M A

R

Right choice for ultimate yield
LSIS strives to maximize customers' profit in gratitude of choosing us for your partner.

SV-iV5 User Manual

2.2~37kW (200VAC) / 2.2~375 kW (400VAC) / 5.5~375kW (400VDC)

iV5 New Controller

! Safety Instructions

- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- Keep this manual within easy reach for LSis quick reference.

Safety Instructions

To prevent injury and property damage, follow these instructions. Incorrect operation due to ignoring instructions will cause harm or damage.

The seriousness of which is indicated by the following symbols.

Symbol		Meaning
$!$	Warning	This symbol indicates the possibility of death or serious injury.
$\boldsymbol{\Lambda}$	Caution	This symbol indicates the possibility of injury or damage to property.

Remark

- Even if the instructions are indicated as 'Caution', it can cause a serious result according to the kind of operation and the environment.

The meaning of each symbol in this manual and on your equipment is as follows.

Symbol	Meaning
$!$	This is the safety alert symbol. Read and follow instructions carefully to avoid dangerous situation.
4	This symbol alerts the user to the presence of "dangerous voltage" inside the product that might cause harm or electric shock.

After reading this manual, keep it in the place that the user always can contact easily.

This manual should be given to the person who actually uses the products and is responsible for their maintenance.

WARNING

- Do not remove the cover while power is applied or the unit is in operation.

Otherwise, electric shock could occur.

- Do not run the inverter with the front cover removed.

Otherwise, you may get an electric shock due to high voltage terminals or charged capacitor exposure.

- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you may access the charged circuits and get an electric shock.
- Wiring and periodic inspections should be performed at least 20 minutes

WARNING

after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below DC 30V).
Otherwise, you may get an electric shock.

- Operate the switches with dry hands.

Otherwise, you may get an electric shock.

- Do not use the cable when its insulating tube is damaged.

Otherwise, you may get an electric shock.

- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.

Otherwise, you may get an electric shock.

- This inverter must be earthed/grounded.

\triangle CAUTION

- Install the inverter on a non-flammable surface. Do not place flammable material nearby.
Otherwise, fire could occur.
- Disconnect immediately the input power if the inverter gets damaged.

Otherwise, it could result in a secondary accident and fire.

- After the input power is applied or removed, the inverter will remain hot for a couple of minutes.
Otherwise, you may get bodily injuries such as skin-burn or damage.
- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
Otherwise, electric shock could occur.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign matter into the drive.

Otherwise, fire or accident could occur.

Caution for Use

■ Transportation and Installation

- Be sure to carry inverter in a proper way suitable for its weight, or it may result in damage to inverter.
- Be sure to use heat-treated wooden crate when you adopt wooden packaging for the product.
- Do not pile up inverters above allowable limit.
- Be sure to install the inverter as directed in this instruction manual.
- Do not turn off the power supply to the damaged inverter.
- Do not open the front cover while carrying the inverter.
- Do not place the heavy material on the inverter.
- The direction of installation should be observed properly as criterions specified in this manual show.
- Make sure that you should not put screw, metal material, water, oil and the inflammable something else.
- Keep in mind that inverter is very vulnerable to drop from the mid air and strong shock.
- Don't let the inverter exposed to rain, snow, fog, dust, etc.
- Do not cover, nor block, the ventilating system having cooling fan. It may cause the inverter overheated.
- Be sure to check the power is off when installing the inverter.
- To prevent the risk of fire or electric shock, keep the connected wire in a sound condition. Use the wire that meets the standard in a recommended length.
- Be sure to ground the inverter. (Under 10Ω to 200 V class, Under 100Ω to 400 V class)
- Be certain to use the inverter under the following conditions.

Environment	Description
Ambient Temperature	$-10 \sim 40{ }^{\circ} \mathrm{C} \quad$ (Non-frozen) (Less than 80\% load is recommended at $\left.50^{\circ} \mathrm{C}.\right)$
Ambient Humidity	Below $90 \% \mathrm{RH}$ (Dewdrop should not be formed)
Storage Temperature	$-20 \sim 65^{\circ} \mathrm{C}$
Ambient Condition	Free of corrosive gas, inflammable gas, oil sludge and dust, etc
Altitude/Vibration	Below 1000 m above sea level, Below $5.9 \mathrm{~m} / \mathrm{sec}^{2}(=0.6 \mathrm{~g})$
Ambient Air Pressure	$70 \sim 106 \mathrm{kPa}$

■ Wiring

- A professional installer should have done the wiring and checking.

- Do wiring after installing the inverter body.
- Do not connect phase-leading capacitors, surge filter, radio noise filter to the output of inverter.
- Output terminals (terminals named U, V, W respectively) should be connected in a proper phase sequence.
- Make sure that there is not any short circuit terminal, wrong wiring. It may cause spurious operation or failure.
- Refrain from using a cable other than the cable shielded when you connect control circuit wiring.
- Adopt the shielded wire only when wiring the control circuit. It may cause the failure of inverter in its operation. Use the twisted pair shield wire for the ground terminal of the inverter.

Warning

- To prevent an electric shock, be sure to check if MCCB and MC are switched OFF before wiring
Otherwise, it may cause an electric shock.

Adjustment before starting trial operation

- Do not supply the excessive range of voltage displayed in the user manual to the each terminal. It may cause damage to the inverter.
- Current hunting can be occurred in the low speed territory during testing. It occurs where the capacity is above 110 kW with no-load and the axis is not connected. The current hunting has a gap according to the motor characteristic. It will be disappeared when the load is connected and it is not the indication of abnormal condition.
If the hunting is occurred seriously, please stop the testing and operates with the load.
- Be sure to check relevant parameters for the application before starting trial operation.

■ How to Use

- Be sure not to approach the machine when retry function is selected. The machine may start working suddenly.
- Stop key on the keypad should be set to be in use. For safety, additional emergency stop circuit should be required.
- Inverter restarts if alarm condition is cleared while FX/RX signal is on. Therefore, be sure to operate the alarm reset switch after checking if FX / RX signal is off.
- Never modify the inverter for inappropriate use.
- When a magnetic contactor is installed on the power source, do not frequently start or stop using this magnetic contactor. It may cause the failure of inverter.
- Noise filter should be used for the minimization of troubles by electro-magnetic noise. Electronic equipments close to the inverter should be protected against the damage caused by troubles.
- Be sure to install the $A C$ reactor at the input of inverter in case of input voltage unbalance. Otherwise, generator or phase-leading capacitors may be destroyed by the harmonic current from inverter.
- If 400 V class motor is used with the inverter, insulation-enforced motor should be used or countermeasures against the suppression of micro-surge voltage generated by the inverter should be carried out.
Otherwise, micro-surge voltage is generated across input terminal for the motor and this voltage lowers allowable insulation break-down voltage and then, may cause the destruction of the motor.
- Be sure to set the parameters once more, in case of initialization of parameters, all values of parameters is set to values of factory setting.
- High speed operation can be set easily, therefore be sure to check the performance of motor or machine before changing parameter value.
- DC braking function cannot produce a zero-servo torque. If required, additional equipment should be installed.
- When inverter trip or emergency stop (BX) occurs without keypad connected, LED on the control board will blink by the interval of 0.5 sec . But LED will blink by 1 sec when keypad is connected. This function displays which trip will be occurred according to the connection of keypad.
- Do not change wiring, nor disconnect connector or option card during the operation of inverter.
- Do not disconnect the motor wiring while the voltage of inverter is output. Mishandling may cause damage to the inverter.
- Be sure to handle the inverter and option care in the order recommended in the Electro Static Discharge (ESD) Countermeasure. Mishandling may lead to damage to the circuit on the PCB caused by ESD.

■ Countermeasure against malfunction troubles

- If inverter is damaged and then gets into uncontrollable situation, the machine may lead to the dangerous situation, therefore to avoid this situation, be sure to install the additional equipments such as brake.

■ Maintenance, inspection and parts replacement

- Do not perform the megger (insulation resistance check) test on the control board.
- Please refer to intervals for parts replacement on Chapter 8.

■ Disposal

- Handle the inverter as an industrial waste when disposing of it.
- Our inverter contains the raw material of value that can be recycled from the aspect of energy and resource preservation. All the package materials and metal parts are recyclable. Plastics are also recyclable, but may be burnt under the controllable environment depending on the local regulation.

General Instruction

－The drawing in this user manual is represented the details of the inner inverter，so， the drawing is described without cover part and circuit breaker．But，cover and cir－ cuit breaker should be mounted before the operation following to the instruction of user manual．
－Turn off the power of inverter when the inverter is not used．

Cleaning

－Be sure to operate the inverter under a clean condition．
－When cleaning the inverter，be sure to check the inverter is off．Start cleaning it with all the plugs connected with the inverter socket removed．
－Never clean the inverter using wet cloth or water．Wipe the stained area softly using the cloth completely wet with a neutral detergent or ethanol．
－Never use the solution such as acetone，benzene，toluene，alcohol，etc．They may cause the coating on the surface of the inverter to peel off．In addition，do not clean LCD display，etc．using detergent or alcohol．

Storage

－Be sure to keep the inverter under the following conditions if you don＇t use it for a long period of time．
－Make sure that you satisfy the recommended storage environment．（See page v．）
－If the storage period exceeds 3 months，be sure to keep it at the ambient tempera－ ture of $-10 \sim+30^{\circ}$ C to prevent ${ }^{\text {『 }}$ Deterioration by Temperature』 of electrolytic con－ denser．
－Be sure to keep it in a proper package to prevent moisture，etc．Put the desiccant （Silica Gel），etc．，in the package so that the relative humidity in the package can be maintained at 70% or less．
－When it is exposed to moisture or dust（mounted on the『System』 or 『Control Panel』，etc．installed at the construction site），remove it and then keep it under the environmental condition specified in the page v ．

\triangle Caution

－If the inverter has been left long with electric current not charged，the na－ ture of electrolytic condenser can be deteriorated．So be sure to have it plugged in for $30 \sim 60$ minutes once a year．Do not perform wiring and op－ eration of the output side（secondary side）．

Chapter 1 - Introduction

This instruction manual is designed for LS STARVERT-iV5 series Vector Control Inverters, which have excellent characteristics in speed and torque control with pulse encoder mounted on the shaft of 3 phase induction motor, and covers installation, maintenance, wiring and operation for these inverters.

1.1 Key Features

- Current Controlled Vector Control Inverter with Speed Sensor using IGBT as Power Semiconductor Device.
- Tension/Torque Control and Wide Variety of Process Control
- Process PI Control, Draw Control, Droop Control, Synchronous Control, WEB Control etc.
- Auto-tuning of Motor Parameters for Precise Speed/Torque Control: Rotational/Standstill mode
- Encoder error (H/W and S/W) Detection Function
- Auxiliary Battery Function and Emgergent Operation by Battery Operation
- Various Option for Communication and Application
- Inverter Application

Application	Applicable Machine/System	Features
Process Control	Steel Strip Paper Mill Textile Film Coater Printing Machine	Tension Control Wide Range of Speed Control
Machine Control Control	Lifts (Elevators) Parking Stacker Crane Crane Hoist	Wachine Tool Wire Drawing Warper
Others	Conveyor Industrial Washing Machine	High Speed Operation Positioning Wide Range of Speed Control
Highe	High Speed Operation High Starting Torque Positioning	

1.2 Inverter Nameplate and Model

1.2.1 Inverter nameplate (Example)

SV [][][][]IV5-2DB																														
$\begin{array}{lll}\text { INPUT } & 200-230 \mathrm{~V} & 3 \text { Phase } \\ & {[][][] \mathrm{A}} & 50 / 60 \mathrm{~Hz}\end{array}$																														
OUTPUT	0 - Input V [][5]]A [][][]HP / [$\begin{aligned} & 3 \text { Phase } \\ & 0-3600 \mathrm{rpm} \\ & {[\mathrm{~kW}} \end{aligned}$																												
	\|														 	\|														[][][]
LS LSIS Co.,Ltd																														

\longleftarrow Inverter Model Name
\longleftarrow Input Power Source Specifications

- Rated Capacity
« Output Power Source Specifications
\longleftarrow Running Freq. / Rated Output Current
\longleftarrow Output Capacity
\longleftarrow Bar Code
\longleftarrow Serial Code

1.2.2 Inverter Model Name

- LS STARVERT Series
- Max. Applicable Motor 022: 2.2kW ~ 3750: 375kW
- iV5 Series

- Input Voltage

2: 200V Class (200 ~ 230V),
4 : 400V Class (380 ~ 480V)

- Built-in DB Circuit

DB : Built-in DB IGBT Circuit (DB Resistors Integrated)
Blank : No Built-in DB Circuit (Use external DB Unit) DC : DC Power Input

- MD : Mold Type (2.2~22kW)
- Input Voltage
(380V) : 380V Input Voltage - 30~220kW(400V)
Blank : Below 22kW (200V/400V) and 280~375kW(400V)
- ENCODER TYPE

Blank: 5V Line Drive, 15V Open Collector
24V ENC : 24V Line Drive/Open Collector

Chapter 2 - Specification

2.1 Standard Specification

2.1.1 200V Class (AC power input type)

SV[][][iV5-2(DB)			022	037	055	075	110	150	185	220	300	370
Max. applicable motor output Note1)		[HP]	3	5	7.5	10	15	20	25	30	40	50
		[kW]	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37
$\begin{aligned} & \text { H } \\ & \text { 뮴 } \\ & 0 \end{aligned}$	Capacit	$\left.{ }^{\prime}\right]^{\text {(Note2) }}$	4.5	6.1	9.1	12.2	17.5	22.5	28.2	33.1	46	55
	Rated	rent [A]	12	16	24	32	46	59	74	88	122	146
	Speed		0 ~ 3600(rpm)									
	Voltage		$0 \sim 200 \mathrm{~V}\left(230 \mathrm{~V}^{(\text {Note3) }}\right.$)									
Input	Voltage		3中 $200 \sim 230 \mathrm{~V}(-10 \% \sim+10 \%)$									
	Frequency		$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$									
Inverter weight [kg(lbs)]			$\begin{gathered} \hline 6 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ (30) \end{gathered}$	$\begin{gathered} 14 \\ (30) \end{gathered}$	$\begin{aligned} & \hline 27.5 \\ & (60) \end{aligned}$	$\begin{aligned} & 27.5 \\ & (60) \end{aligned}$	$\begin{gathered} \hline 28 \\ (61) \end{gathered}$	$\begin{gathered} \hline 28 \\ (61) \end{gathered}$	$\begin{gathered} \hline 42 \\ (93) \end{gathered}$	$\begin{gathered} \hline 42 \\ (93) \\ \hline \end{gathered}$

2.1.2 400V Class (AC power input type)

SV[][][][]iV5-4(DB)			022	037	055	075	110	150	185	220	300	370	450
Max. applicable motor output Note ${ }^{1)}$		[HP]	3	5	7.5	10	15	20	25	30	40	50	60
		[kW]	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45
$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \frac{2}{3} \\ & 0 \end{aligned}$	Capacit	A] ${ }^{\text {(Note2) }}$	4.5	6.1	9.1	12.2	18.3	22.9	29.7	34.3	46	57	70
	Rate	rrent [A]	6	8	12	16	24	30	39	45	61	75	91
	Speed		0 ~ 3600(rpm)										
		tage	$0 \sim 380 \mathrm{~V}\left(480^{\text {(Note3) }}\right.$)										
Inverter weight [$\mathrm{kg}(\mathrm{lbs})$]			$\begin{gathered} \hline 6 \\ (13) \end{gathered}$	$\begin{gathered} \hline 6 \\ (13) \end{gathered}$	$\begin{gathered} \hline 14 \\ (30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \\ (30) \end{gathered}$	$\begin{gathered} \hline 27 \\ (59) \end{gathered}$	$\begin{gathered} \hline 28 \\ (61) \end{gathered}$	$\begin{gathered} \hline 28 \\ (61) \end{gathered}$	$\begin{gathered} \hline 28 \\ (61) \\ \hline \end{gathered}$	$\begin{gathered} \hline 42 \\ (93) \end{gathered}$	$\begin{gathered} \hline 42 \\ (93) \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ (139) \end{gathered}$
Input		age	$3 \phi \quad 380 \sim 480 \mathrm{~V}(-10 \% \sim+10 \%)^{(\text {Note4) }}$										
	Frequency		$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$										

SV[][][][]V5-4(DB)			550	750	900	1100	1320	1600	2200	2800	3150	3750
Max. applicable motor output Note ${ }^{1)}$		[HP]	75	100	120	150	175	215	300	373	420	500
		[kW]	55	75	90	110	132	160	220	280	315	375
$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \frac{2}{3} \\ & 0 \end{aligned}$	Capacit	$\left.{ }^{\text {d }}\right]^{\text {(Note2) }}$	85	116	140	170	200	250	329	416	468	557
	Rate	rrent [A]	110	152	183	223	264	325	432	546	614	731
	Speed		0 ~ 3600(rpm)									
		age	$380 \sim 480 V^{\text {(Note3) }}$									
Inverter weight [kg(lbs)]			$\begin{gathered} 63 \\ (139) \end{gathered}$	$\begin{gathered} 68 \\ (150) \end{gathered}$	$\begin{gathered} 98 \\ (216) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ (216) \end{gathered}$	$\begin{gathered} 122 \\ (269) \\ \hline \end{gathered}$	$\begin{gathered} 122 \\ (269) \\ \hline \end{gathered}$	$\begin{gathered} 175 \\ (386) \\ \hline \end{gathered}$	$\begin{gathered} 243 \\ (536) \end{gathered}$	$\begin{gathered} 380 \\ (838) \end{gathered}$	$\begin{gathered} 380 \\ (838) \end{gathered}$
Input			$3 \phi \quad 380 \sim 480 \mathrm{~V}(-10 \% \sim+10 \%)^{(\text {Note4 })}$									
	Frequency		$50 \sim 60 \mathrm{~Hz}$ ($\pm 5 \%$)									

※ The electrical specifications of the MD type (2.2~22kW Class) are the same as the above.
(In case of 2.2 and 3.7 KW products, refer to the weight in above table.)

SV[][][]iV5-2/4DB(MD)	$\mathbf{0 5 5}$	$\mathbf{0 7 5}$	$\mathbf{1 1 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 5}$	$\mathbf{2 2 0}$
Inverter weight [kg(lbs)]	$7.7(16.9)$	$7.7(16.9)$	$13.7(30.2)$	$13.7(30.2)$	$20.3(44.7)$	$20.3(44.7)$

2.1.3 400V Class (DC power input type)

SV[][i]iV2V5-4DC			055	075	110	150	185	220	300	370	450	550
Max. applicable motor output Note1)		[HP]	7.5	10	15	20	25	30	40	50	60	75
		[kW]	5.5	7.5	11	15	18.5	22	30	37	45	55
$\begin{aligned} & \text { 言 } \\ & \frac{1}{3} \end{aligned}$	Capacity	A] ${ }^{\text {(Note2) }}$	9.1	12.2	18.3	22.9	29.7	34.3	46	57	70	85
	Rated	rent [A]	12	16	24	30	39	45	61	75	91	110
	Speed		0 ~ 3600(rpm)									
	Voltage		$0 \sim 380 \mathrm{~V}\left(480 \mathrm{~V}^{\text {(note3) }}\right.$)									
Input rated voltage			DC 540 ~ 680V(+10\%) ${ }^{\text {(note5) }}$									
Inverter weight [kg (lbs)]			$\begin{gathered} 12 \\ (26) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (26) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (53) \\ \hline \end{gathered}$	$\begin{array}{r} 24.5 \\ (54) \\ \hline \end{array}$	$\begin{array}{r} \hline 25 \\ (55) \\ \hline \end{array}$	$\begin{gathered} \hline 25 \\ (55) \\ \hline \end{gathered}$	$\begin{array}{r} 38.5 \\ (84) \\ \hline \end{array}$	$\begin{aligned} & 38.5 \\ & (84) \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ (110) \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ (110) \\ \hline \end{gathered}$

SV[][][]VV5-4DC			750	900	1100	1320	1600	2200	2800	3150	3750
Max. applicable motor output Note1)		[HP]	100	120	150	175	215	300	373	420	500
		[kW]	75	90	110	132	160	220	280	315	375
$\begin{aligned} & \text { 言 } \\ & \frac{2}{3} \\ & 0 \end{aligned}$	Capacity	A] ${ }^{\text {Note2) }}$	116	140	170	200	250	329	416	468	557
	Rated	ent [A]	152	183	223	264	325	432	546	614	731
	Speed		0 ~ 3600(rpm)								
	Voltage		$0 \sim 380 \mathrm{~V}\left(480 \mathrm{~V}^{\text {(note3) }}\right.$)								
Input rated voltage			DC 540 ~ $680 \mathrm{~V}(+10 \%)^{\text {note5) }}$								
Inverter weight [kg (lbs)]			$\begin{gathered} 55 \\ (121) \end{gathered}$	$\begin{gathered} 79 \\ (174) \end{gathered}$	$\begin{gathered} 79 \\ (174) \end{gathered}$	$\begin{aligned} & 98.5 \\ & (217) \end{aligned}$	$\begin{aligned} & 98.5 \\ & (217) \end{aligned}$	$\begin{aligned} & 154.5 \\ & (340) \end{aligned}$	$\begin{gathered} 206 \\ (454) \end{gathered}$	$\begin{gathered} \hline 343 \\ (756) \end{gathered}$	$\begin{gathered} 343 \\ (756) \end{gathered}$

Note)

1. It represents the output capacity of maximum applicable motor in case 4 poles of motor are used.
(200 V is based on 220 V and 400 V is based on 440 V .)
2. Rated capacity $(=\sqrt{ } 3 * \mathrm{~V} * \mathrm{I})$ is calculated based on 220 V for 200 V class, 440 V for 400 V class.
3. Maximum output voltage cannot be generated above specified input voltage.
4. Derate the rated current by 10% when the input voltage is in the range above 480 V .
5. Rated current is derated by 10% above 680 VDC of input voltage.

* 500kW AC/DC input type will be released soon.

2.2 Common Specification

Items			Detailed Specification
Inverter type			Voltage source inverter using IGBT
Control method			- Field oriented vector control inverter with speed sensor attached, Sensorless vector control inverter
Speed control accuracy			- Analog setting: $\pm 0.01 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$ of max. Speed (1,800 rpm) - Digital setting: $\pm 0.01 \%\left(0 \sim 40^{\circ} \mathrm{C}\right)$ of max. Speed ($1,800 \mathrm{rpm}$)
	Speed setting resolution		- Analog setting: $\pm 0.1 \%$ of maximum Speed - Digital setting: 0.1 rpm
	Cut-off frequency of ASR		50 Hz
	Torque control accuracy		3\%
	Overload Capacity		CT: 150\%/1Min
	Accel/	Time setting	$0.00 \sim 6000.0 \mathrm{sec}$ (Time unit can be set)
		Combination	4 Combinations of acceleration/Deceleration Time
		Pattern	Linear, S-Curve
	Braking method		Dynamic braking using external resistors
	Braking torque		150\%
	Braking resistor		External braking resistor should be provided.
	Speed settings		- Digital setting via keypad - Multi-step speed setting by input terminal selection - Analog input settings of $-10 \sim 10 \mathrm{~V}$ or $4 \sim 20 \mathrm{~mA}$ - Remote setting by option card
	Analog input		- 3 channels (AI1, AI2, AI3*, (AI4,AI5: Extended I/O)) - $-10 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}, 0 \rightarrow 20 \mathrm{~mA}, 20 \rightarrow 0 \mathrm{~mA}$, (*AI3(AI5:Extended I/O): Motor NTC selectable) - Selectable among 16 different user-defined functions - AI3, AI5(Motor NTC):only available with HIGEN motors.
	Contact input		- FX, RX, BX, RST, P1, P2, P3, P4, P5, P6, P7 - Selectable among 46 different user-defined input functions
$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{D}} \\ & \text { B } \\ & \text { B } \end{aligned}$	Analog output		- 2 channels (AO1, AO2) - $-10 \mathrm{~V} \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}$ output - Selectable among 39 different user-defined functions
	Contact output		- 2 channels ($1 \mathrm{~A}-1 \mathrm{~B}, 2 \mathrm{~A}-2 \mathrm{~B}$) - Fault alarm relay: 1 channel (30A-30C, 30B-30C)
	Open Collector		1 Channel (OC1/EG)
Protection			Overcurrent, Overvoltage, Low voltage, Inverter overheat, Inverter thermal sensor malfunction, Motor overheat, Motor thermal sensor malfunction, Overspeed, Instantaneous IGBT gate block (BX), Fuse blown open, External Trip, Pulse encoder malfunction, Electronic thermal function, Inverter overload, Ground fault current, IGBT short, Communication error, FAN power error, Input/Output open-phase
	Installation condition		Indoor, Free of Corrosive gas and Direct sunlight (Pollution Degree 2)
	Ambient temperature		-10 ~ 40 ${ }^{\circ} \mathrm{C}$ (Non-frozen condition)
	Humidity		Below RH 90\% (Dewdrop should not be formed)

2. Specification

Items		Detailed Specification
	Cooling method	Forced ventilation by cooling fan
	IP Type	$\begin{aligned} & \text { IP00: } 2.2 \sim 22 \mathrm{~kW} \text { (MD), } 30 \sim 375 \mathrm{~kW} \\ & \text { IP20: } 5.5 \sim 22 \mathrm{~kW} \text { (Press) } \\ & \hline \end{aligned}$
	Altitude, Vibration	Below 1000 m above sea level, Below $5.9 \mathrm{~m} / \mathrm{s}^{2}(=0.6 \mathrm{G})$

Chapter 3 - Installation and Wiring

This chapter describes general items for the installation and wiring of an inverter and includes instruction for wiring to power terminal and control one and caution in case of wiring, and also explains the function of each terminal for both power and control.

Be sure to check mechanical and electrical installation environment before you start the inverter. Read through the checking list below. Be sure to read through the Caution for Safety on this User's Manual prior to the operation of inverter.

Checking List

- Mechanical Installation Checking List
- Be sure to check the surrounding environment is allowed for operation. (Read through the ‘Caution on Installation')
- Inverter is a heat-generating device. Be sure to sufficiently secure the surrounding space to prevent thermal saturation phenomenon.
- Be sure to check air is circulated in a normal condition.
- Be sure to check motor and drive system are ready to start.
- Electrical Installation Checking List
- Make sure that the protective grounding is properly done.
- Replace the condenser with new one if it lasted longer than two years.
- Set the input voltage to the nominal input voltage of the inverter.
- Check if the input voltage connected with R, S, T and then fasten them tightly using an accurate torque wrench.
- Check if input power fuse and circuit breaker are properly installed.
- Install the motor cable away from the other cable.
- Check if the ext. input/output is properly connected.
- Check if the input voltage is properly connected with the output terminal of inverter.

3.1 Caution on Installation

3.1.1 Do not install the inverter in a location where excessive vibration is present.

 Be cautious when installing on presses or moving equipment.
3.1.2 Caution on ambient temperature

Ambient temperature greatly affects inverter lifetime, therefore be sure to keep the ambient temperature of installation location at -10 to $40^{\circ} \mathrm{C}$.

3.1.3 Install the inverter on the uninflammable material. The inverter operates at hightemperature.

3.1.4 Avoid a humid and hot location.

3.1.5 Install the inverter in a location free of oil mist and dust.

Totally enclosed panel can be used to protect the inverter against that materials.
Cooling air must be clean, free from corrosive materials and electrically conductive dust.

3.1.6 Secure the installation space enough to protect the inverter against the overheating.

At least the room that 30 cm from upper and lower of inverter and 20 cm from left and right of inverter is required for installing more than 30 kW products.

3.1.7 Special care should be taken in case the inverter is to be installed in the panel.

In case more than 2 inverters are to be installed or ventilation fan is to be installed in the panel, make sure that inverter and ventilation fan is properly installed. If they are poorly installed, it causes the increase of an ambient temperature and less effective ventilation. Therefore, be sure to keep the ambient temperature of inverter below the allowable temperature.

3.1.8 Install the inverter tightly not to get loose using proper sized bolt or screw.

3.2 Basic Wiring

Do the wiring of inverter and then check the wiring of main circuit and control circuit before starting it. Read through the checking list as below.

Checking List

Is the inverter supplied in the form as ordered?

- Are the type and numbers of peripherals (Resistance, DC reactor, Noise filter, etc.) supplied as ordered?
- Is the type of option supplied as supplied?

Place of the inverter to be installed and how to install it

- Is the inverter installed on a right place in a right way?

Power voltage, Output voltage

- Is power voltage within the range of inverter input voltage specified?
- Does the rated output comply with the inverter output specification?
- Is the rating done properly?

Main Circuit Wiring

- Is the power input using the circuit breaker?
- Is the rating of the circuit breaker done properly?
- Is the power wiring input properly to the inverter input terminal? [If the input power is connected with the input terminal $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ it may cause damage to the inverter]
- Is the motor wiring connected with the inverter output terminal in a proper phase sequence? (Otherwise, the motor will be rotated adversely.)
- Is 600 V vinyl insulation wire adopted for the power and motor wires?
- Is the main circuit wire in a proper size?
- Is the ground line installed in a proper way?
- Are the screws of the main circuit terminal and the ground terminal fastened tightly?
- In the event several motors are operated with one inverter, does each motor have a overload protecting circuit?
- In the event it adopts braking resistance or braking resistance unit, is an electronic contactor installed at the inverter power side so as to isolate the inverter from the power by protecting the resistance from overload?
- Isn't power condenser, surge killer, or radio noise filter connected with the output side?
Control Circuit Wiring
- Is a twisted pair shielded wire adopted for the inverter control circuit wiring?
- Is the covered wire with shield connected with the ground terminal?
- In the event it is operated in 3-Wire sequence, is the control circuit wiring done after the parameter of multi-function contact input terminal is modified?
- Is the wiring of the optional devices done properly?
- Aren't there any wiring mis-connected?
- Are the inverter control circuit terminal screws fastened tightly?
- Aren't there any wire fragments or screw left?
- Doesn't the remaining wire connected with the terminal contact the terminals nearby?
- Is the control circuit wiring isolated from the main circuit wiring in the duct or control panel?
- Doesn't the length of wiring exceed 50 m ?
- Doesn't the wiring of safety input exceed 30 m ?
- AC Power Input Type:

SV022, 037, 055, 075, 110, 150, 185, 220iV5-2(DB)
SV022, 037, 055, 075, 110, 150, 185, 220iV5-4(DB)

Note) : Main circuit ,o : Control circuit

Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) separated from main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: Above 100VA recommended)

- AC Power Input Type

SV300, 370iV5-2

SV300, 370, 450, 550, 750, 900, 1100, 1320, 1600, 2200, 2800, 3150, 3750iV5-4
Note: AC Fans for 300~2200iV5-4 series should be changed the input power source of transformer $1^{\text {st }}$ tap corresponding with that of inverter. (Factory default is 380VAC)

※ SIO terminal indication for SV2800~3750iV5: PE \rightarrow PENT, GE \rightarrow G24X
Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)

- DC Power Input Type:

SV055, 075, 110, 150, 185, 220, 2800, 3150, 3700iV5-4DC

※ SIO terminal indication for SV2800~3750iV5: PE \rightarrow PENT, GE \rightarrow G24X
Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)

- DC Power Input Type:

SV300, 370, 450, 550, 750, 900, 1100, 1320, 1600, 2200iV5-4DC
Warning) It must be energized AC220V (50/60Hz) to terminal of FAN1 and FAN2 because $\mathbf{3 0} \boldsymbol{\sim} \mathbf{1 6 0}$ kW-4DC series have a cooling fan for AC power drive and MC. If not, Trip (30~160kW: "FAN/MC PWR", 220kW: "FAN PWR") will be occurred. The inverter is not operated unless trip is released after AC220V inputs. The recommended order of power input and cutoff is as shown below.
(The order of power On: 220VAC \rightarrow Main power of $\mathrm{P}(+) / \mathrm{N}(-) \rightarrow$ Run
The opder of power Off: Operation stop \rightarrow Main power of $P(+) / N(-) \rightarrow 220 V A C)$

Note 1) It is used when inverter control circuit is energized from auxiliary power source (220 VAC) without main power supply. Use insulated transformer to separate from main power supply. (Transformer capacity: above 100VA recommended)
Note 2) The power of 220VAC is must be supplied for the operation of internal cooling fan and/or Magnetic contactor. Use insulated transformer to separate from main power supply.
($30 \sim 160 \mathrm{~kW}$: for the operation of FAN and MC, 220 kW : for the operation of FAN) (Transformer capacity: above 30~75kW(100VA), 90~160kW(150VA), 220kW(500VA) recommended)

3.3 Power Circuit Terminal

3.3.1 Power circuit terminal arrangement
(1) AC power input type

CAUTION

Be sure that " N " is not Neutral Line but $\operatorname{DCN}(-)$ and P is $\mathrm{DCP}(+)$
G means the ground terminal of inverter frame and it has the symbol " $=$ ".

■ SV022, 037, 055, 075, 110, 150, 185, 220iV5-2(DB)
SV022, 037, 055, 075, 110, 150, 185, 220iV5-4(DB)

■ SV110, 150, 185, 220iV5-2(DB)(MD)
SV110, 150, 185, 220iV5-4(DB)(MD) *(MD) : Mold Type

■ SV300, 370iV5-2
SV300, 370, 450, 550, 750iV5-4

■ SV900, 1100, 1320, 1600, 2200iV5-4

- SV2800, 3150, 3750iV5-4

(2) DC power input type

■ SV055, 075iV5-4DC

■ SV110, 150, 185, 220iV5-4DC

■ SV300, 370,450,550,750,900,1100,1320,1600,2200iV5-4DC

■ SV2800, 3150, 3750iV5-4DC

3.3.2 Power circuit terminal description

(1) AC power input type

Name	Function	Description
R, S, T	3 Phase input power supply	Connected to 3 phase input power supply
U, V, W	Inverter Output	Connected to 3 phase induction motor
G	Grounding	Used for inverter frame earth $\left(\frac{1}{=}\right)$
B1, B2	Braking Resistor connection	Connected to braking resistor
P1(+), P2(+)	DC Reator and DB Unit connection	Used for DC Reactor, DB Unit and DC link common connection
$\mathrm{P}(+)$	DC Link common connection	DC link common connection
N(-)	DB Unit connection	Used for DB Unit and DC link common connection

(2) DC power input type

Name	Function	Description
$\mathrm{P}(+), \mathrm{N}(-)$	DC input power	Connected to DC input power source Connected from DC power supply (PWM converter) within max. 30m
U, V, W	Inverter Output	Connected to the cable of 3-phase induction motor
G	Grounding	Used for inverter frame earth
FAN1, FAN2	Internal cooling fan and MC drive power source	Connected to single-phase 220V AC power source note1)

note1) This setting is applied to AC input type of iV5 500 kW product.

3.3.3 Cautions to be required for wiring to power circuit terminal

(1) Connect terminals (R, S and T) to 3 phase input power supply after checking inverter nameplate attached on the inverter. Never connect terminals (U, V and W) to 3 phase input power supply. It results in lethal damage to the inverter.

(2) Never connect the phase advancing capacitor to the inverter output. If already installed, remove the phase-advanced capacitor clearly.

(3) Cable between inverter output and motor should be less than 300 m long. If cable gets long, surge voltage appears across motor terminals depending on the cable parameters. Especially, in 400 V class motor case, insulation withstanding voltage may be decreased. Use an insulation-reinforced motor or surge reduction filter when 400 V class motor is used.

Distance between inverter and motor	Up to 50m	Up to 100m	Over 100m
Permitted Carrier Frequency	Below 10 kHz	Below 5 kHz	Below 2.5 kHz

(In case of below 3.7 kW , use the cable of output within 100 m)
(4) Crimp terminal with insulation cap should be used for the input power supply and the motor.
(5) After wiring finished, be certain to remove all the wire or cable scraps inside the inverter.
(6) Use the shield cable or twist-paired wire for control circuit terminal. Do not put them into the same wiring duct for the power terminal.
(7) When wiring is changed after operating the inverter, be sure to check LCD window on the keypad or indicating lamp for charging is turned off. Capacitors inside inverter are charged with high voltage and it may result in lethal injury.
(8) Below 22 kW inverter, B 1 and B 2 on the power terminal should not be connected to anything else other than DB resistors.

3.3.4 Main power circuit wire sizes and grounding wire size

(1) Main Power Circuit Wire Sizes

If wiring for the main power terminal is not performed properly, it may cause severe damage to inverter or lethal injury to inverter operator. Be sure in compliance with the cable standard for IEC60227-3, or UL508C.

Inverter Capacity		Wire Size (Cabling standards of IEC 60227-3 or UL508C)			
		mm ${ }^{2}$		AWG or kcmil	
		R, S, T	U, V, w	R, S, T	U, V, w
200V	2.2 kW	2.5	2.5	12	12
	3.7 kW	4	4	10	10
	5.5 kW	6	6	8	8
	7.5 kW	10	10	6	6
	11 kW	16	16	4	4
	15 kW	25	25	3	3
	18.5 kW	35	35	2	2
	22 kW	35	35	2	2
	30 kW	50	50	1/0	1/0
	37 kW	70	70	2/0	2/0
400V	2.2/3.7 kW	2.5	2.5	12	12
	5.5 kW	4	4	10	10
	7.5 kW	4	4	10	10
	11 kW	6	6	8	8
	15 kW	10	10	6	6
	18.5 kW	16	16	4	4
	22 kW	16	16	4	4
	30 kW	35	25	3	3
	37 kW	25	25	2	2
	45 kW	50	35	2	2
	55 kW	50	50	1	1

Inverter Capacity	Wire Size (Cabling standards of IEC 60227-3 or UL508C)			
	mm ${ }^{2}$		AWG or kcmil	
	R, S, T	U, V, w	R, S, T	U, V, w
75 kW	70	70	2/0	2/0
90 kW	120	120	4/0	4/0
110 kW	150	150	300	300
132 kW	185	185	350	350
160 kW	240	240	500	500
220 kW	400	400	800	800
280 kW	2×240	2×240	2×500	2×500
315 kW	2×240	2×240	2×500	2×500
375 kW	2×300	2×300	2×600	2×600

1) Apply the rated torque to terminal screws. Loose screws can cause of short circuit or malfunction. Tighting the screws too much can damage the terminals and cause a short circuit or malfunction.
(2) Grounding Wire Size and Caution to be taken

- Inverter operates to high-speed switching, so it causes the leakage of current. To prevent from electric shock, inverter and motor have to be grounded.
- Be sure to ground the motor and the inverter to prevent electric shock injury. (200V class: ground impedance below $100 \Omega, 400 \mathrm{~V}$ class: ground impedance below 10Ω)
- Connect the inverter ground to the ground terminal exclusively used for the inverter. Do not use the case of inverter of sash screw for ground.
- It is strongly recommended that as thick a grounding wire as possible be used and wire be short. Pleace the position of ground close to the inverter as possible.

Motor Capacity	Ground wire size(mm ${ }^{2}$)	
	200V Class	400V Class
$2.2 \sim 3.7 \mathrm{~kW}$	4	2.5
$5.5 \sim 7.5 \mathrm{~kW}$	6	4
$11 \sim 15 \mathrm{~kW}$	16	10
$18.5 \sim 22 \mathrm{~kW}$	25	16
$30 \sim 37 \mathrm{~kW}$	25	16
$45 \sim 75 \mathrm{~kW}$	-	25
$90 \sim 132 \mathrm{~kW}$	-	35
$160 \sim 220 \mathrm{~kW}$	-	95
$280 \sim 315 \mathrm{~kW}$	-	185
375 kW	-	240

3.3.5 Wiring DC Reactor (Option) (AC power input: 30kW and higher)

3.3.6 Wiring DB Unit (Option) (AC power input: 30kW and higher)

3.3.7 Wiring guide when using both of DC reactor (Option) and DB Unit(option) (30kW and higher) (AC power input: 30kW and higher)

3.4 Control Board and Terminal

3.4.1 Control circuit terminal arrangement

■ SV022 ~ 3750iV5

3.4.2 Control circuit terminal function description

Item	Name	Function	Description
	FX RX	Forward Run /Stop Command Reverse Run/Stop Command	- Forward/Reverse RUN Command is ON when closed to CM in NPN input mode. - Motor stops when FX/RX terminal turns ON or OFF concurrently.
	BX	Emergency Stop	- ON when closed to CM in NPN input mode, Free-run to Stop and deceleration to stop. It does not trigger fault alarm signal.
	RST	Fault Reset	Resets when fault condition is cancelled.
	P1(MM0)	Multi-function input contact	- 1 function can be selected among 46 different functions as shown below. (Multi-step speed Upper/Middle/Lower, Jog, MOP Up / Down / Save/ Clear, Analog Hold, Main Drive, 2nd function, Accel./Decel. Time selection, 3 Wire RUN, External trip (B contact), Power failure prevention, Reverse rotation prevention, Process PI Disable, Timer input, Soft start cancel, ASR P/PI Gain switch-over, ASR P/PI switch-over, Flux command value switch-over, Preexcitation, Speed/Torque control, Torque limit ON/Off, Torque bias ON/Off, Battery operation On/Off, Low voltage trip detection prevention, etc.)
	P2(MM1)		
	P3(AT0)		
	P4(FHM)		
	P5(BAT)		
	P6(BRC)		
	P7(MCC)		
	CM	COMMON	- In NPN input mode, it turns On when each contact is connected to CM terminal. - In PNP input mode, it turns On when each contact is inputted to external 24 V input.
	VREF	Power supply for analog setting	- Reference voltage by variable resistor (+ 10V) : $10 \mathrm{k} \Omega$
	AI1	Voltage/ Current Signal Input	- Voltage input ($-10 \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}$) current input $(0 \rightarrow 20 \mathrm{~mA}, 20 \rightarrow 0 \mathrm{~mA})$, Motor NTC are selectable via Multi-function Analog input. - Jumper setting in Voltage Input: Jumper set as default) \rightarrow AI1, AI2: Jumper set on left side, AI3: Switch set on left ("V") side - Jumper setting in Current Input \rightarrow AI1, AI2: Jumper set on right side - S/W setting in motor NTC (Higen motor)/PTC input \rightarrow AI3: switch set on right ("Them") side. - Selectable 17 functions as following: (Speed command, Auxiliary speed command, Process PID command, Process PI controller feedback, Draw, Torque, Magnetic flux, Torque bias, Torque limit, Motor NTC input, etc.)
	AI2		
	AI3/Them	Voltage input Motor NTC Input	
	5G	COMMON	- COMMON terminal for Analog input
	PE	P/S (Power supply) for Pulse Encoder ${ }^{1)}$	+5V Line Drive Power
	GE		0V
	A+	Encoder A-phase signal	- A, B signal for Line Drive Type Encoder. - Set the JP2 switch at "P5" on I/O PCB and set the JP4 switch to "LD" for the use of Line Drive. * Jumper set as default
	A-		
	B+	Encoder B-phase signal	
	B-		
	PE	P/S for Open Collector Note1)	+15V Open Collector Power
	GE		OV
	PA	Encoder A-phase signal	- A, B signal for Complementary or Open Collector Type Encoder. - Set the JP2 switch at "P15" on I/O PCB and set the JP4 switch to "OC" for the use of Open Collector.
	PB	Encoder B-phase signal	
	Z+(PZ)	Encoder Z-phase signal	Caution) The usages of Z-phase signal are as follows and its functions will be available soon. - Use for Z-phase pulse provided encoders.

Item	Name	Function	Description
	Z-		- Z+ and Z- signals are used for Line Drive type, so set the JP5 switch to "LD". - PZ signal is used for Open Collector type, so set the JP5 switch to "OC".
	RA	Encoder signal output : A-phase	Encoder A, B phase signal output - Open Collector Type ${ }^{\text {Note4) }}$
	GE	Output Common	
	RB	Encoder signal output : B-phase	
	GE	Output Common	
	AO1	Analog Output 1	- $-10 \mathrm{~V} \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}$ output - Selectable among 39 functions (Analog input value, Pre Ramp Reference, Post ramp reference, ASR Input Reference, Motor Rotating Speed, Speed Deviation, ASR Output, Torque bias, Positive Trq Limit, Negative Trq Limit, Regeneration Trq Limit, Torque Reference, Torque current ref., Torque current, Flux reference, Flux Current ref. , Flux Current, ACR output of axis Q, ACR output of axis D, Voltage reference of axis D, Voltage reference of axis Q, Output current, Output voltage, Output power, DC LINK voltage, Process PI reference, Process PI Feedback, Process PI output, Line speed, Tension output, Motor temperature(NTC), Inverter temperature, Inverter i2t, etc.)
	AO2	Analog Output 2	
	5G	COMMON	- COMMON terminal for Analog Output
	1A	Multi-function relay	- Selectable among the following 22 functions; (Inverter ready, Zero speed detection, Speed detection, Speed detection (ABS), Speed arrival, Timer out, Low voltage alarm, run, regenerating, Motor overheat warning, Inverter overheat warning, Speed agree, Touque detection, Torque limit detection, Overload warning, Stop, Steady run, Brake output, WEB brake, UP to speed, False core, MC output)
	1B	(A Contact)	
	2A	Multi-function relay	
	2B		
	OC1	Open Collector Ouput	
	EG		
	30A	Fault alarm A contact	- Outputs when fault occurs. - Deactivated in BX condition.
	30B	Fault alarm B contact	
	30C	COMMON	- COMMON for A, B
$\begin{aligned} & \text { ᄃ } \\ & \sum_{3}^{4} \end{aligned}$	JP1	Encoder Input-pulse Type	LD (Line Drive) / OC (Open Collector or Complementary)
	JP2 ${ }^{\text {Note3) }}$	Encoder Power Supply	DC +5V / +12V / +15V selectable usages
	JP4 ${ }^{\text {Note4) }}$	PNP/NPN Input mode	PNP/NPN contact input mode selection

Note 1) Wire Encoder power source according to series I/O board as below:
SV022~2200iV5 Class: PE: "+", GE: "-"
SV2800~3750iV5 Class: PENT: "+", G24X: "-"
Note 2) I/O board of SV2800~3750iV5 Class is classified into 2 types: 24 V and 5/12/15V Encoder power Encoder power is set by PIN(AI4(24V), AI5(5V), AI6(12V), AI7(15V))

Note 3) NPN/PNP input mode selection are not supported for SV2800~3750 iV5 series' I/O board.

Note 4) Example wiring of Encoder output

Warning

Wiring must be considered with input circuit because encoder output is open collector type. The figure is shown the wiring when inverter is connected with High-speed counter of our PLC.

- Additional Functions of Extended I/O(EXTN _ I/O) Control board terminal

Item	Name	Function	Description
	AI1 AI2 AI3 AI4 AI5/Them	Voltage Input Current Input Voltage Input Motor NTC Input	- Extended I/O(EXTN_I/O) board is added analog input AI4 and AI5. - How to use terminal Pin: - Voltage Input : AI1, AI2,AI3, AI4, AI5 - Current Input : AI1, AI2, AI3, AI4 - Motro NTC input : AI5 Note) Jumper setting and functions are explained at I/O control terminal description.
	5G	COMMON	COMMON terminal for Analog Input

3.4.3 Wiring the control circuit terminal

(1) Shield wire or vinyl insulated wire are highly recommended to be used for the control circuit terminal.
(2) Be sure to use twisted shield wire if wiring distance gets too long.
(3) Wire should be at least as thick as $0.2 \sim 0.8 \mathrm{~mm}^{2}$ ($18 \sim 26$ AWG).
(4) Screwing torque limit should be kept under 5.2 lb -in.
(5) Maximum interrupting capacity of auxiliary contact 1,2 and 3 is of AC $250 \mathrm{~V} / 1 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V} / 1 \mathrm{~A}$.
(6) Maximum interrupting capacity of fault alarm relay A, B contact is of $\mathrm{AC} 250 \mathrm{~V} / 1 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V} / 1 \mathrm{~A}$.

7 Open collector output 1, 2, 3 and encoder output can be used below maximum of $24 \mathrm{~V} / 100 \mathrm{~mA}$.
(8) Wires for the control circuit terminal should be separated from ones for the power circuit terminal, if possible and in case wires for both control circuit terminal and the power circuit one cross each other, they should be crossed at right angles $\left(90^{\circ}\right)$.

3.4.4 Caution on wiring pulse encoder

1) Check-up of the coupling and alignment of motor shaft and encoder shaft
(1) Be sure to mount the pulse encoder at the location where it rotates with same speed as the motor does. (e.g. on the opposite shaft of load side of motor, on the opposite shaft of motor at traction machine)
(2) In case there is speed slip between the motor shaft and encoder shaft, the motor may not start or it causes mechanical vibration.
(3) Poor alignment of motor and encoder shaft results in torque ripple and causes mechanical vibration which has the same frequency as the motor speed at the constant speed region.
2) Wiring the pulse encoder
(1) Be sure to use twist paired shield wire and ground shield wire to screw for earth on the I/O PCB.
(2) Signal wires should be separated from the power lines, if possible. Electromagnetic noise may affect the pulse encoder output signals.
3.4.5 Encoder wiring and switch setting method (+15V Complementary / Open Collector Type)

3.4.6 Encoder wiring and switch setting method (+5V Line Drive) \approx Jumper set as default

Shielded Wire

!
 CAUTION

- NEVER change the switch setting for Encoder Type during inverter run. Otherwise, it may cause inverter trip, it can affect to the entire system.
Therefore, verify the switch is correctly set before operation and then operates the inverter.
3.4.7 Analog input jumper setting (Voltage/Current/Motor NTC Input) and PNP/NPN input mode switch setting
※ Jumper set as default : Voltage Input (Left)

- Guaranteed PNP type input voltage (external DC 24V): On voltage (DC 19~25.2 V)/ Off voltage (DC 7V or less)

! CAUTION

- NEVER change the jumper setting during inverter run. Otherwise, it may cause inverter trip, it can affect the entire system.
- Motor NTC input for Analog Input 3 (AI3) is ONLY available when HIGEN Motor is connected.
If user use a motor other than Higen motor with different NTC specification and use this function, it will lead to motor overheat and damage to the motor.
- Do not change the setting of PNP/NPN input switch during inverter operation. It can influence to the system since contact input is changed. Set the switch correctly before inverter operation.

3.5 Terminal of the Auxiliary Power Supply.

3.5.1 The position of the terminal

It can operate the control board with only auxiliary power supply(220VAC) evenif it has not main power supply(R/S/T).

■ SV055 ~ 750iV5(Press) (for AC/DC products)

Terminal of the
Auxiliary Power


```
■SV110 ~ 220iV5 (Mold)
■ SV900 ~ 2200iV5(Press) (for AC/DC products)
```


■ SV2800 ~ 3750iV5(Press) (for AC/DC products)

3.5.2 Function description of auxiliary terminal block
3. Installation and Wiring

Symbol	Terminal Name	Terminal Description	Input Power
AC1, AC2	Auxiliary power input	Inputs single-phase AC input source	$220 \mathrm{~V}(-10 \sim+10 \%), 50 / 60 \mathrm{~Hz}$

3.5.3 Wiring and Precaution of auxiliary terminal block

(1) Connect the auxiliary power supply through insulated transformer separated with main power supply.
(2) Use polyvinyl chloride insulated wire for auxiliary power cable.
(3) Use the cable above $0.5 \mathrm{~mm}^{2}$ (20 AWG).

Chapter 4 - Trial Operation

4.1 Keypad Operation

LCD Keypad can display up to 32 alphanumeric characters and monitor or set parameter values to operate the inverter and the motor properly. As follows are keypad view and explanation on each key/LED on the keypad.
<Keypad View>

Items	Name	Function	Description
Key	MODE	Mode	Enables to move to the other groups (Initial Screen \rightarrow DIO \rightarrow PAR \rightarrow FUN...) and go to the first code in the same group.
	PROG	Program	Enables to modify setting values.
	ENT	Enter	Enables to move to the other groups (Initial Screen \leftarrow DIO \leftarrow PAR \leftarrow FUN...) and save the changed setting values.
	((Up)	Up	Moves to the next code or increments setting values.
	V(Down)	Down	Moves to the next code or decrements setting values.
	SHIFT/ESC	Shift/ESC	Acts as Shift key in a setting mode and as ESC key in other mode.
	REV	Rever'se RUN	Reverse RUN command is enabled.
	STOP/RESET	Stop/Reset	Stop key during inverter operation. Resets fault when inverter returns to normal after fault has occurred.
	FWD	Forward RUN	Forward RUN command is enabled.
LED	(REV)	Reverse RUN	Light up when motor is in reverse revolution. Blinks on acceleration/deceleration, lit in a constant speed
	(STOP/RESET)	Stop/Reset	Light up when the motor stops. Blinks when fault has occurred.
	(FWD)	Forward RUN	Light up when motor is in forward revolution. Blinks on acceleration/deceleration, lit in a constant speed

4.2 Keypad LCD Display

4.2.1 LCD Start-up display

No.	Function	Description
1	Motor speed	Real motor speed in RPM (Revolution Per Minute)
		SPD: Speed control mode
		TRQ: Torque control mode
2	Motor control Mode	WEB: WEB control mode
		SLS: Sensorless control mode
		BX: Emergency stop
	BAT: Battery-operated mode	
3	Generating torque	Displays \% ratio to the rated torque of a motor.
4	Output current	Inverter output current in RMS

4.2.2 Group display

No.	Function	Description
1	Parameter group	Displays the name of each parameter group. There are DIS, DIO, PAR, FUN, CON, AIO, USR and $2^{\text {nd }}{ }^{1)}, E / L^{2)}$, SYN $^{3)}$, WEB ${ }^{4)}, S^{5}{ }^{5)}$ group.
2	Code type	Displays a code type to be set.
3	Code number	Displays a code number to be set.
4	Code data and unit	Displays a code data and a code unit to be set.

1) Can be displayed when DIO is $2^{\text {nd }}$ Func to use second motor.
2) Can be displayed when CON_02 is Elevator and EL I/O option board is mounted.
3) Can be displayed when CON_02 is Synchro and Synchro option board is mounted.
4) Can be displayed when CON_02 is WEB Control to use WEB control.
5) Can be displayed when CON_01 is Sensorless control mode.

4.3 Setting of Parameter Values

In case inverter is to be in use using a keypad, proper parameter values can be set depending on the load and operation condition. For more detailed information, refer to Chapter 6.

First, move on to the code in a group where is intended to change parameter value. cursor (\square) blinks by pressing [PROG] key. Parameter value can be set using (SHIFT/ESC)], [$\mathbf{\Delta}$ (Up)] and [$\mathbf{\nabla}$ (Down)] keys and then can be saved by entering [ENT] key.

Note) In some cases, data will not be changed for the following two reasons.

* Some data cannot be changed during inverter operation.
* Parameter data lock function is set. (PAR_04 [Parameter Lock] is enabled)

Example) In case the 1st acceleration time is to be changed from $10(\mathrm{sec})$ to $15(\mathrm{sec})$, it can be set as shown below.

	0.0 rpm	SPD
Tq	0.0%	0.0 A

Initial Display

FUN \downarrow Jump code	
00	1

FUN $>$	Jump code
00	40

Press [PROG] Key \rightarrow Enter 40 by [(SHIFT/ESC)], [$\mathbf{\Delta}$ (Up)], [$\mathbf{~ (D o w n)] ~ K e y ~}$ \rightarrow [ENT]

FUN	Acc Time-1
40	10.00 sec

Acc time 1 is settable.

FUN	Acc Time-1
40	$■ 10.00 \mathrm{sec}$

Press [PROG] Key.
Setting Mode(Cursor(■) appears and blinks)
FUN Acc Time-1
40
10.00 sec

Move the Cursor(■) to the position to be changed using [(SHIFT/ESC)] key.

FUN	Acc Time- 1
40	15.00 sec

4.4 Data Groups

SV-iV5 series inverters use LCD keypad for user's convenience. Data groups are divided into 12 groups for easy access depending on the inverter application.

Name	LCD keypad (on the upper left)	Description
Display group	DIS	Motor speed, Motor control mode, Generating torque, Output current, User selection display, Process PID output/reference/feedback value, Fault display, User group display setting and so on.
Digital I/O group	DIO	Digital input parameters, Digital output parameters and so on.
Parameter group	PAR	Parameter initialization, Parameter read / write / lock /password, Motor related constants, Auto-tuning and so on.
Function group	FUN	Operating frequency, Operation mode, Stop mode, Acceleration /deceleration time and pattern, Carrier frequency, Electronic thermal selection and so on.
Control group	CON	Control mode, ASR PI gain, Process PID gain, Draw control setting, Droop control related constants, Torque control related constants, V/F control related constants and so on.
Exterior group	EXT	Communication setting parameter for built-in 485 communication and external option board
Analog I/O group	AIO	Analog Input or Output Parameter and so on.
User group	USR	User macro function, macro function save, macro function recall
$2^{\text {nd }}$ function group	$2^{\text {nd } 1)}$	$2^{\text {nd }}$ motor control mode, $2^{\text {nd }}$ motor accel./decel.time, $2^{\text {nd }}$ motor parameters and so on.
Elevator group	E/L ${ }^{2}$	It is displayed when EL_I/O option board is installed, Elevator operation function setting parameter and so on.
Synchronous group	SYNC ${ }^{2)}$	It is displayed when SYNC_I/O option board is installed. Synchronous operation function setting parameter and so on.
WEB group	WEB ${ }^{3)}$	Diameter and Tension control setting parameter while WEB control.
Sensorless control group	SLS ${ }^{4)}$	Setting parameter of open loop control without position sensor like encoder or resolver, etc.

It is a basic group to display as a Group name.

1) It is displayed when Multi-function input in DIO group is $2^{\text {nd }}$ Func.
2) It is displayed when option board is mounted. For detailed description, please refer to user manual for option.

Description for group is explained at chapter 6 Function Description.
3) Refer to the description of Chap. 7 for more information about WEB group.
4) It is displayed when CON_01 is Sensorless.

- Group transfer in the keypad

For transfer to another group, [MODE] key is used and $\boldsymbol{\Delta}$ (Up), $\boldsymbol{\nabla}$ (Down) key is used to move up and down in the same group.

- In these group transfers, User Group, $2^{\text {nd }}$ Group, AIO Group and WEB Group are omitted.

4.5 Auto-Tuning

Parameters such as stator resistance $\left(R_{s}\right)$, stator leakage inductance ($s L$), flux current (IF), rotor time constant (τ_{r}) and stator self-inductance (Ls) are indispensable for obtaining an excellent control performance in the vector control and are automatically measured and set using auto-tuning function.

SV-iV5 features two types of Auto-tuning:

1) Rotational Auto Tuning
2) Standstill Auto Tuning

4.5.1 Motor \& encoder parameter setting for auto-tuning

The Motor capacity, Basic speed, Rating voltage, Pole number, Efficiency, Rating slip and Rating current on the nameplate of the motor and the pulse number of encoder should be set before operation.

LCD Display	Description
PAR 07 Motor select	- Enter the motor capacity. - Basic capacity is same as Inverter capacity - Enter directly in the PAR_08 after selecting "User Define" if there is no Motor capacity.
PAR UserMotorSel 08 kW	- Enter the motor capacity directly at PAR_08 incase that select "User Define" at PAR_07.
PAR Enc Pulse 10 [][][]	- Set the pulse numbers per revolution of pulse encoder coupled to the motor shaft.
PAR 17 Base Speed rpm	- Set the motor base speed. - Note) It is not rating current of name plate. Base Speed $=120 \mathrm{X}$ Base Frequency/ Pole number
PAR 18 Rated Volt 	- Set the rated voltage of the motor. (Voltage value on the name plate)
PAR 19 Pole number []	- Set the number of poles of the motor.
PAR Efficiency 20	- Set the efficiency of the motor. If you cannot find the efficiency in name plate, Do not set the Efficiency.
PAR 21 Rated-Slip rpm	- Set the rated slip speed of the motor. (Rated slip=synchronous speed-rated speed)
PAR 22 Rated-Curr 	- Set the rated current of the motor.

4.5.2 Rotational auto-tuning

1) Precautions

2) Rotational Auto-tuning procedure

LCD Display	Description	Tuning Time
PAR AutoTuneType 23 Rotational	Set it to " Rotational ".	-
PAR Auto tuning 24 ALL1	Auto-tuning starts when it is set to " ALL1 ".	-
PAR Auto tuning 24 Enc Testing	Checks whether the encoder wiring is properly done and an encoder works well by rotating the motor at 1500 rpm in forward direction.	$30 \sim 35(\mathrm{Sec})$
	Stator resistance (Rs) is measured without rotating the motor.	$10 \sim 20(\mathrm{Sec})$
	The leakage inductance (sL) of the motor is measured without rotating the motor.	5 ~ 20(Sec)
PAR Auto tuning 24 IF Tuning	The flux current (IF) is measured by rotating the motor at 1500 rpm .	$30 \sim 60$ (Sec)
PAR Auto tuning 24 Ls Tuning	Stator self-inductance (Ls) is measured by rotating the motor at 1500 rpm .	$50 \sim 60$ (Sec)
PAR Auto tuning 24 Tr Tuning	Accel/Decel is performed repeatedly to find motor constant (Tr) so that DB Resistor should be connected before starting tuning. Otherwise, "Over Voltage " trip will occur.	$20 \sim 60$ (Sec)

- FWD/REV LED on keypad will blink during Auto-tuning.
- If setting PAR_24 (Auto tuning) to "ALL2 ", all procedure is same as "ALL1" except Encoder Testing will be skipped.
- Motor constants of each can be selected and separately tuned.
(Encoder Test, Rs Tuning, Lsigma, Flux Curr, Ls Tuning, Tr Tuning)
- If encoder phase (A, B) or inverter output wiring (U, V, W) is switched during Auto-tuning, " Enc AB Chgd " message will be displayed. In this case, changing PAR_11 (Enc Dir Set) setting from "A Phase Lead " to "B Phase Lead " (or oppositely) will erase the need for changing the wiring.

4.5.3 Standstill auto tuning

1) Precaution

Be sure to lock the motor shaft using magnetic brake.
2) StandStill Type Auto-tuning procedure

LCD Display	Description	Tuning Time
PAR AutoTuneType 23 Standstill	Set the auto-tuning type to "Standstill".	
PAR Auto tuning 24 ALL1	Auto-tuning starts if ALL1 is set.	
PAR Auto tuning 24 Rs Tuning	Stator resistance $\left(R_{s}\right)$ is measured without rotating the motor.	20-30 Sec
PAR Auto tuning 24 sL Tuning	The leakage inductance (sL) of the motor is measured without rotating the motor.	5-10 Sec
PAR Auto tuning 24 If $/ \mathrm{Tr} / \mathrm{Ls}$ S Tuning	Flux current (IF), rotor time constant (T_{r}) and stator self-inductance (Ls) is measured simultaneously without rotating the motor.	15-60 Sec
PAR 24 Auto tuning None PAR Auto tuning 24 [][] Error	When auto-tuning is complete successfully, "None" is displayed. If error occurs during auto-tuning, "[][] Error" is displayed. In this case, verify motor parameters and encoder setting is done properly and redo the auto-tuning. If the problem persists, contact LS sales representative.	Total: 1-2 minutes

- FWD/REV LED on keypad will blink during Auto-tuning.
- Motor constants of each can be selected and separately tuned.
(Rs Tuning, Lsigma, If/Tr/Ls Tuning)

4.6 Pulse Encoder Check

4.6.1 The definition of forward rotation

Forward rotation is of counter-clockwise from the side view of motor shaft.

4.6.2 Forward rotation check

Be sure to check if positive $(+)$ speed is displayed when inverter power is on and rotates the motor in the forward direction.

+[][]$\cdot[] \mathrm{rpm}$	SPD
$\mathbf{T q}$	$\%$

4.6.3 Reverse rotation check

Be sure to check if negative(-) speed is displayed when inverter power is on and rotates the motor in the reverse direction.

-[][]$\cdot[] \mathrm{rpm}$	SPD	
$\mathbf{T q}$	$\%$	\mathbf{A}

- If speed is displayed 0.0 rpm or unchanged or speed polarity is reversed, check if wiring for the pulse encoder is properly done.
- In case the motor shaft cannot be rotated with hands, refer to next chapter.

4.7 Operation by Keypad

4.7.1 Parameter setting for keypad operation to rotate the motor at $100 \mathbf{r p m}$

FUN	Run/Stop Src
01	Keypad

(1) RUN/STOP command setting by keypad

FUN	Spd Ref Sel
02	Keypad1

(2) Operating speed reference setting by keypad

FUN	Speed 0
12	100.0 rpm

(3) Operating speed setting

4.7.2 Forward / Reverse Run (FWD / REV)

(1) Low speed operation

- Check if motor speed is +100 rpm in the start-up LCD screen after pressing [FWD] key.

+ 100.0rpm	SPD	
Tq	$\%$	A

- Check if motor speed is -100 rpm in the start-up LCD screen after pressing [REV] key.

- The following table describes the cases of abnormal rotation due to the incorrect wiring of encoder and/or motor.

Command	Rotating direction	Speed display	Torque display	Wiring Status	
FWD	Forward	+100.0(rpm)	Below + 10\%	Normal	
REV	Reverse	-100.0(rpm)	Below -10\%		
FWD	Forward	-10 ~ -40(rpm)	150\% (Torque Limit)	Encoder wiring reversed	-
REV	Reverse	$10 \sim 40$ (rpm)	-150\% (Torque Limit)		
FWD	Reverse	-10 ~ -40(rpm)	150\% (Torque Limit)	Phase V and W wiring reversed	
REV	Forward	$10 \sim 40$ (rpm)	-150\% (Torque Limit)		
FWD	Reverse	+100.0(rpm)	Below +10\%	Encoder and Motor all reversed	
REV	Forward	-100.0(rpm)	Below -10\%		

- If A and B phase of encoder or wiring of motor are reversed, be sure to replace A with B phase wire or output wiring of inverter after checking the wiring for encoder or output or inverter. Or user does not need to change wiring if PAR_11(Enc Dir Set) setting value is changed from "A Phase Lead" to "B Phase Lead".
- Torque display is on the basis of the no load operation.
(2) High Speed Operation

Change the value of FUN_12 to 1000.0 (rpm) and Check the display LCD by pressing [FWD], [REV] keys shown below.

- When pressing [FWD] key;

$+1000.0 r p m$	SPD
Tq	$\%$

- When pressing [REV] key;

	-1000.0rpm	SPD
Tq	\%	A

4.8 Operation by Control Terminal

4.8.1 Parameter setting

FUN - Run/Stop Src 01 Terminal 1	(1) Setting RUN/STOP command by terminal
FUN Spd Ref Sel 02 Analog	(2) Setting Speed reference by Analog
$\begin{array}{\|ll\|} \hline \text { FUN } & \text { Max Speed } \\ 04 & 1800.0 \mathrm{rpm} \end{array}$	(3) Setting Max. motor speed
AIO Ai1 Define 01 Speed Ref	(4) Ai1(Analog input terminal) define

AIO Ai1 Source
02
(5) Ai1(Analog input terminal) Source define : Select $(-10 \rightarrow 10 \mathrm{~V}, 10 \rightarrow-10 \mathrm{~V}, 0 \rightarrow 10 \mathrm{~V}, 10 \rightarrow 0 \mathrm{~V}, 0 \rightarrow 20 \mathrm{~mA}, 20 \rightarrow 0 \mathrm{~mA})$

4.8.2 Wiring example when issuing speed reference using speed potentiometer on AI1 terminal

Connect the potentiometer to VREF, AI1 and 5G as shown below.

4.8.3 Adjusting Ai1 Gain and Bias (example of analog input Ai1 setting)

(1) Out Y2(Gain) Adjustment of Analog input

- Apply 10 V or 20 mA between AI1 $\sim 5 \mathrm{G}$ (for setting by potentiometer, adjust it to Max).
- Adjust the other multi analog input terminals in same manner.

Key Handling	Loader Display	Description
	AIO Ai1 Out Y2 06 100.00%	Initial LCD display
PROG	AIO Ai1 98.00% 06 Gain 100.00%	Pressing [PROG] key, shows the percentage of output compared with input in upper side and the gain value be set currently in low side of dispaly.
A	AIO Ai1 100.00% 06 Gain $\quad 102.00 \%$	If you try to adjust the gain to show 100.00% at 10 V input, Press [$\mathbf{\Delta}(\mathrm{Up})$] key repeatedly and set to be 102.00%.
ENT	AIO Ai1 Out Y2 06 102.00%	After adjusting Gain, if you enter [ENT] key, the adjusted gain value is displayed and saved.

(2) Out Y1(Bias) Adjustment of Analog input

- Apply 0 V or 0 mA between AI1 ~ 5G (for setting by potentiometer, adjust it to Min).
- Adjust the other multi analog input terminals in same manner.

Key Handling	Loader Display	Description
	AIO Ai1 Out Y1 04 0.00%	Initial LCD display
PROG	AIO Ai1 0.18% 04 Bias 0.00%	Pressing [PROG] key, shows the percent of output compared with input in upper side and and the Bias value be set currently in lowe side.
A	AIO Ai1 0.00% 04 Bias 0.18%	If you try to adjust the Bias to show 0.00%, Press [$\mathbf{\Delta}(U p)$] key repeatedly and set to be 0.00%.
ENT	AIO Ai1 Out Y1 04 0.18%	After adjusting Bias, if you enter [ENT] key, the adjusted Bias value is saved.

4.8.4 FX / RX operation

1) FX Operation (Forward Run Command by Control Terminal)

(1) Apply 0V between AI1 and 5G (for setting by potentiometer, adjust it to Min).
(2) Check the motor speed display in display group shows " +0.0 rpm " after connecting the terminals FX and CM.
(3) Increase AI1 voltage little by little and check the speed is increasing (for setting by potentiometer, turn the pot to max. smoothly).
(4) To stop the motor, disconnect the FX and CM terminal.

2) RX Operation (Reverse Run Command by Control Terminal)

(1) Apply OV between AI1 and 5G (for setting by potentiometer, adjust it to Min).
(2) Check the motor speed display in display group shows "-0.0rpm" after connecting the terminals RX and CM. Increase AI1 voltage little by little and check the speed is increasing (for setting by potentiometer, turn the pot to max. smoothly).
(3) To stop the motor, disconnect the RX and CM terminal.
3) The cases of abnormal rotation due to the wrong wiring of encoder and/or motor during low speed (about 100rpm) operation by control terminal.

Command	Rotating direction	Speed display	Torque display	Wiring Status	
FX	Forward	+100.0(rpm)	Below + 10\%	Normal	
RX	Reverse	-100.0(rpm)	Below -10\%		
FX	Forward	$-10 \sim-40$ (rpm)	150\%(Torque Limit)	Encoder wiring reversed	Co
RX	Reverse	$10 \sim 40$ (rpm)	-150\%(Torque Limit)		
FX	Reverse	$-10 \sim-40$ (rpm)	150\%(Torque Limit)	Phase V and W wiring reversed	
RX	Forward	10 ~ 40(rpm)	-150\%(Torque Limit)		
FX	Reverse	+100.0(rpm)	Below $+10 \%$	Encoder and Motor all reversed	
RX	Forward	-100.0(rpm)	Below -10\%		

- If A and B phase are reversed, be sure to replace A with B phase wire after checking the pulse encoder wiring.
- If motor wires are reversed, be sure to replace V with W phase wire after checking the motor output wiring.
- It does not need to change wiring if user changes the setting value of PAR_11(Enc Dir Set) from "A Phase Lead" to "B Phase Lead".
- Torque display is on the basis of the no load operation.

Operation
 Example (1)
 Speed Setting via Keypad + Run/Stop via Terminal (FX/RX)

[Operation condition]

-. Control mode : Speed control
-. Ref. Speed : 1500[rpm] setting via keypad
-. Accel/Decel time : Accel - 10[sec], Decel - 20[sec]
-. Run/Stop Src : Run/Stop via FX/RX terminal, Control terminal: NPN mode
[Wiring]

[Related Function Code]

Step	Parameter setting	Code	Description
1	RUN/STOP source select	FUN_01	Set it to 0 "Terminal 1".
2	Speed setting method	FUN_02	Set it to 1 "Keypad1".
3	Ref. Speed Setting	FUN_12	Set speed command 1500[rpm] via Keypad.
4	Accel/Decel time	FUN_41 FUN_42	Set Accel time to $10.00[\mathrm{sec}]$ in FUN_41. Set Decel time to $20.00[\mathrm{sec}]$ in FUN_42.
5	Terminal FX	-	Motor starts to rotate in Forward direction at 1500[rpm] with Accel time 10 [sec] when FX terminal is turned ON. Motor decelerates to stop with Decel time 20[sec] when FX terminal is turned OFF.
6	Terminal RX	-	When RX terminal is turned ON motor starts to rotate in Reverse direction at 1500[rpm] with Accel time $10[s e c]$. When it is OFF, motor decelerates to stop with Decel time 20 [sec].

[Related Function Code]

Step	Parameter setting	Code	Description
1	RUN/STOP source select	FUN_01	Set it to 0 "Terminal 1".
2	Speed setting method	FUN_02	Set it to 0 "Analog".
3	Analog Input 1 Definition	AIO_01	Set it to 1 "Speed Ref".
4	Analog Input 1 Input Method Definition	AIO_02	Set it to 2 "0 $\rightarrow 10 \mathrm{~V}$ ".
5	Ref. Speed Setting	DIS_01	Set speed command 1500[rpm] via AI1(Potentionmeter) in DIS_01 PreRamp Ref.
7	Accel/Decel time	FUN_41 FUN_42	Set Accel time to 10.00 [sec] in FUN_41. Set Decel time to 20.00 [sec] in FUN_42.
6	Terminal FX	Motor starts to rotate in Forward direction at 1500[rpm] with Accel time 10 [sec] when FX terminal is turned ON. Motor decelerates to stop with Decel time 20[sec] when FX terminal is turned OFF.	
8	Terminal RX	-	When RX terminal is turned ON motor starts to rotate in Reverse direction at 1500[rpm] with Accel time 10 [sec]. When it is OFF, motor decelerates to stop with Decel time 20 [sec].

Chapter 5 - Function Code Table

5.1. Display Group (DIS_[][])

* " - " mark of communication adrress indicates communication exclusion.
* Setting during Inverter operation (Yes : possible, No : impossible)

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run ${ }^{1)}$	PAGE
				RANGE	UNIT	DEFAULT		
DIS_00	-	Motor Speed/Control Mode Output Torque/Output Current	$\begin{array}{r} \hline 0.0 \mathrm{rpm} \mathrm{SPD} \\ \text { Tq } 0.0 \% 0.0 \mathrm{~A} \\ \hline \end{array}$	-	-	-	-	6-1
DIS_01	-	User Display 1	Ai1 Value		\%	PreRamp Ref	Yes	
			Ai2 Value		\%			
			Ai3 Value		\%			
			Ai4 Value ${ }^{1)}$		\%			
			Ai5 Value ${ }^{1)}$		\%			
			PreRamp Ref		rpm			
			PostRamp Ref		rpm			
			ASR Inp Ref		rpm			
			Output Freq		rpm			
			Motor Speed		rpm			
			Motor SpdEst		rpm			
			Speed Dev		rpm			
			ASR Out		\%			
			Torque Bias		\%			
			PosTrq Limit		\%			
			NegTrq Limit		- \%			
			RegTrq Limit		\%			
			Torque Ref		\%			
			IqeRef		A			
			Iqe		A			
			Flux Ref		\%			
			Ide Ref		A			
			Ide		A			
			ACR_Q Out		V			
			ACR_D Out		V			
			VdeRef		V			
			VqeRef		V			
			Out Amps RMS		A			
			Out Volt RMS		V			
			Power		kW			
			DC Bus Volt		V			
			Proc PI Ref		\%			
			Proc PI F/B		\%			
			Proc PI Out		\%			
			MotTemp NTC		deg			
			Inv Temp		deg			
			Inv i2t		\%			
			MP Output		\%			
			Ctrl Mode		-			
			S/W Version		-			
			Run Time		-			
			Terminal In		-			
			Terminal Out		-			
			Run Status		-			
			Diameter ${ }^{2)}$		\%			
			Line SPD CMD ${ }^{\text {2) }}$		\%			
			Reel SPD ${ }^{2)}$		\%			
			PhInOpenLvl		V			
DIS_02	-	User Display 2	Refer to DIS_01		-	DC Bus Volt	Yes	6-1
DIS_03	-	User Display 3	Refer to DIS_01		-	Terminal In	Yes	6-1
DIS_04	-	Process PID Output Ref / FB	$\begin{aligned} & \hline \text { PIDOut 0.0\% } \\ & \text { *xx.x\% 0.0\% } \end{aligned}$	-	-	-	-	6-3
DIS_05	-	Faulty Display	Faults	-	-	-		
DIS_06	7106	User Group Display Setting	Usr Grp Disp	```0 (Not Used) 1 (Dis+User Grp) 2 (Display ALL)```	-	$\begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}$	Yes	6-4

1) It is effective only when you use Extended I/O (EXTN_I/O).
2) It is displayed on WEB control Mode.

5.2 Digital DIO Group (DIO_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
DIO_00	-	Jump for quick view	Jump Code	1 ~ 98	-	-	Yes	
DIO_01	7201	Multi-function input terminal P1 definition	P1 define	0 (Not Used) 1 (Speed-L) 2 (Speed-M) 3 (Speed-H) 4 (Jog Speed) 5 (MOP Up) 6 (MOP Down) 7 (MOP Clear) 8 (MOP Save) 9 (Analog Hold) 10 (Main Drive) 11 (2nd Func) 12 (Xcel-L) 13 (Xcel-H) 14 (3-Wire) 15 (Ext Trip-B) 16 (Prohibit FWD) 17 (Prohibit REV) 18 (Proc PID Dis) 19 (Timer Input) 20 (SoftStrtCncl) 21 (ASR Gain Sel) 22 (ASR P/PI Sel) 23 (Flux Ref Sel) 24 (PreExcite) 25 (Spd/Trq Sel) 26 (Use Max Trq) 27 (Use Trq Bias) 30 (Battery Run) ${ }^{\text {Note2) }}$ 39 (Synch Disable) Note3) 40 (Synch Hold) Note3) 41 (LVT Disable) 42 (Dia Hold) ${ }^{\text {Note1) }}$ 43 (Dia Preset) Note 1) 44 (CoreSize-L) Note 1) 45 (CoreSize-H) Note 1) 46 (TensionDisable) ${ }^{\text {Note } 1)}$ 47 (PI Gain Sel) ${ }^{\text {Note 1) }}$ 48 (PID ITerm Clr) ${ }^{\text {Note 1) }}$ 49 (Taper Disable) Note 1) 50 (Stall Enable) Note 1) 51 (Boost Enable) Note 1) 52 (Quick Stop) Note 1) 53 (Jog Web FWD) Note 1) 54 (Kog Web Rev) ${ }^{\text {Note1) }}$ 55 (Under Wind) Note 1) 56 (Unwinder) Note 1)	-	$\begin{gathered} 0 \\ \text { (Not Used) } \end{gathered}$	No	6-5
DIO_02	7202	Multi-function input terminal P2 definition	P2 define	Refer to DIO_1	-	0 (Not Used)	No	
DIO_03	7203	Multi-function input terminal P3 definition	P3 define		-	0 (Not Used)	No	
DIO_04	7204	Multi-function input terminal P4 definition	P4 define		-	0 (Not Used)	No	
DIO_05	7205	Multi-function input terminal P5 definition	P5 define		-	0 (Not Used)	No	
DIO_06	7206	Multi-function input terminal P6 definition	P6 define		-	0 (Not Used)	No	
DIO_07	7207	Multi-function input terminal P7 definition	P7 define		-	0 (Not Used)	No	
DIO_08	-	Negative function of multifunction input terminal	Neg Func. In	$0000000 \sim 1111111$	bit	0000000	No	6-17
DIO_09	7209	Multi-function Input LPF time constant	Terminal LPF	$0 \sim 2000$	-	5	Yes	
DIO_10	-	Negative function of multifunction auxiliary output terminal	Neg Func. Out	00000 ~ 11111	bit	00000	No	6-17

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
DIO_41	7229	Definition of multi-function Auxiliary output (AX1)	AX1 Define	0 (Not Used) 1 (INV Ready) 2 (Zero Spd Det) 3 (Spd Det.) 4 (Spd Det(ABS)) 5 (Spd Arrival) 6 (Timer Out) 7 (LV Warn) 8 (Run) 9 (Regenerating) 10 (Mot OH Warn) 11 (Inv OH Warn) 12 (Spd Agree) 13 (Trq Det.) 14 (Trq Lmt Det.) 15 (OverLoad) 16 (Stop) 17 (MC on/off) 18 (Steady) 19 (Brake Output) 23 (WEB Break) 24 (Up To Spd) 25 (False Core) ${ }^{11}$	-	0 (Not Used)	Yes	6-17
DIO_42	722A	Definition of multi-function Auxiliary output (AX2)	AX2 Define	Same as DIO_41	-	0 (Not Used)	Yes	
DIO_43	722B	Definition of multi-function Auxiliary output (OC1)	OC1 Define	Same as DIO_41	-	0 (Not Used)	Yes	
DIO_46	722E	Fault relay mode selection $(\mathrm{A}, \mathrm{~B}, \mathrm{C})$	Relay Mode	$000 \sim 111$	bit	011	Yes	6-25
DIO_47	722F	Zero speed detection level	ZSD Level	$0.0 \sim 480.0$	rpm	10.0	Yes	
DIO_48	7230	Zero speed detection band	ZSD Band	$0.1 \sim 10.0$	\%	0.5	Yes	
DIO_49	7231	Speed detection level	SD Level	-3600 ~ 3600	rpm	0	Yes	
DIO_50	7232	Speed detection band	SD Band	$0.1 \sim 10.0$	\%	0.5	Yes	
DIO_51	7233	Speed arrival band	SA Band	$0.1 \sim 10.0$	\%	0.5	Yes	6-19
DIO_52	7234	Speed deviation band	SEQ Band	$0.1 \sim 10.0$	\%	0.5	Yes	6-19
DIO_53	7235	Torque detection level	TD Level	$0.0 \sim 250.0$	\%	0.0	Yes	6-21
DIO_54	7236	Torque detection band	TD Band	$0.1 \sim 10.0$	\%	0.5	Yes	
DIO_55	7237	Timer On delay time	TimerOn Dly	$0.1 \sim 3600.0$	sec	0.1	Yes	6-20
DIO_56	7238	Timer Off delay time	TimerOff Dly	0.1 ~ 3600.0	sec	0.1	Yes	
DIO_57	7239	Overload warning level	OL Level	$30 \sim 250$	\%	150	Yes	6-22
DIO_58	723A	Overload warning time	OL Time	$0 \sim 30$	sec	10	Yes	
DIO_59	723B	Overload trip selection	OLT Select	0 (No) /1 (Yes)		1 (Yes)	Yes	
DIO_60	723 C	Overload trip level	OLT Level	$30 \sim 250$	\%	180	Yes	6-25
DIO_61	723D	Overload trip time	OLT Time	$0 \sim 60$	sec	60	Yes	
DIO_62	723E	Inverter overheat warning temp.	IH Warn Temp	$50 \sim 85$	deg	75	Yes	
DIO_63	723F	Inverter overheat warning band	IH Warn Band	$0 \sim 10$	deg	5	Yes	6-21
DIO_64	7240	Motor overheat warning temp.	MH Warn Temp	$75 \sim 130$	deg	120	Yes	
DIO_65	7241	Motor overheat warning band	MH Warn Band	$0 \sim 10$	deg	5	Yes	6-21
DIO_67	7242	Delayed time of MC On ${ }^{\text {Note4) }}$	MC Timer On	100~50000	msec	1000	No	
DIO_68	7243	Delayed time of MC Onff Note4)	MC Timer Off	100~50000	msec	1000	No	6-22
DIO_95	7244	Inverter Station Address	Inv Number	1~250		1	No	Note5)
DIO_96	7260	485 BaudRate	485 BaudRate	$0(1200)$ $1(2400)$ $2(4800)$ $3(9600)$ $4(19200)$ $5(38400)$	bps	9600	No	Note5)
DIO_97	7261	How to Run at Lost command	Lost Command	```0 (None) 1 (FreeRun) 2 (Stop)```	-	0 (None)	No	6-25
DIO_98	7262	Decision time for comm. command lost	Comm. Timer	10~300	sec	10	No	6-26 ${ }^{\text {Note5) }}$

1) It is displayed on WEB control Mode.
2) It is for only $5.5 \sim 22 \mathrm{~kW} / 2 / 4$ products.
3) It is displayed when Con_02 is Synchro after Synchro option is mounted.
4) It is displayed when definition of multi-function (AX1, AX2, OC1) is MC on/off.
5) It is displayed when 485 communication option board is mounted. Refer to RS485/Modbus-RTU for iP5A/iV5 for detailed description.

5.3 Parameter group (PAR_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
PAR_00	-	Jump for quick view	Jump Code	$1 \sim 38$	-	-	Yes	
PAR_01	7301	Initialize parameters	Para. init	0 (No) 1 (All Groups) 2 (DIS) 3 (DIO) 4 (PAR) 5 (FUN) 6 (CON) 7 (EXT) 8 (AIO) 9 (USR) 10 (2ND) 11 (E/L) 12 (SYN) 13 (WEB) 14 (SLS)		0 (No)	No	6-27
PAR_02	-	Read all function code	Para. read	0 (No) /1 (Yes)		0 (No)	No	
PAR_03	-	Write all function code	Para. write	0 (No) /1 (Yes)		0 (No)	No	
PAR_04	-	Parameter write protection	Para. lock	$0 \sim 255$		0	Yes	6-28
PAR_05	-	Password	Password	0 ~ 9999		0	Yes	
PAR_07	7307	Motor capacity selection	Motor select	$0(2.2)$ $1(3.7)$ $2(5.5)$ $3(7.5)$ $4(11.0)$ $5(15.0)$ $6(18.5)$ $7(22.0)$ $8(30.0)$ $9(37.0)$ $10(45.0)$ $11(55.0)$ $12(75.0)$ $13(90.0)$ $14(110.0)$ $15(132.0)$ $16(160.0)$ $17(220.0)$ $18(280.0)$ $19(315.0)$ $20(375.0)$ 21 (User Define)	kW	-	No	6-29
PAR_08	7308	Motor cap. selection of USER	UserMotorSel	0.7 ~ 500.0	kW	5.5	No	
PAR_09	7309	Motor cooling type	Cooling Mtd	$\begin{aligned} & 0 \text { (Self-cool) } \\ & 1 \text { (Forced-cool) } \\ & \hline \end{aligned}$	-	1 (Forced-cool)	Yes	
PAR_10	730A	Pulse no. of encoder	Enc Pulse	360 ~ 4096	-	1024	No	
PAR_11	730B	Encoder direction setting	Enc Dir Set	0 (A Phase Lead) 1 (B Phase Lead)	-	0 (A Phase Lead)	No	6-29
PAR_12	730C	Encoder error check enable	Enc Err Chk	$\begin{aligned} & 0 \text { (No) } \\ & 1 \text { (Yes) } \\ & \hline \end{aligned}$	-	1 (Yes)	No	
PAR_13	730D	Encoder LPF time constant	Enc LPF	$0 \sim 100$	ms	1	Yes	
PAR_14	730E	Encoder error detection time	EncFaultTime	0.00 ~ 10.00	sec	0.00	No	
PAR_15	730F	encoder error reference speed	EncFaultPerc	$0.0 \sim 50.0$	\%	25.0	No	
PAR_17	7311	Motor base speed	Base Speed	100.0 ~ 3600.0	rpm	1800.0	No	
PAR_18	7312	Motor rated voltage	Rated Volt	$120 \sim 560$	V		No	
PAR_19	7313	Motor number of poles	Pole number	$2 \sim 12$		4	Yes	6-32
PAR_20	7314	Motor efficiency	Efficiency	$70.0 \sim 100.0$	\%		Yes	6-32
PAR_21	7315	Motor rated slip	Rated-Slip	$10 \sim 250$	rpm		Yes	
PAR_22	7316	Motor rated current	Rated-Curr	1.0 ~ 1000.0	A		Yes	
PAR_23	7317	Input power setting	AC In Volt	$\begin{aligned} & 170 \sim 230 \\ & 320 \sim 480 \end{aligned}$	V	$\begin{aligned} & 220 \\ & 380 \end{aligned}$	No	6-35
PAR_24	7318	Auto tuning type selection	AutoTuneType	0 (Rotational) 1 (Standstill)		0 (Rotational)	No	6-35
PAR_25	-	Auto tuning range setting 2)	Auto Tuning	None ALL1/ALL2 Encoder Test Rs Tuning Lsigma Flux Curr Ls Tuning Tr Tuning Inertial Tunning Notes)	-	None	No	6-33
PAR_26	731A	Tuning Torque	Tune Torque	10.0 ~ 100.0	\%	70	Yes	
PAR_27	731B	Motor flux current	Flux-Curr	0.0 ~ 70\% of PAR_22	A		Yes	
PAR_28	731C	Secondary part of motor time constant	Tr	$30 \sim 3000$	ms		Yes	
PAR_29	731D	Stator inductance	Ls	$0.00 \sim 500.00$	mH		Yes	6-37
PAR_30	731E	Leakage coefficient	Lsigma	$0.00 \sim 300.00$	mH		Yes	
PAR_31	731F	Stator resistance	Rs	$0.000 \sim 15.000$	ohm		Yes	

5. Function Code Table

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
PAR_34	7322	Encoder pulse multiplication ${ }^{3)}$	Enc Scale	x1 / x16 / x32 / x64	-	x 1	No	-
PAR_35	7323	Inertia tunning selection	Inertial Tune	0 (No) / 1 (Yes)		0 (No)	No	6-33
PAR_36	7324	Inertial coefficient	Inertial	$0.001 \sim 60.000$	$\mathrm{kg} \cdot \mathrm{m}^{2}$		Yes	6-37
PAR_37	7325	Acc./Dec. time for Inertial tunning	J Spd Time	$0.500 \sim 10.000$	sec	0.500	No	오류! 책갈 피가 정의 되어 있지 않습 니다.
PAR_38	7326	Inertial LPF	Inertia LPF	$0.010 \sim 50.000$	ms	0.100	No	오류! 책갈 피가 정의 되어 있지 않습 니다.

1) When PAR_07 (Motor select) is set to "User Define", PAR_08 (UserMotorSel) will be displayed.
2) If PAR_24 (AutoTuneType) is set to "Standstill", the order of display in PAR_25 (Auto Tuning) will be None \rightarrow ALL1 \rightarrow Rs Tuning \rightarrow Lsigma \rightarrow If/Tr/Ls Tune.
3) Caution: PAR_33 (Enc Scale) Code is necessary only in the case of installation of SIN/COS Encoder option board, Don't modify the default value "x1" when not using SIN/COS Encoder board. If you modify the value, the normal operation isn't possible. For any extra information in detail, refer to the option dedicated manual.
4) Refer to user manual for SIN/COS encoder board
5) It is only displayed when PAR_35 (Inertia tunning selection) is 'Yes'.

5.4. Function group (FUN_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
FUN_00	-	Jump for quick view	Jump code	$1 \sim 85$	-	-	Yes	
FUN_01	7401	RUN/STOP command source selection	Run/Stop Src	0 (Terminal 1) 1 (Terminal 2) 2 (Keypad) 3 (Option) 4 (Int485)	-	0 (Terminal 1)	No	6-39
FUN_02	7402	Speed setting source selection	Spd Ref Sel	```0 (Analog) 1 (Keypad1) 2 (Keypad2) 3 (Option) 4 (Int485) 6 (Line SPD Ref) \({ }^{1)}\) 7 (Line SPD Opt) \({ }^{1)}\)```	-	1 (Keypad1)	No	6-39
FUN_03	7403	Stop mode selection	Stop mode	$\begin{aligned} & 0 \text { (Decel) } \\ & 1 \text { (Free-run) } \end{aligned}$	-	0 (Decel)	No	
FUN_04	7404	Max. motor speed	Max Speed	400.0 ~ 3600.0	rpm	1800.0	No	6-40
FUN_05	7405	Min. motor speed	Min Speed ${ }^{\text {note2) }}$	0.0 ~ 500.0	rpm	100.0	No	-
FUN_12	740 C	Multi-step speed 0	Speed 0	0.0~Max Speed	rpm	0.0	Yes	6-42
FUN_13	740D	Multi-step speed 1	Speed 1	0.0~Max Speed	rpm	0.0	Yes	
FUN_14	740E	Multi-step speed 2	Speed 2	0.0~Max Speed	rpm	0.0	Yes	
FUN_15	740F	Multi-step speed 3	Speed 3	0.0~Max Speed	rpm	0.0	Yes	
FUN_16	7410	Multi-step speed 4	Speed 4	0.0~Max Speed	rpm	0.0	Yes	
FUN_17	7411	Multi-step speed 5	Speed 5	0.0~Max Speed	rpm	0.0	Yes	
FUN_18	7412	Multi-step speed 6	Speed 6	0.0~Max Speed	rpm	0.0	Yes	
FUN_19	7413	Multi-step speed 7	Speed 7	0.0~Max Speed	rpm	0.0	Yes	
FUN_20	7414	JOG speed	Jog Speed	0.0~Max Speed	rpm	100.0	Yes	
FUN_21	7415	Dwell Speed	Dwell Speed	0.0~Max Speed	rpm	100.0	No	6-42
FUN_22	7416	Dwell Time	Dwell Time	$0.00 \sim 100.00$	sec	0.00	No	
FUN_33	7421	Acc./Dec. reference Speed	Acc/Dec Ref	$\begin{aligned} & \hline 0 \text { (Max Speed) } \\ & 1 \text { (Ref Speed) } \end{aligned}$	-	$\begin{gathered} 0 \\ \text { (Max Speed) } \\ \hline \end{gathered}$	No	6-42
FUN_36	7424	S ratio 1 in acceleration start	Acc S Start	$0.0 \sim 50.0$	\%	0.0	No	6-44
FUN_37	7425	S ratio 2 in acceleration end	Acc S End	$0.0 \sim 50.0$	\%	0.0	No	
FUN_38	7426	S ratio 1 in deceleration start	Dec S Start	$0.0 \sim 50.0$	\%	0.0	No	
FUN_39	7427	S ratio 2 in deceleration end	Dec S End	$0.0 \sim 50.0$	\%	0.0	No	
FUN_40	7428	Time scale for acc./dec.	Time scale	$\begin{aligned} & 0 \text { (} 0.01 \mathrm{sec} \text {) } \\ & 1 \text { (} 0.1 \mathrm{sec} \text {) } \end{aligned}$		$0(0.01 \mathrm{sec})$	No	오류! 책갈피 가 정의되 어 있지 않습니 다.
FUN_41	7429	Acceleration time 1	Acc Time-1	$0.00 \sim 6000.0$	sec	$2.00{ }^{\text {Note 2) }}$	Yes	6-39
FUN_42	742A	Deceleration time 1	Dec Time-1	$0.00 \sim 6000.0$	sec	$2.00{ }^{\text {Note 2) }}$	Yes	
FUN_43	742B	Acceleration time 2	Acc Time-2	$0.00 \sim 6000.0$	sec	$3.00{ }^{\text {Note 2) }}$	Yes	
FUN_44	742C	Deceleration time 2	Dec Time-2	$0.00 \sim 6000.0$	sec	$3.00{ }^{\text {Note 2) }}$	Yes	
FUN_45	742D	Acceleration time 3	Acc Time-3	$0.00 \sim 6000.0$	sec	$4.00{ }^{\text {Note 2) }}$	Yes	
FUN_46	742E	Deceleration time 3	Dec Time-3	$0.00 \sim 6000.0$	sec	$4.00{ }^{\text {Note 2) }}$	Yes	
FUN_47	742F	Acceleration time 4	Acc Time-4	$0.00 \sim 6000.0$	sec	$5.00{ }^{\text {Note 2) }}$	Yes	
FUN_48	7430	Deceleration time 4	Dec Time-4	$0.00 \sim 6000.0$	sec	$5.00{ }^{\text {Note 2) }}$	Yes	
FUN_49	7431	Deceleration time selection for zero speed	Use 0 Dec T	$\begin{aligned} & \hline 0 \text { (No) } \\ & 1 \text { (Yes) } \\ & \hline \end{aligned}$		0 (No)	Yes	6-45
FUN_50	7433	Deceleration time for zero speed	0 Dec Time	$0.00 \sim 6000.00$	sec	0.00	Yes	
FUN_52	7434	Deceleration time for emergency stop	BX Time	$0.0 \sim 6000.0$	sec	0.0	Yes	6-45
FUN_53	7435	Pre-excitation time	PreExct Time	$0 \sim 10000$	ms	0	No	6-46
FUN_54	7436	Hold Time	Hold Time	$100 \sim 10000$	ms	1000	No	
FUN_55	7437	Electronic thermal selection	ETH Select	$\begin{aligned} & \hline 0 \text { (No) } \\ & 1 \text { (Yes) } \end{aligned}$	-	0 (No)	Yes	6-45

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
FUN_56	7438	Electronic thermal level for 1 minute	ETH 1 min	FUN_57 ~ 200	\%	150	Yes	6-47
FUN_57	7439	Electronic thermal level for continuous	ETH Cont	$\begin{aligned} & 50 \sim \text { FUN_56 } \\ & \text { (up to } 150 \% \text {) } \\ & \hline \end{aligned}$	\%	100	Yes	6-47
FUN_58	743A	Switching frequency select	PWM Freq	2.5 ~ $10.0{ }^{\text {Note4) }}$	kHz	Different according to the capacity of inverter	No	6-48
FUN_59	743B	Power on Run selection	Power-on Run	$\begin{aligned} & \hline 0 \text { (No) } \\ & 1 \text { (Yes) } \\ & \hline \end{aligned}$	-	0 (No)	Yes	6-49
FUN_60	743C	Restart after fault reset	RST Restart	$\begin{aligned} & 0 \text { (No) } \\ & 1 \text { (Yes) } \\ & \hline \end{aligned}$	-	0 (No)	Yes	6-49
FUN_61	743D	Number of auto restart try	Retry Number	0 ~ 10	-	0	Yes	
FUN_62	743E	Delay time before Auto restart	Retry Delay	0.0 ~ 60.0	sec	1.0	Yes	
FUN_63	743F	Wait time for Restart upon Stop	Restart Time ${ }^{\text {Note5) }}$	$0.00 \sim 10.00$	sec	0.00	No	6-51
FUN_64	7440	Overspeed error detection Level	OverSpdLevel	100.0 ~ 130.0	\%	120.0	No	
FUN_65	7441	Overspeed error detection Time	OverSpd Time	0.00 ~ 2.00	sec	0.00	No	
FUN_66	7442	Brake Open Time ${ }^{\text {Note6) }}$	BKOpen Time	$0.01 \sim 30.00$	sec	0.00	No	
FUN_67	7443	Brake Open Speed ${ }^{\text {Note6) }}$	BKOpen Spd	0.0 ~ 500.0	rpm	0.0	No	
FUN_68	7444	Brake Open Current ${ }^{\text {Note6) }}$	Release Curr	0.0 ~ 150.0	\%	20.0	No	6-52
FUN_69	7445	Brake Close Time ${ }^{\text {Note6) }}$	BKClose Time	$0.01 \sim 30.00$	sec	0.00	No	
FUN_70	7446	Brake Close Speed ${ }^{\text {Note6) }}$	BKClose Spd	0.0 ~ 500.0	rpm	0.0	No	
FUN_71	7447	Selection for regeneration prevention	RegenAvd Sel	0 (No) / 1 (Yes)		0 (No)	No	
FUN_72	7448	Voltage level for regeneration prevention Note7)	RegenAvd Lvl	$\begin{aligned} & \text { 600(300) ~ } \\ & 800(400) \end{aligned}$	V	700(350)	No	
FUN_73	7449	Speed limit for regeneration prevention Note7)	CompFreq Lmt	$0.0 \sim 500.0$	rpm	100.0	No	6-54
FUN_74	744A	Speed P gain for regeneration prevention Note7)	RegenAvd P	0.0 ~ 300.0	\%	50.0	Yes	
FUN_75	744B	Spped I gain for regeneration prevention Note7)	RegenAvd I	$20 \sim 30000$	ms	500	Yes	
FUN_76	744C	Speed in batteryoperated mode ${ }^{\text {Note8) }}$	Batt. Speed	2.5 ~ 200.0	rpm	50.0	No	6-54
FUN_77	744D	Battery input voltage Note 8)	Batt. Volt	12 ~ PAR_18	V	48	No	6-54
FUN_78	744E	Detection for input openphase	PhInOpenChk	0 (No) / 1 (Yes)		0 (No)	No	6-56
FUN_79	7450	Detection level for input open-phase	PhInOpenLvl	2.0 ~ 100.0	V	3.0	Yes	6-56
FUN_80	7451	Detection for output open-phase	PhOutOpenChk	0 (No) / 1 (Yes)		0 (No)	No	5-56
FUN_81	7452	Command speed of max. auxiliary speed	AuxSpeedMax	0.0~500.0	rpm	10.0	Yes	6-56
FUN_82	7453	Calculation method of auxiliary speed	AuxSpeedType	$0 \sim 1$		0	No	6-56
FUN_83	7454	Acc. time of auxiliary speed	AuxAccTime	0.00 ~ 600.00	sec	2.00	No	6-56
FUN_84	7455	Dec. time of auxiliary speed	AuxDecTime	$0.00 \sim 600.00$	sec	2.00	No	6-56
FUN_85	7456	Absolute/Relative mode of auxiliary speed	AuxSpeedMode	$\begin{aligned} & \hline \text { 0(Absolute) / } \\ & \text { 1(Relative) } \\ & \hline \end{aligned}$		O(Absolute)	No	6-56

1) Displayed when setting WEB Control Mode.
2) It is displayed when CON_01 is Sensorless.
3) A default value of a time of acceleration and deceleration is different from the setting capacity of inverter. For detailed description, refer to Chapter 6 FUN $41 \sim 48$.
4) Minimum and maximum values are different from the capacity of inverter
5) It is displayed when FUN_03 (Stop mode) is Free-run.
6) Displayed when setting the definition of multi-aux output terminal (DIO_41~DIO_43) as "Brake Output",
7) It is displayed when FUN 71 is Yes.
8) It can set for only $5.5 \sim 2 \overline{2} \mathrm{~kW} / 2 / 4$ products in case 'Battery Run' of multi-function input terminal ($\mathrm{P} 1 \sim \mathrm{P} \&$) is turned On.

5.5. Control group (CON_[][])

Code No.	Comm. Addr	Code Name	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	Setting Data			Adj. During Run	PAGE
				Range	Unit	Default		
CON_00	-	Jump for quick view	Jump Code	$1 \sim 80$	-	-	Yes	
CON_01	7501	Control mode setting	Control Mode	$\begin{aligned} & \hline 1 \text { (Speed) } \\ & 2 \text { (Torque) } \\ & 3 \text { (Sensorless) } \end{aligned}$	-	1 (Speed)	No	
CON_02	-	Application mode setting	Application	General Vect Elevator ${ }^{1)}$ Synchro ${ }^{2)}$ WEB Control	-	General Vect	No	6-57
CON_03	7503	ASR P Gain 1	ASR P Gain1	$0.1 \sim 200.0$	\%	50.0	Yes	6-58
CON_04	7504	ASR I Gain 1	ASR I Gain1	0 ~ 50000	ms	300	Yes	
CON_05	7505	ASR LPF time constant 1	ASR LPF1	0 ~ 20000	ms	0	Yes	
CON_06	7506	ASR P Gain 2	ASR P Gain2	0.1 ~ 200.0	\%	5.0	Yes	
CON_07	7507	ASR I Gain 2	ASR I Gain2	$0 \sim 50000$	ms	3000	Yes	
CON_08	7508	ASR LPF time constant 2	ASR LPF2	0 ~ 20000	ms	0	Yes	
CON_09	7509	Ramp time for ASR gain switchover	ASR RAMP	$10 \sim 10000$	ms	1000	Yes	6-58
CON_10	750A	Target Speed after ASR gain switchover	ASR TarSpd	0.0 ~ 3600.0	rpm	0.0	No	
CON_11	750B	Process PID reference (keypad)	Proc PID Ref	-100.0 ~ 100.0	\%	0.0	Yes	6-60
CON_12	750C	Process PID ramp time	PID Ramp	$0.00 \sim 600.0$	sec	0.00	No	-
CON_14	750E	Process PID P gain	Proc PID Kp	0.0 ~ 999.9	\%	0.0	Yes	6-61
CON_15	750F	Process PID I gain	Proc PID Ki	$0.0 \sim 100.0$	\%	0.0	Yes	
CON_16	7510	Process PID D gain	PROC PID Kd	0.0 ~ 100.0	\%	0.0	Yes	
CON_17	7511	Process PID Positive limit	Proc Pos Lmt	-100.0 ~ 100.0	\%	100	Yes	
CON_18	7512	Process PID Negative limit	Proc Neg Lmt	-100.0 ~ 100.0	\%	100	Yes	
CON_19	7513	Process PID output LPF time constant	Proc Out LPF	$0 \sim 500$	ms	0	Yes	
CON_20	7514	Process PID output gain	Proc OutGain	-250.0 ~ 250.0	\%	0.0	Yes	
CON_21	7515	Process PID type	Proc PID Src	$\begin{aligned} & 0 \text { (Base Speed) } \\ & 1 \text { (Ref Speed) } \\ & 2 \text { (SpeedSet) } \\ & \hline \end{aligned}$		0 (Base Speed)	No	
CON_22	7516	Speed Set setting ${ }^{\text {Note3) }}$	PID SpeedSet	1.00 ~ FUN_04	rpm	100.0	No	
CON_23	7517	Process PID output Enable	Proc PID Enb	0 (Disable) 1 (Enable) 2 (Terminal)	-	0 (Disable)	No	6-60
CON_24	7518	Proces PID Hold Time	PIDHoldTime	$0 \sim 10000$	ms	5000	No	6-62
CON_25	7519	Draw quantity	Draw \%	$-100.0 \sim 100.0$	\%	0.0	Yes	6-63
CON_26	751A	Droop quantity	Droop \%	$0.0 \sim 100.0$	\%	0.0	Yes	6-64
CON_27	751B	Base speed of Droop control	Droop Src	0 (Base Speed) 1 (Ref Speed)		1 (Ref Speed)	No	
CON_28	751C	Ramp time of Droop control	Droop Time	$0.00 \sim 600.0$	sec	2.00	Yes	
CON_29	751D	Low speed limit of Droop control	Droop MinSpd	$0.0 \sim 3600.0$	rpm	0.0	Yes	
CON_30	751E	Starting torque of Droop control	Droop MinTrq	$0.0 \sim 100.0$	\%	0.0	Yes	
CON_31	751F	Torque reference source selection	Trq Ref Src	$\begin{aligned} & \hline 0 \text { (None) } \\ & 1 \text { (Analog) } \\ & 2 \text { (Keypad) } \\ & 3 \text { (Option) } \\ & 4 \text { (Int485) } \\ & \hline \end{aligned}$	-	0 (None)	No	6-65
CON_32	7520	Torque Reference(keypad)	Torque Ref	-180.0 ~ 180.0	\%	0.0	Yes	
CON_33	7521	Torque limit source selection	Trq Lmt Src	0 (Kpd Kpd Kpd) 1 (Kpd Kpd Ax) 2 (Kpd Ax Kpd) 3 (Kpd Ax Ax) 4 (Ax Kpd Kpd) 5 (Ax Kpd Ax) 6 (Ax Ax Kpd) 7 (Ax Ax Ax) 8 (Opt Opt Opt)	-	0 (Kpd Kpd Kpd)	No	6-67

Code No.	Comm. Addr	Code Name	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	Setting Data			Adj. During Run	PAGE
				Range	Unit	Default		
				9 (485 485 485)				
CON_34	7522	Torque limit in forward run	Pos Trq Lmt	$0.0 \sim 250.0$	\%	150.0	Yes	
CON_35	7523	Torque limit in reverse run	Neg Trq Lmt	$0.0 \sim 250.0$	\%	150.0	Yes	
CON_36	7524	Torque limit in regeneration	Reg Trq Lmt	$0.0 \sim 250.0$	\%	150.0	Yes	
CON_37	7525	Torque Bias source selection	Trq Bias Src	0 (None) 1 (Analog) 2 (Keypad) 3 (Option) 4 (Int485)		0 (None)	No	6-66
CON_38	7526	Torque Bias quantity	Trq Bias	-150.0 ~ 150.0	\%	0.0	Yes	
CON_39	7527	Torque bias feedforward	Trq Bias FF	-150.0 ~ 150.0	\%	0.0	Yes	6-67
CON_40	7528	Torque Balance quantity	Trq Balance	$0.0 \sim 100.0$	\%	50.0	Yes	6-66
CON_54	7536	Speed search setting	Speed Search	$\begin{gathered} \hline 0000 \sim 1111 \\ \text { (bit setting) } \\ \hline \end{gathered}$	-	0100	No	6-69
CON_75	754B	Speed search time ${ }^{\text {Note4) }}$	SS Time	$10 \sim 60000$	ms	300	No	
CON_76	754C	Speed search P gain ${ }^{\text {Note4) }}$	SS P Gain	1.0 ~ 300.0	\%	100.0	Yes	
CON_77	754D	Speed search I gain ${ }^{\text {Note4) }}$	SS I Gain	$1.0 \sim 300.0$	\%	100.0	Yes	6-69
CON_78	754E	Speed search LPF ${ }^{\text {Note4) }}$	SS LPF	0.1 ~ 300.0	ms	33.3	Yes	
CON_79	754F	Speed limit of speed/torque switching	Spd Lmt Src	0.1 ~ Max Speed	rpm	1800.0	No	
CON_80	7550	Speed bias speed/torque switching	SpdLmtBias	$\begin{gathered} 100.0 \sim \text { Max } \\ \text { Speed } \end{gathered}$	rpm	100.0	No	6-68

1) Displayed only when the E/L_IO board is installed.
2) Displayed only when the SYNC_IO board is installed.
3) It is displayed when CON_21 (Proc PID Src) is SpeedSet.
4) It is displayed when $\mathrm{CON}^{-} 01$ is Sensorless.

5.6. User group (USR_[][])

Code No.	Comm. Addr	Code Name	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
USR_00	-	Select Code number	Jump Code	$1 \sim 6{ }^{\text {Note1) }}$	-	-	Yes	6-70
USR_01	-	Initialize to the initial value adequate to the application	Macro Init	User Define E/L	-	User Define	No	
USR_02	-	User data save	User Save	No / Yes	-	No	No	
USR_03	-	Recall saved User Data.	User Recall	No / Yes	-	No	No	
USR_04	-	User Group Data	User Grp	-	-	-	No	6-71

1) Maximum value is available only user code registered within USR_04 ~ USR_67.

5.7. Second motor function (2nd_[][])

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	Comm. Addr	CODE NAME	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
2nd_00	-	Jump for quick view	Jump Code	$1 \sim 37$	-	-	Yes	6-72
2nd_01	7801	$2^{\text {nd }}$ motor Control mode setting	2nd Ctl Mode	$\begin{aligned} & \hline 1 \text { (Speed) } \\ & 2 \text { (Torque) } \\ & \hline \end{aligned}$	-	1 (Speed)	No	
2nd_02	7802	Max. speed of $2^{\text {nd }}$ motor	$\begin{gathered} \text { 2nd Max } \\ \text { Spd } \\ \hline \end{gathered}$	400.0 ~ 3600.0	rpm	1800.0	No	
2nd_04	7804	Multi-step speed 0 of $2^{\text {nd }}$ motor	2nd Spd 0	0.0 ~ 2nd_02	rpm	0.0	Yes	
2nd_05	7805	$2^{\text {nd }}$ motor S ratio 1 in acceleration start	2nd Acc S St	$0.0 \sim 50.0$	\%	0.0	No	
2nd_06	7806	$2^{\text {nd }}$ motor S ratio 2 in acceleration end	2nd Acc S Ed	$0.0 \sim 50.0$	\%	0.0	No	
2nd_07	7807	$2^{\text {nd }}$ motor S ratio 1 in deceleration start	2nd Dec S St	$0.0 \sim 50.0$	\%	0.0	No	
2nd_08	7808	$2^{\text {nd }}$ motor S ratio 2 in deceleration end	2nd Dec S Ed	$0.0 \sim 50.0$	\%	0.0	No	
2nd_09	7809	Acc./Dec. time scale of $2^{\text {nd }}$ motor	Time Scale 2	$\begin{aligned} & 0(0.01 \mathrm{sec}) \\ & 1(0.1 \mathrm{sec}) \\ & \hline \end{aligned}$		0 (0.01 sec)	No	
2nd_10	780A	Acceleration time of $2^{\text {nd }}$ motor	2nd Acc time	$0.00 \sim 6000.0$	sec	10.00	Yes	
2nd_11	780B	Deceleration time of $2^{\text {nd }}$ motor	$\begin{gathered} \text { 2nd Dec } \\ \text { time } \\ \hline \end{gathered}$	$0.00 \sim 6000.0$	sec	10.00	Yes	
2nd_12	780C	Cooling method of $2^{\text {nd }}$ motor	$\begin{gathered} \hline \text { 2nd Cool } \\ \text { Mtd } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \text { (Self-cool) } \\ & 1 \text { (Forced-cool) } \\ & \hline \end{aligned}$	-	$\begin{gathered} \hline 1 \text { (Forced- } \\ \text { cool) } \\ \hline \end{gathered}$	Yes	
2nd_13	780D	Encoder pulse no. of $2^{\text {nd }}$ motor	2nd Enc \#	360 ~ 4096	-	1024	No	
2nd_14	780E	Encoder direction setting df $2{ }^{\text {nd }}$ motor	2nd Enc Dir	0 (A Phase Lead) 1 (B Phase Lead)	-	0 (A Phase Lead)	No	
2nd_15	780F	Encoder error check enable of $2{ }^{\text {nd }}$ motor	2nd Enc chk	$\begin{aligned} & 0 \text { (No) } \\ & 1 \text { (Yes) } \\ & \hline \end{aligned}$	-	1 (Yes)	No	
2nd_16	7810	Encoder LPF time constant of $2{ }^{\text {nd }}$ motor	2nd Enc LPF	$0 \sim 100$	ms	1	Yes	
2nd_18	7812	Base speed of $2{ }^{\text {nd }}$ motor	$\begin{gathered} \text { 2nd } \\ \text { BaseSpd } \end{gathered}$	300.0 ~ 3600.0	rpm	1800.0	No	
2nd_19	7813	$2{ }^{\text {nd }}$ motor selection	Motor select	$0(22)$ $1(3.7)$ $2(5.5)$ $3(7.5)$ $4(11.0)$ $5(15.0)$ $6(18.5)$ $7(220)$ $8(30.0)$ $9(37.0)$ $10(45.0)$ $11(55.0)$ $12(75.0)$ $13(90.0)$ $14(110.0)$ $15(1320)$ $16(160.0)$ $17(220.0)$ $18(280.0)$ $19(315.0)$ $20(375.0)$ $21($ UserDefine)	kW	2 (5.5)	No	6-73
2nd_20	7814	Motor selection of 2nd motor	UserMotorSel Note1)	0.7 ~ 500	kW	5.5	No	
2nd_21	7815	Rated voltage of 2 nd motor	2nd R-Volt	$120 \sim 560$	V	220	No	
2nd_22	7816	$2{ }^{\text {nd }}$ motor number of poles	2nd Pole \#	$2 \sim 12$	-	4	No	
2nd_23	7817	Efficiency of $2^{\text {nd }}$ motor	2nd Mot Eff.	70 ~ 100	\%	-	Yes	
2nd_24	7818	Rated slip of $2^{\text {nd }}$ motor	2nd R-Slip	$10 \sim 250$	rpm	-	Yes	
2nd_25	7819	Rated current of $2^{\text {nd }}$ motor	2nd R-Curr	$1.0 \sim 1000.0$	A	-	Yes	
2nd_26	781A	Flux current of $2{ }^{\text {nd }}$ motor	2nd Flx Cur	$\begin{gathered} 0.0 \sim 70 \% \text { of } \\ 2 \text { nd_25 } \\ \hline \end{gathered}$	A	-	Yes	
2nd_27	781B	Rotor time constant of $2^{\text {nd }}$ motor	2nd Mot Tr	$30 \sim 3000$	ms	-	Yes	
2nd_28	781C	Leakage inductance of $2^{\text {nd }}$ motor	2nd Mot Ls	$0.00 \sim 500.00$	mH	-	Yes	
2nd_29	781D	Leakage coefficient of $2^{\text {nd }}$ motor	2nd Mot sLs	$0.00 \sim 300.00$	mH	-	Yes	
2nd_30	781E	Stator resistance Of $2^{\text {nd }}$ motor	2nd Mot Rs	$0.000 \sim 15.000$	ohm	-	Yes	

5. Function Code Table

CODE NO.	Comm. Addr	CODE NAME	$\begin{gathered} \text { LCD } \\ \text { DISPLAY } \end{gathered}$	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
2nd_35	7823	Electronic thermal level for 1 minute of $2^{\text {nd }}$ motor Note2)	$\begin{aligned} & \text { 2nd ETH } \\ & \text { 1min } \end{aligned}$	$100 \sim 150$	\%	150	Yes	6-74
2nd_36	7824	Electronic thermal continuous level of $2^{\text {nd }}$ motor ${ }^{\text {Note2 }}$	2nd ETH cont	$\begin{gathered} 50 \sim \text { 2nd_35 } \\ \text { (Only available } \\ \text { to } 150 \% \text {) } \\ \hline \end{gathered}$	\%	100	Yes	
2nd_37	7825	Innertia coefficient ${ }^{\text {Note3) }}$	Inertia	$0.001 \sim 60.000$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.072	Yes	

1) 2nd_20 (UserMotorSel) is displayed when 2nd_19 (Motor select) is User Define.
2) It is displayed when FUN_55 ETH Select is Yes.
3) Factory default value is changed according to the motor capacity set in 2nd_19.

5.8. Option Group (EXT_[][])

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
EXT_00	-	Select code number	Jump Code	1 ~ 99			Yes	주 7)
EXT_01	7601	Option board type	Opt B/D	$\begin{aligned} & \hline 0 \text { (None) } \\ & 1 \text { (DeviceNet) } \\ & 2 \text { (Synchro) } \\ & 3 \text { (PLC-GF) } \\ & 4 \text { (PROFIBUS) } \\ & 6 \text { (RS485) } \\ & 7 \text { (MOte1) } \end{aligned}$		0 (None)	No	Note7)
EXT_02	7602	Option board version	Opt Version	1.0 ~	Ver -.-		No	Note7)
EXT_03	7603	Station ID in communication	Station ID ${ }^{\text {Note2) }}$	0 ~ 63		1	Yes	Note7)
EXT_04	7604	Baud rate of deviceNet	Baud Rate ${ }^{\text {Note3) }}$	$\begin{aligned} & 0(125) \\ & 1(250) \\ & 2(500) \end{aligned}$	kbps	0 (125)	Yes	Note7)
EXT_05	7605	DeviceNet MAC ID	MAC ID ${ }^{\text {Note3) }}$	$0 \sim 63$		63	Yes	Note7)
EXT_06	7606	Read object setting of DeviceNet	Out Instance Note3)	$\begin{aligned} & \hline 0(20) \\ & 1(21) \\ & 2(100) \\ & 3(101) \end{aligned}$		0 (20)	No	Note7)
EXT_07	7607	Write object setting of DeviceNet	In Instance ${ }^{\text {Note3) }}$	$\left\lvert\, \begin{aligned} & 0(70) \\ & 1(71) \\ & 2(110) \\ & 3(111) \end{aligned}\right.$		0 (70)	No	Note7)
EXT_09	7609	Profibus MAC ID	Profi MAC ID	1 ~ 127		1	Yes	Note7)
EXT_10	760A	Number of option output	Output Num	$0 \sim 8^{\text {Note5) }}$		3	Yes	Note7)
EXT_11	760B	Option output 1	Output $1^{\text {Note5) }}$	0000 ~ FFFF	HEX	0020	Yes	Note7)
EXT_12	760C	Option output 2	Output $2^{\text {Note5) }}$	0000 ~ FFFF	HEX	000E	Yes	Note7)
EXT_13	760D	Option output 3	Output $3^{\text {Note5) }}$	0000 ~ FFFF	HEX	000F	Yes	Note7)
EXT_14	760E	Option output 4	Output $4^{\text {Note5) }}$	0000 ~ FFFF	HEX	000A	Yes	Note7)
EXT_15	760F	Option output 5	Output $5^{\text {Note5) }}$	0000 ~ FFFF	HEX	0000	Yes	Note7)
EXT_16	7610	Option output 6	Output $6^{\text {Note5) }}$	0000 ~ FFFF	HEX	0000	Yes	Note7)
EXT_17	7611	Option output 7	Output $7^{\text {Note5) }}$	0000 ~ FFFF	HEX	0000	Yes	Note7)
EXT_18	7612	Option output 8	Output $8^{\text {Note5) }}$	0000 ~ FFFF	HEX	0000	Yes	Note7)
EXT_19	7613	Number of option input	Input Num	$0 \sim 8^{\text {Note6) }}$		2	Yes	Note7)
EXT_20	7614	Option input 1	Input $1^{\text {Note6) }}$	0000 ~ FFFF	HEX	0502	No	Note7)
EXT_21	7615	Option input 2	Input $2^{\text {Note6) }}$	0000 ~ FFFF	HEX	0500	No	Note7)
EXT_22	7616	Option input 3	Input $3^{\text {Note6) }}$	0000 ~ FFFF	HEX	0000	No	Note7)
EXT_23	7617	Option input 4	Input $4{ }^{\text {Note6) }}$	0000 ~ FFFF	HEX	0000	No	Note7)
EXT_24	7618	Option input 5	Input $5^{\text {Note6) }}$	0000 ~ FFFF	HEX	0000	No	Note7)
EXT_25	7619	Option input 6	Input $6{ }^{\text {Note6) }}$	0000 ~ FFFF	HEX	0000	No	Note7)
EXT_26	761A	Option input 7	Input $7^{\text {Note6) }}$	0000 ~ FFFF	HEX	0000	No	Note7)
EXT_27	761B	Option input 8	Input $8{ }^{\text {Note6) }}$	0000 ~ FFFF	HEX	0000	No	Note7)
EXT_30	761E	485 communication mode	Parity/Stop ${ }^{\text {Note1) }}$	0 (8None/1Stop) 1 (8None/2Stop) 2 (8Even/1Stop) 3 (8Odd/1Stop)		0 (8None/1Stop)	Yes	Note7)
EXT_31	761F	Response delay time of 485 communication	$\underset{\substack{\text { Delay Time } \\ \text { Notel }}}{\text { Time }}$	$2 \sim 1000$	ms	5	Yes	Note7)

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	Comm. Addr	CODE NAME	LCD DISPLAY	SETTING DATA			Adjustment During Run	PAGE
				RANGE	UNIT	DEFAULT		
EXT_32	7620	Station ID of built-in 485	Int485 St ID	1 ~ 250		2	Yes	Note7)
EXT_33	7621	Baudrate of built-in 485	Int485 Baud	$\begin{aligned} & 0(1200 \mathrm{bps}) \\ & 1(2400 \mathrm{bps}) \\ & 2(4800 \mathrm{bps}) \\ & 3(9600 \mathrm{bps}) \\ & 4(19200 \mathrm{bps}) \\ & 5(38400 \mathrm{bps}) \end{aligned}$		3 (9600 bps)	Yes	Note7)
EXT_34	7622	Built-in 485 communication mode	Int485 Mode	$\begin{aligned} & 0 \text { (8None/1Stop) } \\ & 1 \text { (8None/2Stop) } \\ & 2 \text { (8Even/1Stop) } \\ & 3 \text { (8Odd/1Stop) } \end{aligned}$			Yes	Note7)
EXT_35	7623	Response delay time of built-in 485 communication	Int485 Delay	$2 \sim 1000$		0 (None)	Yes	Note7)
EXT_36	7624	Operation method in case of built-in 485 command lost	Int485 LostC	$\begin{gathered} 0 \text { (None) } \\ 1 \text { (FreeRun) } \\ 2 \text { (Stop) } \end{gathered}$			Yes	Note7)
EXT_37	7625	Decision time of built-in 485 command lost	Int485 LostT	$1.0 \sim 30.0$			Yes	Note7)
EXT_99	7663	Update of communicaiton parameter	Comm $\underset{\text { Note4 }}{ }$ UpDate	0 (No) / 1 (Yes)		0 (No)	No	Note7)

1) It is displayed when option board of RS485 communicatio is mounted.
2) It is displayed when option board of PLC-GF is mounted.
3) It is displayed when option board of DeviceNet is mounted.
4) It is displayed when optio board of Profibus is mounted.
5) EXT_11 ~EXT_18 codes are displayed according to the value of EXT_10.
6) $\mathrm{EXT}_{-} 20 \sim \mathrm{EXT}_{-} 27$ codes are displayed according to the value of $\mathrm{EXT}_{-} 19$.
7) Please refer to the user manual for communication option board.

5.9. Analog AIO Group (AIO_[][])

Code No.	Comm. Addr	Code Name	LCD DISPLAY	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
AIO_00	-	Select code number	Jump Code	$1 \sim 81$	-	-	Yes	6-75
AIO_01	7701	Multi-function Analog input Ai1 definition	Ai1 Define	00 (Not Used) 01 (Speed Ref) 02 (Aux Spd Ref) 03 (Proc PID Ref) 04 (Proc PID F/B) 05 (Draw Ref) 06 (Torque Ref) 07 (Flux Ref) 08 (Torque Bias) 09 (Torque Limit) 10 (Line SPD Ref) $^{1)}$ 11 (Tension Ref) ${ }^{1)}$ 12 (Dancer Ref) ${ }^{1)}$ 13 (Taper Ref) ${ }^{1)}$ $14(\text { Tension } \mathrm{F} / \mathrm{B})^{1)}{ }^{1)}$ 15 (Diameter) ${ }^{1)}$ 16 (Diam Preset) ${ }^{1)}$	-	0 (Not Used)	No	
AIO_02	7702	Multi-function Analog input Ai1 Source definition	Ai1 Source	$\begin{aligned} & 0(-10 \rightarrow 10 \mathrm{~V}) \\ & 1(10 \rightarrow-10 \mathrm{~V}) \\ & 2(0 \rightarrow 10 \mathrm{~V}) \\ & 3(10 \rightarrow 0 \mathrm{~V}) \\ & 4(0 \rightarrow 20 \mathrm{~mA}) \\ & 5(20 \rightarrow 0 \mathrm{~mA}) \end{aligned}$	-	$0(-10 \rightarrow 10 \mathrm{~V})$	No	
AIO_03	7703	Multi-function Analog input Ai1 Minimum Voltage	Ai1 In X1	AIO_07~ AIO_05	\%	0.00	Yes	
AIO_04	7704	Multi-function Analog input Ai1 Minimum Voltage Bias	Ai1 Out Y1	AIO_08 ~ AIO_06	\%	0.00	Yes	
AIO_05	7705	Multi-function Analog input Ai1 Maximum Voltage	Ai1 In X2	$0.00 \sim 100.00$	\%	100.00	Yes	
AIO_06	7706	Multi-function Analog input Ai1 Maximum Voltage Gain	Ai1 Out Y2	$0.00 \sim 250.00$	\%	100.00	Yes	
AIO_07	7707	Multi-function Analog input Ai1-Minimum Voltage	Ai1 -In X1	AIO_09~ AIO_03	\%	0.00	Yes	
AIO_08	7708	Multi-function Analog input Ai1-Minimum Voltage Bias	Ai1 -Out Y1	AIO_10~ AIO_04	\%	10.00	Yes	
AIO_09	7709	Multi-function Analog input Ai1-Maximum Voltage	Ai1 -In X2	$-100.00 \sim 0.00$	\%	-100.00	Yes	
AIO_10	770A	Multi-function Analog input Ai1-Maximum Voltage Gain	Ai1 -Out Y2	-250.00 ~ 0.00	\%	-100.00	Yes	
AIO_11	770B	Ai1 input LPF time constant	Ai1 LPF	0 ~ 2000	ms	-	-	
AIO_12	770C	Multi-function Analog input Ai1 command loss Criterion select	Ai1 Wbroken	0 (None) 1 (Half of $\times 1$) 2 (Below x 1)	-	0 (None)	No	
AIO_13	770D	Multi-function Analog input Ai2 Definition	Ai2 Define	Refer to AIO_01~12				-
AIO_14	770E	Multi-function Analog input Ai2 Source definition	Ai2 Source					-
AIO_15	770F	Multi-function Analog input Ai2 Minimum Voltage	Ai2 In X1					-
AIO_16	7710	Multi-function Analog input Ai1 Minimum Voltage Bias	Ai2 Out Y1					-
AIO_17	7711	Multi-function Analog input Ai2 Maximum Voltage	Ai2 In X2					-

$\begin{aligned} & \text { Code } \\ & \text { No. } \end{aligned}$	Comm. Addr	Code Name	LCD DISPLAY	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
AIO_18	7712	Multi-function Analog input Ai2 Maximum Voltage Gain	Ai2 Out Y2					-
AIO_19	7713	Multi-function Analog input Ai2 -Minimum Voltage	Ai2 -In X1					-
AIO_20	7714	Multi-function Analog input Ai2-Minimum Voltage Bias	Ai2 -Out Y1					-
AIO_21	7715	Multi-function Analog input Ai2 -Maximum Voltage	Ai2 -In X2					-
AIO_22	7716	Multi-function Analog input Ai2 -Maximum Voltage Gain	Ai2 -Out Y2					-
AIO_23	7717	Ai2 input LPF time constant	Ai2 LPF					-
AIO_24	7718	Multi-function Analog input Ai2 loss command Criterion select	Ai2 Wbroken					-
AIO_25	7719	Multi-function Analog input Ai3 Definition	Ai3 Define	Refer to Possible to se 17 (Use		0 (Not Used)	No	-
AIO_26	771A	Multi-function Analog input Ai3 Source Definition	Ai3 Source	$\begin{aligned} & 0(-10 \rightarrow 10 \mathrm{~V}) \\ & 1(10 \rightarrow-10 \mathrm{~V}) \\ & 2(0 \rightarrow 10 \mathrm{~V}) \\ & 3(10 \rightarrow 0 \mathrm{~V}) \\ & \hline \end{aligned}$	-	$0(-10 \rightarrow 10 \mathrm{~V})$	No	-
AIO_27	771B	Multi-function Analog input Ai3 Minimum Voltage	Ai3 In X1	Refer to AIO_03~12				-
AIO_28	771C	Multi-function Analog input Ai3 Minimum Voltage Bias	Ai3 Out Y1					-
AIO_29	771D	Multi-function Analog input Ai3 Maximum Voltage	Ai3 In X2					-
AIO_30	771E	Multi-function Analog input Ai3 Maximum Voltage Gain	Ai3 Out Y2					-
AIO_31	771F	Multi-function Analog input Ai3-Minimum Voltage	Ai3 -In X1					-
AIO_32	7720	Multi-function Analog input Ai3-Minimum Voltage Bias	Ai3-Out Y1					-
AIO_33	7721	Multi-function Analog input Ai3-Maximum Voltage	Ai3 -In X2					-
AIO_34	7722	Multi-function Analog input Ai3 -Maximum Voltage Gain	Ai3 -Out Y2					-
AIO_35	7723	Ai3 input LPF time constant	Ai3 LPF					-
AIO_36	7724	Multi-function Analog input Command loss criterion select	Ai3 Wbroken					-
AIO_37	7725	Multi-function Analog input Ai4 Definition ${ }^{2)}$	Ai4 Define	Refer to AIO_01~12				-
AIO_38	7726	Multi-function Analog input Ai4 Source Definition ${ }^{2)}$	Ai4 Source					-
AIO_39	7727	Multi-function Analog input Ai4 Minimum Voltage ${ }^{2)}$	Ai4 In X1					-

Code No.	Comm. Addr	Code Name	LCD DISPLAY	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
AIO_40	7728	Multi-function Analog input Ai4 Minimum Voltage Bias ${ }^{2)}$	Ai4 Out Y1					-
AIO_41	7729	Multi-function Analog input Ai4 Maximum Voltage ${ }^{2)}$	Ai4 In X2					-
AIO_42	772A	Multi-function Analog input Ai4 Maximum Voltage Gain ${ }^{2)}$	Ai4 Out Y2					-
AIO_43	772B	Multi-function Analog input Ai4-Minimum Voltage ${ }^{2)}$	Ai4 -In X1					-
AIO_44	772C	Multi-function Analog input Ai4 -Minimum Voltage $\mathrm{Bias}^{2)}$	Ai4 -Out Y1					-
AIO_45	772D	Multi-function Analog input Ai4 -Maximum Voltage ${ }^{2)}$	Ai4 -In X2					-
AIO_46	772E	Multi-function Analog input Ai4 -Maximum Voltage Gain ${ }^{2)}$	Ai4 -Out Y2					-
AIO_47	772F	Ai4 output LPF time constant ${ }^{2)}$	Ai4 LPF					-
AIO_48	7730	Multi-function Analog input Ai4 command loss criterion select ${ }^{2)}$	Ai4 Wbroken					-
AIO_49	7731	Multi-function Analog input Ai5 Definition ${ }^{2)}$	Ai5 Define	Refer to When using motor NTC functi 17 (Use	able at	0 (Not Used)	No	-
AIO_50	7732	Multi-function Analog input Ai5 Source Definition ${ }^{2)}$	Ai5 Source	$\begin{aligned} & 0(-10 \rightarrow 10 \mathrm{~V}) \\ & 1(10 \rightarrow-10 \mathrm{~V}) \\ & 2(0 \rightarrow 10 \mathrm{~V}) \\ & 3(10 \rightarrow 0 \mathrm{~V}) \end{aligned}$	-	$0(-10 \rightarrow 10 \mathrm{~V})$	No	-
AIO_51	7733	Multi-function Analog input Ai5 Minimum Voltage ${ }^{2)}$	Ai5 In X1	Refer to AIO_03~12				-
AIO_52	7734	Multi-function Analog input Ai4 Minimum Voltage Bias ${ }^{2)}$	Ai5 Out Y1					-
AIO_53	7735	Multi-function Analog input Ai5 Maximum Voltage ${ }^{2)}$	Ai5 In X2					-
AIO_54	7736	Multi-function Analog input Ai5 Maximum Voltage Gain ${ }^{2)}$	Ai5 Out Y2					-
AIO_55	7737	Multi-function Analog input Ai5 -Minimum Voltage ${ }^{2)}$	Ai5 -In X1					-
AIO_56	7738	Multi-function Analog input Ai5 -Minimum Voltage $\mathrm{Bias}^{2)}$	Ai5 -Out Y1					-
AIO_57	7739	Multi-function Analog input Ai5 -Maximum Voltage ${ }^{2)}$	Ai5 -In X2					-
AIO_58	773A	Multi-function Analog input Ai5 -Maximum Voltage $\text { Gain }{ }^{2)}$	Ai5 -Out Y2					-
AIO_59	773B	Ai5 input LPF time constant ${ }^{2)}$	Ai5 LPF					-
AIO_60	773C	Multi-function Analog input Ai5 command loss criterion select ${ }^{2)}$	Ai5 Wbroken					-

Code No.	Comm. Addr	Code Name	LCD DISPLAY	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
AIO_73	7749	Multi-function Analog input command loss time	Time out	$0.1 \sim 120.0$	sec	1.0	No	6-79
AIO_74	774A	Multi-function analog Output AO1 Definition	AO1 Define	0 (Not Used)		0 (Not Used)	No	6-81
				1 (Ai1 Value)				
				2 (Ai2 Value)				
				3 (Ai3 Value)				
				4 (Ai4 Value) ${ }^{2)}$				
				5 (Ai5 Value) ${ }^{2)}$				
				7 (PreRamp Ref)				
				8 (PostRamp Ref)				
				9 (ASR Inp Ref)				
				11 (Motor Speed)				
				12 (Motor Spd Est) ${ }^{3)}$				
				13 (Speed Dev)				
				14 (ASR Out)				
				15 Torque Bias				
				16 (PosTrq Limit)				
				17 (NegTrq Limit)				
				18 (RegTrq Limit)				
				19 (Torque Ref)				
				20 (IqeRef)				
				21 (Iqe)				
				22 (Flux Ref)				
				23 (IdeRef)				
				24 (Ide)				
				25 (ACR_Q Out)				
				26 (ACR_D Out)				
				27 (VdeRef)				
				28 (VqeRef)				
				29(Out Amps RMS)				
				30 (Out Volt RMS)				
				31 (Power)				
				32 (DC Bus Volt)				
				33 (Proc PID Ref)				
				34 (PROC PID F/B)				
				35 (Proc PID Out)				
				36 (Line Speed) ${ }^{1)}$				
				37 (Tension Out) ${ }^{\text {1) }}$				
				38 (Diameter) ${ }^{1)}$				
				39 (MotNTC Temp)				
				40 (Inv Temp)				
				41 (Inv i2t)				
AIO_75	774B	Multi-function Analog Output AO1 Source Definition	A01 Source	$\begin{aligned} & 0(-10 \rightarrow 10 \mathrm{~V}) \\ & 1(10 \rightarrow-10 \mathrm{~V}) \\ & 2(0 \rightarrow 10 \mathrm{~V}) \\ & 3(10 \rightarrow 0 \mathrm{~V}) \end{aligned}$	-	$0(-10 \rightarrow 10 \mathrm{~V})$	No	6-81
AIO_76	774C	Multi-function Analog Output AO1 Bias	AO1 Bias	0.0 ~ AIO_77	\%	0.0	No	
AIO_77	774D	Multi-function Analog Output AO1 Gain	AO1 Gain	$0.0 \sim 500.0$	\%	100.0	No	
AIO_78	774E	Multi-function Analog Output AO1 (-) Bias	A01-Bias	AIO_79 ~ 0.0	\%	0.0	Yes	
AIO_79	774F	Multi-function Analog Output AO1 (-) Gain	AO1-Gain	$0.0 \sim-500.0$	\%	-100.0	Yes	
AIO_80	774E	Multi-function Analog Output AO1 absolute value setting	AO1 ABS	$\begin{aligned} & 0 \text { (No) } \\ & 1 \text { (Yes) } \end{aligned}$	-	0 (No)	No	
AIO_81	774F	Multi-function Analog Output AO2 Definition	AO2 Define	AIO_74~78 참조				-
AIO_82	7750	Multi-function Analog Output AO2 Source Definition	AO2 Source					-
AIO_83	7751	Multi-function Analog Output AO2 Bias	AO2 Bias					-
AIO_84	7752	Multi-function Analog Output AO2 Gain	AO2 Gain					-

Code No.	Comm. Addr	Code Name	LCD DISPLAY		Setting Data Adjustment During Run		PAGE
AIO_83	7751	Range					
AIO_84	7752	Multi-function Analog Output AO2 (-) Bias	Multi-function Analog Otput AO2 (-) Gain	AO2 Bias		Default	
AIO_85 Gain							
7753	Multi-function Analog Output AO2 absolute value setting	AO2 ABS		-			

1) It is displayed when WEB mode setting.
2) It only comes under using EXTN_I/O.
3) It is displayed when CON_01 is Sensorless.

5.10. Sensorless Control Group (SLS_[][]) ${ }^{\text {Note1 }}$

| Code
 No. | Comm.
 Addr | Code Name | LCD DISPLAY | Setting Data | | Adjustment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Rung Run | | | | | | PAGE

Note1) This group is displayed when CON_01 is Sensorless.

Chapter 6 - Function Description

6.1 Display Group (DIS_[][])

6.1.1 DIS_00 (Motor control status monitoring)

Displayed when Power ON.

Code	Parameter name	Unit	Description
DIS_00	Motor speed	rpm	Actual motor rotating speed displayed in rpm.
	Motor control mode		SPD : Speed control mode TRQ $:$ Torque control mode WEB : WEB control mode SLS : Sensorless control mode BX : Emergency stop display BAT : Battery-operated mode
	Output torque	\%	100% = Rated torque of motor
	Inverter output current	A	Inverter actual output current displayed

6.1.2 DIS_01 ~ 03 (User display 1, 2, 3)

Select one of the followings each to be displayed in DIS_01, 02 and 03.
Factory default: DIS_01 = " PreRamp Ref ", DIS_02= "DC Bus Volt", DIS_03= " Terminal In "

Code	Parameter name	LCD display	Unit	Description
$\begin{aligned} & \text { DIS_01 } \\ & \sim \\ & \text { DIS_03 } \end{aligned}$	Ai1 Value ~ Ai3 Value ${ }^{*}$	Ai1 Value ~ Ai3 Value	\%	Displayed as the percentage of multi-function analog input value $(10 \mathrm{~V} / 100 \%, 20 \mathrm{~mA} / 100 \%)$
	Pre Ramp Reference	PreRamp Ref	rpm	Speed reference before Acc./dec. routine
	Post ramp reference	PostRamp Ref	rpm	Speed reference after Acc./dec. routine
	ASR Input Reference	ASR Inp Ref	rpm	Final speed reference input value to ASR (Automatic Speed Regulator) displayed (Draw and Droop included)
	Motor Rotating Speed	Motor Speed	rpm	Actual motor rotating speed
	Speed of revolution about motor estimated	Motor SpdEst	rpm	Estimated motor speed of revolution (in sensorless control mode)
	Speed Deviation	Speed Dev	rpm	Deviation between speed ref and actual rotating speed
	ASR Output	ASR Out	\%	ASR output to rated torque
	Torque bias	Torque Bias	\%	Torque bias to rated torque

6. Function Description

Code	Parameter name	LCD display	Unit	Description							
	Positive Trq Limit	Pos Trq Limit	\%	Positive torque limit to rated torque							
	Negative Trq Limit	Neg Trq Limit	\%	Negative torque limit to rated torque							
	Regeneration Trq Limit	Reg Trq Limit	\%	Regeneration torque limit to rated torque							
	Torque Reference	Torque Ref	\%	Torque reference to rated torque							
	Torque current ref.	IqeRef	\%	Torque current reference to rated torque current							
	Torque current	Iqe	\%	Actual torque current to rated torque current							
	Flux reference	Flux Ref	\%	Flux reference to the rated flux							
	Flux Current ref.	IdeRef	\%	Flux current reference to rated flux current							
	Flux Current	Ide	\%	Actual flux current to rated flux current							
	ACR output of axis Q	ACR_Q Out	V	ACR output value of axis Q							
	ACR output of axis D	ACR_D Out	V	ACR output value of axis D							
	Voltage reference of axis D	VdeRef	V	Voltage reference value of axis D							
	Voltage reference of axis Q	VqeRef	V	Voltage reference value of Q axis Q							
	Output current	Out Amps RMS	A	Inverter output current (rms)							
	Output voltage	Out Volt RMS	V	Inverter output voltage (rms)							
	Output power	Power	kW	Motor output power							
	DC LINK voltage	DC Bus Volt	V	Inverter DC link voltage							
	Process PI reference	Proc PI Ref	\%	Reference value of Process PID routine							
	Process PI Feedback	Proc PI F/B	\%	Feedback value of Process PID routine							
	Process PI output	Proc PI Out	\%	Output value of Process PID routine							
$\begin{aligned} & \text { DIS_01 } \\ & \text { DIS_03 } \end{aligned}$	Motor temperature NTC	Mot Temp NTC	deg	Temp displayed when mot temp sensor is NTC. $25^{\circ} \mathrm{C}$ displayed when temp sensor is not provided with the motor.							
	Inverter temperature	Inv Temp	deg	Inverter Heatsink temp displayed							
	Inverter i2t	Inv $i^{2} \mathrm{t}$	\%	Inverter overload capability displayed. In the case Overload capability is 150% for $1 \mathrm{~min}, \mathrm{i}^{2} \mathrm{t}$ becomes 100% when 150% of rated current is flowing for 1 min.							
	MOP output	MP Output	\%	Set value displayed when operation is done by potentiometer on terminal input.							
	Control mode	Ctrl Mode		Selected control mode displayed							
	Software version	S/W Version		S/W version displayed							
	Running time	Run Time		Inverter running time displayed after Power On							
	Input terminal status	Terminal In		ON/OFF status of Input terminal displayed (0: OFF, 1: ON)							
					FX	Bx	$1{ }^{1}$ P2	P3	P5	P6	P7
				$\begin{aligned} & 0: \text { OFF } \\ & 1: O \end{aligned}$	0/1	0/1	0/1	0/1	0/1	0/1	0/1
	Terminal Opt	Communication command state		It displays the communication command state.							
					STOP	FX	RX	RST	BX		1
				$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$	0/1	0/1	0/1	0/1	0/1		/1
					P2	P3	P4	P5	P6		P7
					0/1	0/1	0/1	0/1	0/1		/1
	Output terminal status	Terminal Out		ON/OFF status of open collector output, fault relay and contact output. (0: OFF, 1: ON)							
					AX1	AX2	OC1	NC	NC		$\begin{aligned} & \mathbf{0 A} \\ & \mathbf{O B B} \end{aligned}$
				$\begin{array}{r} 0: \text { OFF } \\ 1: O \end{array}$	0/1	0/1	0/1	0	0		/1

6. Function Description

Code	Parameter name	LCD display	Unit	Description
	Running status	Run Status		Operating status displayed
	PhInOpenLvl	Decision value for input open- phase		Referenced value for FUN_79 PhInOpenLvl setting

*1) In the case of using EXTN_I/O, it will be displayed up to Ai5.

6.1.3 DIS_04 (Process PID controller)

Information on Output, reference, F/B values of Process PID controller is displayed in this code.

6.1.4 DIS_05 (Fault display)

Current fault status, previous two faults, the number of faults occurred and faults information reset are available using [SHIFT/ESC] key in DIS_05.

Code	LCD display	Parameter name	Description
DIS_05	Faults	Current Trip displayed	"------"" displayed when normal. Trip information given when tripped.
	Last Fault1	Previous fault displayed	Refer to Chapter 9. Troubleshooting and Maintenance.
	Last Fault2	The fault before last displayed	Fault Count
	Fault Clear	Total number of faults	The number of total faults in memory from the initialization until now is displayed.
	Reset	Clear the faults and initialize to "0".	

Faults information, speed reference before fault occurs, speed F/B value, output frequency/ current/ Voltage, torque current reference \& actual value, DC Link voltage, input terminal status, output terminal status, Run status, running time
 info into memory as [Last Fault 1], press [RESET] key. Refer to [Chapter 9 Troubleshooting and Maintenance] for more details.

6. Function Description

No	Trip information	LCD display	No	Trip information	LCD display
1	IGBT short circuit	Arm Short	14	H/W error	HW-Diag
2	Fuse open	Fuse Open	15	Input B contact for external trip	External-B
3	Ground fault	Ground Fault	16	Communication error of option board	Option (\$\$)
4	Over current	Over Current	17	Output open-phase	Output PO
5	Over voltage	Over Voltage	18	Inverter overload	Inv. OLT
6	Inverter overheat ${ }^{\text {note1) }}$	OHD Open	19	Input open-phase	Input PO
7	FAN fault note1)	FAN Lock	20	Motor overheat	MotOver Heat
8	IGBT short-circuit DB ${ }^{\text {note2) }}$	Arm Short- DB	21	Inverter thermal short circuit	InvThem OP
9	Encoder error	Encoder Err	22	Motor thermal error	MotThem Err
10	Low voltage	Low Voltage	23	Motor overspeed error	Over Speed
11	Inverter overheat	InvOver Heat	24	AC Fan/MC power error note3)	FAN/MC PWR
12	Electronic thermal	E-Thermal	25	Power for encoder supply error	Enc Power
13	Overload	Over Load			

* Note:

When multiple faults occur at the same time, the MOST CRITICAL fault will be displayed and the rest of others can be inferred from the value using [PROG], [$\mathbf{\Delta}(\mathrm{Up})$] / [$\mathbf{\nabla}(\mathrm{Down})$] keys. The trip has the lowest number is the most critical fault.
*1) Applicable only to SV2800~3750iV5.
*2) Applicable only to SV110~220iV5.
*3) Applicable only to SV300~1600iV5.

6.1.5 DIS_06(User group display selection)

User can make "User group" by collecting frequently used codes. In DIS_06, user can set whether User group is displayed or not in three selections.

Code	LCD display	Parameter name	Description	
			Not Used	User group not displayed
	Usr Grp Disp	User group display selection	Dis+Usr Grp	Only Display + User group displayed. The rest of groups are not displayed. If you want to display the rest, move to other group in Jump code or change the selection.
			Display ALL	Display all groups including User group. But, 2nd group is displayed only when 2nd group is defined. EXT group is displayed when Option board is installed.

6. Function Description

6.2 DIO Group (DIO_[][])

6.2.1 Jump code (DIO_00)

In I/O_00, jumping directly to any parameter code can be accomplished by entering the desired code number.
(Example) Moving to DIO_05
Press [PROG] and set to 5 using [SHIFT/ESC] / [$\mathbf{\Delta}$ (Up)] / [\mathbf{V} (Down)] and press [ENT] key to move to I/O_05. If the desired code cannot be set, the closest code will be displayed.

DIO P5 define
 05
 Not Used

Jumping other code is available using [$\mathbf{\Delta}(\mathrm{Up})] /[\mathbf{\nabla}$ (Down)] keys.

6.2.2 Multi-function input terminal

1) DIO_01 ~ DIO_07 (Multi-function input terminal P1 ~ P7 define)

It defines Multi-function input terminals. SV-iV5 has 7 dedicated terminals (P1~P7) for the setting of parameters below. However, the multiple terminals cannot be selected for the same function and if so, the invalid terminal definition is displayed as "Not Used". And the selected function cannot be adjusted while running.

No	Set value	Description	No	Set value	Description
1	Speed-L	Multi-step speed-Low	16	Prohibit FWD	Forward Run prevention
2	Speed-M	Multi-step speed-Middle	17	Prohibit REV	Reverse Run prevention
3	Speed-H	Multi-step speed-High	18	Proc PID Dis	PID operation disabled
4	Jog Speed	Jog speed	19	Timer Input	Timer ON
5	MOP Up	MOP UP operation	20	SoftStrtCncl	Cancel Soft start
6	MOP Down	MOP Down operation	21	ASR Gain Sel	Switch ASR gain
7	MOP Clear	MOP Speed Clear (Reset)	22	ASR P/PI Sel	Switch ASR P/PI
8	MOP Save	MOP Speed Save	23	Flux Ref Sel	Switch Flux reference
9	Analog Hold	Analog speed ref. Hold	24	PreExcite Note1)	Pre-excitation
10	Main Drive	Exchange between Option and Inverter	25	Spd/Trq Sel	Speed/Torque control select
11	2 nd Func	The 2 ${ }^{\text {nd }}$ function	26	Use Max Trq	Torque limit ON/OFF
12	Xcel-L	Multi-accel/decel-Low	27	Use Trq Bias	Torque bias ON/OFF
13	Xcel-H	Multi-accel/decel-High	28	AuxSpdEnable	Auxiliary speed enable
14	$3-W i r e$	3 Wire	29	Battery Run	Selection of battery-operated
15	Ext Trip-B	External trip B contact	41	LVT Diable	Detection of Low voltage trip disabled

Note 1) It is invisible when CON_01 is Control Mode.

Remark

- The additional item to set will be displayed when Sychro option card or CON_01 is Web Control. Regarding this option, refer to the user manual of Synchro option or Chapter 7 Web Control Application.

6. Function Description

1.1) Speed-L / Speed-M / Speed-H / JOG operation

By defining P1 ~ P4 as "Speed-L", "Speed-M", "Speed-H" and "Jog Speed", the selected references in FUN goup 12 ~ 20 (Multi-step speed $0 \sim 7$ and Jog speed) become active as speed reference.
(Example) To define Multi-function input terminals P1, P2, P3 as Speed-L, Speed-M, Speed-H and P4 as Jog Speed;

Code	LCD display	Description	Setting range	Unit	Set value
DIO_01	P1 define	Multi-function input terminal P1 define			Speed-L
DIO_02	P2 define	Multi-function input terminal P1 define			Speed-M
DIO_03	P3 define	Multi-function input terminal P3 define			Speed-H
DIO_04	P4 define	Multi-function input terminal P4 define			Jog Speed

When multi-step speed 0 (FUN_12: Speed 0) is selected ($\mathrm{P} 1, \mathrm{P} 2$ and $P 3$ are all OFF), speed reference is input by the method set in Digital setting by keypad (FUN_12: Speed 0) or Analog speed setting of terminal block or setting by option. If the jog (FUN_20) of P4 is active, inverter operates with jog frequency regardless of other terminal signal input.

P1	P2	P3	P4	Set Vaule
OFF	OFF	OFF	OFF	Speed referece in accordance with FUN_02
ON	OFF	OFF	OFF	FUN_13(Speed 1)
OFF	ON	OFF	OFF	FUN_14(Speed 2)
ON	ON	OFF	OFF	FUN_15(Speed 3)
OFF	OFF	ON	OFF	FUN_16(Speed 4)
ON	OFF	ON	OFF	FUN_17(Speed 5)
OFF	ON	ON	OFF	FUN_18(Speed 6)
ON	ON	ON	OFF	FUN_19(Speed 7)
X	X	X	ON	FUN_20(Jog Speed)

1.2) MOP (Motor operated potentiometer) Up / MOP Down / MOP Clear / MOP Save

When multi-function input terminals P1 ~ P7 is set to "MOP Up", "MOP Down", inverter performs Accel/Decel Constant Run according to the terminal input. Generally, MOP function is used to adjust the speed simply with terminal ON/OFF. When MOP UP/Down is selected, inverter ignores FUN_02 setting, and performs MOP operation. To cancel it, change the defined terminal to "Not Used". If this function is selected with "Main Drive" function, operating reference is done by MOP and the rest will be defined by "Main Drive" function. Max speed limit is FUN_04(Max Speed).

If "MOP Save" is entered during MOP operation, the current speed reference value is saved as "MOP Data" and retained. When the MOP operation resumes, the retained value will be used as speed reference.
"MOP Clear" resets the MOP Data value to " 0 ". It is used to change the saved value.

6. Function Description

(Example) MOP function setting and operation method is as follows;

Code	LCD display	Description	Setting range	Unit	Set value
DIO_01	P1 define	Multi-function input terminal P1 define			MOP Up
DIO_02	P2 define	Multi-function input terminal P1 define			MOP Down
DIO_03	P3 define	Multi-function input terminal P3 define		MOP Clear	
DIO_04	P4 define	Multi-function input terminal P4 define		MOP Save	

(MOP Up/Down example 1) This is used only if terminal ON/OFF is required for speed control.

(MOP Save example 2) In case terminal input assigned to MOP Save function is ON, operation speed at that instant is memorized and operates at the saved speed when operation resumes.

6. Function Description

(MOP Clear setting example 3) To clear the saved speed by MOP Save function, use "MOP Clear ON/OFF". If MOP Clear is ON during running, the inverter decelerates its speed to zero speed. If MOP is ON during stop, this function resets the speed reference to " 0 ".

1.3) Analog Hold

When FUN_02 is set to "analog" and Multi-function anlaog input (Ai1 ~Ai3) is set and then one of the selected terminal set to "Analog Hold" is ON, inverter fixes its output frequency, regardless of the frequency reference change. The changed frequency reference is applied when the terminal is OFF. This function is useful when a system requires constant speed after acceleration where the location has influenced by noise.

6. Function Description

1.4) Main Drive

Each inverter linked to system can be controlled separately. When this terminal is turned On, changing operating speed reference, operating method, and torque limit is done via only Keypad without changing the user-setting parameter value.

When 'Main Drive' terminal is turned On, Main Drive operation is available as shown below condition.

- Inverter during stop: It is applied immediately.
- Inverter during operation: It is applied after stop.

The parameter value of FUN_01 Run/Stop Src, FUN_02 Spd Ref Sel, CON_33 Trq Lmt Src related with Operating speed reference, Operating method, and Torque limit is not applied when 'Main Drive' terminal is turned On even though parameter is changed via keypad or communication. It is applied when the terminal is turned Off during stop. The parameter value of CON_01 Control Mode is operated same as above parameter described.

The setting of Operating speed reference, Operating method and Torque limit is set as shown below.

Function	"Main Drive" ON	"Main Drive" OFF	Applied point of time
Operating method	Keypad mode	Parameter value of FUN_01 Run/Stop Src	
Operating Speed reference	Keypad1 mode	Parameter value of FUN_02 Spd Ref Sel	After inverter stop
Torque Limit	Kpd Kpd Kpd mode	Parameter value of CON_33 Trq Lmt Src	
Control Mode	Speed mode	Parameter value of CON_01 Control Mode	

1.5) 2nd Func (the $\mathbf{2}^{\text {nd }}$ function setting)

The iV5 inverter has the capability to control 2 motors independently. A second motor may be active by selecting one terminal for this function and turn it $\mathrm{ON} .2^{\text {nd }}$ function is not displayed if the terminal is not defined for this or the defined terminal is OFF.

* Cross reference table for $\mathbf{1}^{\text {st }}$ function and\& $\mathbf{2}^{\text {nd }}$ function

Parameter	$2^{\text {nd }}$ function		$1^{\text {st }}$ function	
Acceleration time	2nd_10	2nd Acc time	FUN_41	Acc. Time 1
Deceleration time	2nd_11	2nd Dec time	FUN_42	Dec. time 1
Encoder-related parameter	2nd_13 ~ 2nd_16		PAR_10 ~ PAR_15	
Motor constants	2nd_21 ~ 2nd_30		PAR_18 ~ PAR 31	
Electronic thermal level for 1 min	2nd_35	2nd ETH 1min	FUN_56	ETH 1min
Electronic thermal level for continous	2nd_36	2nd ETH Cont	FUN_5	ETH Cont

※ Note: $\mathbf{1}^{\text {st }} \boldsymbol{\&} \mathbf{2}^{\text {nd }}$ function switch-over should be selected when the motor is stopped.
If selected during RUN, $2^{\text {nd }}$ function is not active until motor stop.

1.6) XCEL-L / XCEL-H

Refer to FUN_41 ~ 48 (Accel/ Decel time 1, 2, 3, 4).
(The factory default value is different from the capacity of inverter.)

Code	LCD display	Description	Unit	Factory default value			
				$\mathbf{2 . 2 \sim 3 7}$ $\mathbf{k W}$	$\mathbf{4 5 N 7 5}$ $\mathbf{k W}$	$\mathbf{9 0 \sim 2 2 0}$ $\mathbf{k W}$	$\mathbf{2 8 0 \sim 3 7 5}$ kW
FUN_40	Acc Time-1	Acceleration time 1		2.00	10.00	20.00	30.00
FUN_41	Dec Time-1	Deceleration time 1	sec	2.00	10.00	20.00	30.00
FUN_42	Acc Time-2	Acceleration time 2	sec	3.00	12.00	24.00	35.00
FUN_43	Dec Time-2	Deceleration time 2	sec	3.00	12.00	24.00	35.00
FUN_44	Acc Time-3	Acceleration time 3	sec	4.00	14.00	28.00	40.00
FUN_45	Dec Time-3	Deceleration time 3	sec	4.00	14.00	28.00	40.00
FUN_46	Acc Time-4	Acceleration time 4	sec	5.00	16.00	32.00	45.00
FUN_47	Dec Time-4	Deceleration time 4	sec	5.00	16.00	32.00	45.00

6. Function Description

1.7) 3-Wire operation

When FX or RX terminal is turned ON and turned OFF, the terminal is maintained ON using this parameter. Simple sequence circuit can be comprised with push button switch. If 3 -wire is turned off when multi-function input is 3 -wire, operation is inactive even though pulse input of $F X$ and $R X$ is inputted.
(Operating method when $\mathbf{P 2}$ is set to 3-Wire)

[3 Wire operation]

1.8) Ext Trip-B (External trip signal input by b contact)

If the terminal set to this function is off, the inverter disables the gating of IGBT and then the motor freely rotates to a stop. The message written as "External Trip Signal B contact" appears on the LCD screen and STOP LED is blinking in the keypad. This signal can be used as an external latch trip.

6. Function Description

1.9) Prohibit FWD (Prohibition of forward rotation) / Prohibit REV (Prohibition of reverse rotation)

If Prohibit FWD or Prohibit REV is set, it prohibits forward or reverse rotation, respectively. If Prohibit FWD is used, speed command becomes 0 when it has positive value. Similarly, If Prohibit REV is used, speed command becomes 0 when it has negative value.
(Example) When multi-function input terminal P1 is set to "prohibit FWD" and P2 to "prohibit REV" the following diagram will be shown.

1.10) Proc PID Dis (Process PID disabled)

This function is used to disable the Process PID controller. If Proc PID Enb at the CON_23 is Terminal and also this terminal is ON, the output of Process PID controller becomes zero. Otherwise, Process PID controller generates its output depending on the controller operation. 'Proc PID Enb' at CON_23 determines whether this function is used or not. The setting for this code is as follows.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_23	Proc PID Enb	Proc PID contoller Enable/Disable	Disable Enable Terminal		Disable

'Disable' at CON_23 blocks the output of Process PID controller and 'Enable' at CON_23 enables the Process PID controller. If 'Terminal' is set, the multi-function terminal set to 'Proc PID Dis' determines whether the output of Process PID controller is enabled or not. To prevent the saturation of Process PID controller, Process PID controller is enabled only if the multi-function input terminal is set to 'Proc PID Dis' and its terminal input is OFF and operation command is 'ON'. Process PID controller does not work if operation command is not ON or 'Process PID Disable' is not set. Truth table is as follows.

6. Function Description

CON_23 Proc PID Dis	Operating reference		
	Multi-function input signal	ON	OFF
Terminal	ON	Disable	Disable
	OFF	Enable	Disable
Enable		Enable	Disable
Disable		Disable	Disable

1.11) Timer input

The multi-function input terminals P1~P7 can generate the timer output based on the timer ON delay time at DIO_55 and timer Off delay time at DIO_56. The following example is the case where DIO_05 is set to timer input and the multi-function output terminal AX1 at DIO_41 is set to 'Timer Out'.

Code	LCD display	Description	Setting range	Unit	Setting value
DIO_05	P5 Define	Multi-function input terminal P5 Define			Timer Input
DIO_41	AX1 Define	Multi-function output terminal AX1 Define		Timer Out	
DIO_55	TimerOn Dly	Timer On Delay Time	$0.1 \sim 3600.0$	sec	
DIO_56	TimerOff Dly	Timer Off Delay Time	$0.1 \sim 3600.0$	sec	

1.12) SoftStartCncl (Soft Start Cancel)

Soft start cancel is used when the shortest acceleration/deceleration time is required without using the existing accel/decel time. In this case, real acceleration/deceleration time depends on the load condition and response characteristic of speed controller. The following table shows what kind of acceleration/deceleration time is used when P1, P2 and P3 are used for the transfer of accel/decel time or soft start cancel function is enabled.
(Example) Programming P3 as SoftStrtCncl

P1 (Xcel-L)	P2 (Xcel-H)	P3 (SoftStartCncl)	Accel/Decel time
OFF	OFF	OFF	Accel/Decel 1
ON	OFF	OFF	Accel/Decel 2
OFF	ON	OFF	Accel/Decel 3
ON	ON	OFF	Accel/Decel 4
X	X	ON	The shortest Accel./Decel.

1.13) ASR Gain Sel (Switch automatic seed regulator PI gain)

Using 'ASR Gain Sel' function, one of the two P and I gains can be selected for PI speed controller (ASR).
(Example) Programming P5 as ASR PI Gain

Code	LCD display	Description	Setting range	Unit	Setting value
DIO_05	P5 define	Multi-function input terminal P5 Define			ASR Gain Sel
CON_03	ASR P Gain1	ASR (Automatic Speed Regulator) P Gain 1	0.0 ~ 200.0	\%	P5: OFF
CON_04	ASR I Gain1	ASR I Gain 1	0 ~ 50000	ms	
CON_05	ASR LPF1	ASR LPF time constant 1	$0 \sim 20000$	ms	
CON_06	ASR P Gain2	ASR P Gain 2	$0.0 \sim 200.0$	\%	P5: ON
CON_07	ASR I Gain2	ASR I Gain 2	$0 \sim 50000$	ms	
CON_08	ASR LPF2	ASR LPF time constant 2	0 ~ 20000	ms	

1.14) ASR P/PI Sel (ASR P/PI Transfer)

The ASR could be P controller or PI controller by Multi-function input programmed as ASR P/PI Sel. When the ASR Gain is switched to each other, the effective P gain could be changed gradually with the time ASR Ramp CON_09 in order to prevent the shock in the machine because of the quick change of P gain.

(Programming Example) Programming P6 as ASR P/PI Sel.

Code	LCD display	Description	Setting range	Unit	Factory setting
DIO_05	P5 define	Multi-function input terminal P5 Define			ASR P/PI Sel

1.15) Flux Ref Sel (Flux reference selection)

If the flux reference selection is ON , flux reference is set to the value which analog voltage ($-10 \sim 10 \mathrm{~V}$) is converted to \% ratio of the rated flux.

1.16) PreExcite (Pre-excitation)

This function enables the motor to build up the flux by flowing the magnetizing current into it before run command is ON so that speed control characteristic can be improved at the time of the acceleration of the motor.

6. Function Description

1.17) Spd/Trq Sel (Speed/Torque Control Transfer)

Speed and torque control can be switched using this function. This terminal input overrides the input from the keypad. Control mode can be switched only during stop state. Despite multi-function terminal input during running, the control mode can be switched only after stopping.

1.18) Use Max Torque (Maximum Torque Enable)

If this input is ON , the torque limit value of the speed controller is fixed to its maximum value. On the contrary, when this input turns off, the value defined at CON_34 ~ CON_36 applies to torque limit value. This function disables the inverter continous operation.

If this function is used continously, it may lead to damage to the motor and inverter. Take caution when using this function.

1.19) Use Trq Bias (Torque Bias enable)

If one of the multi-function terminals (P1 ~ P7) is selected as "Use Trq Bias", torque bias value is fed into the inverter following the input signal. Besides, if "Use Trq Bias" is not set, and 'Keypad' is set at CON_37, torque bias value set at CON_38 is fed into the inverter. And, if "Analog" is set at CON_37 (Trq Bias Src), and the input is selected as "Torque Bias", the torque bias value is fed into the inverter. Therefore, in order not to use the torque bias value, 'None' should be set at CON_37 or one of the multi-function terminals (P1 ~ P7) should be selected as "Use Trq Bias" and then be kept the terminal Open.

1.20) AuxSpdEnable (Selection of using auxiliary function)

MOP UP, MOP Down and AuxSpdEnable must be inputted to multi-function input to use auxiliary speed function. Also, one of the function AIO_01/13/25 Ai1~3 Define has to set to Aux Spd Ref. MOP Up/Down is used to set main speed. AuxSpdEnable is turned On to set auxiliary speed and change the analog input.

1.21) Battery Run (Selection of battery-operated mode)

When main power is not able to use by simultaneous power failure at elevator application, motor can be operated temporarily with battery power.

This function is available from 5.5 to $22 \mathrm{~kW} /-2 / 4$ products. Refer to ${ }^{`} 6.4 .14$ Battery Run speed and input voltage setting' for details of Battery Run.

1.22) LVT Disable (Detection of Low voltage trip disabled)

It detects the hardware fault except for low voltage trip through operating the control board with only auxiliary power source before inputting of main power source. If inverter has the only low voltage trip, a fault contact is not closed. Run command is not inputted before inputting of main power source eventhough inverter has not hardware fault. The auxiliary output terminal of multi-function is not closed eventhough it sets as 'INV Ready'.

FAN fault detection supported at $280 \sim 375 \mathrm{~kW}$ products among hardware fault can be detected in case the power is inputted so it will not be detected before the inputting of main power source. 'LVT Disable' function with inputting
auxiliary power source operates as shown below at each condition ('INV Ready' ouput, FAN fault detection and H/W fault detection etc.)

"LVT Disable"	Main power source	'INV Ready' output	FAN fault detection	H/W fault detection except for Low voltage and FAN fault
ON	Before input	OFF	Not availblae	Available
	After input	ON	Available	

2) DIO_08 (Reversal of Multi-function input terminal)

Multi-function input terminal is based on the ' A ' contact operation. If a specific terminal should be changed to ' B ' contact operation, the relevant terminal setting should be set from ' 0 ' to ' 1 ', Once the relevant terminal is set to ' 1 ', the terminal operates on the basis of ' B ' contact and it is effective before it is changed to ' 0 '. But, in case of the external trip ' B ' contact, it is changed to ' A ' contact operation. Terminals are displayed in the order of $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4$, P5, P6 and P7 from the beginning.
(P1 ~ P7: A contact)
DIO $>$ Neg Function 08 0000000
(P1, P6: B contact)

DIO 1 Neg Function

08
1000010
3) DIO_09 (Low pass filter time constant for the terminals)

This setting affects the response speed of the control circuit terminals (FX, RX, BX, P1 ~ P7, RST). It is greatly effective when electro-magnetic noise signal is present in the input signal. The larger the time constant becomes, the slower response speed becomes. Response speed is approximately proportional to the setting value times 2.5 [m sec].

6.2.3 Multi-function digital output terminal

1) DIO_10 Inversion of Multi-function aux contact output (Relay output, Open collector output)

Factory default settinf of Multi-function Relay outputs is A contact. To change it to B contact, set it to " 1 ".
See the below for setting example: (terminal layout is AX1, AX2, OC1, NC, NC from left.)

> (Setting example)

> (AX1 ~ OC1: A contact)
(AX1, OC1: B contact)

DIO $>$ Neg Func.Out
 10 00000

DIO \quad Neg Func.Out
 10 10100

2) DIO_41 ~ 43 (Multi-function aux contact output (AX1 ~ AX2) and Open collector (OC1) output setting)

Multi-function digital output terminal serves as one of the functions listed in the table below. Multi-function aux contact is activated when the selected function is ON .

No	Set value	No	Set value	No	Set value
0	Not Used	8	Run	16	Stop
1	INV Ready	9	Regenerating	17	MC On/Off
2	Zero Spd Det	10	Mot OH Warn	18	Steady

6. Function Description

No	Set value	No	Set value	No	Set value
3	Spd Det.	11	INV OH Warn	19	Brake Output
4	Spd Det (ABS)	12	Speed Agree		
5	Spd Arrival	13	Trq Det.		
6	Timer Out	14	Trq Lmt Det.		
7	LV Warn	15	OverLoad		
7					

2.1) Not used

It is set unless multi-function output is not used as any function listed above.

2.2) INV ready

INV Ready becomes ON when inverter is ready to operate normally. If trip signal occurs, INV Ready is left OPEN immediately as shown in the figure below.

2.3) Zero Spd Det

Detects zero speed of motor. See the figure below.

Code	Display	Description	Range	Unit	Default
DIO_47	ZSD Level	Zero Speed Detect Level	$0.0 \sim 480.0$	rpm	10
DIO_48	ZSD Band	ZSD hysteresis band	$0.1 \sim 10.0$	$\%$	0.5

- DIO_48(ZSD Band) is set as the percentage of FUN_04 Max motor speed.

2.4) Spd Det. - Polarity valid / Spd Det.(ABS) - Polarity invalid

This is ON when the real motor speed reaches the arbitrary speed. The polarity of detecting speed is valid for Spd Det.

6. Function Description

But, the polarity is invalid for $\operatorname{Spd} \operatorname{Det}(A B S)$.

Code	Display	Description	Range	Unit	Default
DIO_49	SD Level	Speed Detect Level	$-3600 \sim 3600$	rpm	0
DIO_50	SD Band	Speed Hysterisis Band	$0.1 \sim 10.0$	$\%$	0.5

- DIO_50(SD Band) is set as the percentage of FUN_04 Max motor speed.

2.6) Spd arrival

It detects whether the motor reaches the set speed band.

Code	Display	Description	Range	Unit	Default
DIO_51	SA Band	SA hysterisis band	$0.1 \sim 10.0$	$\%$	0.5

2.7) Spd agree

This is ON when the motor speed becomes equal to the set speed.

Code	Display	Description	Range	Unit	Default
DIO_52	SEQ Band	SEQ hysterisis band	$0.1 \sim 10.0$	$\%$	0.5

2.7) Timer out

Timer Out acts as an output signal to the timer input signal defined in the one of the multi-function input terminals P1~P7 and it uses the set values of Timer On delay time at DIO_55 and of Timer Off delay time at DIO_56. The example of code setting is shown in the table below when DIO_07 is set to Timer Input and DIO_41 is set to Timer Output.

Code	Display	Description	Range	Unit	Default
DIO_07	P7 define	Definition of P7			Timer Input
DIO_41	AX1 Define	Definition of multi-function output terminal relay output 1 $(1 \mathrm{~A}, 1 \mathrm{~B})$		Timer Out	
DIO_55	TimerOn Dly	Timer ON delay	$0.1 \sim 3600.0$	sec	0.1
DIO_56	TimerOff Dly	Timer OFF delay	$0.1 \sim 3600.0$	sec	0.1

P7
1A

[^0]Timer OFF Delay

6. Function Description

2.8) LV

LV is enabled when the DC link voltage of the inverter is less than the detecting level of low voltage alarm.

2.9) Run

It is ON when the inverter is running.

2.10) Regenerating

It is ON when the motor is regenerating.

2.11) Mot OH Warn (Motor Overheat Warning)

Using NTC or PTC signal built in the motor, Motor Overheat is ON when the temperature inside the motor is higher than the overheat alarm level. This signal is only for an alarm, not for the inverter trip.
※ In the case of ExTTN_I/O it corresponds to Ai5 Ai3 Define[AIO_25] is set to "Use Mot NTC".

Code	Display	Description	Range	Unit	Default
DIO_64	MH Warn Temp	Motor overheat detect	$75 \sim 130$	${ }^{\circ} \mathrm{C}$	120
DIO_65	MH Warn Band	MH hysterisis band	$0 \sim 10$	${ }^{\circ} \mathrm{C}$	5

2.12) Inv OH Warn (Inverter Overheat Warning)

Inverter Overheat is ON, when the heatsink inside the inverter is higher than the overheat alarm level. This signal is only for an alarm, not for the inverter trip.

Code	Display	Description	Range	Unit	Default
DIO_62	IH Warn Temp	Inverter Overheat Detection Temperature	$50 \sim 85$	${ }^{\circ} \mathrm{C}$	75
DIO_63	IH Warn Band	Inverter Overheat Detection Bandwidth	$0 \sim 10$	${ }^{\circ} \mathrm{C}$	5

2.13) Trq Det.

Trq Det is ON when the torque output of ASR reaches the setting torque level.

Code	Display	Description	Range	Unit	Default
DIO_53	TD level	Torque Detect Level	$0.0 \sim 250.0$	$\%$	0.0
DIO_54	TD Band	TD hysterisis band	$0.1 \sim 10.0$	$\%$	0.5

2.14) Trq Lmt Det

Trq Lmt Det is ON when the output of ASR (Torque reference) is saturated so that its limit value is generated.

2.15) OverLoad

Overload is ON when the inverter output current is higher than the overload alarm level. (On the basis of the rated current of the motor). Refer to the following values of overload alarm level (DIO_57) and overload alarm time (DIO_58).

- DIO_57: [Overload warning level], DIO_58 [Overload warning time]

If the inverter output current keeps flowing more than overload alarm level (DIO_57) and longer than overload alarm time (DIO_58), alarm signal is triggered. The overload signal is canceled when the inverter output current flows less than overload alarm level (DIO_57) and longer than overload alarm time (DIO_58) has passed.

Overload alarm signal can be generated by the multi-function outputs ($1 \mathrm{~A}-1 \mathrm{~B}, 2 \mathrm{~A}-2 \mathrm{~B}, \mathrm{OC} 1-E G$). "OL" should be set in the DIO_41, 42 and 43 [Multi-function auxiliary terminal output setting] to use this function. Even if overload occurs, its alarm signal is generated through the multi-function output terminal and the inverter keeps running.

Code	Display	Description	Range	Unit	Default
DIO_57	OL level	Overload warning level	$30 \sim 250$	$\%$	150
DIO_58	OL time	Overload warning time	$0 \sim 30$	sec	10

- Note: The set value of overload alarm level is of percentage(\%) to the rated current of the motor.

2.16) Stop

'Stop' is ON when the inverter keeps stopping.

2.18) MC on/Off

This function control the operation of magnetic contactor (MC) when MS is mounted on the inverter output at the application, elevator, etc. It is the multiple functional output signal that it turns on/off the contact of MC before a current is outputted from inverter at start.

LED of FWD and REV on keypad flikers during the time of MC on/off. If MC on/off is not set at multi-function output, operation will be same as the setting of MC on/off time $=0$.

Code	Display	Description	Range	Unit	Default
DIO_67	MC Timer On	Delayed time of MC On	$100 \sim 50000$	msec	1000
DIO_68	MC Timer Off	Delayed time of MC Off	$100 \sim 50000$	msec	1000

2.18) Steady

This is ON when the inverter is running at the constant speed.

2.20) Brake output

Output the signal of opening or closing of brake.

Code	Display	Decription	Range	Unit	Default
FUN_66	BKOpen Time	Brake opening time	$0.00 \sim 30.00$	sec	0.00
FUN_67	BKOpen Spd	Brake opening speed	$0.0 \sim 500.0$	rpm	0.0
FUN_68	Release Curr	Brake opening current	$0.0 \sim 150.0$	$\%$	20.0
FUN_69	BKClose Time	Brake closing time	$0.00 \sim 30.00$	sec	0.00
FUN_70	BKClose Spd	Brake closing speed	$0.0 \sim 500.0$	rpm	0.0

Note : Brake opening current value is set as a percentage of the motor magnetic current.

6. Function Description

3) DIO_46 (Fault output relay (30A, 30B, 30C))

This function can be used when the inverter fault signal is generated through the relay contact. the fault alarm is triggered differently by setting the bits related to the low voltage trip, inverter trip and the number of retry.

Code	Display	Description	Range	Unit	Default
DIO_46	Relay mode	Relay mode	$000 \sim 111$	-	011

Code	Bit 2 (Number of Auto retry)	Bit 1 (Inverter trip)	Bit 0 (LV trip)
DIO_46	$0 / 1$	$0 / 1$	$0 / 1$

Bit	Setting	Description
Bit 0 (LV)	0	Deactivated at Low Voltage Trip
	1	Activated at Low Voltage Trip
Bit 1 (Trip)	0	Deactivated at any fault
Bit 2 (Retry)	1	Activated at any fault except Low Voltage Trip
	0	Deactivated at the auto retry attempt

4) DIO_59 ~ 61 (Overload trip enable, level, time)

If the inverter output current higher than the overload limit level is kept for the overload limit time, the inverter blocks the gating of IGBTs and issues the trip message.

Code	Display	Description	Range	Unit	Default
DIO_59	OLT select	Overload trip enable	Yes/No	-	Yes
DIO_60	OLT level	Overload trip level	$30 \sim 250$	$\%$	180
DIO_61	OLT time	Overload trip time	$0 \sim 60$	sec	60

- Note: DIO_60 is set as the percentage of Motor rated current.

5) DIO_97(Operation method when losing command)

You can choose the operation method when multi-function analog input signal satisfying the criteria (AIO_12/24/36/48/60/72 Ai1/2/3/4/5/6 Wbroken) for judging time (AIO_73 Time Out) or satisfying the command loss condition of communication option card. Refer to analog I/O Group for the criteria for the multi-function analog input signal loss and the judging time of signal loss.

If Lost Command is happed after operation stop then the condiiton of Lost Command is released, the operation is not automatically start. In case of terminal operation, FX is turned Off and then turned On to operate. Push down the FWD/REV key to operated in keypad operation.

Code	Display	Function Name	Unit	Description
		Range		
DIO_97	Lost Command	None	-	Continuing the operation when losing command
		Free-run	-	Free-run stop when losing command
	Stop	-	Decelerating stop when losing command	

6. Function Description

If Lost command has happened, the word 'LOAI_' is displayed on initial display. The value of percentage in second line means the input value of analog. Adjust the value of criteria of loss judging, the state is available to run after LOAI_ is disappeared

	0.Orpm	SPD
00	LOAl1	-0.2%

6) DIO_98 (Command loss decision time of communication option card)

If Run command (FUN_01) or Speed command (FUN_02) are set to Option with the option card of DeviceNet, RS485 and Profibus, etc., the operation set in DIO_97 when communication is disconnected during the time set in this parameter.

	0.Orpm	
00	LOR	500 rpm

6.3 Parameter Group (PAR_[][])

6.3.1 Jump code (PAR_00)

PAR_00, jumping directly to any parameter code can be accomplished.
(Example) Moving to PAR_30
Press [PROG] and set to 30 using [SHIFT/ESC] / [$\mathbf{\Delta}(\mathrm{Up})$] / [$\mathbf{\nabla}$ (Down)] and press [ENT] key. If the desired code cannot be set (void), the nearest code will be displayed.

PAR	Rs
30	0.346 ohm

Use [$\mathbf{\Lambda}(\mathrm{Up})]$ / [$\mathbf{\nabla}$ (Down)] to move to other codes.

6.3.2 Parameter group function

1) PAR_01 (Parameter initialize)

This is used to initialize all parameters or each group back to the factory defaults. After performing this, be sure to check PAR_07 (Motor Select) is properly set.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_01	Para. init	Initialize parameters as factory defaults	No All Groups DIS DIO PAR FUN CON EXT AIO USR 2ND E/L SYN WEB SLS		No

2) PAR_02 ~ 03 (All Parameter Read/Write)

Parameters setting can be copied to other inverters using keypad. To do this, set PAR_02 'Parameter Read' to "Yes" to upload the parameter setting from the inverter. Take the keypad out and install it to the copied inverter and set PAR_03 'Parameter Write' to "Yes" to download the function parameters. If S/W version between inverter, 'VER. Err' is displayed and copy is disabled.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_02	Para. Read	All Paramter Read	No/Yes		No
PAR_03	Para. Write	All Paramter Write	No/Yes		No

After writing, the copied parameter value in DIS and USR groups is changed to initial setting; it needs to set preffered value. But,

3) PAR_04 (Parameter Lock)

Set it to "12" to disable "paramter change".

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_04	Para. Lock	Parameter lock	$0 \sim 255$		0

4) PAR_05 (Password)

When user put any four-digit number except " 0 " and cycle the power, only Display group will appear. Press [Mode] key and PAR_05 "Password" will be directed. If the right password is entered, all other groups can be accessed and adjustable. To clear the password, set it to " 0 ". When you forget the password, enter "5052". It is the master password and it resets the password to " 0 ".

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_05	Password	Password	$0 \sim 9999$		0

6.3.3 Motor parameters setting

1) PAR_07(Motor rating setting) / PAR_08(Motor cap. selection of user)

Select the motor rating. Its factory default value is the same as inverter capacity. If this is set, motor parameters are automatically set. These are designed to fit for LG-OTIS vector motor. When other makers' motor is used, program the motor parameters properly. When using a motor having a rating not specified in this code, select "User Define". Then, PAR_08 will be displayed. Enter motor rating in this code. Then, enter motor parameters (PAR_17 ~ PAR_22) in the name plate and perform Auto-tuning to gain proper parameters before use.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_07	Motor select	Motor rating select	$2.2 \sim 500.0$ User Define	kW	Same as inverter rating
PAR_08	UserMotorSel	Motor cap. Selection of User	$0.7 \sim 500.0$	kW	5.5

2) PAR_09 (Motor cooling method)

Select the cooling method of the motor to use. 'Motor cooling method' is used to check if the motor is currently overloaded or not. The self-cooled motor should be set to 'Self-Cool' and the forced cooled motor to 'Forced-Cool'.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_09	Cooling Mtd	Motor Cooling method	Forced-cool Self-cool		Forced-cool

3) Encoder parameters (PAR_10 ~ 13: Pulse number of encoder, direction, error detection, LPF)

Enter the pulse number of encoder mounted on the motor shaft at the PAR_10 (the pulse number of encoder). If PAR_12(Encoder error check enable) is set to 'Yes', Encoder error signal is detected and then triggers fault alarm in the case of the wire cut or the miswiring. But, for open collector type encoder, it is unable to detect the encoder error, therefore PAR_12 should be set to 'No'. In case the wiring for encoder (A, B phase) or inverter output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) is changed, 'Enc AB Chgd' message is shown during the auto-tuning operation. In this case, PAR_11 (Enc Dir Set) can be changed without changing the wiring of pulse encoder. If encoder signal is mixed with electromagnetic noise signal, encoder signal may be less affected by the electromagnetic noise signal by adjusting PAR_13 (Encoder LPF Time Constant).

Code	LCD display	Description	Setting range	Factory setting
PAR_11	Enc Dir Set	Encoder direction setting	A Phase Lead/B Phase Lead	A Phase Lead

If you set "Enc Err Chk" of PAR_12 to "Yes", when there is disconnection or misconnection of encoder, encoder error

6. Function Description

is detected and show the encoder abnormity sign. In the case of open collector method of encoder, it isn't possible to detect encoder error. So set PAR-12 to "No".

Noise from encoder input will be reduced by adjusting PAR_13 Encoder LPF time constant.
Improper setting of encoder parameters may deteriorate accurate speed control and lead to "overcurrent" or "overvoltage" trips. Refer to chapter 9 "Troubleshooting".

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_10	Enc Pulse	Number of encoder pulse	$360 \sim 4096$		1024
PAR_12	Enc Err Chk	Encoder error check	Yes No		Yes
PAR_13	Enc LPF	Encoder LPF time constant	$0 \sim 100$	ms	1

6.3.4 Encoder S/W error detection (PAR_14~15: Encoder error detection time, encoder error reference speed)

To achieve correct motor speed detection and control using encoder, proper wiring of encoder and motor should be preceded. If operation is continued with faulty wiring of Encoder/Motor, overcurrent flows to the motor, damaging the motor. Therefore, encoder should have functions to detect encoder input error and wrong wiring.

SV-iV5 can monitor encoder H/W error by setting PAR_12 to "Yes" and it monitors encoder pulse signal input status to detect H/W faults such as encoder disconnection error. However, wrong wiring error cannot be detected with this function. In this case, perform "Rotational Auto-tuning". Set PAR_24 (AutoTuneType) to "Rotational" and perform Encoder Test. Then wiring problem can be detected by applying voltage and checking speed detection level while motor is running.

There are some loads (ex. Elevator) performing Encoder Test described above is difficult. To solve this fault, iV5 adopts the following functions to detect S / W faults.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_14	EncFaultTime	Encoder error detection time	$0.00 \sim 10.00$	sec	0.00
PAR_15	EncFaultPerc	Encoder error reference speed	$0.0 \sim 50.0$	$\%$	25.0
PAR_21	Rated-Slip	Motor rated slip	$10 \sim 250$	rpm	

When encoder/motor wiring is reversed, motor cannot perform acceleration due to overcurrent. Encoder S/W error detection is adopted to detect the errors such as wrong wiring and incorrect pulse input during normal operation, not during Auto-tuning. Inverter determines encoder error if motor speed is not accelerated proportional to operating time and target speed after PAR_14 EncFaultTime elapses and polarity does not match.

To activate S/W error detection function, set CON_01 = Speed, Auto Tuning is not selected and set EncFaultTime except 0 . If run command is removed before "EncFaultTime" elapses or acceleration is turned to deceleration due to target speed change, inverter cannot detect encoder S/W error. Inverter determines encoder S/W error by comparing motor speed and Target speed XEncFaultPerc while operation status is acceleration after EncFaultTime elapses.

Encoder S/W error detection is performed only once after operation starts and activates when target speed becomes twice the rated slip. For example, when target speed is 500 (rpm) and rated slip is 40 (rpm), the detection active level is 80 (rpm).

6.3.5 Auto-tuning

The motor parameters for the Vector Control are autotuned by Starvert-iV5. The stator resistance, Stator Inductance, Leakage Inductance and Rotor time constant are found and saved. User can select the type of Auto-tuning in Rotational or Standstill mode.

1) Motor and encoder parameters setting for auto-tuning

The following paramters should be set according to motor nameplate to find motor parameters correctly.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_07	Motor Select	Motor capacity selection	$2.2 \sim 375.0$ User Define		5.5
PAR_08	UserMotorSel	Motor cap. selection of USER	$0.7 \sim 500.0$		5.5
PAR_10	Enc Pulse	Pulse no. of encoder	$360 \sim 4096$		1024
PAR_17	Base Speed	Motor base speed	$100.0 \sim 3600.0$	rpm	1800.0
PAR_18	Rated Volt	Motor rated voltage	$120 \sim 560$	V	220 or 440
PAR_19	Pole Number	Motor number of poles	$2 \sim 12$		4
PAR_20	Efficiency	Motor efficiency	$0.0 \sim 100.0$	$\%$	
PAR_21	Rated-Slip	Motor rated slip	$10 \sim 250$	rpm	
PAR_22	Rated-Curr	Motor rated current	$1.0 \sim 2000.0$	A	

PAR_17 "Motor base speed" is the frequency inverter outputs its rated voltage. It is to be set within the range of Motor Max speed. Set motor speed and rated voltage according to motor rating. When standard motor is used, 60 Hz (1800 rpm) is the normal rating. The base speed of motor is $r p m=\frac{120 \times \text { Base Frequency }}{\text { Pole Number }}$

In the case of standard moto, $1800 \mathrm{rpm}=\frac{120 \times 60 \mathrm{~Hz}}{4}$
PAR_18 "Motor rated voltage"
For 200 V class inverters, factory default is $220(\mathrm{~V}$) and for 400 V class is $440(\mathrm{~V})$. When input voltage is $380(\mathrm{~V})$, change it to 380 V . This value is input to Voltage controller and used to prevent voltage saturation. It should be set correctly because it affects Flux current value during Auto-tuning.
PAR_20 "Motor efficiency" should be entered for (PAR_23[AutoTuneType] : StandStill), not needed for (PAR_23 [AutoTuneType] : Rotational).

PAR_21 "Motor rated slip"

It is calculated by Motor speed - Motor nameplate rated speed. For example, Motor speed is 1800 (rpm) with 1740(rpm) rated speed. Then, Motor rated slip would be 60(rpm).

2) Rotational auto-tuning

2.1) Precaution

2.2) Parameter setting

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_24	AutoTuneType	Auto tuning type selection	Rotational StandStill		Rotational
PAR_25	Auto Tuning	Auto tuning range setting	Rone Encoder Test Rs Tuning Lsigma Flux Curr Ls Tuning Tr Tuning	None	
PAR_26	Tune Torque	Tuning Torque	$10.0 \sim 100.0$	$\%$	70
PAR_35	Inertia Tune	Selection of motor inertia			
tuning	No/Yes		No		
PAR_37	J Spd Time	Acc./Dec. time of inertial			
tuning					

There are 9 types of auto-tuning selection for Rotational mode.

- ALL2: Rs \rightarrow Lsigma \rightarrow Flux Current \rightarrow Ls $\rightarrow \mathrm{Tr} \rightarrow$ Inertia
- ALL1: Encoder test \rightarrow Perform ALL2

Inertial Tuning will be displayed when PAR_35 is Yes.
Rs, Lsigma, Flux Current, Ls, Tr, Inertia: Perform each parameter seperately. Tr follows Rs, Ls auto-tuning to find exact value. To save tuning time, increase PAR_25 "Tuning torque for Auto-tuning" when load inertia is high during Tr tuning. FWD/REV LED is blinking during auto-tuning. It is based on 1800 rpm of base speed.

Auto-tuning type	Description
None	No Operation
ALL1	Rs, L I Flux, Ls, Tr are tuned continuously after Encoder test
ALL2	Rs, L I Flux, Ls, Tr are tuned continuously except Encoder Test
Encoder Test	Encoder Test Only The motor is rotating at 1500 rpm in forward direction and the encoder wiring status is checked.
Rs Tuning	Rs tuning Only. The stator resistance is tuned at standstill.
Lsigma	Lsigma tuning Only. The Leakage Inductance is tuned at standstill.

Auto-tuning type	Description
Flux Curr	Flux current Only. The motor is rotating at 1500 rpm and finds Flux current.
Ls Tuning	Ls Only. The motor is rotating at 1500 rpm and finds Rotor Inductance.
Tr Tuning	Tr Only The motor is ramping UP and DOWN continuously. But tuning time can vary. It should be autotuned after Rs, Lsigma and Ls.
Inertia Tuning	It finds Inertial constant after operating motor to forward/reverse operation with one third base speed.

2.3) Rotational auto-tuning procedure

LCD display	Description	Tuning time
PAR AutoTuneType 24 Rotational	Set it to " Rotational ".	-
$\left(\begin{array}{lc}\hline \text { PAR } & \text { Auto tuning } \\ 25 & A L L 1\end{array}\right.$	Auto-tuning starts when it is set to " ALL1 ".	-
PAR Auto tuning 25 Enc Testing	Checks whether the encoder wiring is properly done and an encoder works well by rotating the motor at base speed in forward direction.	30~35(Sec)
PAR Auto tuning 25 Rs Tuning	Stator resistance (Rs) is measured without rotating the motor.	10~20(Sec)
PAR Auto tuning 25 sL Tuning	The leakage inductance (sL) of the motor is measured without rotating the motor.	$5 \sim 20$ (Sec)
PAR Auto tuning 25 IF Tuning	The flux current (IF) is measured by rotating the motor at base speed.	30~60(Sec)
PAR Auto tuning 25 Ls Tuning	Stator self-inductance (Ls) is measured by rotating the motor at base speed.	50~60(Sec)
PAR Auto tuning 25 Tr Tuning	Accel/Decel is performed repeatedly to find motor constant (Tr) so that DB Resistor should be connected before starting tuning. Otherwise, "Over Voltage " trip will occur.	20~60(Sec)
$\|$PAR Auto tuning 25 None	When auto-tuning is complete successfully, "None" is displayed. If error occurs during auto-tuning, "[][] Error" is displayed. In this case, verify motor parameters and encoder setting is done properly and redo the auto-	Total: 3 ~ 5 (Min.)

LCD display	Description	Tuning time
PAR 25	Auto tuning [][] Error	tuning. If the problem persists, contact LS representative.

3) Standstill auto tuning

3.1) Precaution

Be sure to lock the motor shaft using magnetic brake to find motor parameters correctly.

3.2) Parameter setting

	LCD display	Description	Setting range	Unit	Factory setting
PAR_23	AutoTuneType	Auto tuning type selection	Rotational StandStill		StandStill
PAR_24	Auto Tuning	Auto tuning range setting	None ALL1 Rs Tuning Lsigma If/Tr/Ls Tune Inertia Tuning	None	

There are 4 modes for Standstill auto-tuning.
ALL1: Rs \rightarrow Lsigma \rightarrow If \rightarrow Ls \rightarrow Tr
Rs Tuning, Lsigma, If/Tr/Ls Tune: Perform each parameter seperately. Encoder test is not performed. PAR_25 Inertia Tuning will be displayed when PAR_35 is Yes.

Auto-tuning type	Description
None	No Operation
ALL1	Rs, L If/Tr/Ls are tuned continuously except Encoder Test
Rs Tuning	Rs tuning Only. The stator resistance is tuned at standstill.
Lsigma	L tuning Only. The Leakage Inductance is tuned at standstill.
If/Tr/Ls Tune	Finds If/Tr/Ls by applying DC current pulse. It finds magnetizing current, secondary constant of motor and first inductance concurrently.
Inertia Tuning	It finds Inertial constant after operating motor to forward/reverse operation with one third base speed.

- FWD/REV LEDs are blinking during auto-tuning.

3.3) StandStill type auto-tuning procedure

LCD Display	Description	Tuning Time
PAR AutoTuneType 24 StandStill	Set the auto-tuning type to "Standstill".	
PAR Auto tuning 25 ALL1	Auto-tuning starts if ALL1 is set.	-
PAR Auto tuning 25 Rs Tuning	Stator resistance (Rs) is measured without rotating the motor.	20-30 Sec
	The leakage inductance (sL) of the motor is measured without rotating the motor.	5-10 Sec
	Flux current (IF), rotor time constant (τ r) and stator self-inductance (LS) is measured simultaneously without rotating the motor.	15-60 Sec
PAR 25 Auto tuning None PAR Auto tuning 25 [][] Error	When auto-tuning is complete successfully, "None" is displayed. If error occurs during autotuning, "[][] Error" is displayed. In this case, verify motor parameters and encoder setting is done properly and redo the auto-tuning. If the problem persists, contact LS representative.	Total: 1-2 minutes

4) Motor parameters

The following parameters are found during Auto-tuning.
Motor parameters described below are entered based on LG-OTIS vector motor.

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_27	Flux-Curr	Motor flux current	$0.0 \sim 70 \%$ of motor rated current	A	
PAR_28	Tr	Rotor time constant	$30 \sim 3000$	ms	
PAR_29	Ls	Leakage inductance	$0.00 \sim 500.00$	mH	
PAR_30	Lsigma	Leakage coefficient	$0.00 \sim 100.00$	mH	
PAR_31	Rs	Stator resistance	$0.000 \sim 5.000$	ohm	
PAR_36	Inertia	Motor inertia coefficient	$0.001 \sim 60.000$	$\mathrm{~kg} \cdot \mathrm{~m}^{2}$	

Additional functions are as follows;

- User can stop tuning during tuning using [STOP] key.
- In case Encoder test is failed, inverter does not conduct Rs tuning and displays "Encoder Err". If this happens, press [Reset] key and retry Encoder test.
- Tr Tuning result can be slightly different for times. Perform it couple of times.

6. Function Description

5) Auto tuning error message

LCD Display	Description and Solution
PAR Auto tuning 25 Enc Error	Displayed when phase loss of A or B occurs and/or error between reference speed and encoder feedback speed exceeds motor rated slip. Check whether wiring of encoder power (PE, GE) and A/B phase is conducted correctly.
PAR Auto tuning 25 Enc AB Chgd	Displayed in case of reverse wiring of phase A / B or U, V, W . Wire the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ in a correct order or change the encoder direction setting to "B Phase Lead" in PAR_11.
PAR Auto tuning 25 Rs Error	Displayed when RS value is greater than 5[Ω] or less than $0.002[\Omega$]. Check for wiring of inverter and motor and motor damage. It may occur when motor rating is much lower than that of inverter.
PAR Auto tuning 25 sL Error	Displayed when sL is higher than $100[\mathrm{mH}]$. Check for wiring of inverter and motor and motor damage.
PAR Auto tuning 25 IF Error	Displayed when motor rpm exceeds 1650 rpm (1800 rpm rated motor) during flux current calculation or flux current is not measured for a long time. Check for wiring of inverter and motor and number of motor phase.
PAR Auto tuning 25 Ls Error	Displayed when motor rpm exceeds 1650 rpm (1800 rpm rated motor) during Ls calculation or Ls is not measured for a long time. Check for wiring of inverter and motor and number of motor phase.
PAR Auto tuning 25 PAR 27 DOWN	Displayed when initial set value of PAR_27 is set too high. Repeat the calculation after lowering 30% to initial value.
PAR Auto tuning 25 PAR 27 UP	Displayed when initial set value of PAR_27 is set too low. Repeat the calculation after increasing 30% to initial value.

6) Input voltage setting

PAR_23's voltage is used for referenced value to occur the low voltage error through the calculation as below.
(200V Class)
$V_{d c}(L V T$ ON $)=\sqrt{2} \times P A R_{-} \quad 23 \times 0.707$
$V_{d c}(L V T \quad$ OFF $)=\sqrt{2} \times P A R_{-} 23 \times 0.813$
$(400 V$ Class $)$
$V_{d c}\left(\begin{array}{ll}\text { LVT } & \text { ON })=\sqrt{2} \times P A R_{-} \quad 23 \times 0.745 \\ V_{d c}(L V T & \text { OFF })=\sqrt{2} \times P A R_{-} \quad 23 \times 0.856\end{array}\right.$
$V_{d c}(L V T O N)$: Low voltage error is occurred under condition of less than PAR_23's voltage.
$V_{d c}(L V T O F F)$: Low voltage error is released above condition of PAR_23's voltage.
Difference of voltage ripple in DC part will be bigger when the output of inverter is bigger in an open-phase of inverter. Then, input voltage is lower, low voltage trip is occurred by the minimum limit of ripple. Set the real input voltage to prevent low voltage and occurring the Input open-phase error. Set value of LVT level in PAR_23 is 180Vdc in a range of above 180 V in 200 V class and 360 Vdc in a range of above 342 V in 400 V class.

6.4 Function group (FUN_[][])

6.4.1 Jump code (FUN_00)

Jumping directly to any parameter code can be accomplished using FUN_00 [Jump code].
Press [PROG] key first and set 2 using [$\mathbf{\Delta}(\mathrm{Up})$], [$\mathbf{\nabla}$ (Down)], [SHITF/ESC] and press [ENT] key to jump to FUN_02. If the desired code cannot be accessed or void, it automatically jumps to closest code.

After jumping, it is available to jump to other codes using [$\mathbf{\Lambda}$ (Up)], [$\mathbf{\nabla}$ (Down)].

6.4.2 Operating method select

1) FUN _01(RUN/STOP source select)

There are four methods for issuing RUN/STOP command of the motor.

- Terminal 1/ Terminal 2: Digital input of the FX/RX terminal (Terminal 1 is factry default.)
- Keypad: [FWD], [REV], [STOP] key on the keypad
- Option: using Option card. (Factory setting: Terminal 1)
- Built-in RS485 communication

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_01	Run/Stop Src	RUN/STOP source select	Terminal 1 Terminal 2 Keypad Option Int485		

Difference between Terminal 1 and Terminal 2 setting

Run/Stop source select	Terminal ON/OFF		FWD/REV select
Terminal 1	FX	ON	FWD run command
		OFF	Stop command
	RX	ON	REV run command
		OFF	Stop command
Terminal 2	FX	ON	Run command
		OFF	Stop command
	RX	ON	REV rotation
		OFF	FWD rotation

For Analog speed setting, applying (+) Voltage marks FWD Run command and (-) voltage REV Run command.

Analog speed setting range	FX / FWD / Option FWD	RX / REV / Option REV
$0 \sim+10 \mathrm{~V}$	Forward direction	Reverse direction
$-10 \sim 0 \mathrm{~V}$	Reverse direction	Forward direction

2) FUN_02 (Speed setting method)

There are four methods to set operating speed.

- Keypad 1/Keypad 2: Digital setting via keypad
- Analog: speed setting via analog input terminal define
- Option: speed setting via option card

To change speed reference in Keypad 1 method, change the value in FUN_12 Speed 0 using [$\mathbf{\Delta}$ (Up)], [$\mathbf{\nabla}$ (Down)] key and press [ENT] key to enter the value into memory. However, in Keypad 2, the changed value is reflected real-time without pressing [ENT] key.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_02	Spd Ref Src	Speed setting method	Analog Keypad 1 Keypad 2 Option Int485		Keypad 1

3) FUN_03 (Stop method)

This determines the stop mode of the motor. If this is set to 'Decel' and then stop command is ON, the motor decelerates to a stop within the deceleration time set at FUN_41 (Deceleration Time 1). But, if the motor does not stop within the deceleration time, it is freely rotating after the deceleration time. If this is set to 'Free-run' and then stop command is ON, the motor freely rotates immediately.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_03	Stop Mode	Stop method	Decel Free-run	Decel	

6.4.3 Motor max speed setting

Maximum value of the speed command to the motor is set to the sum of setting speed, reference speed in Draw control, reference speed in Process PID control and reference speed in Droop control. In this case, final speed command output is limited to the maximum speed command to the motor.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_04	Max Speed	Max. motor speed	$400.0 \sim 3600.0$	rpm	1800.0

6.4.4 Motor min speed setting

This parameter is displayed when CON_01 is Sensorless. Inverter not starts the operation when if the speed reference is smaller than this parameter even though run command is inputted. If smaller parameter value than this parameter is inputted, inverter will stop the operation. This function is useful when sensorless control is unstable at low speed.

6.4.5 Multi-step speed and Dwell speed setting methods

1) FUN_12 ~ 19(Multi-step speed 0 ~ 7) / FUN_20(JOG speed command)

If the multi-function terminal is selected as a multi-step speed setting or jog operation, the speed command is determined by the combination of multi-function terminals P1 to P7 and jog speed command.

Multi-speed command by the combination of P1, P2 and P3 is generated as follows. In case multi-step speed 0 is selected (P1, P2 and P3 all are OFF), One of the speed commands from the keypad, analog voltage input and option board is fed into the inverter. In case P4 is ON, it ignores the speed command selection by other terminals and jog operation command has a priority. In this case, the motor is operated at the speed of FUN_20 (Jog speed command).

P1	P2	P3	P4	Setting speed
OFF	OFF	OFF	OFF	Speed command source is selected at FUN_02.
ON	OFF	OFF	OFF	FUN_13
OFF	ON	OFF	OFF	FUN_14
ON	ON	OFF	OFF	FUN_15
OFF	OFF	ON	OFF	FUN_16
ON	OFF	ON	OFF	FUN_17
OFF	ON	ON	OFF	FUN_18
ON	ON	ON	OFF	FUN_19
X	X	X	ON	FUN_20 (JOG speed command)

The values of the multi-step speed command are shown below.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_12	Speed 0	Multi-step speed 0	$0.0 \sim$ FUN_04	rpm	0.0
FUN_13	Speed 1	Multi-step speed 1	$0.0 \sim$ FUN_04	rpm	0.0
FUN_14	Speed 2	Multi-step speed 2	$0.0 \sim$ FUN_04	rpm	0.0
FUN_15	Speed 3	Multi-step speed 3	$0.0 \sim$ FUN_04	rpm	0.0
FUN_16	Speed 4	Multi-step speed 4	$0.0 \sim$ FUN_04	rpm	0.0
FUN_17	Speed 5	Multi-step speed 5	$0.0 \sim$ FUN_04	rpm	0.0
FUN_18	Speed 6	Multi-step speed 6	$0.0 \sim$ FUN_04	rpm	0.0
FUN_19	Speed 7	Multi-step speed 7	$0.0 \sim$ FUN_04	rpm	0.0
FUN_20	Jog Speed	JOG speed	$0.0 \sim$ FUN_04	rpm	100.0

- FUN_04: Max. motor speed

2) FUN_21(Dwell Speed), FUN_22(Dwell Time)

Acceleration is instantly stopped and restarted before driving a heavy load such as hoists when selected.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_21	Dwell Speed	Dwell Speed	$0.0 \sim$ FUN_04	rpm	100.0
FUN_22	Dwell Time	Dwell Time	$0.00 \sim 100.00$	sec	0.00

- FUN_04: Maximum motor speed
- Dwell operation is disabled when FUN_22 is set to " 0 ".

6.4.6 Accel/Decel pattern and time selection

1) FUN_33 (Accel/Decel reference speed)

Acceleration time, deceleration time and $B X$ time is set on the basis of the value at FUN_33(Accel./decel. reference speed), which is 'Max speed'or 'Ref speed'.

Setting example 1 if FUN_33= "Max Speed", Max motor speed= 3000rpm and Operating speed= 1500rpm, Accel time $=5 \mathrm{sec}$, accel time from 0 (stop) to 1500 rpm would be 2.5 sec .

Setting example 2 If FUN_33 is set to 'Ref Speed' and speed command and acceleration time is set to 500rpm and 1500rpm for 5 seconds, respectively, it takes 5 seconds to accelerate from the standstill to 1500 rpm .

2) FUN_41~48(Accel/Decel time 1 ~ 4)

Accel/Decel time 1-4 can be set in SV-iV5 as shown below.
(The factory default value is different from the capacity of inverter.)

Code	LCD display	Description	Setting range	Unit	Factory default value			
					$\begin{gathered} \text { 2.2~37 } \\ \mathrm{kW} \end{gathered}$	$\begin{gathered} \text { 45~75 } \\ \text { kw } \end{gathered}$	$\begin{gathered} 90 \sim 220 \\ \mathrm{~kW} \end{gathered}$	$\underset{\mathrm{kW}}{280 \sim 375}$
FUN_41	Acc Time-1	Acceleration time 1	$0.00 \sim 6000.0$	sec	2.00	10.00	20.00	30.00
FUN_42	Dec Time-1	Deceleration time 1	$0.00 \sim 6000.0$	sec	2.00	10.00	20.00	30.00
FUN_43	Acc Time-2	Acceleration time 2	$0.00 \sim 6000.0$	sec	3.00	12.00	24.00	35.00
FUN_44	Dec Time-2	Deceleration time 2	$0.00 \sim 6000.0$	sec	3.00	12.00	24.00	35.00
FUN_45	Acc Time-3	Acceleration time 3	$0.00 \sim 6000.0$	sec	4.00	14.00	28.00	40.00
FUN_46	Dec Time-3	Deceleration time 3	$0.00 \sim 6000.0$	sec	4.00	14.00	28.00	40.00
FUN_47	Acc Time-4	Acceleration time 4	$0.00 \sim 6000.0$	sec	5.00	16.00	32.00	45.00
FUN_48	Dec Time-4	Deceleration time 4	$0.00 \sim 6000.0$	sec	5.00	16.00	32.00	45.00

(Example) Programming P1, P2 as Xcel-L and Xcel-H

Code	LCD display	Description	Setting range	Unit	Factory setting
DIO_01	P1 define	Definition of P1 input			Xcel -L
DIO_02	P2 define	Definition of P2 input			Xcel -H

P1 (Xcel-L)	P2 (Xcel-H)	P3 (SoftStartCncl)	Accel/Decel time
OFF	OFF	OFF	Accel/Decel 1
ON	OFF	OFF	Accel/Decel 2
OFF	ON	OFF	Accel/Decel 3
ON	ON	OFF	Accel/Decel 4
X	X	ON	Max Accel/Decel

6. Function Description

3) FUN_36 ~ 39(S curve ratio during Accel/Decel 1 ~ 2)

The ramping pattern of the Linear and S Curve could be used by setting the parameters below. S Curve pattern is used to control the acceleration of the machine as linear to minimize the shock at the start. The parameters, FUN_36 ~ 39 determine the rate of S Curve pattern as in the figure below. FUN_36, 37 are applied in the acceleration and FUN_38, 39 in the deceleration.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_36	Acc S Start	Curve ratio at the beginning of acceleration	$0.0 \sim 50.0$	$\%$	0.0
FUN_37	Acc S End	Curve ratio at the end of acceleration	$0.0 \sim 50.0$	$\%$	0.0
FUN_38	Dec S Start	Curve ratio at the beginning of deceleration	$0.0 \sim 50.0$	$\%$	0.0
FUN_39	Dec S End	Curve ratio at the end of deceleration	$0.0 \sim 50.0$	$\%$	0.0

- Programming example of \mathbf{S} curve pattern

- Basic equation

$$
\begin{aligned}
& \text { St1_time }=\text { AccTime } *(\text { FUN_36 / 50.0\%) } \\
& \text { St2_time }=\text { AccTime } *(\text { FUN_37 / 50.0\%) } \\
& \text { St1_ } \Delta r p m=\text { St1_time } *(\text { MaxSpeed } / \text { AccTime }) * 0.5 \\
& \text { St2_ } \Delta r p m=\text { St2_time } *(\text { MaxSpeed } / \text { AccTime }) * 0.5
\end{aligned}
$$

- Calculation 1

$\Delta r p m \geq s t 1 _\Delta r p m+S t 2 _\Delta r p m$
$\Delta \mathrm{rpm}=$ The difference between the current speed and the target speed
L_time $=\left(\Delta r p m-S t 1 _\Delta r p m-S t 2 _\Delta r p m\right) *($ AccTime $/$ MaxSpeed $)$
Effective Acceleration Time $=$ St1_time + L_time + St2_time

- Calculation 2

$\Delta r p m$ < St1_ $\Delta r p m+S t 2 _\Delta r p m$
St1_time $=\sqrt{ }\left\{\left[\Delta r p m *\right.\right.$ AccTime $^{2} *$ St1_time $\left.^{2}\right] /[25 *$ MaxSpeed $*$ (St1_time + St2_time) $\left.]\right\}$
St2__time $=\sqrt{ }\left\{\left[\Delta r p m *\right.\right.$ AccTime $^{2} *$ St2_time $\left.{ }^{2}\right] /\left[25 *\right.$ MaxSpeed $*\left(S t 1 _\right.$time + St2_time $\left.\left.)\right]\right\}$
Effective Acceleration Time $=\boldsymbol{S t 1}$ _time $\boldsymbol{+} \boldsymbol{S t 2} \mathbf{I}_{\mathbf{\prime}}$ time
$\Delta r p m:$ Speed difference
MaxSpeed: Maximum speed (FUN_04)
AccTime : Set acceleration time (FUN_40, 42, 44, 46)
St1_urpm: Acc S Start ST (\%) of FUN_36 at the time of acceleration, Dec S End ST (\%) of FUN_39 at the time of deceleration
St2_urpm: Acc S End ST (\%) of FUN_37 at the time of acceleration, Dec S Start ST (\%) of FUN_38 at the time of deceleration

St1_time: The time when St1_ $\Delta \mathrm{rpm}$ is formed.
St2_time: The time when St2_ $\Delta \mathrm{rpm}$ is formed.

4) FUN_49 (Deceleration time for zero speed selection) / FUN_50 (Zero speed deceleration time)

This is the time when the motor decelerates from the arbitrary speed to 0 rpm in speed. This is valid only when FUN_48 is set to 'Yes'. If 'No' is set, the set deceleration time is applied.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_49	Use 0 Dec T	Deceleration time selection for zero speed	No/Yes		No
FUN_50	0 Dec Time	Deceleration time for zero speed	$0.00 \sim 6000.0$	sec	0.00

5) FUN_52(Decel time when BX is ON)

When the motor should be stopped immediately in case of emergency, $B X$ on the control circuit terminal can be used. When $B X$ is $O N$, the motor decelerates to a stop within 'Emergency deceleration time' set at FUN_51. But, if the motor does not stop within the deceleration time, it rotates freely after the deceleration time. If the motor is intended to stop at the instant BX is ON, FUN_51 is set to ' 0 '.
6. Function Description

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_52	BX Time	Deceleration time for emergency stop	$0.0 \sim 6000.0$	sec	0.0

6) FUN_53 (Pre-excitation)

FUN_52 (Motor Pre-excitation Time) can be used for the flux build-up in the induction motor to obtain the best control characteristic. FWD and REV LED blink concurrently during the time of pre-excitation.

- FUN_52 is activated only when FUN_02(Spd Ref Sel) is set to Keypad1 or Keypad2.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_53	PreExct Time	Pre-excitation time	$0 \sim 10000$	ms	0

7) FUN_54(Hold Time)

The motor maintains the zero speed for 'Motor Hold Time' after the motor decelerates to a stop.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_54	Hold Time	Motor Hold Time	$100 \sim 10000$	ms	1000

6.4.7 Electronic thermal (motor $I^{2} T$) selection

These functions are required when the motor should be protected against the overheat without installing the thermal relay between the inverter and the motor. If electronic thermal protection is ON, the inverter blocks the IGBT gating signals and issues the trip message.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_55	ETH Select	Electronic thermal selection	No Yes		No
FUN_56	ETH 1 Min	Electronic thermal level for 1 minute	FUN_57 ~200	$\%$	150
FUN_57	ETH Cont	Electronic thermal level for continuous	$50 \sim$ FUN_56 (up to 150\%)	$\%$	100
PAR_09	Cooling Mtd	Motor cooling method	Self-cool Forced-cool	Forced-cool	

Electronic thermal protection level is set in \% based on the 'Motor rated current' at PAR_22. '1 min.level of electronic thermal' at FUN_56 is the current level which should be referred to when the motor is operated for a minute and the motor is estimated to be overheated. 'Continuous level of electronic thermal' at FUN_57 is the current level which should be referred to when the motor is operated continuously and the motor is estimated to be in thermal equilibrium. Continuous level is set to the motor rated current (100%) and should be less than ' $\mathbf{1}$ min.level of electronic thermal' at FUN_56. PAR_09 'Cooling type' should be set correctly to ensure the proper electronic thermal protection.

- Self-cool : This should be set when cooling fan mounted on the motor shaft is used for cooling. The cooling performance is greatly reduced when the motor is operated at the low speed. Compared to high speed region, the motor is rapidly overheated at the low speed region even if the same current flows into it. So like the graph below, according to frequency, the allowable continous current value of 'Continuous level of electronic thermal' of FUN_56 is reduced and electronic thermal function starts operating.
- Forced-cool : This should be set when the cooling fan is powered by the separate power supply. 'Continuous level of electronic thermal' at FUN_57, which is allowable continuous current is applied, regadless of the operating frequency.

[The characteristic of allowable continuous current with respect to 4 pole, 60 Hz motor]

- The motor protection is possible by calculating and accumulating $\mathrm{I}^{2} \mathrm{t}$ even in load variation and frequent run/stop.

6.4.8 Inverter switching frequency select

1) FUN_58 (Inverter switching frequency select)

This parameter affects the audible sound of the motor, noise emission from the inverter, inverter termperature, and leakage current. If the ambient temperature where the inverter is installed is high or other equipment may be affected by potential inverter noise, set this value lower. (setting range: $2.5 \sim 10.0$ kHz).

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_58	PWM Freq	Switching frequency select		kHz	

2) Setting range and factory setting of switching frequency

Voltage	Inverter capacity (kW)	Setting range (kHz)	Factory setting (kHz)
200 V	$2.2 \sim 22(\mathrm{~kW})$	$2.5 \sim 10(\mathrm{kHz})$	$8(\mathrm{kHz})$
	$30 / 37(\mathrm{~kW})$	$2.5 \sim 7(\mathrm{kHz})$	$5(\mathrm{kHz})$
	$2.2 \sim 22(\mathrm{~kW})$	$2.5 \sim 10(\mathrm{kHz})$	$8(\mathrm{kHz})$
	$30 \sim 75(\mathrm{~kW})$	$2.5 \sim 7(\mathrm{kHz})$	$5(\mathrm{kHz})$
	$90 \sim 132(\mathrm{~kW})$	$2.5 \sim 5(\mathrm{kHz})$	$4(\mathrm{kHz})$
	$160 / 220(\mathrm{~kW})$	$2.5 \sim 4(\mathrm{kHz})$	$4(\mathrm{kHz})$
	$280 \sim 375(\mathrm{~kW})$	$2(\mathrm{kHz})$	$2(\mathrm{kHz})$

- Continuous Operation Derating Information

$15 \mathrm{~kW}-400 \mathrm{~V}(\mathrm{MD})$ class model among $5.5 \sim 22 \mathrm{~kW}-200 / 400 \mathrm{~V}$ class MD type models applies the following load rating.
(1) Rated load classified by the switching frequency

(2) The above graph is only applied when the inverter is operated in the allowable temperature. Pay attention to the air cooling when the inverter is installed in a panel box, and the inside temperature should be within an allowable temperature range.
(3) This derating curve is based on inverter current rating when rated motor is connected.

6.4.9 Power ON start selection (FUN_59)

In case 'No' is set, the inverter can be operated only if the terminal should be 'On' again after it is 'Off' once. In case 'Yes' is set, the inverter starts to run at the instant the power is supplied to the inverter if FX terminal input is 'On' or RX terminal input is 'On'. If the inverter starts to run while the motor is freely rotating, first, the motor decelerates to a stop and restart.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_59	Power-on Run	Power on start selection	Yes		No

CAUTION
Particular attention should be directed to this function due to potential hazard as motor starts to run
suddenly upon applying AC input power.

6.4.10 Restart after fault reset

1) FUN_60 (Restart after fault rese)

In case ' $N o$ ' is set, the inverter can be operated only if the terminal should be 'On' again after it is 'Off' once. In case 'Yes' is set, the inverter starts to run at the instant the inverter fault is cleared if FX terminal input is 'On' or RX terminal input is 'On'. At the time of the inverter trip, the motor start to coast to a stop because the inverter blocks the IGBT gating signals. If the inverter starts to run while the motor is freely rotating, first, the motor decelerates to a stop and restart. If set CON_49 [Speed search] to bit 1 from previous bit 2, operation begin by speed search function when fault is reset.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_60	RST Restart	Restart after fault reset	Yes		No

CAUTION
Take caution for this function. When Fun_59 is set, motor runs immediately upon fault is reset.

2) FUN_61 (number of auto restart try) / FUN_62 (delay time before auto restart)

This function prevents the permanet stop of the inverter due to the trip. The inverter automatically resets the fault and restarts and continues to run after the fault occurs if the number of automatic restart is set and the inveter operation is possible.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_61	Retry Number	Number of auto restart try	$0 \sim 10$		0
FUN_62	Retry Delay	Delay time before Auto restart	$0.0 \sim 60.0$	sec	1.0

In case the inverter trip occurs, the inverter restarts by 'The number of automatic restart' at FUN_61. In case of the inverter trip, the inverter resets the fault automatically and waits for 'Delay time before automatic restart' at FUN_62 and restarts. The inverter will not restart any more, blocks the IGBT gating signals and issues the trip message if the inverter trip occurs more than 'The number of automatic restart' at FUN_61. For example, if inverter starts sucessfully by 'automatic restart' (and trip doesn't occur any more), 'the number of automatic restart' doesn't add. If it fails (trip occurs again) 1 is added based on the previous accumulated number. That is, the number is added continuously without the initialization.

The conditions for the initialization of 'the number of automatic restart'.

- The number automatic restart accumulated so far is initailized by turning the inverter power ON/OFF
- If the number of automatic restart reaches to the set value at FUN_61, the automatic restart won't be conducted any more. Then push the reset key in loader forcefully for clearing trip so that the number of automatic restart will be initialized again and be increased from the beginnning.

6. Function Description

CAUTION

(11) FAN/MC PWR, FAN PWR (AC FAN and M/C power source fault)

- If trip does occur in 30 sec after restart, inverter adds the number of restart by one automatically and this cannot exceed setting value.

6.4.11 Wait time for restart upon stop

- Only active when FUN_03 is set to 'Free-run' and operating method is 'Terminal'.
- With above condition, FUN_63 (Restart Time) will be displayed and it is only operated in terminal operation.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_63	Restart Time	Wait time for Restart upon Stop	$0.00 \sim 10.00$	sec	0.00
FUN_03	Stop mode	Stop method	Decel		Decel

Even though restart command is input after stopping the operation, inverter does not run until FUN_62 setting time elapses.

6.4.12 Overspeed error detection

- Inverter detects error if motor rpm exceeds its limit. User can set the detection level and time of overspeed.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_64	OverSpdLevel	Overspeed Detection Level	$100.0 \sim 130.0$	$\%$	120.0
FUN_65	OverSpd Time	Overspeed Detection Time	$0.00 \sim 2.00$	sec	0.00

- FUN_64 is based on 100% of FUN_04(Max Speed).
- When motor speed exceeds FUN_64 (Overspeed Detection Level) and FUN_65(Overspeed Detection Time) elapses, overspeed error detection is activated.
- If FUN_65 is set to 0.00 (sec) and motor rpm exceeds FUN_64, inverter immediately detects overspeed error.

6. Function Description

6.4.13 Brake opening and closing setting

1) FUN_66(Brake opening time) / FUN_67(Brake opening speed) / FUN_68(Brake opening current) / FUN_69(Brake closing time) / FUN_70(Brake closing speed)

- It only operates when multi-aux ouput terminal(DIO_41 ~ DIO_43)is set to Brake Output.

The motor brake is not opened during motor' Auto-tuning, so be sure to open the brake forcedly when you do the rotating type motor's Auto tuning.

- About Brake opening time, Multi-aux output terminal becomes on after passing initial excitation time of motor and it operates with the brake opening speed during set time.
- About Brake opening speed, Multi-aux output terminal becomes on after passing initial excitation time of motor and it operates with the set speed during brake opening time.
- Brake openig current value is set as the percentage of magnetic current of motor. The brake openig signal operates only after ocurring more output current than set value.
- Brake closing time means the set time after multi-aux output terminal is off below the brake closing speed. Set more high brake closing time value than decelerating time between brake closing speed and 0.
- At the brake closing speed, multi-aux ouput teminal becomes off.
- If Backlash phenomenon occurs when the motor is stopping, increase the brake closing set value more and more until the Backlash phenomenon isn't occurs anymore. At the same time, adjust also the brake closing time set value.

Code	Display	Description	Range	Unit	Default
FUN_66	BKOpen Time	Brake opening time	$0.00 \sim 30.00$	sec	0.00
FUN_67	BKOpen Spd	Brake opening speed	$0.0 \sim 500.0$	rpm	0.0
FUN_68	Release Curr	Brake opening current	$0.0 \sim 150.0$	$\%$	20.0
FUN_69	BKClose Time	Brake closing time	$0.00 \sim 30.00$	sec	0.00
FUN_70	BKClose Spd	Brake closing speed	$0.0 \sim 500.0$	rpm	0.0

6.4.14 Regerneration prevention for press

This function is to prevent the regerneration in press application. It rises the motor speed automatically in motor regeneration.

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_71	RegenAvd Sel	Selection of regeneration prevention	$0(\mathrm{No}) / 1(\mathrm{Yes})$		$0(\mathrm{No})$
FUN_72	RegenAvd Lvl	Voltage level for regeneration prevention ${ }^{1)}$	$600(300) \sim$ $800(400)^{2)}$	V	$700(350)^{2)}$
FUN_73	CompFreq Lmt	Speed limit for regeneration prevention $^{1)}$	$0.0 \sim 500.0$	rpm	100.0
FUN_74	RegenAvd P	P gain of regeneration prevention 1)	$0.0 \sim 300.0$	$\%$	50.0
FUN_75	RegenAvd I	I gain of regeneration prevention			
1)					

Note1) It is displayed when FUN_71 is Yes.
Note2) () means it is applied in 200 V class.

1) FUN_71 (Selection of regeneration prevention)

It controls the DC Link voltage level to prevent the regeneration in case the life of DB unit is shortening by repeated regeneration action as press load.

2) FUN_72 (Voltage level for regeneration prevention)

It sets the voltage level for regeneration prevention that DB avoidance function start when DC link voltage rises by regeneration.

3) FUN_73 (Speed limit for regeneration prevention)

It sets the range of operation speed which is compared with original speed by regeneration avoidance function.

4) FUN_74 (\mathbf{P} gain of regeneration prevention)

It is a gain of PI controller which changes the motor operation speed.

6.4.15 Battery-operated (Battery Run) speed and Input voltage setting

Battery-operated function operates the motor with external battery at elevator application field when main power is not energized by instantaneous power failure etc.. (it is for $5.5 \sim 22 \mathrm{~kW}-2 / 4$ products.)

Code	LCD display	Description	Setting range	Unit	Factory setting
FUN_76	Batt. Speed	Battery-operated speed	$2.5 \sim 200.0$	rpm	50.0
FUN_77	Batt. Volt	Battery input voltage	$12 \sim$ PAR_18	V	48

- FUN-76, 77 code are displayed in case 'Battery Run' of multi-function input DIO_01~07 is turned On.
- FUN_76 sets the operation speed during emergency operation.
- FUN_77 sets the battery voltage used.
- In emergency, battery-operated is activated when the signal is given to terminal which 'Battery Run' function of DIO group is turned On. After it is activated, it is operated with speed set in FUN_76 and level of low voltage trip is changed lower automatically.

6. Function Description

- To return to normal mode, release the signal from 'Battery Run' mode of multi-function input turned On.
- Additional wiring for battery-operated mode is as shown below.
-. Connect the 2 terminals among main circuit input terminal R, S, T to battery positive through MC (Magnetic Contactor).
-. Connect $\mathrm{N}(-)$ terminal of main circuit to battery negative.
-. Input UPS auxiliary power supply 220 V to AC1 and AC2.

Features of battery-operated function
-.In battery-operated mode, LED on the right side of the loader for current operation mode and 'BAT' are displayed by turns.
-.In case multi-function output sets to 'INV Ready', it turns off during battery-operated mode.
-. After battery power is energized to inverter, inverter will start 2 seconds later after the time for releasing the low voltage trip and raising the internal voltage.
-.If voltage is falling less than about 53% of FUN_77 set value, it sets down as low voltage trip so it is detected a trip.
-.To return to main power, main power must be energized after releasing the magnetic contactor and signal from the battery and then low voltage trip is detected.
-.Operation speed (FUN_77) must be determined according to battery voltage (FUN_76), base speed (PAR_17) and motor rated voltage (PAR_18). Please operate the inverter with low speed by battery capacity.

6.4.16 Detection function of input/output open-phase

This function detects disconnection of input or output wire. If input open-phase error occurs when it is not open-phase condition, increase the FUN_79 setting value. For the standard setting value, refer to the item PhInOpenLvl in $01 \sim 03$ of the DIS group. Set up FUN_79 with the value which is 150% of the PhInOpenLv value under the maximum load condition.

6.4.17 Aux-speed function

- FUN_81 (max aux-speed command)

Shows the aux-speed command value at the maximum analog input.

- FUN_82 (aux-speed calculation method)

The available calculation modes include; the mode where the aux-speed is to be 0 when the unidirectional analog input ($0 \sim 10 \mathrm{~V}$) is median; and the mode where the aux-speed is to be 0 when the bidirectional analog input ($10 \sim 10 \mathrm{~V}$) is 0 .

0	$\mathrm{M}[\mathrm{rpm}]+\mathrm{G}[\mathrm{rpm}] \times \mathrm{A}[\%]$
1	$\mathrm{M}[\mathrm{rpm}]+\mathrm{G}[\mathrm{rpm}] \times(\mathrm{A}-50) \times 2[\%]$

$M=$ main speed, $G=A u x S p e e d M a x, A=$ analog input

- FUN_83 (aux-speed accelerating time)/ FUN_84(aux-speed decelerating time)

When the aux-speed applicability setting is ON and MOP Up/Down is OFF, if the aux-speed command changes, the motor accelerates or decelerates by the time set up here.

- FUN_82 (aux-speed absolute/relative mode)

This function defines the method for deciding the zero aux-speed. When the absolute mode is selected, 0 or 50% of analog input value is recognized as the zero speed. When the relative mode is selected, the analog input at the moment when the aux-speed applicability setting becomes ON is set up as the zero speed. Consequently, in the absolute mode, the aux-speed command is applied when the aux-speed function applicability setting input is ON, however, in the relative mode, the motor speed command does not change when the aux-speed function applicability setting input is ON.

- AIO_01,13,25 (Aux-speed analog input)

The aux-speed command is determined by analog input. Analog input has 3 (5 in extended I/O) channels. The channel to be used as the aux-speed must be set up with Aux Spd Ref to enable aux-speed operation.

- DIO_01~06 (select applicability of aux-speed function)

The applicability of the aux-speed function can be selected and set up using multi-function input. Aux-speed is enabled only when this input is ON .

6.5 Control Group (CON_[][])

6.5.1 Jump code (CON_00)

Jumping directly to any parameter code can be accomplished using CON_00 [Jump code].
Example Jumping to CON_11
Press [PROG] key first and set 11 using [$\mathbf{\Delta}$ (Up)], [\mathbf{V} (Down)], [SHITF/ESC] and press [ENT] key to jump to CON_11. If the desired code cannot be accessed or void, it automatically jumps to closest code.

$$
\begin{array}{lr}
\hline \text { CON Proc PID Ref } \\
11 & 0.0 \%
\end{array}
$$

After jumping, it is available to jump to other codes using [$\mathbf{\Delta}(\mathrm{Up})]$, [$\mathbf{\nabla}($ Down $)$].

6.5.2 Control mode select (CON_01)

In the motor control mode, there are speed and torque control modes based on the vector control. The speed sensor such as the pulse encoder is required if speed control ('Speed') and torque control ('Torque') are to be used.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_01	Control Mode	Control mode selection	Speed		
			Torque		Speed

6.5.3 Application mode (CON_02)

General vector mode or Elevator mode can be selected in CON_02.

Code	LCD display	Description	Setting range	Unit	Factory setting
			General Vect		
CON_02	Application	Application mode setting	Elevator ${ }^{* 1)}$		
			Synchro ${ }^{* 2)}$		General Vect
			WEB Control		

*1) Only displayed with Elevator option board (EL_IO) installed.
*2) Only displayed with Synchonization option board (SYNC_IO) installed.

6.5.4 Automatic speed regulator: ASR

1) CON_05(ASR LPF Time Constant 1) / CON_08(ASR LPF Time Constant 2)

One of the two PI gains of ASR can be selected depending on the status of the multi-function terminal input set as the 'ASR Gain Selection'. That is, if the multi-function terminal input is 'Off', 1-numbered gain and LPF time constant is selected. On the contrary, if this input is 'On', 2-numbered gain and LPF time constant are selected.

6. Function Description

(Example) Programming P4 as ASR PI Gain

Code	LCD display	Description	Setting range	Unit	Set value
DIO_04	P4 define	Multi-function input terminal P4 definition			ASR Gain Sel

The two sets of Lowpass Filter are as follow:

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_05	ASR LPF1	ASR LPF time constant 1	$0 \sim 20000$	ms	0
CON_08	ASR LPF2	ASR LPF time constant 2	$0 \sim 20000$	ms	0

2) CON_03 ~ 04(ASR PI Gain 1) / CON_06 ~ 07(ASR PI Gain 2)

One of 2 sets of PI gain can be selected by "ASR Gain Sel" in Multi-function input terminal.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_03	ASR P Gain1	ASR P Gain 1	$0.1 \sim 200.0$	$\%$	50.0
CON_04	ASR I Gain1	ASR I Gain 1	$0 \sim 50000$	ms	300
CON_06	ASR P Gain2	ASR P Gain 2	$0.1 \sim 200.0$	$\%$	5.0
CON_07	ASR I Gain2	ASR I Gain 2	$0 \sim 50000$	ms	3000

3) CON_09 (Ramp time for ASR gain Transfer) / CON_10 (Motor Speed at the time of ASR Gain Transfer)

ASR PI controller can be transferred to P controller depending on the status of the multi-function terminal input set as 'ASR P/PI transfer'.

Example When P6 is set to ASR P/PI transfer:

Code	LCD display	Description	Setting range	Unit	Factory setting
DIO_06	P6 define	Multi-function input terminal P6 definition			ASR P/PI Sel

To avoid the shock to the control system due to the rapid change P and I gain in case of ASR gain transfer, if the multi-function terminal input set to 'ASR Gain Sel' is 'On', the transferred P gain changes gradually for the time set at CON_09. P gain 2 is transferred to P gain 1 at the higher speed than the value set at CON_10. This happens when the multi-function terminal input set to 'ASR Gain Sel' is 'On', not 'Off"

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_09	ASR Ramp	Ramp time for ASR gain switch-over	$10 \sim 10000$	ms	1000
CON_10	ASR TarSpd	Target Speed after ASR gain switch-over	$0.0 \sim 3600.0$	rpm	0.0

- How to set the P and I gain of the ASR (Automatic Speed Regulator)

The P gain(\%) of ASR becomes equal to the torque reference(\%) when the speed difference between the speed command and the real speed fed back to the ASR is identical to the rated slip. The I gain is the time to be taken to accumulate the torque reference from 0 to 100%. That is, The output of ASR becomes equal to the 100% of the torque reference when P gain is set to 100% and the speed difference is equal to the rated slip. Speed response characteristic may be better, but the control system may be unstable when P gain is increased or I gain is decreased. On the contrary, Speed response characteristic may be degraded if P gain is decreased or I gain is increased.

6.5.5 Process PID control

Process PID controller is added ouside the speed control loop and a wide variety of process control can be implemented without using the stand-alone PID controller outside the speed control loop or PLC. 'Process PID Enb' at CON_23 determines whether Process PID controller is enabled or not. 'Process PID Enb' at CON_23 can be set as follows.
(Example) programming CON_23 "Process PID Enable/Disable"

CON_23 (Proc PID Enb)	RUN/STOP command	
	ON	OFF
Disable	Disable	Disable
Enable	Enable	Disable
Terminal	Depending on terminal definition	Disable

If 'Process PID Enb' at CON_20 is set to 'Terminal', Process PID controller is enabled using 'Proc PID Dis', which is the one of the functions of the multi-function terminal input. To avoid the saturation of the process PID controller, process PI controller is enabled only when the multi-function terminal is set to 'Proc PID Dis' and the terminal is 'OFF' and the run command is 'ON'.

Multi-function input terminal defined as "Proc PID Dis"	RUN/STOP command		
Input signal		ON	OFF
Defined	ON	Disable	Disable
	OFF	Enable	Disable
Not defined		Disable	Disable

The command to Process PID controller uses the digital value (CON_10) set using the keypad or the analog value ('Process PID F/B') which is the one of the multi-function analog output. The setting range of Process PID digital input at CON $_11$ is from -100 to 100% and the setting range of analog input command is from -10 to 10 V .

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_11	Proc PID Ref	Process PID Reference Source (Keypad)	$-100.0 \sim 100.0$	$\%$	0.0

6. Function Description

The definition of P gain and I gain in the Process PID controller is as follows. If P gain is 100% and I gain is 0% and the input error of the Process PID controller (CON_11 + Proc PID Ref - Proc PID F/B) is 100\%, the output of Process PID controller is 100%. If I gain is 10% and P gain is 0 and the input error is 100%, it takes the output of the Process PI controller 1 second to be accumulated up to 100%. The higher I gain becomes, the faster the response becomes reducing the accumulated time. Finally, the output of Process PID controller (\%) multiplied by the maximum motor speed (FUN_04) is added to the total speed command.

If the proportional gain or integral gain of the Process PID controller is increases, the response of the controller becomes faster, however, the system may become unstable. The proportional gain and integral gain values are small, the system response time becomes longer.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_14	Proc PID Kp	Process PID P gain	$0.0 \sim 999.9$	$\%$	0.0
CON_15	Proc PID Ki	Process PID I gain	$0.0 \sim 100.0$	$\%$	0.0
CON_16	Proc PID Kd	Process PID D gain	$0.0 \sim 100.0$	$\%$	0.0

To prevent the Process PID controller from being saturated by the malfunction of the Process PID controller, the output of the Process PID controller can be limited to the positive or negative value, separately from the main speed controller.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_17	Proc Pos Lmt	Process PID positive limit	$-100 \sim 100$	$\%$	100
CON_18	Proc Neg Lmt	Process PID negative limit	$-100 \sim 100$	$\%$	100

Low pass filter at the output of the Process PID controller can be used. In this case, filter output is multplied by the output gain and fed to the speed command.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_19	Proc Out LPF	Process PID output LPF time constant	$0 \sim 500$	ms	0
CON_20	Proc OutGain	Process PID output gain	$-250.0 \sim 250.0$	$\%$	0.0

There is a parameter which determines the range to be used when 100% output of the Process PID is converted to speed command. Setting up CON_21, the range of the speed command by Process PID is Base Speed(PAR_17), Ref Speed(command speed), Speed Set(CON_22), respectively for each case.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_21	Proc PID Src	Process PID type	0 (Base Speed)		
			1 (Ref Speed)		0 (Base Speed)

6. Function Description

If the output error of Process PID exists at stopping, it keeps current motor speed during "PID Hold Time" and then freeruns and stops by stopping friction power. If output error is " 0 ", motor is stopped regardless of "PID Hold Time" setting.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_24	PIDHoldTime	Process PID Hold Time	$0 \sim 10000$	ms	5000

6.5.6 Draw control

Draw control is a sort of Open Loop tension control. Draw is the ratio of speed difference between one roll and the other. Tension is generated as in the following equation.

$$
\begin{aligned}
& \mathrm{D}=\frac{\mathrm{V} 1-\mathrm{V} 2}{\mathrm{~V} 2} \\
& T=E \times S \times D=E \times S \times \frac{V 1-V 2}{V 2}
\end{aligned}
$$

Where,
V1, V2: Transfer speed of each roll ($\mathrm{m} / \mathrm{min}$)
T: Tension (kg)
E: Elasticity coefficient of processed material (kg/mm2)
S: Sectional area of processed material (mm2)

Draw reference multiplied by draw quantity set at CON_22 is added up to the speed command and the sum acts as the final speed command.

One of the multi-function analog input is set to the draw command ranging from -100% to 100% and the speed command multiplied by Draw quantity is added up to the speed command (Speed Ref) to obtain the final speed command. That is, $-100 \sim 100 \%$ of the Draw command value is scaled to the Draw quantity (\%) of CON_25, which is multiplied with the speed command value to produce the command value which is proportional to the speed command value.

Example Programming Ai2 as the Draw Reference

Code	LCD display	Description	Setting range	Unit	Factory setting
AIO_13	Ai2 Define	Multi-function analog input Ai2 definition			Draw Ref
FUN_02	Spd Ref Sel	Speed reference selection			Keypad1
FUN_12	Speed 0	Multi-speed 0	$0.0 \sim 3600.0$	rpm	500.0
CON_25	Draw \%	Draw Quantity	$-100.0 \sim 100.0$	$\%$	

Run speed $=$ Spd Ref value + Spd Ref value $\times \frac{\text { Draw quantity }(\%)}{100(\%)} \times \frac{\text { Anolog input(V) }}{10(\mathrm{~V})}$

Sign of analog input operates by absolute value norm.

6. Function Description

6.5.7 Droop control

Droop control uses the drooping characteristic of the speed with respect to the torque reference. This control method is used to prevent the saturation of the speed controller due to the difference between the speed reference and the real speed when the inverter is used for load balancing of the multiple motors and helper roll, which is the auxiliary device of the main roll. As shown in the figure below, the speed command is adjusted properly depending on the torque reference.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_26	Droop \%	Droop Quantity	$0.0 \sim 100.0$	$\%$	0.0
CON_27	Droop MinSpd	Low speed limit of Droop control	$0.0 \sim 3600.0$	rpm	0.0
CON_28	Droop MinTrq	Starting torque of Droop control $\%$	$0.0 \sim 100.0$	$\%$	0.0
CON_29	Droop MinSpd	Droop control min. speed	$0.0 \sim 3600.0$	rpm	0.0
CON_30	Droop MinTrq	Droop control beginning torque $\%$	$0.0 \sim 100.0$	$\%$	0.0

If the torque reference (the output of the speed controller) becomes higher than the set Droop start torque, it reduces the speed command and consequently, decreasing the torque reference. Using CON_27, the speed value corresponding to the 100% of Droop quantity can be set up. Using CON_28, the change rate by time of Droop quantity can be set up. Speed command in the Droop control is as in the following equation.

Droop Control Calculation Example

- When Torque Ref is Positive:

$$
\text { Droop Ref speed }=(\text { Torque Ref [\%] }- \text { Droop Starting Torque[\%] }) * \text { Droop Quantity[\%] }
$$

The result value becomes positive. Therefore, final speed ref value decreases and it should be,
(Speed Ref - Droop Ref speed) > Droop low limit speed
Droop Ref speed < (Speed Ref - Droop low limit speed)
Therefore, positive limit is "Speed Ref - Droop Low Limit Speed".

- When Torque Ref is Negative:

Droop Ref speed $=-($ Torque Ref [\%] - Droop Starting Torque[\%]) * Droop Quantity [\%]

The result value becomes negative. Therefore, final speed ref value increases and it should be,

> (Speed Ref - Droop Ref speed) < Max Motor speed

Droop Ref speed >-(Max Motor speed - Speed Ref)
Therefore, negative limit is "Max Motor speed - Speed Ref".

6.5.8 Torque control

One mode among the speed control mode and torque control mode can be set at CON_01('Control Mode'). The default is the speed control mode. Control mode can be selected using the multi-function terminal input set to 'Spd/Trq Sel'. This method has a priority over the one by CON_01.
(Setting example) Programming P6 as Torque control

Code	LCD display	Description	Setting range	Unit	Setting
DIO_06	P6 define	Multi-function input terminal P6 definition		Spd/Trq sel	
CON_01	Control Mode	Control mode setting	Speed Torque Sensorless		Torque

1) CON_31 (Torque Reference Source Selection) / CON_32 (Torque Reference Source)

In the speed control mode, the output of the ASR acts as the torque reference. In the torque control mode, the torque reference is set by the analog input signal defined as 'Trq Ref Src' on the control circuit terminal or by the option board and the polarity is reversed if the direction of the speed command is changed. If the analog input is used as the torque reference, the analog input ranging from -10 V to 10 V is converted to the percentage of the rated torque ($-100 \sim 100 \%$) to obtain the torque reference, which can set from -250% to 250% by the settings of Gain and Bias. CON_31 "Torque Ref" defines torque ref. value when torque source is set to Keypad.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_31	Trq Ref Src	Torque reference source selection	None/Analog Keypad/Option Int485		
	Torque Ref	Torque Ref (keypad)	$-180.0 \sim 180.0$	$\%$	0.0

2) CON_37 (Torque Bias Source Select) / CON_38 (Torque Bias quantity)

The Torque Bias is the feedforward compensation which is added to the Torque Reference. The source of Torque Bias could be selected by the Keypad (CON_38) as one of Multi Function Analog Input and the Option. The Torque Bias is enabled by MFi programmed as UseTrq Bias. The MFI should be ON for enabling the Torque Bias.

The Analog Input $[-10 \sim+10 \mathrm{~V}]$ is converted to $[-100 \sim+100 \%]$ and this could be expanded up to $[-250 \sim+250 \%$] with gain and bias.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_37	Trq Bias Src	Torque Bias source	None		
Analog		None			
CON_38	Trq Bias	Torque Bias quantity	$-150.0 \sim 150.0$	$\%$	0.0

3) CON_40 (Torque Balance)

In the lift use, the load torque balance can be adjusted to obtain a good riding comfort at start-up using the load cell, which is a sort of an weighing devices installed at the bottom of the lift. CON_40 is adjusted to show 50% after the car weight becomes equal to the weight of counter-weight.

The value displayed when pressing [PROG] key on the keypad is the loadcell voltage input to the inverter. Therefore, adjust the percent using $[\mathbf{\Delta}(U p)] /[\mathbf{V}($ Down $)]$ to make it to be setpoint of actual load compensation.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_40	Trq Balance	Torque Balance quantity	$0.0 \sim 100.0$	$\%$	50.0

4) Torque Bias Enable/Disable

Torque bias is enabled depending on the status of the multi-function terminal input set to 'Torque bias enable'. But, if 'Torque bias enable' is not set and CON_37 is set to 'Keypad', the torque bias command set at CON_38 by the keypad, is fed directly to the torque bias quantity regardless of the status of the terminal. Therefore, In order not to use the torque bias command set at CON_37, CON_37 should be set to 'None' or the multi-function terminal input should be set to 'Torque bias enable' and then the terminal should be left open.
(Example) Programming P5 as Torque Bias EnableTorque Bias

6. Function Description

Code	LCD display	Description	Setting range	Unit	Factory setting
DIO_05	P5 define	Multi-function input terminal P5 definition			Use Trq Bias

5) CON_39(Torque Bias F/F)

This is the torque bias quantity to compensate for the friction loss, which varies with the rotational direction of the motor and added up to the torque bias quantity.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_39	Trq Bias FF	Torque compensation for Friction loss	$-150.0 \sim 150.0$	$\%$	0.0

6) CON_33 ~ 36 (Torque Limit Define, Torque Limit during FWD RUN /REV RUN/Regenerating)

The torque limit can be selected separately depending on the motor control mode such as forward rotation and reverse rotation and regeneration modes. In all modes, the limit values can be set by the function code, the multifunction terminal input and the option board, respectively.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_33	Trq Lmt Src	Torque Limit Source select			Kpd Kpd Kpd

Torque Limit

Torque Limit value is determined one of the 9 different combinations shown below depending on CON_33 setting.

CON_33 set value	Positive Torque Limit	Negative Torque Limit	Regenerating Torque Limit
Kpd Kpd Kpd	CON_29	CON_30	CON_31
Kpd Kpd Ax	CON_29	CON_30	Vx
Kpd Ax Kpd	CON_29	Vx	CON_31
Kpd Ax Ax	CON_29	Vx	Vx
Ax Kpd Kpd	Vx	CON_30	CON_31

6. Function Description

CON_33 set value	Positive Torque Limit	Negative Torque Limit	Regenerating Torque Limit
Ax Kpd Ax	Vx	CON_30	Vx
Ax Ax Kpd	Vx	Vx	CON_31
Ax Ax Ax	Vx	Vx	Vx
Opt Opt Opt	Positive Torque Limit of Option	Negative Torque Limit of Option	Regenerating Torque Limit of Option
485485485	Positive Torque Limit of 485	Negative Torque Limit of 485	Regenerating Torque Limit of 485

※ Vx marks the Torque Limit value defined in analog input terminal.

7) Torque Current reference

The torque reference is converted to the torque current reference. The torque current reference is generated from the rated current and magnetizing current of the motor. The initial value of the rated current and magnetizing current of the motor can be set by OTIS vector motor parameter that is chosen at PAR_07

Code	LCD display	Description	Setting range	Unit	Factory setting
PAR_07	Motor Select	Motor capacity selection	$2.2 \sim 375.0$	kW	
PAR_22	Rated-Curr	Motor rated current	$1.0 \sim 2000.0$	A	
PAR_27	Flux-Curr	Motor flux current	$0.0 \sim 70 \%$ of PAR_22	A	

8) Torque limit by Speed limit

This function limits torque when the speed reaches a certain level duing operation in torque mode. The torque limitation is shown in the figure below.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_79	Spd Lmt Src	Speed limit of Speed/Torque switching	$0.1 \sim$ Max Speed	rpm	
CON_80	SpdLmtBias	Speed bias of Speed/Torque	$100.0 \sim$ Max Speed	rpm	

6.5.9 Speed search

This is used to restart the motor during coasting without stopping the motor. The setting for using this function is related to setting of FUN_59 and FUN_60. CON_54 are required for this function. The proper values should be set depending on the inertia moment (GD ${ }^{2}$) of the load and the torque of the motor in use.

Code	LCD display	Description	Setting range	Unit	Factory setting
CON_54	Speed Search	Speed search setting	1111		0100
CON_75	SS Time	Speed Search time $^{1)}$	$10 \sim 60000$	ms	300
CON_76	SS P Gain	Speed Search P gain $^{1)}$	$1.0 \sim 300.0$	$\%$	100.0
CON_77	SS I Gain	Speed Search I gain $^{1)}$	$1.0 \sim 300.0$	$\%$	100.0
CON_78	SS LPF	Speed Search LPF ${ }^{1)}$	$0.1 \sim 300.0$	ms	30.0
FUN_58	Power-on Run	Power on Run selection	Yes No		No
FUN_59	RST Restart	Restart after fault reset	Yes No		No

CON_54 speed search setting is as follows.

Code	Set value				Description
	Bit4	Bit3	Bit2	Bit1	
CON_54				\checkmark	Speed search during Accelerating
			\checkmark		Speed search during a Fault Reset restarting
		\checkmark			Speed search during Instant Power Failure restarting.
	\checkmark				Speed search when FUN_58 Power ON starting is set to "Yes"

(1) Bit 1

0 : The motor is normally accelerated without the speed search operation.
1: The speed search operation is enabled at the time of acceleration.
(Automatic restart and FUN_58[Power-on start enable] included)
(2) Bit 2

0 : The motor is normally accelerated without the speed search operation after the trip occurs.
1: The speed search is enabled at the time of restart after the trip occurs.
(Automatic restart and FUN_59[Restart enable after fault reset] included)
(3) Bit 3

0 : The motor stops when instantaneous power failure occurs. Run command should be turned ON again to restart the operation.
1: The speed search is enabled at the time of restart after the instantaneous power failure occurs.
(4) Bit 4

0: The motor is normally accelerated only when FUN_58 [Power-on start enable] is set to Yes.
1: The speed search operation is enabled at the time of acceleration when FUN_58 [Power-on start enable] is set to Yes.

1) Setting up speed search in sensorless mode

In the sensorless mode, speed search is conducted at start-up, as a default setting. The search time, speed search gain, and the time constant of the low-pass filter for the speed search results can be set up.

6. Function Description

6.6 User Group (USR_[][])

User group can be generated by collecting the frequently-used function codes, and it also can be created by using the existing function codes for the specific application.

6.6.1 Jump code (USR_00)

Jumping directly to any parameter code can be accomplished using USR_00.

(Example) Jumping to USR_03

Press [PROG] key first and set 3 using [$\mathbf{\Delta}(\mathrm{Up})$], [$\mathbf{\nabla}$ (Down)], [SHITF/ESC] and press [ENT] key to jump to USR_03. If the desired code cannot be accessed or void, it automatically jumps to closest code.

```
USR` User Recall
03 --- No ---
```

After jumping, it is available to jump to other codes using [$\mathbf{\Lambda}(\mathrm{Up})]$, [$\mathbf{\nabla}$ (Down)].

6.6.2 Macro definition

1) USR _01 (Macro Init)

The initialization of the code type can be defined according to the application the user defines.

Code	LCD display	Description	Setting range	Unit	Factory setting
USR_01	Macro Init	Use Macro Definition	User Define E/L		User Define

If User Define is set up, all the user defined codes from USR_04 to USR_67 are initialized to P1 Define. If E/L is set up, the initialization is as presented in the table below. In this case, the codes USR_61 ~ USR_67 specified as 'Not Used' are not displayed. Only the last one of the Not Used is indicated.

Code	Setting										
USR_04	DIO_01	USR_15	PAR_09	USR_26	FUN_01	USR_37	FUN_19	USR_48	FUN_44	USR_59	CON_29
USR_05	DIO_02	USR_16	PAR_10	USR_27	FUN_02	USR_38	FUN_34	USR_49	FUN_45	USR_60	Not Used
USR_06	DIO_03	USR_17	PAR_11	USR_28	FUN_04	USR_39	FUN_35	USR_50	FUN_46	USR_61	Not Used
USR_07	DIO_04	USR_18	PAR_13	USR_29	FUN_05	USR_40	FUN_36	USR_51	FUN_47	USR_62	Not Used
USR_08	DIO_05	USR_19	PAR_14	USR_30	FUN_12	USR_41	FUN_37	USR_52	FUN_49	USR_63	Not Used
USR_09	DIO_06	USR_20	PAR_17	USR_31	FUN_13	USR_42	FUN_38	USR_53	FUN_50	USR_64	Not Used
USR_10	DIO_07	USR_21	PAR_18	USR_32	FUN_14	USR_43	FUN_39	USR_54	CON_03	USR_65	Not Used
USR_11	DIO_40	USR_22	PAR_19	USR_33	FUN_15	USR_44	FUN_40	USR_55	CON_04	USR_66	Not Used
USR_12	DIO_41	USR_23	PAR_20	USR_34	FUN_16	USR_45	FUN_41	USR_56	CON_05	USR_67	Not Used
USR_13	PAR_06	USR_24	PAR_21	USR_35	FUN_17	USR_46	FUN_42	USR_57	CON_27		
USR_14	PAR_07	USR_25	PAR_22	USR_36	FUN_18	USR_47	FUN_43	USR_58	CON_28		

2) USR_02(User Save)

This enables the code type and the set value which the user define to be saved into the memory.

3) USR_03(User Recall)

This enables the code type and the set value saved by USR_02('User Save') to be recalled from the memory.

6. Function Description

Code	LCD display	Description	Setting range	Unit	Factory setting
USR_02	User Save	User data save selection	No Yes		No
USR_03	User Recall	Recall saved user data	No Yes		No

6.6.3 User code define (USR_04 ~ 67)

It displays the type and value of the user code when [PROG] key is pressed. The code can be set in the same manner as the codes in the other group can be. If the code is 'User Grp' and its set value is 'Not Used', the code can be changed by pressing the [PROG] key once more.

Total 64 user group data can be programmed and saved. To make the unused data invisible, set it to "Not Used".

Chaning User group codes

6. Function Description

6.7 2nd Function Group (2nd_[][])

$2^{\text {nd }}$ function group is equivalent to the parameter group which includes the data related to the $2^{\text {nd }}$ motor in case single inverter controls 2 motors. One of the multi-function terminal input P1 ~ P7 (DIO_01 ~ DIO_07) should be set to "2nd Func" . The setting ranges and usage of the $2^{\text {nd }}$ motor parameter is basically the same as those of the $1^{\text {st }}$ motor parameters. If the multi-function terminal input enables the $1^{\text {st }}$ motor, the $1^{\text {st }}$ motor parameters become valid. Similiarly, if the multi-function terminal input enables the $2^{\text {nd }}$ motor, the $2^{\text {nd }}$ motor parameters become valid.

6.7.1 Jump code (2nd_00)

You can move on to the code you want to check using 2nd_00.

(Example) If you want to move on to 2nd_02,

After pressing the [PROG] key, set to02 using [SHIFT/ESC] / [$\mathbf{\Delta}$ (Up)] / [$\mathbf{\nabla}$ (Down)] keys and then press the [ENT] key. If the code to jump to is not found, the nearest code number is selected.

```
2nd\2nd Max Spd
02 1800.0 rpm
```

You can check the other code using [$\mathbf{\Delta}(\mathrm{Up})$] / [$\mathbf{\nabla}$ (Down)] keys.

6.7.2 2nd motor control mode selection (2nd _01)

In the motor control mode, there are speed and torque control modes based on the vector control. The speed sensor such as the pulse encoder is required if speed control ('Speed') and torque control ('Torque') is to be used.

Code No.	LCD display	Function	Setting range	Unit	Factory setting
2nd_01	2nd Ctl Mode	$2^{\text {nd }}$ motor control mode selection	Speed Torque		Speed

6.7.3 2nd motor speed setting

1) 2nd_02: The $2^{\text {nd }}$ motor maximum speed / 2nd_04: The $2^{\text {nd }}$ digital speed setting

Code No.	LCD display	Function	Setting range	Unit	Factory setting
2nd_02	2nd Max Spd	$2^{\text {nd }}$ motor maximum speed	$400.0 \sim 3600.0$	rpm	1800.0
2nd_04	2nd Spd 0	$2^{\text {nd }}$ motor multi-step speed 0	$0.0 \sim 2^{\text {nd }} _02$	rpm	0.0

6. Function Description

6.7.4 2nd motor parameters related to acceleration and deceleration

Setting range and factory setting value should be referred to FUN_41 to FUN_48.

Code No.	LCD display	Function	Setting range	Unit	Factory setting
2nd_05	2nd Acc S St	$2^{\text {nd }}$ motor S ratio 1 in accel. start	$0.0 \sim 50.0$	$\%$	0.0
2nd_06	$2^{\text {nd }}$ Dec S Ed	$2^{\text {nd }}$ motor S ratio 2 in accel. end	$0.0 \sim 50.0$	$\%$	0.0
2nd_07	2nd Dec S St	$2^{\text {nd }}$ motor S ratio 1 in decel. start	$0.0 \sim 50.0$	$\%$	0.0
2nd_08	2nd Dec S Ed	$2^{\text {nd }}$ motor S ratio 2 in decel. end	$0.0 \sim 50.0$	$\%$	0.0
2nd_09	Time scale2	$2^{\text {nd }}$ motor acc./dec. time scale	$0(0.01 \mathrm{sec})$ $1(0.1 \mathrm{sec})$	$0(0.01 \mathrm{sec})$	
2nd_10	2nd Acc time	$2^{\text {nd }}$ motor acceleration time	$0.01 \sim 6000.0$	sec	10.0
2nd_11	2nd Dec time	$2^{\text {nd }}$ motor deceleration time	$0.01 \sim 6000.0$	\sec	10.0

6.7.5 2nd motor parameters related to the pulse encoder

Code No.	LCD display	Function	Setting range	Unit	Factory setting
2nd_13	2nd Enc \#	$2^{\text {nd }}$ motor encoder pulse number	$360 \sim 4096$	$\%$	1024
2nd_14	2nd Enc Dir	$2^{\text {nd }}$ motor encoder direction set	A Phase Lead B Phase Lead	A Phase Lead	
2nd_15	2nd Enc Chk	$2^{\text {nd }}$ motor encoder test enable	Yes No	Yes	
2nd_16	2nd Enc LPF	$2^{\text {nd }}$motor encoder LPF time constant	$00 \sim 100$	ms	1

6.7.6 2nd motor parameters

Code No.	LCD display	Function	Setting range	Unit	Factory setting
2nd_18	2nd BaseSpd	$2^{\text {nd }}$ motor base speed	$\begin{gathered} 300.0 \sim \\ 3600.0 \end{gathered}$	rpm	1800.0
2nd_19	2nd R-Volt	$2^{\text {nd }}$ motor rated voltage	$120 \sim 560$	V	
2nd_20	2nd Pole \#	the number of poles of the $2^{\text {nd }}$ motor	$2 \sim 12$		4
2nd_21	2nd Mot Eff.	$2^{\text {nd }}$ Motor Efficiency	$70 \sim 100$	\%	72
2nd_22	2nd R-Slip	$2^{\text {nd }}$ motor rated slip	$10 \sim 250$	rpm	
2nd_23	2nd Flx Cur	$2^{\text {nd }}$ motor magnetizing current	$0.0 \sim$ Inverter rated current	A	
2nd_24	2nd Mot Tr	$2^{\text {nd }}$ motor rotor time constant	$30 \sim 3000$	ms	
2nd_25	2nd Mot Ls	$2^{\text {nd }}$ motor stator inductance	$0.00 \sim 500.00$	mH	
2nd_26	2nd Mot sLs	$2^{\text {nd }}$ motor leakage coefficient	$0.00 \sim 10.00$	mH	
2nd_27	2nd Mot Rs	$2{ }^{\text {nd }}$ motor stator resistance	$0.000 \sim 5.000$	ohm	
2nd_28	2nd Mot Ls	2nd motor stator inductance	$0.00 \sim 500.00$	mH	-
2nd_29	2nd Mot sLs	2nd motor leakage coefficient	$0.00 \sim 300.00$	mH	-
2nd_30	2nd Mot Rs	2nd motor stator resistance	$0.000 \sim 15.000$	ohm	-

6. Function Description

6.7.7 2nd motor miscellaneous parameters

Code No.	LCD display	Function	Setting range	Unit	Factory setting
2nd_11	2nd Cool Mtd	$2^{\text {nd }}$ motor cooling method	Same as the 1 st motor	Self-cool	
2nd_35	2nd ETH 1min	$2^{\text {nd }}$ motor 1 min. level for electronic thermal protection	Same as the 1 motor	150	
2nd_36	2nd ETH Cont	$2^{\text {nd }}$ electronic thermal protection	Same as the 1 motor	100	
2nd_37	2nd Inertia	$2^{\text {nd }}$ motor inertia coefficient	Same as 1 1 $^{\text {st }}$ motor	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.072

6.8 Analog AIO Group (AIO_[][])

6.8.1 Jump code (AIO_00)

In AIO_00, jumping directly to any parameter code can be accomplished by entering the desired code number.
(Example) Moving to AIO_13
Press [PROG] and set to 5 using [SHIFT/ESC] / [$\mathbf{\Delta}$ (Up)] / [$\mathbf{\nabla}$ (Down)] and press [ENT] key to move to AIO_13. If the desired code cannot be set, the closest code will be displayed.

AIO Ai2 define 13 Not Used

Jumping other code is available using [$\mathbf{\Delta}$ (Up)] / [$\mathbf{\nabla}$ (Down)] keys.

6.8.2 Multi-function analog input

1) AIO_01 ~ $\mathbf{6 0}$ (Multi-function analog input terminal definition, input source, Min. input, Bias, Max. input, Gain, LPF Time constant, criterion of command loss)

3 analog input are assigned for AIO board. Ai3 serves are the Motor NTC input port and voltage or current signal can be fed into Ai1 and Ai2 by the jumper setting. Analog input on the control circuit terminal can be used as single function among the following 8 functions in the table below (10 functions for Ai3 - including Motor NTC). Voltage input range is $-10 \sim 10 \mathrm{~V}$ and current input range is $0 \sim 20 \mathrm{~mA}$. Any analog input cannot be set as the same function as the other inputs. If 2 analog inputs are set to the same function, last set analog input is changed to "Not Used". When analog input is changed to the other function, previously set value is initialized to 0 .
(In the case of EXTN_I/O, 5 analog inputs are possible and Mot NTC input is possible for Ai5)

Setting value	Definition	Description			
Speed Ref	Speed Reference	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of maximum speed.			
Aux Spd Ref	Aux. speed reference	$\pm 10 \mathrm{~V}$ input is equivalent $\pm 100 \%$ of speed reference of FUN_81 AuxSpeedMax.			
Proc PID Ref	Process PID Reference	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of reference of Process PI controller.			
Proc PID F/B	Process PID F/B	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of F/B quantity of Process PI controller.			
Draw Ref	Draw Control Reference	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of reference of Draw controller.			
Torque Ref	Torque Reference	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of rated torque. It can be set up to $-250 \sim 250 \%$ of rated torque by the gain and bias adjustment.			
Flux Ref	Flux Reference	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of rated flux.			
Torque Bias	Torque Bias	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of rated torque. It can be set up to $-250 ~$ 250% of rated torque by the gain and bias adjustment.			
Torque Limit	Torque Limit	$\pm 10 \mathrm{~V}$ input is equivalent to $\pm 100 \%$ of rated torque. It can be set up to $0 ~$ 250% of rated torque by the gain and bias adjustment.	$	$	Thermal sensor in the motor(NTC) is fed into this terminal. In this case, the motor
:---					
temperature is displayed and motor overheat alarm and trip signal can be					
triggered.					
Caution: This is applied only to LG-OTIS Vector-controlled Motor.					

Code setting about analog command definition is as follow.

6. Function Description

Code	Display	Definition		Setting range	Unit

AIO_13 ~ AIO_36(Ai2 ~ Ai3) are the same with the analog input 1(Ai1) above. (In the case of EXTN_I/O, same up to
AIO_37 ~ AIO_60(Ai4 ~ Ai5). But in the case of Ai3 and Ai5, there is no current input.
AIO_03 Ai1 In X1 displays the analog input voltage or analog min. input current that inverter recognize as \% unit.
It means the percentage(\%) of max.input voltage $10[\mathrm{~V}]$ or max. input current $20[\mathrm{~mA}$. For example, if you set AIO_03 Ai1 In X 1 as 20[\%], the voltage becomes 2[V], the current becomes 4[mA]. And if AIO_04 Ai1 Out Y1 is set as 0[\%], the analog input value that is under voltage $2[\mathrm{~V}]$, or current $4[\mathrm{~mA}]$ that is fed into analog input terminal will not be recognized.

AIO_04 Ai1 Out Y1 sets the min. level of analog input voltage or current that inverter actually recognizes. For example, if you set AIO_03 Ai1 In X1 as 0[\%] and set AIO_04 Ai1 Out Y1 as 20[\%] and then, you feed into analog input terminal voltage $2[\mathrm{~V}]$ or current $4[\mathrm{~mA}$, when the actual analog input voltage or current that inverter recognizes is 0 , inverter recognizes as 20[\%].

AIO_05 Ai1 In X2 displays the analog input voltage or analog max. input current that inverter recognize as \% unit.
For example, if you set AIO_05 Ai1 In X2 as 50[\%], when the actual voltage or current that is fed into analog input terminal is more than $5[\mathrm{~V}]$ or $10[\mathrm{~mA}$, inverter recognizes it as max. analog input value.

AIO_06 Ai1 Out Y2 sets the max. level of analog input voltage or current that inverter actually recognizes.
For example, if you set AIO_05 Ai1 In X2 as 100[\%] and AIO_06 Ai1 Out Y2 as 50[\%], although the voltage 10[V] or the current $20[\mathrm{~mA}]$ is actually fed into analog input terminal, inverter recognizes the final analog input value as $50[\%]$. If you set as above and the rated speed is 1800 [rpm], you cannot set more than $900[\mathrm{rpm}$] although you feed $10[\mathrm{~V}$] into analog input terminal

AIO_03 Ai1 In X1 and AIO_05 Ai1 In X2 are for setting the allowed range of voltage of current that is fed into analog input terminal, so generally you can set AIO_03 Ai1 In X1 as 0[\%], and AIO_05 Ai1 In X2 as 100[\%]. But, the analog input device make happen Chattering around 0[\%], you can adjust the set value of AIO_03 Ai1 In X1 up to the level of escaping the Chattering.

When Main Controller recognizes the voltage or current that is fed into analog input terminal, the difference can occur by the detail of I/O devices. . AIO_04 Ai1 Out Y1 and AIO_06 Ai1 Out Y2 are for correcting this error in Main Controller, so they are a kind of Bias and Gain. If the analog input is negative value, you can set AIO_07 ~ AIO_10 as the same as the above.

It is possible for iV5 inverter to input also the upper limit of 2, 4 according to the setting of AIO_02 Ai1 Source, not only the upper limit of 1,3 as the analog input Mapping diagram. It is also possible to operate along the dotted line according to the setting of AIO_03 ~ AIO_10.

2) Adjusting Bias: Out Y1 and Gain: Out Y2 by Loader

- AIO_04 Ai1 Out Y1 adjustment

Connect the voltage source or current source between Ai1 ~ 5G, multi-analog terminals of standard I/O devices.
Feed $0[\mathrm{~V}]$ or $0[\mathrm{~mA}]$ with the AIO_03 In X1 set as 0% and then follow as below.

Key	LCD Display	Description
	AIO Ai1 Out Y1 04 0.00%	Initial Gain (Factory setting)
PROG	AIO Ai1 0.18% 04 Bias 0.00%	When pressing the [PROG] key, current output [\%] to input value is displayed on the first line and current setting bias on the second line.
A	AIO Ai1 0.00% 04 Bias 0.18%	If you want to adjust Bias to be 0.00% at OV input on the first line, adjust it to be 0.00% using [$\mathbf{\Delta}(\mathrm{Up})$] key.
ENT	AIO Ai1 Out Y1 04 0.18%	After setting 0.00% Bias and pressing [ENT] key, it is displayed and the changed value is saved.

- AIO_06 Ai1 Out Y2 adjustment

Connect the voltage source or current source between Ai1 ~ 5G, multi-analog terminals of standard I/O devices.
Feed $10[\mathrm{~V}]$ or $20[\mathrm{~mA}]$ with AIO_05 In X2 set as 100% and then follow as below.

Key	LCD Display	Description
	AIO Ai1 Out Y2 06 100.00%	Initial Gain (Factory setting)
PROG	AIO Ai1 98.00% 06 Gain 100.00%	When pressing the [PROG] key, current output [\%] to input value is displayed on the first line and current setting gain on the second line.
A	AIO Ai1 100.00% O6 Gain 102.00%	If you want to adjust Gain to be 100.00% at 10 V input on the first line, adjust gain to be 102.00% using [$\mathbf{\Delta}(\mathrm{UP})$] key.
ENT	AIO Ai1 Out Y2 06 102.00%	After setting 102.00% Gain and pressing [ENT] key, it is displayed and the changed gain is saved.

The same procedure is applied to AIO_08 Ai1 -Out Y1 and AIO_10 Ai1 -Out Y2 and also to the other multi-function analog input

For example about multi-function analog input setting, In X1: 20\%, In X2: 70\%, Out Y1: 30\%, Out Y2: 80% for the $0 \sim 10 \mathrm{~V}$ input, analog command changes are as follows.

In X2 Change

Speed set

Out Y2(Gain) Change

Speed set

3) Criterion for command loss of Multi analog input Ai1 (AIO_1)

You can choose criterion for command loss of signal that is fed into multi-function analog input.

Code	Display	Definition		Unit	Function description	
		Name	Setting range			
AIO_12	Ai1 Wbroken	Criterion for command loss of Multi analog input Ai1	None		Do not set	analog loss
			Half of $x 1$		If the analog input according to AIO_02 i1 Source is under the range of below, it means analog loss.	
					$-10 \rightarrow 10 \mathrm{~V}$	$\begin{aligned} & (\text { (AIO_07 Ai1 -In X1)/2 } \\ & \sim(\text { (AIO_03 Ai1 In X1)/2 } \end{aligned}$
					$10 \rightarrow-10 \mathrm{~V}$	$\begin{aligned} & (\text { AIO_07 Ai1 -In X1)/2 } \\ & \sim(\text { AIO_03 Ai1 In X1)/2 } \end{aligned}$

There are same functions for choosing the criterion of command loss of the other multi-function analog input.

4) Time out for command loss of Multi-function analog input (AIO_73 Time out)

It means the time for judging the loss time of analog input. If the time that is set at AIO_73 Time Out is passed, it can be considered as analog input loss

Code
Display

6.8.3 Analog output

1) AIO_74 ~ 87 (description for multi-function analog output terminal, output source , Bias, Gain, setting absolute value)

SV-iV5 offers 2 analog outputs and according to the options of user, you can vary the description for using.
The output rage is $-10 \mathrm{~V} \sim+10 \mathrm{~V}$ and the types are as follows.

Key	Display	Function Definition		Unit	Function Description

The other multi-function analog output terminals have same functions. The following pictures is the diagram of Multifunction analog output A01 definition. It can be output as the dotted line according to the setting of A01 Source.

2) Adjusting Gain and Bias by Keypad

- AIO_76 AO1 Bias setting

It can be set the Bias value of analog output value. It can occur actual output more than the Bias value.

Key	LCD Display	Description
	AIO A01 Bias 76 0.0%	Initial Gain (Factory setting)
PROG	AIO Ao1 0.18% 76 Bias 0.00%	When pressing the [PROG] key, current output [\%] to input value is displayed on the first line and current setting bias on the second line.
A	$\begin{array}{\|ll\|} \hline \text { AIO Ao1 } & 0.00 \% \\ 76 \text { Bias } & 30.0 \% \\ \hline \end{array}$	If you want to adjust Bias so that output is occurs when is more than 30%, adjust it to be 30.0% using [$\mathbf{\Delta}(\mathrm{Up})$] key.
ENT	$1 / O \\) & A01 Bias \\ 76 & \(30.0 \%$	After adjusting Bias and pressing [ENT] key, it is displayed and the changed value is saved.

- AIO_77 AO1 Gain setting

You can set the slope of output so that max. output of analog output can be 10 V .

Key	LCD Display	
	AIO AO1 Gain 77 100.0 \%	Description
Initial Gain (Factory setting)		

In examples for output setting of multi-function analog output, according to setting of Bias, Gain and the absolute value at $-10 \sim 10 \mathrm{~V}$ input, the output waveform varies as below.

Initail Value (Bias : 0\%, Gain : 100\%)

Gain 200% setting

Bias 30\% setting

Absolute value setting

Multi-function analog output setting types and range are as below

Setting	Description	Output signal level
AiX Value	Analog input value	$\pm 10 \mathrm{~V}: 10 \mathrm{~V}, 20 \mathrm{~mA}$
PreRamp Ref	Pre Ramp Reference	$\pm 10 \mathrm{~V}:$ Max Speed
PostRamp Ref	Post ramp reference	$\pm 10 \mathrm{~V}:$ Max Speed
ASR Inp Ref	ASR Input Reference	$\pm 10 \mathrm{~V}:$ Max Speed
Motor Speed	Motor Rotating Speed	$\pm 10 \mathrm{~V}:$ Max Speed
Motor Spd Est	Estimated motor speed	$\pm 10 \mathrm{~V}:$ Max Speed
Speed Dev	Speed Deviation	$\pm 10 \mathrm{~V}:$ Rated slip $* 2$
ASR Out	ASR Output	$\pm 10 \mathrm{~V}: 250 \%$
Torque Bias	Torque bias	$+6 \mathrm{~V}: 150 \%$
PosTrq Limit	Positive Trq Limit	$10 \mathrm{~V}: 250 \%$
NegTrq Limit	Negative Trq Limit	$10 \mathrm{~V}: 250 \%$
RegTrq Limit	Regeneration Trq Limit	$10 \mathrm{~V}: 250 \%$
Torque Ref	Torque Reference	$\pm 10 \mathrm{~V}: 250 \%$
IqeRef	Torque current ref.	$\pm 10 \mathrm{~V}: 250 \%$ of rated torque current
Iqe	Torque current	$\pm 10 \mathrm{~V}: 250 \%$ of rated torque current
Flux Ref	Flux reference	$10 \mathrm{~V}:$ Flux rating 2
IdeRef	Flux Current ref.	$\pm 10 \mathrm{~V}:$ Rated flux current $* 2$
Ide	Flux Current	$\pm 10 \mathrm{~V}:$ Rated flux current $* 2$

6. Function Description

Setting	Description	Output signal level
ACR_Q Out	ACR output of axis Q	$+10 \mathrm{~V}: 300 / 600$
ACR_D Out	ACR output of axis D	$+10 \mathrm{~V}: 300 / 600$
VdeRef	Voltage reference of axis D	$+10 \mathrm{~V}: 300 / 600$
VqeRef	Voltage reference of axis Q	$+10 \mathrm{~V}: 300 / 600$
Out Amps RMS	Output current	$10 \mathrm{~V}:$ Rated current $* 2$
Out Volt RMS	Output voltage	$+10 \mathrm{~V}: 300 / 600$
Power	Output power	$+10 \mathrm{~V}:$ Rated output 2
DC Bus Volt	DC LINK voltage	$10 \mathrm{~V}: 500 / 1000 \mathrm{~V}$
Proc PI Ref	Process PI reference	$+10 \mathrm{~V}:$ Rating
Proc PI FB	Process PI Feedback	$+10 \mathrm{~V}:$ Rating
Proc PI Out	Process PI output	$+10 \mathrm{~V}:$ Rating
Mot NTC Temp	Motor temperature	$+10 \mathrm{~V}: 150^{\circ} \mathrm{C}$
Inv Temp	Inverter temperature	$+10 \mathrm{~V}: 100^{\circ} \mathrm{C}$
Inv i2t	Inverter i2t	$10 \mathrm{~V}: 150 \%$

CAUTION

- At the moment when the inverter is powered, the analog output may be unstable until before the controller board functions. Please keep this in mind if the analog output is used for control purpose.
- Analog output is not generated in the area prior to the shut down of the controller board which is triggered by the DC terminal voltage of the inverter becomes lower than the Low Voltage.

6.9 Sensorless Control Group (SLS_[][])

CON_01 has to be set to Sensorless to enable the sensorless group to be displayed on the keypad. The sensorless control refers to the control mode where motor speed (torque) is controlled without speed sensor (encoder). This controller provides sensorless speed mode only, not the sensorless torque mode. Since control is performed without speed sensor, additional parameter setting is required for control. Most of the parameters can be applied with the default values, however, it may be necessary to change the parameters according to the motor and/or load.

6.9.1 Jump function (SLS_00)

You can jump directly to the desired code using SLS_00.

- (Example) To jump to SLS_13;

Press the [PROG] key, and press [SHIFT/ESC] / [$\mathbf{\Delta}(\mathrm{Up})] /[\mathbf{V}($ Down $)]$ key to select 13. Press [ENT] key to conduct jumping as shown below. If the code selected for jumping is unavailable, the system jumps to the nearest next number.

SLS SpdEst PGain

$13 \quad 100.0$ \%

After a jumping, you can move to another code using the $[\mathbf{\Delta}(\mathrm{Up})] /[\mathbf{V}$ (Down)] keys.

6.9.2 Magnetic flux building time

- SLS_01(Flux BD Time)

Before the motor starts to run, DC voltage is applied to the stator winding in order that the stator winding carries current at a certain level (exiting current).

6.9.3 Magnetic flux estimator gain control

- SLS_02(FlxEst PGain) / SLS_03(FIxEst IGain)

The gain of the magnetic flux estimator used for sensorless control can be adjusted. The default value is applicable. Increase both P Gain and I Gain up to 200, if load response or speed is unstable.

6.9.4 Speed controller

In the sensorless control mode, a speed controller gain, which is different from the Speed control mode, is applied. If the speed response of the motor is slow or speed control error is large, observe the condition while increasing the SLS_04 up to 50 , at the step of 10 .

6.9.5 Speed estimator gain

This gain relates to the motor speed estimation. In most cases, it is not necessary to change the value.

6.9.6 Current controller cut-off frequency

This is the cut-off frequency of the current controller exclusively for sensorless control.

6.9.7 Regeneration avoiding operation

Since the control of the regenerative operation (load opposite to the direction of rotation) near the zero speed is unstable, this function increases speed command temporarily to get out of the regenerative operation range. When this function is active, the motor speed may be different from the speed specified by the speed command, according to the magnitude of the regenerative load.

6.9.8 Speed controller gain monitoring

In the sensorless mode, you can observe the calculated PI gain value of the speed controller in order to check and compare the value with the value of the sensored mode.

6.9.9 Magnetic flux estimator monitoring

The command and the feed-back value of the magnetic flux estimator can be monitored.

6.9.10 Stator resistance scale

This parameter is used to solve the problems in starting-up large motors whose capacity is 37 kW or above. For smaller capacity motors, this parameter can be set up by 100%, or for larger capacity motors, increase the value to 120%, which is the default setting.

Chapter 7 WEB Control Application

7.1 Change into WEB control mode

LCD loader display is indicated up to 32 digits in English letters and Arabic numerals, allowing you to directly check a variety of settings on screen.

Shown below are the appearance of LCD loader and the functions of each part.
When setting control (CON) group CON_02 (Application) to "WEB Control", LCD loader home screen is changed into web control mode as shown in the following figure. For the function of each key of the loader, please refer to 'Loader' in 4.1, Chapter 4.

7.1.1 Method of Changing into Web Control Mode

CON Application
 02 General Vect

Move to Application Mode of Control (CON) Group

CON Application
02 General Vect
Universal Vector Application Mode - Cursor appears (■)

CON $>$ Application

02 WEB Control
Change into WEB control mode using [$\mathbf{\Delta}(\mathrm{Up})$] key.

```
CON Application
02 WEB Control
```

Set to WEB control mode pressing [ENT] key..

7.2 Loader Display in WEB Control Mode

7.2.1 Home Screen

The status of the screen as above is called "Home Screen of Display Group" or "Home Screen", and you can return to this home screen by pressing SHIFT/ESC key. Each item on the screen shows the associated information as shown in the table below.

Item No.	Title	Function
1	Motor Speed	Indicate actual rotating speed of the motor in rpm
2	Motor Control Mode	SPD : Speed Control Mode TRQ : Torque Control Mode WEB : WEB control mode BX : Indication of Emergency Stop State
3	Detent Torque	Indicate detent torque occurred against 100\% rating output of the motor
4	Inverter Output Current	Indicate effective value for the inverter's actual output current

7. 3 change of Parameter Group

When selecting WEB control application mode WEB Control Group (WEB) is added following the user group.

Name of Group	LCD loader (Left upper corner of LCD)	Major Description
Display Group	DIS	Motor Speed, Motor Control Mode, Detent Torque, Inverter Output Current, User Selection Display, Process PID Output / Ref / Fdb, Current Failure State, User Group Display Setting
Digital I/O Group	DIO	Digital Input Parameter, Digital Output Parameter, etc.
Parameter Group	PAR	Parameter Initialization, Parameter READ / WRITE / LOCK / PASSWORD, Motor-related Constant, Auto-Tuning, etc.
Function Group	FUN	Operation Frequency, Operation Method, Stop Method, Acceleration/Deceleration Time and Pattern, Carrier Frequency, Electronic Thermal Selection, etc.
Control Group	CON	Control Mode, ASR PI Gain, Process PID Gain, Draw Control Setting, Droop Control-Related Constant, Torque Control-Related Constant, etc.
External Group	EXT	Parameter Setting for Communication Option Mode, etc.
Analog I/O Group	AIO	Analog Input- Related Parameter, Analog Output Parameter, etc.
WEB group	WEB	Diameter and tension control setting parameters, etc. at the time of Web Control

- For further details by groups except WEB group, please refer to Function in Chapter 6 of the Main Manual.

7.4 Parameter Setting required for Web Control

To conduct WEB control, be sure to set inverter parameters in following sequence. For further details of the function, please refer to the explanation on WEB group function.

7.4.1 WEB Control Mode Setting (Compulsory)

In order to use exclusively for web control, be sure to set the setting of CON_02 Application to "WEB Control". Upon setting it to "WEB CONTROL", Web group is displayed. When set to "General Vect" WEB group is not displayed.

```
CON\ Application
O2
    WEB Control
```


7.4.2 Line Speed Command Setting (Option)

iV5 speed command is available by selecting one out of "Analog, Keypad1, Keypad2, Option, Line SPD Ref, Line SPD Opt" in FUN_02 Spd Ref Sel. In order to use it exclusively for WEB CONTROL, be sure to use either "Line SPD Ref" or "Line SPD Opt" selected. At this time, CON_02 Application should be set to "WEB Control", and then you have to select line speed command in FUN_02 Spd Ref Sel. As the line speed command by analog input one of AIO_01 Ai1 Define, AIO_13 Ai2 Define, and AIO_25 Ai3 Define should be set to "Line Spd Ref". "Line SPD Opt" is the line speed command by communication, and therefore you may set this line speed command in the communication common area 0x050D. For further detail of communication, please refer to the communication common area of communication option borad manual.
(1) Line Speed Command by Analog Input

```
FUN\ Spd Ref Sel
02 Line SPD Ref
```

```
AIO\ Ail Define
01 Line SPD Ref
```

(2) Line Speed Command by Communication

```
FUN\ Spd Ref Sel
02 Line SPD Opt
```


7.4.3 Diameter Hold Function Setting (Option)

If you desire Hold rather than Computation during operation in exclusive using WEB CONTROL, you may use it after setting one of the multi function inputs (DIO_01 ~ DIO_07) to "Dia Hold". In case the multi-function input set is On, the diameter will not be computed any more maintaining the motor speed corresponding with the currently computed diameter only. When the multi-function input is Off, the diameter is computed again.

```
DIO\ P1 Define
01 Dia Hold
```


7. WEB Control Application

7.4.4 Diameter Initialization Function Setting (Compulsory)

When rewound to full diameter or web is completely unwound from the core, core should be replaced. In this case, you need to inform inverter of the core being replaced. A diameter initialization function can be selected out of multi-function input (DIO_01 ~ DIO_07), analog input, and communication. Diameter initialization source can be selected from WEB_03 DiaPresetSrc.
(1) Diameter initialization by multi-function input

In the diameter initialization by multi-function input, WEB_03 DiaPresetSrc is set to "Keypad". In this case, one of multi-function inputs (DIO_01 ~ DIO_07) should be set "Dia Preset". Then the rest of multi-function inputs are set to "Core size-L" and "Core size-H", and the preset value selected out of four diameter preset values of WEB-04 ~ WEB-07 by the following combination becomes the initial diameter value in accordance with On/Off of the multi-function input terminal where "Dia Preset" is set. The minimum of the initial diameter value is limited by the WEB_10 Min Diameter.

```
WEB\ DiaPresetSrc
03 Keypad
```

DIO	P2
02	Define
Dia Preset	

DIO	P3 Define
03	CoreSize-L

DIO P4 Define	
04	CoreSize-H

P3 ON/OFF	P4 ON/OFF	Applicable Preset Core Value
OFF	OFF	WEB-04 (Diam Preset 1)
ON	OFF	WEB-05 (Diam Preset 2)
OFF	ON	WEB-06 (Diam Preset 3)
ON	ON	WEB-07 (Diam Preset 4)

(2) Diameter Initialization by Analog

Diameter initialization by analog is conducted by setting WEB_03 DiaPresetSrc to "Analog". In this case, one of AIO_01 Ai1 Define, AIO_13 Ai2 Define, and AIO_25 Ai3 Define should be set to "Diam Preset". The minimum of the initial diameter value is limited by WEB_10 Min Diameter.

WEB	DiaPresetSrC
03	Analog

(3) Diameter Initialization by Communication

To conduct the diameter initialization by communication, WEB_03 DiaPresetSrc should be set to "Option". In this case, command can be set in communication common area 0×0510. For further detail of communication, please refer to communication common area of communication option borad manual.

```
WEB DiaPresetSrc
03 Option
```


7.4.5 Tension Disable Function Setting (Compulsory)

When using it exclusively for WEB CONTROL only, you may conduct tension control using LoadCell or Dancer. In this case, tension control carries out PID control where it is the Tension Disable Function to perform On/Off of the final output of this PID control. With WEB_27 Tension Enb set to "Enable", if Tension Disable is Off, it outputs the final output of PID control while if Tension Disable is On, it interrupts the final output of PID control. When WEB_27 Tension Enb is set to "Disable", Tension Disable Function is not applicable. To conduct the setting Tension Disable Function, you may use it by setting one of the multi-function inputs (DIO_01 ~ DIO_07) to "TensionDisable".

```
DIO\ P5 define
05 TensionDisable
```

```
WEB Tension Enb
27 Enable
```

WEB_27 should be set to "Enable"

7.4.6 Maximum Motor Speed Setting (Compulsory)

This is the setting of maximum rotating speed of the motor in minimum diameter to maintain the maximum line speed in case of exclusively using WEB CONTROL. This can be done by setting WEB_08 MaxMotor SPD. In case of maximum line speed in $100[\mathrm{~m} / \mathrm{m}]$, gear ratio in $5: 1$, and core diameter in 100 [mm], the motor maximum speed can be calculated in the following formula;

Max. Motor Speed $[\mathrm{rpm}]=$ Gear Ratio $\times \frac{\text { Max.Line Speed }}{\text { Core Diameter x } \pi}=5 \times \frac{100[\mathrm{~m} / \mathrm{m}]}{0.1[\mathrm{~m}] \times \pi}=1591.55[\mathrm{rpm}]$

```
WEb MaxMotor SPD
08 1591.5 rpm
```


7.4.7 Minimum Effective Line Speed Setting (Compulsory)

Minimum effective line speed is the minimum value of the line speed command that can compute the diameter. The line speed command at the time of web control should be larger than the minimum effective line speed. If the line speed command is small than this value, diameter computation is not operated. Setting is done in WEB_09

MinLine SPD.

```
WEB\ MinLine SPD
09 10.0 %
```


7.4.8 Minimum Diameter Setting (Compulsory)

Minimum diameter indicates the diameter of the smallest core in \% against the maximum diameter in full diameter. Minimum diameter is used as the minimum limit of diameter computation during operation, and the selected initial core value is restricted by the minimum diameter. Therefore, it should be set equal to or less than the diameter initialized by multi-function input, analog input, or communication. It can be set in WEB_10 Min Diameter.

```
WEB\ Min Diameter
10
    10.0 %
```


7.4.9 Diameter Computation Source Setting (Compulsory)

In WEB CONTROL mode, the diameter determines the motor speed keeping a certain line speed. At this time, as the diameter becomes less, motor rotating speed gets faster, while as the diameter become larger, the motor rotating speed gets slower, keeping a certain line speed. Accordingly, the diameter computation source is the function that decides whether to calculate the diameter computation by inverter internal S/W or to calculate the analog output of the diameter sensor attached to the system through the analog input terminal of the inverter.
(1) Diameter Computation Source when computing the diameter by inverter S/W

Computation of diameter by inverter S / W is to compute the diameter by the built-in S / W. You may set WEB_14 Diameter Src to "Internal".

WEB Diameter Src
14 Internal
(2) Diameter Computation Source when computing the diameter using diameter sensor

To compute the diameter using diameter sensor, you need, first, to set WEB_14 Diameter Src to "External", and then one of Analog input AIO_01 Ai1 Define, AIO_13 Ai2 Define, and AIO_25 Ai3 Define to "Diameter".

```
WEB\ Diameter Src
14 External
```

```
AIO Ail Define
01
    Diameter
```

Note) When the diameter computation source is set to "External", the diameter initialization function doesn't move.

7.4.10 Rewind/Unwind Function Setting (Compulsory)

Tension control is divided into three (3) method; First, Unwind Function - tension control in such manner as time goes by the diameter of material gets smaller keeping rewinding; Second, tension control of a fixed roll such as Bridle Roll or Nip Roll; Lastly, Wind or Rewind Function - tension control in such manner as time goes by the diameter of material gets larger keeping winding. In case of setting Rewind/Unwind function, please set to "Rewind" when winding the material in WEB_17 Re/Un Wind or when it is Bridle Roll or Nip Roll, while set to "Unwind" when unwinding the material. Motor rotating direction and splicing operation direction is decided depending on the setting of WEB_17 Re/Un Wind.
(1) When it is Bridle Roll or Nip Roll, or in case of winding the material;

```
WEB Re/Un Wind
17 Rewind
```

(2) In case of unwinding material

```
WEB Re/Un Wind
17 Unwind
```


7.4.11 Overwind/Underwind Function Setting (Compulsory)

In case of Rewinding or Unwinding, there are two kinds of method depending on the location when winding or unwinding the material; First - Overwinding that is winding or unwinding the material from the upper part, Second - Underwinding that is winding or unwinding the material from the lower part. Roll rotating direction and PID output are decided depending on the setting of inverter operation command, WEB_17 Re/Un Wind, and WEB_18 O/U Wind. Selection of Overwind/Underwind function can be set in WEB_18 O/U Wind.
(1) In case of winding or unwinding the material from the upper part;

```
WEB\ O/U Wind
18 Overwind
```

(2) In case of winding or unwinding the material from the lower part;

```
WEB\ O/U Wind
18 Underwind
```

Following figure and table shows line speed command, PID output command, splicing command direction following the setting of Rewind/Unwind function and Overwind/Underwind function. For further detail, please refer to the explanation on WEB group.

Rewind(Overwind) with Forward Run command

Figure 1. Roll Rotating Direction at the time of Rewind/Overwind Setting, Forward Direction Operation Command

Rewind(Under wind) with Forward Run command

Figure 2. Roll Rotating Direction at the time of Unwind/Overwind Setting, Forward Direction Operation Command

Unwind(Over wind) with Forward Run command

Figure 3. Roll Rotating Direction at the time of Unwind/Overwind Setting, Forward Direction Operation Command

Unwind(Under wind) with Forward Run command

Figure 4. Roll Rotating Direction at the time of Unwind/Overwind Setting, Forward Direction Operation Command

7.4.12 tension Reference input Setting (Compulsory)

In case of using loadcell for tension control sensor, tension reference is used for setting the set point of actual tension. In this case, final tension Reference, the output of set block becomes the reference input of PID control. When not using Taper function, Boost function, and Stall function, tension reference input value becomes the reference input of PID control. Tension reference input setting constitute three methods; by keypad, by analog input, and by communication. The sum of the values from these three method is input, that is the sum of WEB_19 Tension input + Analog input + communication. Furthermore, upper/lower limit is restricted within the range of 100.0 \% ~ 100.0 \%. At this time, WEB_28 PIDRef Sel should be set to "Taper Out". If dancer is used, it means controlling the position of dancer rather than actual tension. Therefore if WEB_28 PIDRef Sel is set to "Dancer Pos", the value set in tension input reference input is meaningless. If dancer taper function is used where analog output(AIO_74, AIO_79) is set to "Tension Out", its usage is meaningful. For the dancer position, like in the case of tension reference, the sum of WEB_29 Dancer Pos + Analog input + communication is input
(1) Tension Reference Input Setting by Keypad (In case of using loadcell)

To conduct tension reference input setting by keypad, you may set WEB_19 Tension Input.

```
WEB\ TensionInput
1 9
    50.0 %
```

(2) Tension Reference Input Setting by Analog Input (In case of using loadcell)

To conduct tension reference input setting by analog input, you may set one of Analog input AIO_01 Ai1 Define, AIO_13 Ai2 Define, and AIO_25 Ai3 Define to "Tension Ref".

```
AIO\ Ail Define
01 Tension Ref
```

(3) Tension Reference Input Setting by Communication (In case of using loadcell)

To conduct tension reference input setting by communication, you may use communication common area Address 0x0511. For further detail, please refer to communication common area data.
(4) Dancer Position Input Setting by Keypad (In case of using dancer)

To conduct dancer position input setting by Keypad, you may set WEB_28 PIDRef Sel to "Dancer Pos" and then set WEB_29 Dancer Pos.

```
WEB\ PIDRef Sel
28 Dancer Pos
```

```
WEB\ Dancer Pos
29
    50.0 %
```

(5) Dancer position input Setting by analog input (In case of using dancer)

To conduct dancer position input setting by analog input, you may set WEB_29 PIDRef Sel to "Dancer Pos", and then set one of Analog input AIO_01 Ai1 Define, AIO_13 Ai2 Define, and AIO_25 Ai3 Define to "Dancer Ref".

```
WEB\ PIDRef Sel
28 Dancer Pos
```

```
AIO\ Ail Define
01 Dancer Ref
```

(6) Dancer position input Setting by communication (In case of using dancer)

To conduct dancer position input setting by communication, you may set WEB_28 PIDRef Sel to "Dancer Pos" and then use communication common area address 0x0512.. For further detail, please refer to communication common area data.

```
WEB\ PIDRef Sel
28 Dancer Pos
```

All the functions related with PID control should be set. The relevant function codes are as follows;
-. WEB_30 ProcPID Kp1
-. WEB_32 ProcPID Ki1
-. WEB_42 PIDOGainRe or WEB_43 PIDOGainUn
-. Please operate it with the rest function codes related with PID control set to default. If any change required, please refer to the explanation on WEB group function.

7.4.13 PID Control Feedback Source Setting (Compulsory)

Setting the amount of feedback at the time of PID control can be conducted in two ways; First, PID feedback by analog input, Second, PID feedback by communication. You can set it in WEB_47 PID F/B Src.
(1) PID Feedback Setting by Analog Input

To conduct PID feedback setting by analog input, first, you may set WEB_47 PID F/B Src to "Analog", and then set one of Analog input AIO_01 Ai1 Define, AIO_13 Ai2 Define, and AIO_25 Ai3 Define to "Tension F/B".

```
WEB\ PID F/B Src
47 Analog
```

```
AIO\Ail Define
01 Tension F/B
```

(2) PID Feedback Setting by Communication

To conduct PID feedback setting by communication, first, you may set WEB_47 PID F/B Src to "Option" and then use communication common area Address 0×0513. For further detail, please refer to communication common area data. In case of using PID Feedback for communication, however, its feedback should be done with communication cycle not exceeding 10 [msec]. If communication cycle exceeds 10 [msec], PID feedback setting by communication should not be conducted.

```
WEB\ PID F/B Src
47 Option
```


7.5 Display Group (DIS_[][])

7.5.1 DIS_01 ~ 03 (User Selection Display 1, 2, and 3)

In the User Selection Display 1, 2, and 3, one of the followings selected can be indicated. Factory default is "PreRamp Ref" for DIS_01, "DC Bus Volt" for DIS_03, and "Terminal In" for DIS_03. If "WEB Control" is selected for CON_02 Application of Control(CON) Group, it displays the following. Please be noted that the displays at the time of WEB CONTROL are summarized only in this data.

Function Code	Loader Display	Name of Function	Unit	Explanation on Function
\sim	Diameter	Diameter	$\%$	Displays diameter in \% value
	Line SPD			
	Line Speed Command	$\%$	Display line speed command in \% value	
	Reel SPD	Roll Speed	$\%$	Display roll rotating speed in \% value

7. WEB Control Application

7.5.2 Digital Input/Output Group (DIO_[][])

1) DIO_01 ~ DIO_07 (Definition of multi-function input P1~7)

In case of selecting CON_02 Application of Control(CON) Group as "WEB Control", you may select the following function in addition. For further detail, please refer to the explanation on WEB group function.

(1) Diameter Hold function :

If the multi-function input terminal set to "Dia Hold" is On, it stops diameter computation and maintains the diameter value. At this time, the diameter hold function operates if one of the following conditions is satisfied.
(1) Condition of diameter initialization (Except function code initialization) is not satisfied, and the multi-function input terminal set to "Dia Hold" is On
(2) Condition of diameter initialization (Except function code initialization) is not satisfied, and the multi-function input terminal set to "Quick Stop" is On
(3) Condition of diameter initialization (Except function code initialization) is not satisfied, and the multi-function input terminal set to "Quick Stop" is On, and the multi-function input terminal set to "TensionDisable" is On, or WEB_27 Tension Enb is "Disable"
(4) Condition of diameter initialization (Except function code initialization) is not satisfied, and the multi-function input terminal set to "Jog Web" is On.
(5) Condition of diameter initialization (Except function code initialization) is not satisfied, and WEB Break occurs.
(2) Diameter Preset Function :

The multi-function input terminal set to "Dia Preset becomes On, when the diameter preset function operates if one of the following conditions is satisfied.
(1) The multi-function input terminal set to "Dia Preset becomes On, and the line speed command is less than the set value of WEB_09 MinLine SPD
(2) The multi-function input terminal set to "Dia Preset becomes On, and the multi-function input terminal set to "TensionDisable" is On.

When initializing the function code in PAR_01 Para. Init, the initialized value of diameter in this case is always initialized with the set value of WEB_04 Diam Preset 1.
(3) Jog operation function :

Jog operates if one of the following conditions is met where the multi-function input terminal set to "Jog Web" becomes On.
(1) FUN_01 Run/Stop Src is set to "Terminal 1", and only the multi-function input terminal set to "Jog Web" is On
(2) FUN_01 Run/Stop Src is set to "Keypad", and only the multi-function input terminal set to "Jog Web" is On after the FWD button is pressed in keypad
(3) When FUN_01 Run/Stop Src is set to "Terminal 1", the inverter doesn't operate if both Fx signal and Jog Web signal are On.
2) Multi-function Auxiliary Output Terminal Definition (AX1~AX2) and Open collector (OC1) output

When CON_02 Application of Control (CON) Group is selected as "WEB Control", you can select the following function in addition. For further detail, please refer to WEB group function explanation.

Functio nCode	Loader Display	Definition of Function		Unit	Explanation of Function
		Name	Setting Range		
DIO_41	AX1 Define	Web Break Detection	WEB Break	\%	Detects and outputs the short of Web
		Up to Speed Detection	Up to Spd	\%	Detects and outputs the deviation between line speed command and actual line speed
		False Core Detection	False Core	\%	Outputs if the diameter is less than the set value in WEB_16

The rest of the multi-function output terminal has the same function. In the standard input/output board, however,
AX 1 and AX 2 are relay output while OC 1 is open collector output.

7.5.3 Analog Input/Output Group (AIO_[][])

If you select "WEB Control" at CON_02 Application, you can select following functions more. The function description is simple, so refer to WEB Group function description for more details.

Function Code	Loader Display	Definition of Function		Unit	Explanation of Function
		Name	Setting Range		
AIO_01	Ai1 Define	Line Speed Command	Line SPD Ref	\%	The set value of WEB_08 MaxMotor SPD is maximum line speed command $0 \sim 100 \%$ where the input is $0 \sim 10 \mathrm{~V}$. In case of $\pm 10 \mathrm{~V}$ input, it recognizes $0 \sim 10 \mathrm{~V}$.
		Tension Command	Tension Ref	\%	I t means the maximum tension command value is ± 10 where the inpu
		Dancer Position Command	Dancer Ref	\%	It means dancer command value is $\pm 100 \%$ where the input is $\pm 10 \mathrm{~V}$
		Taper Command	Taper Ref	\%	It means taper command value is $\pm 100 \%$ where the input is $\pm 10 \mathrm{~V}$
		Tension Feedback	Tension F/B	\%	It means the amount of tension feedback is $\pm 100 \%$ where the input is $\pm 10 \mathrm{~V}$
		Diameter Input	Diameter	\%	In case of using the diameter sensor, it means the diameter is $\pm 100 \%$ where the input is $\pm 10 \mathrm{~V}$
		Diameter Initialization	Diam Preset	\%	In case of using diameter initialization by analog input, it means the diameter is $\pm 100 \%$ where the input is $\pm 10 \mathrm{~V}$
AIO_74	AO1 Define	Final Line Speed Command	Line Speed	\%	Outputs the final line speed command that is the sum of line speed command and PID controller output
		Final Tension Command	Tension Out	\%	Outputs the final tension command after computing Taper, Boost, and Stall
		Diameter	Diameter	\%	Outputs the current diameter

7.5.4 Function Group (FUN_[][])

If CON_02 Application of Control (CON) Group is selected as "WEB Control", you may select the following function in addition. For further detail, please refer to the explanation on WEB group function.

Function Code	Loader Display	Definition of Function		Unit

Note) In case of setting FUN_02 Spd Ref Sel to the other value than "Line SPD Ref" or "Line SPD Opt", you cannot make exact Web control. Therefore, please set "Line SPD Ref" or "Line SPD Opt" without fail.

7.5.5 Control Group (CON_[][])

CON_02 Application allows you the setting of general vector control mode and WEB control mode. In case of conducting Web control, please set "WEB Control" without fail. Only when setting "WEB Control", you can confirm all the function and Web group necessary for WEB control in the keypad.

Functio nCode	Loader Display	Definition of Function		Unit	Explanation of Function
		Name	Setting Range		
	Application	application control	General Vect		It is set when using the general vector function.
				It is set when using Web control function.	

7.6 Function Code of WEB Application Group (WEB_[][])

Code No.	Comm. Addr	Code Name	LCD DISPLAY	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
WEB_00	-	Selection of Function Code	Jump Code	$1 \sim 59$			Yes	
WEB_01	7C01	Diameter Size Display	Diameter	5.0 ~ 100.0	\%	10.0	No	7-18
WEB_02	7C02	Selected Initial Diameter	Current Core (Display Only)	0 (Diam Preset 1) 1 (Diam Preset 2) 2 (Diam Preset 3) 3 (Diam Preset 4) 4 (Analog) 5 (Option)		0 (Diam Preset 1)	No	7-18
WEB_03	7C03	Setting of the Type of Diameter Initialization	DiaPresetSrc	0 (Keypad) 1 (Analog) 2 (Option)		0 (Keypad)	No	7-18
WEB_04	7C04	$1^{\text {st }}$ Diameter Initial Value	Diam Preset 1	WEB_10 ~ 100.0	\%	10.0	No	7-20
WEB_05	7C05	2nd Diameter Initial Value	Diam Preset 2	WEB_10 ~ 100.0	\%	15.0	No	7-20
WEB_06	7C06	3rd Diameter Initial Value	Diam Preset 3	WEB_10 ~ 100.0	\%	20.0	No	7-20
WEB_07	7C07	4th Diameter Initial Value	Diam Preset 4	WEB_10 ~ 100.0	\%	25.0	No	7-20
WEB_08	7C08	Motor Maximum Rotating Speed with Min. Diameter	MaxMotor SPD	75.0 ~ 3600.0	rpm	300.0	Yes	7-21
WEB_09	7C09	Minimum Effective Line Speed	MinLine SPD	0.0 ~ 100.0	\%	5.0	No	7-21
WEB_10	7C0A	Minimum Diameter	Min Diameter	$5.0 \sim 100.0$	\%	10.0	No	7-22
WEB_11	7C0B	Selection of Acceleration/Deceleration Time Setting in case of WEB Control	AccDecWeb	0 (No) / 1 (Yes)		1 (Yes)	No	7-22
WEB_12	7C0C	Acceleration Time in case of WEB Control	Acc TimeWeb	$0.00 \sim 6000.0$	sec	0.50	Yes	7-22
WEB_13	7C0D	deceleration Time in case of WEB Control	Dec TimeWeb	$0.00 \sim 6000.0$	sec	0.50	Yes	7-22
WEB_14	7C0E	Setting of the Type of Diameter Computation	Diameter Src	$\begin{aligned} & \hline 0 \text { (Internal) } \\ & 1 \text { (Exernal) } \\ & \hline \end{aligned}$		0 (Internal)	No	7-22
WEB_15	7C0F	Time Constant of Diameter Computation LPF	Diameter LPF	$0.01 \sim 300.00$	sec	5.00	Yes	7-23
WEB_16	7C10	False Core Value	False Core	$0.0 \sim 50.0$	\%	5.0	Yes	7-23
WEB_17	7 C 11	Rewind/Unwind Setting	Re/Un Wind	0 (Rewind) 1 (Unwind)		0 (Rewind)	No	7-23
WEB_18	7C12	Overwind /Underwind Setting	O/U Wind	0 (Overwind) 1 (Underwind)		0 (Overwind)	No	7-24
WEB_19	7 C 13	Tension Setting \quad Reference \quad Input	TensionInput	-100.0 ~ 100.0	\%	0.0	Yes	7-26
WEB_20	7C14	Taper Type Setting	Taper Type	$\begin{aligned} & \hline 0 \text { (None) } \\ & 1 \text { (Hyperbolic) } \\ & 2 \text { (Linear) } \\ & \hline \end{aligned}$		0 (None)	No	7-26
WEB_21	7C15	Taper Input Value Setting	Taper Input	-100.0 ~ 100.0	\%	0.0	No	7-26
WEB_22	7C16	Boost Type Setting	Boost Type	$\begin{aligned} & \hline 0 \text { (Proportional) } \\ & 1 \text { (Fixed) } \\ & \hline \end{aligned}$		0 (Proportional)	No	7-27
WEB_23	7 C 17	Boost Input Value Setting	Boost Input	$0.0 \sim 50.0$	\%	0.0	No	7-27
WEB_24	7C18	Stall Type Setting	Stall Type	$\begin{aligned} & \hline 0 \text { (Proportional) } \\ & 1 \text { (Fixed) } \\ & \hline \end{aligned}$		0 (Proportional)	No	7-28
WEB_25	7C19	Stall Input Value Setting	Stall Input	$0.0 \sim 50.0$	\%	0.0	No	7-28
WEB_26	7C1A	Ramp Time Setting of Tension Reference Input	Tension Ramp	$0.00 \sim 600.00$	sec	5.00	Yes	7-29
WEB_27	7C1B	Tension Control Enable Setting	Tension Enb	0 (Disable) 1 (Enable)		1 (Enable)	No	7-30
WEB_28	7C1C	PID Reference Type Setting	PIDRef Sel	$\begin{aligned} & 0 \text { (Dancer Pos) } \\ & 1 \text { (Taper Out) } \end{aligned}$		1 (Taper Out)	No	7-30
WEB_29	7C1D	Dancer Reference position Setting	Dancer Pos	-100.0 ~ 100.0	\%	0.0	Yes	7-31
WEB_30	7C1E	Process PID P1 Gain Setting	ProcPID Kp1	0.0 ~ 999.9	\%	10.0	Yes	7-31
WEB_31	7C1F	Process PID P2 Gain Setting	ProcPID Kp2	0.0 ~ 999.9	\%	0.0	Yes	7-31
WEB_32	7C20	Process PID I1 Gain Setting	ProcPID Ki1	$0.0 \sim 100.0$	sec	5.0	Yes	7-31
WEB_33	7C21	Process PID I2 Gain Setting	ProcPID Ki2	$0.0 \sim 100.0$	sec	0.0	Yes	7-31

Code No.	Comm. Addr	Code Name	LCD DISPLAY	Setting Data			Adjustment During Run	PAGE
				Range	Unit	Default		
WEB_34	7C22	PID Gain Ramp Time Setting	PIDGain RAMP	0.1 ~ 100.0	sec	1.0	Yes	7-32
WEB_35	7 C 23	Process PID P Gain Profiler Type Setting	P Profiler	$\begin{gathered} 0 \text { (Linear) } \\ 1 \text { (Square) } \\ 2 \text { (Cubed) } \\ 3 \text { (Quadratic) } \\ \hline \end{gathered}$		0 (Linear)	No	7-32
WEB_36	7C24	Process PID P Gain Profiler Gain Setting	P Apt Gain	-1.00 ~ 10.00		0.00	No	7-32
WEB_37	7C25	Process PID D Gain Setting	ProcPID Kd	$0.0 \sim 100.0$	\%	0.0	Yes	7-33
WEB_38	7C26	Process PID D Gain LPF	ProcKd LPF	$0.0 \sim 100.0$	sec	2.0	Yes	7-33
WEB_39	7 C 27	Process PID Positive Limit	Proc Pos Lmt	-100.0 ~ 100.0	\%	100.0	Yes	7-33
WEB_40	7C28	Process PID Negative Limit	Proc Neg Lmt	-100.0 ~ 100.0	\%	-100.0	Yes	7-33
WEB_41	7C29	Process PID Output LPF Time Constant	PID Out LPF	$0.00 \sim 100.00$	sec	1.00	Yes	7-34
WEB_42	7C2A	Rewind-Use Process PID Output Gain	PIDOGainRe	-250.0 ~ 250.0	\%	0.0	Yes	7-34
WEB_43	7C2B	Unwind-Use Process PID Output Gain	PIDOGainUn	-250.0 ~ 250.0	\%	0.0	Yes	7-34
WEB_44	7C2C	PID Controller Type Setting	PID Type	$\begin{gathered} 0 \text { (Proportional) } \\ 1 \text { (Fixed) } \\ \hline \end{gathered}$		0 (Proportional)	No	7-34
WEB_45	7C2D	Minimum PID Controller Output Setting	Min FPID	0.0 ~ 50.0	\%	10.0	No	7-34
WEB_46	7C2E	Time of Maintenance of PID Controller After Break	PIDHoldTime	0.0 ~ 100.0	sec	5.0	Yes	7-36
WEB_47	7C2F	Process PID Feedback Type Setting	PID F/B Src	$\begin{aligned} & \hline 0 \text { (Analog) } \\ & 1 \text { (Option) } \\ & \hline \end{aligned}$		0 (Analog)	No	7-36
WEB_48	7C30	WEB Break Detection Function Setting	WB Enable	0 (No) / 1 (Yes)		0 (No)	Yes	7-38
WEB_49	7C31	Setting of Time Delayed until Web Break Detection after Inverter Operation	INV WB Delay	0.1 ~ 600.0	sec	1.0	Yes	7-38
WEB_50	7C32	Time Delayed for WEB Break Detection	WB Delay	0.1 ~ 600.0	sec	1.0	Yes	7-38
WEB_51	7C33	WEB Break Detection Level	WB Level	$0.0 \sim 100.0$	\%	0.0	Yes	7-38
WEB_52	7C34	Up to Speed Judgment Setting	UTS Enable	0 (No) / 1 (Yes)		0 (No)	Yes	7-39
WEB_53	7C35	Up to Speed Level	UTS Level	$0.0 \sim 100.0$	\%	0.0	Yes	7-39
WEB_54	7 C 36	Quick Stop time Setting	Quick Stop	$0.0 \sim 100.0$	sec	1.0	Yes	7-39
WEB_55	7 C 37	Jog Speed Setting	JogSpd Web	$0.0 \sim 100.0$	\%	10.0	Yes	7-40
WEB_56	7C38	Jog Acceleration/Deceleration Time Setting Select	JogTime Sel	0 (No) / 1 (Yes)		1 (Yes)	No	7-40
WEB_57	7 C 39	Jog Acceleration Time Setting	JogAcc Time	$0.00 \sim 6000.0$	sec	5.00	Yes	7-40
WEB_58	7C3A	Jog deceleration time Setting	JogDec Time	$0.00 \sim 6000.0$	sec	5.00	Yes	7-40
WEB_59	7C3B	Splicing Level Setting	Splice Level	$0.0 \sim 100.0$	\%	0.0	Yes	7-40

7.7 WEB Group Function

7.7.1 Jump code(WEB_00)

You may directly jump into the code desired using WEB_00.
(Example) If you want to move to WEB_03;
Press [PROG] key, and then press [SHIFT/ESC] / [$\mathbf{\Delta}$ UP] / [\mathbf{V} DOWN] keys to set 3.
Then you may move to the following mode by pressing [ENT] key.

```
WEB\ DiaPresetSrc
03 Keypad
```

After jump movement, you can move to the other code using [$\mathbf{\Delta U P}$] / [$\boldsymbol{\nabla}$ DOWN] key.

7.7.2 Diameter Display

1) WEB_01 Diameter : Diameter Size Display

It indicates in \% value the sizes of the diameter computed by the inverter internal S / W or the diameter of the analog output of the diameter sensor built in the inverter stem input through the analog input terminal.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_01	Diameter	Diameter Size Display	$5.0 \sim 100.0$	$\%$	10.0

2) WEB_02 Current Core: Display of Initial Diameter Selected

It indicates the initial diameter selected. It is displayed as follow depending on the setting of WEB_03 DiaPresetSrc. First, when set to "Keypad", depending on the combination of multi-function input (DIO_01 ~ DIO_07) it displays "Diam Preset 1 ~ Diam Preset 4". Second, when set to "Analog", it displays "Analog". Lastly, when set to "Option", it displays "Option".

Function Code	Loader Display	Name of Function	Set Range	Uni \mathbf{t}	Factory Default
WEB_02	Current Core	Displays initial diameter selected (Display Only)	Diam Preset 1 Diam Preset 2 Diam Preset 3 Diam Preset 4 Analog Option		

7.7.3 Diameter Initialization

1) WEB_03 DiaPreset Src : Diameter Initialization Type Setting

The core will be replaced when winding out the material in case of rewinding or when unwinding out the material. In this case, it requires informing the inverter of the core being replaced when winding or unwinding the material again, and then initializing the computed diameter. Core initialization method constitutes the methods by multi-
function input terminal, by analog input terminal, and by communication.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_03	DiaPresetSrc	Diameter Initialization Type Setting	Keypad Analog Option	Keypad	

(1) Initialization of Core by Multi-function Input Terminal
-. Initialization of Core by Multi-function Input Terminal requires setting WEB_03 to "Keypad" first.
-. Select one of multi-function input terminals (DIO_01 ~ DIO_07), and set it to "Dia Preset".
-. Select two of multi-function input terminals (DIO_01 ~ DIO_07), and set them to "CoreSize-L" and "CoreSize-H".
-. Core can be initialized according to On/Off of multi-function input terminal set to "Dia Preset". The core value initialized becomes, however, one of the initial values set in WEB_04 ~ WEB_07 according to On/Off of the multi-function input terminal set to "CoreSize-L" and "CoreSize-H".
-. In case of using the core in one kind only, you don't need to set "CoreSize-L" and "CoreSize-H". In this case, only WEB_04 Diam Preset 1 is applied to the core.

Example) The initial diameter value when DIO_01, DIO_02, and DIO_03 are set to "Dia Preset", "CoreSize-L", and "CoreSize-H" respectively.


```
DIOD P1 define
01 Dia Preset
```

```
DIOD P2 define
02 CoreSize-L
```

```
DIO\ P3 define
O3 CoreSize-H
```

P2 ON/OFF	P3 ON/OFF	Preset Core Value Applied
OFF	OFF	WEB_04 Diam Preset 1
ON	OFF	WEB_05 Diam Preset 2
OFF	ON	WEB_06 Diam Preset 3
ON	ON	WEB_07 Diam Preset 4

(2) Initialization of Core by Analog Input Terminal
-. Initialization of Core by Analog Input Terminal requires setting of WEB_03 to "Analog" first.
-. Select one of multi-function input terminals (DIO_01 ~ DIO_07) and then set it to "Dia Preset".
-. Select one of analog input terminal definitions (AIO_01, AIO_13, AIO_25), and then set it to "Diam Preset".
-. You may initialize the diameter according to On/Off of multi-function input terminal set to "Dia Preset". The diameter value initialized, however, becomes the value of analog input terminal set, and it is restricted to WEB_10 Min Diameter.

Example) Setting DIO_01 and AIO_01 to "Dia Preset" and "Diam Preset" respectively

```
WEB\ Preset Src
03 Analog
```

```
DIO\ P1 define
01 Dia Preset
```

```
AIO\ Ail Define
01 Diam Preset
```

(3) Initialization of Core by Communication
-. Initialization of Core by Communication requires setting of WEB_03 to "Option" first.
-.Select one of multi-function input terminals (DIO_01 ~ DIO_07), and then set it to "Dia Preset".
-.You may initialize the diameter according to On/Off of multi-function input terminal set to "Dia Preset". The diameter value initialized becomes the value of communication set, and is restricted to WEB_10 Min Diameter.
2) WEB_04 Diam Preset 1 : 1st diameter initial value
3) WEB_05 Diam Preset 2 : 2nd diameter initial value
4) WEB_06 Diam Preset 3 : 3rd diameter initial value
5) WEB_07 Diam Preset 4: 4th diameter initial value

The diameter initialization in tension control (Diam Preset) means empty core at the time of winder operation, while full core at the time of Unwinder operation. In case of initialize the core with multi-function input terminal, it is set with one of WEB_04 Diam Preset 1 ~ WEB_07 Diam Preset 4 according to the WEB_04 Diam Preset 1 ~ WEB_07 Diam Preset 4 set to "CoreSize-L"and "CoreSize-H". In case all the defined multi-function input terminals are Off or are not set with the multi-function input, the initial value of diameter is set to "Diam Preset 1 ". If applying to bridle roll or nip roll instead of general winder and unwidner, you may set all the initial values to 100.0 \%. In the core initialization using analog and communication, any initial value of WEB_04 Diam Preset 1 ~ WEB_07 Diam Preset 4 is not applied. The reference of the set value is the diameter initial value expressed in [\%] at the time of full diameter.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_04	Diam Preset 1	1st Core initial value	WEB_10 ~100.0	$\%$	10.0
WEB_05	Diam Preset 2	2nd Core initial value	WEB_10 ~100.0	$\%$	15.0
WEB_06	Diam Preset 3	3rd Core initial value	WEB_10 ~100.0	$\%$	20.0
WEB_07	Diam Preset 4	4th Core initial value	WEB_10 ~ 100.0	$\%$	25.0

The condition of diameter initialization is as follow.
(3) Multi-function input terminal set to "Dia Preset" is On and the line speed command is less than the set value of WEB_09 MinLine SPD
(4) Multi-function input terminal set to "Dia Preset" is On and the multi-function input terminal set to "TensionDisable" is On
(5) In case of initializing the function code in PAR_01 Para. Init. In this case, however, the diameter initialization value is always initialized with the set value of WEB_04 Diam Preset 1.

7.7.4 Speed setting when doing WEB controlling

1) WEB_08 MaxMotor SPD : Motor Maximum Rotating Speed in case of Minimum Diameter

This function indicates the motor maximum rotating speed in case of the minimum diameter with the maximum line speed command given. Accordingly, to maintain the exact line speed, it requires setting the exact motor rotating speed in WEB_08 MaxMotor SPD. Setting can be conducted as follow. Assuming maximum line speed in $100[\mathrm{~m} / \mathrm{m}]$, gear ratio in 5:1, and core diameter in 100 [mm], the maximum motor speed set value becomes $1591.5[\mathrm{rpm}$].

Max. motor speed $[\mathrm{rpm}]=$ Gear Ratio $\times \frac{\text { Max. LineSpeed }}{\text { Core Diameter x } \pi}=5 \times \frac{100[\mathrm{~m} / \mathrm{m}]}{0.1[\mathrm{~m}] \times \pi}=1591.55[\mathrm{rpm}]$

```
WEB\ MaxMotor SPD
08 1591.5 rpm
```

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_08	MaxMotor SPD	Motor Maximum Rotating Speed in case of Minimum Diameter	$75.0 \sim 3600.0$	rpm	300.0

Note) After the installation of the system, be sure to check the motor rotating speed using the gauge when the maximum line speed command is given by the empty core.

2) WEB_09 MinLine SPD : Minimum Effective Line Speed

This function is the function related with diameter computation and diameter initialization. The set value is the minimum value of the line speed command that can compute the diameter, that is expressed in [\%] in proportion of maximum line speed (100[\%]). At the time of winder operation, the line speed command should be larger than the set value to compute the diameter. If the line speed command is smaller than the set value, the diameter
computation is not conducted. If the line speed command is smaller than the set value, and the multi-function input terminal set to "Dia Preset" is On, the diameter can be initialized. The reference of the set value is the [\%] of maximum line speed.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_09	MinLine SPD	Minimum Effective Line Speed	$0.0 \sim 100.0$	$\%$	5.0

3) WEB_10 Min Diameter : Minimum Diameter

It indicates the diameter of the smallest core [\%], which is used as the minimum limit of diameter computation at the time of Taper computation, P Gain Profiler computation, and Unwinder operation, the minimum limit in diameter computation at the time of Unwinder operation, and the minimum limit in the diameter initialization using analog communication, diameter initialization using communication, diameter computation using diameter sensor. In the inverter S/W, if the set value of WEB_10 Min Diameter is larger than the set value of WEB_04 Diam Preset 1 ~ WEB_07 Diam Preset 4, it is limited to the set value of WEB_10 Min Diameter. Therefore, the set value of WEB_10 Min Diameter should be set to the set value equal to or less than that of WEB_04 Diam Preset 1 ~ WEB_07 Diam Preset 4. If applying Bridle Roll or Nip Roll other than general winder and unwinder, the set value of WEB_10 Min Diameter should be set as 100[\%].

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_10	Min Diameter	Minimum Diameter	$5.0 \sim 100.0$	$\%$	10.0

4) WEB_11 AccDecWeb : Selecting Acceleration/Deceleration Time Setting at the time of Web Control

5) WEB_12 Acc TimeWeb : Acceleration Time at the time of Web Control

6) WEB_13 Dec TimeWeb : Deceleration Time at the time of Web Control

When setting WEB_11 AccDecWeb to "No", WEB_12 Acc TimeWeb and WEB_13 Dec TimeWeb are not displayed on Keypad, but acceleration/deceleration time of FUN_40 Acc Time-1, FUN_41 Dec Time-1is applied at the time of Web control. When set to "Yes", WEB_12 Acc TimeWeb and WEB_13 Dec TimeWeb are displayed on Keypad, and then the set value of WEB_12 Acc TimeWeb and WEB_13 Dec TimeWeb are applied to the acceleration/deceleration time, and the reference of acceleration/deceleration reference is "Max Speed".

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_11	AccDecWeb	Acceleration/Deceleration Time Setting at the time of Web Control	No Yes	Yes	
WEB_12	Acc TimeWeb	Acceleration Time at the time of Web Control	$0.00 \sim 6000.0$	sec	0.50
WEB_13	Dec TimeWeb	Deceleration Time at the time of Web Control	$0.00 \sim 6000.0$	sec	0.50

7.7.5 Diameter Computation

1) WEB_14 Diameter Src : Diameter Computation Type Setting

This function is the function code that determine whether to calculate the diameter computation by inverter internal S / W or to receive the input diameter via the analog output of the diameter sensor attached to the system through the analog input terminal of the inverter. In case of setting WEB_14 Diameter Src to "Internal", diameter is computed by the inverter internal S/W, while if set to "External", the diameter is input by the diameter sensor. Accordingly, when set to "External", the diameter is not computed in the diameter inverter, and furthermore, the diameter preset function doesn't operate.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_14	Diameter Src	Diameter Computation Type Setting	Internal External		Internal

2) WEB_15 Diameter LPF : Diameter Computation LPF Time Constant

When computing the diameter, to avoid the sudden change in diameter you may set low pass filter(LPF). This set value operates with LPF delay time. In case set the set value in large scale, diameter computation becomes slow, while setting in small scale, diameter computation becomes quicker.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_15	Diameter LPF	Diameter Computation LPF Time Constant	$0.01 \sim 300.00$	sec	5.00

3) WEB_16 False Core : False Core Value Setting

In case the diameter received by the inverter through the diameter computation S / W inside the inverter or by the system where the diameter sensor is built in is smaller than the set value in the WEB_16 False Core, it is judged as "False Core". At this time, if one of multi-function output DIO_41 AX1 Define ~ DIO_43 OC1 Define is set to "False Core", the set multi-function output is On. The reference of the set value is [\%] of the diameter.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_16	False Core	False Core Value Setting	$0.0 \sim 50.0$	$\%$	5.0

7.7.6 Winder setting

1) WEB_17 Re/Un Wind: Rewind/Unwind Setting

There are three methods in general at the time of tension control. First, to control the tension of the fixed roll using Bridle Roll or Nip Roll. Second, to wind the Web as in the Winder in which the diameter of Winder get larger as time goes by. Lastly, to unwind the Web as in the Unwinder in which the diameter of Unwinder gets smaller as time goes by. In this function, you may set to "Rewind" in case of winding the web as in the Winder or control the
tension of the fixed roll using Bridle Roll or Nip Roll while set to "Unwind" in case of unwinding the web as in the Unwinder.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_17	Re/Un Wind	Rewind/Unwind Setting	Rewind Unwind		Rewind

2) WEB_18 0/U Wind : Overwind/Underwind Setting

There are two methods in case of winding or unwinding the web with Winder or Unwinder. First, to wind or unwind the web from up to down centered on the roll. Second, to wind or unwind the web from down to up centered on the roll. This function is the code deciding the way of winding or unwinding the web. According to the set value of the function code, the motor rotating direction is decided. The following figure and the table show the direction of line speed command, PID output command, and splicing command according to WEB_17 Re/Un Wind and WEB_18 O/U Wind settings.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_18	O/U Wind	Overwind/Underwind Setting	Overwind Underwind		Overwind

Wind	Rewind		Unwind	
	Overwind	Underwind	Overwind	Underwind
Line Speed direction	Positive	Negative	Positive	Negative
PID direction	Positive	Negative	Negative	Positive
Splicing direction	Positive	Negative	Negative	Positive

Table 1. Line Speed, PID and Splicing Direction in case of Forward Direction Command

Wind	Rewind		Unwind	
	Over wind	Under wind	Over wind	Under wind
Line Speed direction	Negative	Positive	Negative	Positive
PID direction	Negative	Positive	Positive	Negative
Splicing direction	Negative	Positive	Positive	Negative

Table 2. Line Speed, PID and Splicing Direction in case of Reverse Direction Command

Direction of PID output, Line Speed

Run command (Forward: 1, Reverse :0)

Line Speed, PID direction according to the Command and Function Code

Rewind(Overwind) with Forward Run command

Rewind/Overwind Setting, Roll Rotating Direction in case of Forward Direction Operation

Rewind(Under wind) with Forward Run command

Rewind/Underwind Setting, Roll Rotating Direction in case of Forward Direction Operation

Unwind(Over wind) with Forward Run command

Unwind/Overwind Setting, Roll Rotating Direction in case of Forward Direction Operation

Unwind(Under wind) with Forward Run command

Unwind/Underwind Setting, Roll Rotating Direction in case of Forward Direction Operation

7.7.7 Tension controlling setting

1) WEB_19 Tension Input: tension Reference Input Setting

In case of using loadcell in the tension control you have to set tension reference. If using dancer, you have to set the position reference of dancer. In this case, Taper, Stall and Boost are required according to the system requirement. This function code is the function code where tension reference is set when using the loadcell as the tension control-use sensor. Tension reference is input with the sum of the analog input value at the time of setting WEB_19 Tension Input and analog input (Ai1 ~ Ai3 Define) to "Tension Ref" and the set value of Address 0x0511 in common area. For further detail, please refer to Block Diagram at the time of Web Control. In case of using dancer, this function code plays the role giving the dancer Taper function. In case of setting the set value of WEB_28 PIDRef Sel to "Dancer Pos", and setting WEB_29 Dancer Pos, WEB_19 Tension Input can be set with the input tension of the dancer. At this time, you may connect with the dancer after setting one of analog output (AIO_74 AO1 Define, AIO_79 AO2 Define) to "Tension Out".

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_19	Tension Input	Tension Reference Input	$-100.0 \sim 100.0$	$\%$	0.0

2) WEB_20 Taper Type: Taper Type Setting

3) WEB_21 Taper Input: Taper Amount Input

In case of Winder, as the diameter gets larger, the tension toward the center direction of the diameter increases. Desired tension is, as shown in the Figure 12, toward the direction of dot line. The tension occurs from the stress, however, and therefore the sum of two vectors work as the total tension. To maintain the tension toward the desired direction, you may use this taper function. There are three methods of using taper function. First; it is not to use taper function, that is tape function is not applicable in case of powering On after setting WEB_20 to "None", setting WEB_20 to the others than "None" but setting WEB_21 Taper Input to $0.0[\%]$, and setting one of multifunction inputs (DIO_01 ~ DIO_07) to "Taper Disable". Second; it is to set to "Hyperbolic" when the tension
changes showing non-linear behavior depending of the diameter. Third; it is to set to "Linear", when the tension changes showing linear behavior depending on the diameter.

By inputting the amount of taper, the sum of the set value of WEB_21 Taper Input, the input value of analog input terminal set to Taper Ref", and the set value of address 0×0514 in the common area is decided as the amount of final taper. In general, the value larger than 0 is input as the taper input, but in specific case, the value less than 0 can be input, which means as the diameter gets larger, the tension becomes larger.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_20	Taper Type	Taper Type	None Hyperbolic Linear		None
WEB_21	Taper Input	Taper Input	$-100.0 \sim 100.0$	$\%$	0.0

Tension Composition Diagram

Taper Type and Tension according to the Amount of Taper Set

4) WEB_22 Boost Type : Boost Type

5) WEB_23 Boost Input : Boost Input

This function is used when Web is wound with the stronger tension than the preset tension. If WEB_22 Boost Type is set to "Fixed", the sum of WEB_23 Boost Input set value and the set value of tension becomes the final set value of tension. For example, with the taper function unused, if the set value of tension is $50[\%]$, and WEB_23 Boost Input set value is $20[\%]$, the final set value of tension becomes $70[\%]$. If WEB_22 Boost Type is set to "Proportional", the set value of tension multiplying by WEB_23 Boost Input set value is added. For example, with the taper function unused, if the set value of tension 50[\%] and WEB_23 Boost Input set value is 20[\%], the set
value of final tension becomes 60[\%]. In the boost function, the set value of WEB_23 Boost Input is not always 0, but it just operates in case of the multi-function input terminal (DIO_01 ~ DIO_07) set to "Boost Enable" being On.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_22	Boost Type	Boost Type	Proportional Fixed		Proportional
WEB_23	Boost Input	Boost Input	$0.0 \sim 50.0$	$\%$	0.0

6) WEB_24 Stall Type : Stall Type

7) WEB_25 Stall Input : Stall Input

This function is used when Web is wound with the weaker tension than the preset tension. In case of setting WEB_24 Stall Type to "Fixed", the set value of tension less WEB_25 Stall Input set value becomes the set value of final tension. For example, with the taper function unused, if the set value of tension is 50[\%], and WEB_24 Stall Input set value is 20[\%], the set value of final tension becomes 30[\%]. If WEB_24 Stall Type is set to "Proportional", the set value of tension multiplying by WEB_25 Stall Input set value is subtracted. For example, with the taper function unused, if the set value of tension is $50[\%$] and WEB_25 Stall Input set value is $20[\%]$, the set value of final tension becomes 40[\%]. In the Stall function, the set value of WEB_25 Stall Input is not always 0, but it just operates in case of the multi-function input terminal (DIO_01 ~ DIO_07) set to "Stall Enable" in On.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_24	Stall Type	Stall Type	Proportional Fixed		Proportional
WEB_25	Stall Input	Stall Input	$0.0 \sim 50.0$	$\%$	0.0

Tension Reference taking Taper, Boost, and Stall into account

8) WEB_26 Tension Ramp : Setting of Ramp in Tension Reference Input

When the machinery starts, Web is in loose state because of lower tension. Therefore the sudden tension command at earlier operation stage may cause unexpected change in tension. To avoid such phenomenon when the command value of loadcell or dancer is applied to the step, the change can be led in smooth manner so that the normal PID controller movement can be carried out by setting the ramp time of the tension input command value. If WEB_26 Tension Ramp is set to $10.0[\mathrm{sec}]$, and the final PID command set to 50 [\%], the tension command will operate as shown in the Figure 15.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_26	Tension Ramp	Ramp Time of Tension Reference Input	$0.00 \sim 600.00$	\sec	5.00

Tension Command where Ramp Time is applied

9) WEB_27 Tension Enb : Setting of Tension Control Enable Function

This is the function of conducting On/Off of the final output of PID controller. If the multi-function input terminal (I/O_01 ~I/O_07) set to "TensionDisable" is Off, and WEB_27 Tension Enb becomes "Enable", PID controller operates. In any other case, PID controller doesn't operates any longer.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_27	Tension Enb	Tension Control Enable Function Setting	Disable Enable		Enable

7.7.8 WEB PID Control

1) WEB_28 PIDRef Sel : PID Reference Type Setting

When loadcell is used at the time of tension control, PID controller controls actual tension. Accordingly, the reference input of PID controller should be the output of taper computation. Therefore, the set value of WEB_28 PIDRef Sel in the tension control where loadcell is used becomes "Taper Out". If dancer is used, it controls the actual dancer position where the set value of WEB_28 PIDRef Sel is "Dancer Pos", and in this case to carry out the tension control of web, you need to set one of analog outputs (AI/O_74 AO1 Define, AIO_79 AO2 Define) to "Tension Out", and then connect it with dancer. At this time WEB_29 Dancer Pos becomes the reference input of PID controller.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_28	PIDRef Sel	PID Reference Type Setting	Dancer Pos Taper Out		Taper Out

2) WEB_29 Dancer Pos: Dancer Reference Position Setting

To maintain the desired tension, you should set the reference position of dancer. In this case it follows the reference position value of dancer with the deviation between the reference position of dancer set to WEB_29 Dancer Pos and the actual dancer position fed back from outside using PID controller. The reference position of dancer is the sum of the set value of WEB_29 Dancer Pos and "Dancer Ref" set to Analog inputs (AIO_01 Ai1 Define, AIO_13 Ai2 Define, AIO_25 Ai3 Define).

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_29	Dancer Pos	Dancer Reference Position	$-100.0 \sim 100.0$	$\%$	0.0

3) WEB_30 ProcPID Kp1 : Process PID Kp1 Gain Setting

4) WEB_31 ProcPID Kp2 : Process PID Kp2 Gain Setting

P Gain means the output of PID controller becomes $100[\%$] when 100% error is maintained where I Gain is 0 . Furthermore, P Gain 50[\%] means the output of PID controller becomes 50[\%] when 100% error is maintained where I Gain is 0 .

When setting multi-function input(DIO_01 ~ DIO_07) to "PI Gain Sel" and then powering it On, P Gain is transferred from WEB_30 ProcPID Kp1 to WEB_31 ProcPID Kp2 during WEB_34 PIDGain RAMP Time. For further detail on gain transfer, please refer to WEB_34 PIDGain RAMP.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_30	ProcPID Kp1	Process PID P1 Gain Setting	$0.0 \sim 999.9$	$\%$	100.0
WEB_31	ProcPID Kp2	Process PID P2 Gain Setting	$0.0 \sim 999.9$	$\%$	0.0

5) WEB_32 ProcPID Ki1 : Process PID Ki1 Gain Setting

6) WEB_33 ProcPID Ki2 : Process PID Ki2 Gain Setting

I Gain $1[\mathrm{sec}]$ means the time taken for the output to be accumulated up to $100[\%$] when $100[\%$] Error is maintained where P Gain is 0 . After setting the multi-function input (DIO_01 ~ DIO_07) to "PI Gain Sel" and then powering it On, I Gain is transferred from WEB_32 ProcPID Ki1 to WEB_33 ProcPID Ki2 during the WEB_34 PIDGain RAMP Time. For further detail on gain transfer, please refer to WEB_34 PIDGain RAMP.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_32	ProcPID Ki1	Process PID I1 Gain Setting	$0.0 \sim 100.0$	sec	5.0
WEB_33	ProcPID Ki2	Process PID I2 Gain Setting	$0.0 \sim 100.0$	sec	0.0

I controller

7) WEB_34 PIDGain RAMP : PID Gain Ramp Time Setting

Sudden change in PI Gain may cause unexpected oscillation. To avoid such phenomenon, you need to carry out setting in slow way for a certain period of time when you transfer gain. This is the function of transferring the gain as shown in the Figure when setting multi-function input(DIO_01 ~ DIO_07) to "PI Gain Sel" and then powering it On.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_34	PIDGain RAMP	PID Gain Ramp Time Setting	$0.1 \sim 100.0$	sec	1.0

PI Gain Ramp Time
8) WEB_35 P Profiler : Process PID P Gain Profiler Type Setting
9) WEB_36 P Apt Gain : Process PID P Gain Profiler Gain Setting

In case of Winder, the inertia increases as the diameter increases when winding the web. Therefore, P Gain has to change to achieve the same winding performance regardless of the increase of inertia following the increased diameter. There exist four (4) types of profiles; Linear, Square, Cubed, and Quadratic being decided in accordance with the kind of web. WEB_35 P Profiler is the function code that sets the type of P Gain Profiler, while WEB_37 P Apt Gain is the function code that sets the gain applicable to P Gain Profiler. If WEB_36 P Apt Gain is set as 0 , Profiler function doesn't operate.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_35	P Profiler	Process PID P Gain Profiler Type Setting	Linear Square Cubed Quadratic		Linear
WEB_36	P Apt Gain	Process PID P Gain Profiler Gain Setting	$-1.00 \sim 10.00$	0.00	

P Gain applicable where P Gain : 100.0[\%], Adaptation Gain : 2.00, Core Size : 10.0[\%]

10) WEB_37 ProcPID Kd : Process PID D Gain

11) WEB_38 ProcKd LPF : Process PID D Gain LPF Time Constant

WEB_37 ProcPID Kd and WEB_38 ProcKd LPF constitute D controller of Process PID controller. When the error deviation is $100[\%]$ where WEB_37 ProcPID Kd setting is 100 [\%], it means D controller output before going through LPF is 100 [\%]. Without LPF, D controller generates outputs when the error changes only. As this characteristic makes the system unstable, LPF is a necessary function in D controller.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_37	ProcPID Kd	Process PID D Gain Setting	$0.0 \sim 100.0$	$\%$	0.0
WEB_38	ProcKd LPF	Process PID D Gain LPF Time Constant	$0.0 \sim 100.0$	sec	2.0

12) WEB_39 Proc Pos Lmt : Process PID Positive Limit Setting
13) WEB_40 Proc Neg Lmt : Process PID Negative Limit Setting

WEB_39 Proc Pos Lmt and WEB_40 Proc Neg Lmt are the upper and lower limits of the final output of Process PID controller. WEB_39 Proc Pos Lmt sets the (+) limit of PID controller output value, while WEB_40 Proc Neg Lmt sets (-) limit of PID controller output value. This function expresses the PID controller output in \% value. For example, if error is 100[\%] and P Gain of PID controller is set as 200[\%], the output of PID controller before restricted becomes

200[\%]. If the upper limit of PID controller is set as 100[\%], however, the final output of PID controller becomes 100[\%].

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_39	Proc Pos Lmt	Process PID Positive Limit	$-100.0 \sim 100.0$	$\%$	100.0
WEB_40	Proc Neg Lmt	Process PID Negative Limit	$-100.0 \sim 100.0$	$\%$	-100.0

14) WEB_41 PID Out LPF : Process PID output LPF

This function sets LPF time constant against the process PID controller final output value. As the time constant increases, the responsiveness of PID controller output gets slower, but its stability increases.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_41	PID Out LPF	Process PID output LPF	$0.00 \sim 100.00$	sec	1.00

15) WEB_42 PIDOGainRe : Rewind-use Process PID Output Gain

16) WEB_43 PIDOGainUn : Unwind-use Process PID Output Gain

This function sets the final output gain of Process PID controller. You may set WEB_42 PIDOGainRe in case of winding the web, that is, when setting "Rewind" in WEB_17 Re/Un Wind. On the contrary, you may set WEB_43 in case of unwinding the web, that is when setting "Unwind" in WEB_17 Re/Un Wind. The set value is the [\%] value against the maximum line speed command. For example, if you set WEB_44 PID Type to "Fixed" and PID output Gain to $10[\%$] where the line speed command is $50[\%$], the final line speed command becomes $60[\%]$. In case the set value of PID output Gain is (-), PID controller operates in reverse direction. This is useful in the sensor in inverse proportion. For example, if the highest pressure falls under the $0[\mathrm{~V}]$ voltage of loadcell and the final pressure falls under $10[\mathrm{~V}]$ voltage of loadcell, you may use it by setting PID output Gain as $(-)$ value.
In case of Process PID control, if the line speed command is $\mathbf{0}$ where PID output is in minus value, the motor may rotate in reverse direction. To avoid this, iV5 is programmed in such manner that it cannot be operated in reverse direction when the PID output is larger than the line speed command in internal S/W.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_42	PIDOGainRe	Rewind-use Process PID Output Gain	$-250.0 \sim 250.0$	$\%$	0.0
WEB_43	PIDOGainUn	Unwind-use Process PID Output Gain	$-250.0 \sim 250.0$	$\%$	0.0

17) WEB_44 PID Type : PID Controller Type Setting

18) WEB_45 Min FPID : Minimum PID Output Setting

In this function, there are two (2) types of Process PID controllers. If WEB_44 PID Type is set to "Fixed", a certain value of PID controller is output regardless of the line speed command. That is, the final line speed command is the sum of line speed command and PID output. For example, if the line speed command is $50[\%$] and PID output is $10[\%]$, the final line speed command becomes 60[\%]. If the line speed command is changed from 50[\%]
to $60[\%]$, the final line speed command becomes $70[\%]$.
A. When WEB_44 PID Type is "Fixed", the final line speed command is;

Final Line Speed Command [\%] = Line Speed Command [\%] + PID Output [\%]

When WEB_44 PID Type is set to "Proportional", PID output is generated in proportion with the line speed command. That is, the final line speed command is the sum of line speed command and the PID output in proportion with the line speed command. For example, if the speed command is 50[\%] and PID output is 10[\%], the final line speed command becomes 55[\%]. In this case, the line speed command is larger than the set value of WEB_45 Min FPID.
B. When WEB_44 PID Type is "Proportional", the final line speed command (in case of line speed command > WEB_45 Min FPID) is;

Final Line Speed Command $[\%]=$ Line Speed Command $[\%]+\frac{\text { PID Output [\%] x Line Speed Command [\%]/100 }}{100}$

In case of initial operation, the system should maintain the tension of web starting with initial web tension and 0[\%] speed command in possession. In the above formula, if the line speed command is $0[\%]$, the final line speed command becomes $0[\%]$, where the tension of web cannot be maintained. Accordingly, to maintain the tension of web, if the line speed command is less than WEB_45 Min FPID, the final line speed command under the following formula can be applied.
C. When WEB_44 PID Type is "Proportional", the final line speed command (In case of line speed command < WEB_45 Min FPID) is;

Final Line Speed Command $[\%]=$ Line Speed Command $[\%]+\frac{\text { PID Output }[\%] \times W E B _45}{100}$

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_44	PID Type	PID Controller Type Setting	0 (Proportional) 1 (Fixed)		0 (Proportional)
WEB_45	Min FPID	Minimum PID Output Setting	$0.0 \sim 50.0$	$\%$	10.0

19) WEB_46 PIDHoldTime : PID controller Maintenance Time after Hold

In case of Inverter Hold Command, the motor speed is reduced to 0 . In case the output deviation of Process PID controller exists, the motor is operated by the deviation of PID output. To avoid this, this is the function where it conducts PID operation for the period of time set to WEB_46 PIDHoldTime, and then the motor carries out free run and stops by the friction force of the system. If the output of Process PID is 0 , the motor stops regardless of the time set to WEB_46 PIDHoldTime.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_46	PIDHoldTime	PID Controller Maintenance Time after Hold	$0.0 \sim 100.0$	sec	5.00

20) WEB_47 PID F/B Src : Process PID Feedback Source Setting

WEB_47 PID F/B Src is the function where the feedback source is set when Process PID controller is used. When set to "Analog", the definition of analog input terminal (AIO_01, AIO_13, AIO_25) is set to "Tension F/B", and such amount of feedback is input to the inverter. In this case, the amount of feedback is " 0 " unless the terminal is defined. In case set to "Option", it is to input the amount of feedback to inverter through communication. In this case, the amount of feedback is " 0 " unless such value is input.

In case of setting to "Option", please conduct communication cycle not exceeding 10[ms].

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_47	PID F/B Src	PID Feedback Source	Analog Option		Analog

PID Block

Process PID Block Diagram

7. WEB Control Application

7.7.9 WEB Break Setting

1) WEB_48 WB Enable : WEB Break Detection Function Setting
2) WEB_49 INV WB Delay : Setting of Delayed Time until WEB Break Detection after Inverter Operation
3) WEB_50 WB Delay : Delayed Time in WEB Break Detection
4) WEB_51 WB Level : WEB Break Detection Level

In the web control mode, the web is broken if it has tension it can bear. In this case, if the system continues the web control without such breakage of the web detected, it may cause more serious accident. Accordingly, the inverter is set so as to force the output of PID controller to be " 0 " when the web breakage is detected, when the diameter computation is not carried out. Furthermore, if one of multi-function output DIO_41 AX1 Define ~ DIO_43 OC1 Define of the inverter is set to "WEB Break", it lets out the output contact point showing the state of "breakage". In WEB_48 WB Enable mode, you can set WEB Break Detection function. If it is set to "Yes", please set the multi-function output and conduct its connection so that the higher-level controller can receive the output. In case of WEB_49 INV WB Delay, for a certain period of time from the moment the inverter received the operation command, it has lower value of tension feedback, and accordingly it can be misjudged as web break. This is the function, for such situation, not to detect the web break for a certain period of time set in WEB_49 INV WB Delay since the moment the inverter has started the operation. There exists a number of noises in the actual site, and because of such external factor, the amount of feedback less than the set value can be posted at some moment in WEB_51 WB Level, which can be judged as WEB Break. Therefore, WEB_50 WB Delay sets WEB Break Detection Delayed Time. WEB_51 WB Level is the code to set WEB Break Detection Level where the amount of tension feedback is set in [\%] value.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_48	WB Enable	WEB Break Detection Function Setting	No Yes		No
WEB_49	INV WB Delay	Delayed Time until Web Break Detection after Inverter Operation	$0.1 \sim 600.0$	sec	1.0
WEB_50	WB Delay	Delayed Time in WEB Break Detection	$0.1 \sim 600.0$	sec	1.0
WEB_51	WB Level	WEB Break Detection Level	$0.0 \sim 100.0$	$\%$	0.0

WEB Break Block Diagram

7. WEB Control Application

7.7.10 Up to Speed Setting

1) WEB_52 UTS Enable: Up to Speed Judgment Setting
2) WEB_53 UTS Level: Up to Speed Level Setting

When Web control is operates in smooth manner, the line speed command is almost similar to the actual line speed. It is because Process PID controller operates reducing such deviation when there occurs the deviation between line speed command and actual line speed. However, too quick line speed command, problem of the motor or mechanical problem can lead to the discrepancy of the line speed command. This may cause serious problem to the system. WEB_52 UTS Enable and WEB_53 UTS Level are the functions to judge such situations. If the deviation between line speed command and actual line speed is larger than WEB_53 UTS Level, and one of multi-function output DIO_41 AX1 Define ~ DIO_43 OC1 Define is set to "Up to Spd", it can be acknowledged when you let out the output contact point. WEB_53 UTS Level is the [\%] value against the line speed command. It has 2[\%] Band to avoid chattering. If the set value of WEB_53 UTS Level is too low, fault operation may happen by the excessive state even near the set level.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_52	UTS Enable	Up to Speed Judgment Setting	No Yes		No
WEB_53	UTS Level	Up to Speed Level Setting	$0.0 \sim 100.0$	$\%$	0.0

Up to Speed Block Diagram

7.7.11 WEB_54 Quick Stop : Quick Stop Time Setting

It is the function where emergency stop is available when the emergency occurs during sequential operation. If the multi-function input terminal (DIO_01 ~ DIO_07) set to "Quick Stop" is On, it conducts emergency stop maintaining the tension of web for the same deceleration time regardless of the current motor rotating speed, that is, the period of time set to WEB_54 Quick Stop. Even after it completely stopped, the tension of the web is still kept. For example, if the winder roll speed is 170 [rpm] and the gear ratio is $10: 1$, the motor rotating speed is 1700 [rpm]. If unwinder
roll speed is 140 [rpm] and the gear ratio is $11: 1$, the motor rotating speed is $1540[\mathrm{rpm}]$. In this case, if the set value of WEB_54 Quick Stop of such two inverters is 5[sec], it stops after 5[sec] although the rotating speed of two motors are not same where the multi-function input terminal (DIO_01 ~ DIO_07) set to "Quick Stop" is On.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_54	Quick Stop	Quick Stop Time Setting	$0.0 \sim 100.0$	sec	1.0

7.7.12 WEB Jog Setting

1) WEB_55 JogSpd Web: Jog Speed Setting
2) WEB_56 JogTime Sel : Jog Acceleration/Deceleration Time Setting Select
3) WEB_57 JogAcc Time: Jog "Acceleration Time Setting
4) WEB_58 JogDec Time: Jog Deceleration Time Setting

If the multi-function input (DIO_01 ~ DIO_07) set to "Jog Web" is On, Process PID controller operates, but doesn't conduct diameter computation. In this case the set value of WEB_55 JogSpd Web is calculated in \% of WEB_08 MaxMotor SPD, deciding the motor rotating speed. For example, if the set value of WEB_08 MaxMotor SPD is $300[\mathrm{rpm}]$ and the jog speed set to WEB_55 JogSpd Web is 20[\%] where the multi-function input (DIO_01 ~ DIO_07) set to "Jog Web" becomes 0 , the motor rotating speed is $60[\mathrm{rpm}]$. In case of jog operation, the jog can set the Acceleration/Deceleration Time instead of the basic Acceleration/Deceleration Time (FUN_40 Acc Time-1, FUN_41 Dec Time-1). When WEB_56 JogTime Sel is set to "No", the basic Acceleration/Deceleration Time is applied during jog operation mode, while when set to "Yes", WEB_57 JogAcc Time and WEB_58 JogDec Time are applied during jog operation mode.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_55	JogSpd Web	Jog speed Setting	$0.0 \sim 100.0$	$\%$	10.0
WEB_56	JogTime Sel	Jog Acceleration/Deceleration Time Setting Select	No Yes		Yes
WEB_57	JogAcc Time	Jog Acceleration Time	$0.00 \sim 6000.0$	sec	5.00
WEB_58	JogDec Time	Jog Deceleration Time	$0.00 \sim 6000.0$	sec	5.00

7.7.13 Splicing Level Setting

In the splicing system, the winder core should be replaced without any change in line speed command. When splicing, the process PID controller doesn't operate in the empty core. Therefore, the multi-function input terminal (DIO_01 ~ DIO_07) set to "TensionDisable" should be On. The splicing function doesn't operate during jog operation. In case the web is wound in new core in the winder, sudden load change occurs. Such sudden change in load makes the speed slower, which causes low tension of web, and finally the web becomes drooped. To avoid such phenomenon, you may operate it at higher speed than the line speed command in splicing state. WEB_59 Splice Level is the [\%] value for the line speed command. For example, if the line speed command is $50[\mathrm{~m} / \mathrm{m}]$, and the set value of WEB_59 Splice Level
is $10[\%]$, the final line speed command of the empty core at the time of splicing operation becomes $55[\mathrm{~m} / \mathrm{m}]$.

Function Code	Loader Display	Name of Function	Set Range	Unit	Factory Default
WEB_59	Splice Level	Splicing Level Setting	$0.0 \sim 100.0$	$\%$	0.0

$\xrightarrow{\text { Line Direction }}$
Splicing Operation Status Diagram

Speed Calculator

Line Speed Command Block Diagram

Chapter 8 - Communication Functions

Abstract

8.1 Introduction

This chapter is to explain SV-iV5 inverter serial communication's standard, installation, and program with PC or FA computers. The communication method was designed to drive or monitor SV- iV5 inverter series in long distance through PC or FA computers. 1) Benefits under the communication method

It is easy to apply inverters into automations in factories, because inverters can be driven or monitored according to user's programs. * possible to monitor or modify parameters through computers (example: T_acc, T_dec, frequency, and lost command) * Interface configuration regarding to RS-485 standard: 1) Possible to execute communications between the inverter and computers by numerous companies 2) Capable of controlling up to 16 inverters at a time with single computer due to the multi-drop link system 3) Interface for noise immunity environment

Inverters can communicate through RS-232/485 converters with computers that are embedded with the RS-232 card. The standard and performance of converters may vary by manufactures, but share basic functions. More details about standard and guideline are advised to follow under the manual provided by specific manufactures.

| Caution |
| :--- | :--- |
| Must understand this manual thoroughly before installation and operation.
 By violating this manual may result in serious injury or damages to other components. |

Chapter 8 Communication Function

8.2 Specifications
\qquadCategory Specifications Communication method RS-485 Transfer form Bus type, Multi drop Link System Inverter series SV-iV5 series Converter Embedded with RS-232 Number of connected inverters Max. 16 Transfer distance Max. $1,200 \mathrm{~m}$ (recommend within 700m) Recommended cable for $0.75 m^{2}(18 A W G)$, Shield Type Twisted-Pare Wire Installation form Connect to S+,S-, CM of the terminal block Communication Power Use the power that are insulated from the inner part of inverter as communication Communication Speed Select out of 1,200/2,400/9,600/19,200/38,400 bps Control procedure Unsynchronized communication system Communication system Half duplex system Letter system Modbus-RTU: BINARY LS Bus: ASCII Stop bit length 1 bit/2 bit Sum check 2 byte Parity check None/Even/Odd

8.3 Structure of communication system

RS-485 terminal connection: connect to S+, S- of the terminal block (see Chapter 4 Wiring)
Number of connectable inverters: up to 16 units
Number of extendable addresses(St ID):1~250
Length of effective communication lines: possibly $1,200 \mathrm{~m}$ in total. Keep it below 700 m for stable communication.
Please use communication Repeater to enhance the communication speed if you have to use communication cable above $1,200 \mathrm{~m}$ or to connect additional inverter. It is effective to reduce the noise influence from communication by environment.

Chapter 8 Communication Function

8.4 Basic setting

Group	No.	Function Display	Name	Setting Range	Unit	Default
EXT	32	Int485 St ID	Station adress setting	1~250	-	1
	33	Int485 Baud	Communication Baudrate	$\begin{aligned} & 1200 \\ & 2400 \\ & 4800 \\ & 6900 \\ & 19200 \\ & 38400 \end{aligned}$	bps	9600
	34	Int485 Mode	Communication frame configuration	$\begin{aligned} & \text { D8 / PN / S1 } \\ & \text { D8 / PN / S2 } \\ & \text { D8 / PE / S1 } \\ & \text { D8 / PO / S } \end{aligned}$	-	D8/ PN / S1
	35	Int485 Delay	Response delay time	2~1000	mSec	5

- COM-32 Int485 St ID: sets inverter address No. COM-33 Int485 BaudR: sets the communication speed at up to 38400bps.
- COM-34 Int485 Mode: selects the communication frame composition and sets the data length, parity confirmation method and number of stop bits.

No.	Display	Description
0	D8 / PN / S1	8 bit data / parity not checked / 1 stop bit
1	D8 / PN / S2	8 bit data / parity not checked / 2 stop bits
2	D8 / PE / S1	8 bit data / even No. parity check / 1 stop bit
3	D8 / PO / S1	8 bit data / odd No. parity check / 1 stop bit

- COM-35 Resp Delay: the 485 communication(Modbus-RTU or LS INV 485) built in iV5 acts as a slave. The slave iV5 responds to the Master after the period of time set in this function code. The communication between the master and slave can be kept smooth by setting this function code properly in a system in which the master is not able to deal with the quick response of the slave.

Group	No.	Function Display	Name	Setting Range	Unit	Default
EXT	36	Int485 LostC	Protection action for communication lost	None FreeRun Stop		None
	37	Int485 LostT	Protection action timer for communication lost	$1.0 \sim 30.0$	sec	1.0

Chapter 8 Communication Function

Judgment standard and Protection in case of a problem with the communication for a certain period of time
If communication is lost for a time set inEXT_37 when command is set at EXT_36, inverter will be operated as below.

Setting Item	Function
None	Speed command is directly the operating frequency without protective movements.
Free-Run	The inverter blocks output. The motor continues free run.
Stop	Decelerating stop

FUN_01 Run/Stop Src is Int485 prior to run this function. If communication is disconnected for EXT_37, keypad display is as below. 'rpm' value in lower line is current operation speed.

0.0 rpm		
00	LOI	500 rpm

8.5 Special communication area setting

Entire iV5 communication memory map

Communication Area	Memory Map	Description
Common iS5 compatible communication area	Oh0000 ~ OhOOFF	Area compatible with is5
Common iS7 communication area	Oh0300 ~ Oh037F	Inverter monitoring area
	Oh0380 ~ 0h03DF	Inverter control area
	Oh03E0 ~ Oh03FF	Inverter memory control area
Common communication area	Oh0500 ~ 0h05FF	Common communication area

Chapter 8 Communication Function

8.6 Communication Protocol

8.6.1 LS INV 485 protoco

Computer and other hosts are the master and the inverter is the slave. The slave inverter responds to the master's request for writing/reading.

[Basic Form]

Request:

ENQ	Address No.	CMD	Data	SUM	EOT
1 byte	2 bytes	1 byte	n bytes	2 bytes	1 byte

Normal Response:

ACK	Address No.	CMD	Data	SUM	EOT
1 byte	2 bytes	1 byte	$\mathrm{n} * 4$ bytes	2 bytes	1 byte

Error response:

NAK	Address No.	CMD	Error Code	SUM	EOT
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

Description:
Requests begin with ENQ and end with EOT.
Normal responses begin with ACK and ends with EOT.
Error responses begin with NAK and ends with EOT.
Address No. refers to the inverter No. and represented by 2 byte ASCII-HEX.
(ASCII-HEX: hex representation consisting of ' 0^{\prime} ~ ' 9 ', ' A^{\prime} ~ ' F ')
CMD: in capitals (IF Error if in small letters)

Character	ASCII-HEX	Command
' R^{\prime}	52 h	Read
' W^{\prime}	57 h	Write
$~ ' \mathrm{X} '$	58 h	Monitor registration request
' Y '	59 h	Monitor registration implementation

Data: represented in ASCII-HEX
E.g.) If data value is $3,000: 3000 \rightarrow{ }^{\prime} 0^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{B}^{\prime \prime} 8 \mathrm{~h} \rightarrow 30 \mathrm{~h} 42 \mathrm{~h} 42 \mathrm{~h} 38 \mathrm{~h}$

Error code: two can be displayed ASCII (20h ~ 7Fh)
Transmission/reception buffer magnitude: transmission $=39$ byte, reception $=44$ byte
Monitor registration buffer: 8 Word
SUM: inspection by making sum to check communication errors
SUM $=$ ASCII-HEX form of the 8 lowest bits of (Address No. + CMD + data)
E.g.) Request for reading of one of 3000 address numbers as follows

ENQ	Address No.	CMD	Address No.	Number of Addresses	SUM	EOT
05 h	"01"	"R"	" 3000 "	"1"	"AC"	04 h
1	2	1	4	1	2	1

SUM $={ }^{\prime} 0^{\prime}+{ }^{\prime} 1^{\prime}+{ }^{\prime} \mathrm{R}^{\prime}+{ }^{\prime} 3^{\prime}+{ }^{\prime} 0^{\prime}+{ }^{\prime} 0^{\prime}+{ }^{\prime} 0^{\prime}+{ }^{\prime} 1^{\prime}$

$$
\begin{aligned}
& =05 \mathrm{~h}+30 \mathrm{~h}+31 \mathrm{~h}+52 \mathrm{~h}+33 \mathrm{~h}+30 \mathrm{~h}+30 \mathrm{~h}+30 \mathrm{~h}+31 \mathrm{~h} \\
& =1 \underline{\mathrm{~A} 7 \mathrm{~h}} \quad \text { (Control value excluded: ENQ, ACK, NAK, etc.) }
\end{aligned}
$$

Hex	Dec	ASCII									
00h	0	NUL	20h	32	SP	40h	64	@	60h	96	
01h	1	SOH	21h	33	!	41h	65	A	61h	97	a
02h	2	STX	22h	34	"	42h	66	B	62h	98	b
03h	3	ETX	23h	35	\#	43h	67	C	63h	99	c
04h	4	EOT	24h	36	\$	44h	68	D	64h	100	d
05h	5	ENQ	25h	37	\%	45h	69	E	65h	101	e
06h	6	ACK	26h	38	\&	46h	70	F	66h	102	f
07h	7	BEL	27h	39	,	47h	71	G	67h	103	g
08h	8	BS	28h	40	(48h	72	H	68h	104	h
09h	9	HT	29h	41)	49h	73	I	69h	105	i
OAh	10	LF	2Ah	42	*	4Ah	74	J	6Ah	106	j
OBh	11	VT	2Bh	43	+	4Bh	75	K	6Bh	107	k
OCh	12	FF	2Ch	44	,	4Ch	76	L	6Ch	108	I
ODh	13	CR	2Dh	45	-	4Dh	77	M	6Dh	109	m
0Eh	14	SO	2Eh	46	.	4Eh	78	N	6Eh	110	n
OFh	15	SI	2Fh	47	1	4Fh	79	0	6Fh	111	0
10h	16	DLE	30h	48	0	50h	80	P	70h	112	p
11h	17	DC1	31h	49	1	51h	81	Q	71h	113	q
12h	18	DC2	32h	50	2	52h	82	R	72h	114	r
13h	19	DC3	33h	51	3	53h	83	S	73h	115	s
14h	20	DC4	34h	52	4	54h	84	T	74h	116	t
15h	21	NAK	35h	53	5	55h	85	U	75h	117	u
16h	22	SYN	36h	54	6	56h	86	V	76h	118	v
17h	23	ETB	37h	55	7	57h	87	W	77h	119	w
18h	24	CAN	38h	56	8	58h	88	X	78h	120	x
19h	25	EM	39h	57	9	59h	89	Y	79h	121	y
1Ah	26	SUB	3Ah	58	:	5Ah	90	Z	7Ah	122	z
1Bh	27	ESC	3Bh	59	;	5Bh	91	[7Bh	123	\{
1Ch	28	FS	3Ch	60	$<$	5Ch	92	W	7Ch	124	1
1Dh	29	GS	3Dh	61	$=$	5Dh	93]	7Dh	125	\}
1Eh	30	RS	3Eh	62	$>$	5Eh	94	\wedge	7Eh	126	\sim
1Fh	31	US	3Fh	63	?	5Fh	95	-	7Fh	127	DEL

BroadCast Function

used to give command to all the inverters bound by the network at a time
Method: give command at Address No. 255
Action: Each inverter receives and replies to it though it's not their own set address No.

8.6.2 Detailed reading protocol

Reading Request: Request for reading of n number of Word data consecutive from $x x x x$ address No.

ENQ	Address No.	CMD	Address No.	Number of Addresses	SUM	EOT
05 h	$" 01 " \sim " 1 \mathrm{~F}^{\prime \prime}$	" $\mathrm{R} "$	" XXXX "	$" 1 " \sim " 8 "=\mathrm{n}$	" $\mathrm{XX"}$	04 h
1	2	1	4	1	2	1

Total byte $=12$, quotation marks refers to characters.

Normal Reading Response:

ACK	Address No.	CMD	Data	SUM	EOT
06 h	" 01 " \sim " " $1 \mathrm{~F} "$	"R"	" $\mathrm{XXXX"}$	" $\mathrm{XX"}$	04 h
1	2	1	$\mathrm{~N} * 4$	2	1

Total byte $=7 * n * 4=39$ at maximum
Error Reading Response:

NAK	Address No.	CMD	Error code	SUM	EOT
15 h	" 01 " \sim " " $1 \mathrm{~F} "$	" $\mathrm{R} "$	"**"	" $\mathrm{XX"}$	04 h
1	2	1	2	2	1

Total byte $=9$

Chapter 8 Communication Function
8.6.3 Detailed writing protocol

Writing Request:

ENQ	Address No.	CMD	Address No.	Number of Addresses	Data	SUM	EOT
05h	"01" ~ "1F"	"W"	"XXXX"	" 1 " \sim " 8 " $=\mathrm{n}$	"XXXX..."	"XX"	04h
1	2	1	4	1	n * 4	2	1

$$
\text { Total byte }=12+n * 4=44 \text { at maximum }
$$

Normal Writing Response:

ACK	Address No.	CMD	Data	SUM	EOT
06 h	" 01 " \sim " $1 \mathrm{~F} "$	" $\mathrm{W} "$	"XXXX..."	" $\mathrm{XX"}$	04 h
1	2	1	$\mathrm{n} * 4$	2	1

Total byte $=7+n * 4=39$ at maximum
Error Writing Response:

NAK	Address No.	CMD	Error Code	SUM	EOT
15 h	" 01 " \sim " $1 \mathrm{~F}^{\prime \prime}$	" $\mathrm{W} "$	"**"	" $\mathrm{XX"}$	04 h
1	2	1	2	2	1

Total byte $=9$

8.6.4 Error code

Code	Abbreviation	Description
01:ILLEGAL FUNCTION	IF	When slave cannot implement the received function. That is, when there is no appropriate function.
02:ILLEGAL DATA ADDRESS	IA	When the received address is not valid in the slave. It is parameter address, not the address No.
03: ILLEGAL DATA VALUE	ID	When the received data is not valid in the slave.
21: WRITE MODE ERROR	WM	Read Only or change prohibition during operation.
22: FRAME ERROR	FE	When the frame size or internal num or sum is different.

Chapter 8 Communication Function
8.6.5 Existing iS5/iG5/ iG5A compatible common area parameter

Address	Parameter	Scale	unit	R/W	Allotment for Bits				
0000h	Inverter model	-	-	R	B: iV5				
0001h	Inverter capacity	-	-	R	2: 2.2 kW	3: 3.7kW	4: 5.5 kW	5: 7.5kW	
					6: 11kW	7: 15kW	8: 18.5 kW	9: 22kW	
					10: 30kW	11: 37kW	12: 45kW	13: 55kW	
					14: 75kW	15: 90kW	16: 110kW	17: 132kW	
					18: 160kW	19: 200kW	20: 220kW	21: 280kW	
					22: 375 kW				
0002h	Inverter input voltage	-	-	R	0: 220 V class				
					1: 400 V class				
0003h	Version	-	-	R	(example) 0x0100: Version 1.00				
					0x0101: Version 1.01				
0004h	N/A				Notel)				
0005h	N/A				Notel)				
0006h	Operating command (option) * see additional description	$-$	-	R/W	B15	N/A			
					B14	P7			
					B13	P6			
					B12	P5			
					B11	P4			
					B10	P3			
					B9	P2			
					B8	P1			
					B7	N/A			
					B6	N/A			
					B5	N/A			
					B4	Emergency stop			
					B3	Reset			
					B2	Reverse operation (R)			
					B1	Forward operation (F)			
					B0	Stop			
0007h	accelerating time	0.1	sec	R/W	-				
0008h	decelerating time	0.1	sec	R/W	-				
0009h	output current	0.1	A	R	-				
000Ah	output frequency	0.01	Hz	R	-				
000Bh	output voltage	1	V	R	-				
LS Industrial Systems									8-9

Chapter 8 Communication Function

Address	Parameter	Scale	unit	R/W		Allotment for Bits
000Ch	DC Link voltage	1	v	R		-
000Dh	output power	0.1	kW	R		-
000Eh	status of Inverter	-	-	R	B15	PID Enable (Available on operation)
					B14	External communication speed reference
					B13	External communication option Run/Stop command
					B12	Reverse direction run command
					B11	Forward direction run command
					B10	Torque Limit state
					B9	Forward operation
					B8	Stop
					B7	Ready to operation
					B6	Speed reached
					B5	Decelerating
					B4	Accelerating
					B3	Trip
					B2	Reverse operating
					B1	Forward operating
					B0	Stop
000Fh	Trip information	-	-	R	B15	Inverter Overload (IOLT)
					B14	Encoder Error
					B13	Option Error
					B12	Over Current 2 (Armshort U, V, W)
					B11	External-B (EXT-B)
					B10	H/W-Dig
					B9	Overload (OLT)
					B8	E-Thermal (ETH)
					B7	Inverter Overheat (IOH)
					B6	Ground Fault (GF)
					B5	Fuse Open (FO)
					B4	Low Voltage (LV)
					B3	BX
					B2	N/A
					B1	Over Voltage (OV)
					B0	Over Current (OCT U, v, w)
0010h	Input terminal information	-	-	R	B15	N/A
						LS Industrial Systems

Chapter 8 Communication Function

Address	Parameter	Scale	unit	R/w		Allotment for Bits
					B14	P7
					B13	P6
					B12	P5
					B11	P4
					B10	P3
					B9	P2
					B8	P1
					B7	N/A
					B6	N/A
					B5	N/A
					B4	N/A
					B3	RST
					B2	BX
					B1	RX
					B0	FX
0011h	output terminal information	-	-	R	B15	N/A
					B14	N/A
					B13	N/A
					B12	N/A
					B11	N/A
					B10	N/A
					B9	N/A
					B8	N/A
					B7	N/A
					B6	N/A
					B5	N/A
					B4	N/A
					B3	OC1-EG
					B2	2A-2B
					B1	1A-1B
					B0	30A-30C
0012h	Analog input 1	0.01	\%	R	-100.0\%(0xFC18) ~ 100.0\%(0x03E8)	
0013h	Analog input 2	0.01	\%	R	-100.0	(0xFC18) ~ 100.0\%(0x03E8)
0014h	Analog input 3	0.01	\%	R	-100.0\%	(0xFC18) ~ 100.0\%(0x03E8)
0015h	Motor rotation speed	1	rpm	R	Curre	motor rotation speed displayed

Chapter 8 Communication Function

Address	Parameter	Scale	unit	R/W	Allotment for Bits
0017h	Speed command	0.1	ppm	R/W	Write is available when FUN $_02$ is Option/Int485.
$\begin{aligned} & \hline 0018 \mathrm{~h} \\ & \sim 001 \mathrm{Ch} \end{aligned}$	N/A				
001Dh	Speed command 1	1	rpm	R	Target speed command
001Eh	Speed command 2	1	rpm	R	Ramp speed command
001Fh	Input command of speed controller	1	npm	R	Speed command of speed controller
0020h	Motor speed	1	rpm	R	Real speed of motor
0021h	Torque command	0.1	\%	R	Torque reference
0022h	Torque display	0.1	\%	R	Calculated torque output
0023h	Exitation current	0.1	\%	R	\% value of rated exitation current
0024h	PID command	0.1	\%	R	PID command
0025h	PID Feedback value	0.1	\%	R	PID feedback value
0026h	PID output	0.1	\%	R	PID output
0027h	Inverter temperature	1	deg		Inverter temperature
0028h	Line Speed	0.1	\%	R	Line speed of material in WEB control ${ }^{2}$
0029h	Diameter	0.1	\%	R	Roll's diameter ${ }^{2}$)
002Ah	Tension	0.1	\%	R	Tension input command ${ }^{2)}$
002Bh	Dancer	0.1	\%	R	Dancer input command ${ }^{2)}$
002Ch	Taper	0.1	\%	R	Taper input command ${ }^{2)}$

Note1) NAK will be transferred when unavailalable address is requested.
Note2) Useful value will be transferred when CON_02 is WEB Control. If not, 0 will be transferred.

Chapter 8 Communication Function
8.6.6 iS7 extended common area parameter

1) Inverter Monitoring Area Parameter (Reading only)

LS Industrial Systems
8-13

Chapter 8 Communication Function

Chapter 8 Communication Function

Address	Parameter	Scale	unit	R/W		Allotment for Bits	
0320h	Digital input information	${ }^{-}$	-		BI5	N/A	
					BI4	N/A	
					BI3	N/A	
					BI2	N/A	
					Bi1	N/A	
					Bio	P7	
					B9	P6	
					B8	P5	
					B7	P4	
					B6	P3	
					B5	P2	
					B4	P1	
					B3	RST	
					B2	BX	
					B1	RX	
					B0	FX	
0321h	Digital output information	-	-		BI5	N/A	
					BI4	N/A	
					BI3	N/A	
					BI2	N/A	
					BI1	N/A	
					BIO	N/A	
					B9	N/A	
					B8	N/A	
					B7	N/A	
					B6	N/A	
					B5	N/A	
					B4	N/A	
					B3	Open Collector output (OC1 ~ EG)	
					B2	Relay2 (2A ~ 2B)	
					B1	Relay 1 ($1 \mathrm{~A} \sim 1 \mathrm{~B}$)	
					B0	Faut output (30A ~ 30B)	
0322h	N/A	-	-				
0323h	Selected motor display	-	-	R	0: No	1 motor / 1: No. 2 motor	
0324h	AI1	0.01	\%	R	Analog	input1 (Basic I/O)	
						LS Industrial Systems	8-15

Chapter 8 Communication Function

Chapter 8 Communication Function

Address	Parameter	Scale	unit	R/W		Alotment for Bits	
					B3	N/A	
					B2	N/A	
					B1	Encoder error trip	
					B0	N/A	
0332h	Level type trip information	-	-	R	B15	N/A	
					B14	N/A	
					B13	N/A	
					B12	N/A	
					B11	N/A	
					B10	N/A	
					B9	N/A	
					B8	N/A	
					B7	N/A	
					B6	N/A	
					B5	N/A	
					B4	N/A	
					B3	N/A	
					B2	Lost command	
					B1	LV	
					B0	N/A	
0333h	H/W Diagnosis Trip information	-	-	R	B15	N/A	
					B14	N/A	
					B13	N/A	
					B12	N/A	
					B11	N/A	
					B10	N/A	
					B9	N/A	
					B8	N/A	
					B7	N/A	
					B6	N/A	
					B5	N/A	
					B4	N/A	
					B3	N/A	
					B2	N/A	
					B1	N/A	
$5^{\text {Industrial Systems }}$							8-17

Chapter 8 Communication Function

Chapter 8 Communication Function

Address	Parameter	Scale	unit	R/w	Allotment for Bits
0385h	N/A				
0386h					B15 ${ }^{\text {N/A }}$
					B14 N / A
					B13 N/A
					B12 N / A
					B11 N/A
					B10 N/A
					B9 ${ }^{\text {N/A }}$
					B8 ${ }^{\text {N/A }}$
					B7 ${ }^{\text {P }}$ N/A
					B6 ${ }^{\text {N/A }}$
					B5 ${ }^{\text {Relay }}$ ($\mathrm{A}-1 \mathrm{~B}$)
					B4 \quad Relay 2 (2A-2B)
					B3 Open collector 1 (OC1-EG)
					B2 Open collector 2 (OC2-EG)
					B1 Open collector 3 (OC3-EG)
					B0 N/A
0387h	N/A				
0388h	PID command	0.1	\%	R/W	PID reference command
0389h	PID feedback	0.1	\%	R/W	PID feedback value
038Ah	Motor rated current	0.1	A	R/W	PAR_22 Rated-Curr
038Bh	Inverter voltage specification			R	200:200V400: 400V
$\begin{gathered} \hline 038 \mathrm{Ch} \sim \\ 038 \mathrm{Fh} \end{gathered}$	N/A				
0390h	Torque Ref	0.1	\%		Torque command ${ }^{1)}$
0391h	Fwd Pos Torque Limit	0.1	\%	R/W	Positive torque limit ${ }^{2)}$
0392h	Fwd Neg Torque Limit	0.1	\%	R/W	Positive regeneration torque limit ${ }^{2}$)
0393h	Rev Pos Torque Limit	0.1	\%	R/W	Negative torque limit ${ }^{2}$)
0394h	Rev Neg Torque Limit	0.1	\%	R/W	Negative regeneration torque limit ${ }^{2)}$
0395h	Torque Bias	0.1	\%	R/W	Torque Bias ${ }^{3}{ }^{\text {3 }}$
$\begin{gathered} \hline 0396 \mathrm{~h} \\ \sim 039 \mathrm{Dh} \end{gathered}$	N/A				

Note 1) It is available to wirte when CON_01 (Control Mote) is Torque and CON_31 (Trq Ref Src) is Option/Int485.
Note 2) It is available to write CON_33 Trq Lmt Src is 485485 485. If not, it is available to read. .
Note 3) It will be changed only when CON_37 Trq Bias Src is Option/Int485.

Chapter 8 Communication Function
8.6.7 iV5 Common area parameter

Address	Parameter	Scale	Unit	R/W		Allotment for Bits
						BI5

Chapter 8 Communication Function

Address	Parameter	Scale	Unit	R/W	Allotment for Bits
0506h	Forward torque limit	0.1	\%	R/W	Forward torque limit
0507h	Reverse torque limit	0.1	\%	R/W	Reverse torque limit
0508h	Regeneratin torque limit	0.1	\%	R/W	Regeneratin torque limit
0509h	Torque bias	0.1	\%	R/W	Torque bias
050Ah	No-load current command ${ }^{4)}$	0.1	\%	R/W	No-load current command
050Bh	PID input command	0.1	\%	R/W	PID input command
050Ch	Draw input command	0.1	\%	R/W	Draw input command
050Dh	Line Speed command	0.1	\%	R/W	Line Speed command It operates when CON_02 Application is WEB Control.
050Eh	WEB acceleration time	0.01	sec	R/W	Acceleration time of WEB Control
050Fh	WEB deceleration time	0.01	sec	R/W	Deceleration time of WEB Control
0510h	Diameter Preset	0.1	\%	R/W	Diameter initializing It operates when WEB_03 DiaPresetSrc is Option.
0511h	Tension input command	0.1	\%	R/W	Tension input command
0512h	Dancer input command	0.1	\%	R/W	Dancer input command
0513h	Tension Feedback	0.1	\%	R/W	Tension Feedback
0514h	Taper input command	0.1	\%	R/W	Taper input command
0515h	WEB PID P1 Gain	0.1	\%	R/W	WEB PID P1 Gain setting
0516h	WEB PID I1 Gain	0.1	sec	R/W	WEB PID I1 Gain setting
0517h	WEB PID D Gain	0.1	\%	R/W	WEB PID D Gain setting
0518h	WEB PID Rewind Output Gain	0.1	\%	R/W	WEB PID Rewind Output Gain setting
0519h	WEB PID Unwind Output Gain	0.1	\%	R/W	WEB PID Unwind Output Gain setting
051Ah	WEB Jog acceleration time	0.1	sec	R/W	WEB Jog acceleration time setting
051Bh	WEB Jog deceleration time	0.1	sec	R/W	WEB Jog deceleration time setting
051Ch	Speed/Torque mode change ${ }^{\text {5 }}$			R/W	0 : Speed mode 1: Torque mode
051Dh	Process PID feedback value	0.1	\%	R	Process PID feedback value
051Eh	Process PID acc./dec. time	0.01	sec	R/W	Command acc./dec. time of Process PID
051Fh	Process PID P Gain	0.1	\%	R/W	Process PID P Gain setting
0520h	Process PID I Gain	0.1	\%	R/W	Process PID I Gain setting
0521h	Process PID D Gain	0.1	\%	R/W	Process PID D Gain setting
0522h	Process PID output Gain	0.1	\%	R/W	Process PID output Gain
0523h	Process PID output Enable			R/W	$0:$ Disable \quad 1:Enable \quad 2:Terminal
0524h	Droop control quantity	0.1	\%	R/W	Droop control quantity setting
0525h	Droop control selection			R/W	0 : Droop quantity about maximum speed 1: Droop quantity about command speed
0526h	Droop time setting	0.01	sec	R/W	Droop time setting

Note1) Run command and multi-function input command can be available by communication.DIO_01 ~ DIO_07 must be set to multifunction input to use multi-function input command (P1~P7).

Note2) Multi function output terminal (DIO_41~DIO_43) must be set to 'Not Used' to use output terminal command by communication. If not, inverter will be operated in accordance with current setting and can not use multi-function output.

Note3) It can use when CON $_01$ is Torque and CON $_26$ is Option.
Note4) No-load current command can be available by \% value of PAR_27 via communication. The set value in PAR_26 means 100% and a value less than 100 is available.

Note5) It operates only when Spd/Trq Sel is selected.

9. Inspection and Replacement

Chapter 9 -Inspection and Replacement

LS Vector Inverter, STARVERT-iV5, is an industrial electronic product that adopts up-to-date semiconductor device. It may have a failure caused by the ambient environment such as temperature, humidity, vibration, etc. or an excessive use of the component over its duration. It requires a routine checking to prevent such failure in advance.

9.1 Precautions

CAUTION

- Before starting the maintenance work, the operator must check out the power input of the inverter.
- Large-capacity electrolytic condenser in the power electronic circuit remains charged with power even after the power is off. So be sure to start the maintenance work after you acknowledged the power has been completely discharged using a proper tester.
- Be sure to use a rectifier type volt meter to obtain an accurate voltage when directly measuring the output voltage of inverter. General volt meter or digital volt meter may result in spurious operation or indicate wrong value due to high frequency PWM output voltage of the inverter.

9.2 Checking Points

Electronic product is not intended for a permanent use. When it exceeds the duration even under the normal service environment, the product may have trouble in its operation due to change in the nature of the parts. To prevent such circumstance, it requires a routine and regular checking.

Especially if you use it under the following environment, have it checked with a shorter interval than the regular checking.

- When the temperature is relatively high in the installed place
- When the product is operated with a frequent start and stop
- When the input AC power and load vary seriously
- When it has severe vibration or shock
- When there is corrosive gas, combustible gas, oil sludge, dust, salts, metal powder, etc

9. Inspection and Replacement

CAUTION

■ The failure of the device used in the inverter may not be predicted in advance. The failure of the device may cause the error of input power fuse or the fault trip. If you are suspicious of the failure of device, please contact our sales representative.

9.3 Rountine Checking

$\frac{\mathscr{O}}{\frac{\circ}{4}}$		Description	How to Check	Judgment Criterion	
		1) Megger checking (between the main circuit terminal and ground terminal) 2) Isn't any fixed area missing? 3) Isn't there any trace of overheat on each component?	1) Unfasten the connection of inverter, connect R, S, T, U, V, and W terminals, and then measure the gap between this area and the ground terminal using a megger. 2) Fasten the screws. 3) Check it visually	1) To be $5 \mathrm{M} \Omega$ or more There must be no unusual result from 2) and 3)	$\bar{\oplus}$ 0 0 \sum_{0} 0
		1) Isn't there any corrosion on the conductor?2) Isn't there any damage to the wire sheath?	1) Switch the power Off and then turn it with a hand. 2) Fasten it once again.	1) Rotate it softly 2) There must be no unusual record	'
		Isn't it damaged?	Check by eyes.	There must be no unusual record	1
		Measure the electrostatic capacity	Measure using the capacity meter.	85% or more of the rated capacity	
		1) Isn't there any chattering sound? 2) Isn't there any damage to the contact point?	1) Check by ears. 2) Check by eyes.	There must be no unusual record	'

$\frac{\Phi}{9}$		Description	How to Check	Judgment Criterion	
		1) Isn't there any damage to the insulation resistance? 2) Check the existence of the clue	1) Check by eyes. 2) Remove the connection at one side, and measure it using a tester.	1) There must be no unusual record 2) It should be within $\pm 10 \%$ tolerance range	
		Check if they are stained with trash or dust	Check by eyes.	Remove them by blowing a dry air.	1
		1) Check if they generate unusual smell are discolored, rusted, covered with dust or oil mist 2) Check if the connector is mounted	Check by eyes	1) Clean it using antistatic cloth or cleaner. If not, replace with new circuit board 2) Do not clean the circuit board using the solution. 3) Remove trash or dust by blowing a dry air. 4) Mount the connectors again. 5) If the damaged area cannot be repaired or is the part that cannot be replaced, replace the inverter itself.	'
		1) Check the unbalance of the output voltage during the operation of inverter 2) Display circuit must not have any unusual phenomenon after the sequence protecting operation test is done	1) Measure the voltage among the U, V, and W at the Inverter output terminal. 2) Have the inverter protecting circuit output shorted out or open it by force.	1) Balance of inter-phase voltage 200V (400V) Use: Within 4 V (8 V) 2) Unusual circuit to be operated in sequence	
		1) Isn't there any looseness on the junction? 2) Isn't cooling pin or cooling fan covered with dust	1) Fasten it once again. 2) Check with eyes and then remove dust	1) There must be no unusual record 2) There must be no dust	'

¢	$\begin{aligned} & \text { 응 } \\ & \frac{9}{2} \\ & \text { 을 } \\ & \frac{1}{0} \\ & \frac{1}{c} \end{aligned}$	Description	How to Check	Judgment Criterion	
	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{\Delta}{ \pm} \end{aligned}$	Is the indicator value normal?	Check the indicator value on the display of the panel surface.	Check the value under the regulation and standard value	

9.4 Regular Checking (1 year interval)

$\frac{\mathscr{C}}{\frac{1}{4}}$		Description	How to Check	Judgment Criterion	
		1) Megger checking (between the main circuit terminal and ground terminal) 2) Isn't any fixed area missing? 3) Isn't there any trace of overheat on each component?	1) Unfasten the connection of inverter, connect R, S, T, U, V, and W terminals, and then measure the gap between this area and the ground terminal using a megger. 2) Fasten the screws. 3) Check it visually	1) To be $5 \mathrm{M} \Omega$ or more There must be no unusual result from 2) and 3)	
		1) Isn't there any corrosion on the conductor?2) Isn't there any damage to the wire sheath?	1) Switch the power Off and then turn it with a hand. 2) Fasten it once again.	1) Rotate it softly 2) There must be no unusual record	'
		Isn't it damaged?	Check by eyes.	There must be no unusual record	'
		Measure the electrostatic capacity	Measure using the capacity meter.	85% or more of the rated capacity	
		1) Isn't there any chattering sound? 2) Isn't there any damage to the contact point?	1) Check by ears. 2) Check by eyes.	There must be no unusual record	'

$\frac{\Phi}{4}$		Description	How to Check	Judgment Criterion	$\begin{aligned} & \text { 릉 } \\ & \text { © } \\ & \frac{1}{2} \\ & \frac{6}{6} \\ & \hline \end{aligned}$
		1) Isn't there any damage to the insulation resistance? 2) Check the existence of the clue	1) Check by eyes. 2) Remove the connection at one side, and measure it using a tester.	1) There must be no unusual record 2) It should be within $\pm 10 \%$ tolerance range	
		Check if they are stained with trash or dust	Check by eyes.	Remove them by blowing a dry air.	'
		1) Check if they generate unusual smell are discolored, rusted, covered with dust or oil mist 2) Check if the connector is mounted	Check by eyes	1) Clean it using antistatic cloth or cleaner. If not, replace with new circuit board 2) Do not clean the circuit board using the solution. 3) Remove trash or dust by blowing a dry air. 4) Mount the connectors again. 5) If the damaged area cannot be repaired or is the part that cannot be replaced, replace the inverter itself.	'
		1) Check the unbalance of the output voltage during the operation of inverter 2) Display circuit must not have any unusual phenomenon after the sequence protecting operation test is done	1) Measure the voltage among the U, V, and W at the Inverter output terminal. 2) Have the inverter protecting circuit output shorted out or open it by force.	1) Balance of inter-phase voltage 200V (400V) Use: Within 4 V (8 V) 2) Unusual circuit to be operated in sequence	
		1) Isn't there any looseness on the junction? 2) Isn't cooling pin or cooling fan covered with dust	1) Fasten it once again. 2) Check with eyes and then remove dust	1) There must be no unusual record 2) There must be no dust	'
	$\begin{gathered} \pm \\ \stackrel{ \pm}{ \pm} \\ \sum \end{gathered}$	Is the indicator value normal?	Check the indicator value on the display of the panel surface.	Check the value under the regulation and standard value	

9.5 Regular Checking (2 year interval)

$\frac{95}{4}$		Description	How to Check	Judgment Criterion	
		Megger Checking (between the main circuit terminal and the ground terminal	Unfasten the connection of the inverter, and then measure the gap among R, S, T, U, V, and W terminals and this area after having them shorted out.	$5 \mathrm{M} \Omega$ or more	
$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{0} \end{aligned}$		Megger checking (between the output terminal and the ground terminal)	Unfasten the connection among U, V , and W , and then bind the motor wiring.	$5 \mathrm{M} \Omega$ or more	

9.6 Meggar Test

(1) For Exterior main circuit, remove all cables from inverter terminals to ensure that test voltage is not applied to the inverter.
(2) Use DC 500 V meggar and isolate the main power before starting measurement. If the test voltage is connected to the control circuit, remove all connection cables to the control circuit.
(3) Perform the Meggar test only between the common cables connected to the main circuit and ground.

9. Inspection and Replacement

9.7 Replacement Interval and Maintenance of the Key Components

Inverter constitutes a number of electronic parts including semiconductor device. The parts used in the inverter are subject to change as time elapses for its construction or nature. Therefore without any replacement of parts, it may cause failure or deterioration in the performance the inverter. For this reason, it requires regular replacement of the parts.

Name of parts	Standard interval for replacement	Symptoms	How to Replace and Countermeasure
Cooling Fan	$2 \sim 3$ years	Poor Rotation	Replacement into new part
DC Link condenser	5 years	Reduction in Capacity	Replacement into new part
Control Panel Flat Condenser	5 years	Reduction in Capacity	Replacement into new part
Control Board Relay	-	Poor Operation	Replacement into new part
Braking Resistance	-	Reduction in Capacity	Replacement into new part

- Duration of the key components is based on the continuous operation at a rated load. Therefore the duration is subject to change depending on the service condition and ambient environment.

9. Inspection and Replacement

9.8 How to Check at Diode Module \& IGBT Inspection

1. Remove the power source wire (R, S, T) and the motor output wire (U, V, W) connected from the outside
2. Check and determine whether R, S, T, U, V, W, B1 (or P/L1), N of the inverter terminal block are turned on or not by changing the polarity of the tester between each other.
3. Perform the test after making sure that the electrolytic condenser is discharged.
4. When they are not turned on, they will indicate several mega resistance values. It may indicate several mega resistance values when it is turned on for a moment owing to the influence of electrolytic condenser. When they are turned on, it indicates several $\Omega \sim$ dozens of Ω. The indicator value varies depending on the type of module, the type of tester, etc., but such values are shown in a similar range when it is sound product.

Chapter 10 - Troubleshooting and Maintenance

10.1 Fault Display

Abstract

\section*{CAUTION}

When a fault occurs, the inverter turns off its output and displays the fault status described below. In this case, the cause must be corrected before the fault can be cleared. If protective function keeps active, it could lead to reduction in product life and damage to the equipment.

Protective function	Keypad display	Type	Description
Over Current	Over Current	Latch	The inverter turns off its output when the output current of the inverter flows more than 200% of the inverter rated current.
Ground Fault Protection	Ground Fault	Latch	The inverter turns off its output when a ground fault occurs and the ground fault current is more than the internal setting value of the inverter. Over current trip function may protect the inverter when a ground fault occurs due to a low ground fault resistance
Over voltage protection	Over Voltage	Latch	The inverter turns off its output if the $D C$ voltage of the main circuit increases higher than the rated value (200 V class: 400 V DC, 400 V class: 820 V DC) when the motor decelerates or when regenerative energy flows back to the inverter due to a regenerative load. This fault can also occur due to a surge voltage generated at the power supply system.
Low Voltage Protection	Low Voltage	Level	The inverter turns off its output if the DC voltage is below the detection level (200V class: $180 \mathrm{Vdc}, 400 \mathrm{~V}$ class: 360 Vdc) because insufficient torque or over heating of the motor can occurs when the input voltage of the inverter drops.
Overload Protection	Over Load	Latch	The inverter turns off its output if the output current of the inverter flows at 180% of the inverter rated current for more than the current limit time (S/W).
Inverter Overload	Inv OLT	Latch	The inverter turns off its output when the rated current of the inverter flows more than regulation level(150% for 1 minute-Inversely proportional to time).
Heat Sink Over Heat	InvOver Heat	Latch	The inverter turns off its output if the heat sink over heats due to a damaged cooling fan or an alien substance in the cooling fan by detecting the temperature of the heat sink. The inverter turns off its output when OHD is opened and the heat sink is overheated.
	OHD Open ${ }^{* 1)}$	Latch	
Inverter NTC Thermistor Open	InvThem OP	Latch	When inverter NTC Thermistor is open, inverter stops its output.
Motor overheat	MotOver Heat	Latch	When motor temp exceeds $150^{\circ} \mathrm{C}$, inverter stops its output to protect motor from overheated.
Motor Thermistor Error	MotThem Err	Latch	When there is an error in Thermistor that measures the temperature of motor, inverter stops its output. (Error-NTC: open)
Electronic Thermal	E-Thermal	Latch	The internal electronic thermal of the inverter determines the over heating of the motor. If the motor is overloaded the inverter turns off the output. The inverter cannot protect the motor when driving a multi-pole motor or when driving multiple motors, so consider thermal relays or other thermal protective devices for each motor. Overload capacity: 150% for 1 min .
External fault B	External-B	Latch	Use this function if the user needs to turn off the output by an external fault signal.

*1) It only comes under SV2800 ~ 3750iV5.

10. Troubleshooting and Maintenance

Protective function	Keypad display	Type	Description
IGBT Short	Arm Short Arm Short-DB	Latch	Inverter output is stopped when IGBT Arm short or output short occurs. (Arm Short-DB is only come under SV110~220iV5)
Fuse Open	Fuse Open	Latch	The inverter turns off its output by opening the fuse when something is wrong with the main circuit IGBT to protect the wiring from being damaged from short currents
Encoder Error	Encoder Err	Latch	1) Displayed when Encoder signal fault occurs.(H/W) 2) Displayed when there is a discord of detection time standard of motor error of PAR-14.(S/W)
BX protection (Instant Cut Off)	BX	Latch	Used for the emergency stop of the inverter. The inverter instantly turns off the output when the BX terminal is turned ON , and returns to regular operation when the $B X$ terminal is turned OFF. Take caution when using this function.
Motor overspeed	Over Speed	Latch	Displayed when motor rotates over 120\% its rated speed.
Communication Error	COM Error CPU Error	Latch	This fault is displayed when the inverter cannot communicate with the keypad.
H/W Error	HW- Diag	Latch	Displayed when CPU has a problem, and then the inverter blocks the IGBT gating signals.
FAN Lock ${ }^{* 1)}$	FAN Lock	Latch	The inverter turns off its output when there is an Fan Lock.
Encoder PowerError ${ }^{\left.{ }^{*} 1\right)}$	Enc Power	Latch	When there is an error in Encoder power source, the inverter turns off its output.
Input Phase-open	Input PO	Latch	It turns off the inverter output when the power from a phase among 3 phase's input is discontinued at the state of normal load.
Output Phase-open	Output PO	Latch	It turns off the inverter output from a detecting no-output current.
AC FAN and M/C Poower Error	FAN/ MC PWR	Latch	The inverter turns off its output to prevent from damage when AC220V is not supplied to AC FAN and M/C. (30 ~ 160 kW)
AC FAN Power Error	FAN PWR	Latch	The inverter turns off its output to prevent from damage when AC220V is not supplied to AC FAN and M/C.

*1) It only comes under SV2800~3750iV5.

10.2 Monitoring Fault Condition

10.2.1 Monitoring fault display

- Check the current fault display before pressing reset key. pressing [PROG] key and [$\mathbf{\Delta}(\mathrm{Up})],[\mathbf{V}$ (Down)] shows operating status at the time of the fault such as output frequency, current, voltage, F / B value, torque current reference/actual value, dc link voltage, input/output terminal status, operating status and run time) and the fault contents. Press [ENT] key to exit. Pressing [RESET] key will store the value in DIS_05 [Last Fault1].

10.2.2 Monitoring previous faults

- Previous 2 faults are saved in DIS_05 "Last fault $1 / 2$ ". Last fault 1 is more recent fault than Last fault 2.

Refer to "8.2.1 monitoring fault display" to check the fault contents.

Code	LCD display	Description
DIS_05	Last Fault1	Previous fault 1
DIS_05	Last Fault2	Previous fault 2

- DIS_05 " Fault Clear" removes Last Fault1, Last Fault2 data. It becomes the value of factory defualt.

10.3 Fault Reset

There are 3 ways to reset the inverter. After performing this, the number of automatic restart is initialized.

1) Use [RESET] key on the keypad.
2) Short the RST-CM terminal to reset.
3) Cycle the power (turn the power OFF and turn it ON).

10.4 Fault Remedy

10.4.1 Check the below diagnosis before troubleshooting.

1) Is the wiring of a motor and an inverter conducted correctly?

Refer to Main Circuit Terminal
2) Is the Encoder-type jumper on I/O PCB set correctly?

Refer to Encoder wiring

If encoder type is either Complementary or Open collector, slide JP4 switch to "OC" and slide JP2 switch to
"P15". If encoder type is Line Drive, slide the JP4 switch to "LD" and slide JP2 switch to "P5".
Factory default: Line Drive Type

3) Is motor rotating direction set correctly?

Refer to Monitoring Encoder operation. (Refer to 4-10p.)

STARVERT-iV5 defines Forward rotation when motor rotates in clockwise from the view of Rear Bracket (Motor FAN).
4) Is inverter operating correctly in no load condition?

Refer to Operation via Keypad and Control Terminal

10.4.2 Check list before installation

Check (1) ~ (9) before installation. Check (10) ~ (16) when problem has occurred during use.

1) The Motor Does Not Rotate

(1) Is red lamp blinking ?

Check whether other trips occur in DIS_05.

If fault occurs, press [RESET] key to clear trip status and try operation.

Check whether BX (Emergency stop) signal is applied on keypad and input terminal defined as BX is ON in DIS_03. If so, release $B X$ and try operation.

(2) RUN/STOP method is properly set ?

Check FUN_01 RUN/STOP method setting matches the actual operation mode(RUN/STOP via keypad or terminal). If FUN_01 is set to terminal but operation is not performed, change it to keypad mode and try operation. If FUN_02 is set to Keypad but operation is not performed, change it to Terminal and try operation. If either way cannot work, refer to (6).

2) The motor does not rotate when Green lamp on [REV], [FWD] key is ON.

(1) Is inverter $\mathrm{U}, \mathrm{V}, \mathrm{W}$ output correctly wired to motor $\mathrm{U}, \mathrm{V}, \mathrm{W}$ output?

Refer to Main circuit terminal
(2) Is the motor shaft jammed by brake or other mechanical devices?
check the directly connected brake's relay on time and brake open time.
(3) On DIS_01 PreRamp Ref, is speed reference displayed not " 0 "?
set the desired speed reference if it is set to " 0 ". If it is incorrectly set, refer to (7).
(4) Is PAR_07 [motor rating] properly set?
check the motor nameplate and setting matches.
(5) Is PAR_17 [motor speed] properly set?
check the motor nameplate and setting matches.
(6) Is PAR_22 [motor rated current] properly set?
check the motor nameplate and setting matches.
(7) Is PAR_27 [motor flux current] properly set?

If LG-OTIS vector motor is not used, consult LS representative or set the correct value in accordance with application. However, it cannot set to exceed PAR_22 [motor rated current]. Normally it is 30~40 \% of rated motor current.
(8) Is PAR_21 [motor rated slip] properly set?
check the motor nameplate and setting matches.
(9) Is PAR_28 [Motor secondary time constant (Tr) properly set?
if motor is not LG-OTIS vector motor, perform the Auto-tuning or set this correctly. If it is incorrectly set, inverter performance will be dramatically deteriorated.
(10) Is PAR_19 [number of motor poles] properly set?
check the motor nameplate and setting matches.
(11) CON_33 [Torque limit setting] is set to " Kpd Kpd Kpd ". Is CON_34 ~ CON_36 setting correct?

CON_34 ~ CON361 marks upper limit in inverter output torque. For the application lower torque limit is required, when torque shortage occurs, increase this value a little. STARVERT-iV5 's overload capacity is $150 \% / 1 \mathrm{~min}$. when using torque limit over 150%, time and the number of use should be limited.
(12) When CON_33[torque limit setting] Analog or Option, the corresponding input value is properly set?

CON_33 is set to Analog, one of Ai1/Ai2/Ai3 should be defined as "Torque limit". If set to Option, refer to Option manual for proper setting.

3) Motor speed is not increasing while it is running.

(1) Is PAR_10 [number of Encoder pulse] set properly?
factory default is 1024. If it is not OTIS vector motor, contact with Encoder maker.
(2) FUN_01 is set to "Keypad",FUN_02 to "Keypad1", FUN_12(Speed 0) to 100.0 rpm and press [FWD] key but motor speed is not 100.0rpm. In this case, check for encoder wiring.

If encoder wiring is disconnected or switched, it rotates only uni-direction with low speed (30.0 ~ 60.0 rpm) and over 150% its rated current. Check the encoder wiring and whether wiring of defined terminal and motor encoder terminal is shorted.
(3) If motor speed does not increase and keeps abnormally $30.0 \sim 60.0 \mathrm{rpm}$, stop the motor and switch the wiring of A and B phase of Encoder. Check whether motor rotating direction is reversed as seen in (4).

In the case of Line Drive type encoder, wire A+, A- phase to B+, B- and B+, B- phase to A+, A-.

Complementary / for the case of Open Collector type encoder, reverse the wiring of PA and PB.

Or switch the encoder direction in PAR 11 (Enc Dir Set) and try RUN.

4) Motor rotates in reverse direction.

Switch the wiring of output phase V and W. Switch the wiring of encoder phase A and B as indicated in (3). Or switch the encoder direction in PAR 11(Enc Dir Set) and try RUN.

5) Motor rotating direction cannot be changed.

(1) Is RUN/STOP setting proper?

Check FUN_01 RUN/STOP command setting matches the actual operating mode. If FUN_01 is set to Terminal (Keypad) but operation cannot be made, change it to Keypad (Terminal). If it does not work, refer to
'6) Keypad or terminal malfunctions'.
(2) Is one of the terminal defined as FWD/REV Run Disable ON?

Check one of DIO_01 ~ DIO_07 terminals is defined as "Prohibit FWD" or "Prohibit REV". If so, check input terminal status in DIS_01 ~ DIS_03. If rotating direction is not changed, check the terminal is ON.
6) Keypad or terminal malfunctions.
(1) When [REV], [FWD], [STOP] key on the keypad is lit Red or Green

Refer to 1) if RUN/STOP is not activated by Keypad or Terminal. If setting change is not available, PAR_04 may set to prohibit parameter write. To release this setting, enter 12 in PAR_04. If problem persists, contact

LS representatives.
(2) When [STOP] key is blinking

This marks trip condition or BX active status. Check any other trips occur in DIS_05. Reset the trip and try run. Check BX signal is ON on the keypad and input terminal signal in DIS_01 ~ DIS_03. Reset BX and try run.
(3) When green lamp on [REV], [FWD] key is blinking

It marks accel/decel is in operation. If inverter keeps operation in this condition, it means load capacity calculation is incorrect and exceeds inverter rating. Refer to (16).
7) Operating speed does not change during run.
(1) Is FUN_02 speed setting proper?

Speed setting methods in STARVERT-iV5 are Analog input, Keypad and Option. Select appropriate one among them.
(2) Is DIS_01(PreRamp Ref) setting the correct value?

Current speed ref. Values are displayed in DIS_01 ~ DIS_03. Check the displayed value matches the setting value. If speed is not variable, check the encoder. (Refer to (13))
(3) Speed setting method is "Keypad" and speed ref displayed DIS_01 ~ DIS_03 is not correct.

Check terminal setting in DIO_01 ~ DIO_07 defined as Multi-step speed setting.
(4) When speed setting method is Analog and DIS_01 ~ DIS_03 display is not desired value

Check one of Ai1 ~ Ai3 is defined as "Speed Ref.".

8) Motor keeps rotating at OV condition when speed setting is via Analog input.

(1) When AIO_11 Definition of Ai1 input is set to "Speed Ref"

Adjust the Ai1_Bias at AIO_14. (Setting unit: \%)

The displayed value is speed command. Set the desired value (ex: 0.0\%) and press [ENTER] key.
(2) Follow the same steps to check Ai2 ~ Ai3.

9) Motor detects speed reference but motor rpm is showing decreasing while motor is overheated or

hunting.

(1) Check the motor wiring.

There is a possibility of incorrect motor wiring when motor is $220 \mathrm{~V} / 380 \mathrm{~V}$ dual rating. Motor does not normally rotate when pole number setting is incorrect. However, motor may get damaged in case of miswiring. If this problem occurs, contact motor sales office. Refer to Power terminal description in this manual.
(2) Is motor capacity set correctly?

Check PAR_07 motor rating selection is set the same as motor in use. See the nameplate for motor rating.
(3) Is motor parameter set correctly?

Motor parameters vary by manufacturer. STARVERT-iV5 setting is based on OTIS vector motor as default.

Motor parameters should be changed when other makers' motor is used.

10) Nothing displayed on the LCD?

(1) Is the connection of inverter and keypad tight?

Check the inverter and Keypad connection.
(2) Is input power turned on ?

Check inverter power is applied. If nothing is displayed on the LCD in this condition, contact LS representatives.
11) Motor speed oscillates and speed is not constant during constant Run.
(1) Is encoder wired using twisted shield cable?
encoder signal wiring should be conducted with Twisted Shield Cable. Otherwise, speed may oscillate at low speed (or high speed) due to encoder input noise, leading to motor vibration or abnormal motor sound at stop.
(2) Is the connection of inverter and motor and encoder grounding proper?

Check the grounding of inverter and encoder is connected. This could occur when not connected. Fixed screw for the connection of encoder grounding and the inverter is located on the right bottom side of the control PCB. Loosen the fixed screw and insert the ground wire of the encoder and tighten the screw. (Refer
to encoder wiring diagram). For grounding the motor, use G of the inverter Main terminal.
(3) Connect inverter panel grounding connected with motor grounding to the building grounding.

If not, incorrect motor speed may be input due to encoder input noise.
(4) Is too large speed gain assigned to the inverter while motor load is light?

Motor oscillates at stop when PI gain is set much larger than the actual load in CON_03 and CON_04. Therefore, gain should be set accordingly. Responsiveness increases when P gain is set higher and I lower but system may become unstable. Gain value varies system but generally set $\mathbf{3 0 \sim 7 0 \%}$ for gain and set

100 ~ 500ms for I gain.

(5) Increase PAR_13 Enc LPF setting value.
(6) Is there slip present at the connection of encoder and motor shaft?

Poor encoder and motor connection may generate slip. Check the connection is tight.

12) Parameter change is not saved.

Turn the power off and turn it on. If problem persists, contact LS representatives.

13) "Fuse Open" trip occurs constantly.

(1) is the input (line) voltage normal?

Check the line voltage input. If phase to phase unbalance exceeds 2% (greater than 6 V for 380 V input), an $A C$ reactor should be provided. Otherwise, inverter may get damaged and A / S fee will be charged during Warranty period.
(2) is the phase sequence of the output terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$ correct?

Check the level of the input signal.
(3) Is the motor insulation damaged?

Various types of malfunction occur when the insulation is damaged. In general, operation stops at a certain speed (and more), overload or "OC-U (V,W)" trip occurs during regenerating. Or motor overheating and rotating speed oscillates. This condition persists for a while and then "Fuse Open" trip occurs. It marks motor insulation is damaged. In this case, replace the motor.

14) Motor input current is too large.

(1) Check the motor wiring.

Check the motor wiring for the use of $220 \mathrm{~V} / 380 \mathrm{~V}$ transition type motor. (Refer to Main circuit terminal)
(2) Are motor and inverter capacity set correctly?
(3) Is the setting of motor constants appropriate?

Refer to 2) and 9) and check the motor and inverter setting.
15) $\mathbf{O C}-\mathrm{U}(\mathrm{V}, \mathrm{W})$ trip occurs frequently during operation. (Motor input current is oscillating.)
(1) check the encoder installation.

If encoder connection is poor, motor vibration affects encoder and incorrect encoder signal is input to the inverter. Vector inverter controls the speed from Encoder F/B value so it follows the input signal whether correct or not, increasing inverter current. If so, contact motor maker or encoder commission company.
(2) Is there no inverter output phase loss?
(3) Is the motor insulation not damaged?

Refer to 13) and check the inverter and motor.

16) Accel/Decel cannot be made properly and green lamp in [REV], [FWD] key is blinking.

(load and frequency reference signal is oscillating.)

(1) Check motor wiring.
(2) FUN_41 ~ FUN_48 Accel/Decel time and DIS_00 motor load.

Blinking Green lamp marks motor is accelerating or decelerating. If the rotating speed oscillates and green lamp is blinking, it marks inverter output torque shortage due to mis-calculation of load. In this case, increase the torque limit to enable inverter to accelerate/decelerate within its rating. If load is set too high, it will shorten inverter life or damage to the unit.

Chapter 11 - Option Devices

11.1 Encoder Division Option Board

11.1.1 Encoder division option board installation and WIRING guide.

- Connect the option card's CN2 connector to CN4 on the control board.

Division Output

11.1.2 Wiring guide for encoder division option board

-. Connect Encoder output terminal (Open collector output) on I/O board to input terminal of the option card.

Encoder Division Option Board Terminal name		Encoder Division Option Board Description	Connection board and terminal
Input	PA_IN	Encoder Phase A Division Input	I/O Board: RA (Phase A Output)
	PB_IN	Encoder Phase B Division Input	I/O Board: RB (Phase B Output)
	G24	GND	I/O Board: GE (GND)
Output	RT_A	Encoder Phase A Division Input	External controller: Phase A Input
	RT_B	Encoder Phase B Division Input	External controller: Phase B Input
	G24	GND	External controller: GND

SIO return
pulse output
terminal

Encoder Division Option Board
INPUT

11.1.3 Encoder division output

Only available when Encoder Division Output Option Card is installed.
Sets the division ratio for monitoring the Encoder pulse signals.

Code	Address	LCD display	Description	Setting range	Unit	Factory setting
PAR_32	7320	EncDiv Ratio	Encoder Pulse Output Division Rate	$1 \sim 1128$		1
PAR_33	7321	EncDivFilter	Encoder Division Output Filter	$0 \sim 15$		0

Encoder division output option card outputs one pulse signal when input pulse number matches the value set in PAR_32.
A / B pulse output follows input pulse phase. The relationship between output of A, B pulse follows the same as input pulse. Division ration can be set within the range of 1 (1 output pulse per 1 input pulse) $\sim 1 / 128$ (1 output pulse to 128 input pulse).

PAR_32 setting range: $0001 \sim 1128$. Division ratio cannot be set higher than 1 and only 1 or 2 can be set for numerator. The below is Division ratio calculation formula.
N refers to the value from thousand ($\mathbf{(0 0 0)}$) and M refers to value less than thousand ($\mathbf{0} \underline{\mathbf{0 0 0}})$

PAR_32 set value $=\mathrm{N} \times 1000+\mathrm{M}$.

Division ratio $=(1+\mathrm{N}) / \mathrm{M}$

Setting range: $N(0,1), M(1 \sim 128)$

PAR_32 = [] [] [] []

When PAR_32 setting value is below $1000(\mathrm{~N}=0)$, a numerator value becomes 1 and when above 1000 $(\mathrm{N}=1)$, a numerator value becomes 2 . For example, if PAR_32 is set to 15 , the division ratio is $1 / 15$ and if 1015 , the ratio is $2 / 15$. Division ratio is settable up to $1 / 128$ and greater than 1 is not settable. Using Up key on the keypad PAR_32 value is increased and increase routine is $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \ldots \rightarrow 127 \rightarrow$ 128(Division ratio: 1/128) $\rightarrow 1002$ (Division ratio: 1) $\rightarrow 1003 \rightarrow \ldots \rightarrow 1128$ (Division ratio: 1/64) and decrease routine (using Down key on the keypad) is the same as increase routine.

11.2 iV5 Option Board List

11.2.1 Dedicated option board for iV5

No.	Option board	Use	Product Code
1	ENC DIV(OC)	Encoder division option board	64070003
2	EL I/O	Elevator function otion board	64070004
3	SYNC I/O	Synchronization option board	64070006
4	SIN/COS(Encoder)	SIN/COS encoder option board	64070007
5	EXTN I/O	Extension I/O option board	64070008

The information of ENC DIV (OC) is described in chapter 10.1 and EXTN I/O is chapter 3.4.3.
For more information on other options, please refer to the option board manual.

11.3 iV5 External Communication Option Board

No.	Option board	Use	Product Code
1	RS485/Modbus-RTU	RS485/Modbus-RTU communication option board	64000007
2	DEVICENET	DeviceNet communication option board	64050022
3	PROFIBUS-DP	Profibus-DP communication option board	64050023
4	CC-Link	CC-Link communication option board	64050024

For more information on above options, please refer to the option board manual.

Chapter 12 - Accessories

12.1 MCCB(LS), ELB(LS), Magnetic Contactor(LS), input/output

 Wire specifications| Voltage | Motor
 (kW) | Inverter models | $\begin{gathered} \text { MCCB, } \\ \text { ELB (LS) } \end{gathered}$ | Magnetic contactor (LS) |
| :---: | :---: | :---: | :---: | :---: |
| 200V | 2.2 | SV022iV5-2DB | TD125U/30A, EBS33b30A | MC-18a |
| | 3.7 | SV037iV5-2DB | TD125U/30A, EBS33b30A | MC-32a |
| | 5.5 | SV055iV5-2DB | TD125U/50A, EBS53b50A | MC-40a |
| | 7.5 | SV075iV5-2DB | TD125U/60A, EBS63b60A | MC-50a |
| | 11 | SV110iV5-2DB | TD125U/100A, EBS103b100A | MC-65a |
| | 15 | SV150iV5-2DB | TD125U/125A, EBS203b125A | MC-100a |
| | 18.5 | SV185iV5-2DB | TS250U/150A, EBS203b150A | MC-125a |
| | 22 | SV220iV5-2DB | TS250U/175A, EBS203b175A | MC-150a |
| | 30 | SV300iV5-2 | TS250U/225A, EBS203b225A | MC-150a |
| | 37 | SV370iV5-2 | TS400U/300A, EBS403b300A | MC-220a |
| 400 V | 2.2 | SV022iV5-4DB | TD125U/15A, EBS33b15A | MC-12a |
| | 3.7 | SV037iV5-4DB | TD125U/15A, EBS33b15A | MC-18a |
| | 5.5 | SV055iV5-4DB | TD125U/30A, EBS33b30A | MC-22a |
| | 7.5 | SV075iV5-4DB | TD125U30A, EBS33b30A | MC-32a |
| | 11 | SV110iV5-4DB | TD125U/50A, EBS53b50A | MC-40a |
| | 15 | SV150iV5-4DB | TD125U/60A, EBS103b60A | MC-50a |
| | 18.5 | SV185iV5-4DB | TD125U/80A, EBS103b80A | MC-65a |
| | 22 | SV220iV5-4DB | TD125U/100A, EBS103b100A | MC-65a |
| | 30 | SV300iV5-4(380V) | TD125U/125A, EBS203b125A | MC-100a |
| | 37 | SV370iV5-4(380V) | TS250U/150A, EBS203b150A | MC-125a |
| | 45 | SV450iV5-4(380V) | TS250U/175A, EBS203b175A | MC-150a |
| | 55 | SV550iV5-4(380V) | TS250U/225A, EBS203b225A | MC-180a |
| | 75 | SV750iV5-4(380V) | TS400U/300A, EBS403b300A | MC-220a |
| | 90 | SV900iV5-4(380V) | TS400U/400A, EBS403b400A | MC-300a |
| | 110 | SV1100iV5-4(380V) | TS800U/500A, EBS603b500A | MC-400a |
| | 132 | SV1320iV5-4(380V) | TS800U/600A, EBS603b600A | MC-400a |
| | 160 | SV1600iV5-4(380V) | TS800U/600A, EBS603b600A | MC-600a |
| | 220 | SV2200iV5-4(380V) | ABS803/800A, EBS803b800A | MC-800a |
| | 280 | SV2800iV5-4 | ABS1003/1000A, EBS1003b1000A | 1000A |
| | 315 | SV3150iV5-4 | ABS1203/1200A, EBS1203b1200A | 1200A |
| | 375 | SV3750iV5-4 | 1400A, 1400A | 1400A |

※ Please refer to our LSIS MCCB, ELB and MC catalog for the your order. The product indicated with only current will be released in the near future.

12.2 AC input fuse, AC reactor, DC reactor

Voltage	Motor kW)	Inverter models	AC input fuse	AC reactor	DC reactor
200V	2.2	SV022iV5-2DB	25 A	$0.88 \mathrm{mH}, 14 \mathrm{~A}$	-
	3.7	SV037iV5-2DB	40 A	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
	5.5	SV055iV5-2DB	40 A	$0.39 \mathrm{mH}, 30 \mathrm{~A}$	-
	7.5	SV075iV5-2DB	50 A	$0.28 \mathrm{mH}, 40 \mathrm{~A}$	-
	11	SV110iV5-2DB	70 A	$0.20 \mathrm{mH}, 59 \mathrm{~A}$	-
	15	SV150iV5-2DB	100 A	$0.15 \mathrm{mH}, 75 \mathrm{~A}$	-
	18.5	SV185iV5-2DB	100 A	$0.12 \mathrm{mH}, 96 \mathrm{~A}$	-
	22	SV220iV5-2DB	125 A	$0.10 \mathrm{mH}, 112 \mathrm{~A}$	-
	30	SV300iV5-2	150A	$0.08 \mathrm{mH}, 134 \mathrm{~A}$	$0.35 \mathrm{mH}, 152 \mathrm{~A}$
	37	SV370iV5-2	200A	$0.07 \mathrm{mH}, 160 \mathrm{~A}$	$0.30 \mathrm{mH}, 180 \mathrm{~A}$
400 V	2.2	SV022iV5-4DB	10 A	$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	-
	3.7	SV037iV5-4DB	20 A	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
	5.5	SV055iV5-4DB	20 A	$1.22 \mathrm{mH}, 15 \mathrm{~A}$	-
	7.5	SV075iV5-4DB	30 A	$1.14 \mathrm{mH}, 20 \mathrm{~A}$	-
	11	SV110iV5-4DB	35 A	$0.81 \mathrm{mH}, 30 \mathrm{~A}$	-
	15	SV150iV5-4DB	45 A	$0.61 \mathrm{mH}, 38 \mathrm{~A}$	-
	18.5	SV185iV5-4DB	60 A	$0.45 \mathrm{mH}, 50 \mathrm{~A}$	-
	22	SV220iV5-4DB	70 A	$0.39 \mathrm{mH}, 58 \mathrm{~A}$	-
	30	SV300iV5-4(380V)	100 A	$0.33 \mathrm{mH}, 67 \mathrm{~A}$	$1.19 \mathrm{mH}, 76 \mathrm{~A}$
	37	SV370iV5-4(380V)	100 A	$0.27 \mathrm{mH}, 82 \mathrm{~A}$	$0.98 \mathrm{mH}, 93 \mathrm{~A}$
	45	SV450iV5-4(380V)	100 A	$0.22 \mathrm{mH}, 100 \mathrm{~A}$	$0.89 \mathrm{mH}, 112 \mathrm{~A}$
	55	SV550iV5-4(380V)	150 A	$0.15 \mathrm{mH}, 121 \mathrm{~A}$	$0.75 \mathrm{mH}, 135 \mathrm{~A}$
	75	SV750iV5-4(380V)	200 A	$0.13 \mathrm{mH}, 167 \mathrm{~A}$	$0.44 \mathrm{mH}, 187 \mathrm{~A}$
	90	SV900iV5-4(380V)	250 A	$0.11 \mathrm{mH}, 201 \mathrm{~A}$	$0.35 \mathrm{mH}, 225 \mathrm{~A}$
	110	SV1100iV5-4(380V)	300 A	$0.09 \mathrm{mH}, 245 \mathrm{~A}$	$0.30 \mathrm{mH}, 274 \mathrm{~A}$
	132	SV1320iV5-4(380V)	400 A	$0.08 \mathrm{mH}, 290 \mathrm{~A}$	$0.26 \mathrm{mH}, 324 \mathrm{~A}$
	160	SV1600iV5-4(380V)	400 A	$0.06 \mathrm{mH}, 357 \mathrm{~A}$	$0.22 \mathrm{mH}, 399 \mathrm{~A}$
	220	SV2200iV5-4(380V)	800A	$0.029 \mathrm{mH}, 799 \mathrm{~A}$	$0.1 \mathrm{mH}, 530 \mathrm{~A}$
	280	SV2800iV5-4	900A	$0.029 \mathrm{mH}, 799 \mathrm{~A}$	$0.090 \mathrm{mH}, 836 \mathrm{~A}$
	315	SV3150iV5-4	1000A	$0.024 \mathrm{mH}, 952 \mathrm{~A}$	$0.076 \mathrm{mH}, 996 \mathrm{~A}$
	375	SV3750iV5-4	1200A	$0.024 \mathrm{mH}, 952 \mathrm{~A}$	$0.064 \mathrm{mH}, 1195 \mathrm{~A}$

※ For $2.2 \sim 22 \mathrm{~kW}$, DC reactor standard is not provided, for not having DC reactor wiring terminal.

12.3 The Selection of Braking Resistor and the Unit

12.3.1 The selection of dynamic braking resistor

Resistor values shown in the following table is calculated on the basis of 150% of rated braking torque, 5% ED 1). Power rating of resistor should be doubled for resistor frequency 10\% ED use. Additional braking unit should be installed for above SV 300iV5-2 / SV300iV5-4.

Inverter	Rated Capacity (5\% ED)	
	[]	[W] ${ }^{(2)}$
SV 022iV5-2 DB	50	400
SV 037iV5-2 DB	33	600
SV 055iV5-2 DB	20	800
SV 075iV5-2 DB	15	1200
SV 110iV5-2 DB	10	2400
SV 150iV5-2 DB	8	2400
SV 185iV5-2 DB	5	3600
SV 220iV5-2 DB	200	3600
SV 022iV5-4 DB	130	400
SV 037iV5-4 DB	85	600
SV 055iV5-4 DB	60	800
SV 075iV5-4 DB	40	1200
SV 110iV5-4 DB	30	2400
SV 150iV5-4 DB	20	2400
SV 185iV5-4 DB	20	3600
SV 220iV5-4 DB		3600

(1): ED is based on 100 seconds.
(2): Rated capacity is based on the self-cooling.

12.3.2 Wiring of the temperature sensor on braking resistor

Temperature sensor is attached in the LSIS braking resistors to prevent the fire.

Terminal of Braking Resistor	Power Terminal of Inverter	Action
B1, B2	P, BR	
P7, CM	One of the multi-function input terminals (P1 \sim P7) should be set to 'External Fault Signal b Contact'.	Contact is normally ON at the ambient temperature and is OFF in case of over-temperature.

12.3.3 Braking unit

(1) SV037DBH-2: 37kW/200V Class Braking Unit (10\% ED)
(2) SV037DBH-4: 37kW/400V Class Braking Unit (10\% ED)
(3) SV075DBH-4: 75kW/400V Class Braking Unit (10\% ED)
(4) SV075DB-4 : 75kW/400V Class Braking Unit (100\% ED)
(5) SV220DB-4 : 220kW/400V Class Braking Unit (100\% ED)

- The Combination of two braking unit for 400V class is possible for more than SV900iV5-4 capacity.
- When ED is more than 10\%, Use the braking unit for 100% ED (Ex: vertical load such as carne, hoist)
- When the inverter capacity is more than 220kW, use the braking unit for SV2200DB-4 (100\% ED).
- Refer to description manual included in braking unit product for the use of 100% ED braking unit.

12.3.4 Combination of braking unit

Inverter Braking unit		SV[][][] iV5-2	SV[][][][]'V5-4				
		300/370	300/370	450/550/750	900/1100/1320/1600	2200	2800/3150/3750
200V	37kW	1					
400 V	37kW		1				
	75kW			1	2		
	220kW					1	2

Note)

1. Example) Combine two braking units of $75 \mathrm{~kW}-400 \mathrm{~V}$ Class for SV-900iV5-4(90kW) Class.
2. Refer to the Braking Unit user manual that came with the braking unit.

12.3.5 Braking resistor for braking unit

Braking Unit	$\mathbf{1 0 0 \%}$ of Braking Torque, 10\% ED	
	Resistance [Ω]	Rated Power [kW]
$37 \mathrm{~kW}-200 \mathrm{~V}$	3	5
$37 \mathrm{~kW}-400 \mathrm{~V}$	12	5
$75 \mathrm{~kW}-400 \mathrm{~V}$	6	10
$75 \mathrm{~kW}-400 \mathrm{~V}$	6	Refer to extra manual in the case of 100\% ED braking unit.
$220 \mathrm{~kW}-400 \mathrm{~V}$	2	(

Chapter 13 - Dimensions

■ SV 022, 037, 055, 075, 110, 150, 185, 220iV5-2DB(MD)
■ SV 022, 037, 055, 075, 110, 150, 185, 220iV5-4DB(MD)
*MD: Mold type

- Dimensions (unit: mm [inches])

Models	W1	W2	H1	H2	D1
SV022iV5-2/4DB(MD) SV037iV5-2/4DB(MD)	200	180	$\begin{gathered} 284 \\ {[11.18]} \end{gathered}$	$\begin{gathered} 269 \\ {[10.69]} \end{gathered}$	$\begin{gathered} 207 \\ {[8.15]} \end{gathered}$
SV055iV5-2/4DB(MD) SV075iV5-2/4DB(MD)	[7.87]	[7.09]	$\begin{gathered} 355 \\ {[13.97]} \end{gathered}$	$\begin{gathered} 340 \\ {[13.38]} \end{gathered}$	$\begin{gathered} 202 \\ {[7.95]} \end{gathered}$
SV110iV5-2/4DB(MD) SV150iV5-2/4DB(MD)	$\begin{gathered} 250 \\ {[9.84]} \end{gathered}$	$\begin{gathered} 230 \\ {[9.06]} \end{gathered}$	$\begin{gathered} 385 \\ {[15.16]} \end{gathered}$	$\begin{gathered} 370 \\ {[14.57]} \end{gathered}$	$\begin{gathered} 221 \\ {[8.70]} \end{gathered}$
SV185iV5-2/4DB(MD) SV220iV5-2/4DB(MD)	$\begin{gathered} 304 \\ {[11.97]} \end{gathered}$	$\begin{gathered} 284 \\ {[11.18]} \end{gathered}$	$\begin{gathered} 460 \\ {[18.11]} \end{gathered}$	$\begin{gathered} 445 \\ {[17.52]} \end{gathered}$	$\begin{gathered} 254 \\ {[10.00]} \end{gathered}$

■ SV055, 075, 110, 150, 185, 220iV5-2DB
■ SV055, 075, 110, 150, 185, 220iV5-4DB
■ SV055, 075, 110, 150, 185, 220iV5-4DC
*DC : DC power input type

- Dimensions (unit: mm [inches])

Models	W1	W2	W3	W4	W5	L1	L2	L3	D1	D2	D3	H1	H2	H3
SV055iV5-2/4DB	234.4	180	180	27.2	27.2	406.2	391.2	7.5	221.1	209.5	75	6		
SV075iV5-2/4DB	$[9.22]$	$[7.08]$	$[7.08]$	$[1.07]$	$[1.07]$	$[15.9]$	$[15.4]$	$[0.29]$	$[8.7]$	$[8.24]$	$[2.95]$	$[0.23]$	$\Phi 6$	$\Phi 12$
SV110iV5-2/4DB														
SV150iV5-2/4DB	335	284	284	25.5	25.5	526	509	10	248.6	237	100	7		
SV185iV5-2/4DB	$[13.1]$	$[11.1]$	$[11.1]$	$[1.00]$	$[1.00]$	$[20.7]$	$[20.0]$	$[0.39]$	$[9.78]$	$[9.33]$	$[3.93]$	$[0.27]$	$\Phi 7$	$\Phi 14$
SV220iV5-2/4DB														

■ SV300, 370iV5-2
■ SV300, 370, 450, 550, 750iV5-4
■ SV300, 370, 450, 550, 750iV5-4DC

- Dimensions (unit: mm [inches])
*DC has a same dimension as AC.

Models	W1	W2	W3	W4	L1	L2	L3	D1	D2	D3	D4	P1	P2
SV300iV5-2/4	270	270	319.2	350	635	660	680	120	197	256.6	308.2	16.9	8
SV370iV5-2/4	$[10.6]$	$[10.6]$	$[12.5]$	$[13.7]$	$[25.0]$	$[26.0]$	$[26.7]$	$[4.72]$	$[7.76]$	$[10.1]$	$[12.1]$	$[0.66]$	$[0.31]$
SV450iV5-4	275	275	359.6	375	730.6	758.5	780	82.3	189.3	259	326	24.5	10.5
SV550iV5-4	$[10.8]$	$[10.8]$	$[14.1]$	$[14.7]$	$[28.7]$	$[29.8]$	$[30.7]$	$[3.24]$	$[7.45]$	$[10.2]$	$[12.8]$	$[0.90]$	$[0.41]$
SV750iV5-4													

■ SV900, 1100, 1320, 1600iV5-4
■ SV900, 1100, 1320, 1600iV5-4DC
*DC : DC power input type

- Dimensions (unit : mm[inches])
*DC has a same dimension as AC.

Models	W1	W2	W3	L1	L2	L3	D1	D2	D3	D4	P1	P2
SV900iV5-4	430	507	530	729	760	780	83.2	234.6	286.2	335	23.5	8.5
SV1100iV5-4	$[16.9]$	$[19.9]$	$[20.8]$	$[28.7]$	$[29.9]$	$[30.7]$	$[3.27]$	$[9.23]$	$[11.2]$	$[13.2]$	$[0.92]$	$[0.33]$
SV1320iV5-4	430	507	530	949	980	1000	95.2	231.6	298	345	23.5	8.5
SV1600iV5-4	$[16.9]$	$[19.9]$	$[20.8]$	$[37.3]$	$[38.5]$	$[39.3]$	$[3.75]$	$[9.12]$	$[11.7]$	$[13.5]$	$[0.92]$	$[0.33]$

- SV2200iV5-4
- SV2200iV5-4DC

- Dimensions (unit : mm[inches])

Models	W1	W2	W3	L1	L2	L3	L4	D1	D2	D3	D4	P1	P2
SV2200iV5-4	540	649	680	922	968.5	998	150	100.2	271	343	403	38	12
$[21.26]$	$[25.55]$	$[26.77]$	$[36.3]$	$[38.13]$	$[39.29]$	$[5.91]$	$[3.94]$	$[10.67]$	$[13.5]$	$[15.87]$	$[1.49]$	$[0.47]$	

- SV2800, 3150, 3750iV5-4

■ SV2800, 3150, 3750iV5-4DC

*DC : DC power input type

- Dimensions (unit : mm[inches])
*DC has a same dimension as AC.

Models	W1	W2	W3	W4	H1	H2	D1
SV2800iV5-4	772	500	13	500	1140.5	1110	442
	$[30.39]$	$[19.69]$	$[0.51]$	$[19.69]$	$[44.90]$	$[43.70]$	$[17.40]$
SV3150iV5-4	922	580	14	580	1302.5	1271.5	495
SV3750iV5-4	$[6.30]$	$[22.83]$	$[0.55]$	$[22.83]$	$[51.28]$	$[50.06]$	$[19.49]$

llase

ADDITIONAL UL MARKING

1. Short Circuit Rating

"Suitable For Use On A Circuit Capable Of Delivering Not More Than Table1* RMS Symmetrical Amperes, 240 for rated 240 V drives or 480 for rated 480 V drives Volts Maximum," or equivalent.

Table1*

Inverter Capacity	Rating
$200 / 400 \mathrm{~V}$ Class: $5.5 \mathrm{~kW}, 7.5 \mathrm{~kW}, 11 \mathrm{~kW}, 15 \mathrm{~kW}, 18.5 \mathrm{~kW}, 22 \mathrm{~kW}, 30 \mathrm{~kW}, 37 \mathrm{~kW}$	$5,000 \mathrm{~A}$
400 V Class: $45 \mathrm{~kW}, 55 \mathrm{~kW}, 75 \mathrm{~kW}, 90 \mathrm{~kW}, 110 \mathrm{~kW}, 132 \mathrm{~kW}$	$10,000 \mathrm{~A}$
400 V Class: $160 \mathrm{~kW}, 220 \mathrm{~kW}$	$18,000 \mathrm{~A}$

2. SHORT CIRCUIT FUSE/BREAKER MARKING

Use Class H or K5 UL Listed Input Fuse and UL Listed Breaker Only. See the table below for the Voltage and Current rating of the fuses and the breakers.

Input [V]	Inverter [kW]	External Fuse		Breaker		Internal Fuse			
		Current [A]	Voltage [V]	Current [A]	Voltage [V]	Current [A]	Voltage [Vac/dc]	Manufacturer	Model Number
$\begin{gathered} 200 \\ \text { Class } \end{gathered}$	5.5	40	500	50	220	60	250	Hinode Elec	250GH-60
	7.5	50	500	60	220	60	250	Hinode Elec	250GH-60
	11	70	500	100	220	125	250	Hinode Elec	250GH-125
	15	100	500	100	220	150	250	Hinode Elec	250GH-150
	18.5	100	500	225	220	175	250	Hinode Elec	250GH-175
	22	125	500	225	220	225	250	Hinode Elec	250GH-225
	30	150	500	225	220	250	250	Hinode Elec	250GH-250S
	37	200	500	225	220	250	250	Hinode Elec	250GH-250S
$\begin{aligned} & 400 \\ & \text { Class } \end{aligned}$	5.5	20	500	30	460	35	660	Hinode Elec	660GH-35
	7.5	30	500	30	460	35	660	Hinode Elec	660GH-35
	11	35	500	50	460	63	660	Hinode Elec	660GH-63
	15	45	500	60	460	80	660	Hinode Elec	660GH-80
	18.5	60	500	100	460	100	660	Hinode Elec	660GH-100
	22	70	500	100	460	125	660	Hinode Elec	660GH-125
	30	100	500	100	460	125	600	Hinode Elec	600FH-125S
	37	100	500	225	460	150	600	Hinode Elec	$600 \mathrm{FH}-150 \mathrm{~S}$
	45	100	500	225	460	200	600	Hinode Elec	600FH-200S
	55	150	500	225	460	200	600	Hinode Elec	$600 \mathrm{FH}-200 \mathrm{~S}$
	75	200	500	225	460	125	600	Hinode Elec	$600 \mathrm{FH}-125 \mathrm{~S}$
	90	250	500	400	460	200	600	Hinode Elec	600FH-200S
	110	300	500	400	460	200	600	Hinode Elec	$600 \mathrm{FH}-200 \mathrm{~S}$
	132	400	500	400	460	300	600	Hinode Elec	$600 \mathrm{FH}-300 \mathrm{~S}$
	160	400	500	400	460	300	600	Hinode Elec	600FH-300S
	220	-	-	600	460	600	600	Hinode Elec	600SPF-600UL

3. FIELD WIRING TERMINAL

1) Use Copper wires only with Copper conductors, $75^{\circ} \mathrm{C}$
2) Input and motor output terminal blocks are intended only for use with ring type connectors.

4. CAUTION-Risk of Electric Shock

"Before opening the cover, disconnect all power and wait at least 10 minutes"
Units suitable only for use in a pollution degree 2 environment. Be sure to mount the inverter in a forcedventilated operating panel.

$L 5 / 5$

EC DECLARATION OF CONFORMITY

We，the undersigned，

Representative：
Address：

Manufacturer：
Address：

LSIS Co．，Ltd．
LS Tower，127，LS－ro，Dongan－gu， Anyang－si，Gyeonggi－do， Korea

LSIS Co．，Ltd．
56，Samseong 4－gil，Mokcheon－eup， Dongnam－gu，Cheonan－si，Chungcheongnam－do， Korea

Certify and declare under our sole responsibility that the following apparatus：
Type of Equipment：Inverter（Power Conversion Equipment）
Model Name：

STARVERT－iV5 series

Trade Mark：
LSIS Co．，Ltd．

Conforms with the essential requirements of the directives：
2014／35／EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits

2014／30／EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to electromagnetic compatibility

Based on the following specifications applied：
EN 61800－3：2004
EN 61800－5－1：2007
and therefore complies with the essential requirements and provisions of the 2014／35／CE and 2014／30／CE Directives．

Place：
Cheonan，Chungnam，
Korea

$$
\text { 号人占社 } 2016.1 .13
$$

Mr．Sang Chin Moon／General Manager
（Full name／Position）

EMI / RFI POWER LINE FILTERS

LS inverters, iV5 series

RFI FILTERS

> THE LS RANGE OF POWER LINE FILTERS FF (Footprint) - FE (Standard) SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY LG INVERTERS. THE USE OF LS FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARS TO EN 50081.

CAUTION

$$
\begin{aligned}
& \text { IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT } \\
& \text { MAY BE FAULT AT POWER-ON OR OFF. IN AVOID THIS CASE, THE SENSE CURRENT OF } \\
& \text { PROTECTIVE DEVICE SHOULD BE LARGER THAN VALUE OF LAKAGE CURRENT AT WORST } \\
& \text { CASE IN THE BELOW TABLE. }
\end{aligned}
$$

RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.

3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.

4-) Mount the filter securely.
5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.

6-) Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.

7-) Connect any control cables as instructed in the inverter instructions manual.

IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

FE SERIES (Standard)

EC DECLARATION OF CONFORMITY

X (1) Industrial environment EN 50081-2 (A class) \rightarrow EN61000-6-4:02
(2) Domestic and industrial environment EN50081-1 (B class) -> EN61000-6-3:02

iV5 series / Standard Filters											
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT	$\begin{aligned} & \text { DIMENSIONS } \\ & \text { L W H } \end{aligned}$	MOUNTING	WEIGHT	mount	FIG.	OUTPUT CHOKES
THREE PHASE NoM.											
SV022iV5-2 (DB)	2.2kW	FE-T020-(x)	20A	250VAC	0.5 mA 27 mA	270x140x60	258×106	2.2 Kg .	---	B	FS-2
SV037iV5-2 (DB)	3.7 kW	FE-T030-(x)	30A	250 VAC	0.5 mA 27 mA		258x 106	2.4 Kg .	---	B	FS-2
SV075iV5-2 (DB)	7.5kW	FE-T050-(x)	50A	250VAC	0.5 mA 27 mA	270x140×90	258×106	3.2 Kg .	---	B	FS-2
SV110iV5-2 (DB) SV150iV5-2 (DB)	11 kW	FE-T100-(x)	100A	250VAC	0.5 mA 27 mA	425x200x130	408×166	13.8 Kg .	---	B	FS-3
SV150iV5-2 (DB) SV185iV5-2 (DB)	15 kW			250VAC	0.5 mA 27 mA	425x200x130	408×166	13.8 Kg .	---	B	
SV220iV5-2 (DB)	22 kW	FE-T120-(x)	120A								FS-3
SV300iV5-2 (DB)	30kW	FE-T150-(x)	150A	250VAC	0.5 mA 27 mA	480x200x160	468×166	15 Kg .	---	B	FS-3
SV370iV5-2 (DB)	37kW	FE-T170-(x)	170A	250VAC	0.5 mA 27 mA	480x200x160	468×166	16 Kg .	---	B	FS-3
SV022iV5-4 (DB) SV037iV5-4 (DB)	2.2kW	FE-T012-(x)	12A	380VAC	0.5 mA 27 mA	250x110x60	238×76	1.6 Kg .	--	B	FS-2
SV037iV5-4 (DB) SV055iV5-4 (DB)	3.7 kW 5.5 WW										
SV055iV5-4 (DB)	${ }^{5} .5 \mathrm{kWW}$	FE-T030-(x)	30A	380VAC	0.5 mA 27 mA	270x140x60	258x106	2.4 Kg .	---	B	FS-2
SV110iV5-4 (DB) SV150iV5-4 (DB)	11 kW	FE-T050-(x)	50A	380VAC	0.5 mA 27 mA	$270 \times 140 \times 90$	258×106	3.2 Kg .	---	B	FS-2
SV150iV5-4 (DB)	15 kW										
SV185iV5-4 (DB)	18kW	FE-T060-(x)	60A	380VAC	0.5 mA 27 mA	270x140x90	258×106	3.5 Kg .	---	B	FS-2
SV220iV5-4 (DB)	22 kW	FE-T070-(x)	70A	380VAC	0.5 mA 27 mA	350x180x90	338×146	7.5 Kg .	---	B	FS-3
SV300iV5-4 (DB)	30 kW	FE-T100-(x)	100A	380VAC	1.3mA 150mA	425x200x130	408×166	13.8 Kg .	---	B	FS-3
SV450iV5-4 (DB)	45 kW	FE-T120-(x)	120A	380VAC	1.3mA 150mA	425x200x130	408×166	13.8 Kg .	---	B	FS-3
SV550iV5-4 (DB)	55 kW										
SV750iV5-4 (DB)	75kW	FE-T170-(x)	170A	380VAC	1.3 mA 150 mA	480x200x160	468×166	16 Kg .	---	B	FS-3
SV900iV5-4 (DB)	90 kW	FE-T230-(x)	230A	380VAC	1.3 mA 150 mA	$580 \times 250 \times 205$	560×170	22.6 Kg .	---	B	FS-4
SV1100iV5-4 (DB) SV1320iV5-4 (DB)	110 kW	FE-T400-(x)	400A	380VAC	1.3 mA 150 mA	392x260x116	240x235	10.3 Kg .	---	C	FS-4
SV1320iV5-4 (DB)	130 kW	FE-T600-(x)	600A	380VAC	1.3mA 150mA	392x260x116	240x235	10.3 Kg .	---	C	FS-4
SV2200iV5-4 (DB)	220 kW										
SV2800iV5-4 (DB)	280kW	FE-T1000-(x)	1000A	380VAC	1.3mA 150mA	460x280x166	290×255	18 Kg .	---	C	FS-4
SV3150iV5-4 (DB)	315 kW										
SV3750iV5-4 (DB)	375 kW										
SV055iv5-22B (MD)	5.5 kW	FE-T030-(x)	30A	250VAC	0.5 mA 27 mA	$270 \times 140 \times 60$	258×106	2.4 Kg .	---	B	FS-2
SV075iv5-2DB (MD)	7.5kW	FE-T050-(x)	50A	250VAC	0.5 mA 27 mA	270x140×90	258×106	3.2 Kg .	---	B	FS-2
SV110ivS-20B (MD)	11 kW	FE-T100-(x)	100A	250VAC	0.5 mA 27 mA	425x200x130	408×166	13.8 Kg .	---	B	FS-3
SV185iV5-22B (MD)	18kW	FE-T120-(x)	120A	250VAC	0.5 mA 27 mA	425x200x130	408x166	13.8 Kg .	---	B	FS-3
SV20iV5-22B (MD)	22kW										
SV055iv5-40B (MD)	5.5 kW 7.5 kW	FE-T030-(x)	30A	380VAC	0.5 mA 27 mA	$270 \times 140 \times 60$	258×106	2.4 Kg .	---	B	FS-2
SV075iv5.48B (MD)	7.5kW		50A	380VAC	0.5 mA 27 mA	$270 \times 140 \times 90$					
SV150iV5-4DB (MD)	15kW	FE-T050-(x)					258×106	3.2 Kg .	---	B	FS-2
SV185iV5-4DB (MD)	18kW	FE-T060-(x)	60A	380VAC	$0.5 \mathrm{~mA} 27 \mathrm{~mA}$	$\begin{array}{r} 270 \times 140 \times 90 \\ \hline 350 \times 180 \times 90 \\ \hline \end{array}$	$\begin{array}{r} 258 \times 106 \\ \hline 338 \times 146 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \mathrm{Kg} . \\ & \hline 7.5 \mathrm{Kg} . \\ & \hline \end{aligned}$	----	B	FS-2
SV220iv5-4DB (MD)	22kW	FE-T070-(x)	70A	380VAC							

X (1) Industrial environment EN 50081-2 (A class) \rightarrow EN61000-6-4:02
(2) Domestic and industrial environment EN50081-1 (B class) -> EN61000-6-3:02

FIG. A

FE SERIES (Standard)

FIG. B
FIG.C

VECTOR MOTORCONTROL IBÉRICAS.L.
C/ Mar del Carib, 10 - Poligono Industrial La Torre del Rector 08130 Santa Perpètua de Mogoda - BARCELONA (ESPAÑA) Tel. (+34) 935748206 - Fax (+34) 935748248 -info@vmc.es

Warranty

Maker	LSIS Co., Ltd.		Installation (Start-up) Date	
Model No.	SV-iV5		Warranty Period	
Customer Information	Name			
	Address			
	Tel.			
Sales Office (Distributor)	Name			
	Address			
	Tel.			

This product has been manufactured through a strict quality management and inspection process by LS Technical Team. The warranty period is 18 months from the date manufactured, provided that, the warranty period is subject change depending on the terms and condition of the agreement under separate cover.

FOC Service

If there is any failure in the product during the afore-mentioned warranty period you can have it repaired FOC by requesting our distributor or designated service center subject that you are found to have used it under our recommended environment. For further details, please refer to out company's regulation.

Charged Service

- In the event of any of the following cases, the service will be charged.
- The failure occurred from the consumer's improper storage, handling, and careless handling
- The failure occurred from the consumer's error in the design of software or hardward
- The failure occurred from the error of power source and the defect of the connector
- The failure occurred from the force majeure (fire, flood, gas disaster, earthquake, etc.)
- The product was modified or repaired at the discretion of the consumer in the place other than our Distributor or the Service Center.
- The name plate provided by LS is not attached on the product
- The product was used in an improper way or beyond the operating range.
- Repair Warranty Period for the Discontinued Model
- For the product discontinued, the repair service will be provided with charge for five years from the date discontinued.
- Waiver of the warranty for the mechanical loss, etc.

LSIS Co., Ltd. doesn't bear any responsibility to indemnify indirect, special, incidental, or consequential loss (including the indemnification of sales loss, loss profit, etc.

Revision History

No.	Date	Edition	Changes

Environment management			Disposable product LSIS regards the environmental	LS inverter is designed for preserving environment. preservation as a high priority, and all our employees do our best for the environmental preservation fresh earth.	When you disuse the products, you can recycle by separating
them to iron, aluminum, bronze,					
and synthetic plastic (cover).					

LSis

HEAD OFFICE

Address: (HoGye-Dong) 127, LS-ro, DongAn-Gu,
AnYang-Si, GyeongGi-Do, Korea
http://www.Isis.com

LSIS Europe B.V >> Amsterdam, Netherland

Address: 1st FL., Tupolevlaan 48, 1119NZ Schiphol-Rijk
The Nether lands
Tel: 31-20-654-1420 Fax: 31-20-654-1429

LSIS (Middle East) FZE Office >> Dubai, UAE
Address: LOB 19-205, JAFZA View Tower, Jebel Ali Free Zone,
Dubai, United Arab Emirates
Tel: 971-4-886-5360 Fax: 971-4-886-5361

Dalian LSIS Co., Ltd. >> Dalian, China

Address: No. 15 Liaohexi 3-Road, Economic and Technical Development Zone, Dalian 116600, China
Tel: 86-411-8730-7510 Fax: 86-411-8730-7560

LSIS Wuxi Co., Ltd. >> Wuxi, China

Address: No. 1 Lexing Road, Wuxi National High\&New Tech Industrial Development Area, Wuxi214028, Jiangsu, P.T.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078

LSIS-VINA Co., Ltd. >> Hanoi, Vietnam

Address: Nguyen Khe, Dong Anh, Ha Noi, Vietnam Tel: 84-4-6275-8055 Fax: 84-4-3882-0220

- LSIS Co., Ltd. Rep. Office >> Hochiminh, Vietnam

Address: Gema Dept Tower 18F, 6 Le Thanh Ton, District 1, HCM, Vietnam
Tel: 84-8-3823-7890 Fax

- LSIS Tokyo Office >> Tokyo, Japan

Address: Tokyo Club Building 13F, 2-6, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo, 100-0013
Tel: 81-3-6268-8241 Fax: 81-3-6268-8240

- LSIS Shanghai Office>> Shanghai, China

Address: 32nd Floor, International Corporate City, No. 3000
NorthZhongshan Road, Putuo District, Shanghai, China, 200063
Tel: 86-21-5237-9977 (609) Fax: 86-21-5237-7189

LSIS Beijing Office >> Beijing, China

Address: Room 2306, Building B Landgent Center,
No. 24 Middle Road, East 3rd Ring Road
Chaoyang District, Beijing, P.R. China
Tel: 86-10-5761-3127, 7 Fax: 86-10-5761-3128
LSIS Guangzhou Office >> Guangzhou, China
Address: Room 1818-1820, Xinyuan Building,NO. 898
Tianhe North Road, Tianhe District, Guangzhou, P.R China
Tel: 86-20-8326-6784 Fax: 86-20-8326-6287

LSIS Chengdu Office >> Chengdu, China
Address: Room1710, 17/F Huamin Empire Plaza,
NO. 1 Fuxin Road, Chengdu, P.R. China
Tel: 86-28-8670-3200 Fax: 86-28-8670-3203

LSIS Qingdao Office >> Qingdao, China
Address: Room2001, Galaxy Building, 29 ShanDong Road, ShiNan District, QingDao, ShanDong, P.R. China
Tel: 86-532-8501-6058 Fax: 86-532-8501-6057

Disclaimer of Liability
LSIS has reviewed the information in this publication to ensure consistency with the hardware and software described. However, LSIS cannot guarantee full consistency, nor be responsible for any damages or compensation, since variance cannot be precluded entirely. Please check again the version of this publication before you use the product.

[^0]: Timer ON Delay

