input

17-9-1 High-speed count function

The MH300-L's MI7 supports one-way pulse counting, or you can use MI6+MI7 to support AB-phase twoway pulse counting, with a maximum speed of 33 k . The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored in D1054 and D1055 in non-numerical form. M1039 resets the count value to 0 .
Take MI7 one-way pulse input as an example:

※ When the PLC program defines MI7 for use as a high-speed counter, that is when M1038 or M1039 is written in PLC procedures, the other functions of MI7 are disabled.

17-9-2 Frequency calculation function

Apart from high-speed counting, the MH300-L's MI7 (one-way pulse counting) or MI6+MI7 (AB-phase twoway pulse counting) can also convert a received pulse to a frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which the MH300-L can perform simultaneously.

PLC speed calculation formula
D1057 Speed
D1058 Interval between calculations
D1059 Decimal places
Assume that there are five input pulses each second, (see figure below) we set D1058 $=1000 \mathrm{~ms}=1.0$ seconds as the calculation interval. This enables five pulses to be sent to the drive each second.

Assume that each five pulses correspond to 1 Hz , we set D1057 $=5$.
Setting D1059 = 2 displays numbers to two decimal places, which is also 1.00 Hz . The numerical value displayed at D1056 is 100. For simplicity, the D1059 conversion formula can be expressed in the following formula:
D1056 = (Pulses per second / D1057) * (1000 / D1058) * (10^D1059)

Chapter 18 Safe Torque Off Function

18-1 Basic Function Description
18-2 Safe Torque Off Terminal Function Description
18-3 Wiring Diagram
18-4 Failure Rate of the Drive Safety Function
18-5 Reset the Parameter Settings
18-6 Timing Diagram Description
18-7 Error Code and Troubleshooting Instructions
18-8 Test and Fault Confirmation

18-1 Basic Function Description

MH300-L series provides a Safe Torque Off (STO, Safe Torque Off) function. Through the dual-channel S1 and S2 signal input to turn off IGBT switching, thereby preventing the generation of motor torque in order to achieve safe stop. Please refer to Figure 1 for the circuit diagram of Safe Torque Off function.

MH300-L Safe Torque Off function meets the following international specifications:

ISO 13849-1: 2015 Category 3 PL d
IEC 61508 SIL2
EN 62061 SIL CL 2
EN 60204-1 Category 0

Figure 1: The circuit diagram of Safe Torque Off function

18-2 Safe Torque Off Terminal Function Description

As mentioned earlier STO (Safe torque off) related terminal functions are described in Table 1 below.

Terminals	Terminal Function	Specifications
+24V	When the STO function is not used, the STO function can be disabled by shorting S1 and S2 with +24 V	Output voltage range: $+24 \mathrm{~V} \pm 10 \%$ Output voltage capacity: 100 mA
S1	Signal input of STO function channel 1	$\begin{aligned} & \underline{\text { S1-DCM / S2-DCM }} \\ & \text { Rated input voltage: } \\ & \quad+24 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \text {; Max. input voltage: }+30 \mathrm{VDC} \\ & \\ & \pm 10 \% \end{aligned}$
S2	Signal input of STO function channel 2	Rated input current: $6.67 \mathrm{~mA} \pm 10 \%$ STO activation mode Input voltage level: $0 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 1-\mathrm{DCM}$ and $\mathrm{S} 2-\mathrm{DCM}<5 \mathrm{~V}_{\mathrm{DC}}$
DCM	Reference ground of S1 and S2 signal	the drive stop outputting) STO cut-off mode Input voltage level: 11 VDC $<$ S1-DCM and S2-DCM < 30 V $V_{D C}$

Table 1: Terminal function description

Action logic and keypad display after S1 / S2 signal input are described in Table 2 below.

Signal	Status			
S1-DCM	ON	ON	OFF	OFF
S2-DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode (Torque output off)	STL1 mode (Torque output off)	STO mode (Torque output off)
Error displayed on keypad	No error displayed	STL2	STL1	STO

Table 2: Description of action logic and keypad display
STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
[1] STL1 means channel 1 operates.
[1] STL2 means channel 2 operates.
STL3 means there is error detected in the internal circuit of channel 1 or channel 2.
[1] S1-DCM / S2-DCM ON: means S1-DCM / S2-DCM inputs a power supply > 11 VDC.
(1) S1-DCM / S2-DCM OFF: means S1-DCM / S2-DCM inputs a power supply < $5 V_{D C}$.

18-3 Wiring Diagram

18-3-1 Internal circuit diagram of safe control loop is shown in Figure2.
18-3-2 Terminals of the safe control loop $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$ are short-circuited together with jumper wire at the factory, as shown in Figure 2.
18-3-3 The safe control loop wiring diagram is as follows:

1. Remove the jumper wire of $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$.
2. The wiring as shown in Figure 3 below. Normally, the switch ESTOP contact must be closed, thereby the drive can output without error displayed.
3. In STO mode, the switch ESTOP is turned on. The drive stops outputting and keypad displays STO.

Figure 2

Figure 3

NOTE

[^2]
18-4 Failure Rate of the Drive Safety Function

Please refer to Table 3 below for relevant safe parameters of safe loop:

Item	Definition	Standard	Performance
SFF	Safe failure fraction	IEC61508	S1-DCM $=88.35 \%$ S2-DCM $=88.2 \%$
HFT (Type A subsystem)	Hardware fault tolerance	IEC61508	1
SIL	Safety integrity level	IEC61508	SIL 2
	IEC62061	SILCL 2	
PFH	Average frequency of dangerous failure [h-1]	IEC61508	1.36 x 10-9
PFD ${ }_{\text {av }}$	Probability of dangerous failure on demand	IEC61508	5.99 x 10-6
PTI	Proof test interval	IEC61508	1 year
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

Table 3: Relevant safe parameters of safe loop

18-5 Reset the Parameter Settings

Pr. 06-44 can be used to set the reset method when an STO alarm occurs.

75-4 4 STO Latch Selection

Factory setting: 0

> | Settings | $0:$ STO Alarm latch |
| :--- | :--- |
| | 1: STO Alarm no latch |

[1] Pr. 06-44 = 0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear STO Alarm.
[1] Pr. 06-44 = 1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
[al All of STL1-STL3 error are "Alarm latch" mode (in STL1-STL3 mode, the Pr. 06-44 function is not effective).

18-6 Timing Diagram Description

The following timing diagram shows the status of relevant signals under different conditions:

18-6-1 Normal operation status

As shown in Figure 4: When S1-DCM and S2-DCM is ON (STO function is not required), the drive will execute "Operating" or "Output Stop" according to RUN command.

Figure 4
18-6-2-1 STO, Pr. 06-44=0, Pr. 02-35=0 (Selection of external control operation after reset I power on, 0=not valid)
As shown in Figure 5: When both of S1-DCM and S2-DCM are OFF during operation (STO function is required), the drive will stop outputting when enter safe mode regardless of Run command is ON or OFF status.

Figure 5

18-6-2-2 STO, Pr. 06-44=0, Pr. 02-35=1 (Selection of external control operation after reset

 / power on, 1= the drive will execute RUN if command exists after reset)As shown in Figure 6, the action is the same as in Figure 5. However, because Pr. 02-35=1, if RUN command still exists after reset, the drive will execute run command again immediately.

Figure 6

18-6-3 STO, Pr. 06-44=1

As shown in Figure 7: When both of S1-DCM and S2-DCM are OFF during operation (STO function is required), the drive will stop outputting. When the S1 / S2 status is restored (ON), the STO automatic alarm is automatically cleared. The drive can output when RUN command is released again.

Figure 7

18-6-4 STL1, Pr. 06-44=0 or 1

As shown in Figure 8: When S1-DCM is OFF during operation (STO function is required) and S2-DCM is ON (STO function is not required), the drive will stop outputting and keypad will show STL1 error. However, STL1 error cannot be reset even if the S1 status is restored (ON) regardless of the parameter setting. Turn the power on after power off to reset, thereby the drive can restore to normal standby state.

Figure 8

18-6-5 STL2, Pr. 06-44=0 or 1

As shown in Figure 9: When S1-DCM is ON during operation (STO function is not required) and S2DCM is OFF (STO function is required), the drive will stop outputting and keypad will show STL2 error. However, STL2 error cannot be reset even if the S2 status is restored (ON) regardless of the parameter setting. Turn the power on after power off to reset, thereby the drive can restore to normal standby state.

Figure 9

18-7 Error Code and Troubleshooting Instructions

18-7-1 Error Code Description

Refer to Pr.06-17-Pr.06-22 for fault record, wherein STO relevant error code is 72/76/77/78, the definition is as follows and Table 4:

96-17	Fault Record 1		
86-18	Fault Record 2		
96-93	Fault Record 3		
96-39	Fault Record 4		
16-3	Fault Record 5		
56-3	Fault Record 6		
	Settings 72: Channel 1 (S1-DCM) safety loop error (STL1) 76: Safe torque off (STo) 77: Channel 2 (S2-DCM) safety loop error (STL2) 78: Internal loop error (STL3)		
	Error code	Name	Description
	76 (STO)	Safe torque off	Safe torque off function active
	72 (STL1)	Channel 1 (S1-DCM) safety loop error	S1[This page intentionally left blank]DCM internal loop detected error
	77 (STL2)	Channel 2 (S2-DCM) safety loop error	S2[This page intentionally left blank]DCM internal loop detected error
	78 (STL3)	Internal loop error	S1[This page intentionally left blank]DCM and S2-DCM internal loop detected error

Table 4: Error code description

18-7-2 Troubleshooting Instructions

Refer to the following instructions for troubleshooting when STO / STL1 / STL2 / STL3 shows on keypad.
(Refer to Chapter 14 Error Codes)

ID No.	KPMH-LC01 Display	Descriptions
72		S1-DCM internal loop detected error Corrective Actions - Check wiring of S1 terminal. - Reset emergency switch (ON: activated) and re-power - Check the input voltage to maintain at least 11 V . - Check the wiring of S 1 and +24 V terminal. - After make sure all the wiring is correct, if STL1 fault still exists after re-power, please contact Delta.
76	I-	Safe torque off function active Corrective Actions - Check wiring of S1 and S2 terminal. - Reset emergency switch (ON: activated) and re-power. - Check the input voltage to maintain at least 11 V . - Check the wiring of S1 / S2 and +24 V terminal. - After make sure all the wiring is correct, if STO fault still exists after repower, please contact Delta.
77	In	S2-DCM internal loop detected error. Corrective Actions - Check wiring of S2 terminal. - Reset emergency switch (ON: activated) and re-power. - Check the input voltage to maintain at least 11 V . - Check the wiring of S 2 and +24 V terminal. - After make sure all the wiring is correct, if STL2 fault still exists after re-power, please contact Delta.
78		Internal loop detected error. Corrective Actions ■ After make sure the wiring is correct, if STL3 fault still exists after repower, please contact Delta.

18-8 Test and Fault Confirmation

After wiring in accordance with Section 18-3 Wiring Diagram, please follow the steps below to check whether STO and related detection function are normal.

1. When the drive is powered on, make sure that S1-DCM and S2-DCM voltage falls between 11$30 V_{D C}$, at this time, the drive should enter standby mode and waits for RUN command. There is no error displayed on keypad.
2. Press RUN command on the drive, use the emergency button or other methods to make S1-DCM and S2-DCM voltage falls between $0-5 V_{D C}$ simultaneously after the output frequency is reached, at this time, the drive should enter torque stop mode STO and stop outputting voltage. Keypad displays STO error, and the response time of S1 and S2 signals to the drive stops outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore S1-DCM and S2-DCM voltage to $11-30 \mathrm{~V}_{\mathrm{Dc}}$, press RESET button on keypad and STO error will be cleared. The drive should enter standby mode and waits for RUN command.
3. Press RUN command on the drive, use the emergency button or other methods to make S1-DCM voltage fall between $0-5 V_{D C}$, and $S 2-D C M$ voltage maintain between $11-30 V_{D C}$ after the output frequency is reached, at this time, the drive should enter torque stop mode STL1 and stop outputting voltage. Keypad displays ST1 error, and the response time of S 1 signals to the drive stops outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore S1-DCM voltage to $11-30 \mathrm{~V}$ Dc, however press RESET button on keypad cannot clear STL1 error, the drive needs to be re-powered. Make sure that S1-DCM and S2-DCM voltage falls between $11-30 V_{D C}$ and then re-power the drive, thus STL1 error will be cleared. The drive should enter standby mode and waits for RUN command.
4. Press RUN command on the drive, please use the emergency button or other methods to make S2DCM voltage fall between $0-5 \mathrm{~V}_{\mathrm{DC}}$, and S 1 -DCM voltage maintain between $11-30 \mathrm{~V}_{\mathrm{DC}}$ after the output frequency is reached, at this time, the drive should enter torque stop mode STL2 and stop outputting voltage. Keypad displays ST2 error, and the response time of S2 signals to the drive stops outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore S2-DCM voltage to $11-30 \mathrm{~V} \mathrm{Dc}$, however press RESET button on keypad cannot clear STL1 error, the drive needs to be re-powered. Make sure S1-DCM and S2DCM voltage falls between $11-30 V_{D C}$ and then re-power the drive, thus STL2 error will be cleared. The drive should enter standby mode and waits for RUN command.
5. If the above four steps can be conducted normally in sequence with no other error, then the safe torque off function loop is normal, as shown in Table 5 below. However, if there are situations differ from the above four steps or if STL3 occurs, the safe torque off function loop is abnormal. Please refer to 18-7 Error Code and Troubleshooting Instructions.

Signal	Status				
S1-DCM	ON	ON	OFF	OFF	
S2-DCM	ON	OFF	ON	OFF	
Drive output	Ready to output	STL2 mode	STL1 mode	STO mode	
Error displayed on keypad	No error displayed	STL2	STL1	STO	
Response time	N.A	ST20 ms			
RESET mechanism	N.A	Re-power the drive	Re-power the drive	Can be RESET directly	

Table 5
@ STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
[a] STL1 means channel 1 operates.
[d STL2 means channel 2 operates.
[1] STL3 means there is error detected in the internal circuit of channel 1 or channel 2.
[1] S1-DCM / S2-DCM ON: means S1-DCM / S2-DCM inputs a power supply $>11 \mathrm{~V}_{\mathrm{DC}}$.
[a] S1-DCM / S2-DCM OFF: means S1-DCM / S2-DCM inputs a power supply < 5 VDC.
[This page intentionally left blank]

[^0]: 56-30 Output Frequency at Malfunction
 Default: Read only
 Settings $\quad 0.00-599.00 \mathrm{~Hz}$
 [1] When a malfunction occurs, check the current output frequency. If it happens again, it overwrites the previous record.

[^1]: Explanation
 \mathbf{S}_{1} : Parameter address of data to be read. \mathbf{S}_{2} : Register where data that is read is stored.

[^2]: *1 is factory jumper wire of +24 V -S1-S2. To use the Safety function, please remove this jumper wire.
 Conversely, if the Safety function is disabled, then $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$ should be short-circuit with jumper wire.

