

SIEMENS

ac.maher.co.ir

SIEMENS

SINAMICS

SINAMICS G120X SINAMICS G120X converter

instructions
Description 2
Operating Instructions
Mounting 3
Wiring 4
Commissioning 5
Advanced commissioning 6
Parameters 7
Saving the settings and series commissioning 8
Warnings, faults and system messages 9
Corrective maintenance10
Edition 03/2019, firmware V1.0
Technical data11
Appendix

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ${ }^{\circledR}$ are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1 Fundamental safety instructions 11
1.1 General safety instructions 11
1.2 Equipment damage due to electric fields or electrostatic discharge 17
1.3 Warranty and liability for application examples 18
1.4 Industrial security 19
1.5 Residual risks of power drive systems 21
2 Description 23
2.1 About the Manual 23
2.2 About the converter 24
2.3 Scope of delivery 25
2.4 Directives and standards 29
2.5 Device disposal 31
2.6 Optional components 32
2.6.1 External line filter 32
2.6.2 Line reactor 33
2.6.3 Output reactor 35
2.6.4 Sine-wave filter 36
2.6.5 Line harmonics filter 37
2.6.6 dv/dt filter plus VPL 38
2.6.7 Push-through mounting kit 39
2.6.8 Mounting grips for push-through mounted converters 42
2.6.9 IP21 top cover 42
2.6.10 Operator panel 44
2.6.11 SINAMICS G120 Smart Access 44
2.7 Motors and multi-motor drives that can be operated. 45
3 Mounting 47
3.1 Installing the label for the North American market 47
3.2 EMC-compliant setup of the machine or plant 48
3.2.1 Control cabinet 49
3.2.2 Cables 50
3.2.3 Electromechanical components 52
3.3 Power losses and air cooling requirements 53
3.4 Mounting the converter 55
3.4.1 Basic installation rules. 55
3.4.2 Dimension drawings and drill patterns 57
3.4.2.1 Mounting the converter on the mounting panel 58
3.4.2.2 Mounting the converter utilizing push-through technology (FSA to FSG only) 60
3.4.3 Mounting the shield connection kits 63
3.4.4 Additional mounting instructions for FSD ... FSJ 65
3.4.4.1 Additional mounting instructions, FSD ... FSG 65
3.4.4.2 Additional mounting instructions, FSH/FSJ 68
3.4.5 Mounting the optional components 69
4 Wiring 71
4.1 Line supply and motor 71
4.1.1 \quad Permissible line supplies 71
4.1.1.1 TN system 71
4.1.1.2 TT system 73
4.1.1.3 IT system 74
4.1.1.4 Removing functional grounding of the converter 74
4.1.2 Minimum cross-section of the protective conductor 76
4.1.3 Maximum permissible motor cable length 78
4.1.4 Connecting the converter and converter components 83
4.1.4.1 Connection overview 83
4.1.4.2 Connnecting converters 84
4.1.4.3 Cable cross-sections and screw tightening torques 88
4.1.4.4 Cable lug 90
4.1.4.5 Connecting the cable shields (FSA ... FSG only) 90
4.1.5 Connecting the motor to the converter in a star or delta connection. 93
4.2 Control interfaces 94
4.2.1 \quad Overview of the interfaces 94
4.2.2 Fieldbus interface allocation. 95
4.2.3 Terminal strips 96
4.2.4 Factory interface settings 99
4.2.5 Default setting of the interfaces 100
4.2.6 Additional digital inputs and digital outputs on converters FSH and FSJ 104
4.2.7 \quad "Safe Torque Off" safety function 106
4.2.8 Application examples for "Safe Torque Off" 110
4.2.9 Wiring the terminal strips 117
4.2.10 Connecting to PROFINET and Ethernet 119
4.2.10.1 Communication via PROFINET IO and Ethernet 119
4.2.10.2 Connecting the PROFINET cable to the converter 120
4.2.10.3 What do you have to set for communication via PROFINET? 120
4.2.10.4 Installing GSDML 121
5 Commissioning 123
5.1 Commissioning guidelines 123
5.2 Tools 124
5.3 Preparing for commissioning 125
5.3.1 Collecting motor data 125
5.3.2 Forming DC link capacitors 127
5.3.3 Converter factory setting 129
5.4 Quick commissioning using the BOP-2 operator panel 131
5.4.1 Fitting the BOP-2 to the converter. 131
5.4.2 Overview of quick commissioning 132
5.4.3 Start quick commissioning and select the application class. 133
5.4.4 Selecting an application class 134
5.4.5 Standard Drive Control 135
5.4.6 Dynamic Drive Control 137
5.4.7 Expert 139
5.4.8 Identifying the motor data and optimizing the closed-loop control 143
5.5 Restoring the factory settings 145
6 Advanced commissioning 147
6.1 Overview of the converter functions 147
6.2 Drive control 149
6.2.1 Sequence control when switching the motor on and off 149
6.2.2 \quad Adapt the default setting of the terminal strips 153
6.2.2.1 Digital inputs 155
6.2.2.2 Analog input as digital input 158
6.2.2.3 Digital outputs 160
6.2.2.4 Analog inputs 165
6.2.2.5 Adjusting characteristics for analog input 168
6.2.2.6 Setting the deadband 169
6.2.2.7 Analog outputs 171
6.2.2.8 Adjusting characteristics for analog output 173
6.2.3 Drive control via PROFINET 174
6.2.3.1 Receive data and send data 174
6.2.3.2 Telegrams 175
6.2.3.3 Parameter channel 182
6.2.3.4 Expanding or freely interconnecting telegrams 187
6.2.3.5 Acyclically reading and writing converter parameters 189
6.2.3.6 Reading and changing parameters via data set 47 189
6.2.4 Communication via EtherNet/IP 193
6.2.4.1 \quad Connect converter to EtherNet/IP 194
6.2.4.2 What do you need for communication via EtherNet/IP? 195
6.2.4.3 Configuring communication via EtherNet/IP 195
6.2.4.4 Supported objects 196
6.2.4.5 Create generic I/O module 210
6.2.4. \quad The converter as Ethernet node 210
6.2.5 Jogging 212
6.2.6 Switching over the drive control (command data set) 214
6.2.7 Selecting physical units 216
6.2.7.1 Motor standard 216
6.2.7.2 Unit system 216
6.2.7.3 Technological unit of the technology controller 217
6.2.8 Safe Torque Off (STO) safety function 218
6.2.8.1 Safe Torque Off (STO) safety function 218
6.2.8.2 Setting the feedback signal for Safe Torque Off 220
6.3 Pump control 222
6.3.1 Multi-pump control 222
6.3.1.1 Pump switch-in/switch-out. 224
6.3.1.2 Stop mode 229
6.3.1.3 Pump switchover 232
6.3.1.4 Service mode 234
6.3.2 Frost protection 237
6.3.3 Condensation protection 238
6.3.4 Cavitation protection 240
6.3.5 Deragging 241
6.3.6 Pipe filling 243
6.4 Setpoints and setpoint processing 246
6.4.1 Setpoints 246
6.4.1.1 Analog input as setpoint source 247
6.4.1.2 Specifying the setpoint via the fieldbus 248
6.4.1.3 Motorized potentiometer as setpoint source 249
6.4.1.4 Fixed speed setpoint as setpoint source 252
6.4.2 Setpoint processing 257
6.4.2.1 Overview 257
6.4.2.2 Invert setpoint. 258
6.4.2.3 Enable direction of rotation 259
6.4.2.4 Skip frequency bands and minimum speed 260
6.4.2.5 Speed limitation 263
6.4.2.6 Ramp-function generator 264
6.4.2.7 Dual ramp function 267
6.5 Technology controller 269
6.5.1 PID technology controller. 269
6.5.1.1 Autotuning the PID technology controller. 280
6.5.1.2 Adapting Kp and Tn 283
6.5.2 Free technology controllers 286
6.5.3 Cascade control 287
6.5.4 Real time clock (RTC) 292
6.5.5 Time switch (DTC) 294
6.6 Motor control 295
6.6.1 Reactor, filter and cable resistance at the converter output. 295
6.6.2 V/f control 296
6.6.2.1 U/f control 296
6.6.2.2 Optimizing motor starting 301
6.6.2.3 U/f control with Standard Drive Control 306
6.6.2.4 Optimizing the motor start-up for application class Standard Drive Control. 308
6.6.3 Encoderless vector control 310
6.6.3.1 Structure of vector control without encoder (sensorless) 310
6.6.3.2 Optimizing the speed controller 315
6.6.4 Electrically braking the motor 317
6.6.4.1 DC braking 319
6.6.4.2 Compound braking 321
6.6.5 Pulse frequency wobbling 322
6.7 Drive protection 323
6.7.1 Overcurrent protection 323
6.7.2 Converter protection using temperature monitoring. 324
6.7.3 Motor protection with temperature sensor 327
6.7.4 Motor protection by calculating the temperature 329
6.7.5 Motor and converter protection by limiting the voltage 331
6.7.6 Monitoring the driven load 332
6.7.6.1 Stall protection 334
6.7.6.2 No-load monitoring 334
6.7.6.3 Blocking protection 335
6.7.6.4 Torque monitoring 336
6.7.6.5 Blocking protection, leakage protection and dry-running protection 337
6.7.6.6 Rotation monitoring 339
6.8 Drive availability 340
6.8.1 Flying restart - switching on while the motor is running 340
6.8.2 Automatic restart 342
6.8.3 Kinetic buffering (Vdc min control) 345
6.8.4 Essential service mode 346
6.9 Energy saving 351
6.9.1 Efficiency optimization 351
6.9.2 Bypass 354
6.9.3 Hibernation mode 360
6.9.4 Line contactor control 366
6.9.5 Calculating the energy saving for fluid flow machines 368
6.10 Switchover between different settings 370
7 Parameters 373
7.1 Brief description of the parameters 373
7.2 Explanation of the detailed parameter list 374
7.3 Parameter list 376
7.4 ASCII table 757
8 Saving the settings and series commissioning 759
8.1 Memory card 760
8.1.1 Recommended memory cards 760
8.1.2 Saving setting on a memory card 760
8.1.2.1 Automatic backup 761
8.1.2.2 Manual backup 762
8.1.3 Transferring the setting from the memory card 762
8.1.3.1 Automatic transfer 762
8.1.3.2 Manually transferring 763
8.1.4 Safely remove the memory card 764
8.1.5 Message for a memory card that is not inserted 765
8.2 Operator panel 766
8.2.1 Backup using the operator panel 766
8.2.2 Transfer to the converter 766
8.3 Other ways to back up settings 768
8.4 Series commissioning 769
8.5 Write protection 770
8.6 Know-how protection 772
8.6.1 Extending the exception list for know-how protection 775
8.6.2 Activating and deactivating know-how protection 776
9 Warnings, faults and system messages 777
9.1 Operating states indicated on LEDs 778
9.2 System runtime 780
9.3 Identification \& maintenance data (I\&M) 781
9.4 Alarms, alarm buffer, and alarm history 782
9.5 Faults, alarm buffer and alarm history 785
9.6 List of fault codes and alarm codes. 788
9.6.1 Overview of faults and alarms 788
9.6.2 Fault codes and alarm codes 788
10 Corrective maintenance 863
10.1 Replacing the converter 864
10.1.1 Overview of how to replace a converter 864
10.1.2 Replacing a converter with data backup 865
10.1.3 Replacing a converter without data backup 866
10.2 Replacing spare parts 868
10.2.1 Spare parts compatibility 868
10.2.2 Spare parts overview 868
10.2.3 Fan units 869
10.2.3.1 Replacing the fan unit, FSA ... FSC 871
10.2.3.2 Replacing the fan unit, FSD ... FSG 872
10.2.3.3 Replacing the fan unit, FSH/FSJ 873
10.2.3.4 Replacing the internal fan, FSH/FSJ only 874
10.2.4 Assemblies for FSH and FSJ 877
10.2.4.1 Replacing the power supply board 877
10.2.4.2 Replacing the free programmable interface (FPI) 880
10.2.4.3 Replacing the current sensor 883
10.3 Firmware upgrade and downgrade 887
10.3.1 Preparing the memory card 888
10.3.2 Upgrading the firmware 889
10.3.3 Firmware downgrade 891
10.3.4 Correcting an unsuccessful firmware upgrade or downgrade 893
10.4 Reduced acceptance test after component replacement and firmware change 894
11 Technical data 895
11.1 Technical data of inputs and outputs 895
11.2 Load cycles and overload capability 898
11.3 General converter technical data 900
11.4 Technical data dependent on the power 903
11.5 Derating data 907
11.5.1 Current derating as a function of the installation altitude 907
11.5.2 Current derating as a function of the ambient temperature 908
11.5.3 Current derating as a function of the line voltage 908
11.5.4 Current derating as a function of the pulse frequency 910
11.6 Low frequency performance 912
11.7 Data regarding the power loss in partial load operation 913
11.8 Electromagnetic compability of the converter 914
11.8.1 Overview 914
11.8.2 Operation in the Second EMC environment. 915
11.8.2.1 High-frequency interference emissions EMC category C3 915
11.8.2.2 High-frequency interference emissions EMC category C2 916
11.8.2.3 Current harmonics 916
11.8.3 Operation in the First EMC environment 917
11.8.3.1 General information 917
11.8.3.2 High-frequency, conducted and radiated interference emissions, EMC Category C2 917
11.8.3.3 High-frequency, conducted interference emissions, EMC Category C1 918
11.8.3.4 Current harmonics of individual devices 918
11.8.3.5 Harmonics at the power supply connection point acc. to IEC 6100-2-2 920
11.8.3.6 Harmonics at the power supply connection point acc. to IEEE 519 920
11.9 Protecting persons from electromagnetic fields 922
A Appendix 925
A. 1 Handling the BOP-2 operator panel 925
A.1.1 Changing settings using BOP-2 926
A.1.2 Changing indexed parameters 927
A.1.3 Directly entering the parameter number and value 928
A.1.4 A parameter cannot be changed 929
A. 2 Interconnecting signals in the converter 930
A. 3 Manuals and technical support 932
A.3.1 Overview of the manuals 932
A.3.2 Configuring support 933
A.3.3 Product Support 934
Index 935

Fundamental safety instructions

1.1 General safety instructions

WARNING

Electric shock and danger to life due to other energy sources
Touching live components can result in death or severe injury.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, the following six steps apply when establishing safety:

1. Prepare for disconnection. Notify all those who will be affected by the procedure.
2. Isolate the drive system from the power supply and take measures to prevent it being switched back on again.
3. Wait until the discharge time specified on the warning labels has elapsed.
4. Check that there is no voltage between any of the power connections, and between any of the power connections and the protective conductor connection.
5. Check whether the existing auxiliary supply circuits are de-energized.
6. Ensure that the motors cannot move.
7. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water. Switch the energy sources to a safe state.
8. Check that the correct drive system is completely locked.

After you have completed the work, restore the operational readiness in the inverse sequence.

WARNING

Risk of electric shock and fire from supply networks with an excessively high impedance Excessively low short-circuit currents can lead to the protective devices not tripping or tripping too late, and thus causing electric shock or a fire.

- In the case of a conductor-conductor or conductor-ground short-circuit, ensure that the short-circuit current at the point where the inverter is connected to the line supply at least meets the minimum requirements for the response of the protective device used.
- You must use an additional residual-current device (RCD) if a conductor-ground short circuit does not reach the short-circuit current required for the protective device to respond. The required short-circuit current can be too low, especially for TT supply systems.

WARNING

Risk of electric shock and fire from supply networks with an excessively low impedance
Excessively high short-circuit currents can lead to the protective devices not being able to interrupt these short-circuit currents and being destroyed, and thus causing electric shock or a fire.

- Ensure that the prospective short-circuit current at the line terminal of the inverter does not exceed the breaking capacity (SCCR or Icc) of the protective device used.

WARNING

Electric shock if there is no ground connection
For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

- Ground the device in compliance with the applicable regulations.

WARNING

Electric shock due to connection to an unsuitable power supply
When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage. Contact with hazardous voltage can result in severe injury or death.

- Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV(Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.

WARNING
Electric shock due to equipment damage
Improper handling may cause damage to equipment. For damaged devices, hazardous voltages can be present at the enclosure or at exposed components; if touched, this can result in death or severe injury.

- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged devices.

WARNING

Electric shock due to unconnected cable shield
Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

- As a minimum, connect cable shields and the conductors of power cables that are not used (e.g. brake cores) at one end at the grounded housing potential.

WARNING

Arcing when a plug connection is opened during operation
Opening a plug connection when a system is operation can result in arcing that may cause serious injury or death.

- Only open plug connections when the equipment is in a voltage-free state, unless it has been explicitly stated that they can be opened in operation.

WARNING

Electric shock due to residual charges in power components

Because of the capacitors, a hazardous voltage is present for up to 5 minutes after the power supply has been switched off. Contact with live parts can result in death or serious injury.

- Wait for 5 minutes before you check that the unit really is in a no-voltage condition and start work.

NOTICE

Property damage due to loose power connections
Insufficient tightening torques or vibration can result in loose power connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections to the prescribed torque.
- Check all power connections at regular intervals, particularly after equipment has been transported.

WARNING

Spread of fire from built-in devices

In the event of fire outbreak, the enclosures of built-in devices cannot prevent the escape of fire and smoke. This can result in serious personal injury or property damage.

- Install built-in units in a suitable metal cabinet in such a way that personnel are protected against fire and smoke, or take other appropriate measures to protect personnel.
- Ensure that smoke can only escape via controlled and monitored paths.

WARNING

Active implant malfunctions due to electromagnetic fields
Inverters generate electromagnetic fields (EMF) in operation. Electromagnetic fields may interfere with active implants, e.g. pacemakers. People with active implants in the immediate vicinity of an inverter are at risk.

- As the operator of an EMF-emitting installation, assess the individual risks of persons with active implants.
- Observe the data on EMF emission provided in the product documentation.

WARNING

Unexpected movement of machines caused by radio devices or mobile phones
When radio devices or mobile phones with a transmission power $>1 \mathrm{~W}$ are used in the immediate vicinity of components, they may cause the equipment to malfunction. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.

- If you come closer than around 2 m to such components, switch off any radios or mobile phones.
- Use the "SIEMENS Industry Online Support app" only on equipment that has already been switched off.

NOTICE

Damage to motor insulation due to excessive voltages

When operated on systems with grounded line conductor or in the event of a ground fault in the IT system, the motor insulation can be damaged by the higher voltage to ground. If you use motors that have insulation that is not designed for operation with grounded line conductors, you must perform the following measures:

- IT system: Use a ground fault monitor and eliminate the fault as quickly as possible.
- TN or TT systems with grounded line conductor: Use an isolating transformer on the line side.

WARNING

Fire due to inadequate ventilation clearances
Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

- Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

NOTICE

Overheating due to inadmissible mounting position
The device may overheat and therefore be damaged if mounted in an inadmissible position.

- Only operate the device in admissible mounting positions.

WARNING

Unrecognized dangers due to missing or illegible warning labels

Dangers might not be recognized if warning labels are missing or illegible. Unrecognized dangers may cause accidents resulting in serious injury or death.

- Check that the warning labels are complete based on the documentation.
- Attach any missing warning labels to the components, where necessary in the national language.
- Replace illegible warning labels.

NOTICE

Device damage caused by incorrect voltage/insulation tests
Incorrect voltage/insulation tests can damage the device.

- Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.

WARNING

Unexpected movement of machines caused by inactive safety functions
Inactive or non-adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.

Note

Important safety notices for Safety Integrated functions
If you want to use Safety Integrated functions, you must observe the safety notices in the Safety Integrated manuals.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Equipment damage due to electric fields or electrostatic discharge

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.

NOTICE

Equipment damage due to electric fields or electrostatic discharge
Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
- Wearing an ESD wrist strap
- Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).

1.3 Warranty and liability for application examples

1.3 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.
As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.4 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Products and solutions from Siemens constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the Internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. using firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that can be implemented, please visit:

Industrial security (https://www.siemens.com/industrialsecurity)
Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they become available, and that only the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at:

Industrial security (https://www.siemens.com/industrialsecurity)

Further information is provided on the Internet:
Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/ view/108862708)

WARNING

Unsafe operating states resulting from software manipulation
Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.
- Protect the drive against unauthorized changes by activating the "Know-how protection" converter function.

1.5 Residual risks of power drive systems

When assessing the machine- or system-related risk in accordance with the respective local regulations (e.g., EC Machinery Directive), the machine manufacturer or system installer must take into account the following residual risks emanating from the control and drive components of a drive system:

1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,

- Hardware and/or software errors in the sensors, control system, actuators, and cables and connections
- Response times of the control system and of the drive
- Operation and/or environmental conditions outside the specification
- Condensation/conductive contamination
- Parameterization, programming, cabling, and installation errors
- Use of wireless devices/mobile phones in the immediate vicinity of electronic components
- External influences/damage
- X-ray, ionizing radiation and cosmic radiation

2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:

- Component failure
- Software errors
- Operation and/or environmental conditions outside the specification
- External influences/damage

3. Hazardous shock voltages caused by, for example:

- Component failure
- Influence during electrostatic charging
- Induction of voltages in moving motors
- Operation and/or environmental conditions outside the specification
- Condensation/conductive contamination
- External influences/damage

4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly
6. Influence of network-connected communication systems, e.g. ripple-control transmitters or data communication via the network

For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

Description

2.1 About the Manual

Who requires the operating instructions and what for?

These operating instructions primarily address fitters, commissioning engineers and machine operators. The operating instructions describe the devices and device components and enable the target groups being addressed to install, connect-up, set, and commission the converters safely and in the correct manner.

What is described in the operating instructions?

These operating instructions provide a summary of all of the information required to operate the converter under normal, safe conditions.
The information provided in the operating instructions has been compiled in such a way that it is sufficient for all standard applications and enables drives to be commissioned as efficiently as possible. Where it appears useful, additional information for entry level personnel has been added.

The operating instructions also contain information about special applications. Since it is assumed that readers already have a sound technical knowledge of how to configure and parameterize these applications, the relevant information is summarized accordingly. This relates, e.g. to operation with fieldbus systems.

What is the meaning of the symbols in the manual?

\rightarrow Reference to further information in the manual
(3) Download from the Internet

- DVD that can be ordered

End of a handling instruction.

(M) Examples of converter function symbols

2.2 About the converter

Use for the intended purpose

The converter described in this manual is a device to control a three-phase motor. The converter is designed for installation in electrical installations or machines.
It has been approved for industrial and commercial use on industrial networks. Additional measures have to be taken when connected to public grids.
The technical specifications and information about connection conditions are indicated on the rating plate and in the operating instructions.

Use of third-party products

This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products.

You can use equivalent products from other manufacturers.
Siemens does not accept any warranty for the properties of third-party products.

Use of OpenSSL

This product contains software developed in the OpenSSL project for use within the OpenSSL toolkit.

This product contains cryptographic software created by Eric Young.
This product contains software developed by Eric Young.
Further information is provided on the Internet:
(3) OpenSSL (https://www.openssl.org/)
(3) Cryptsoft (mailto:eay@cryptsoft.com)

2.3 Scope of delivery

The delivery comprises at least the following components:

- A ready-to-run converter with loaded firmware. Each converter comprises a Power Module and a Control Unit.
Options for upgrading and downgrading the firmware can be found on the Internet: (3) Firmware (https://support.industry.siemens.com/cs/ww/en/view/67364620)
- One set of connectors for connecting the I/O control terminals.
- One set of shield connection kit for the Power Module (available for FSA to FSG only).
- One set of shield connection kit for the Control Unit (available for FSD to FSG only).
- Compact Installation Instructions in German and English.
- A printed full-size drill pattern (available for FSD to FSG only), which allows the easy drilling of the necessary mounting holes.
- The converter contains open-source software (OSS). The OSS license terms are saved in the converter.

Technical data

3－phase 380 V AC to 480 V AC（article number：6SL32．．．）

380 V ．．． 480 V	$\begin{array}{\|l} \text { Rated output } \\ \text { power - kW (hp) } \end{array}$	Rated output current kW－A（hp－A）	Article number	
Frame size	Based on a low overload		Without filter	With filter
FSA	0.75 （1）	2.2 （2．1）	6SL32 ${ }^{\text {a－}}$ YYE10－0UF0	6SL32 $\square^{\text {a－}}$ YE10－0 A F0
	1.1 （1．5）	3.1 （3．0）	6SL32口0－■YE12－0UF0	6SL32口0－■YE12－0 A F0
	1.5 （2）	4.1 （3．4）	6SL32口0－■YE14－0UF0	6SL32口0－■YE14－0 A F0
	2.2 （3）	5.9 （4．8）	6SL32 ${ }^{\text {a－}}$－YE16－0UF0	6SL32口0－■YE16－0 A F0
	3 （4）	7.7 （6．2）	6SL32 $\square^{0-\square Y E 18-0 U F 0 ~}$	6SL32 $\square^{0-\square \mathrm{YE} 18-0 \mathrm{~A} \mathrm{F0}}$
FSB	4 （5）	10.2 （7．6）	6SL32 ${ }^{\text {0－}}$－YE20－0UF0	6SL32口0－■YE20－0 A F0
	5.5 （7．5）	13.2 （11）	6SL32口0－■YE22－0UF0	6SL32口0－■YE22－0 A F0
	7.5 （10）	18 （14）	6SL32口0－】YE24－0UF0	6SL32 \square 0－\square YE24－0 A F0
FSC	11 （15）	26 （21）	6SL32口0－】YE26－0UF0	6SL32 $\square^{\text {a－}}$ YE26－0 A F0
	15 （20）	32 （27）	6SL32口0－】YE28－0UF0	6SL32 $\square^{0-\square Y E 28-0 ~ A ~ F 0 ~}$
FSD	18.5 （25）	38 （34）	6SL32口0－ПYE30－0UF0	6SL32 $\square^{0-\square \mathrm{YE} 30-0 ~ A ~ F 0 ~}$
	22 （30）	45 （40）	6SL32口0－■YE32－0UF0	6SL32 \square 0－\square YE32－0 A F0
	30 （40）	60 （52）	6SL32口0－ПYE34－0UF0	6SL32 \square 0－\square YE34－0 A F0
	37 （50）	75 （65）	6SL32口0－ПYE36－0UF0	6SL32 $\square^{\text {0－}}$ YE36－0 A F0
FSE	45 （60）	90 （77）	6SL32口0－ПYE38－0UF0	6SL32 $\square^{0-\square Y E 38-0 ~ A ~ F 0 ~}$
	55 （75）	110 （96）	6SL32 ${ }^{\text {0－}}$－YE40－0UF0	6SL32 \square 0－\square YE40－0 A F0
FSF	75 （100）	145 （124）	6SL32口0－ПYE42－0UF0	6SL32口0－\square YE42－0 A F0
	90 （125）	178 （156）	6SL32口0－口YE44－0UF0	6SL32口0－■YE44－0 A F0
	110 （150）	205 （180）	6SL32 ${ }^{\text {a－}}$－YE46－0UF0	6SL32 $\square^{0-\square \text { YE46－0 A F0 }}$
	132 （200）	250 （240）	6SL32 $\square^{0-\square Y E 48-0 U F 0 ~}$	6SL32 $\square^{0-\square Y E 48-0 ~ A ~ F 0 ~}$
FSG	160 （250）	302 （302）	－	6SL32 $\square^{0-\square \mathrm{YE} 50-0 \square \mathrm{FO}}$
	200 （300）	370 （361）	－	6SL32 $\square^{\text {0－}}$ Y YE52－0 \square F0
	250 （400）	477 （477）	－	
FSH	315 （n／a）	570 （477）	－	6SL32 20 0－पYE56－0 C F0
	355 （450）	640 （515）	－	6SL32 20 0－पYE58－0 C F0
	400 （500）	720 （590）	－	6SL32 20 －\square YE60－0 C F0
FSJ	450 （n／a）	820 （663）	－	6SL32 20 －－YYE62－0 C F0
	500 （600）	890 （724）	－	6SL32 20 －पYE64－0 C F0
	560 （700）	1000 （830）	－	6SL32 2 0－■YE66－0 C F0
Environment class 3C2			2	2
Environment class 3C3			3	3
Without operator panel			1	1
With Operator Panel BOP－2			2	2
With Operator Panel IOP－2			3	3
Filter C2				A
Filter C3				C

3－phase 500 V AC to 690 V AC （article number：6SL32．．．）

500 V ．．． 690 V＊	Rated output power－kW（hp）	Rated output current kW－A（hp－A）	Article number		
Frame size	Based on a low overload		Without filter	With filter	
FSD	3 （3）	5 （5）	6SL32\0－ПYH18－0UF0	6SL32 $\square^{0-\square \text { YH18－0AF0 }}$	
	4 （5）	6.3 （6．3）	6SL32口0－■YH20－0UF0	6SL32口0－\square YH20－0AF0	
	5.5 （7．5）	9 （9）	6SL32 $\square 0-\square$ YH22－0UF0	6SL32口0－■YH22－0AF0	
	7.5 （10）	11 （11）	6SL32口0－■YH24－0UF0	6SL32口0－\square YH24－0AF0	
	11 （n／a）	14 （14）	6SL32］0－■YH26－0UF0	6SL32 $\square^{0-\square Y H 26-0 A F 0 ~}$	
	15 （15）	19 （19）	6SL32口0－■YH28－0UF0	6SL32 \square 0－\square YH28－0AF0	
	18.5 （20）	23 （23）	6SL32 $\square 0-\square \mathrm{YH} 30-0 \mathrm{OFO}$	6SL32 $\square^{0-\square Y H 30-0 A F 0 ~}$	
	22 （25）	27 （27）	6SL32口0－■YH32－0UF0	6SL32口0－ПYH32－0AF0	
	30 （30）	35 （35）	6SL32 $\square 0-\square \mathrm{YH} 34-0 \mathrm{OF} 0$	6SL32 $\square^{0-\square Y H 34-0 A F 0 ~}$	
	37 （40）	42 （42）	6SL32 $\square 0$－\square YH36－0UF0	6SL32 $\square^{0-\square Y H 36-0 A F 0 ~}$	
FSE	45 （50）	52 （52）	6SL32 $\square 0-\square$ YH38－0UF0	6SL32］0－DYH38－0AF0	
	55 （60）	62 （62）	6SL32口0－■YH40－0UF0	6SL32口0－■YH40－0AF0	
FSF	75 （75）	80 （80）	6SL32 \square 0－\square YH42－0UF0	6SL32 $\square 0-\square$ YH42－0CF0	
	90 （100）	100 （100）	6SL32口0－■YH44－0UF0	6SL32口0－口YH44－0CF0	
	110 （125）	125 （125）	6SL32口0－ПYH46－0UF0	6SL32口0－ПYH46－0CF0	
	132 （150）	144 （144）	6SL32 $\square 0-\square \mathrm{YH} 48-0 \mathrm{OFO}$	6SL32 $\square^{\text {0－} \square \mathrm{YH} 48-0 \mathrm{CF} 0}$	
FSG	160 （n／a）	171 （171）	－	6SL32］0－ПYH50－0CF0	
	200 （200）	208 （208）	－	6SL32口0－\square YH52－0CF0	
	250 （250）	250 （250）	－	6SL32口0－ПYH54－0CF0	
FSH	315 （350）	330 （345）	－	6SL32 20 －\square YH56－0CF0	
	355 （400）	385 （388）	－	6SL32 $20-\square$ YH58－0CF0	
	400 （450）	420 （432）	－	6SL32 20 －\square YH60－0CF0	
	450 （500）	470 （487）	－	6SL32 2 0－\square YH62－0CF0	
FSJ	500 （n／a）	520 （546）	－	6SL32 2 0－■YH64－0CF0	
	560 （600）	580 （610）	－	6SL32 2 0－■YH66－0CF0	
	630 （700）	650 （679）	－	6SL32 20 0－${ }^{\text {YHH68－0CF0 }}$	
Environment class 3C2			2	2	
Environment class 3C3			3	3	
Without operator panel			1	1	
With Operator Panel BOP－2			2	2	
With Operator Panel IOP－2			3	3	
Filter C2					A
Filter C3					C

＊For systems according to UL： 500 V ．．． 600 V

Rating plate

Figure 2-1 Example for a rating plate
You will find the rating plate at the side of the converter.

2.4 Directives and standards

Relevant directives and standards

The following directives and standards are relevant for the converters:

European Low Voltage Directive

The converters fulfill the requirements stipulated in the Low-Voltage Directive 2014/35/EU, if they are covered by the application area of this directive.

European Machinery Directive

The converters fulfill the requirements stipulated in the Machinery Directive 2006/42/EC, if they are covered by the application area of this directive.
However, the use of the converters in a typical machine application has been fully assessed for compliance with the main regulations in this directive concerning health and safety.

Directive 2011/65/EU

The converter fulfills the requirements of Directive 2011/65/EU relating to the restriction of the use of certain hazardous substances in electrical and electronic devices (RoHS).

European EMC Directive

The compliance of the converter with the regulations of the Directive 2014/30/EU has been demonstrated by full compliance with the IEC/EN 61800-3.

EMC requirements for South Korea
The converters with the KC marking on the rating plate satisfy the EMC requirements for South Korea.

Underwriters Laboratories (North American market)

Converters provided with one of the test symbols displayed fulfill the requirements stipulated for the North American market as a component of drive applications, and are appropriately listed.

Eurasian conformity

The converter complies with the requirements of the Russia/Belarus/Kazakhstan customs union (EAC).

Australia and New Zealand (RCM formerly C-Tick)

The converters showing the test symbols fulfill the EMC requirements for Australia and New Zealand.

Immunity to voltage drop of semiconductor process equipment.
The converters comply with the requirements of standard SEMI F47-0706.

Quality systems

Siemens AG employs a quality management system that meets the requirements of ISO 9001 and ISO 14001.

Certificates for download

- EC Declaration of Conformity: (https://support.industry.siemens.com/cs/ww/de/view/ 58275445)
- 2 Certificates for the relevant directives, prototype test certificates, manufacturers declarations and test certificates for functions relating to functional safety ("Safety Integrated"): (http://support.automation.siemens.com/WW/view/en/22339653/134200)
- Certificates for products that were certified by UL: (http://database.ul.com/cgi-bin/XYV/ template/LISEXT/1FRAME/index.html)
- \int^{3} Certificates for products that were certified by TÜV SÜD: (https://www.tuev-sued.de/ industrie_konsumprodukte/zertifikatsdatenbank)

Standards that are not relevant

China Compulsory Certification

The converters do not fall in the area of validity of the China Compulsory Certification (CCC).

2.5 Device disposal

Recycling and disposal

For environmentally-friendly recycling and disposal of your old device, please contact a company certified for the disposal of waste electrical and electronic equipment, and dispose of the old device as prescribed in the respective country of use.

2.6 Optional components

The following optional components are available so that you can adapt the converter to different applications and ambient conditions:

- External line filter (Page 32)
- Line reactor (Page 33)
- Output reactor (Page 35)
- Sine-wave filter (Page 36)
- dv/dt filter plus VPL (Page 38)
- Push-through mounting kit (Page 39)
- IP21 top cover (Page 42)
- Operator panel (Page 44)
- SINAMICS G120 Smart Access (Page 44)

Further information

Further information about the technical specifications and installing of these optional components is described in the documentation provided.

2.6.1 External line filter

With a line filter, the converter achieves a higher radio interference class. The converters of frame sizes FSA to FSF are available with and without integrated line filter. The converters of frame sizes FSG to FSJ are available with integrated line filter only. External line filters are available as optional components for the converter FSH and FSJ.

NOTICE

Overloading the line filter when connected to line supplies that are not permissible
The line filter is only suitable for operation on TN or TT line supplies with a grounded neutral point. If operated on other line supplies, the line filter will be thermally overloaded and will be damaged.

- For converters equipped with line filter, only connect to TN or TT line supplies with a grounded neutral point.

Article number

Converter frame size	Rated power (kW)	Line filter
400 V converters		
FSA	$0.75 \ldots 3$	6SL3203-0BE17-7BA0
FSB	$4 \ldots 7.5$	6SL3203-0BE21-8BA0

Converter frame size	Rated power (kW)	Line filter
FSC	11 ... 15	6SL3203-0BE23-8BA0
FSD	18.5... 22	6SL3203-0BE23-8BA0
	$30 \ldots 37$	6SL3203-0BE27-5BA0
FSE	$45 \ldots 55$	6SL3203-0BE31-1BA0
FSF	75... 110	6SL3203-0BE31-8BA0
	132	-
FSG	$160 \ldots 250$	-
FSH	$315 . .400$	6SL3760-0MR00-0AA0
FSJ	450 ... 560	
690 V converters		
FSH	315 ... 450	6SL3760-0MS00-0AA0
FSJ	500... 630	

2.6.2 Line reactor

Note

Line reactors are not required for converters of frame sizes FSA to FSG.

A line reactor is needed for high short-circuit power levels, partly to protect the actual converter against excessive harmonic currents, and thus against overload, and partly to limit line harmonics to the permitted values. The harmonic currents are limited by the total inductance comprising the line reactor and mains supply cable inductance. Line reactors can be omitted if the mains supply cable inductance is increased sufficiently, i.e., the value of $R_{s c}$ must be sufficiently small.
$\mathrm{R}_{\mathrm{sc}}=$ Relative Short-Circuit power: ratio of short-circuit power $\mathrm{S}_{\mathrm{k} \text { Line }}$ at the supply connection point to the fundamental apparent power $\mathrm{S}_{\text {inv }}$ of the connected converters (to IEC 60146-1-1).

Requirements for line reactors

Rated power of converter (kW)	Line reactor can be omitted for $\mathbf{R}_{\mathbf{s c}}$	Line reactor is required for $\mathbf{R}_{\mathbf{s c}}$
$315 \ldots 500$	≤ 33	>33
>500	≤ 20	>20

It is recommended that a line reactor is always connected on the line side of the converter, as in practice, it is often not known on which supply configuration individual converters are to be operated, i.e. which supply short-circuit power is present at the converter connection point.

A line reactor can only be dispensed with when the value for $R_{s c}$ is less than that in the above table. This is the case, when the converter, as shown in the following figure, is connected to the line through a transformer with the appropriate rating.

Note

A line reactor is always needed if a line filter is used.

In this case, the line short-circuit power $\mathrm{S}_{\mathrm{k} 1}$ at the connection point of the converter is approximately:

$\mathrm{S}_{\mathrm{k} 1}$	$=\mathrm{S}_{\text {transf }} /\left(\mathrm{U}_{\mathrm{ktransf}}+\mathrm{S}_{\text {transf }} / \mathrm{S}_{\mathrm{k} 2 \text { line }}\right)$
$\mathrm{S}_{\text {transf }}$	$=$ Transformer rated power
$\mathrm{S}_{\mathrm{k} \text { line }}$	$=$ Short-circuit power of the higher-level voltage level
$\mathrm{U}_{\mathrm{k} \text { transf }}$	$=$ Relative short-circuit voltage

Article number

Converter frame size	Rated power (kW)	Line reactor
400 V converters		
FSH	315	6SL3000-0CE36-3AA0
	355 ... 400	6SL3000-0CE37-7AA0
FSJ	450	6SL3000-0CE38-7AA0
	500 ... 560	6SL3000-0CE41-0AA0
690 V converters		
FSH	315 ... 400	6SL3000-0CH34-8AA0
	450	6SL3000-0CH36-0AA0
FSJ	500	
	560 ... 630	6SL3000-0CH38-4AA0

2.6.3 Output reactor

The output reactor reduces the voltage rate of rise and dampens transient voltage peak at the converter output, and enable longer motor cables to be connected.
\checkmark Maximum permissible motor cable length (Page 78)

NOTICE

Damage to the output reactor by exceeding the maximum pulse frequency

The maximum permissible pulse frequency when using the output reactor is 4 kHz . The output reactor can be damaged if the pulse frequency is exceeded.

- When using an output reactor, the pulse frequency of the converter must not exceed 4 kHz .

NOTICE

Damage to the output reactor if it is not activated during commissioning
The output reactor may be damaged if it is not activated during commissioning.

- Activate the output reactor during commissioning via the parameter specified by the converter manufacturer.
- Activate the output reactor during commissioning according to the electric specifications.

Note

Output reactors are available as optional components for 400 V converters, FSD ... FSH and FSJ as well as 690 V converters, FSH/FSJ only.

Article number

Converter frame size	Rated power (kW)	Output reactor
400 V converters		
FSD	18.5	6SL3202-0AE23-8CA0
	$22 . .37$	6SE6400-3TC07-5ED0
FSE	$45 . .55$	6SE6400-3TC14-5FD0
FSF	$75 . . .90$	
	110	6SL3000-2BE32-1AA0
	132	6SL3000-2BE32-6AA0
FSG	160	6SL3000-2BE33-2AA0
	200	6SL3000-2BE33-8AA0
	250	6SL3000-2BE35-0AA0
FSH	315	6SL3000-2AE36-1AA0
	355 ... 400	6SL3000-2AE38-4AA0
FSJ	450 ... 500	6SL3000-2AE41-0AA0
	560	6SL3000-2AE41-4AA0
690 V converters		

Converter frame size	Rated power (kW)	Output reactor
FSD	$3 \ldots 18.5$	JTA:TEU2532-0FP00-4EA0
	$22 \ldots 37$	JTA:TEU9932-0FP00-4EA0
FSE	$45 \ldots 55$	JTA:TEU9932-0FS00-0EA0
FSF	$75 \ldots 90$	JTA:TEU9932-1FC00-1BA0
	$110 \ldots 132$	JTA:TEU9932-0FV00-1BA0
FSG	$160 \ldots 250$	JTA:TEU4732-0FA00-0BA0
FSH	$315 \ldots 355$	6SL3000-2AH34-7AA0
	400	6SL3000-2AH35-8AA0
	450	$6 S L 3000-2 A H 38-1 A A 0$
FSJ	$500 \ldots 630$	

2.6.4 Sine-wave filter

The sine-wave filter limits the voltage gradient and the capacitive recharging currents which generally occur in converter operation. Therefore, when a sine-wave filter is used, longer screened motor cables are possible and the motor lifetime reaches the same values which are achieved when the motor is connected directly to the mains.
M] Maximum permissible motor cable length (Page 78)
When using sine-wave filters, observe the following restrictions:

- For rated power up to 90 kW , the pulse frequency should not exceed 8 kHz ; for rated power above 90 kW , the pulse frequency should be 4 kHz .
- The maximum permissible output frequency is 150 Hz .

Note

Sine-wave filters are available as optional components for 400 V converters of frame sizes FSD to FSG.

Article number

Converter frame size	Rated power (kW)	Sine-wave filter
400 V converters		
FSD	18.5 .. 22	6SL3202-0AE24-6SA0
	30	6SL3202-0AE26-2SA0
	37	6SL3202-0AE28-8SA0
FSE	45	
	55	6SL3202-0AE31-5SA0
FSF	75	
	90	6SL3202-0AE31-8SA0
	110... 132	6SL3000-2CE32-3AA0

Converter frame size	Rated power (kW)	Sine-wave filter
FSG	160	6SL3000-2CE32-8AA0
	200	6SL3000-2CE33-3AA0
	250	6SL3000-2CE34-1AA0

Special restrictions for converter FSG

When connecting 400 V converter FSG with sine-wave filters, set parameters as follows:

Parameter	6SL3000-2CE32-8AA0	6SL3000-2CE33-3AA0	6SL3000-2CE34-1AA0
p0230	4	4	4
p0233 $[\mathrm{mH}]$	0.25	0.2	0.15
p0234 $[\mu \mathrm{F}]$	28.2	42.3	56.4
$\mathrm{p} 1082[\mathrm{rpm}]$	$150 * 60 / \mathrm{r} 0313$	$150 * 60 / \mathrm{r0313}$	$150 * 60 / \mathrm{r} 0313$
$\mathrm{p} 1800[\mathrm{kHz}]$	4	4	4

For converter FSG with sine-wave filter, operation is only permissible in the vector control mode. It is not permissible for U/f mode to be used.

2.6.5 Line harmonics filter

The line harmonics filters reshape the distorted current back to the desired sinusoidal waveform. With the line harmonics filters, the converter fulfills the IEEE 519 standards.

If you use a line harmonics filter, you do not need a line reactor or a line filter.
When using the line harmonics filter, observe the following restrictions:

- The permissible line voltage is $380 \mathrm{~V} . . .415 \mathrm{~V} 3 \mathrm{AC} \pm 10 \%$.
- The operating frequency is 50 Hz .

For technical details refer to the following link:
(5) Line harmonics filter (https://www.schaffner.com/products/download/product/datasheet/ fn-3440-ecosine-50hz-passive-harmonic-filters/)

Article number

400 V Converter frame size	Rated power (kW)	Line harmonics filter
FSB	5.5	UAC:FN34406112E2XXJRX
	7.5	UAC:FN34408112E2XXJRX
FSC	11	UAC:FN344011113E2FAJRX
	15	UAC:FN344015113E2FAJRX

400 V Converter frame size	Rated power (kW)	Line harmonics filter
FSD	18.5	UAC:FN344019113E2FAJRX
	22	UAC:FN344022115E2FAJRX
	30	UAC:FN344030115E2FAJRX
	37	UAC:FN344037115E2FAJRX
FSE	45	UAC:FN344045115E2FAJRX
	55	UAC:FN344055115E2FAJRX
	75	UAC:FN344075116E2FAJRX
	90	UAC:FN344090116E2FAJRX
	110	UAC:FN3440110118E2FAJRX
	132	UAC:FN34440132118E2FAJXX
FSG	160	UAC:FN344020160118E2FAJXX
	200	$2 x$ UAC:FN3440132118E2FAJXX
	250	

*) Parallel connection between two line harmonics filters with 132 kW each
The converters FSA are not assigned to a line harmonics filter. If the rated power of the line harmonics filter is not exceeded, you may operate several convertors FSA on a common line harmonics filter.

Special restrictions for converter FSG

When connecting 400 V converter FSG with line harmonics filters, only the following settings of parameter P1300 are allowed:

- $\mathrm{P} 1300=20$
- $\mathrm{P} 1300=21$
- $\mathrm{P} 1300=22$
- $\mathrm{P} 1300=23$

For converter FSG with line harmonics filter, operation is only permissible in the vector control mode. It is not permissible for U/f mode to be used.

2.6.6 dv/dt filter plus VPL

A combination of dv/dt filter and a voltage peak limiter (VPL) - dv/dt filter plus VPL - are available to suppress voltage peaks and enable longer motor cables to be connected.
\triangle Maximum permissible motor cable length (Page 78)
When using the dv/dt filter plus VPL, observe the following restrictions:

- The maximum output frequency is 150 Hz .
- The maximum pulse frequency is 4 kHz .

Further details for the functional principle and the application cases are available on the Internet (https://support.industry.siemens.com/cs/ww/en/view/109748645).

Note

dv/dt filters plus VPL are available as optional components for converters FSH/FSJ only.

Article number

Converter frame size	Rated power (kW)	dv/dt filter plus VPL
400 V converters		
FSD	18.5	JTA:TEF1203-0HB
	$22 . .30$	JTA:TEF1203-0JB
	37	JTA:TEF1203-0KB
FSE	45	
	55	JTA:TEF1203-0LB
FSF	75	
	$90 \ldots 132$	JTA:TEF1203-0MB
FSG	$160 \ldots 250$	6SL3000-2DE35-0AA0
FSH	315 ... 400	6SL3000-2DE38-4AA0
FSJ	450 ... 560	6SL3000-2DE41-4AA0
690 V converters		
FSD	3 ... 18.5	JTA:TEF1203-0GB
	22... 37	JTA:TEF1203-0HB
FSE	$45 \ldots 55$	JTA:TEF1203-0JB
FSF	$75 \ldots 90$	JTA:TEF1203-0KB
	110... 132	JTA:TEF1203-0LB
FSG	160 ... 250	JTA:TEF1203-0MB
FSH	$315 . .400$	6SL3000-2DH35-8AA0
	450	6SL3000-2DH38-1AA0
FSJ	500 ... 630	

2.6.7 Push-through mounting kit

The optional push-through mounting kit is used to mount a converter in a control cabinet with its heatsink passing through the cabinet panel. The push-through mounted converters can fulfill a degree of protection of IP20 (UL Open Type).

Note

Push-through mounting kits are available for converters of frame sizes FSA to FSG only.

Article number

Converter frame size	Article number
FSA	6SL3261-6GA00-0BA0
FSB	6SL3261-6GB00-0BA0
FSC	6SL3261-6GC00-0BA0
FSD	6SL3261-6GD00-0BA0
FSE	6SL3261-6GE00-0BA0
FSF	6SL3261-6GF00-0BA0
FSG	6SL3261-6GG00-0BA0

Mounting the converter with the push-through mounting kit

The push-through mounting kit comprises two pieces of frames for converter FSA to FSC, and four pieces of frames for converter FSD to FSG.

Procedure, FSA ... FSC

1. Prepare a cutout and holes in the control cabinet panel for the mounting kit. 4 Dimension drawings and drill patterns (Page 60)
2. Fix the U-shape frame to the converter using four screws (step (1)).
3. Push the converter heatsink through the cutout of the control cabinet.
4. Attach the top frame to the front of the converter and align its two holes with the holes on the U-shape frame.
5. Fix the converter and the top frame to the cabinet panel with six screws (step (2).

You have correctly installed the converter with the push-through mounting kit.
\square

Procedure, FSD ... FSG

1. Prepare a cutout and holes in the control cabinet panel for the mounting kit. 4] Dimension drawings and drill patterns (Page 60)
2. Fix the top and bottom frames (bearing "TOP" and "BOTTOM" marks respectively) to the converter using eight screws (step (1)).
3. For converter FSD to FSF, first attach the left and right frames (bearing "LEFT" and "RIGHT" marks respectively) to the rear of the converter, and then fix them together with the top and bottom frames using eight screw nuts (step (2)).
For converter FSG, after attaching the left and right frames, you also need to attach four additional support clips from the front of the converter, and fix the clips with all mounting frames together using the screw nuts (see below).

4. Fix the mounting frames in place with four screws at the mounting holes of the converter (step (3).
5. Push the
6. heatsink through the cutout of the control cabinet.
7. Fix the converter with the fixing screws (six for FSD/FSE; eight for FSF/FSG) to the cabinet panel (step (4).

Mounting the shield connection kit for the Power Module, push-through mounted FSD
The push-through mounting kits for converters of frame sizes FSD to FSG provide separate shielding plates for the power connections. In order to connect the line supply and motor cable shields for a push-through mounted converter FSD to FSG, you must use the shielding plate provided in the push-through mounting kit.

Procedure, FSD
 FSG

1. Remove the four screws at the bottom of the converter.
2. Attach the shielding plate to the converter and fix it in place by fastening the four screws. For converter FSG, use two additional screws to fix the shielding plate to the cabinet panel.

FSD ... FSF

FSG

3. If the converter has an integrated line filter, mount the EMC connecting bracket provided in the scope of delivery of the converter. For more information about mounting the EMC connecting bracket, see the following section:
4] Mounting the shield connection kits (Page 63)
You have now mounted the shield connection kit.
\square

2.6.8 Mounting grips for push-through mounted converters

For the push-through mounted converters FSD to FSG, the optional mounting grips can be used to mount the converters without hoisting gear.
Article number: 6SL3200-0SM22-0AA0
For more information about the installation of this optional component, see the following section:
\leadsto Additional mounting instructions, FSD ... FSG (Page 65)

2.6.9 IP21 top cover

Overview

The optional IP21 top cover provides extra protection for the converter. The IP21 top cover is mounted above the converter and includes the necessary seals to ensure compliance with degree of protection IP21.

Mounting

Mounting instructions:

- Mount the IP21 top cover on the control cabinet panel using two screws.
- Mount the IP21 top cover right above the converter so that the cover and converter are aligned by their centers.
- Maintain the clearance to the converter.

Table 2-1 IP21 top cover dimensions - mm (inch)

Frame size	Clearance	A	B	C	D	\varnothing	Tightening torque
FSA	100 (3.9)	25 (1.0)	120 (4.7)	80 (3.15)	306 (12.0)	4.5 (0.18)	$\begin{aligned} & 3 \mathrm{Nm} \\ & (27 \mathrm{lbf} . \mathrm{in}) \end{aligned}$
FSB			160 (6.3)	118 (4.6)		5.5 (0.22)	
FSC		29 (1.1)	260 (10.2)	170 (6.7)	323 (12.7)	6.0 (0.24)	6 Nm (53 Ibf.in)
FSD	300 (11.8)						
FSE			335 (13.2)	230 (9.1)			
FSF, FSG			365 (14.4)	270 (10.6)	443 (17.4)		

Article number

Converter frame size	Article number
FSA	6SL3266-1PA00-0BA0
FSB	6SL3266-1PB00-0BA0
FSC, FSD	6SL3266-1PD00-0BA0
FSE	6SL3266-1PE00-0BA0
FSF, FSG	6SL3266-1PF00-0BA0
FSH, FSJ	Not available

2.6.10 Operator panel

An operator panel has been designed to enhance the interface and communications capabilities of the converter. It can be used to commission, troubleshoot and control the converter, as well as to back up and transfer the converter settings. The operator panels (BOP-2 and IOP-2) can be mounted either directly on the converter or in a control cabinet door using a door mounting kit.

Article number

Basic Operator Panel 2 (BOP-2)	6SL3255-0AA00-4CA1
Intelligent Operator Panel 2 (IOP-2)	6SL3255-0AA00-4JA2
Door mounting kit for the operator panel	6SL3256-0AP00-0JA0
IOP-2 Handheld	6SL3255-0AA00-4HA1

2.6.11 SINAMICS G120 Smart Access

The SINAMICS G120 Smart Access is a Wi-Fi-based Web server module and an engineering tool. It has been designed for quick commissioning, parameterization, and maintenance of the converters.

Article number: 6SL3255-0AA00-5AA0

2.7 Motors and multi-motor drives that can be operated

Siemens motors that can be operated

You can connect standard induction motors to the converter.
You can find information on further motors on the Internet:
(3) Motors that can be operated (https://support.industry.siemens.com/cs/ww/en/view/ 100426622)

Third-party motors that can be operated
You can operate standard asynchronous motors from other manufacturers with the converter:

NOTICE

Insulation failure due to unsuitable third-party motor
A higher load occurs on the motor insulation in converter mode than with line operation. Damage to the motor winding may occur as a result.

- Please observe the notes in the System Manual "Requirements for third-party motors"

Further information is provided on the Internet:
(3) Requirements for third-party motors (https://support.industry.siemens.com/cs/ww/en/ view/79690594)

Multi-motor operation

Multi-motor operation involves simultaneously operating several motors from one converter. For standard induction motors, multi-motor operation is generally permissible.

Additional preconditions and restrictions relating to multi-motor operation are available on the Internet:
(2) Multi-motor drive (http://support.automation.siemens.com/WW/view/en/84049346)
2.7 Motors and multi-motor drives that can be operated

3.1 Installing the label for the North American market

Description

DANGER - Risk of electrical shock. Discharge

 time of DC capacitors to a level below 50 V is 5 minutes.
WARNING
 - The opening of the branch-circuit

 protective device may be an indication that a fault has been Interrupted. To reduce the risk of fire or electrical shock, current carrying parts and other components of the contraller should be examined and replaced if damaged. If burnout of the current alements of an overload relay occurs, the complete overload relay must be replaced.The supply circuit's maximurn short circuit current capability and voltags rating depends on type end rating of the avercurrent protection device. Aefer to the user manual for details.

Integral solld state short circult protection dase not provide brench circuit protection. Branch circuit protection must be provided in accordance with the Natlanal Electrical Cote, the Canadian Electrical Code, Part1, respectively, additional local Codes and the Manufacturer's Instructions.

Integral motor overload protection included. Refer to user manual for initial setting and adjustments.

DANGER-Riqque de choc électrique. Une tension dangereuse peut âtre prósentée jusqu'at 5 minutes après avoir coupé I'alimentation.

ATTENTION

- Le déclenchement du dispositif de protection du circuit de dérivation peut ètre dù à une caupure aul résulte d'un courant de défaut. Pour limiter le risque d'incendis au de choc électrique, examiner les pièces porteuses de courant et les autres éléments du cantroleur et les remplacer oilo sant endommages. En cas de grillages de l'olément traversé par le courant dans un relais de surcharge, If relais tout antior doit être remplaćs.

Le courant nominal de court-circuit du circuit
d'alimentation et sa tension assignée dépendent du type et des caractéristiques assignéas du dispasitlf de protection contre les surcharges. Pour plus de détails, wir manuel.

La protection intégrés contre les courts-circuits n'assure pas la protection de la dérivation. La protection de la dérivation doit étre expcutée conformément au le National Electrical Code $\{\mathrm{NEC}$) ou le Coda Canadien de L'électricité, première partie, et dans le respect des preseriptions locales et des instructions du fabriant.

Protection de surcharge moteur incluse. Voir manue pour les paramètres d'origine et les réglages.

Figure 3-1 Adhesive label with danger and warning notes for North America
The converter is supplied with an adhesive label with danger and warning notes for the North American market.

Attach the adhesive label in the required language to the inside of the control cabinet where it is clearly visible at all times.

3.2 EMC-compliant setup of the machine or plant

The converter is designed for operation in industrial environments where strong electromagnetic fields are to be expected.
Reliable and disturbance-free operation is only guaranteed for EMC-compliant installation.
To achieve this, subdivide the control cabinet and the machine or system into EMC zones:

EMC zones

Figure 3-2 Example of the EMC zones of a plant or machine

Inside the control cabinet

- Zone A: Line supply connection
- Zone B: Power electronics Devices in Zone B generate energy-rich electromagnetic fields.
- Zone C: Control and sensors Devices in Zone C do not generate any energy-rich electromagnetic fields themselves, but their functions can be impaired by electromagnetic fields.

Outside the control cabinet

- Zone D: Motors

Devices in Zone D generate electromagnetic fields with a significant amount of energy

3.2.1 Control cabinet

- Assign the various devices to zones in the control cabinet.
- Electromagnetically uncouple the zones from each other by means of one of the following actions:
- Side clearance $\geq 25 \mathrm{~cm}$
- Separate metal enclosure
- Large-area partition plates
- Route cables of various zones in separate cable harnesses or cable ducts.
- Install filters or isolation amplifiers at the interfaces of the zones.

Control cabinet assembly

- Connect the door, side panels, top and base plate of the control cabinet with the control cabinet frame using one of the following methods:
- Electrical contact surface of several cm^{2} for each contact location
- Several screw connections
- Short, finely stranded, braided copper wires with cross-sections $\geq 95 \mathrm{~mm}^{2} / 000$ (3/0) (-2) AWG
- Install a shield support for shielded cables that are routed out of the control cabinet.
- Connect the PE bar and the shield support to the control cabinet frame through a large surface area to establish a good electrical connection.
- Mount the control cabinet components on a bare metal mounting plate.
- Connect the mounting plate to the control cabinet frame and PE bar and shield support through a large surface area to establish a good electrical connection.
- For screw connections onto painted or anodized surfaces, establish a good conductive contact using one of the following methods:
- Use special (serrated) contact washers that cut through the painted or anodized surface.
- Remove the insulating coating at the contact locations.

Measures required for several control cabinets

- Install equipotential bonding for all control cabinets.
- Screw the frames of the control cabinets together at several locations through a large surface area using serrated washers to establish a good electrical connection.
- In plants and systems where the control cabinets are lined up next to one another, and which are installed in two groups back to back, connect the PE bars of the two cabinet groups at as many locations as possible.

Figure 3-3 Grounding and high-frequency equipotential bonding measures in the control cabinet and in the plant/system

Further information

Additional information about EMC-compliant installation is available in the Internet:
EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)

3.2.2 Cables

Cables with a high level of interference and cables with a low level of interference are connected to the converter:

- Cables with a high level of interference:
- Cable between the line filter and converter
- Motor cable
- Cable at the converter DC link connection
- Cables with a low level of interference:
- Cable between the line and line filter
- Signal and data cables

Cable routing inside the cabinet

- Route the power cables with a high level of interference so that there is a minimum clearance of 25 cm to cables with a low level of interference.
If the minimum clearance of 25 cm is not possible, insert separating metal sheets between the cables with a high level of interference and cables with a low level of interference. Connect these separating metal sheets to the mounting plate to establish a good electrical connection.
- Cables with a high level of interference and cables with a low level of interference may only cross over at right angles:
- Keep all of the cables as short as possible.
- Route all of the cables close to the mounting plates or cabinet frames.
- Route signal and data cables - as well as the associated equipotential bonding cables parallel and close to one another.
- Twist incoming and outgoing unshielded individual conductors.

Alternatively, you can route incoming and outgoing conductors in parallel, but close to one another.

- Ground any unused conductors of signal and data cables at both ends.
- Signal and data cables must only enter the cabinet from one side, e.g. from below.
- Using shielded cables for the following connections:
- Cable between the converter and line filter
- Cable between the converter and output reactor

Figure 3-4 Routing converter cables inside and outside a control cabinet
3.2 EMC-compliant setup of the machine or plant

Routing cables outside the control cabinet

- Maintain a minimum clearance of 25 cm between cables with a high level of interference and cables with a low level of interference.
- Using shielded cables for the following connections:
- Converter motor cable
- Signal and data cables
- Connect the motor cable shield to the motor enclosure using a PG gland that establishes a good electrical connection.

Requirements relating to shielded cables

- Use cables with finely-stranded, braided shields.
- Connect the shield to at least one end of the cable.

Figure 3-5 Examples for EMC-compliant shield support

- Attach the shield to the shield support directly after the cable enters the cabinet.
- Do not interrupt the shield.
- Only use metallic or metallized plug connectors for shielded data cables.

3.2.3 Electromechanical components

Surge voltage protection circuit

- Connect surge voltage protection circuits to the following components:
- Coils of contactors
- Relays
- Solenoid valves
- Motor holding brakes
- Connect the surge voltage protection circuit directly at the coil.
- Use RC elements or varistors for AC-operated coils and freewheeling diodes or varistors for DC-operated coils.

3.3 Power losses and air cooling requirements

Overview

To protect the components from overheating, the control cabinet requires a cooling air flow, which depends on the power loss of the individual components.

Measures in order to ensure that the components are adequately cooled

- Add the power losses of the individual components.
- Technical data (Page 895)
- Use the manufacturers' data for components, for example reactors or filters.
- Calculate the air flow required:
airflow [l/s] = power loss [W] * $0.86 / \Delta T[K]$
Power loss: Total of the power losses of the individual components.
$\Delta \mathrm{T}$: Permissible temperature rise in the control cabinet.
- Ensure that the control cabinet is appropriately ventilated and equipped with suitable air filters.
- Ensure that the components maintain the specified clearances with respect to one another.
- Ensure that the components are provided with adequate cooling air through the cooling openings.
- Use the appropriate air barriers to prevent cooling air short circuits.
- Ensure that the electrical cabinet is adequately ventilated and is equipped with suitable air filters.
Comply with the replacement intervals of the air filter.
3.3 Power losses and air cooling requirements

Further measures

Air barriers can prevent converters from overheating each other. Such measures are only necessary in extreme cases when the cooling air temperature reaches the maximum ambient temperature of the inverter.

3.4 Mounting the converter

3.4.1 Basic installation rules

Requirements

General installation conditions

When installing the converters carefully observe the conditions listed below in order to guarantee reliable, continuous and disturbance-free operation.

- The converters are designed for installation in a control cabinet.
- The converters are suitable for mounting on concrete or other non-combustible surfaces only, for example, on a bare metal mounting plate.
- The converters comply with degree of protection IP20 according to IEC 60529. The converters utilizing push-through technology fulfill a degree of protection of IP20 (UL Open Type).
- The converters are certified for use in environments with degree of pollution 2 without condensation, that is in environments where no conductive pollution/dirt occurs. Condensation is not permissible.
- Ensure that the device is free of dust and dirt. When using a vacuum cleaner, this must comply with ESD equipment rules.
- Keep the device away from water, solvents and chemicals. Take care to install it away from potential water hazards, for example, do not install it beneath pipes that are subject to condensation. Avoid installing it where excessive humidity and condensation may occur.
- Keep the device within the maximum and minimum operating temperatures. At temperatures $>40^{\circ} \mathrm{C}$ and installation altitudes $>1000 \mathrm{~m}$, the devices must be derated.
- Ensure that the correct level of ventilation and air flow is provided.
- Fast temperature changes of the air drawn in (for example, by using cooling units) are not permitted due to the danger of condensation.
- Ensure that all converters and the cabinet are grounded according to the EMC guidelines $\$$ EMC-compliant setup of the machine or plant (Page 48)

Converters for systems in the United States/Canada (UL/cUL)

- For a system configuration in conformance with UL/cUL, use the UL/cUL-approved fuses or circuit breakers under the following Internet address:
(2) Fuses and circuit breakers (https://support.industry.siemens.com/cs/ww/en/ps/13213)
- The converter of frame size FSA has to be mounted in an enclosure sized min. 500 mm (height) $\times 400 \mathrm{~mm}$ (depth) $\times 255 \mathrm{~mm}$ (width).
- The integrated solid-state short-circuit protection does not provide branch circuit protection.
- UL: Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.
- CSA: Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I
- On the system side, provide branch circuit protection in conformance with NEC or CEC, Part 1, and the local regulations.
- The converters provide internal motor protection corresponding to UL61800-5-1. The protection threshold is 115% of the converter full load current. When commissioning, you can adapt the motor overload protection using parameter p0640.
- For frame sizes FSF and FSG, to connect the line supply and motor only use UL approved ring-type cable lugs (ZMVV), which are certified for the particular voltage, with a permissible current of at least 125% of the input and output current. Use the higher value as basis.
- The line and output voltage may not be lower than 400 V or higher than 600 V .
- Only use copper cables rated for $60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$. For converters FSA to FSC , only use copper cables rated for $75^{\circ} \mathrm{C}{ }^{11}$.
${ }^{1)}$ When connecting a cable with a higher rated temperature, do not reduce the cable crosssection.
Example: If a cable with a rated temperature of $60^{\circ} \mathrm{C}$ is specified, the cable cross-section must also be rated according to $60^{\circ} \mathrm{C}$. When connecting a cable with a higher rated temperature, e. g. $90^{\circ} \mathrm{C}$, you must determine the cable cross-section as if the cable had a rated temperature of $60^{\circ} \mathrm{C}$.

WARNING

Risk of explosion or spread of fire from built-in devices
Short circuits in the converter or its components may cause explosion or fire in the control cabinet, which can result in serious personal injury or property damage.

- Install built-in devices in a suitable and robust metal cabinet in such a way that personnel are protected against the explosive shock and fire, or take other appropriate protection measures, for example, using five safety cabinet locks additionally.

Protection against the spread of fire

The device may be operated only in closed housings or in control cabinets with protective covers that are closed, and when all of the protective devices are used. The installation of the device in a metal control cabinet or the protection with another equivalent measure must prevent the spread of fire and emissions outside the control cabinet.

Protection against condensation or electrically conductive contamination

Protect the device, e.g. by installing it in a control cabinet with degree of protection IP54 according to IEC 60529 or NEMA 12. Further measures may be necessary for particularly critical operating conditions.

If condensation or conductive pollution can be excluded at the installation site, a lower degree of control cabinet protection may be permitted.

Mounting position

Figure 3-6 Only mount in the vertical position with the line connection at the bottom

3.4.2 Dimension drawings and drill patterns

Overview

The converters are designed to be mounted in accordance with the dimension drawings, in a cabinet using screws, nuts and washers.

Note

To comply with EMC specifications, it is recommended to mount the converter on an electrically conductive mounting panel in the cabinet. This mounting panel should be connected to the cabinet PE.

3.4.2.1 Mounting the converter on the mounting panel

Dimensions and clearance distances - mm (in)

Frame size	Height	Height including shield plate	Width	Depth	Additional depth		Clearance ${ }^{1)}$			
					With operator panel	With G120 Smart Access	A	B	lateral	front
FSA	$\begin{aligned} & 232 \\ & (9.1) \end{aligned}$	330 (13.0)	73 (2.8)	209 (8.2)	9 (0.4)	7 (0.3)	80 (3.1)	100 (3.9)	$0^{2)}$	-
FSB	$\begin{aligned} & \hline 275 \\ & (10.8) \\ & \hline \end{aligned}$	383 (15.1)	100 (3.9)	209 (8.2)	9 (0.4)	7 (0.3)	80 (3.1)	100 (3.9)	$0^{2)}$	-
FSC	$\begin{aligned} & 295 \\ & (11.6) \end{aligned}$	423 (16.7)	140 (5.5)	209 (8.2)	9 (0.4)	7 (0.3)	80 (3.1)	100 (3.9)	$0^{2)}$	-
FSD	$\begin{aligned} & \hline 472 \\ & (18.6) \\ & \hline \end{aligned}$	625 (24.6)	200 (7.9)	239 (9.4)	9 (0.4)	7 (0.3)	$\begin{aligned} & 300 \\ & (11.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \\ \hline \end{array}$	$0^{2)}$	-
FSE	$\begin{aligned} & \hline 551 \\ & (21.7) \\ & \hline \end{aligned}$	729 (28.7)	$\begin{aligned} & \hline 275 \\ & (10.8) \\ & \hline \end{aligned}$	239 (9.4)	9 (0.4)	7 (0.3)	$\begin{aligned} & 300 \\ & (11.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \\ \hline \end{array}$	$0^{2)}$	-
FSF	$\begin{aligned} & \hline 709 \\ & (27.9) \\ & \hline \end{aligned}$	969 (38.1)	305 (12)	$\begin{array}{\|l\|} \hline 360 \\ (14.2) \\ \hline \end{array}$	9 (0.4)	7 (0.3)	$\begin{aligned} & 300 \\ & (11.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \\ \hline \end{array}$	$0^{2)}$	-
FSG	$\begin{aligned} & \hline 999 \\ & (39.3) \end{aligned}$	$\begin{aligned} & 1255 \\ & (49.4) \end{aligned}$	305 (12)	$\begin{aligned} & \hline 360 \\ & (14.2) \end{aligned}$	9 (0.4)	7 (0.3)	$\begin{aligned} & 300 \\ & (11.8) \end{aligned}$	$\begin{aligned} & \hline 350 \\ & (13.8) \end{aligned}$	$0^{2)}$	-

Frame size	Height	Height including shield plate	Width	Depth	Additional depth		Clearance ${ }^{1)}$			
					With operator panel	With G120 Smart Access	A	B	lateral	front
FSH	$\begin{array}{\|l} \hline 1696 \\ (66.7) \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline 548 \\ (21.6) \end{array}$	$\begin{array}{\|l\|} \hline 393 \\ (15.5) \\ \hline \end{array}$	-	-	200 (7.9)	250 (9.8)	$\begin{array}{\|l\|} \hline 30 \\ (1.2) \\ \hline \end{array}$	100 (3.9)
FSJ	$\begin{aligned} & 1621 \\ & (63.8) \end{aligned}$	-	$\begin{aligned} & 801 \\ & (31.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 393 \\ (15.5) \end{array}$	-	-	200 (7.9)	250 (9.8)	$\begin{aligned} & \hline 30 \\ & (1.2) \end{aligned}$	100 (3.9)

1) The cooling air clearances A and B refer to the converter without shield plate.
2) Maximum surrounding air temperature during operation dependent on lateral clearance:

- Max. $50^{\circ} \mathrm{C}$ for mounting with 0 mm lateral clearance (for tolerance reasons, we recommend a lateral clearance of approx.

1 mm.$)$

- Max. $55^{\circ} \mathrm{C}$ for mounting with 50 mm lateral clearance.

Drill patterns - mm (in)

Table 3-1 FSA ... FSG

	Drill pattern	Dimensions	FSA	FSB	FSC	FSD	FSE	FSF	FSG
		A	55 (2.2)	80 (3.2)	118 (4.6)	170 (6.7)	230 (9.1)	$\begin{aligned} & 270 \\ & (10.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 265 \\ (10.4) \end{array}$
		B	$\begin{aligned} & 221.5 \\ & \text { (8.7) } \end{aligned}$	$\begin{array}{\|l\|} \hline 265 \\ (10.4) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 283 \\ (11.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 430 \\ (16.9) \end{array}$	$\begin{aligned} & 509 \\ & (20.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 680 \\ (26.8) \\ \hline \end{array}$	$\begin{aligned} & 970.5 \\ & (38.2) \end{aligned}$
		\varnothing	5 (0.2)	5 (0.2)	5.5 (0.2)	6.0 (0.2)	6.5 (0.3)	8.5 (0.3)	$12(0.5)$
		Fixings (bolts, washers, nuts)	$4 \times \mathrm{M} 4$	$4 \times \mathrm{M} 4$	$4 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$	$4 \times \mathrm{M} 6$	$4 \times \mathrm{M} 8$	$4 \times \mathrm{M} 10$
	B	Tightening torque - Nm (lbf. in)	$\begin{array}{\|l} \hline 2.5 \\ (22.1) \end{array}$	$\begin{array}{\|l} 2.5 \\ (22.1) \end{array}$	$\begin{array}{\|l} 2.5 \\ (22.1) \end{array}$	6 (53.1)	10 (88.5)	$\begin{aligned} & 25 \\ & (221.3) \end{aligned}$	50 (442.5)

Note: For the converters FSD to FSG, a printed drill pattern is supplied with each converter. This can be used to easily drill the necessary mounting holes.

Table 3-2 FSH and FSJ

Drill pattern	Dimensions	FSH	FSJ
		$160(6.3)$	$200(7.9)$
		$150(5.9)$	$290(11.4)$

3.4.2.2 Mounting the converter utilizing push-through technology (FSA to FSG only)

Use the optional mounting kit to mount a converter in push-through technology in a control cabinet. Mounting instructions are provided in the following section:

Push-through mounting kit (Page 39)
The following dimension drawings and drilling patterns are not to scale.
Panel thickness of the control cabinet $\leq 3.5 \mathrm{~mm}$

Mounting dimensions - mm (in)

Frame size	Width (W)	Height	Depth		
		H (with shield plate)	H1 (wthout shield plate)	T1	T2
FSA	$127(5.0)$	$390(15.4)$	$300(11.8)$	$160(6.3)$	$57(2.2)$
FSB	$154(6.1)$	$450(17.7)$	$345(13.6)$	$153(6.0)$	$66(2.6)$
FSC	$192(7.6)$	$473(18.6)$	$361(14.2)$	$154(6.1)$	$65(2.5)$
FSD	$271(10.6)$	$647(25.5)$	$514(20.2)$	$142(5.6)$	$98(3.9)$
FSE	$360(14.2)$	$773(30.4)$	$600(23.6)$	$145(5.7)$	$93(3.7)$
FSF	$396(15.6)$	$1003(39.5)$	$749(29.5)$	$185(7.3)$	$185(7.3)$
FSG	$384(15.1)$	$1275(50.2)$	$1026(40.4)$	$184(7.2)$	$188(7.4)$

Cutouts and drilling patterns - mm (in)

Frame size	Drilling dimensions - mm (in)								Fixings	Tightening torque - Nm (Ibf.in)
	a	b	b1	b2	C	d	e	\varnothing		
FSA	$\begin{aligned} & 105.5 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 102.5 \\ & (4.0) \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 273 \\ & (10.7) \\ & \hline \end{aligned}$	82 (3.2)	45 (1.8)	5 (0.2)	$4 \times \mathrm{M} 4$	2.5 (22.1)
FSB	$\begin{aligned} & 132.5 \\ & (5.2) \\ & \hline \end{aligned}$	117 (4.6)	-	-	$\begin{aligned} & \hline 316 \\ & (12.4) \\ & \hline \end{aligned}$	109 (4.3)	45 (1.8)	5 (0.2)	$4 \times \mathrm{M} 4$	2.5 (22.1)
FSC	$\begin{aligned} & 170.5 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 120.5 \\ & (4.7) \end{aligned}$	-	-	$\begin{aligned} & 334 \\ & (13.2) \end{aligned}$	149 (5.9)	45 (1.8)	5.5 (0.2)	$4 \times \mathrm{M} 5$	2.5 (22.1)
FSD	246 (9.7)	235 (9.3)	241 (9.5)	-	$\begin{aligned} & \hline 497 \\ & (19.6) \end{aligned}$	216 (8.5)	$\begin{aligned} & 10.5 \\ & (0.4) \end{aligned}$	7 (0.3)	$6 \times \mathrm{M} 5$	6 (53.1)
FSE	$\begin{array}{\|l\|} \hline 323 \\ (12.7) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 275 \\ (10.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 281 \\ (11.1) \\ \hline \end{array}$	-	588 (23)	$\begin{aligned} & 292 \\ & (11.5) \\ & \hline \end{aligned}$	19 (0.7)	7 (0.3)	$6 \times \mathrm{M} 5$	6 (53.1)
FSF	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \\ \hline \end{array}$	220 (8.7)	250 (9.8)	226 (8.9)	$\begin{aligned} & 731 \\ & (28.8) \end{aligned}$	$\begin{aligned} & 324 \\ & (12.8) \end{aligned}$	$\begin{aligned} & 20.5 \\ & (0.8) \end{aligned}$	10 (0.4)	$8 \times \mathrm{M} 8$	$\begin{aligned} & 25 \\ & (221.3) \end{aligned}$
FSG	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \end{array}$	$\begin{aligned} & \hline 328 \\ & (12.9) \end{aligned}$	330 (13)	$\begin{array}{\|l\|} \hline 328 \\ (12.9) \end{array}$	1015 (40)	$\begin{aligned} & 324 \\ & (12.8) \end{aligned}$	$\begin{aligned} & 14.6 \\ & (0.6) \end{aligned}$	10/11*(0. 4)	$\begin{aligned} & 8 \times \mathrm{M} 8 / \\ & 4 \times \mathrm{M} 10^{*} \end{aligned}$	$\begin{aligned} & 25 \\ & (221.3) / \\ & 50 \\ & (442.5)^{*} \end{aligned}$

[^0]
3.4.3 Mounting the shield connection kits

Overview

We recommend that you mount the shield connection kits provided. The shield connection kit makes it simpler to install the converter in compliance with EMC regulations and to provide strength relief for the connected cables.

Mounting the shield connection kit for the Control Unit

Note

The shield connection kit for the Control Unit is available for converters FSD to FSG only.

Attach the shielding plate to the bottom of the Control Unit, and use a cross-tip screwdriver to tighten the screw to fix it onto the converter.

Mounting the shield connection kit for the Power Module, FSA ... FSC
Procedure

1. Remove the two screws and two U clamps from the bottom of the converter (1).
2. Mount the two U clamps with the two screws on the shield plate (2).
3. Fasten the shield plate in place using two screws (3).

You have now mounted the shield connection kit.

Mounting the shield connection kit for the Power Module, FSD .. FSG

Note

For a push-through mounted converter FSD ... FSG, use the shielding plate provided in the push-through mounting kit.

Push-through mounting kit (Page 39)

Procedure, FSD/FSE

1. Attach the shielding plate to the bottom of the converter and fasten it in place using four screws (1).
2. If the converter has an integrated line filter, mount the EMC connecting bracket additionally. a. Slide the EMC connecting bracket into the converter, so that it is held in the converter by the clamping spring (2).
The EMC connecting bracket is positioned correctly if you feel some resistance when pulling it out from the converter.
b. Having ensured that it is positioned correctly, fasten the EMC connecting bracket in place using three screws (3).

You have now mounted the shield connection kit.

Procedure, FSF

1. Attach the shielding plate to the bottom of the converter and fasten it in place using four screws (1).
2. If the converter has an integrated line filter, mount the EMC connecting bracket additionally by fastening it to the shielding plate with four screws (2).

You have now mounted the shield connection kit.

\square

Procedure, FSG

1. Secure each side part to the shielding plate with two screws (1).
2. Attach the shielding plate to the bottom of the converter and fasten it in place using six screws (2).
3. If the converter has an integrated line filter, mount the EMC connecting bracket additionally by fastening it to the shielding plate with four screws (3).

You have now mounted the shield connection kit.

3.4.4 Additional mounting instructions for FSD ... FSJ

3.4.4.1 Additional mounting instructions, FSD ... FSG

When mounting the converters FSD to FSG, the weight of the converter should be considered and appropriate hoisting gear for mounting should be applied. converter weight:

Hoisting gear
For cabinet panel mounted converters
Use crane lifting lugs and the appropriate hoisting gear when mounting the converters on the cabinet panel.

For push-through mounted converters
Use the hoisting gear shown below when mounting the converters utilizing push-through technology.

Mounting grips
Alternatively, you can use the mounting grips to mount the push-through mounted converters without hoisting gear. Install the four mounting grips as shown below.

3.4 Mounting the converter

3.4.4.2 Additional mounting instructions, FSH/FSJ

Installing

Removing the pallet

Lifting the converter into the cabinet
The converters FSH and FSJ can be lifted into the cabinet with the lifting eyes. Use a lifting harness where the ropes or chains are maintained in a vertical position. The device must not be lifted at an angle because this can damage the housing. Rope spreaders may have to be used.

The electrical cabinet installation must be realized in accordance with the dimension drawings supplied. The minimum cabinet sizes for the installation of converters FSH and FSJ are provided as follows:

- For FSH: 800 mm (width) $\times 2000 \mathrm{~mm}$ (height) $\times 600 \mathrm{~mm}$ (depth)
- For FSJ: 1000 mm (width) $\times 2000 \mathrm{~mm}$ (height) $\times 600 \mathrm{~mm}$ (depth)

Before converter installation, remove the side, back, and top plates from the cabinet frame, and mount at least two support plates in the cabinet.

After the converter is installed in the cabinet, install the side, back, and top plates back to the cabinet frame.

3.4.5 Mounting the optional components

Depending on the particular application, converters may require optional components. For more information about optional components, refer to Section "Optional components (Page 32)".

4.1 Line supply and motor

> | WARNING |
| :--- |
| Electric shock when the motor terminal box is open |
| As soon as the converter is connected to the line supply, the motor connections of the |
| converter may carry dangerous voltages. When the motor is connected to the converter, there |
| is danger to life through contact with the motor terminals if the motor terminal box is open. |

- Close the motor terminal box before connecting the converter to the line supply.

Note

Fault protection for the motor circuit

The electronic overcurrent trip complies with the requirements laid down in IEC 60364-3-2:2005/AMD1:- Section 411 for protection against electric shock.

- Observe the installation specifications provided in this manual.
- Observe the applicable installation standards.
- Ensure the continuity of the protective conductor.

4.1.1 Permissible line supplies

4.1.1.1 TN system

Overview

Figure 4-1 TN system
A TN system transfers the PE protective conductor to the installed plant or system using a cable.

Generally, in a TN system the neutral point is grounded. There are versions of a TN system with a grounded line conductor, e.g. with grounded L1.
The TN system can transfer the neutral conductor N and the PE protective conductor either separately or combined.

Function description

Table 4-1 Converter operated on a TN system

Converter	Line supply with grounded neutral									Line supply with grounded phase conductor and a voltage $\leq 600 \mathrm{~V}$ phase to phase								
Frame size	A	B	C	D	E	F	G	H	J	A	B	C	D	E	F	G	H	J
Without line filter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
Integrated line filter C2	\checkmark	\bigcirc	\bigcirc	-	-	-	-	-	-	- 1)	\bigcirc	\bigcirc						
Integrated line filter C3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	$\begin{aligned} & \text { 1) } \end{aligned}$	(1)	\checkmark

$\checkmark=$ Operation permissible
$\checkmark^{1)}$ Operation permissible once grounding screw has been removed
If the grounding screw has been removed, the converter no longer fulfills the requirements of class C3.

- Operation not permissible
- Converter not available

More information on removing the grounding connection in the converter:
$\$$ Removing functional grounding of the converter (Page 74)

4.1.1.2 TT system

Overview

In a TT system, the transformer grounding and the installation grounding are independent of one another.
There are TT supplies where the neutral conductor N is either transferred - or not.

Function description

Note

Operation in IEC or UL systems
For installations in compliance with IEC, operation on TT systems is permissible. For installations in compliance with UL, operation on TT systems is not permissible.

Table 4-2 Converter operated on a TT system

Converter	Line supply with grounded neutral									Line supply with grounded phase conductor and a voltage $\leq 600 \mathrm{~V}$ phase to phase								
Frame size	A	B	C	D	E	F	G	H	J	A	B	C	D	E	F	G	H	J
Without line filter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
Integrated line filter C2	\checkmark	\bigcirc	\bigcirc	-	-	-	-	-	-	, ${ }^{\text {1) }}$	\bigcirc	\bigcirc						
Integrated line filter C3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	$\begin{aligned} & \text { V } \\ & \text { 1) } \end{aligned}$	1)	1)

$\checkmark=$ Operation permissible
$\checkmark^{1)}$ Operation permissible once grounding screw has been removed
If the grounding screw has been removed, the converter no longer fulfills the requirements of class C3.

- Operation not permissible
- Converter not available

More information on removing the grounding connection in the converter:
4] Removing functional grounding of the converter (Page 74)

4.1.1.3 IT system

Overview

Figure 4-3 IT system
In an IT system, all of the conductors are insulated with respect to the PE protective conductor - or connected to the PE protective conductor through an impedance.

There are IT systems with and without transfer of the neutral conductor N .

Function description

Table 4-3 Converter operated on an IT system

Converter	Line supply with grounded neutral									Line supply with grounded phase conductor and a voltage $\leq 600 \mathrm{~V}$ phase to phase								
Frame size	A	B	C	D	E	F	G	H	J	A	B	C	D	E	F	G	H	J
Without line filter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
Integrated line filter C2	-	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	\bigcirc	\bigcirc
Integrated line filter C3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	($\begin{aligned} & \text { 1) } \end{aligned}$	1)	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	$\begin{aligned} & \text { 1) } \end{aligned}$, ${ }^{1}$, 1)

$\checkmark=$ Operation permissible
$\checkmark^{1)}$ Operation permissible once grounding screw has been removed
If the grounding screw has been removed, the converter no longer fulfills the requirements of class C3.

- Operation not permissible
- Converter not available

More information on removing the grounding connection in the converter:
\square Removing functional grounding of the converter (Page 74)

4.1.1.4 Removing functional grounding of the converter

If you wish to use the converters with C2/C3 line filter, note the information in the following sections:

TN system (Page 71)

Precondition

Switch off the converter power supply before removing the functional grounding.

WARNING

Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.
Therefore, touching the converter immediately after powering off can result in electric shock due to residual charge in the power components.

- Check the voltage at the converter connections before you remove the functional grounding.

Removing screw for functional grounding, FSG

Disconnecting the basic interference suppression module, FSH/FSJ

If a converter FSH or FSJ is operated from a non-grounded line supply (IT system), the connection to the basic interference suppression module of the Power Module must be opened.

Procedure

1. Open the left-hand housing flap of the converter by rotating latch (1).
2. Release the two captive screws (3) and (4).
3. Release the screws (2), (5), and (6), but do not remove the screws.
4. Swivel the connection clip around the axis of rotation of screw (5) towards the right, until the connection clip can be fastened using screw (6).
5. Tighten the screws (2), (5), and (6) with 6 Nm .

You have disconnect the basic interference suppression module.

NOTICE

Device damage due to not removing the connection clip with a non-grounded line supply
When operating a converter FSH or FSJ on a non-grounded line supply (IT system), failure to open the connection to the basic interference suppression module can cause significant damage to the device.

- With a non-grounded line supply (IT system), open the connection to the basic interference suppression module.

4.1.2 Minimum cross-section of the protective conductor

Overview

A high leakage current flows through the protective conductor in converter operation. The protective conductor of the converter must not be interrupted for safe touch protection in converter operation.

This primarily results in requirements for the minimum conductor cross-section of the protective conductor.

No restriction applies to the length of the protective conductor for touch protection. However, short protective conductors are advantageous for EMC-compliant installation.

Description

WARNING

Electric shock due to interrupted protective conductor
The drive components conduct a high leakage current via the protective conductor. Touching conductive parts when the protective conductor is interrupted can result in death or serious injury.

- Observe the minimum cross-section of the protective conductor.

(1) Protective conductor for line feeder cables
(2) Protective conductor for converter line feeder cables
(3) Protective conductor between PE and the control cabinet
(4) Protective conductor for motor feeder cables

The minimum cross-section of the protective conductor (1) ... (4) depends on the cross-section of the line or motor feeder cable:

- Line or motor feeder cable $\leq 16 \mathrm{~mm}^{2}$
\Rightarrow Minimum cross-section of the protective conductor $=$ cross-section of the line or motor feeder cable
- $16 \mathrm{~mm}^{2}$ < line or motor feeder cable $\leq 35 \mathrm{~mm}^{2}$
\Rightarrow Minimum cross-section of the protective conductor $=16 \mathrm{~mm}^{2}$
- Line or motor feeder cable $>35 \mathrm{~mm}^{2}$
\Rightarrow Minimum cross-section of the protective conductor $=1 / 2$ cross-section of the line or motor feeder cable

Additional requirements placed on the protective conductor (1):

- For permanent connection, the protective conductor must fulfill at least one of the following conditions:
- The protective conductor is routed so that it is protected against damage along its complete length.
Cables routed inside switch cabinets or enclosed machine housings are considered to be adequately protected against mechanical damage.
- As a conductor of a multi-conductor cable, the protective conductor has a cross-section $\geq 2.5 \mathrm{~mm}^{2} \mathrm{Cu}$.
- For an individual conductor, the protective conductor has a cross-section $\geq 10 \mathrm{~mm}^{2} \mathrm{Cu}$.
- The protective conductor consists of 2 individual conductors with the same cross-section.
- When connecting a multi-core cable using an industrial plug connector according to EN 60309 , the protective conductor must have a cross-section of $\geq 2.5 \mathrm{~mm}^{2} \mathrm{Cu}$.
- Observe the local regulations for protective conductors subject to a high leakage current at the installation site.

4.1.3 Maximum permissible motor cable length

Overview

The longer the motor cable of the converter, the higher the line capacitances of the motor cable. Line capacitances cause an additive current in converter operation and present an additional load to the converter.

Therefore, a maximum admissible motor cable length is specified for each converter.
Options between converter and motor, e.g. output reactors, partially compensate for the line capacitances. Certain options make the use of longer motor cables possible.

If you must achieve compliance with an EMC category, additional restrictions apply to the motor cable length in order to control conducted emissions.

400 V converter

EMC category according to EN 61800-3

Shielded motor cables and EMC-compliant installation are required in order to satisfy an EMC category.

Table 4-4 Maximum permissible motor cable length depending on EMC category ${ }^{1)}$

				Converter frame size 400 V	Maximum motor cable length		
First envi-ronment		C1	Converters with external C1 filter	$\begin{aligned} & \text { FSA ... } \\ & \text { FSC } \end{aligned}$	50 m		
				FSD	$\begin{gathered} 10 \\ m^{4)} \end{gathered}$		
				FSE	$\begin{aligned} & 20 \\ & m^{4)} \end{aligned}$		
				FSF	$\begin{gathered} 10 \\ m^{4)} \end{gathered}$		
	Second en-	C2	Converters with integra-	$\begin{aligned} & \text { FSA ... } \\ & \text { FSC } \end{aligned}$		150 m	
	vironment		ted C2 filter	$\begin{aligned} & \text { FSD ... } \\ & \text { FSG } \end{aligned}$		$150 \mathrm{~m}^{2)}$	
		C3	Converters with integra-	$\begin{aligned} & \text { FSA ... } \\ & \text { FSC } \\ & \hline \end{aligned}$		150 m	
			ted C3 filter	$\begin{aligned} & \text { FSD ... } \\ & \text { FSG } \end{aligned}$			200 m
				$\begin{aligned} & \text { FSH ... } \\ & \text { FSJ } \end{aligned}$		$150 \mathrm{~m}^{3)}$	
			Converters without line filters with external C3 filter	$\begin{aligned} & \text { FSA ... } \\ & \text { FSG } \end{aligned}$	50 m		

${ }^{1)}$ The values apply to a pulse frequency at the factory setting. If you set other pulse frequencies, you must ensure that the EMC category is complied with on the plant or system side.
2) 2 kHz pulse frequency for $\mathrm{FSF}, 75 \mathrm{~kW}$ and 90 kW
${ }^{3)}$ For motor cable lengths of $100 \mathrm{~m} . .150 \mathrm{~m}$ with additional basic interference suppression module (available on request)
4) Additional installation of ferrite sleeves required

To meet the requirements of conducted emissions in accordance with C 1 , you must observe the maximum motor cable length and also install ferrite sleeves on the FSD ... FSF converter.

Converter frame size 400 V	Ferrite sleeve	Installation
FSD	Schaffner RU41572-1	1 ferrite sleeve per line terminal L1, L2 and L3
FSE	Schaffner VAC W517-02	1 ferrite sleeve per motor terminal U2, V2 and W2
FSF	Schaffner RU41572-2	2 ferrite sleeves per line terminal L1, L2 and L3 and 2 ferrite sleeves per motor terminal U2, V2 and W2

Install the ferrite sleeves as closely as possible to the converter terminals on the connecting cables.

Figure 4-4 Ferrite sleeves on the connecting cables

Without EMC category

Table 4-5 Maximum permissible motor cable length ${ }^{1)}$

${ }^{1)}$ The values are valid for a pulse frequency set at the factory

EMC category according to EN 61800-3

Shielded motor cables and EMC-compliant installation are required in order to satisfy an EMC category.

EMC-compliant setup of the machine or plant (Page 48)

Table 4-6 Maximum permissible motor cable length depending on EMC category ${ }^{1)}$

			Converter frame size 690 V	Maximum motor	gth	
Second environment	C2	Converters with integrated filter	FSD ... FSE		100 m	
	C3	Converters with integrated filter	FSD ... FSE			150 m
			FSF ... FSG			150 m
			FSH ... FSJ			$150 \mathrm{~m}^{3)}$
		Converters without line filters with external C3 filter	FSD ... FSG	50 m		

1) The values are valid for a pulse frequency set at the factory
${ }^{2)}$ Operation in first environment, C2 only with external C2 line filter plus line reactor
${ }^{3)}$ For motor cable lengths of $100 \mathrm{~m} \ldots 150 \mathrm{~m}$, an additional basic interference suppression module shall be provided on the line side (available on request).

Without EMC category

Table 4-7 Maximum permissible motor cable length ${ }^{1)}$

		Converter frame size 690 V	Maximum motor cable length	
With shielded motor cable	Without output reactor or dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} \ldots \\ & 30 \mathrm{~kW} \end{aligned}$	200 m	
		$\begin{aligned} & \text { FSD } 37 \text { kW ... } \\ & \text { FSG } \end{aligned}$	300 m	
		FSH ... FSJ	150 m	
	With 2 output reactors in series	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} \ldots \\ & 30 \mathrm{~kW} \end{aligned}$	350 m	
		$\begin{aligned} & \text { FSD } 37 \mathrm{~kW} \ldots \\ & \text { FSG } \end{aligned}$	525 m	
	With 1 output reactor	FSH ... FSJ	300 m	
	With dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} \ldots \\ & 30 \mathrm{~kW} \end{aligned}$	350 m	
		$\begin{aligned} & \hline \text { FSD } 37 \mathrm{~kW} \ldots \\ & \text { FSG } \\ & \hline \end{aligned}$	$450 \mathrm{~m}^{2)}$	
		FSH ... FSJ	300 m	

		Converter frame size 690 V	Maximum motor cable length		
With unshielded motor cable	Without output reactor or dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} \ldots \\ & 30 \mathrm{~kW} \end{aligned}$	300 m		
		$\begin{aligned} & \text { FSD } 37 \mathrm{~kW} \ldots \\ & \text { FSG } \end{aligned}$	450 m		
		FSH ... FSJ	200 m		
	With 2 output reactors in ser-	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} \ldots \\ & 30 \mathrm{~kW} \end{aligned}$			
	ies	$\begin{aligned} & \text { FSD } 37 \mathrm{~kW} \ldots \\ & \text { FSG } \end{aligned}$			800 m
	With 1 output reactor	FSH ... FSJ	450 m		
	With dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} \ldots \\ & 30 \mathrm{~kW} \end{aligned}$			
		$\begin{aligned} & \text { FSD } 37 \mathrm{~kW} \ldots \\ & \text { FSG } \end{aligned}$		$625 \mathrm{~m}^{2)}$	$800 \mathrm{~m}^{3)}$
		FSH ... FSJ	450 m		

1) The values are valid for a pulse frequency set at the factory
2) At a maximum voltage of 1350 V at the motor terminals
${ }^{3)}$ At a maximum voltage of 1500 V at the motor terminals

More information

The permissible length of the motor cable also depends on the quality of the motor cable and the pulse frequency. The above values apply to high-quality cables, e.g. CY100.

Dimension the motor cable such that the resistance losses are less than 5% of the rated converter power.

See also

Electromagnetic compability of the converter (Page 914)

4.1.4 Connecting the converter and converter components

4.1.4.1 Connection overview

* Line harmonics filter is only applicable to converter $400 \mathrm{~V}, \mathrm{FSB} / \mathrm{FSC}$.

Figure 4-5 Connecting converters FSA ... FSC and their optional components

Figure 4-6 Connecting 400 V converters FSD...FSG and their optional components

Figure 4-7 Connecting 690 V converters FSD...FSG and their optional components

Figure 4-8 Connecting converters FSH/FSJ and their optional components

4.1.4.2 Connnecting converters

Note

For converters of frame sizes FSA ... FSG, the R1/R2 and F3 terminals are reserved for future use.

Connecting converters, FSA ... FSC

Figure 4-9 Connections for the line supply, motor and DC link terminals

Connecting converters, FSD ... FSG

You must remove the connection cover from the converter in order to connect the line supply and motor to the converter.

- For FSD/FSE, remove the connection cover as shown below:

Figure 4-10 Removing the connection cover, FSD/FSE

- For FSF/FSG, remove the two screws from the cover and then remove it. In addition, you must make openings on the connection cover for the line supply and power cables. Use side cutters or a fine saw blade.

Figure 4-11 Removing the connection cover and making openings, FSF/FSG
After the cables are connected, you must re-attach the cover in order to re-establish the touch protection of the converter.
4.1 Line supply and motor

Figure 4-12 Connections for the line supply and motor

Additional information when connecting FSG converters

Remove the plastic insulating plate as shown below to gain better access to the terminals for the power connections.

WARNING

Damage to converter as a result of operation without insulating plates
Without the insulating plates, voltage flashovers may occur between the phases.

- Replace the insulating plates after connecting the cables.

Connecting converters, FSH/FSJ

To access the line and motor terminals, release the screws (three screws on FSH, and four screws on FSJ) from the front cover, and remove the cover towards the front.

Figure 4-13 Removing the front cover
The diagram shows the layout of line and motor terminals and DC link terminals. For converter FSH, you must make openings on the cable entry protection cover for the line and motor connections according to the diameter of the cable to be introduced.

Figure 4-14 Connections for the line supply, motor and DC link terminals

Rules for connecting the line:

- Only use the front connections.
- You may connect 1 or 2 cables to each of the screws of the line connections.

Rules for connecting the motor:

- First use the front connections.
- If you use more than one cable per connection: Distribute the cables per connection evenly on the left and right side of the connection.
- Only use the rear connections when the front connections are occupied.

After the cables are connected, you must re-attach the covers in order to re-establish the touch protection of the converter (screw tightening torque: $6 \mathrm{Nm} / 53 \mathrm{lbf} . \mathrm{in}$).

WARNING

Electric shock if the cable entry protection cover is not cut correctly
A cable entry protection cover which is not cut correctly may lead to dangerous touch voltage which can result in serious injury or death.

- Make proper openings on the cover according to the required cable diameter in order to ensure degree of protection IP20.

WARNING

Electric shock due to no prevention from touching the power connection terminals
No cable entry protection is available for frame size J which may lead to dangerous touch voltage.

- The converter must be built in an enclosure of degree of protection IP20 at least, and prevention measures against electric shock must be adopted.

4.1.4.3 Cable cross-sections and screw tightening torques

Converter frame size	Terminal/connector type		Cable cross-section	Screw tightening torque	Stripped insulation length
FSA	Line, motor and PE	Screw-type terminal	$1.5 \ldots 2.5 \mathrm{~mm}^{2}, 16 \ldots 14$ AWG	0.5 Nm, 4.4 lbf.in	9 ... 10 mm
FSB			$1.5 \ldots 6 \mathrm{~mm}^{2}, 16 \ldots 10$ AWG	$1.3 \mathrm{Nm}, 11.5 \mathrm{lbf} . \mathrm{in}$	$12 \ldots 13 \mathrm{~mm}$
FSC			$1.5 \ldots 16 \mathrm{~mm}^{2}, 16 \ldots 6$ AWG	$1.3 \mathrm{Nm}, 11.5 \mathrm{lbf} . \mathrm{in}$	$12 \ldots 13 \mathrm{~mm}$
FSD			$10 \ldots 35 \mathrm{~mm}^{2}, 8 \ldots 2$ AWG	4.5 Nm, 39.8 lbf.in	18 mm
FSE			$25 \ldots 70 \mathrm{~mm}^{2}, 4 \ldots 3 / 0$ AWG	$10 \mathrm{Nm}, 88.5 \mathrm{lbf.in}$	25 mm

Converter frame size	Terminal/connector type		Cable cross-section	Screw tightening torque
FSF	Line, motor and PE	Cable lug according to SN71322 for M10 bolts	$\begin{aligned} & 35 \mathrm{~mm}^{2} \ldots 2 \times 120 \mathrm{~mm}^{2} \\ & 2 \ldots 2 \times 4 / 0 \text { AWG } \end{aligned}$	$\begin{array}{\|l} 22 \ldots 25 \mathrm{Nm} \\ 194.7 \text {... } 221.3 \text { Ibf.in } \end{array}$
FSG			$\begin{aligned} & 35 \mathrm{~mm}^{2} \ldots 2 \times 185 \mathrm{~mm}^{2} \\ & 2 \ldots 2 \times 350 \mathrm{MCM} \end{aligned}$	$50 \mathrm{Nm}$ 442.5 Ibf.in

Converter frame size	Terminal/connector type		Cable cross-section				Screw tightening torque
FSH	Line, motor and DC	Cable lug according to DIN 46234 for M12 screws ${ }^{1)}$	Max.		$4 \times 240 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$		$50 \mathrm{Nm}$ 442.5 Ibf.in
					@ 400 V	@ 480 V	
			Recommended	315 kW	Line $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 185 \mathrm{~mm}^{2}$	
					Motor $2 \times 185 \mathrm{~mm}^{2}$	$2 \times 150 \mathrm{~mm}^{2}$	
					DC $2 \times 185 \mathrm{~mm}^{2}$	$2 \times 150 \mathrm{~mm}^{2}$	
				355 kW	Line $3 \times 150 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
					Motor $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 185 \mathrm{~mm}^{2}$	
					DC $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 185 \mathrm{~mm}^{2}$	
				400 kW	Line $3 \times 185 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
					Motor $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
					DC $3 \times 150 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
FSJ	Line, motor and DC	Cable lug according to DIN 46234 for M12 screws ${ }^{1)}$	Max.	450 kW \ldots 560 kW 450 kW 500 kW, 560 kW	Line $6 \times 240 \mathrm{~mm}^{2}, 6 \times 500 \mathrm{MCM}$		$50 \mathrm{Nm}$ 442.5 Ibf.in
					Motor, DC $4 \times 240 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$		
					Motor $8 \times 240 \mathrm{~mm}^{2}, 8 \times 500 \mathrm{MCM}$		
					DC $4 \times 240 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$		
					@ 400 V	@ 480 V	
			Recommended	450 kW	Line $4 \times 185 \mathrm{~mm}^{2}$	$4 \times 120 \mathrm{~mm}^{2}$	
					Motor $4 \times 150 \mathrm{~mm}^{2}$	$4 \times 120 \mathrm{~mm}^{2}$	
					DC $4 \times 120 \mathrm{~mm}^{2}$	$3 \times 120 \mathrm{~mm}^{2}$	
				500 kW	Line $4 \times 185 \mathrm{~mm}^{2}$	$4 \times 150 \mathrm{~mm}^{2}$	
					Motor $4 \times 185 \mathrm{~mm}^{2}$	$4 \times 150 \mathrm{~mm}^{2}$	
					DC $4 \times 150 \mathrm{~mm}^{2}$	$3 \times 150 \mathrm{~mm}^{2}$	
				560 kW	Line $4 \times 240 \mathrm{~mm}^{2}$	$4 \times 185 \mathrm{~mm}^{2}$	
					Motor $4 \times 240 \mathrm{~mm}^{2}$	$4 \times 150 \mathrm{~mm}^{2}$	
					DC $4 \times 185 \mathrm{~mm}^{2}$	$3 \times 185 \mathrm{~mm}^{2}$	

1) Alternative copper busbars can be used for line and motor connections. Make sure that you use copper busbars of the same cross-sections as the connecting busbars of the converter itself (FSH: $64 \mathrm{~mm} \times 8 \mathrm{~mm}$; FSJ: $80 \mathrm{~mm} \times 8 \mathrm{~mm}$).
4.1 Line supply and motor

4.1.4.4 Cable lug

For cable connections using cable lugs, the maximum dimensions of the cable lugs are listed in the table below. These cable lugs are not to exceed these dimensions, as mechanical fastening and adherence to the voltage distances is not guaranteed otherwise.

Converter frame size	Screw/bolt	Cable cross-section (mm^{2})	a (mm)	c (mm)	d1 (mm)	d (mm)	I (mm)
FSF	M10	120	26	22	10.5	32	59.5
FSG		185	30	27	10.5	39	72.5
FSH/FSJ	M12	240	32	23.5	13	42	92

The cable lugs can be attached as shown in the following diagram if, at one connection per phase, two cable lugs can be connected.

4.1.4.5 Connecting the cable shields (FSA ... FSG only)

For EMC-compliant wiring, you must connect the cable shields to the shield plate of the converter.

Use shielded cables for the following connection:

- Communication cable
- Control cable
- Motor cable

Before connecting the cable shields, you need to strip the cable insulation.

Connecting the cable shields, FSA ... FSC converters

The shield support for converter FSB is displayed as an example.
(1) Unshielded line cable
(2) Cable tie
(3) Unshielded communication cable
(4) Unlacquered, good electrically conducting mounting plate
(5) Shielded control cable
(6) Toothed tape
(7) Shielded motor cable

Connecting the cable shields, FSD ... FSG converters

The shield support for converter FSD is displayed as an example.
(1) Unshielded line cable
(4) Toothes tape
(2) Shielded motor cable
(5) Shielded control cable
(3) Hose clamp
(6) Unshielded communication cable

Note

Unshielded communcation cable

It is unnecessary to connect the cable shields if you use Siemens PROFINET cables for communication. When using communication cables from other manufacturers, make sure that you connect the cable shields with toothed tapes.

4.1.5 Connecting the motor to the converter in a star or delta connection

Overview

Standard induction motors up to a rated power of approximately 3 kW are usually connected in star/delta connection (Y / Δ) at $400 \mathrm{~V} / 230 \mathrm{~V}$. For a $400-\mathrm{V}$ line supply, you can connect the motor to the converter either in a star or in a delta connection.

Function description

Operating the motor in a star connection

In a star connection, the motor can provide its rated torque M_{N} in the range $0 \ldots$ rated frequency f_{N}.
Rated voltage $U_{N}=400 \mathrm{~V}$ is available at a rated frequency $f_{N}=50 \mathrm{~Hz}$.
The motor goes into field weakening above the rated frequency. In field weakening, the available motor torque decreases proportionally with $1 / \mathrm{f}$. In field weakening, the available power remains constant.

Operating the motor in a delta connection with 87 Hz characteristic

In a delta connection, the motor is operated with a voltage and frequency above its rated values. As a consequence, the motor power is increased by a factor $\sqrt{ } 3 \approx 1.73$.
In the range $\mathrm{f}=0 \ldots 87 \mathrm{~Hz}$, the motor can output its rated torque M_{N}.
The maximum voltage $\mathrm{U}=400 \mathrm{~V}$ is available at a frequency of $f=\sqrt{ } 3 \times 50 \mathrm{~Hz} \approx$ 87 Hz .

The motor only goes into field weakening above 87 Hz .
The higher motor power when operated with an 87 Hz characteristic has the following disadvantages:

- The converter must supply approximately $1.73 x$ current. Select a converter based on its rated current - and not its rated power.
- The motor temperature increases more significantly than when operated with $\mathrm{f} \leq 50 \mathrm{~Hz}$.
- The motor must have windings that are approved for a voltage > rated voltage U_{N}.
- As the fan impeller rotates faster, the motor has a higher noise level than operation with $\mathrm{f} \leq 50 \mathrm{~Hz}$.
4.2 Control interfaces

4.2 Control interfaces

4.2.1 Overview of the interfaces

Interfaces at the front of the Control Unit
To access the interfaces at the front of the Control Unit, you must open the front door.

(1) Terminal strip
(2) Switch for AI 0 and AI 1 (U/I)

(3) Status LED
(4) Connection to the Operator Panel or Smart Access
(5) Memory card slot
(6) Reserved for future use

(7)(8)	Terminal strips
(9)	Fieldbus interfaces at the lower side

Table 4-8 Number of inputs and outputs

Digital inputs DI	Digital outputs DO	Analog inputs AI	Analog outputs AO	Input for motor temperature sen- sor
6	2	2	1	1

4.2.2 Fieldbus interface allocation

Interfaces at the lower side of the Control Unit
PROFINET

4.2.3 Terminal strips

Terminal strips with wiring example

${ }^{1)}$ The digital outputs are designed for low voltage systems of overvoltage category II. In installations of overvoltage category III, galvanic isolation is required between the supply network and the digital output.

Restriction for FSB and FSC in installations compliant with UL: max. 0.5 A
Figure 4-15 Wiring the digital inputs with p-switching contacts and an internal 24 V power supply (terminal 9)

GND
DICOM
$31+24 \mathrm{~V}$ IN 32GNDIN

All terminals with the "GND" reference potential are internally connected with one another.
The reference potential "DI COM" is not internally connected with "GND". \rightarrow If, as shown above, you wish to use the 24 V supply from terminal 9 as supply for the digital inputs, a jumper is required between terminals 28 and 69.

When an optional 24 V power supply is connected at terminals 31 , 32, even when the Power Module is disconnected from the line supply, the Control Unit remains in operation. The Control Unit thus maintains fieldbus communication, for example.
\rightarrow for terminals 31, 32, only use a 24 VDC power supply according to SELV (Safety Extra Low Voltage) or PELV (Protective Extra Low Voltage).
\rightarrow if you also wish to use the power supply at terminals 31,32 for the digital inputs, then you must connect "DI COM" and "GND IN" with one another at the terminals.

10|AI 1+ 11 Al $1-$

You may use the internal 10 V power supply or an external power supply for the analog inputs. \rightarrow When you use the internal 10 V power supply, you must connect AI 0 or AI 1 with "GND".

Additional options for wiring the digital inputs

The following diagram shows how you supply the digital inputs and digital outputs with an external voltage.

If you wish to connect an external power supply with the GND potential of the converter, then you must connect terminals 28 and 69 together.

Figure 4-16 Connecting contacts switching to p potential with an external power supply
The following diagram shows how you use the digital inputs for the contacts that switch to m potential.

Figure 4-17 Connecting contacts switching to m potential with an external power supply

WARNING

Electric shock due to unsuitable power supply
When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage that might result in serious injury or death.

- Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV(Protective Extra Low Voltage) output voltages (maximum 60 V DC briefly) for all connections and terminals of the electronics modules.

NOTICE

Damage when the 24 V output voltage is short-circuited
If the following conditions occur simultaneously, the Control Unit with PROFINET interface can be damaged:

1. The converter is operational.
2. The 24 V output voltage develops a short-circuit at terminal 9 .
3. The ambient temperature reaches the maximum permissible value.
4. The external 24 V power supply voltage at terminals 31 and 32 reaches the maximum permissible value.

- Ensure that not all of these conditions are simultaneously satisfied.

4.2.4 Factory interface settings

Function description

In the factory setting, the converter switches over the following functions depending on the state of digital input DI 4:

- Fieldbus interface
- Digital input DI 0
- Digital input DI 1
- Speed setpoint

Figure 4-18 Factory interface settings

4.2.5 Default setting of the interfaces

Overview

The function of most of the converter terminals can be set.
In order that you do not have to successively change terminal for terminal, several terminals can be jointly set in the quick commissioning using default settings. Parameter p0015 in the quick commissioning selects the appropriate default setting.

Table 4-9 Overview of default settings

	Default setting			
Terminal	41	42	45	57
AI 0	Setpoint	Setpoint	Setpoint	-
AI 1	-	PID actual value	-	-
AO 0	Speed actual value	Speed actual value	Speed actual value	Speed actual value
DI 0	ON/OFF2	ON/OFF2	ON/OFF2	Jogging 1
DI 1	-	-	Fixed setpoint 1	Jogging 2
DI 2	-	-	Fixed setpoint 2	-
DI 3	-	-	Fixed setpoint 3	-
DI 4	-	manual \leftrightarrow auto		Switch over controller:
DI 5	Acknowledge fault	Acknowledge fault	Acknowledge fault	Acknowledge fault
DO 0	Fault	Fault	Fault	Fault
DO 1	Operation	Operation	Operation	Operation

Function description

Default setting 41: "Analog control"

Setting	Parameter	Characteristics	Setting	Parameter
Default setting 41	p0015 = 41		$\text { DI } 0$	$\begin{aligned} & \mathrm{p} 29652[0]=722.0 \\ & \mathrm{p} 29650[0]=0 \end{aligned}$
AI 0	$\begin{aligned} & \mathrm{p} 1070[0]= \\ & 755[0] \end{aligned}$		ON/OFF1 OFF2 DI 5	$\begin{aligned} & \mathrm{p} 0840[0]=29659.0 \\ & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 2104[0]=722.5 \end{aligned}$
AO 0	p0771[0] = 21		$\begin{aligned} & \text { DO } 0 \\ & \text { DO } 1 \end{aligned}$	$\begin{aligned} & p 0730=52.3 \\ & p 0731=52.2 \end{aligned}$
Procedure with the BOP-2 operator panel:$\rightarrow \text { SETUP } \rightarrow \ldots \rightarrow \text { MAc PAr } \rightarrow \mathrm{P} 15=\mathrm{XAI} \rightarrow \ldots \rightarrow \text { FINISH }$				

Default setting 42: "PID controller with analog control"

Setting	Parameter	Characteristics	Setting	Parameter
Default setting 42	p0015 = 42		$\text { DI } 0$	$\begin{aligned} & \text { p29652[0] = } 722.0 \\ & \text { p29650[0] }=0 \end{aligned}$
AI 0	$\begin{aligned} & \mathrm{p} 2253[0]= \\ & 755[0] \\ & \mathrm{p} 1070[0]= \\ & 755[0] \end{aligned}$		ON/OFF1 OFF2 DI 4 DI 5	$\begin{aligned} & \text { p0840 }[0]=29659.0 \\ & \text { p0844 }[0]=29659.1 \\ & \text { p2200 }=722.4 \\ & \text { p2104 }[0]=722.5 \end{aligned}$
Al 1	$\begin{aligned} & \mathrm{p} 2264[0]= \\ & 755[1] \end{aligned}$		$\begin{aligned} & \text { DO } 0 \\ & \text { DO } 1 \end{aligned}$	$\begin{aligned} & \mathrm{p} 0730=52.3 \\ & \mathrm{p} 0731=52.2 \end{aligned}$
AO 0	p0771[0] = 21			
Procedure with the BOP-2 operator panel:$\rightarrow \text { SETUP } \rightarrow \ldots \rightarrow \text { MAc PAr } \rightarrow \mathrm{P} 15=\text { X AI PID } \rightarrow \ldots \rightarrow \text { FINISH }$				

Default setting 45: "Fixed setpoint control"

Setting	Parameter	Characteristics	Setting	Parameter
Default setting 45	p0015 $=45$		DI 0	$\begin{aligned} & \mathrm{p} 29652[0]=722.0 \\ & \mathrm{p} 29650[0]=0 \end{aligned}$
AO 0	p0771[0] = 21		ON/OFF1	p0840[0] $=29659.0$ p0844[0] $=29659.1$
Fixed setpoint	$\begin{aligned} & \mathrm{p} 1070=1024 \\ & \mathrm{p} 1016=2 \end{aligned}$		DI 1 DI 2 DI 3 DI 5	$\begin{aligned} & \text { p1020 }[0]=722.1 \\ & \text { p1021 }[0]=722.2 \\ & \text { p1022 }[0]=722.3 \\ & \text { p2104 }[0]=722.5 \end{aligned}$
			DO 0	p0730 = 52.3
			DO 1	p0731 $=52.2$
Procedure with the BOP-2 operator panel: \rightarrow SETUP $\rightarrow \ldots \rightarrow$ MAc PAr \rightarrow P15 $=$ X FIX $\rightarrow \ldots \rightarrow$ FINISH				

Default setting 57: "PROFINET control"

"PROFINET control" is the default factory setting.

Setting	Parameter	Characteristic	Setting	Parameter
Default setting 57	p0015 = 57		$\text { DI } 0$	$\begin{aligned} & \text { p29652[1] = } 722.0 \\ & \text { p29650[1] }=0 \end{aligned}$
AO 0	$\mathrm{p} 0771[0]=21$		ON/OFF1 OFF2 DI 1 DI 4 DI 5	$\begin{aligned} & p 0840[0 \ldots .1]= \\ & 29659.0 \\ & p 0844[0 \ldots 1]= \\ & 29659.1 \\ & p 29652[0]=722.1 \\ & p 29650[0]=1 \\ & p 0810=722.4 \\ & p 2104[0 \ldots 1]=722.5 \end{aligned}$
PROFINET	$\begin{aligned} & \hline \text { p0922 = } 1 \\ & \text { p1070[0] = } \\ & 2050[1] \\ & \hline \end{aligned}$		$\begin{aligned} & \text { DO } 0 \\ & \text { DO } 1 \end{aligned}$	$\begin{aligned} & \mathrm{p} 0730=52.3 \\ & \mathrm{p} 0731=52.2 \end{aligned}$
Procedure with the BOP-2 operator panel: \rightarrow SETUP $\rightarrow \ldots \rightarrow$ MAc PAr \rightarrow P15 $=$ X PN $1 \rightarrow \ldots \rightarrow$ FINISH				

More information

The default terminal settings can be adjusted to suit your requirements.
\leadsto Adapt the default setting of the terminal strips (Page 153)
4.2 Control interfaces

4.2.6 Additional digital inputs and digital outputs on converters FSH and FSJ

Overview

Converters FSH and FSJ have 4 additional digital inputs and 2 digital outputs at terminal strip X9.

Figure 4-19 Terminal strip X9

Function description

External supply 20.1 V ... 28.8 V , max. 2 A
Reference for terminals 1, 3, 4, 5, 6 and 8
External alarm $\quad 7$ Digital inputs
External fault \quad low $<5 \mathrm{~V}$, high $>15 \mathrm{~V}$, max. 30 V , OFF2
OFF3 input current 6.4 mA at 24 V

Reference for terminals $1,3,4,5,6$ and 8 Message " U_{DC} link is loaded", 24 VDC , max. 500 mA
Not connected
Main contactor control, $230 \mathrm{VAC}, \cos \varphi=0.6$ ind, max.
4 A
Connection cross-section: $0.2 \mathrm{~mm}^{2} \ldots 2.5 \mathrm{~mm}^{2}$, tightening torque: $0.5 \mathrm{Nm}(5 \mathrm{lb} . \mathrm{in})$
Use insulated end sleeves according to DIN 46228-4.
Terminals Remark
1 You may either connect an external 24 V supply or use the internal 24 V supply.
3 ... 6 The function of the digital inputs is shown in the factory setting.
You can change the function of the digital inputs subsequently.
The digital inputs are low-active in the factory setting. If you do not use one of the digital inputs, you must connect the digital input with 24 V .
8, 11, 12 The function of the digital outputs cannot be changed.
8

11, 12 A device to protect against overload and short-circuit is required for the power supply to the line contactor control, e.g. a 4 A / 250 V fuse.
Connect the excitation coil of the line contactor to a surge suppressor, e.g. an RC element.
Figure 4-20 Terminal strip X9 with external 24 V supply

Figure 4-21 Terminal strip X9 with internal 24 V supply

4.2.7 "Safe Torque Off" safety function

Overview

The "Safe Torque Off" (STO) safety function can be implemented using a failsafe digital input of the converter.

Preconditions

- Both switches on the converter for enabling/disabling STO are in the ON position.
- The higher-level control system monitors the selection of STO and the feedback from the converter.
\because Application examples for "Safe Torque Off" (Page 110)

Function description

Use an SELV or PELV power supply with 24 V DC (20.4 V ... 28.8 V , maximum 60 V briefly).
Use a shielded cable with the following properties:

- Cable length $\leq 30 \mathrm{~m}$
- Cross section $0.5 \mathrm{~mm}^{2} \ldots+1.5 \mathrm{~mm}^{2}$ ($20 \ldots 16$ AWG)
- Insulated for 600 V
- Conductor end sleeves, stripping length 7 mm

Tightening torque: 0.2 Nm (2 lbf in)

Procedure for converters in frame sizes FSA ... FSC

Both switches $=$ ON: STO is enabled
Both switches = OFF: STO is locked
Two switches different: STO is disabled, the converter signals a fault.
Figure 4-22 Terminals and switches for the "STO" function, frame sizes FSA ... FSC

1. Connect the cables for selecting STO to terminals STO_A and STO_B.
2. Connect the cables for STO feedback to 2 digital outputs of terminal block X134.

3. Attach the shield to the shield plate of the converter through the largest possible surface area.

You have connected all cables for the STO safety function.

Procedure for converters in frame sizes FSD ... FSG

Both switches $=$ ON: STO is enabled
Both switches = OFF: STO is locked
Two switches different: STO is disabled, the converter signals a fault.
Figure 4-23 Terminals and switches for the "STO" function, frame sizes FSD ... FSG

1. Remove the Control Unit.

2. Connect the cable for selecting STO to terminals STO_A and STO_B.
3. Plug in the Control Unit.

4. Connect the cables for STO feedback to 2 digital outputs of terminal block X134.

5. Attach the shield to the shield plate of the Control Unit through the largest possible surface area.

You have connected all cables for the STO safety function.
Procedure for converters in frame sizes FSH ... FSJ

Figure 4-24 Terminals and switches for the "STO" function, frame sizes FSH and FSJ

1. Connect the cable for selecting STO to terminals X41:STO_A and X41:STO_B.
2. Connect the cables for STO feedback to terminals X41:FB_A and X41:FB_B.
3. Attach the shield to the shield plate through the largest possible surface area.

You have connected all cables for the STO safety function.

More information

In order to prevent inadvertent inhibition of the "STO" function in the FSA ... FSC converter, we recommend protecting the associated switch with a cable tie.

Figure 4-25 Protection against inadvertent inhibition of the "STO" function, FSA ... FSC

4.2.8 Application examples for "Safe Torque Off"

Overview

A higher-level control system is required to select the STO safety function.

Preconditions

Basic prerequisites

- The digital outputs for the feedback of STO are correctly parameterized.
\square Setting the feedback signal for Safe Torque Off (Page 220)
- The higher-level control system monitors the selection of the STO safety function and the feedback from the converter.
- Forced checking procedure (test stop):

The higher-level control system regularly selects the STO safety function and evaluates the converter feedback signal.
We recommend that you implement a time monitoring function in the higher-level control system, which issues an alarm if a test stop is overdue.

Prerequisites for SIL 2/PL d

- Suitable higher-level controllers
- SIRIUS 3SK1: Single-channel static feedback circuit
- SIRIUS 3SK2: Two-channel dynamic feedback circuit
- MSS 3RK3: Two-channel dynamic feedback circuit
- SIMATIC: Feedback circuit monitoring in the safety program
- Forced checking procedure (test stop) once per year

Prerequisites for SIL 3/PL e

- Suitable higher-level controllers
- SIRIUS 3SK1: Single-channel static feedback circuit Permissible for converters FSH and FSJ, not permissible for FSA ... FSG
- SIRIUS 3SK2: Two-channel dynamic feedback circuit
- MSS 3RK3: Two-channel dynamic feedback circuit
- SIMATIC: Feedback circuit monitoring in the safety program
- Forced checking procedure (test stop) every 3 months

Function description

SIRIUS 3SK1 safety relay

Figure 4-26 Connection 3SK1 inside a control cabinet for FSA ... FSG
You can achieve SIL 2/PL d with a SIRIUS 3SK1 safety relay and the converter FSA FSG.

Figure 4-27 Connection 3SK1 inside a control cabinet for FSH, FSJ
You can achieve SIL 3/PL e with a SIRIUS 3SK1 safety relay and the converter FSH or FSJ.

SIRIUS 3SK2 safety relay

The wiring examples are implemented using safety relays with relay enable circuits. Safety relays with semiconductor enable circuits can also be used.

$\mathrm{T}_{1} \geq 30 \mathrm{~ms}$
In case of deviating feedback, the safety relay must select the STO function
$\mathrm{T}_{2} \geq 20 \mathrm{~ms}$ and indicate an error.

Figure 4-29 Dynamic monitoring of STO feedback for FSA ... FSG

Figure 4-30 Connection 3SK2 inside a control cabinet for FSH and FSJ
Static monitoring of STO feedback at start-up is sufficient for the converters FSH and FSJ.

Modular 3RK3 safety system

You can use the following outputs to control the failsafe digital inputs in the converter:

- The failsafe digital outputs in the central units of the 3RK3 modular safety system
- The failsafe digital outputs in the EM 2/4F-DI 2F-DO expansion module
- The failsafe digital outputs in the EM 4F-DO expansion module.
- The failsafe relay outputs in the EM $4 / 8 \mathrm{~F}-\mathrm{RO}$ expansion module
- 2 individual relay contacts of the EM 2/4F-DI 1/2F-RO expansion module

Figure 4-31 Connection 3RK3 inside a control cabinet for FSA ... FSG

$\begin{array}{ll}\mathrm{T}_{1} \geq 30 \mathrm{~ms} & \text { In case of deviating feedback, the Modular Safety System must select the } \\ \mathrm{T}_{2} \geq 20 \mathrm{~ms} & \text { STO function and indicate an error. }\end{array}$
Figure 4-32 Dynamic monitoring of STO feedback for FSA ... FSG

Figure 4-33 Connection 3RK3 inside a control cabinet for FSH and FSJ
Static monitoring of STO feedback at start-up is sufficient for the converters FSH and FSJ.
SIMATIC I/O modules

Figure 4-34 Connecting the SIMATIC S7-1500 in a control cabinet for FSA ... FSG

$\mathrm{T}_{1} \geq 30 \mathrm{~ms} \quad$ In case of deviating feedback, the SIMATIC must select the STO function and $\mathrm{T}_{2} \geq 20 \mathrm{~ms} \quad$ indicate an error.
Figure 4-35 Dynamic monitoring of STO feedback for FSA ... FSG

Figure 4-36 Connection of the SIMATIC S7-1500 inside a control cabinet for FSH and FSJ
Static monitoring of STO feedback for STO selection is sufficient for the converters FSH and FSJ.

More information

Further information is provided on the Internet:
(3) SIRIUS 3SK1 safety relays (https://support.industry.siemens.com/cs/ww/en/ps/16381/ man)
0 SIRIUS 3SK2 Safety Relays (https://support.industry.siemens.com/cs/ww/en/view/ 109444336)

2 SIRIUS 3RK3 modular safety system manual (https://
support.industry.siemens.com/cs/ww/en/view/26493228)

> (3) S7-1500 (https://support.industry.siemens.com/cs/ww/en/view/86140384)
> (3) ET 200SP (https://support.industry.siemens.com/cs/ww/en/view/84133942)
> (3) ET 200pro (https://support.industry.siemens.com/cs/ww/en/view/22098524)
> (2) ET 200S (https://support.industry.siemens.com/cs/ww/en/view/12490437)
> (5) S7-300 (https://support.industry.siemens.com/cs/ww/en/view/19026151)

4.2.9 \quad Wiring the terminal strips

WARNING

Electric shock due to unsuitable motor temperature evaluation system

Voltage flashovers to the electronics of the converter can occur in motors without safe electrical separation of the temperature sensors in accordance with IEC 61800-5-1 when the motor develops a fault.

- Install a temperature monitoring relay 3RS1... or 3RS2...
- Evaluate the temperature monitoring relay output using a digital input of the converter, e.g. using the "External fault" function.

You can find additional information about the temperature monitoring relay on the Internet:
(3) Manual 3RS1 / 3RS2 temperature monitoring relays (https:// support.industry.siemens.com/cs/ww/en/view/54999309)

Note

Malfunction caused by incorrect switching states as the result of diagnostic flows in the off state (logical state "0")

In contrast to mechanical switching contacts, e.g. emergency stop switches, diagnostic flows can also flow with semiconductor switches in the off state. If interconnection with digital inputs is faulty, the diagnostic flows can lead to incorrect switching states and thus to a malfunction of the drive.

- Observe the conditions for digital inputs and digital outputs specified in the relevant manufacturers documentation.
- Check the conditions of the digital inputs and digital outputs in regard to the flows in off state. If applicable, connect the digital inputs with suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

WARNING

Electric shock due to damaged insulation
Damaged insulation of cables carrying hazardous voltages can cause a short circuit with cables carrying non-hazardous voltages. This can have the effect that parts of the converter or the installation carry an unexpectedly high voltage.

- Use only cables with double insulation for 230 V cables which you connect to the digital outputs of the converter.

NOTICE

Overvoltages for long signal cables
Using > 30 m long cables at the converter's digital inputs and 24 V power supply or inductive circuits at the digital inputs can lead to overvoltage. Overvoltages can damage the converter.

- Connect an overvoltage protection device between the terminal and the associated reference potential.
We recommend using the Weidmüller overvoltage protection terminal with designation MCZ OVP TAZ DIODE 24VDC.

Table 4-10 Permissible cable and wiring options

Solid or finely-stranded conductor	Finely stranded conduc- tor with non-insulated end sleeve	Finely stranded conduc- tor with partially insula- ted end sleeve	Two finely-stranded conductors with the same cross-section with partially insulated twin end sleeves
$0.5 \ldots \mathrm{~mm}^{2}$			

Wiring the terminal strip in compliance with EMC

- If you use shielded cables, then you must connect the shield to the mounting plate of the control cabinet or with the shield support of the converter through a good electrical connection and a large surface area.
Further information about EMC-compliant wiring is available on the Internet:
(2) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)
- Use the shield connection plate of the Control Unit as strain relief.

M] Mounting the shield connection kits (Page 63)

4.2.10 Connecting to PROFINET and Ethernet

4.2.10.1 Communication via PROFINET IO and Ethernet

You can either integrate the converter in a PROFINET network or communicate with the converter via Ethernet.

The converter in PROFINET IO operation

Figure 4-37 The converter in PROFINET IO operation
The converter supports the following functions:

- RT
- IRT: The converter forwards the clock synchronism, but does not support clock synchronism.
- MRP: Media redundancy, impulsed with 200 ms . Precondition: Ring topology With MRP, you get an uninterrupted switchover if you set the failure monitoring time to a value > 200 ms .
- MRPD: Media redundancy, bumpless. Precondition: IRT and the ring topology created in the control
- Diagnostic alarms in accordance with the error classes specified in the PROFIdrive profile.
- Device replacement without removable data storage medium: The replacement converter is assigned the device name from the IO controller, not from its memory card or from the programming device.
- Shared Device for converters that support PROFIsafe.

The converter as Ethernet node

Figure 4-38 The converter as Ethernet node

Further information on PROFINET

Further information on PROFINET can be found on the Internet:

- (2) PROFINET system description (https://support.industry.siemens.com/cs/ww/en/view/ 19292127)
- (2) PROFINET - the Ethernet standard for automation (http://w3.siemens.com/mcms/ automation/en/industrial-communications/profinet/Pages/Default.aspx)

4.2.10.2 Connecting the PROFINET cable to the converter

Procedure

1. Integrate the converter in the bus system (e.g. ring topology) of the control using PROFINET cables and the two PROFINET sockets X150-P1 and X150-P2.
\checkmark Overview of the interfaces (Page 94)
The maximum permitted cable length from the previous station and to the next one is 100 m .
2. Externally supply the converter with 24 VDC through terminals 31 and 32 .

The external 24 V supply is only required if communications with the control should also run when the line voltage is switched off.

You have connected the converter to the control system via PROFINET.
\square

4.2.10.3 What do you have to set for communication via PROFINET?

Configuring PROFINET communication in the I/O controller

You require the appropriate engineering system for the IO controller to configure PROFINET communication in the IO controller.

If required, load the GSDML file of the converter into the engineering software.
Installing GSDML (Page 121)

Device name

In addition to the MAC address and IP address, PROFINET also uses the device name to identify PROFINET devices (Device name). The device name must be unique across the PROFINET network.

You assign the device name with the IO controller engineering software.
The converter saves the device name on the memory card plugged into the converter.

IP address
In addition to the device name, PROFINET also uses an IP address.

The IO Controller assigns an IP address to the converter.

Telegram

Set the same telegram in the converter as in the IO Controller. Interconnect the telegrams in the control program of the IO Controller with the signals of your choosing.
\checkmark Drive control via PROFINET (Page 174)

Application examples

You can find application examples for PROFINET communication on the Internet:
(7) Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/60441457)
(2) Controlling the speed of a SINAMICS G110M / G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/78788716)

4.2.10.4 Installing GSDML

Procedure

1. Save the GSDML to your PC.

- With Internet access:
(3) GSDML (https://support.industry.siemens.com/cs/ww/en/view/109763250)
- Without Internet access:

Insert a memory card into the converter.
Set p0804 = 12 .
The converter writes the GSDML as a zipped file (*.zip) into directory /SIEMENS/ SINAMICS/DATA/CFG on the memory card.
2. Unzip the GSDML file on your computer.
3. Import the GSDML into the engineering system of the controller.

You have now installed the GSDML in the engineering system of the controller.

Commissioning

5.1 Commissioning guidelines

Overview

1. Define the requirements to be met by the drive for your application. (Page 125)
2. Restore the factory settings of the converter if necessary. (Page 145)
3. Check if the factory setting of the converter is sufficient for your application.
$\stackrel{\square}{\square}$
(Page 129)
4. Set the following for quick commissioning of the drive:

- The closed-loop motor control
- The inputs and outputs
- The fieldbus interface
$\xrightarrow{4}$
(Page 131)

5. Check if additional converter functions are required for the application.
(Page 125)
6. If necessary, adapt the drive. $\xrightarrow[4]{4}$ (Page 147)
7. Save your settings. (Page 759)

$5.2 \quad$ Tools

Operator panel

An operator panel is used to commission, troubleshoot and control the converter, as well as to back up and transfer the converter settings.

The Intelligent Operator Panel (IOP-2) can either be snapped onto a converter, or is available as handheld device with a connecting cable to the converter. The graphics-capable plain text display of the IOP-2 enables intuitive converter operation.
Additional information on the IOP-2 is available in the Internet:

SINAMICS IOP-2 release for sale (https://support.industry.siemens.com/cs/ww/en/view/ 109747625)

The Operator Panel BOP-2 for snapping onto the converter has a two-line display for diagnostics and operating the converter.

Operating Instructions of the BOP-2 and IOP-2 operator panels:
4] Manuals and technical support (Page 932)

SINAMICS G120 Smart Access

The SINAMICS G120 Smart Access is a Web server module and an engineering tool that provides wireless connection to a PC, a tablet, or a smartphone. It is designed for quick commissioning, parameterization, and maintenance of the converters. SINAMICS G120 Smart Access is only for commissioning and thus cannot be used with the converter permanently.

Operating instructions of the SINAMICS G120 Smart Access:
\checkmark Overview of the manuals (Page 932)

Compliance with the General Data Protection Regulation

Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

For this product, this means:
The product does not process neither store any person-related data, only technical function data (e.g. time stamps). If the user links these data with other data (e.g. shift plans) or if he stores person-related data on the same data medium (e.g. hard disk), thus personalizing these data, he has to ensure compliance with the applicable data protection stipulations.

5.3 Preparing for commissioning

5.3.1 Collecting motor data

Data for a standard induction motor

Before starting commissioning, you must know the following data:

- Which motor is connected to the converter?

Note down the Article No. of the motor and the motor's nameplate data.
If available, note down the motor code on the motor's nameplate.

Figure 5-1 Example of the rating plate for a standard induction motor

- In which region of the world is the motor to be used?
- Europe IEC: 50 Hz [kW]
- North America NEMA: $60 \mathrm{~Hz}[\mathrm{hp}]$ or $60 \mathrm{~Hz}[\mathrm{~kW}]$
- How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection [$\Delta]$).
Note the appropriate motor data for connecting.

5.3 Preparing for commissioning

Data for a synchronous reluctance motor

Before starting commissioning, you must know the following data:

- Which motor is connected to the converter?

Note down the motor code on the type plate of the motor.

Figure 5-2 Example of a type plate for a reluctance motor

- In which region of the world is the motor to be used?
- Europe IEC: 50 Hz [kW]
- North America NEMA: 60 Hz [hp] or $60 \mathrm{~Hz}[\mathrm{~kW}]$
- How is the motor connected?

Pay attention to the connection of the motor (star connection [Y$]$ or delta connection $[\Delta]$). Note the appropriate motor data for connecting.

5.3.2 Forming DC link capacitors

Overview

You have to reform the DC link capacitors if the converter has been stored for more than one year. Non-formed DC link capacitors can damage the converter in operation.

Precondition

The converter has not yet been used, and according to the production date it was made over a year ago.
The production date of the converter is coded in the 3rd and 4th digit of the serial number on the rating plate: S .. (3)(4)...

- Example: Serial number S ZVK5375000118 \rightarrow Production date May 2018

Table 5-1 Production year and month

Digit (3)	Production year	Digit (4)	Production month
K	2018		$1 \ldots 9$
L	2019		0
M	2020		N
\ldots	\ldots	D	October

Function description

Procedure for FSA ... FSG
You form the DC link capacitors by supplying the converter with a line voltage of $\leq 100 \%$ of the rated voltage for a defined time.

Figure 5-3 Forming the DC link capacitors

Procedure for FSH and FSJ

1. Set $\mathrm{p} 0010=2$.
2. Set the forming duration p3380.

Storage time from the production date	Recommended forming duration
$1 \ldots 2$ years	1 hour
$2 \ldots 3$ years	2 hours
>3 years	8 hours

For p3380 > 0, with alarm A07391, the converter signals that at the next ON command, DC link forming starts.
3. Switch on the motor, e.g. from an inserted operator panel.
4. Wait for the forming time to elapse. r3381 indicates the remaining time. If the line voltage is switched off before forming has been completed, then you have to form the DC link again.
5. The converter sets p3380 $=0$.
6. Set p0010 $=0$.

You have formed the DC link.

\square

Parameter

Parameter	Description	Factory setting
p0010	Drive commissioning parameter filter	0
p3380	Forming activation/duration	0 h
r3381	Remaining forming time	-h
r3382	Forming status word	-

5.3.3 Converter factory setting

Motor

In the factory, the converter is set for an induction motor with 2 pole pairs that matches the rated power of the converter.

Converter interfaces

The inputs and outputs and the fieldbus interface of the converter have specific functions when set to the factory settings.
$\xrightarrow{4}$ Factory interface settings (Page 99)

Switching the motor on and off

The converter is set in the factory as follows:

- After the ON command, the motor accelerates within the ramp-up time (referred to $1500 \mathrm{rpm})$ to its speed setpoint.
- After the OFF1 command, the motor brakes down to standstill with the ramp-down time.
- The negative direction of rotation is inhibited

Ramp-up time10 s

Figure 5-4 Switch motor on and off in the factory setting
The ramp-up and ramp-down times define the maximum motor acceleration when the speed setpoint changes. The ramp-up and ramp-down times are derived from the time between motor standstill and the maximum speed, or between the maximum speed and motor standstill.

Traverse the motor in the jog mode

For a converter with PROFINET interface, operation can be switched over using digital input DI 4. The motor is either switched on and off via the fieldbus - or operated in the jog mode via its digital inputs.

For a control command at the respective digital input, the motor rotates with $\pm 150 \mathrm{rpm}$. The same ramp-up and ramp-down times as described above apply.

Figure 5-5 Jogging the motor in the factory setting

Minimum and maximum speed

- Minimum speed - factory setting 0 [rpm]

After the selection of a motor, during the quick commissioning, the converter sets the minimum speed to 20% of the rated speed.
The minimum speed is the lowest speed of the motor independent of the speed setpoint.

- Maximum speed - factory setting 1500 [rpm]

The converter limits the motor speed to this value.

Operate the motor in the factory setting

We recommend that you execute quick commissioning. For quick commissioning, you must adapt the converter to the connected motor by setting the motor data in the converter.
For basic applications, you can try to operate the drive with a rated power < 18.5 kW without any other commissioning steps. Check whether the control quality of the drive without commissioning is adequate for the requirements of the application.

5.4 Quick commissioning using the BOP-2 operator panel

5.4.1 Fitting the BOP-2 to the converter

Fitting the BOP-2 to the converter

Procedure

1. Open the cover of the interface X 21 on the front of the Control Unit.
2. Locate the lower edge of the Operator Panel into the matching recess of the Control Unit.
3. Plug the operator panel BOP-2 onto the converter until the latch audibly engages.

You have plugged the BOP-2 onto the converter.
\square
The operator panel BOP-2 is ready for operation when you connect the converter to the power supply.

5.4.2 Overview of quick commissioning

Figure 5-6 Quick commissioning using the BOP-2 operator panel

5.4.3 Start quick commissioning and select the application class

Starting quick commissioning

Preconditions

- The power supply is switched on.
- The operator panel displays setpoints and actual values.

Procedure
Press the ESC key.

Press one of the arrow keys until the BOP-2 displays the "SETUP" menu.

To start quick commissioning, in the "SETUP" menu, press the OK key.
 proceed as follows:

1. Press the OK key.
2. Switchover the display using an arrow key: $\mathrm{nO} \rightarrow \mathrm{YES}$
3. Press the OK key.

When selecting an application class, the converter assigns the motor control with the appropriate default settings:

- Standard Drive Control (Page 135)
- Dy Damic Drive Control (Page 137)
- \square Expert (Page 139)

Depending on the particular Power Module, the converter skips selecting the application class. If the BOP-2 does not display step DRV APPL, then continue commissioning as described under "Expert".

5.4.4 Selecting an application class

Application class	Standard Drive Control	Dynamic Drive Control
Properties	- Typical settling time after a speed change: $100 \mathrm{~ms} . .200 \mathrm{~ms}$ - Typical settling time after a load surge: 500 ms - Standard Drive Control is suitable for the following requirements: - Motor power ratings < 45 kW - Ramp-up time $0 \rightarrow$ rated speed (depending on the motor power rating): $1 \mathrm{~s}(0.1 \mathrm{~kW}) \ldots 10 \mathrm{~s}(45 \mathrm{~kW})$ - Applications with steady load torque without load surges - Standard Drive Control is insensitive with respect to imprecise setting of the motor data	- Typical settling time after a speed change: $<100 \mathrm{~ms}$ - Typical settling time after a load surge: 200 ms - Dynamic Drive Control controls and limits the motor torque - Torque accuracy that can be achieved: $\pm 5 \%$ for $15 \% \ldots 100 \%$ of the rated speed - We recommend Dynamic Drive Control for the following applications: - Motor power ratings > 11 kW - For load surges of $10 \% \ldots>100 \%$ of the rated motor torque - Dynamic Drive Control is necessary for a rampup time $0 \rightarrow$ rated speed (dependent on the rated motor power): < $1 \mathrm{~s}(0.1 \mathrm{~kW}) \ldots<10 \mathrm{~s}(132 \mathrm{~kW})$.
Application examples	- Pumps, fans, and compressors with flow characteristic	- Pumps and compressors with displacement machines
Motors that can be operated	Induction motors	Induction and synchronous motors
Max. output frequency	550 Hz	240 Hz
Torque control	Without torque control	Speed control with lower-level torque control
Commissioning	- Unlike "Dynamic Drive Control," no speed controller needs to be set - Compared with the "EXPERT" setting: - Simplified commissioning using predefined motor data - Reduced number of parameters - Standard Drive Control is preset for converters of frame size $A \ldots$ frame size C	- Fewer parameters compared with the "EXPERT" setting - Dynamic Drive Control is preset for converters of frame size D... frame size F

5.4.5 Standard Drive Control

Select the motor standard:

- KW / 50HZ: IEC
- HP / 60HZ: NEMA, US units
- KW / 60HZ: NEMA, SI units

Set the converter supply voltage.

MOT TYPE

 P300

MOT CURR P305

Rated motor current
 corresponding motor type with motor code.

- INDUCT: Third-party induction motor

Motors with motor code stamped on the rating plate:

- 1LE1 IND 100: 1LE1 . 9
- 1PC1 IND: 1PC1 from p0304 and higher from the rating plate.

87 HZ

Rated motor voltage standard (EUR/USA, P100 = kW 50 Hz).

Rated motor power

Rated motor frequency

Rated motor speed

Motor cooling:

Select the motor type. If a 5 -digit motor code is stamped on the motor rating plate, select the

Motors without motor code stamped on the rating plate:

- 1L... IND: 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.
If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code $=0$, and enter motor data

87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor

- SELF: Natural cooling
- FORCED: Forced-air cooling

TEC APPL
P501__

- LIQUID: Liquid cooling
- NO FAN: Without fan

Select the basic setting for the motor control:

- VEC STD: Constant load
- PUMP FAN: Speed-dependent load

Select the default setting for the interfaces of the converter that is suitable for your application.

RAMP DWN P1121
 P1135

MOTID

 P1900\leadsto Factory interface settings (Page 99)

Figure 5-7 Minimum and maximum motor speed

Figure 5-8 Ramp-up and ramp-down time of the motor
Ramp-down time after the OFF3 command

Motor data identification Select the method which the converter uses to measure the data of the connected motor:

- OFF: No motor data identification
- STIL ROT: Measure the motor data at standstill and with the motor rotating.

The converter switches off the motor after the motor data identification has been completed.

- STILL: Recommended setting: Measure the motor data at standstill.

The converter switches off the motor after the motor data identification has been completed. Select this setting if the motor cannot rotate freely.

- ROT: Measure the motor data while the motor is rotating.

The converter switches off the motor after the motor data identification has been completed.

- ST RT OP: setting same as STIL ROT.

After the motor data identification, the motor accelerates to the current setpoint.

- STILL OP: setting same as STILL.

After the motor data identification, the motor accelerates to the current setpoint.
Complete quick commissioning as follows:

1. Switchover the display using an arrow key: $\mathrm{nO} \rightarrow$ YES
2. Press the OK key.

You have completed quick commissioning. -

5.4.6 Dynamic Drive Control

P210

MOT TYPE

 P300

Select the motor standard:

- KW / 50HZ: IEC
- HP / 60HZ: NEMA, US units
- KW / 60HZ: NEMA, SI units

Set the converter supply voltage.

Select the motor type. If a 5 -digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.
Motors without motor code stamped on the rating plate:

- INDUCT: Third-party induction motor
- 1L... IND: 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- 1LE1 IND 100: 1LE1. 9
- 1PC1 IND: 1PC1

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.
If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code $=0$, and enter motor data from p0304 and higher from the rating plate.

87 HZ

87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (EUR/USA, P100 = kW 50 Hz).

Rated motor voltage

MOT CURR P305

Rated motor current

Rated motor power

Rated motor frequency

Rated motor speed

Motor cooling:

- SELF: Natural cooling
- FORCED: Forced-air cooling
- LIQUID: Liquid cooling
- NO FAN: Without fan

Select the basic setting for the motor control:

- OP LOOP: Recommended setting for standard applications
- CL LOOP: Recommended setting for applications with short ramp-up and ramp-down times.
- HVY LOAD: Recommended setting for applications with a high break loose torque.

Select the default setting for the interfaces of the converter that is suitable for your application.

$\xrightarrow{\Delta}$ Factory interface settings (Page 99)

MIN RPM P1080

MAXRPM P1082

Figure 5-9 Minimum and maximum motor speed

RAMP DWN P1121
 P1900

Figure 5-10 Ramp-up and ramp-down time of the motor
Ramp-down time after the OFF3 command

Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- OFF: Motor data is not measured.

STIL ROT: Recommended setting: Measure the motor data at standstill and with the motor rotating.
The converter switches off the motor after the motor data identification has been completed.

- STILL: Default setting: Measure the motor data at standstill.

The converter switches off the motor after the motor data identification has been completed. Select this setting if the motor cannot rotate freely.

- ROT: Measure the motor data while the motor is rotating.

The converter switches off the motor after the motor data identification has been completed.

- ST RT OP: setting same as STIL ROT.

After the motor data identification, the motor accelerates to the current setpoint.

- STILL OP: setting same as STILL.

After the motor data identification, the motor accelerates to the current setpoint.

Complete quick commissioning:

- Switch over the display using an arrow key: $\mathrm{nO} \rightarrow$ YES
- Press the OK key.

You have completed quick commissioning.
\square

5.4.7 Expert

Select the motor standard:

- KW / 50HZ: IEC
- HP / 60HZ: NEMA, US units
- KW / 60HZ: NEMA, SI units

Specify the overload capability of the converter:

- HIGH OVL: Duty cycle with "High Overload"
- LOW OVL: Duty cycle with "Low Overload"

Load cycles and overload capability (Page 898)
Set the converter supply voltage.

Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- INDUCT: Third-party induction motor
- 1L... IND: 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- 1LE1 IND 100: 1LE1. 9
- 1PC1 IND: 1PC1

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.

If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.
If you do not know the motor code, then you must set the motor code $=0$, and enter motor data from p0304 and higher from the rating plate.

87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (EUR/USA, P100 = kW 50 Hz).

Control mode	U/f control or flux current control (FCC)	Sensorless vector control
Properties	- Typical settling time after a speed change: $100 \mathrm{~ms} . .200 \mathrm{~ms}$ - Typical settling time after a load surge: 500 ms - The control mode is suitable to address the following requirements: - Motor power ratings < 45 kW - Ramp-up time $0 \rightarrow$ rated speed (depending on the motor power rating): $1 \mathrm{~s}(0.1 \mathrm{~kW}) \ldots 10 \mathrm{~s}(45 \mathrm{~kW})$ - Applications with steady load torque without load surges - The control mode is insensitive with respect to imprecise setting of the motor data	- Typical settling time after a speed change: $<100 \mathrm{~ms}$ - Typical settling time after a load surge: 200 ms - The control mode controls and limits the motor torque - Torque accuracy that can be achieved: $\pm 5 \%$ for $15 \% \ldots 100 \%$ of the rated speed - We recommend the control mode for the following applications: - Motor power ratings > 11 kW - For load surges of $10 \% \ldots>100 \%$ of the rated motor torque - The control mode is necessary for a ramp-up time $0 \rightarrow$ Rated speed (dependent on the rated motor power): < 1 s (0.1 kW) ... < $10 \mathrm{~s}(250 \mathrm{~kW})$.
Application examples	- Pumps, fans, and compressors with flow characteristic	- Pumps and compressors with displacement machines
Motors that can be operated	Induction motors	Induction and synchronous motors
Max. output frequency	550 Hz	240 Hz
Torque control	Without torque control	Torque control with and without higher-level speed control
Commissioning	- In contrast to sensorless vector control, the speed controller does not have to be set	

Select the default setting for the interfaces of the converter that is suitable for your application.
\checkmark Factory interface settings (Page 99)

Figure 5-11 Minimum and maximum motor speed

RAMP DWN P1121

Figure 5-12 Ramp-up and ramp-down time of the motor

Ramp-down time for the OFF3 command

Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- OFF: Motor data is not measured.
- STIL ROT: Recommended setting: Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.
- STILL: Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.
Select this setting if one of the following cases is applicable:
- You have selected control mode "SPD N EN", but the motor cannot rotate freely.
- You have selected U/f control as control mode, e.g. "VF LIN" or "VF QUAD".
- ROT: Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.
- ST RT OP: setting same as STIL ROT.

After the motor data identification, the motor accelerates to the current setpoint.

- STILL OP: setting same as STILL.

After the motor data identification, the motor accelerates to the current setpoint.

FINISH

-

Complete quick commissioning:

Switchover the display using an arrow key: $\mathrm{nO} \rightarrow$ YES
Press the OK key.
You have completed quick commissioning.
\square

5.4.8 Identifying the motor data and optimizing the closed-loop control

Overview

Using the motor data identification, the converter measures the data of the stationary motor. In addition, based on the response of the rotating motor, the converter can determine a suitable setting for the vector control.

To start the motor data identification routine, you must switch-on the motor via the terminal strip, fieldbus or from the operator panel.

Identifying the motor data and optimizing the closed-loop control

Requirements

- You have selected a method of motor data identification during quick commissioning, e.g. measuring motor data while the motor is stationary.
When quick commissioning is complete, the converter issues alarm A07991.
- The motor has cooled down to the ambient temperature.

An excessively high motor temperature falsifies the motor data identification results.

WARNING

Unexpected machine motion while the motor data identification is in progress
For the stationary measurement, the motor can make several rotations. The rotating measurement accelerates the motor up to the rated speed. Secure dangerous machine parts before starting motor data identification:

- Before switching on, ensure that nobody is working on the machine or located within its working area.
- Secure the machine's work area against unintended access.
- Lower suspended loads to the floor.

Procedure

Press the HAND/AUTO key.

The BOP-2 displays the symbol indicating manual operation.

Switch on the motor.

During motor data identification, "MOT-ID" flashes on the BOP-2.

If the converter again outputs alarm A07991, then it waits for a new ON command to start the rotating measurement.

If the converter does not output alarm A07991, switch off the motor as described below, and switch over the converter control from HAND to AUTO.
(I) Switch on the motor to start the rotating measurement.

During motor data identification, "MOT-ID" flashes on the BOP-2.
The motor data identification can take up to 2 minutes depending on the rated motor power.
Depending on the setting, after motor data identification has been completed, the converter switches off the motor - or it accelerates it to the setpoint.

If required, switch off the motor.
AAND Switch the converter control from HAND to AUTO.
You have completed the motor data identification.
\square
Quick commissioning has been completed once the motor data identification has been successfully completed.

5.5 Restoring the factory settings

Why restore the factory settings?
Reset the converter to the factory settings in the following cases:

- You do not know the converter settings.
- The line voltage was interrupted during commissioning and you were not able to complete commissioning.

Resetting to factory setting with the BOP-2 operator panel

Procedure

1. In the "Options" menu, select the "DRVRESET" entry
2. Confirm the reset using the OK key.
3. Wait until the converter has been reset to the factory setting.

You have reset the converter to the factory settings.
5.5 Restoring the factory settings

Advanced commissioning

6.1 Overview of the converter functions

Drive control

The converter receives its commands from the higher-level control via the terminal strip or the fieldbus interface of the Control Unit. The drive control defines how the converter responds to the commands.

Drive control (Page 149)
The converter can switch between different settings of the drive control.
Switching over the drive control (command data set) (Page 214)

Safety functions

The safety functions fulfill increased requirements regarding the functional safety of the drive.
IS] Safe Torque Off (STO) safety function (Page 218)

Setpoints and setpoint conditioning

The setpoint generally determines the motor speed.
\square Setpoints (Page 246)
The setpoint processing uses a ramp-function generator to prevent speed steps occurring and to limit the speed to a permissible maximum value.

Technology controller

The technology controller controls process variables, e.g. pressure, temperature, level or flow. The motor closed-loop control either receives its setpoint from the higher-level control - or from the technology controller.
\leadsto Technology controller (Page 269)

Motor control

(M) The motor closed-loop control ensures that the motor follows the speed setpoint. You can choose between various control modes.
M Motor control (Page 295)

Drive protection

The protection functions prevent damage to the motor, converter and driven load.
[Drive protection (Page 323)

Increasing the drive availability

3The drive can bridge temporary power failures or be switched on while the motor is rotating. \checkmark Drive availability (Page 340)

Saving energy

$\stackrel{A}{\mathrm{~A}} \mathrm{C}_{\mathrm{C}}{ }^{-1}$
The converter enhances the efficiency optimization of the standard induction motor or disconnects the power module from the system, if necessary.
E] Energy saving (Page 351)

6.2 Drive control

6.2.1 Sequence control when switching the motor on and off

Overview

The sequence control defines the rules for switching the motor on and off.

Figure 6-1 Simplified representation of the sequence control
After switching the supply voltage on, the converter normally goes into the "ready to start" state. In this state, the converter waits for the command to switch on the motor.

The converter switches on the motor with the ON command. The converter changes to the "Operation" state.

After the OFF1 command, the converter brakes the motor down to standstill. The converter switches off the motor once standstill has been reached. The converter is again "ready to start".

Precondition

Functions

In order to be able to respond to external commands, you must set the command interface so that it fits your specific application.

Tools

One of the commissioning tools is needed to change the function settings.

Function description

Figure 6-2 Sequence control of the converter when the motor is switched on and off
Converter states $\mathrm{S} 1 \ldots \mathrm{~S} 5 \mathrm{c}$ are defined in the PROFIdrive profile. The sequence control defines the transition from one state to another.

Table 6-1 Converter states

The motor is switched off		The motor is switched on	
Current does not flow in the motor and the motor does not generate any torque	Current flows in the motor and the motor generates a torque		
S1	The ON command and an OFF command are active at the same time. In order for the converter to exit the state, you must deactivate OF2 and OFF3 and activate the ON command again.	S4	The motor is switched on.
S2	The converter waits for a new command to switch on the motor.	S5a, S5c	The motor is still switched on. The con- verter brakes the motor with the ramp- down time of the ramp-function generator.
S3	The converter waits for "Enable opera- tion". The "Enabie operation" command is always active in the converter factory set- ting.	S5b	The motor is still switched on. The con- verter brakes the motor with the OFF3 ramp-down time.

Table 6-2 Commands for switching the motor on and off

ON Jogging 1 Jogging 2 Enable opera- tion	The converter switches the motor on.
OFF1, OFF3	1. The converter brakes the motor. 2. The converter switches off the motor once it comes to a standstill. The converter identifies that the motor is at a standstill when at least one of the following conditions is satisfied: - The speed actual value falls below the threshold in p1226, and the time started in p1228 has expired. - The speed setpoint falls below the threshold in p1226, and the time subsequently started in p1227 has expired.
OFF2 Inhibit opera- tion	The converter switches off the motor immediately without first braking it.

Function diagram

Figure 6-3 FP 2610

Parameter

Number	Name	Factory setting
r0046.0..31	CO/BO: Missing enable signals	-
p0857	Power unit monitoring time	10000 ms
p0858[C]	BI: Unconditionally close holding brake	0
p0860	BI: Line contactor feedback signal	863.1
p0861	Line contactor monitoring time	100 ms
p1226[D]	Speed threshold for standstill detection	20 rpm
p1227	Standstill detection monitoring time	300 s
p1228	Pulse suppression delay time	0.01 s

For additional information on parameters, please refer to the parameter list.

See also

Parameters (Page 373)

6.2.2 Adapt the default setting of the terminal strips

Overview

In the converter, the input and output signals are interconnected with specific converter functions using special parameters. The following parameters are available to interconnect signals:

- Binectors BI and BO are parameters to interconnect binary signals.
- Connectors Cl and CO are parameters to interconnect analog signals.

The following chapters describe how you adapt the function of individual converter inputs and outputs using binectors and connectors.

6.2.2.1 Digital inputs

Function description

To change the function of a digital input, you must interconnect the status parameter of the digital input with a binector input of your choice.

Binector inputs are designated in the parameter list with the prefix "BI".

Example

To acknowledge converter fault messages using digital input DI 1, you must interconnect DI 1 with the command to acknowledge faults (p2103).

Set p2103 = 722.1.

Parameters

Parameter	Description	Factory setting
r0721	CU digital inputs, terminal actual value	-
r0722	CO/BO: CU digital inputs, status	-
r0723	CO/BO: CU digital inputs, status inverted	--
p0724	CU digital inputs debounce time	4 ms
p0810	BI: Command data set selection CDS bit 0	0
p0840[C]	BI: ON/OFF (OFF1)	Dependent on the converter
$p 0844[C]$	BI: No coast down/coast down (OFF2) signal source 1	Dependent on the converter
$p 0848[C]$	BI: No quick stop/quick stop (OFF3) signal source 1	1
p0852[C]	BI: Enable operation/inhibit operation	Dependent on the converter
$p 1020[C]$	BI: Fixed speed setpoint selection, bit 0	0
$p 1021[C]$	BI: Fixed speed setpoint selection, bit 1	0
p1022[C]	BI: Fixed speed setpoint selection, bit 2	0
p1023[C]	BI: Fixed speed setpoint selection, bit 3	0
p1035[C]	BI: Motorized potentiometer setpoint higher	Dependent on the converter
p1036[C]	BI: Motorized potentiometer setpoint lower	Dependent on the converter
p1055[C]	BI: Jogging bit 0	Dependent on the converter
p1056[C]	BI: Jogging bit 1	Dependent on the converter

Parameter	Description	Factory setting
p1113[C]	BI: Setpoint inversion	Dependent on the converter
p2103[C]	BI: 1. Acknowledge faults	Dependent on the converter
p2106[C]	BI: External fault 1	1
p2112[C]	BI: External alarm 1	1

For further binector inputs and additional information on parameters, please refer to the parameter list.
$\xrightarrow{4}$ Parameter list (Page 376)

Function diagram

Figure 6-4 FP 2221

6.2.2.2 Analog input as digital input

Function description

To use an analog input as additional digital input, you must interconnect the corresponding status parameter r0722.11 or r0722.12 with a binector input of your choice.

You may operate the analog input as a digital input with 10 V or with 24 V .

NOTICE

Defective analog input due to overcurrent
If the analog input switch is set to "Current input" (I), a 10 V or 24 V voltage source results in an overcurrent at the analog input. An overcurrent condition destroys the analog input.

- If you use an analog input as a digital input, then you must set the analog input switch to "Voltage" (U).

Function diagram

Figure 6-5 FP 2256

6.2.2.3 Digital outputs

Function description

To change the function of a digital output, you must interconnect the digital output with a binector output of your choice.
Binector outputs are designated in the parameter list with the prefix "BO".

Example

To output converter fault messages via digital output DO 1, you must interconnect DO 1 with these fault messages.

Set p0731 = 52.3

Parameters

Table 6-3 Frequently used binector outputs (BO) of the converter

Parameter	Description		Factory setting
r0052[0...15]	CO/BO: Status word 1		-
	. 00	1 signal: Ready for switching on	
	. 01	1 signal: Ready for operation	
	. 02	1 signal: Operation enabled	
	. 03	1 signal: Fault active: The converter inverts signal r0052.03 if it is interconnected to a digital output.	
	. 04	0 signal: OFF2 active	
	. 05	0 signal: OFF3 active	
	. 06	1 signal: Switching on inhibited active	
	. 07	1 signal: Alarm active	
	. 08	0 signal: Deviation, setpoint/actual speed	
	. 09	1 signal: Control request	
	. 10	1 signal: Maximum speed (p 1082) reached	
	. 11	0 signal: I, M, P limit reached	
	. 13	0 signal: Alarm, motor overtemperature	
	. 14	1 signal: Motor clockwise rotation	
	. 15	0 signal: Alarm, converter overload	
r0053[0...11]	CO/BO: Status word 2		-
	. 00	1 signal: DC braking active	
	. 02	1 signal: Speed > minimum speed (p 1080)	
	. 06	1 signal: Speed \geq setpoint speed (r1119)	

You can find additional binector outputs in the parameter list.

\leadsto Parameter list (Page 376)

Function diagrams

Figure 6-6

Figure 6-7 FP 2245

See also

Interconnecting signals in the converter (Page 930)

6.2.2.4 Analog inputs

Function description

Define the analog input type

The parameter $\mathrm{p} 0756[\mathrm{x}]$ and the switch on the converter specify the analog input type.

Table 6-4 Default settings via parameter p0756

AI 0	Unipolar voltage input	$0 \mathrm{~V} \ldots+10 \mathrm{~V}$	p0756[0] =	0
	Unipolar voltage input monitored	+2 V $\ldots+10 \mathrm{~V}$		1
	Unipolar current input	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$		2
	Unipolar current input monitored	+4 mA $\ldots+20 \mathrm{~mA}$		3
	Bipolar voltage input (factory setting)	-10 V ... +10 V		4
AI 1	Unipolar voltage input	$0 \mathrm{~V} \ldots+10 \mathrm{~V}$	p0756[1] $=$	0
	Unipolar voltage input monitored	+2 V ... +10 V		1
	Unipolar current input	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$		2
	Unipolar current input monitored	+4 mA ... +20 mA		3
	Bipolar voltage input (factory setting)	-10 V ... +10 V		4

The switch that belongs to the analog input is located behind the front door of the converter.

Defining the function of an analog input

You define the analog input function by interconnecting a connector input of your choice with parameter p0755. Parameter p0755 is assigned to the particular analog input via its index, e.g. parameter p0755[0] is assigned to analog input 0 .
Connector inputs are designated in the parameter list with the prefix "CI".

Example

In order to enter the supplementary setpoint via analog input AI 0 , you must interconnect AI 0 with the signal source for the supplementary setpoint.
Set p1075 $=755[0]$.

Parameters

Table 6-5 Frequently used connector inputs (CI) of the converter

Parameter	Description	Factory setting
$p 1070[\mathrm{C}]$	$\mathrm{Cl}:$ Main setpoint	Dependent on the converter
$\mathrm{p} 1075[\mathrm{C}]$	$\mathrm{Cl}:$ Supplementary setpoint	0
$\mathrm{p} 2253[\mathrm{C}]$	$\mathrm{Cl}:$ Technology controller setpoint 1	0
$\mathrm{p} 2264[\mathrm{C}]$	$\mathrm{Cl}:$ Technology controller actual value	0

You can find additional connector inputs in the parameter list.
4 Parameter list (Page 376)

Function diagram

Figure 6-8 FP 2251

More information

Using an analog input as a digital input

An analog input can also be used as a digital input.
\leadsto Digital inputs (Page 155)

6.2.2.5 Adjusting characteristics for analog input

Function description

If you change the analog input type using p0756, then the converter automatically selects the appropriate scaling of the analog input. The linear scaling characteristic is defined using two points (p 0757 , p 0758) and (p 0759 , p0760). Parameters p0757 ... p0760 are assigned to an analog input via their index, e.g. parameters p0757[0] ... p0760[0] belong to analog input 0 .

$$
\begin{aligned}
& \text { p0756 = } 4 \\
& \text { Voltage input, - } 10 \mathrm{~V} \ldots 10 \mathrm{~V}
\end{aligned}
$$

p0756 = 3
Current input, $4 \mathrm{~mA} . . .20 \mathrm{~mA}$

You must define your own characteristic if none of the default types match your particular application.

Example

The converter should convert a $6 \mathrm{~mA} . . .12 \mathrm{~mA}$ signal into the value range $-100 \% \ldots 100 \%$ via analog input 0 . The wire-break monitoring of the converter should respond when 6 mA is fallen below.

Current input, $6 \mathrm{~mA} . . .12 \mathrm{~mA}$

Procedure

1. Set the DIP switch for analog input 0 on the Control Unit to current input ("I").
$\stackrel{y}{1} \quad \stackrel{\square}{\square}$
2. set $\mathrm{p} 0756[0]=3$

You have defined analog input 0 as a current input with wire-break monitoring.
3. Set $\mathrm{p} 0757[0]=6.0(x 1)$
4. Set $\mathrm{p} 0758[0]=-100.0(\mathrm{y} 1)$
5. Set p0759[0] = $12.0(\mathrm{x} 2)$
6. Set p0760[0] = 100.0 (y2)
7. Set p0761[0] = 6

An input current < 6 mA results in fault F03505.
The characteristic for the application example is set.
\square

Parameters

Parameter	Description	Factory setting
$p 0757[0 \ldots 1]$	CU analog inputs characteristic value $x 1$	0
$p 0758[0 \ldots 1]$	CU analog inputs characteristic value $y 1$	0%
$p 0759[0 \ldots 1]$	CU analog inputs characteristic value $x 2$	10
$p 0760[0 \ldots 1]$	CU analog inputs characteristic value y2	100%
$p 0761[0 \ldots 1]$	CU analog inputs wire-break monitoring, response threshold	2

6.2.2.6 Setting the deadband

Function description

With the control enabled, electromagnetic interference on the signal cable can cause the motor to slowly rotate in one direction in spite of a speed setpoint $=0$.

The deadband acts on the zero crossover of the analog input characteristic. Internally, the converter sets its speed setpoint $=0$, even if the signal at the analog input terminals is slightly positive or negative. This prevents the converter from rotating the motor when the speed setpoint $=0$.

Parameters

Parameter	Description	Factory setting
p0764[0]	Analog inputs deadband, AI 0	0
p0764[1]	Analog inputs deadband, AI 1	0

6.2.2.7 Analog outputs

Function description

Defining the analog output type

Define the analog output type using parameter p0776.
The converter offers a series of default settings, which you can select using parameter p0776:

AO 0	Current output (factory setting)	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$	$\mathrm{p} 0776[0]=$	0
	Voltage output	$0 \mathrm{~V} \ldots+10 \mathrm{~V}$		1
	Current output	$+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$		2

Defining the function of an analog output

Connector outputs are designated with "CO".
You define the analog output function by interconnecting parameter p0771 with a connector output of your choice. Parameter p0771 is assigned to the particular analog output via its index, e.g. parameter p0771[0] is assigned to analog output 0 .

Example

$-12-\frac{\mathrm{AO} 0+-\frac{\mathrm{p} 0771[0]}{27<\mathrm{r0027}}-2}{}$

To output the converter output current via analog output 0 , you must interconnect AO 0 with the signal for the output current.

Set p0771 = 27 .

Parameters

Table 6-6 Frequently used connector outputs (CO) of the converter

Parameter	Description	Factory setting
r0021	CO: Speed actual value, smoothed	- rpm
r0025	CO: Output voltage, smoothed	- Vrms
r0026	CO: DC link voltage, smoothed	- V
r0027	CO: Absolute actual current, smoothed	- Arms
r0063	CO: Speed actual value	- rpm

You can find additional connector outputs in the parameter list.
Parameter list (Page 376)

Function diagram

Figure 6-9 FP 2261

6.2.2.8 Adjusting characteristics for analog output

Function description

If you change the analog output type, then the converter automatically selects the appropriate scaling of the analog output. The linear scaling characteristic is defined using two points (p0777, p0778) and (p0779, p0780).

```
p0776 = 1
```

Voltage output, 0 V ... 10 V

p0776 = 2
Current output, 4 mA ... 20 mA

Parameters p0777 ... p0780 are assigned to an analog output via their index, e.g. parameters p0777[0] ... p0770[0] belong to analog output 0 .
You must define your own characteristic if none of the default types match your particular application.

Example

Via analog output 0 , the converter should convert a signal in the value range $0 \% \ldots 100 \%$ into an output signal $6 \mathrm{~mA} \ldots 12 \mathrm{~mA}$.

Current output, $6 \mathrm{~mA} . . .12 \mathrm{~mA}$

Procedure

1. Set $p 0776[0]=2$

This defines analog output 0 as a current output.
2. Set $\mathrm{p} 0777[0]=0.0(\mathrm{x} 1)$
3. Set $p 0778[0]=6.0(y 1)$
4. Set $p 0779[0]=100.0(x 2)$
5. Set $\mathrm{p} 0780[0]=12.0(\mathrm{y} 2)$

The characteristic for the application example is set.

Parameters

Table 6-7 Parameters for the scaling characteristic

Parameter	Description	Factory setting
$p 0777[0 \ldots 1]$	CU analog outputs characteristic value $x 1$	-
$p 0778[0 \ldots 1]$	CU analog outputs characteristic value y1	0 V
$p 0779[0 \ldots 1]$	CU analog outputs characteristic value $x 2$	100%
$p 0780[0 \ldots 1]$	CU analog outputs characteristic value $y 2$	20 V

6.2.3 Drive control via PROFINET

6.2.3.1 Receive data and send data

Overview

Cyclic data exchange

The converter receives cyclic data from the higher-level control - and returns cyclic data to the control.

Figure 6-10 Cyclic data exchange
Converter and higher-level control system package their data in the form of telegrams.

Figure 6-11 Telegram structure

A telegram has the following structure:

- Header and trailer form the protocol frame.
- User data is located within the frame:
- PKW: The control system can read or change the parameters in the converter via "PKW data".
Not every telegram has a "PKW range".
- PZD: The converter receives control commands and setpoints from the higher-level control - and sends status messages and actual values via "PZD data".

PROFIdrive and telegram numbers

For typical applications, certain telegrams are defined in the PROFIdrive profile and are assigned a fixed PROFIdrive telegram number. As a consequence, behind a PROFIdrive telegram number, there is a defined signal composition. As a consequence, a telegram number uniquely describes cyclic data exchange.

The telegrams are identical for PROFIBUS and PROFINET.

6.2.3.2 Telegrams

Overview

The user data of the telegrams that are available are described in the following.
Telegram 1

16-bit speed setpoint

Telegram 20

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	
STW1	NSOLL A					
ZSW1	NIST_A GLATT	IAIST_ GLATT	MIST_- GLATT	PIST_- GLATT	MELD_- NAMUR	

16-bit speed setpoint for VIK-Namur

Telegram 350

PZD01	PZD02	PZD03	PZD04
STW1	NSOLL A	M_LIM	STW3
ZSW1	NIST_A GLATT	IAIST_- GLATT	ZSW3

16-bit speed setpoint with torque limiting

6.2 Drive control

Telegram 352

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
STW1	NSOLL A	Freely assignable			
ZSW1	NIST_A GLATT	IAIST_ GLATT	MIST_- GLATT	WARN- CODE	FAULT_- CODE

16-bit speed setpoint for PCS7

Telegram 353

	PZD01	PZD02	
	STW1	$\begin{array}{\|c} \hline \text { NSOLL } \\ \text { A } \end{array}$	
F\|		ZSW1	NIST_A GLATT

16 -bit speed setpoint with reading and writing to parameters

Telegram 354

	PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
	STW1	$\begin{array}{\|c} \mathrm{NSOLL} \\ \text { A } \end{array}$	Freely assignable			
\|	ZSW1	NIST_A GLATT	$\begin{aligned} & \hline \text { IAIST }_{-} \\ & \text {GLATT } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { MIST_ } \\ \text { GLATT } \end{array}$	WARN CODE	$\begin{gathered} \text { FAULT } \\ \text { CODE } \end{gathered}$

16-bit speed setpoint for PCS7 with reading and writing to parameters

Telegram 999

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09	PZD10	PZD11	PZD12	PZD13 ... PZD17
STW1	Telegram length for the receive data											
ZSW1	Telegra	m length	for the tr	smit da								

Unassigned interconnection and length

Table 6-8 Abbreviations

Abbreviation	Explanation	Abbreviation	Explanation
PZD	Process data	PKW	Parameter channel
STW	Control word	MIST_GLATT	Actual smoothed torque
ZSW	Status word	PIST_GLATT	Actual smoothed active power
NSOLL_A	Speed setpoint	M_LIM	Torque limit value
NIST_A	Speed actual value	FAULT_CODE	Fault code
NIST_A_GLATT	Smoothed actual speed val- ue	WARN_CODE	Alarm code
IAIST_GLATT	Smoothed current actual val- ue	MELD_NAMUR	Message according to the VIK-NA-

Function description

Control word 1 (STW1)

Bit	Significance		Explanation	Signal interconnection in the converter
	Telegram 20	All other telegrams		
0	0 = OFF1		The motor brakes with the ramp-down time p1121 of the ramp-function generator. The converter switches off the motor at standstill.	$\begin{aligned} & \text { p0840[0] = } \\ & \text { r2090.0 } \end{aligned}$
	$0 \rightarrow 1=\mathrm{ON}$		The converter goes into the "ready" state. If, in addition bit $3=1$, then the converter switches on the motor.	
1	0 = OFF2		Switch off the motor immediately, the motor then coasts down to a standstill.	$\begin{aligned} & \text { p0844[0] = } \\ & \text { r2090.1 } \end{aligned}$
	1 = No OFF2		The motor can be switched on (ON command).	
2	0 = Quick stop (OFF3)		Quick stop: The motor brakes to a standstill with the OFF3 ramp-down time p1135.	$\begin{aligned} & \text { p0848[0] = } \\ & \text { r2090.2 } \end{aligned}$
	1 = No quick stop (OFF3)		The motor can be switched on (ON command).	
3	0 = Inhibit operation		Immediately switch-off motor (cancel pulses).	$\begin{aligned} & \text { p0852[0] = } \\ & \text { r2090.3 } \end{aligned}$
	1 = Enable operation		Switch-on motor (pulses can be enabled).	
4	0 = Disable RFG		The converter immediately sets its ramp-function generator output to 0 .	$\begin{aligned} & \mathrm{p} 1140[0]= \\ & \mathrm{r} 2090.4 \end{aligned}$
	1 = Do not disable RFG		The ramp-function generator can be enabled.	
5	0 = Stop RFG		The output of the ramp-function generator stops at the actual value.	$\begin{aligned} & \text { p1141[0] = } \\ & \text { r2090.5 } \end{aligned}$
	1 = Enable RFG		The output of the ramp-function generator follows the setpoint.	
6	$0=$ Inhibit setpoint		The converter brakes the motor with the rampdown time p1121 of the ramp-function generator.	$\begin{aligned} & \text { p1142[0] = } \\ & \text { r2090.6 } \end{aligned}$
	1 = Enable setpoint		Motor accelerates to the setpoint with the rampup time p1120.	
7	$0 \rightarrow 1$ = Acknowledge faults		Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.	$\begin{aligned} & \text { p2103[0] = } \\ & \text { r2090.7 } \end{aligned}$
8, 9	Reserved			
10	0 = No control via PLC		Converter ignores the process data from the fieldbus.	$\begin{aligned} & \text { p0854[0] = } \\ & \text { r2090.10 } \end{aligned}$
	1 = Control via PLC		Control via fieldbus, converter accepts the process data from the fieldbus.	
11	1 = Direction reversal		Invert setpoint in the converter.	$\begin{aligned} & \text { p1113[0] = } \\ & \text { r2090.11 } \end{aligned}$
12	Not used			
13	---1)	1 = MOP up	Increase the setpoint saved in the motorized potentiometer.	$\begin{aligned} & \text { p1035[0] = } \\ & \text { r2090.13 } \end{aligned}$

Bit	Significance		Explanation	Signal inter- connection in the con- verter
	Telegram 20	All other tele- grams	1 MOP down	Reduce the setpoint saved in the motorized po- tentiometer.
14	$---1)$	p1036[0] $=$ r2090.14		
15	CDS bit 0	Reserved	Changes over between settings for different operation interfaces (command data sets).	p0810 $=$ r2090.15

1) If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

Status word 1 (ZSW1)

Bit	Significance		Remarks	Signal interconnection in the converter
	Telegram 20	All other telegrams		
0	1 = Ready for switching on		Power supply switched on; electronics initialized; pulses locked.	$\begin{aligned} & \text { p2080[0] = } \\ & \text { r0899.0 } \end{aligned}$
1	1 = Ready		Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor.	$\begin{aligned} & \text { p2080[1] = } \\ & \text { r0899.1 } \end{aligned}$
2	1 = Operation enabled		Motor follows setpoint. See control word 1, bit 3.	$\begin{aligned} & \text { p2080[2] = } \\ & \text { r0899.2 } \end{aligned}$
3	1 = Fault active		The converter has a fault. Acknowledge fault using STW1.7.	$\begin{aligned} & \text { p2080[3] = } \\ & \text { r2139.3 } \end{aligned}$
4	1 = OFF2 inactive		Coast down to standstill is not active.	$\begin{aligned} & \text { p2080[4] = } \\ & \text { r0899.4 } \end{aligned}$
5	1 = OFF3 inactive		Quick stop is not active.	$\begin{aligned} & \text { p2080[5] = } \\ & \text { r0899.5 } \end{aligned}$
6	1 = Switching on inhibited active		It is only possible to switch on the motor after an OFF1 followed by ON.	$\begin{aligned} & \text { p2080[6] = } \\ & \text { r0899.6 } \end{aligned}$
7	1 = Alarm active		Motor remains switched on; no acknowledgement is necessary.	$\begin{aligned} & \text { p2080[7] = } \\ & \text { r2139.7 } \end{aligned}$
8	1 = Speed deviation within the tolerance range		Setpoint / actual value deviation within the tolerance range.	$\begin{aligned} & \text { p2080[8] = } \\ & \text { r2197.7 } \end{aligned}$
9	1 = Master control requested		The automation system is requested to accept the converter control.	$\begin{aligned} & \text { p2080[9] = } \\ & \text { r0899.9 } \end{aligned}$
10	1 = Comparison speed reached or exceeded		Speed is greater than or equal to the corresponding maximum speed.	$\begin{aligned} & \text { p2080[10] = } \\ & \text { r2199.1 } \end{aligned}$
11	1 = current or torque limit reached	1 = torque limit reached	Comparison value for current or torque has been reached or exceeded.	$\begin{aligned} & \text { p2080[11] = } \\ & \text { r0056.13 / } \\ & \text { r1407.7 } \end{aligned}$
12	---1)	1 = Holding brake open	Signal to open and close a motor holding brake.	$\begin{aligned} & \text { p2080[12] = } \\ & \text { r0899.12 } \end{aligned}$
13	0 = Alarm, mo	overtemperature	--	$\begin{aligned} & \text { p2080[13] = } \\ & \text { r2135.14 } \end{aligned}$

Bit	Significance		Remarks	Signal interconnection in the converter
	Telegram 20	All other telegrams		
14	1 = Motor rotates clockwise		Internal converter actual value > 0 .	$\begin{aligned} & \text { p2080[14] = } \\ & \text { r2197.3 } \end{aligned}$
	0 = Motor rotates counter-clockwise		Internal converter actual value <0.	
15	1 = CDS display	$\begin{aligned} & 0=\text { Alarm, con- } \\ & \text { verter thermal } \\ & \text { overload } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{p} 2080[15]= \\ & \mathrm{r} 0836.0 / \\ & \mathrm{r} 2135.15 \\ & \hline \end{aligned}$

1) If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

Control word 3 (STW3)

Bit	Significance	Explanation	Signal interconnection in the converter ${ }^{1)}$
	Telegram 350		
0	1 = fixed setpoint bit 0	Selects up to 16 different fixed setpoints.	p1020[0] = r2093.0
1	1 = fixed setpoint bit 1		p1021[0] = r2093.1
2	1 = fixed setpoint bit 2		p1022[0] = r2093.2
3	1 = fixed setpoint bit 3		p1023[0] = r2093.3
4	1 = DDS selection bit 0	Changes over between settings for different motors (drive data sets).	p0820 = r2093.4
5	1 = DDS selection bit 1		p0821 $=$ r2093.5
6	Not used		
7	Not used		
8	1 = technology controller enable	--	p2200[0] = r2093.8
9	1 = enable DC braking	--	p1230[0] = r2093.9
10	Not used		
11	1 = Enable droop	Enable or inhibit speed controller droop.	p1492[0] = r2093.11
12	$\begin{aligned} & 1=\text { torque control active } \\ & 0=\text { speed control active } \end{aligned}$	Changes over the control mode for vector control.	p1501[0] = r2093.12
13	$\begin{aligned} & 1=\text { no external fault } \\ & 0=\text { external fault is active (F07860) } \end{aligned}$	--	p2106[0] = r2093.13
14	Not used		
15	1 = CDS bit 1	Changes over between settings for different operation interfaces (command data sets).	p0811[0] = r2093.15

${ }^{1)}$ If you switch from telegram 350 to a different one, then the converter sets all interconnections p1020, ... to "0". Exception: p2106 = 1.

Status word 3 (ZSW3)

Bit	Significance	Description	Signal interconnection in the converter	
0	1 = DC braking active	--	p2051[3] = r0053	
1	1 = \|n_act	> p1226	Absolute current speed > stationary state detection	
2	1 = \|n_act	> p1080	Absolute actual speed > minimum speed	
3	1 = i_act \geqq p2170	Actual current \geq current threshold value		
4	1 = \|n_act	> p2155	Absolute actual speed > speed threshold value 2	
5	1 = \|n_act $\mid \leqq$ p2155	Absolute actual speed < speed threshold value 2		
6	1 = \|n_act	\geqq r1119	Speed setpoint reached	
7	1 = DC link voltage \leqq p2172	Actual DC link voltage \leqq threshold value		
8	1 = DC link voltage > p2172	Actual DC link voltage > threshold value		
9	1 = ramp-up or ramp-down completed	Ramp-function generator is not active.		
10	1 = technology controller output at the lower limit	Technology controller output \leqq p2292		
11	1 = technology controller output at the upper limit	Technology controller output > p2291		
12	Not used			
13	Not used			
14	Not used			
15	Not used			

Fault word according to the VIK-NAMUR definition (MELD_NAMUR)

Bit	Significance	P no.
0	1 = Control Unit signals a fault	$\mathrm{p} 2051[5]=\mathrm{r} 3113$
1	1 = line fault: Phase failure or inadmissible voltage	
2	1 = DC link overvoltage	
3	1 = Power Module fault, e.g. overcurrent or overtemperature	
4	1 = converter overtemperature	
5	$1=$ ground fault/phase fault in the motor cable or in the motor	
6	$1=$ motor overload	
7	$1=$ communication error to the higher-level control system	
8	$1=$ fault in a safety-relevant monitoring channel	
10	$1=$ fault in the internal converter communication	
11	$1=$ line fault	
15	$1=$ other fault	

See also

Expanding or freely interconnecting telegrams (Page 187)

Parameters (Page 373)

6.2.3.3 Parameter channel

Overview

The parameter channel allows parameter values to be cyclically read and written to.

Parameter channel		
PKE (1st word)	IND (2nd word)	PWE (3rd and 4th words)
15...12:11- $10 \ldots 0$	15...8 - $\mathbf{7}^{-\ldots-0}$	15-..0 - - - - - - - 15 -..0
AK ${ }^{\text {S }}$	Subindex: Page index	PWE $10-$ PWE 2
$\begin{aligned} & \text { 'P' } \\ & \text { M } \end{aligned}$		

Structure of the parameter channel:

- PKE (1st word)
- Type of task (read or write).
- Bit 11 is reserved and is always assigned 0 .
- Parameter number
- IND (2nd word)
- Parameter index
- PWE (3rd and 4th word)
- Parameter value

Function description

AK: Request and response ID

Table 6-9 Request identifiers, control \rightarrow converter

AK	Description	Response identifier	
		positive	negative
0	No request	0	$7 / 8$
1	Request parameter value	$1 / 2$	$7 / 8$
2	Change parameter value (word)	1	$7 / 8$
3	Change parameter value (double word)	2	$7 / 8$
4	Request descriptive element ${ }^{1)}$	3	$7 / 8$
$6^{2)}$	Request parameter value (field) ${ }^{1)}$	4 / 5	$7 / 8$
$7^{2)}$	Change parameter value (field, word) ${ }^{1)}$	4	$7 / 8$
$8^{\text {2) }}$	Change parameter value (field, double word) ${ }^{\text {1) }}$	5	$7 / 8$
9	Request number of field elements	6	$7 / 8$

${ }^{1)}$ The required element of the parameter is specified in IND (2nd word).
2) The following request IDs are identical: $1 \equiv 6,2 \equiv 7$ and $3 \equiv 8$.

We recommend that you use identifiers 6, 7 and 8 .

Table 6-10 Response identifiers, converter \rightarrow control

AK	Description
0	No response
1	Transfer parameter value (word)
2	Transfer parameter value (double word)
3	Transfer descriptive element ${ }^{1)}$
4	Transfer parameter value (field, word) ${ }^{2)}$
5	Transfer parameter value (field, double word) ${ }^{2)}$
6	Transfer number of field elements
7	Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table.
8	No master controller status / no authorization to change parameters of the parameter channel interface

1) The required element of the parameter is specified in IND (2nd word).
${ }^{2)}$ The required element of the indexed parameter is specified in IND (2nd word).

Table 6-11 Error numbers for response identifier 7

No.	Description
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a subindex that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element error value that cannot be changed)
$0 B$ hex	No master control (change request but with no master control, see also p0927)
$0 C$ hex	Keyword missing
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
65 hex	Parameter number is currently deactivated (depending on the mode of the converter)
66 hex	Channel width is insufficient (communication channel is too small for response)
68 hex	Illegal parameter value (parameter can only assume certain values)
$6 A$ hex	Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller \rightarrow converter")
$6 B$ hex	No change access for a controller that is enabled. (The operating state of the converter prevents a parameter change)

No.	Description
86 hex	Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

PNU (parameter number) and page index

Parameter number	PNU	Page index
$0000 \ldots 1999$	$0000 \ldots 1999$	0 hex
$2000 \ldots 3999$	$0000 \ldots 1999$	80 hex
$6000 \ldots 7999$	$0000 \ldots 1999$	90 hex
$8000 \ldots 9999$	$0000 \ldots 1999$	20 hex
$10000 \ldots 11999$	$0000 \ldots 1999$	A0 hex
$20000 \ldots 21999$	$0000 \ldots 1999$	50 hex
$30000 \ldots 31999$	$0000 \ldots 1999$	F0 hex
$60000 \ldots 61999$	$0000 \ldots 1999$	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 6-12 Parameter value or connector

	PWE 1		PWE 2
Parameter value	Bit 15 ... 0	Bit $15 \ldots 8$	Bit 7 ... 0
	0	0	8 -bit value
	0	16-bit value	
	32-bit value		
Connector	Bit 15 ... 0	Bit $15 . . .10$	Bit $9 . . .0$
	Number of the connector	3F hex	The index or bit field number of the connector

Examples

Read request: Read out serial number of the Power Module (p7841[2])

To obtain the value of indexed parameter p7841, you must fill the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number = PNU + offset (page index) (7841 = $1841+6000$)
- IND, bit 8 ... 15 (subindex): $\mathbf{2}$ (index of parameter)
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0 , for example.

Parameter channel																																							
PKE, 1st word						IND, 2nd word														PWE1 - high, 3rd word									PWE2 - low, 4th word										
15...12\|11	$10 \ldots 0$					$15 . .8$						$7 \ldots 0$						$15 . .0$											$15 . .10$				$9 \ldots 0$						
AK	Parameter number					Subindex						Page index						Parameter value											Drive object				Index						
0 1 1 0 0	111	$1{ }^{1} 0 \times 1$	110) 00			O0]0	0	0	1	0		00	1	0	0	0	0	0	00	0	00	0	0	0	0	0	0		0	010	00		0	0	0	0	0	

Figure 6-12 Parameter channel for read request from p7841[2]

Write request: Change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210=0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit $8 \ldots 15$ (subindex): $=0$ hex (parameter is not indexed)
- IND, bit $0 \ldots 7$ (page index): $=0$ hex (offset 0 corresponds to 0 hex)
- PWE1, bit 0 ... 15: $=0$ hex
- PWE2, Bit 0 ... 15: = 1A hex ($26=1 \mathrm{~A}$ hex)

Figure 6-13 A parameter channel to activate the automatic restart with p1210 $=26$

Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/ OFF1) the value 722.2 (DI 2). To do this, you must fill the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): $=348$ hex ($840=348$ hex, no offset, as $840<1999$)
- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): $=0$ hex (offset 0 corresponds to 0 hex)
- PWE1, Bit 0 ... 15: = 2D2 hex ($722=2 \mathrm{D} 2$ hex)
- PWE2, Bit 10 ... 15: = 3F hex (drive object - for SINAMICS G120, always $63=3 f$ hex)
- PWE2, Bit 0 ... 9: = 2 hex (Index of Parameter (DI $2=2$))

Parameter channel							
PKE, 1st word		IND, 2nd word		PWE1 - high, 3rd word	PWE2 - low, 4th word		
$15 \ldots 12$	11	$10 \ldots 0$	$15 \ldots 8$	$7 . . .2$	$15 \ldots 0$	$15 \ldots 10$	
AK	Parameter number	Subindex	Page index	Parameter value	Drive Object	Index	

Figure 6-14 Parameter channel to assign digital input 2 with ON/OFF1

6.2.3.4 Expanding or freely interconnecting telegrams

Overview

When you have selected a telegram, the converter interconnects the corresponding signals with the fieldbus interface. Generally, these interconnections are locked so that they cannot be changed. However, with the appropriate setting in the converter, the telegram can be extended or even freely interconnected.

Precondition

Expanding a telegram: Procedure

1. Set $\mathrm{p} 0922=999$.
2. Set parameter p2079 to the value of the corresponding telegram.

You have created the preconditions to expand a telegram.
Freely interconnecting signals in the telegram: Procedure

1. Set $\mathrm{p} 0922=999$.
2. Set p2079 $=999$.

You have created the precondition to freely interconnect the signals transferred in the telegram.

Function description

Interconnection of the process data

1) Send word parameter number, doubleword
2) Send word value, doubleword
3) Send word parameter number, word
4) Send word value, word

Figure 6-15 Interconnection of the send data
In the converter, the send data are available in the "Word" format (p2051) - and in the "Double word" format (p2061). If you set a specific telegram, or you change the telegram, then the converter automatically interconnects parameters p2051 and p2061 with the appropriate signals.

Figure 6-16 Interconnection of the receive data
The converter saves the receive data as follows:

- "Word" format in r2050
- "Double word" format in r2060
- Bit-by-bit in r2090 ...r2093)

Extending the telegram

Extend the telegram by "attaching" additional signals.
Interconnect additional PZD send words and PZD receive words with signals of your choice via parameters r2050 and p2051.

Freely interconnecting signals in the telegram

Interconnect additional PZD send words and PZD receive words with signals of your choice via parameters r2050 and p2051.

Parameter

Number	Name	Factory setting
p0922	PROFIdrive PZD telegram selection	1
r2050[0...11]	CO: PROFIdrive PZD receive word	-
p2051[0...16]	CI: PROFIdrive PZD send word	0 or dependent on the converter
r2053[0...16]	PROFIdrive diagnostics send PZD word	-
r2060[0...10]	CO: PROFIdrive PZD receive double word	-
p2061[0...15]	CI: PROFIdrive PZD send double word	0
r2063[0...15]	PROFIdrive diagnostics PZD send double word	-
p2079	PROFIdrive PZD telegram selection extended	1

Number	Name	Factory setting
p2080[0...15]	BI: Binector-connector converter, status word 1	$[0] 899$
		$[1] 899.1$
		$[2] 899.2$
		$[3] 2139.3$
		$[4] 899.4$
		$[5] 899.5$
		$[6] 899.6$
		$[7] 2139.7$
		$[9] 899.9$
		$[10] 2199.1$
		$[12] 0$
		$[13] 2135.14$
		$[15] 2135.15$
r2090.0...15		-
r2091.0...15	BO: PROFIdrive PZD2 receive bit-serial	-
r2092.0..15	BO: PROFIdrive PZD3 receive bit-serial	-
r2093.0..15	BO: PROFIdrive PZD4 receive bit-serial	

6.2.3.5 Acyclically reading and writing converter parameters

Overview

The converter supports the writing and reading of parameters via acyclic communication.

6.2.3.6 Reading and changing parameters via data set 47

Note
Values in italics
Values in italics in the following tables mean that you have to adjust these values for a specific request.

Reading parameter values

Table 6-13 Request to read parameters

Data block	Byte n	Bytes $\mathrm{n}+\mathbf{1}$	n
Header	Reference 01 hex ... FF hex	01 hex: Read job	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m)	2

Data block	Byte n	Bytes $\mathrm{n}+1$	n
Address, parameter 1	Attribute 10 hex: Parameter value 20 hex: Parameter description	Number of the indices OO hex ... EA hex (For parameters without index: 00 hex)	4
	Parameter number 0001 hex ... FFFE hex		6
	Number of the 1st index 0000 hex ... FFFF hex (for parameters without index: 0000 hex)		8
	...		\ldots
Address, parameter 2	\ldots		\ldots
...	\ldots		\ldots
Address, parameter m	...		\ldots

Table 6-14 Converter response to a read request

Data block	Byte n	Bytes n + 1	n
Header	Reference (identical to a read request)	01 hex: Converter has executed the read request. 81 hex: Converter was not able to completely execute the read request.	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m) (identical to the read request)	2
Values, parameter 1	Format 02 hex. Integer8 03 hex. Integer16 04 hex. Integer32 05 hex. Unsigned8 06 hex. Unsigned16 07 hex. Unsigned32 08 hex. FloatingPoint OA hex. OctetString OD hex. TimeDifference 34 hex. TimeOfDay without date indication 35 hex. TimeDifference with date indication 36 hex. TimeDifference without date indication 41 hex. Byte 42 hex. Word 43 hex. Double word 44 hex. Error	Number of index values or - for a negative response - number of error values	4
	Value of the 1st index or - for a negative response - error value 1 You can find the error values in a table at the end of this section.		6

Values, parameter 2	\ldots		
...	\ldots		
Values, parameter m	...		

Changing parameter values

Table 6-15 Request to change parameters

Data block	Byte n	Bytes $\mathrm{n}+1$	n
Header	Reference 01 hex ... FF hex	02 hex: Change request	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m) 01 hex ... 27 hex	2
Address, parameter 1	10 hex: Parameter value	Number of indices 00 hex ... EA hex (00 hex and 01 hex are equivalents)	4
	Parameter number 0001 hex ... FFFF hex		6
	Number of the 1st index 0001 hex ... FFFE hex		8
	\ldots		..
Address, parameter 2	\ldots		
\ldots	\ldots		\ldots
Address, parameter m	...		
Values, parameter 1	Format 02 hex: Integer 8 03 hex: Integer 16 04 hex: Integer 32 05 hex: Unsigned 8 06 hex: Unsigned 16 07 hex: Unsigned 32 08 hex: Floating Point OA hex: Octet String OD hex: Time Difference 34 hex. TimeOfDay without date indication 35 hex. TimeDifference with date indication 36 hex. TimeDifference without date indication 41 hex: Byte 42 hex: Word 43 hex: Double word	Number of index values OO hex ... EA hex	
	Value of the 1st index		
	\ldots		
Values, parameter 2	\ldots		
...	\ldots		
Values, parameter m	\ldots		

Table 6-16 Response, if the converter has executed the change request

Data block	Byte n	Bytes $\mathrm{n}+\mathbf{1}$	n
Header	Reference (identical to a change request)	$\mathbf{0 2}$ hex (change request successful)	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (identical to a change request)	2

6.2 Drive control

Table 6-17 Response if the converter was not able to completely execute the change request

Data block	Byte n	Bytes $\mathrm{n}+1$	n
Header	Reference (identical to a change request)	82 hex: (Converter was not able to completely execute the write request)	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (identical to a change request)	2
	Format 40 hex: Zero (change request for this data block executed) 44 hex: Error (change request for this data block not executed)	Number of error values 00 hex	01 hex or 02 hex
	Only for "Error" - error value 1 You can find the error values in the table at the end of this section.	4	
	Only for "Error" - error value 2 Error value 2 is either zero, or it contains the number of the first index where the error occurred.	8	
Values, parameter $\mathbf{2}$	\ldots	6	
\ldots	\ldots	\ldots	
Values, parameter m	\ldots		

Error values

Table 6-18 Error value in the parameter response

Error val- ue 1	Significance
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a parameter index that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element that cannot be changed)
09 hex	Description data not available (access to a description that does not exist, parameter value is available)
$0 B$ hex	No master control (change request but with no master control)
0 hex	Text array does not exist (although the parameter value is available, the request is made to a text array that does not exist)
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
15 hex	Response too long (the length of the actual response exceeds the maximum transfer length)
16 hex	Illegal parameter address (illegal or unsupported value for attribute, number of elements, parameter number, subindex or a combination of these)
17 hex	Illegal format (change request for an illegal or unsupported format)
18 hex	Number of values not consistent (number of values of the parameter data to not match the number of elements in the parameter address)

Error value 1	Significance
19 hex	Drive object does not exist (access to a drive object that does not exist)
20 hex	Parameter text cannot be changed
21 hex	Service is not supported (illegal or not support request ID).
6B hex	A change request for a controller that has been enabled is not possible. (The converter rejects the change request because the motor is switched on. Observe the "Can be changed" parameter attribute ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{U}, \mathrm{T}$) in the parameter list. Parameters (Page 373)
6C hex	Unknown unit.
6E hex	Change request is only possible when the motor is being commissioned (p0010 = 3).
6F hex	Change request is only possible when the power unit is being commissioned ($\mathrm{p} 0010=2$).
70 hex	Change request is only possible for quick commissioning (basic commissioning) ($\mathrm{p} 0010=1$).
71 hex	Change request is only possible if the converter is ready ($\mathrm{p} 0010=0$).
72 hex	Change request is only possible for a parameter reset (restore to factory setting) (p0010 $=30$).
73 hex	Change request possible only during commissioning of the safety functions (p0010 = 95).
74 hex	Change request is only possible when a technological application/unit is being commissioned ($\mathrm{p} 0010=5$).
75 hex	Change request is only possible in a commissioning state (p 0010 \# 0).
76 hex	Change request is not possible for internal reasons ($\mathrm{p} 0010=29$).
77 hex	Change request is not possible during download.
81 hex	Change request is not possible during download.
82 hex	Accepting the master control is inhibited via BI: p0806.
83 hex	Desired interconnection is not possible(the connector output does not supply a float value although the connector input requires a float value)
84 hex	Converter does not accept a change request (converter is busy with internal calculations. See parameter r3996 in the parameter list. Parameters (Page 373)
85 hex	No access methods defined.
86 hex	Write access only during commissioning of the data records ($\mathrm{p} 0010=15$) (operating status of the converter prevents a parameter change.)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

6.2.4 Communication via EtherNet/IP

EtherNet/IP is real-time Ethernet, and is mainly used in automation technology.

You have the following options of integrating SINAMICS G120 converters into EtherNet/IP:

- You use the SINAMICS profile
- You use the ODVA AC/DC drive profile
- You define the assemblies for the process data using the objects that are supported by the converter
\geqslant Configuring communication via EtherNet/IP (Page 195).
The pin assignment and the connectors that you require for your converter are listed in the following tables.

You can implement a line-type topology using the two sockets at the converter. You only require one of the two sockets at the beginning and end of a line.

You can use switches to realize other topologies.

6.2.4.1 Connect converter to EtherNet/IP

To connect the converter to a control system via Ethernet, proceed as follows:

Procedure

1. Connect the converter to the control system via an Ethernet cable.
2. You create an object for data exchange.

You have the following options:

- Load the EDS file into your controller if you want to use the ODVA profile.

You can find the EDS file on the Internet:
(3) EDS (https://support.industry.siemens.com/cs/ww/de/view/78026217)

- If your controller does not accept the EDS file, or if you wish to use the SINAMICS profile, you must create a generic module in your controller: $\xrightarrow[4]{4}$ Create generic I/O module (Page 210)
You have connected the converter to the control system via EtherNet/IP.
In addition, you can find a detailed description of how to connect a SINAMICS G converter to a controller via Ethernet/IP at the following link:

Application example (https://support.industry.siemens.com/cs/ww/en/view/82843076)

Routing and shielding Ethernet cables

Information can be found on the Internet:

(2) EtherNet/IP (http://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP/ EtherNetIPLibrary/tabid/76/Ing/en-US/Default.aspx)

Commissioning the converter in an EtherNet/IP network

To commission the converter, connect the converter via the USB interface with your computer on which Startdrive has been installed.

For additional information, refer to the operating instructions of your converter.
M] Manuals and technical support (Page 932)

6.2.4.2 What do you need for communication via EtherNet/IP?

Check the communication settings using the following questions. If you answer "Yes" to the questions, you have correctly set the communication settings and can control the converter via the fieldbus.

- Is the converter correctly connected to the EtherNet/IP?
- Is the EDS file installed in your control system?
- Have the bus interface and IP address been correctly set?
- Have the signals that the converter and the control system exchange been correctly interconnected?

6.2.4.3 Configuring communication via EtherNet/IP

Make the following settings in order to communicate with a higher-level control via EtherNet/IP:

Procedure

1. p2030: set a value of 10: Fieldbus interface protocol selection Ethernet/IP:
2. p8921: Enter the IP address. You can find the currently valid address in r8931.
3. p8923: Enter the subnet mask. You can find the currently valid subnet mask in r8933.
4. p8922: Enter the standard gateway. You can find the currently valid Default Gateway in r8932.
5. p8920: Enter the station name.
6. p8925: Set a value of 2: Save and activate PN interface configuration
7. Switch off the converter power supply.
8. Wait until all LEDs on the converter are dark.
9. Switch on the converter power supply again.

Your settings become effective after switching on.
You have now configured the converter for communication via EtherNet/IP.
Parameters p8921 ... p8925 apply if p2030 = 10 is set, for EtherNet/IP, even if the parameter names indicates PROFINET.

Communication settings

You set the communication using parameter p8980. You have the following options

Communication via the SINAMICS profile

The SINAMICS profile is a drive profile for EtherNet/IP defined by Siemens, based on PROFIdrive, and is factory set in the converters.
Setting: p8980 = 0
With the SINAMICS profile, you can use each of the telegrams listed in parameter p0922

Communication via the ODVA AC/DC drive profile

The ODVA AC/DC drive profile is a drive profile defined by the ODVA organization Setting: p8980 = 1
With the AC/DC profile of ODVA, you select the standard telegram, p0922 $=1$

Communication settings via EtherNet/IP objects and assemblies

If you are using assemblies, which are described in the "Supported objects" ($\$$ Supported objects (Page 196)), then you must integrate the converter yourself into the control system. Details on this topic can be found in the documentation of your control system.

Special issues if you wish to use the ODVA AC/DC Drive profile

You must switch the converter power supply off and switch it on again if you wish to change the following parameters so that the changes become effective.

Setting the off response for the motor

You set the standard off response for the converter using parameter p8981:

- p8981 = 0: OFF1 (factory setting), also corresponds to the setting in the SINAMICS profile
- p8981 = 1: OFF2

Setting the speed and torque scaling

You scale the speed and torque display using parameter p8982 or p8983. Setting range: 2^{5} to 2 . .

Displaying the maximum process data that can be transferred (PZD)

- r2067[0] maximum interconnected PZD length - receiving
- r2067[1] maximum interconnected PZD length - sending

6.2.4.4 Supported objects

Overview

Object class		Object name	Objects re- quired	ODVA objects	SINAMICS objects
hex	dec		x		
1 hex	1	Identity object	x		
4 hex	4	Assembly Object	x		
6 hex	6	Connection Management Object		x	
28 hex	40	Motor Data Object		x	
29 hex	41	Supervisor Object		x	
2A hex	42	Drive Object			x
32C hex	812	Siemens Drive Object			x
32 D hex	813	Siemens Motor Data Object	x		
F5 hex	245	TCP/IP Interface Object 1 1)	x		
F6 hex	246	Ethernet Link Object 1)			

Object class		Object name	Objects re- quired	ODVA objects	SINAMICS objects
hex	dec			x	x
300 hex	768	Stack Diagnostic Object		x	x
302 hex	770	Adapter Diagnostic Object		x	x
303 hex	771	Explicit Messages Diagnostic Object		x	x
304 hex	772	Explicit Message Diagnostic List Object		x	x
401 hex	1025	Parameter object			

${ }^{1)}$ These objects are part of the EtherNet/IP system management.

Identity Object, Instance Number: 1 hex

Supported services

Class - Get Attribute all

- Get Attribute single

Instance - Get Attribute all

- Get Attribute single
- Reset

Table 6-19 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-20 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT16	Vendor ID	1251
2	get	UINT16	Device Type - ODVA AC Drive - -Siemens Drive	02 hex 12 hex
3	get	UINT16	Product code	r0964[1]
4	get	UINT16	Revision	The versions should match the EDS file
5	get	UINT16	Status	See the following table
6	get	UINT32	Serial number	bits $0 \ldots$ 19: consecutive number; bits $20 \ldots 2$ 23: Production identifier bits $24 \ldots 27:$ Month of manufacture $(0=$ Jan, B $=$ Dec $)$ Bits $28 \ldots 31:$ Year of manufacture $(0=2002)$
7	get	Short String	Product name	max. length 32 bytes e.g. SINAMICS G120

Table 6-21 Explanation of No. 5 of the previous table

Byte	Bit	Name	Description
1	0	Owned	0 : Converter is not assigned to any master 1: Converter is assigned to a master
	1		Reserved
	2	Configured	0: Ethernet/IP basic settings 1: Modified Ethernet/IP settings For G120, always = 1
	3		Reserved
	$4 \ldots 7$	Extended Device Status	0 : Self-test or status not known 1: Firmware update active 2: At least one I/O connection with error 3: No I/O connections 4: Incorrect configuration in the ROM 5: Fatal fault 6: At least one I/O connection is active 7: All I/O connections in the quiescent state 8 ... 15: Reserved
2	8... 11		Not used
	12... 15		Reserved

Assembly Object, Instance Number: 4 hex

Supported services

Class • Get Attribute single Instance • Get Attribute single

- Set Attribute single

Table 6-22 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-23 Instance Attribute

No.	Service	Type	Name	Value/explanation
3	get	Array of UINT8	Assembly	1 byte array Supported ODVA AC/DC assemblies (Page 209)

Connection Management Object, Instance Number: 6 hex

Supported services

Class - Get Attribute all

- Get Attribute single

Instance - Forward open

- Forward close
- Get Attribute single
- Set Attribute single

Table 6-24 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-25 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT16	OpenReqs	Counters
2	get	UINT16	OpenFormat Re- jects	Counters
3	get	UINT16	OpenResource Rejects	Counters
4	get	UINT16	OpenOther Re- jects	Counters
5	get	UINT16	CloseReqs	Counters
6	get	UINT16	CloseFormat Re- jects	Counters
7	get	UINT16	CloseOther Re- jects	Counters
8	get	UINT16	ConnTimeouts	

Motor Data Object, Instance Number 28 hex
Supported services
Class - Get Attribute single
$\begin{aligned} \text { Instance } & \text { - Get Attribute single } \\ & \text { - Set Attribute single }\end{aligned}$

Table 6-26 Class Attribute

No .	Serv- ice	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-27 Instance Attribute

No .	Service	Type	Name	Value/explanation
3	get, set	USINT	Motor Type	p0300 motor type, see the following table
6	get, set	UINT16	Rated Current	p0305 rated motor current
7	get, set	UINT16	Rated Voltage	p0304 rated motor voltage
8	get, set	UINT32	Rated Power	p0307 rated motor power
9	get, set	UINT16	Rated Frequency	p0310 rated motor frequency
10	get, set	UINT16	Rated Tempera- ture	p0605 motor temperature threshold
11	get, set	UINT16	Max Speed	p0322 maximum motor speed
12	get, set	UINT16	Pole Count	p0314 value of p0314*2
13	get, set	UINT32	Torque Constant	p0316 motor torque constant
14	get, set	UINT32	Inertia	p0341 motor moment of inertia
15	get, set	UINT16	Base Speed	p0311 motor rated speed

Value in p0300		Ethernet/IP motor data object,	
0	No motor	0	Non-standard motor
1	induction motor	7	squirrel cage induction motor
2	synchronous motor	3	PM synchronous motor
10	1LE1 induction motor	7	squirrel cage induction motor
13	1LG6 induction motor	7	squirrel cage induction motor
17	1LA7 induction motor	7	squirrel cage induction motor
19	1LA9 induction motor	7	squirrel cage induction motor
100	1LE1 induction motor	7	squirrel cage induction motor
104	1PH4 induction motor	3	PM synchronous motor
107	1PH7 induction motor	0	non-standard motor
108	1PH8 induction motor	5	switched reluctance motor
200	1PH8 synchronous motor	0	non-standard motor
204	1LE4 synchronous motor	3	PM synchronous motor
237	1FK7 synchronous motor	0	non-standard motor
10000	motor with DRIVE-CLiQ	0	non-standard motor
10001	motor with DRIVE-CLiQ 2. D	0	non-standard motor

Supervisor Object, Instance Number: 29 hex

Supported services

Class - Get Attribute single

Instance - Get Attribute single

- Set Attribute single

Table 6-28 Class Attribute

No .	Serv- ice	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-29 Instance Attribute

No	Service	Type	Name	Value/explanation
3	get, set	Bool	Run1	STW. 0 operation, clockwise rotation
5	get, set	Bool	Net Control	Internal 0: Local 1: Network
6	get	UINT8	State	0: Vendor Specific 1: Startup 2: Not_Ready 3: Ready 4: Enabled 5: Stopping 6: Fault_Stop 7: Faulted
7	get	Bool	Running1	ZSW1:2 1: - (Enabled and Run1) or - (Stopping and Running1) or - (Fault_Stop and Running1) 0 = Other state
9	get	Bool	Ready	ZSW1:0 1: - Ready or - Enabled or - Stopping 0 = Other state
10	get	Bool	Fault	ZSW1:3 drive fault
11	get	Bool	Warning	ZSW1:7 alarm active
12	get, set	Bool	Fault reset	STW. 7 acknowledge fault
13	get	UINT16	Fault Code	r945[0] error code
14	get	UINT16	Warning Code	r2122[0] alarm code
15	get	Bool	CtIFromNet	Display from Net Control 1: Control from network 0: Local control

- Get Attribute single
- Set Attribute single

Table 6-30 Class Attribute

No .	Serv- ice	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-31 Instance Attribute

No	Service	Type	Name	Value/explanation
3	get	Bool	At reference	r2197.4 1: $\mid n _$act $\mid \geq n _$set 0 : Otherwise
4	get, set	Bool	Net_reference	Internal 0: Local 1: Network
6	get	UINT8	Drive_Mode	p1300 manufacturer-specific, see following table
7	get	INT	Speed Actual	Main actual value, see speed units
8	get, set	INT	Speed Ref	Main setpoint, see speed units
9	get	INT	Current Actual	r0027 absolute current actual value, smoothed
10	get, set	INT	Current limit	p0323 maximum motor current
15	get	INT	Power Actual	r0032 actual active power smoothed
16	get	INT	Output voltage	r0025 output voltage smoothed
17	get	INT	Output voltage	r0072 output voltage
18	get, set	UINT16	AccelTime	p1120 ramp-function generator ramp-up time
19	get, set	UINT16	DecelTime	p1121 ramp-function generator, ramp-down time
20	get, set	UINT16	Low Speed Lim	p1080 minimum speed
21	get, set	UINT16	High Speed Lim	p1082 maximum speed
22	get, set	SINT	Speed Scale	p8982 Ethernet/IP ODVA speed scaling
29	get	Bool	Ref From Net	Internal - display of Net_Reference 0 : Local 1: Network

Value in p1300		Ethernet/IP motor data object	
0	V/f with linear characteristic	1	Open loop speed (frequency)
1	V/f with linear characteristic and FCC	0	Vendor-specific mode
2	V/f with parabolic characteristic		
4	V/f with linear characteristic and ECO		
7	V/f for parabolic characteristic and ECO		
20	Speed control (without encoder)	2	Closed-loop speed control

Siemens Drive Object, Instance Number: 32C hex

Supported services
Class - Get Attribute single Instance - Get Attribute single

- Set Attribute single

Table 6-32 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-33 Instance Attribute

No.	Type	Service	Name	Value/explanation
2	INT16	get, set	Commissioning state	p0010 commissioning parameter filter
$3 \ldots 18$	WORD	get	STW1	STW1 bit-by-bit access: Attr.3 = STW1.0 Attr.18 = STW1.15
19	WORD	get	Main setpoint	Main setpoint
$20 \ldots 35$	WORD	get	ZSW1	ZSW1 bit-by-bit access: Attr.20 = ZSW1.0 Attr.35 = ZSW1.15
36	WORD	get	Actual Frequency	Main actual value (actual frequency)
37	REAL	get, set	Ramp Up Time	p1120[0] ramp-function generator ramp- up time
38	REAL	get, set	Ramp Down Time	p1121[0] ramp-function generator ramp- down time
39	REAL	get, set	Current Limit	p0640[0] current limit
40	REAL	get, set	Frequency MAX Limit	p1082[0] maximum speed
41	REAL	get, set	Frequency MIN Limit	p1080[0] minimum speed
42	REAL	get, set	OFF3 Ramp Down Time	p1135[0] OFF3 ramp-down time
43	UINT32	get, set	PID Enable	p2200[0] technology controller enable
I BOOL				

No.	Type	Service	Name	Value/explanation
44	REAL	get, set	PID Filter Time Constant	p2265 technology controller actual value filter time constant
45	REAL	get, set	PID D Gain	p2274 technology controller differentiation time constant
46	REAL	get, set	PID P Gain	p2280 technology controller proportional gain
47	REAL	get, set	PID I Gain	p2285 technology controller integral time
48	REAL	get, set	PID Up Limit	p2291 technology controller maximum limiting
49	REAL	get, set	PID Down Limit	p2292 technology controller minimum limiting
50	REAL	get	Speed setpoint	r0020 speed setpoint
51	REAL	get	Output Frequency	r0024 output frequency
52	REAL	get	Output Voltage	r0025 output voltage
53	REAL	get	DC Link Voltage	r0026[0] DC link voltage
54	REAL	get	Actual Current	r0027 current actual value
55	REAL	get	Actual Torque	r0031 torque actual value
56	REAL	get	Output power	r0032 actual active power value
57	REAL	get	Motor Temperature	r0035[0] motor temperature
58	REAL	get	Power Unit Temperature	r0037[0] power unit temperature
59	REAL	get	Energy kWh	r0039 energy display
60	UINT8	get	CDS Eff (Local Mode)	r0050 active command data set
61	WORD	get	Status Word 2	r0053 status word 2
62	WORD	get	Control Word 1	r0054 control word 1
63	REAL	get	Motor Speed (Encoder)	r0061 speed actual value
64	UINT32	get	Digital Inputs	r0722 digital inputs status
65	UINT32	get	Digital Outputs	r0747 digital outputs status
66	REAL	get	Analog Input 1	r0752[0] analog input 1
67	REAL	get	Analog Input 2	r0752[1] analog input 2
68	REAL	get	Analog Output 1	r0774[0] analog output 1
69	REAL	get	Analog Output 2	r0774[1] analog output 2
70	UINT16	get	Fault Code 1	r0947[0] fault number 1
71	UINT16	get	Fault Code 2	r0947[1] fault number 2
72	UINT16	get	Fault Code 3	r0947[2] fault number 3
73	UINT16	get	Fault Code 4	r0947[3] fault number 4
74	UINT16	get	Fault Code 5	r0947[4] fault number 5
75	UINT16	get	Fault Code 6	r0947[5] fault number 6
76	UINT16	get	Fault Code 7	r0947[6] fault number 7
77	UINT16	get	Fault Code 8	r0947[7] fault number 8
78	REAL	get	Pulse Frequency	r1801 pulse frequency
79	UINT16	get	Alarm Code 1	r2110[0] alarm number 1
80	UINT16	get	Alarm Code 2	r2110[1] alarm number 2

No.	Type	Service	Name	Value/explanation
81	UINT16	get	Alarm Code 3	r2110[2] alarm number 3
82	UINT16	get	Alarm Code 4	r2110[3] alarm number 4
83	REAL	get	PID setpoint Output	r2260 technology controller setpoint af- ter the ramp-function generator
84	REAL	get	PID Feedback	r2266 technology controller actual value after the filter
85	REAL	get	PID Output	r2294 technology controller output sig- nal

Siemens Motor Data Object, Instance Number: 32D hex

Supported services
Class • Get Attribute single Instance • Get Attribute single

Table 6-34 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-35 Instance Attribute

No.	Service	Type	Name	Value/explanation
2	get, set	UINT16	Commissioning state	p0010
3	get	INT16	Motor Type	p0300
6	get, set	REAL	Rated Current	p0305
7	get, set	REAL	Rated Voltage	p0304
8	get, set	REAL	Rated Power	p0307
9	get, set	REAL	Rated Frequency	p0310
10	get, set	REAL	Rated Tempera- ture	$p 0605$
11	get, set	REAL	Max Speed	p0322
12	get, set	UINT16	Pole pair number	p0314
13	get, set	REAL	Torque Constant	p0316
14	get, set	REAL	Inertia	p0341
15	get, set	REAL	Base Speed	p0311
19	get, set	REAL	Cos Phi	p0308

TCP/IP Interface Object, Instance Number: F5 hex

Supported services
Class

- Get Attribute all
- Get Attribute single

Instance • Get Attribute all

- Get Attribute single
- Set Attribute single

Table 6-36 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-37 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UNIT32	Status	Fixed value: 1 hex 1: Configuration acknowledged, by DHCP or saved values
2	get	UNIT32	Configuration Capability	Fixed value: 94 hex 4 hex: DHCP supported, 10 hex: Configuration can be adjusted, 80 hex: ACD-capable
3	get, set	UNIT32	Configuration Control	1 hex: Saved values 3 hex: DHCP
4	get	UNIT16	Path Size (in WORDs)	Fixed value: 2 hex
		UNIT8	Path	20 hex, F6 hex, 24 hex, 05 hex, where 5 hex is the number of instances of F6 hex (four physical ports plus one internal port).
5	get, set	STRING	Interface Configuration	r61000 Name of Station
		UNIT32		r61001 IP address
6	get, set	UNIT16	Host Name	Host Name Length
		STRING		
10	get, set	UNIT8	Select ACD	local OM flash: 0: Disabled, 1: Enabled
11	get, set	UNIT8	Last Conflict Detected	local OM flash ACD Activity
		UNIT8		local OM flash Remote MAC
		UNIT8		local OM flash ARP PDU

Link Object, Instance Number: F6 hex

Supported services

Class

- Get Attribute all
Instance • Get Attribute all
- Get Attribute single
- Get Attribute single
- Set Attribute single

Table 6-38 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 6-39 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT32	Interface Speed	0: link down, 10: 10 Mbps , 100: 100 Mbps
2	get		Interface Flags	Bit 1: Link-Status Bit 2: Duplex Mode (0: halb duplex, 1 duplex Bit 3 ... 5: Automatic state identification Bit 6: Reset required Bit 7: Local hardware fault ($0=\mathrm{ok}$)
3	get	ARRAY	Physical Address	r8935 Ethernet MAC address
4	$\begin{gathered} \text { get_and_ } \\ \text { clear } \end{gathered}$	Struct of	Interface Counters	Optional, required if the "Media Counters Attribute" is implemented.
		UINT32	In Octets	Received octets
		UINT32	In Ucast Packets	Received Unicast packets
		UINT32	In NUcast Packets	Received non-Unicast packets
		UINT32	In Discards	Incoming packets, not processed
		UINT32	In Errors	Incoming packets with errors
		UINT32	In Unknown Protos	Incoming packets with unknown protocol
		UINT32	Out Octets	Sent octets
		UINT32	Out Ucast Packets	Sent Unicast packets
		UINT32	Out NUcast packets	Sent non-Unicast packets
		UINT32	Out Discards	Outgoing packets, not processed
		UINT32	Out Errors	Outgoing packets, with errors

No.	Service	Type	Name	Value/explanation
5	get_and_clear	Struct of	Media Counters	Media-specific counters
		UINT32	Alignment Errors	Structure received, which does not match the number of octets
		UINT32	FCS Errors	Structure received, which does not pass the FCS check
		UINT32	Single Collisions	Structure successfully transmitted, precisely one collision
		UINT32	Multiple Collisions	Structure successfully transmitted, several collisions
		UINT32	SQE Test Errors	Number of SQE errors
		UINT32	Deferred Transmissions	First transmission attempt delayed
		UINT32	Late Collisions	Number of collisions that occurred delayed by 512 bit timers to the request
		UINT32	Excessive Collisions	Transmission unsuccessful as a result of intensive collisions
		UINT32	MAC Transmit Errors	Transmission unsuccessful as a result of an internal MAC sublayer transmission error.
		UINT32	Carrier Sense Errors	Times that the carrier sense condition was lost or never asserted when attempting to transmit a frame
		UINT32	Frame Too Long	Structure too large
		UINT32	MAC Receive Errors	Transmission unsuccessful as a result of an internal MAC sublayer receive error.
6	get, set	Struct of	Interface Control	
		UINT16	Control Bits	
		UINT16	Forced Interface Speed	
10	get	String	Interface_Label	Interface-Label

Parameter Object, Instance Number: 401 hex

Supported services

Class • Get Attribute all
Instance

- Get Attribute all
- Set Attribute single

Table 6-40 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Cyclic communication is established via parameter object 401.

Example: Read parameter 2050[10] (connector output to interconnect the PZD received from the fieldbus controller)
Get Attribute single function with the following values:

- Class = 401 hex
- Instance $=2050=802$ hex \triangleq parameter number
- Attribute $=10=\mathrm{A}$ hex $\xlongequal{ }$ Index 10

Example: Parameter 1520[0] writing (upper torque limit)

Set Attribute single function with the following values:

- Class = 401 hex
- Instance $=1520=5$ F0 hex \triangleq parameter number
- Attribute $=0=0$ hex $\hat{=}$ index 0
- Data $=500.0$ (value)

Supported ODVA AC/DC assemblies

Overview

Number		required/ optional	Type	Name
hex	dec	Required	Sending	Basic Speed Control Output
14 hex	20	Requir	Receiving	Basic Speed Control Input
46 hex	70	Required	Recein	

Assembly Basic Speed Control, Instance Number: 20, type: Output

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0					Fault Reset		RUN Forward	
1								
2	Speed Reference (Low Byte)							
3	Speed Reference (High Byte)							

Assembly Basic Speed Control, Instance Number: 70, type: Input

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0					Running Forward		Faulted	
1								
2	Speed Actual (Low Byte)							
3	Speed Actual (High Byte)							

6.2.4.5 Create generic I/O module

For certain controllers, or if you wish to use the SINAMICS profile, you cannot use the EDS file provided by Siemens. In these cases, you must create a generic I/O module in the control system for the cyclic communication.

Procedure

1. In your control, create a generic device with Ethernet/IP functionality.
2. Enter the lengths for the process data for cyclic communication which you selected in Startdrive, r2067 [0] (input), r2067 [1] (output) into the new device, for example: Standard telegram 2/2.
4 ms is supported as the minimum value for RPI (Requested Packet Interval).
3. In Startdrive, set the same values for IP address, subnet mask, default gateway and name of the station as in the control system.
\geqslant Configuring communication via EtherNet/IP (Page 195).
You have created a generic I/O module for cyclic communication with the converter.
You can find a detailed description of how to create a generic I/O module at the following link: (3) Generating an EDS file (http://support.automation.siemens.com/WW/view/en/82843076)

6.2.4.6 The converter as Ethernet node

Integrating a converter into an Ethernet network (assigning an IP address)

Procedure

1. Set p8924 (PN DHCP mode) $=2$ or 3

- p8924 = 2: The DHCP server assigns the IP address based on the MAC address of the converter.
- p8924 = 3: The DHCP server assigns the IP address based on the device name of the converter.

2. Save the settings with $p 8925=2$. The next time that the converter switches on, it retrieves the IP address, and you can address the converter as Ethernet node.

Note

Immediate switchover without restart

The switchover to DHCP is performed immediately and without a restart if the change is carried out with the EtherNet/IP command "Set Attribute Single" (class F5 hex, attribute 3). The following options are available:

- via an EtherNet/IP controller
- via an EtherNet/IP commissioning tool

You have now integrated the converter into Ethernet

Displays

r8930: Device name of the converter
r8934: Operating mode, PN or DHCP
r8935: MAC address

Additional information

You can find information about parameters and messages (A08565) in the parameter list.
A] Parameters (Page 373)

Additional options of integrating converters into Ethernet

You also have the option of integrating the converter into Ethernet using Proneta or STEP 7, for example.

Here is the example of the "Edit Ethernet station" screen form from Step 7, which you can use to make the required settings.

6.2.5 Jogging

Overview

The "Jog" function is typically used to temporarily move a motor using local control commands.

Function description

Commands "Jog 1" or "Jog 2" switch the motor on and off.
The commands are only active when the converter is in the "Ready for switching on" state.

Figure 6-17 Behavior of the motor when "jogging"
After switching on, the motor accelerates to the setpoint, jog 1 or setpoint, jog 2. The two different setpoints can, for example, be assigned to motor clockwise and counter-clockwise rotation.

When jogging, the same ramp-function generator is active as for the ON/OFF1 command.

Example

Parameter	Description
p1055 $=722.0$	Jogging bit 0: Select jogging 1 via digital input 0
p1056 $=722.1$	Jogging bit 1: Select jogging 2 via digital input 1

Parameter

Number	Name	Factory setting
p1055[C]	BI: Jogging bit 0	0
p1056[C]	BI: Jogging bit 1	0

Number	Name	Factory setting
p1058[D]	Jogging 1 speed setpoint	150 rpm
p1059[D]	Jogging 2 speed setpoint	-150 rpm
p1082[D]	Maximum speed	1500 rpm
p1110[C]	BI: Inhibit negative direction	0
p1111[C]	BI: Inhibit positive direction	0
p1113[C]	BI: Setpoint inversion	0
p1120[D]	Ramp-function generator ramp-up time	10 s
p1121[D]	Ramp-function generator ramp-down time	10 s

6.2.6 Switching over the drive control (command data set)

Overview

Several applications require the option of switching over the master control to operate the converter.

Example: The motor is to be operable either from a central control via the fieldbus or via the local digital inputs of the converter.

Function description

Command data set (CDS)

This means that you can set the converter control in various ways and toggle between the settings. For instance, as described above, the converter can either be operated via a fieldbus or via its digital inputs.
The settings in the converter, which are assigned to a specific master control, are called the command data set.

You select the command data set using parameter p0810. To do this, you must interconnect parameter p0810 with a control command of your choice, e.g. a digital input.

Changing the number of command data sets

1. Set $\mathrm{p} 0010=15$.
2. The number of command data sets is configured with p0170.
3. Set p0010 $=0$.

You have changed the number of command data sets.
\square

Copying command data sets

1. Set p0809[0] to the number of the command data set whose settings you wish to copy (source).
2. Set $00809[1]$ to the number of the command data set into which you wish to copy the settings.
3. Set p0809[2] = 1
4. The converter sets p0809[2] $=0$.

You have copied the settings of a command data set into another command data set. -

Example

The converter evaluates its control commands depending on digital input DI 3:

- Via a fieldbus from a central control system
- Via the converter digital inputs at the installation.

Note

The converter requires approx. 4 ms to switch over the command data set.

Parameters

Number	Name	Factory setting
p0010	Drive commissioning parameter filter	1
r0050	CO/BO: Command data set CDS effective	-
p0170	Number of command data sets (CDS)	2
p0809[0 .. 2]	Copy command data set CDS	0
p0810	BI: Command data set selection CDS bit 0	0
p0811	BI: Command data set selection CDS bit 1	0

6.2.7 Selecting physical units

6.2.7.1 Motor standard

Selection options and parameters involved

The converter represents the motor data corresponding to motor standard IEC or NEMA in different system units: SI units or US units.

Table 6-41 Parameters involved when selecting the motor standard

Parameter	Designation	Motor standard IEC/NEMA, p0100 =		
		$0^{1)}$ IEC motor $50 \mathrm{~Hz}, \mathrm{SI}$ units	1 NEMA motor 60 Hz , US units	2 NEMA motor 60 Hz, SI units
r0206	Power Module rated power	kW	hp	kW
p0307	Rated motor power	kW	hp	kW
p0316	Motor torque constant	Nm/A	lbf ft/A	Nm/A
r0333	Rated motor torque	Nm	lbf ft	Nm
p0341	Motor moment of inertia	kgm^{2}	$\mathrm{lb} \mathrm{ft}{ }^{2}$	kgm^{2}
p0344	Motor weight	kg	Lb	kg
r0394	Rated motor power	kW	hp	kW
r1493	Total moment of inertia, scaled	kgm^{2}	lb ft ${ }^{\text {a }}$	kgm^{2}

1) Factory setting

It is only possible to change the motor standard during quick commissioning.

6.2.7.2 Unit system

Some physical units depend on the system of units selected (SI or US), for example the power [kW or hp] or the torque [Nm or lbf ft]. You can select in which system of units the converter represents its physical values.

Options when selecting the system of units

The following options apply when selecting the system of units:

- p0505 = 1: System of units SI (factory setting)

Torque [Nm], power [kW], temperature [${ }^{\circ} \mathrm{C}$ or K$]$

- p0505 = 2: Referred system of units/SI

Represented as [\%]

- p0505 = 3: US system of units

Torque [lbf ft], power [hp], temperature [${ }^{\circ} \mathrm{F}$]

- p0505 = 4: System of units, referred/US

Represented as [\%]

Special features

The values for $\mathrm{p} 0505=2$ and for $\mathrm{p} 0505=4$ - represented in the converter - are identical. However, the reference to SI or US units is required for internal calculations and to output physical variables.

For variables, which cannot be represented as [\%], then the following applies:
$\mathrm{p} 0505=1 \triangleq \mathrm{p} 0505=2$ and $\mathrm{p} 0505=3 \wedge \mathrm{p} 0505=4$.
In the case of variables whose units are identical in the SI system and US system, and which can be displayed as a percentage, the following applies:
$\mathrm{p} 0505=1 \wedge \mathrm{p} 0505=3$ and $\mathrm{p} 0505=2 \wedge \mathrm{p} 0505=4$.

Reference variables

There is a reference variable in the converter for most parameters with physical units. When the referred representation [\%] is set, then the converter scales the physical variables based on the particular reference variable.

When the reference variable changes, then the significance of the scaled value also changes. Example:

- Reference speed $=1500 \mathrm{rpm} \rightarrow$ fixed speed $=80 \%$ 气 1200 rpm- Reference speed $=3000 \mathrm{rpm} \rightarrow$ fixed speed $=80 \%$ 气 2400 rpm

For each parameter you can find the associated reference variable for scaling in the parameter list. Example: r0065 is scaled with reference variable p2000.

If scaling is not specified in the parameter list, then the converter always shows/displays the parameter unscaled.

Groups of units

The parameters associated with the selection of a physical unit, belong to different groups of units.

For each parameter you can find the associated unit group for scaling in the parameter list. Example: r0333 belongs to unit group 7_4.

An overview of the unit groups and the possible physical units can also be found in the parameter list.

6.2.7.3 Technological unit of the technology controller

Options when selecting the technological unit

p0595 defines in which technological unit the input and output variables of the technology controller are calculated, e.g. [bar], [m³/min] or [kg/h].

Reference variable

p0596 defines the reference variable of the technological unit for the technology controller.

Unit group

Parameters involved with p0595 belong to unit group 9_1.
Additional information is provided in the parameter list.
$\xrightarrow{4}$ Parameters (Page 373)

Special features
You must optimize the technology controller after changing p0595 or p0596.

Additional technology controllers

You can set the technological unit for each additional technology controller.

	Technological unit	Reference variable for the technological unit	Unit group
Additional technology controller 0	p 11026	p 11027	9_2
Additional technology controller 1	p 11126	p 11127	9 _3
Additional technology controller 2	p 11226	p 11227	$9 _4$

Additional information is provided in the parameter list.

6.2.8 Safe Torque Off (STO) safety function

6.2.8.1 Safe Torque Off (STO) safety function

Overview

The converter with active STO function prevents energy supply to the motor. The motor can no longer generate torque on the motor shaft.
Consequently, the STO function prevents the starting of an electrically-driven machine component.

The STO safety function conforms to IEC/EN 61800-5-2.
The STO function is defined in IEC/EN 61800-5-2:
"[...] [The converter] does not supply the motor with power that can generate a torque (or for a linear motor, a force)".

Precondition

The machine manufacturer has already performed a risk assessment, e.g. in compliance with EN ISO 1050, "Safety of machinery - Principles of risk assessment".

Function description

	Safe Torque Off (STO)	Standard converter functions linked with STO
1.	The converter detects that STO has been selec- ted via the failsafe digital input.	---
2.	The converter prevents the energy supply to the motor.	If you use a motor holding brake, the converter closes the motor holding brake. If you use a line contactor, the converter opens the line contactor.

(A)

(B)

Figure 6-18 Functionality of STO when the motor is at standstill (A) and rotating (B)
(A): When selecting STO, if the motor is already stationary (zero speed), then STO prevents the motor from starting.
(B) : If the motor is still rotating (B) when STO is selected, it coasts down to standstill.

Example

The STO function is suitable for applications where the motor is already at a standstill or will come to a standstill in a short, safe period of time through friction.

When STO is active, the converter can no longer electrically brake the motor, so that STO does not shorten the time that it takes for machine components to coast down to zero speed.

Application example	Possible solution
When the EMERGENCY STOP button is pressed, it is not permissible for a sta- tionary motor to inadvertently acceler- ate.	Connect the EMERGENCY STOP pushbutton with the failsafe converter digital input. Select STO via the failsafe digital input.

More information

EN 60204-1 defines "EMERGENCY SWITCHING OFF" and "EMERGENCY STOP" as actions taken in an emergency. Further, it defines various stop categories for EMERGENCY STOP. "EMERGENCY SWITCHING OFF" and "EMERGENCY STOP" minimize different risks in the system or machine.

Table 6-42 The distinction between EMERGENCY OFF and EMERGENCY STOP

Action:	EMERGENCY SWITCHING OFF	EMERGENCY STOP
		Stop Category 0 according to EN 60204-1
Risk:	Electric shock	Unexpected movement
Measure to minimize risk:	Switch off Either completely or partially switch off hazardous voltages.	Prevent movement Prevent hazardous movement.
Classic solution:		Switch off the drive power supply
Solution with the STO safety function integrated in the drive:	Not possible. STO is not suitable for switching off a voltage.	Select STO It is not necessary to switch off the voltage to minimize risk.

6.2.8.2 Setting the feedback signal for Safe Torque Off

Overview

The converter signals that the STO safety function is controlled to the higher-level control system using two digital outputs.

Function description

Figure 6-19 Feedback signal "STO is active" via digital outputs
For converters FSA...FSG, you must interconnect the feedback signals "STO is active" with two digital outputs.

Procedure

1. Set p0730 $=1838.3$
2. Set p0731 $=1838.4$

You have interconnected the feedback signal for safety function STO with the digital outputs of the converter.
\square

Parameters

Number	Name	Factory setting
p0730	BI: CU signal source for terminal DO 0	52.3
p0731	BI: CU signal source for terminal DO 1	52.7
r1838	CO/BO: Gating unit status word 1 $.03 ~ 1 ~ s i g n a l: ~ S h u t d o w n ~ p a t h ~ S T O _B ~ i s ~ i n a c t i v e ~$$---$	
	.041 signal: Shutdown path STO_A is inactive	

Further information is provided in the parameter list.
\leadsto Parameters (Page 373)

6.3 Pump control

6.3.1 Multi-pump control

Overview

Multi-pump control is suitable for applications that require simultaneous operation of up to four pumps, for example, equalizing significantly fluctuating water pressures or flow rates. After the function is enabled, you can configure the following four sub-functions based on your particular requirements:

- Pump switch-in/switch-out (Page 224)
- Stop mode (Page 229)
- Pump switchover (Page 232)
- Service mode (Page 234)

Multi-pump control provides a flexible and cost-effective solution for the following:

- Smoothly start and stop every pump to ensure the best performance of the water supply system
- Simplify the control system

Note

When using the multi-pump function, additional I/O module is needed to support more than two pumps.

Note

The multi-pump control function is not supported on G120X converter variants of power rating 30 kW or above.

Precondition

Before using the multi-pump control function, make sure that you have connected pumps of the same power rating.

Function description

The converter uses four relays (KP1 to KP4), which are connected to digital outputs DO 0 to DO 3 , to switch pumps in and out according to the PID error (r2273). In addition, two groups of contactors, KDs and KMs, are designed to switch the pumps between converter operation and line operation. Soft pump switching can be realized as all motors start/stop with ramp speeds, so as to minimize the shock to the pipes.

Parameter p29520 is used to enable the multi-pump control.

Figure 6-20 Mains circuit

Figure 6-21 External relay control circuit

Note

When using the multi-pump control for the first time, make sure that the circuit breakers are disconnected until the relevant parameters are configured.

Note

When the multi-pump control is enabled (p29520=1), the values of p1274 and p1264 are set to 0 automatically and you can modify the values if required.

Note

Motor current peaks when switching the motor from converter operation to line operation
If the motor is switched from converter operation to the line supply, this can result in a high surge current > $10 \times$ I_rated in the motor, depending on the random phase shift between converter and line voltage.

Further information

Interaction with other functions:

- When activating the essential service mode, if the multi-pump control is active, the motor connection status remains unchanged and the converter-controlled motor switches the speed setpoint to "ESM setpoint source".
- When activating the hibernation mode, if the multi-pump control is active, the hibernation mode only works when there is only one operating motor and the conditions for hibernation are satisfied.

6.3.1.1 Pump switch-in/switch-out

Pump switch-in

If the pump controlled by the converter runs at the maximum speed (p 1082) and the PID error (r2273) exceeds the switch-in threshold (p29523) but is lower than the overcontrol threshold (p 29526) for a specified time (p 29524), the converter first switches the pump from converter operation to line operation, and then switches on an idle pump. This pump is softly started with a ramp-up speed and runs in converter operation mode.

Note

If the PID error rises above the overcontrol threshold (p29526), the converter skips the delay time (p29524) and performs the switch-in operation immediately.

Parameter p29522 is used to define the selection mode for switching in motors.

- p29522 = 0: Selecting the next pump according to the fixed sequence. The converter switches in the pump by following the sequence $\mathrm{M} 1 \rightarrow \mathrm{M} 2 \rightarrow \mathrm{M} 3 \rightarrow \mathrm{M} 4$.
- p29522 = 1: Selecting the next pump according to the operating hours. The converter switches in the pump with the least absolute operating hours (p29530[0...3]).

(a) f_act $=$ p1082
(b) p29526 > \triangle PID \geq p 29523
(C) $t>p 29524$

Figure 6-22 Pump swith-in

6.3 Pump control

Pump switch-out

If the pump controlled by the converter runs at a speed lower than the switch-out threshold (p29528 + p1080) and the PID error is lower than the switch-out threshold (-p29523) for a specified time (p 29525), the converter switches off a pump based on the selection mode.

Note

If the PID error drops below the overcontrol threshold (-p29526), the converter skips the delay time (p29525) and performs the switch-out operation immediately.

Parameter p29522 is used to define the selection mode for switching out motors. Bits 00 to 03 of r29529 indicate the motor which is stopped depending on p29522.

- p29522 = 0: Selecting the next pump according to the fixed sequence. The converters first switches off a pump (OFF2) which runs in converter operation (following the sequence M4 $\rightarrow \mathrm{M} 3 \rightarrow \mathrm{M} 2 \rightarrow \mathrm{M} 1$), and then captures a running pump and switches it from line operation to converter operation.
- p29522 = 1: Selecting the next pump according to the operating hours. The converter first switches out the pump with the most absolute operating hours (p29530[0...3]).
- If the pump with the most absolute operating hours is controlled by the converter, the converter first switches off this pump, and then captures a running pump in line operation and switches it to converter operation.
- If the pump with the most absolute operating hours is connected to the line supply, the converter directly switches off this pump.

Figure 6-23 Pump switch-out based on the fixed sequence (p29522 = 0)

6.3 Pump control

Conditions for pump switch-out:
(a) f_act < p29528 + p1080
(b) - p29526 < \triangle PID $\leq-$ p29523
(C) $\mathrm{t}>\mathrm{p} 29525$

Figure 6-24 Pump switch-out based on the absolute operating hours (p29522 = 1)

Note

Multi-pump control motor quantity not matched

When you configure the multi-pump control function, make sure that the motor quantity set in p29521 matches with the quantity of digital outputs (mapped in r29529). Otherwise, there will be error A52966 and A07929.

Note

Pump switch-in/switch-out interrupted when p29528 + p1080 = p1082
If p29528 + p1080 $=$ p1082, there is possibility that the conditions for switch-in and switch-out will be met simutaneously. As a result, the system will not switch in or switch out pumps. To avoid such situation, do not set p29528 + p1080 = p1082.

Parameters

Number	Name	Factory setting
p0730 ... p0733	BI: Signal source for digital outputs DO0 ... DO3	-
p1080[0...n]	Minimum speed	0 rpm
p1082[0...n]	Maximum speed	1500 rpm
p1262[0..n]	Bypass dead time	1 s
p1263	Debypass delay time	1 s
p1264	Bypass delay time	1 s
p1274[0...1]	Bypass switch monitoring time	1000 ms
p29520	Multi-pump control enable	0
p29521	Multi-pump control motor configuration	0
p29522	Multi-pump control motor selection mode	0
p29523	Multi-pump control switch-in threshold	20%
p29524	Multi-pump control switch-in delay	30 s
p29525	Multi-pump control switch-out delay	30 s
p29526	Multi-pump control overcontrol threshold	25%
p29527	Multi-pump control interlocking time	0 s
p29528	Multi-pump control switch-out speed offset	100 rpm
r29529	BO/CO: Multi-pump control status word	-
p29530[0...3]	Multi-pump control absolute operating hours	0 h
r29538	Multi-pump control variable-speed motor	-
p29546	Multi-pump control deviation threshold	20%

N] For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3.1.2 Stop mode

Function description

Two stop modes are available as follows:

- Normal stop: All pumps running in line operation are switched off simultaneously as soon as the stop command is received. The pump in converter operation stops under the control of the converter. Normal stop aims to quickly stop all the pumps under emergency situations such as pipe cracks or leakages.
- Sequence stop: The pumps running in line operation stop one by one in the reverse sequence in which they are switched on. There is a delay time (p29537) between every pump stop. The pump in converter operation stops under the control of the converter after the first pump in line operation is switched off. Sequence stop aims to reduce the water hammer effect to pipes especially in systems with high power range.

After the OFF command is received, the pumps are switched off in either of the two stop modes:

- With OFF1 command received, the pump stop mode is selected in parameter p29533 as follows:
- p29533 = 0: normal stop
- p29533 = 1: sequence stop
- With OFF2/OFF3 command received, the pumps are switched off with normal stop.

Note

Sequence stop

During sequence stop, the motors are switched off in the reverse sequence in which they are switched on. It is therefore important that the motor configuration parameter p29521 is not changed while the converter is running. Otherwise, the parameter value may no longer correspond to the mapping of the motors connected.

Figure 6-25 Stop mode

Parameters

Number	Name	Factory setting
p29533	Multi-pump control switch-off sequence	0
p29537	Multi-pump control disconnection lockout time	0 s
r29538	Multi-pump control variable-speed motor	-

4 For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3 Pump control

6.3.1.3 Pump switchover

Function description

With pump switchover enabled (with p29539), the converter monitors the operation status of all running pumps.

- If the continuous operating hours (p 29547) of the pump in converter operation exceed the threshold (p29531), the converter switches off the pump and then switches in an idle pump to keep constant output power.
- If the continuous operating hours (p29547) of a pump in line operation exceed the threshold (p29531), the converter first switches off the pump, switches out the converter-controlled pump to line operation, and then switches in an idle pump to run in converter operation to keep constant output power.

You can use parameter p29522 to define the selection mode for the next pump. The internal counters ($\mathrm{p} 29530[0 . .3$] and p29547[0...3]) are used to calculate the operating hours of the pumps.

- p29522 = 0: Selecting the next pump according to the fixed sequence.

The converter first switches out the pump with the most continuous operating hours (p29547[0...3]) and then switches in a pump following the sequence of $\mathrm{M} 1 \rightarrow \mathrm{M} 2 \rightarrow \mathrm{M} 3 \rightarrow \mathrm{M} 4$.

- p29522 = 1: Selecting the next pump according to the operating hours.

The converter switches out the pump with the most continuous operating hours (p29547[0...3]) and then switches in the pump with the least absolute operating hours (p29530[0...3]).

When a pump is switched off, the continous operating hours (p29547) of this pump reset to zero automatically.

This function balances the operation time of each pump, extends the lifetime expectancy of the system and reduces downtime.

Figure 6-26 Pump switchover

Note

Possible alarms and faults

With pump switchover enabled, if the continuous operating hours (p29547) of the pump exceed the threshold (p 29531) while the pump switchover is not possible (r29529.6 = 1), alarm A52962 appears. In this case, incease p29531 or reset p29547 to clear the alarm.

Parameters

Number	Name	Factory setting
p29522	Multi-pump control motor selection mode	0
r29529.6	CO/BO: Multi-pump control status word: pump switchover is not possible	-
p29530[0...3]	Multi-pump control motors absolute operating hours	-
p29531	Multi-pump control maximum time for continuous operation	24 h
p29539	Multi-pump control switchover enable	0
p29547[0...3]	Multi-pump control motors continuous operating hours	-
r29538	Multi-pump control variable-speed motor	-

$\xrightarrow[\sim]{\sim}$ For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3.1.4 Service mode

Function description

When a pump is in service mode, the converter locks the corresponding relay. Then you can perform troubleshooting of this pump without interrupting the operation of other pumps. You can use parameters p29540 to p29543 to set the pumps to work in service mode respectively. Pumps in service mode are skipped in further multi-pump control process.

WARNING

Risk of electric shock due to incorrectly connected low-voltage circuit breakers
If a low-voltage circuit breaker is not connected correctly to a pump set in service mode, hazardous voltages can be present at the pump when the converter relay malfunctions. Troubleshooting the service pump can result in serious personal injury or death.

- Make sure that all pumps are connected correctly to the mains and converter through lowvoltage circuit breakers.
- After a pump is set in service mode, make sure that its low-voltage circuit breaker is open before performing any troubleshooting operation.

Figure 6-27 Service mode

Note

Possible alarms and faults

- If the PID deviation r2273 exceeds the threshold p29546 and no pump is available for switchin, alarm A52963 appears.
- If there is only one pump that is not under service or locked manually, alarm A52964 appears.
- If all motors are under service or locked manually, fault F52965 appears.

For more information about the causes and remedies of the possible alarms and faults, see Section "Warnings, faults and system messages (Page 777)".

Parameters

Number	Name	Factory setting
p29540	Multi-pump control service mode enable	0
p29542	BO/CO: Multi-pump control service mode interlock manually	-
p29543[0..3]	BI: Multi-pump control motor under repair	[0] p29542.0
		[1] p29542.1
		[2] p29542.2
		[3] p29542.3
r29544	Multi-pump control index of motors under repair	-

$\$]$ For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3.2 Frost protection

Overview

The freezing water inside of the pump will damage the pump. With the frost protection enabled, if the surrounding temperature falls below a given threshold, the motor turns automatically to prevent freezing.

Precondition

Before enabling the frost protection, make sure that p0840 $=r 29659.0, \mathrm{p} 0844=r 29659.1$, $\mathrm{p} 1143=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

Function description

- OFF1/OFF3: OFF3 disables frost protection function while OFF1 enables this function again.
- OFF2/fault: The motor stops and the frost protection function is deactivated.

Note

Frost protection can not run when Operator Panels (BOP-2 or IOP-2) or G120 Smart Access gets control of the motor.

Parameters

Number	Name	Factory setting
p29622	BI: Frost protection enable	0
p29623	Frost protection speed	0 rpm

2] For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3.3 Condensation protection

Overview

Condensation is a serious problem for motors in the humid and cold environment, resulting in motor failure. This problem can be avoided by slightly increasing the surface temperature of the motor during work break. If an external condensation sensor detects excessive condensation, the converter applies a DC current to keep the motor warm to prevent condensation.

Precondition

Before enabling the condensation protection, make sure that p0840 $=$ r29659.0, p0844 $=$ r29659.1, p1143 $=\mathrm{r} 29640.0$ and p1144 $=\mathrm{r} 29641$.

Function description

- OFF1/OFF3: OFF3 disables the condensation protection function while OFF1 enables this function again.
- OFF2/fault: The motor stops and the condensation protection function is deactivated.

If the converter is not running and the protection signal becomes active, protection measure is applied as follows:

- If frost protection speed p29623 $=0$ (default 0), frost protection is activated by applying the specified speed to the motor.
- If frost protection speed p29623 $=0$ and condensation protection current p29624 $=0$, condensation protection is activated by applying the specified current to the motor.

Parameters

Number	Name	Factory setting
p29622	BI: Frost protection enable	0
p29624	Condensation protection current	30%

\checkmark For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3.4 Cavitation protection

Overview

Cavitation problem can damage the impeller of the pumps, reduce the output water flow and cause unexpected noise. The cavitation protection will generate a fault/warning when cavitation conditions are deemed to be present. If the converter gets no feedback from the pump transducer, it will trip to prevent cavitation damage. This function saves the maintenance efforts and extends the lifetime expectancy of the system.

Function description

Parameters

Number	Name	Factory setting
p29625	Cavitation protection enable	0
p29626	Cavitation protection threshold	40%
p29627	Cavitation protection time	30 s

4] For more information about the parameters, see Chapter "Parameters (Page 373)".

6.3.5 Deragging

Overview

Blockage in the wastewater pumps can reduce the efficiency of the system. With the deragging function, any clogs on the pump impellers, pipes or valves can be cleared automatically. This function saves the maintenance efforts for manually cleaning the pumps.

Precondition

Before enabling the deragging, make sure that p1143 $=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

Function description

The deragging mode consists of forward and reverse runs of the motors. Parameter p29590 is used to select the deragging mode.

- p29590 = 1: enabled on first run after power-up
- p29590 = 2: enabled on every run
- p29590 = 3: enabled with a Binector input (p29591)

Parameters

Number	Name	Factory setting
p29590	Deragging mode	0
p29591	BI: Deragging enable	0
p29592	Deragging forward speed	500 rpm
p29593	Deragging reverse speed	500 rpm

6.3 Pump control

Number	Name	Factory setting
p29594	Ramp-up time	5 s
p29595	Ramp-down time	5 s
p29596	Deragging forward time	5 s
p29597	Deragging reverse time	5 s
p29598	Deragging cycle	1

Note: Before enabling the deragging via p29590, make sure the converter is in OFF status.
4] For more information about the parameters, see Chapter "Parameters (Page 373)".

Interaction with other functions

- Deragging signal is ignored if the converter is restarted under the command of essential service mode, bypass operation, automatic restart, hibernation mode or multi-pump switching-in.
- Deragging is interrupted if essential service mode, bypass, or hibernation mode is activated.

6.3.6 Pipe filling

Overview

In the water supply systems, the rapid inrush of water into an empty pipe can cause hammer effect and thus damage the pipe or the valve. With the pipe filling function enabled, the converter fills the pipe slowly and smoothly after each power-up to avoid hammer effect to the pipe. If the pipe filling is interrupted (for example, fault occurs), the function continues after the converter is recovered. This function is used in horizontal, vertical, and mixed piping systems.

Precondition

Before enabling the pipe filling, make sure that $\mathrm{p} 1143=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

6.3 Pump control

Function description

After the pipe filling is enabled, you can select from the following two filling modes:

- Time mode: p29611 = 0

The converter fills the pipe with a low speed for a specified time (p29613) and then changes the speed to the setpoint.

- Pressure mode: p29611 = 1

The converter fills the pipe according to the PID feedback from the pressure sensor. The filling stops when the actual pressure (r2272) \geq the threshold (p29614) for a specified time (p29615).

Note
Priority of frost protection, condensation protection, deragging and pipe filling
The priority of functions is as follows: frost protection > condensation protection > deragging > pipe filling.

Parameters

Number	Name	Factory setting
p29610	Pipe filling enable	0
p29611	Pipe filling mode	0
p29612	Pipe filling speed	900 rpm
p29613	Pipe filling time	50 s
p29614	Pipe filling threshold	10%
p29615	Pipe filling monitoring time	0 s

$4]$ For more information about the parameters, see Chapter "Parameters (Page 373)".

6.4 Setpoints and setpoint processing

6.4.1 Setpoints

Overview

$\$$
The converter receives its main setpoint from the setpoint source. The main setpoint generally specifies the motor speed.

Figure 6-28 Setpoint sources for the converter
You have the following options when selecting the source of the main setpoint:

- Converter fieldbus interface
- Analog input of the converter
- Motorized potentiometer emulated in the converter
- Fixed setpoints saved in the converter

You have the same selection options when selecting the source of the supplementary setpoint.
Under the following conditions, the converter switches from the main setpoint to other setpoints:

- When the technology controller is active and appropriately interconnected, its output specifies the motor speed.
- When jogging is active
- When controlling from an operator panel
- When controlling from SINAMICS G120 Smart Access

6.4.1.1 Analog input as setpoint source

Function description

Figure 6-29 Example: Analog input 0 as setpoint source
In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the analog input can be interconnected with the main setpoint.

Example

Setting with analog input 0 as setpoint source:

Parameter	Description
$p 1070=755[0]$	Interconnects main setpoint with analog input 0
$p 1075=755[0]$	Interconnects supplementary setpoint with analog input 0

Parameters

Number	Name	Factory setting
r0755[0 ... 1]	CO: CU analog inputs, actual value in percent	$-\%$
p1070[C]	CI: Main setpoint	Dependent on the converter
p1071[C]	CI: Main setpoint scaling	1
r1073	CO: Main setpoint active	-rpm
p1075[C]	CI: Supplementary setpoint	0
p1076[C]	Cl: Supplementary setpoint scaling	1
$r 1077$	CO: Supplementary setpoint effective	-rpm

6.4.1.2 Specifying the setpoint via the fieldbus

Function description

Figure 6-30 Fieldbus as setpoint source
In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the receive word PZD02 can be interconnected with the main setpoint.

Example

Setting with receive word PZD02 as setpoint source:

Parameter	Description
p1070 $=2050[1]$	Interconnects the main setpoint with the receive word PZD02 from the fieldbus.
p1075 $=2050[1]$	Interconnects the supplementary setpoint with receive word PZD02 from the field- bus.

Parameters

Number	Name	Factory setting
p1070[C]	CI: Main setpoint	Dependent on the converter
p1071[C]	CI: Main setpoint scaling	1
r1073	CO: Main setpoint active	-rpm
p1075[C]	CI: Supplementary setpoint	0
p1076[C]	CI: Supplementary setpoint scaling	1
r1077	CO: Supplementary setpoint effective	-rpm
r2050[0...11]	CO: PROFIdrive PZD receive word	-

6.4.1.3 Motorized potentiometer as setpoint source

Function description

The "Motorized potentiometer" function emulates an electromechanical potentiometer. The output value of the motorized potentiometer can be set with the "higher" and "lower" control signals.

Figure 6-31 Motorized potentiometer as setpoint source

Figure 6-32 Function chart of the motorized potentiometer

Example

Setting with the motorized potentiometer as setpoint source:

Parameter	Description
p1070 $=1050$	Interconnects the main setpoint with the motorized potentiometer output.

Function diagram

Figure 6-33

Parameters

Table 6-43 Basic setup of motorized potentiometer

Number	Name	Factory setting
p1035[C]	BI: Motorized potentiometer setpoint higher	0
p1036[C]	BI: Motorized potentiometer setpoint lower	Dependent on the converter
p1040[D]	Motorized potentiometer start value	0 rpm
p1047[D]	Motorized potentiometer, ramp-up time	10 s
p1048[D]	Motorized potentiometer, ramp-down time	10 s
r1050	Motorized potentiometer, setpoint after the ramp-function generator	- rpm
p1070[C]	CI: Main setpoint	Dependent on the converter
p1071[C]	CI: Main setpoint scaling	1
r1073	CO: Main setpoint active	- rpm
p1075[C]	CI: Supplementary setpoint	0
p1076[C]	CI: Supplementary setpoint scaling	1

Table 6-44 Extended setup of motorized potentiometer

Number	Name	Factory setting
p1030[D]	Motorized potentiometer configuration	00000110 bin
p1037[D]	Motorized potentiometer, maximum speed	0 rpm
p1038[D]	Motorized potentiometer, minimum speed	0 rpm
p1043[C]	BI: Motorized potentiometer, accept setting value	0
p1044[C]	CI: Motorized potentiometer, setting value	0

6.4.1.4 Fixed speed setpoint as setpoint source

Function description

Figure 6-34 Fixed speed setpoint as setpoint source
The converter makes a distinction between two methods when selecting the fixed speed setpoints:

Directly selecting a fixed speed setpoint

Figure 6-35 Direct selection of the fixed speed setpoint

Table 6-45 Resulting setpoint

$\mathbf{p} 1020$	$\mathbf{p} 1021$	$\mathbf{p} 1022$	$\mathbf{p} 1023$	Resulting setpoint
0	0	0	0	0
1	0	0	0	p1001
0	1	0	0	p1002
1	1	0	0	p1001 + p1002
0	0	1	0	p1003
1	0	1	0	p1001+p1003
0	1	1	0	p1002+p1003
1	1	1	0	p1001 + p1002+p1003
0	0	0	1	p1004
1	0	0	1	p1001 + p1004

p1020	p1021	$\mathbf{p} 1022$	p1023	Resulting setpoint
0	1	0	1	p1002 + p1004
1	1	0	1	p1001 + p1002 + p1004
0	0	1	1	p1003 + p1004
1	0	1	1	p1001 + p1003 + p1004
0	1	1	1	p1002 + p1003 + p1004
1	1	1	1	p1001 + p1002 + p1003 + p1004

Selecting the fixed speed setpoint, binary

Figure 6-36 Binary selection of the fixed speed setpoint

Table 6-46 Resulting setpoint

$\mathbf{p 1 0 2 0}$	$\mathbf{p} 1021$	$\mathbf{p} 1022$	$\mathbf{p} 1023$	Resulting setpoint
0	0	0	0	0
1	0	0	0	p1001
0	1	0	0	p1002
1	1	0	0	p1003
0	0	1	0	p1004
1	0	1	0	p1005
0	1	1	0	p1006
1	1	1	0	p1007
0	0	0	1	p1008
1	0	0	1	p1009
0	1	0	1	p1010
1	0	0	1	p1011
0	0	1	1	p1012
1	1	1	1	p1013
0	1	1	1	p1014
1	0	1	1	p1015

Function diagrams

Figure 6-37

Figure 6-38

Parameter

Number	Name	Factory setting
p1001[D]	CO: Fixed speed setpoint 1	0 rpm
p1002[D]	CO: Fixed speed setpoint 2	0 rpm
p1003[D]	CO: Fixed speed setpoint 3	0 rpm
p1004[D]	CO: Fixed speed setpoint 4	0 rpm
p1005[D]	CO: Fixed speed setpoint 5	0 rpm
p1006[D]	CO: Fixed speed setpoint 6	0 rpm
p1007[D]	CO: Fixed speed setpoint 7	0 rpm
p1008[D]	CO: Fixed speed setpoint 8	0 rpm
p1009[D]	CO: Fixed speed setpoint 9	0 rpm
p1010[D]	CO: Fixed speed setpoint 10	0 rpm
p1011[D]	CO: Fixed speed setpoint 11	0 rpm
p1012[D]	CO: Fixed speed setpoint 12	0 rpm
p1013[D]	CO: Fixed speed setpoint 13	0 rpm
p1014[D]	CO: Fixed speed setpoint 14	0 rpm
p1015[D]	CO: Fixed speed setpoint 15	0 rpm
p1016	Fixed speed setpoint selection mode	1
p1020[C]	Fixed speed setpoint selection, bit 0	0
p1021[C]	Fixed speed setpoint selection, bit 1	0
p1022[C]	Fixed speed setpoint selection, bit 2	0
p1023[C]	Fixed speed setpoint selection, bit 3	0
r1024	Fixed speed setpoint active	- rpm
r1025.0	Fixed speed setpoint status	-
p1070[C]	Cl : Main setpoint	Dependent on the converter
p1071[C]	Cl : Main setpoint scaling	1
r1073	CO: Main setpoint active	- rpm
p1075[C]	CI: Supplementary setpoint	0
p1076	Cl : Supplementary setpoint scaling	1
r1077	CO: Supplementary setpoint effective	- rpm

6.4.2 Setpoint processing

6.4.2.1 Overview

Overview

\int Setpoint processing influences the setpoint using the following functions:

- "Invert" inverts the motor direction of rotation.
- The "direction of rotation deactivate" function prevents the motor rotating in the incorrect direction.
- The "Skip frequency bands" prevent the motor from being continuously operated within these skip bands. This function avoids mechanical resonance effects by only permitting the motor to operate briefly at specific speeds.
- The "Speed limitation" function protects the motor and the driven load against excessively high speeds.
- The "Ramp-function generator" function prevents the setpoint from suddenly changing. As a consequence, the motor accelerates and brakes with a reduced torque.

Figure 6-39 Setpoint processing in the converter

6.4 Setpoints and setpoint processing

6.4.2.2 Invert setpoint

Function description

The function inverts the sign of the setpoint using a binary signal.

Example

To invert the setpoint via an external signal, interconnect parameter p 1113 with a binary signal of your choice.

Table 6-47 Application examples showing how a setpoint is inverted

Parameter	Description
p1113 $=722.1$	Digital input $1=0:$ Setpoint remains unchanged. Digital input 1 = 1: Converter inverts the setpoint.
p1113 $=2090.11$	Inverts the setpoint via the fieldbus (control word 1, bit 11).

Parameter

Number	Name	Factory setting
p1113[C]	BI: Setpoint inversion	Dependent on the converter

6.4.2.3 Enable direction of rotation

Function description

In the factory setting of the converter, the negative direction of rotation of the motor is inhibited.
Set parameter p1110 $=0$ to permanently enable the negative direction of rotation.
Set parameter p1111 = 1 to permanently inhibit the positive direction of rotation.

Parameters

Table 6-48 Application examples for inhibiting and enabling the direction of rotation

Number	Name	Factory setting
p1110	BI: Inhibit negative direction	1
p1111	BI: Inhibit positive direction	0

6.4.2.4 Skip frequency bands and minimum speed

Overview

The converter has a minimum speed and four skip frequency bands:

- The minimum speed prevents continuous motor operation at speeds less than the minimum speed.
- Each skip frequency band prevents continuous motor operation within a specific speed range.

Function description

Minimum speed

Speeds where the absolute value is less than the minimum speed are only possible when the motor is accelerating or braking.

Skip frequency bands

Further information on the skip frequency bands is provided in the function block diagram.

Function diagram

Figure 6-40

Table 6-49 Minimum speed

Number	Name	Factory setting
p1051[C]	Cl: Speed limit of ramp-function generator, positive direction of rotation	9733
p1052[C]	Cl: Speed limit of ramp-function generator, negative direction of rotation	1086
p1080[D]	Minimum speed	0 rpm
p1083[D]	CO: Speed limit in positive direction of rotation	210000 rpm
r1084	CO: Speed limit positive active	-rpm
p1085[C]	Cl: Speed limit in positive direction of rotation	1083
p1091[D]	Skip speed 1	0 rpm
p1092[D]	Skip speed 2	0 rpm
p1093[D]	Skip speed 3	0 rpm
p1094[D]	Skip speed 4	0 rpm
p1098[C]	CI: Skip speed scaling	1
r1099	CO/BO: Skip frequency band of status word	-
p1106	CI: Minimum speed signal source	0
$r 1112$	CO: Speed setpoint according to minimum limit	-rpm
r1114	CO: Setpoint after direction limiting	-rpm
r1119	CO: Ramp-function generator setpoint at the input	-rpm
r1170	CO: Speed controller setpoint sum	-rpm

Further information is provided in the parameter list.
Parameters (Page 373)

NOTICE

Incorrect direction of motor rotation if the parameterization is not suitable
If you are using an analog input as speed setpoint source, then for a setpoint $=0 \mathrm{~V}$, noise voltages can be superimposed on the analog input signal. After the on command, the motor accelerates up to the minimum frequency in the direction of the random polarity of the noise voltage. A motor rotating in the wrong direction can cause significant material damage to the machine or system.

- Inhibit the motor direction of rotation that is not permissible.

6.4.2.5 Speed limitation

The maximum speed limits the speed setpoint range for both directions of rotation.

The converter generates a message (fault or alarm) when the maximum speed is exceeded. If you must limit the speed depending on the direction of rotation, then you can define speed limits for each direction.

Parameters

Table 6-50 Parameters for the speed limitation

Number	Name	Factory setting
p1082[D]	Maximum speed	1500 rpm
p1083[D]	CO: Speed limit in positive direction of rotation	210000 rpm
p1085[C]	Cl: Speed limit in positive direction of rotation	1083
p1086[D]	CO: Speed limit in negative direction of rotation	-210000 rpm
p1088[C]	CI: Speed limit in negative direction of rotation	1086

6.4.2.6 Ramp-function generator

The ramp-function generator in the setpoint channel limits the rate change of the speed setpoint (acceleration). A reduced acceleration reduces the accelerating torque of the motor. As a consequence, the motor reduces the stress on the mechanical system of the driven machine.

The extended ramp-function generator not only limits the acceleration, but by rounding the setpoint, also acceleration changes (jerk). This means that the motor does not suddenly generate a torque.

Extended ramp-function generator

The ramp-up and ramp-down times of the extended ramp-function generator can be set independently of each other. The optimal times depend on the application, and can lie in the range from a few 100 ms to several minutes.

Initial and final rounding permit smooth, jerk-free acceleration and braking.
The ramp-up and ramp-down times of the motor are increased by the rounding times:

- Effective ramp-up time $=$ p1120 $+0.5 \times(\mathrm{p} 1130+\mathrm{p} 1131)$.
- Effective ramp-down time $=$ p1121 $+0.5 \times(\mathrm{p} 1130+\mathrm{p} 1131)$.

Function diagram

Figure 6-41

Parameters

Table 6-51 Additional parameters to set the extended ramp-function generator

Number	Name	Factory setting
p1120[D]	Ramp-function generator ramp-up time	Dependent on the converter
p1121[D]	Ramp-function generator ramp-down time	
p1130[D]	Ramp-function generator initial rounding time	
p1131[D]	Ramp-function generator final rounding time	
p1134[D]	Ramp-function generator rounding type	0 (continuous smoothing)
p1135[D]	OFF3 ramp-down time	Dependent on the converter
p1136[D]	OFF3 initial rounding time	
p1137[D]	OFF3 final rounding time	0 s
p1138[C]	Cl : Ramp-function generator ramp-up time scaling	1
p1139[C]	CI : Ramp-function generator ramp-down time scaling	1
p1140[C]	BI : Enable ramp-function generator/disable ramp-function generator	Dependent on the converter
p1141[C]	BI: Continue ramp-function generator/freeze ramp-function generator	
p1142[C]	BI: Enable setpoint/inhibit setpoint	1
p1143[C]	BI: Accept ramp-function generator setting value	0
p1144[C]	Cl : Ramp-function generator setting value	0
p1148[D]	Ramp-function generator tolerance for ramp-up and rampdown active	19.8 rpm
r1149	CO: Ramp-function generator acceleration	-

Further information is provided in the parameter list.

Setting the extended ramp-function generator

Procedure

1. Enter the highest possible speed setpoint.
2. Switch on the motor.
3. Evaluate your drive response.

- If the motor accelerates too slowly, then reduce the ramp-up time.

An excessively short ramp-up time means that the motor will reach its current limiting when accelerating, and will temporarily not be able to follow the speed setpoint. In this case, the drive exceeds the set time.

- If the motor accelerates too fast, then extend the ramp-up time.
- Increase the initial rounding if the acceleration is jerky.
- In most applications, it is sufficient when the final rounding is set to the same value as the initial rounding.

4. Switch off the motor.
5. Evaluate your drive response.

- If the motor decelerates too slowly, then reduce the ramp-down time. The minimum ramp-down time that makes sense depends on your particular application. Depending on the Power Module used, for an excessively short ramp-down time, the converter either reaches the motor current, or the DC link voltage in the converter becomes too high.
- Extend the ramp-down time if the motor is braked too quickly or the converter goes into a fault condition when braking.

6. Repeat steps 1 ... 5 until the drive behavior meets the requirements of the machine or plant.

You have set the extended ramp-function generator.

6.4.2.7 Dual ramp function

Overview

Submersible pumps suffer from insufficient cooling and lubrication when the pump speed is too low. The initial ramp-up accelerates the pump to the minimum speed to reduce the wear and tear. The long ramp time in the effective speed range improves the control accuracy for the pump and fan. The ramp-down decelerates the pump from the minimum speed to stop and thus reduces the shock to the valve.

Precondition

Before enabling the dual ramp function, make sure that $\mathrm{p} 1138=\mathrm{r} 29576$ and $\mathrm{p} 1139=\mathrm{r} 29577$.

Function description

Ramp up

- Converter starts ramp-up using ramp time from p1120 x p29570.
- When the actual speed r0063 > p29571, switch to ramp time from p1120 x p29572.

Ramp down

- Converter starts ramp-down using ramp time from p1121 x p29573.
- When the actual speed r0063 < p29574, switch to ramp time from p1121 x p29575.

Parameters

Parameter	Description	Factory setting
p29570	DDS: Ramp-up scaling 1	100%
p29571	DDS: Threshold speed 2	30 rmp
p29572	DDS: Ramp-up scaling 2	100%
p29573	DDS: Ramp-down scaling 1	100%
p29574	DDS: Threshold speed 3	30 rmp
p29575	DDS: Ramp-down scaling 2	100%
r29576	CO: Ramp-up scaling output	-
r29577	CO: Ramp-down scaling output	-
p29578	CDS: Ramp-up scaling input	-
p29579	CDS: Ramp-down scaling input	-
p29580	BI: Dual ramp enable	0

$4]$ For more information about the parameters, see Chapter "Parameters (Page 373)".

6.5 Technology controller

6.5.1 PID technology controller

Overview

The technology controller controls process variables, e.g. pressure, temperature, level or flow.

Figure 6-42 Example: Technology controller as a level controller

Precondition

Additional functions

The U/f control or the vector control have been set.
Tools
To change the function settings, you can use an operator panel, for example.

Function description

Function diagram
The technology controller is implemented as a PID controller (controller with proportional, integral, and derivative action).

(1) The converter uses the start value when all the following conditions are simultaneously satisfied:

- The technology controller supplies the main setpoint (p2251 = 0).
- The ramp-function generator output of the technology controller has not yet reached the start value.

Figure 6-43 Simplified representation of the technology controller

Basic settings

The settings required as a minimum are marked in gray in the function diagram:

- Interconnect setpoint and actual values with signals of your choice
- Set ramp-function generator and controller parameters K_{p}, T_{1} and T_{d}.

Set controller parameters K_{p}, T_{1} and T_{d}.
 Procedure

1. Temporarily set the ramp-up and ramp-down times of the ramp-function generator (p2257 and p2258) to zero.
2. Enter a setpoint step and monitor the associated actual value.

The slower the response of the process to be controlled, the longer you must monitor the controller response. Under certain circumstances (e.g. for a temperature control), you need to wait several minutes until you can evaluate the controller response.

3. Set the ramp-up and ramp-down times of the ramp-function generator back to their original value.

You have manually set the technology controller.
\square

Limiting the output of the technology controller

In the factory setting, the output of the technology controller is limited to \pm maximum speed. You must change this limit, depending on your particular application.
Example: The output of the technology controller supplies the speed setpoint for a pump. The pump should only run in the positive direction.

Function diagrams

Figure 6-44 FP 7950

Figure 6-45 FP 7951

Figure 6-46

Figure 6-47 FP 7958

Parameters

Table 6-52 Basic settings

Number	Name	Factory setting
r0046[0...31]	CO/BO: Missing enable signals	-
r0052[0...15]	CO/BO: Status word 1	-
r0056[0...15]	CO/BO: Status word, closed-loop control	-
r1084	CO: Speed limit positive active	-
r1087	CO: Speed limit negative active	- rpm
p2200[C]	BI: Technology controller enable	0
p2252	Technology controller configuration	See parameter list
p2253[C]	Cl : Technology controller setpoint 1	0
p2254[C]	Cl : Technology controller setpoint 2	0
p2255	Technology controller setpoint 1 scaling	100\%
p2256	Technology controller setpoint 2 scaling	100\%
p2257	Technology controller ramp-up time	1 s
p2258	Technology controller ramp-down time	1 s
r2260	CO: Technology controller setpoint after ramp-function generator	- \%
p2261	Technology controller setpoint filter time constant	0 s
r2262	CO: Technology controller setpoint after filter	- \%
p2263	Technology controller type	0
r2273	CO: Technology controller system deviation	- \%
p2274	Technology controller differentiation time constant	0 s
p2280	Technology controller proportional gain	See parameter list
p2285	Technology controller integral time	See parameter list
p2286	BI: Hold technology controller integrator	56.13
p2289[C]	Cl : Technology controller precontrol signal	0
p2306	Technology controller system deviation inversion	0
p2339	Technology controller threshold value for I proportion stop at skip speed	-s
r2344	CO: Technology controller last speed setpoint (smoothed)	- \%
p2345	Technology controller fault response	0
r2349[0...13]	CO/BO: Technology controller status word	-
r3889[0...10]	CO/BO: ESM status word	-

Table 6-53 Limiting the output of the technology controller

Number	Name	Factory setting
p2290[C]	BI: Technology controller limitation enable	1
p2291	CO: Technology controller maximum limiting	100%
p2292	CO: Technology controller minimum limiting	0%
p2293	Technology controller ramp-up/ramp-down time	1 s

Number	Name	Factory setting
r2294	CO: Technology controller output signal	$-\%$
p2295	CO: Technology controller output scaling	100%
p2296[C]	CI: Technology controller output scaling	2295
p2297[C]	CI: Technology controller maximum limiting signal source	1084
p2298[C]	CI: Technology controller minimum limiting signal source	1087
p2299[C]	CI: Technology controller limitation offset	0
p2302	Technology controller output signal start value	0%

Table 6-54 Adapting the actual value of the technology controller

Number	Name	Factory setting
p2264[C]	Cl: Technology controller actual value	0
p2265	Technology controller actual value filter time constant	0 s
p2266	CO: Technology controller actual value after filter	$-\%$
p2267	Technology controller upper limit actual value	100%
p2268	Technology controller lower limit actual value	-100%
p2269	Technology controller gain actual value	100%
p2270	Technology controller actual value function	0
p2271	Technology controller actual value inversion	0
r2272	CO: Technology controller actual value scaled	$-\%$

Table 6-55 PID technology controller, fixed values (binary selection)

Number	Name	Factory setting
p2201[D]	CO: Technology controller fixed value 1	10%
p2202[D]	CO: Technology controller fixed value 2	20%
p2203[D]	CO: Technology controller fixed value 3	30%
p2204[D]	CO: Technology controller fixed value 4	40%
p2205[D]	CO: Technology controller fixed value 5	50%
p2206[D]	CO: Technology controller fixed value 6	60%
p2207[D]	CO: Technology controller fixed value 7	70%
p2208[D]	CO: Technology controller fixed value 8	80%
p2209[D]	CO: Technology controller fixed value 9	90%
$p 2210[D]$	CO: Technology controller fixed value 10	100%
p2211[D]	CO: Technology controller fixed value 11	110%
p2212[D]	CO: Technology controller fixed value 12	120%
p2213[D]	CO: Technology controller fixed value 13	130%
p2214[D]	CO: Technology controller fixed value 14	140%
$p 2215[D]$	CO: Technology controller fixed value 15	150%
p2216[D]	Technology controller fixed value selection method	1
r2224	CO: Technology controller fixed value active	$-\%$

Number	Name	Factory setting
r2225	CO/BO: Technology controller fixed value selection status word	$-\%$
r2229	Technology controller number actual	-

Table 6-56 PID technology controller, fixed values (direct selection)

Number	Name	Factory setting
p2216[D]	Technology controller fixed value selection method	1
p2220[C]	BI: Technology controller fixed value selection bit 0	0
p2221[C]	BI: Technology controller fixed value selection bit 1	0
p2222[C]	BI: Technology controller fixed value selection bit 2	0
p2223[C]	BI: Technology controller fixed value selection bit 3	0
r2224	CO: Technology controller fixed value active	$-\%$
r2225	CO/BO: Technology controller fixed value selection status word	$-\%$
r2229	Technology controller number actual	-

Table 6-57 PID technology controller, motorized potentiometer

Number	Name	Factory setting
r2231	Technology controller motorized potentiometer setpoint memory	$-\%$
p2235[C]	BI: Technology controller motorized potentiometer, setpoint, raise	0
p2236[C]	BI: Technology controller motorized potentiometer, setpoint, lower	0
p2237[D]	Technology controller motorized potentiometer maximum value	100%
p2238[D]	Technology controller motorized potentiometer minimum val- ue	-100%
p2240[D]	Technology controller motorized potentiometer start value	0%
r2245	CO: Technology controller motorized potentiometer, setpoint before RFG	$-\%$
p2247[D]	Technology controller motorized potentiometer ramp-up time	10 s
p2248[D]	Technology controller motorized potentiometer ramp-down time	10 s
r2250	CO: Technology controller motorized potentiometer, setpoint after RFG	$-\%$

Further information

You will find additional information on the following PID controller components in the Internet at:

- Setpoint input: Analog value or fixed setpoint
- Setpoint channel: Scaling, ramp-function generator and filter
- Actual value channel: Filter, limiting and signal processing
- PID controller: Principle of operation of the D component, inhibiting the I component and the control sense
- Enable, limiting the controller output and fault response
(3) FAQ (http://support.automation.siemens.com/WW/view/en/92556266)

6.5.1.1 Autotuning the PID technology controller

Overview

Autotuning is a converter function for the automatic optimization of the PID technology controller.

Precondition

Additional functions

- The motor closed-loop control is set
- The PID technology controller must be set the same as when used in subsequent operation:
- The actual value is interconnected.
- Scalings, filter and ramp-function generator have been set.
- The PID technology controller is enabled (p2200 = 1 signal).

Tools

One of the commissioning tools is needed to change the function settings.

Function description

For active autotuning, the converter interrupts the connection between the PID technology controller and the speed controller. Instead of the PID technology controller output, the autotuning function specifies the speed setpoint.

Figure 6-48 Autotuning using closed-loop level control as example
The speed setpoint results from the technology setpoint and a superimposed rectangular signal with amplitude p 2355 . If actual value $=$ technology setpoint \pm p2355, the autotuning function switches the polarity of the superimposed signal. This causes the converter to excite the process variable for an oscillation.

Figure 6-49 Example for speed setpoint and actual process value for autotuning
The converter calculates the parameters of the PID controller from the determined oscillation frequency.

Executing autotuning

1. Select with p2350 the appropriate controller setting.
2. Switch on the motor.

The converter signals Alarm A07444.
3. Wait until alarm A07444 goes away.

The converter has recalculated parameters p2280, p2274 and p2285.
If the converter signals fault F07445:

- If possible, double p2354 and p2355.
- Repeat the autotuning with the changed parameters.

4. Back up the calculated values so that they are protected against power failure, e.g. using the BOP-2: OPTIONS \rightarrow RAM-ROM.

You have auto tuned the PID controller.

\square

Parameters

Number	Name	Factory setting
p2274	Technology controller differentiation time constant	0.0 s
p2280	Technology controller proportional gain	See parameter list
p2285	Technology controller integral time	See parameter list

Number	Name	Factory setting
p2350	Enable PID autotuning Automatic controller setting based on the "Ziegler Nichols" method. After completion of the autotuning, the converter sets p2350 $=0$. 0 : No function 1: The process variable follows the setpoint after a sudden setpoint change (step function) relatively quickly, however with an overshoot. 2: Faster controller setting than for p2350 $=1$ with larger overshoot of the controlled variable. 3: Slower controller setting than for p2350 = 1. Overshoot of the controlled variable is, to a large extent, avoided. 4: Controller setting after completion of the autotuning as for p2350 = 1. Optimize only the P and I action of the PID controller.	0
p2354	PID autotuning monitoring time	240 s
p2355	PID autotuning offset	5\%

6.5.1.2 Adapting Kp and Tn

Overview

The function adapts the PID technology controller to the process, e.g. depending on the system deviation.

Function description

Figure 6-50 Controller adaptation
6.5 Technology controller

Function diagram

Figure 6-51

Parameters

Number	Name	Factory setting
p2252	Technology controller configuration	00000000 0000 bin
p2280	Technology controller proportional gain	1
p2285	Technology controller integral time	30 s
p2310	Cl: Technology controller Kp adaptation input value signal source	0
p2311	Technology controller, lower Kp adaptation value	1
p2312	Technology controller, upper Kp adaptation value	10
p2313	Technology controller lower Kp adaptation transition point	0%
p2314	Technology controller upper Kp adaptation transition point	100%
p2315	Cl: Technology controller Kp adaptation scaling signal source	1
r2316	CO: Technology controller Kp adaptation output	-
p2317	Cl: Technology controller Tn adaptation input value signal source	0
p2318	Technology controller, lower Tn adaptation value	3 s
p2319	Technology controller, upper Tn adaptation value	10 s
p2320	Technology controller lower Tn adaptation transition point	0%
p2321	Technology controller upper Tn adaptation transition point	100%
r2322	CO: Technology controller Tn adaptation output	-s

6.5.2 Free technology controllers

Overview

The converter has three additional technology controllers.
The three "free technology controllers" have fewer setting options compared with the PID technology controller described above.
2] PID technology controller (Page 269)

Function description

$$
\begin{array}{ll}
\mathrm{n}=0 & \text { Free technology controller } 0 \\
\mathrm{n}=1 & \text { Free technology controller } 1 \\
\mathrm{n}=2 & \text { Free technology controller } 2
\end{array}
$$

Figure 6-52 Simplified function chart of the additional PID technology controllers, $\mathrm{n}=0 \ldots 2$
The additional technology controllers allow several process variables to be simultaneously controlled using one converter.

Example

An HVAC system with heating and cooling valves to process the air:

- The main controller controls the speed of the fan drive.
- The additional technology controllers control the cooling and heating via the two analog outputs.

Parameters

Table 6-58 Parameters for the free technology controller 0

Number	Name	Factory setting
p11000	BI: Free tec_ctrl 0 enable	0
p11026	Free tec_ctrl 0 unit selection	$1(\%)$
p11027	Free tec_ctrl 0 unit reference variable	1.00
p11028	Free tec_ctrl 0 sampling time	$2(256 \mathrm{~ms})$
r11049.0...11	CO/BO: Free tec_ctrl 0 status word	-

Number	Name	Factory setting
p11053	Cl : Free tec_ctrl 0 setpoint signal source	0
p11057	Free tec_ctrl 0 setpoint ramp-up time	1 s
p11058	Free tec_ctrl 0 setpoint ramp-down time	1 s
p11063	Free tec_ctrl 0 error signal inversion	0
p11064	Cl : Free tec_ctrl 0 actual value signal source	0
p11065	Free tec_ctrl 0 actual value smoothing time constant	0 s
p11067	Free tec_ctrl 0 actual value upper limit	100\%
p11068	Free tec_ctrl 0 actual value lower limit	-100 \%
p11071	Free tec_ctrl 0 actual value inversion	0
r11072	CO: Free tec_ctrl 0 actual value after limiter	-
r11073	CO: Free tec_ctrl 0 control deviation	-
p11074	Free tec_ctrl 0 differentiation time constant (T_{d})	0 s
p11080	Free tec_ctrl 0 proportional gain (K_{P})	1
p11085	Free tec_ctrl 0 integral time (T_{1})	30 s
p11091	CO: Free tec_ctrl 0 maximum limit	100\%
p11092	CO: Free tec_ctrl 0 minimum limit	0\%
p11093	Free tec_ctrl 0 ramp-up/ramp-down time limit	1 s
r11094	CO: Free tec_ctrl 0 output signal	-
p11097	CI : Free tec_ctrl 0 maximum limit signal source	11091[0]
p11098	CI: Free tec_ctrl 0 minimum limit signal source	11092[0]
p11099	Cl : Free tec_ctrl 0 offset limit signal source	0

Further information is provided in the parameter list.
\leadsto Parameters (Page 373)

6.5.3 Cascade control

Overview

The cascade control is ideal for applications in which, for example, significantly fluctuating pressures or flow rates are equalized.

Figure 6-53 Example: Cascade control for the pressure in a liquid pipe
Depending on the set-actual variance of the technology controller, the cascade control of the converter switches a maximum of three additional motors directly to the line supply via contactors.

Precondition

To deploy the cascade control, you must activate the technology controller.

Function description

Activate uncontrolled motors $M_{1} \ldots M_{2}$

Figure 6-54 Activate uncontrolled motors $\mathrm{M}_{1} \ldots \mathrm{M}_{2}$
Procedure for connecting an uncontrolled motor:

1. The speed-controlled motor turns with maximum speed p1082.
2. The control deviation of the technology controller is greater than p2373.
3. Time p2374 has expired.

The converter brakes the speed-controlled motor with ramp-down time p1121 to the activation/deactivation speed p2378. Until the activation/deactivation speed p2378 is attained, the converter deactivates the technology controller temporarily.
4. After switch-on delay p2384, the converter connects an uncontrolled motor.

Deactivate uncontrolled motors $M_{1} \ldots M_{2}$

6.5 Technology controller

Figure 6-55 Deactivate uncontrolled motors $M_{1} \ldots M_{2}$
Procedure for switching off an uncontrolled motor:

1. The speed-controlled motor turns with minimum speed p1080.
2. The control deviation of the technology controller is less than -p2373.
3. Time p2375 has expired.

The converter accelerates the speed-controlled motor with ramp-up time p1120 to the activation/deactivation speed p2378. Until the activation/deactivation speed p2378 is attained, the converter deactivates the technology controller temporarily.
4. After shutdown delay p2386, the converter disconnects an uncontrolled motor.

Sequence for activating and deactivating the $M_{1} \ldots M_{2}$ motors

Table 6-59 p2371 specifies the sequence for activating and deactivating the motors

p2371	$\rightarrow \rightarrow \rightarrow$ Sequence for activating motors $\rightarrow \rightarrow \rightarrow$			Power of the activated $M_{1} \ldots M_{3}$ motors compared with the speed-controlled DM motor	
	$\rightarrow \rightarrow \rightarrow$ Sequence for deactivating motors $\rightarrow \rightarrow \rightarrow$				
	Stage 1	Stage 2	Stage 3	$1 \times \mathrm{M}_{\mathrm{D}}$	$2 \times \mathrm{M}_{\text {D }}$
1	M_{1}			M_{1}	---
2	M_{1}	$M_{1}+M_{2}$		$\mathrm{M}_{1}, \mathrm{M}_{2}$	---
3	M_{1}	M_{2}	$M_{1}+M_{2}$	M_{1}	M_{2}

Parameter

Number	Name	Factory setting
p2200	Technology controller enable	0
p2251	Technology controller mode	0
p2370	Cascade control enable	0
p2371	Cascade control configuration	0
p2372	Cascade control motor selection mode	0
p2373	Cascade control activation threshold	20%
p2374	Cascade control activation delay	30 s
p2375	Cascade control deactivation delay	30 s
p2376	Cascade control overload threshold	25%
p2377	Cascade control interlock time	0 s
p2378	Cascade control activation/deactivation speed	50%
r2379	Cascade control status word	---
p2380	Cascade control operating hours	0 h
p2381	Cascade control maximum time for continuous mode	24 h
$p 2382$	Cascade control absolute operating time limit	24 h
p2383	Cascade control deactivation sequence	0
p2384	Cascade control motor switch-on delay	0 s
p2385	Cascade control stop time activation speed	0 s
p2386	Cascade control motor switch-off delay	0 s
p2387	Cascade control stop time deactivation speed	0 s

Additional information is provided in the parameter list and in function diagram 7036.

More information
Interaction with the "Hibernation mode" function
In order that the "Cascade control" and "Hibernation mode" functions do not influence each other, you must make the following settings in the cascade control:

- p2392 < p2373

The restart value of the hibernation mode p2392 must be lower than the activation threshold for the cascade control p2373.

- p2373 < p2376

The activation threshold for the cascade control p2373 must be lower than the overload threshold for the cascade control p2376.

- It is not permissible for the main drive to be in the hibernation mode.
- The actual speed must be higher than the restart speed for hibernation mode (p1080 + p2390) $\times 1.05$.
- The value for the activation delay of the cascade control p2374 must be higher than the ramp-up time t_{y} from hibernation mode.
$t_{y}=(p 1080+p 2390) \times 1.05 \times p 1120 \times p 1139 / p 1082$

6.5.4 Real time clock (RTC)

PID:

The real-time clock is the basis for time-dependent process controls, e.g.:

- To reduce the temperature of a heating control during the night
- To increase the pressure of a water supply at certain times during the day

Accept the real-time clock in the alarm and fault buffer

Using the real-time clock, you can track the sequence of alarms and faults over time. When an appropriate message occurs, the converter converts the real-time clock into the UTC time format (Universal Time Coordinated):
Date, time \Rightarrow 01.01.1970, 0:00 +d (days) +m (milliseconds)
The converter takes the number " d " of the days and the number " m " of the milliseconds in the alarm and fault times of the alarm and/or fault buffer.
\leadsto Warnings, faults and system messages (Page 777)

Converting UTC to RTC

An RTC can again be calculated in the UTC format from the saved fault or alarm time. In the Internet, you will find programs to convert from UTC to RTC, e.g.

UTC to RTC (http://unixtime-converter.com/)

Example:

Saved as alarm time in the alarm buffer:

$$
\begin{aligned}
& \mathrm{r} 2123[0]=2345[\mathrm{~ms}] \\
& \mathrm{r} 2145[0]=14580 \text { [days] }
\end{aligned}
$$

Number of seconds $=2345 / 1000+14580 \times 86400=1259712002$
Converting this number of seconds to RTC provides the date: 02.12.2009, 01:00:02.
The times specified for alarms and faults always refer to standard time.

Function and settings

The real-time clock starts as soon as the Control Unit power supply is switched on for the first time. The real-time clock comprises the time in a 24 hour format and the date in the "day, month, year" format.

After a Control Unit power supply interruption, the real-time clock continues to run for approx. five days.

If you wish to use the real-time clock, you must set the time and date once when commissioning. If you restore the converter factory setting, the converter only resets parameters p8402 and p8405 of the real-time clock. P8400 and p8401 are not reset.

Parameters

Number	Name	Factory setting
p8400[0 .. 2]	RTC time	0
p8401[0 $\ldots 2]$	RTC date	1.1 .1970
p8402[0 $\ldots 8]$	RTC daylight saving time setting	0
r8403	RTC daylight saving time actual difference	-
r8404	RTC weekday	-
p8405	Activate/deactivate RTC alarm A01098	1

6.5.5 Time switch (DTC)

The "time switch" (DTC) function, along with the real-time clock in the converter, offers the option of controlling when signals are switched on and off.

Examples:

- Switching temperature control from day to night mode.
- Switching a process control from weekday to weekend.

Principle of operation of the time switch (DTC)

The converter has three independently adjustable time switches. The time switch output can be interconnected with every binector input of your converter, e.g. with a digital output or a technology controller's enable signal.

Figure 6-56 Example of the response of the time switch.

Settings for the example with DTC1

- Enable parameterization of the DTC: $\mathrm{p} 8409=0$.

As long as the parameterization of the DTC is enabled, the converter holds the output of all three DTC (r84x3, x = 1, 2, 3; r84x3.0 normal, r84x3.1 inverted status message) at LOW.

- Activate/deactivate the weekday
- p8410[0] = 0 Monday
- p8410[1] = 1 Tuesday
- p8410[2] = 1 Wednesday
- p8410[3] = 0 Thursday
- p8410[4] = 1 Friday
- p8410[5] = 1 Saturday
- p8410[6] = 0 Sunday
- Setting switching times:
- ON: p8411[0] = 20 (hh), p8411[1] = 0 (MM)
- OFF: p8412[0] = 10 (hh), p4812[1] = 0 (MM)
- Enable the setting: p8409 $=1$.

The converter re-enables the DTC output.
Further information is provided in the parameter list.

6.6 Motor control

Overview

(M) The converter has two alternative methods to ensure the motor speed follows the configured speed setpoint:

- U/f control
- Vector control

6.6.1 Reactor, filter and cable resistance at the converter output

Overview

Components between the converter and the motor influence the closed-loop control quality of the converter:

- Output reactor In the factory setting, the converter assumes for the motor data identification that no output reactor is connected at the converter output.
- Motor cable with unusually high cable resistance.

For the motor data identification, the converter assumes a cable resistance $=20 \%$ of the stator resistance of the cold motor.

Function description

You must correctly set the components between the converter and motor to achieve an optimum closed-loop control quality

Procedure

1. Set p0010 $=2$.
2. Set the cable resistance in p0352.
3. Set p0230 to the appropriate value.
4. Set p0235 to the appropriate value.
5. Set p0010 $=0$.
6. Carry out the quick commissioning and the motor identification again.
\checkmark Quick commissioning using the BOP-2 operator panel (Page 131)
You have set the reactor, filter and cable resistance between the converter and motor. \square

Parameters

Number	Name	Factory setting
p0010	Drive commissioning parameter filter	1
p0230	Drive filter type, motor side	0
p0235	Number of motor reactors in series	1
p0350[M]	Motor stator resistance, cold	0Ω
$p 0352[M]$	Cable resistance	0Ω

For additional information on parameters, please refer to the parameter list.

6.6.2 V/f control

6.6.2.1 U/f control

Overview

${ }^{1)}$ In the "Flux Current Control (FCC)" U/f version, the converter controls the motor current (starting current) at low speeds.
Figure 6-57 Simplified function diagram of the U/f control
The U/f control is a speed feedforward control with the following properties:

- The converter sets the output voltage on the basis of the U/f characteristic.
- The output frequency is essentially calculated from the speed setpoint and the number of pole pairs of the motor.
- The slip compensation corrects the output frequency depending on the load and thus increases the speed accuracy.
- The omission of a control loop means that the U/f control is stable in all cases.
- In applications with higher speed accuracy requirements, a load-dependent voltage boost can be selected (flux current control, FCC)

For operation of the motor with U/f control, you must set at least the following subfunctions appropriate for your application:

- V/f characteristic
- Voltage boost

Function description

The converter has different U/f characteristics.

(1) The voltage boost of the characteristic optimizes motor start-up
(2) With flux current control (FCC), the converter compensates the voltage drop across the stator resistance of the motor
Figure 6-58 U/f characteristics of the converter
With increasing speed or output frequency, the converter increases its output voltage U. The maximum possible output voltage of the converter depends on the line voltage.

The converter can increase the output frequency even at the maximum output voltage. The motor is then operated with field weakening.

The value of the output voltage at the rated motor frequency also depends on the following variables:

The value of the output voltage at the rated motor frequency p0310 also depends on the following variables:

- Ratio between the converter size and the motor size
- Line voltage
- Line impedance
- Actual motor torque

The maximum possible output voltage as a function of the input voltage is stated in the technical data.

General converter technical data (Page 900)

Table 6-60 Linear and parabolic characteristics

Requirement	Application examples	Remark	Characteristic	Parameter
The required tor-	Eccentric-worm pump,	-	Linear	$\mathrm{p} 1300=0$
que is independ- ent of the speed	The converter compensates for the voltage drops across the stator resistance. Recom- mended for motors of less than 7.5 kW. Precondition: The motor data has been set according to the rating plate and the motor has been identified after the basic commis- sioning.	Linear with Flux Current Control	$\mathrm{p} 1300=1$	
The required tor- que increases with the speed	Centrifugal pumps, radi- al fans, axial fans, com- pressors	Lower losses in the motor and converter than with the linear characteristic.	Parabolic	$\mathrm{p} 1300=2$

Table 6-61 Characteristics for special applications

Requirement	Application examples	Remark	Characteristic	Parameter
Applications with a low dynamic re- sponse and con- stant speed	Centrifugal pumps, radi- al fans, axial fans	The ECO mode saves more energy than the parabolic characteristic. If the speed setpoint is reached and re- mains unchanged for 5 seconds, the con- verter reduces its output voltage again.	ECO mode	p1300 $=4$ (linear char- acteristic ECO)
or				
p1300 $=7$				
(parabolic				
characteris-				
tic ECO)				

Function diagram

Figure 6-59

Parameters

Number	Name	Factory setting
r0025	CO: Output voltage, smoothed	- Vrms
r0066	CO: Output frequency	-Hz
r0071	Output voltage, maximum	- Vrms
$p 0304[\mathrm{M}]$	Rated motor voltage	0 Vrms
$p 0310[\mathrm{M}]$	Rated motor frequency	0 Hz
$p 1300[\mathrm{D}]$	Open-loop/closed-loop control operating mode	See parameter list
$p 1333[\mathrm{D}]$	U/f control FCC starting frequency	0 Hz
$p 1334[\mathrm{D}]$	U/f control slip compensation starting frequency	0 Hz
$p 1335[\mathrm{D}]$	Slip compensation scaling	0%
$p 1338[\mathrm{D}]$	U/f mode resonance damping gain	0

6.6.2.2 Optimizing motor starting

Overview

After selection of the U/f characteristic, no further settings are required in most applications. In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

To improve the starting behavior of the motor, a voltage boost can be set for the U/f characteristic at low speeds.

Precondition

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s (<1 kW) ... 10 s (> 10 kW).

Function description

Setting the voltage boost for U/f control
The converter boosts the voltage corresponding to the starting currents p1310 ... p1312.

Figure 6-60 The resulting voltage boost using a linear characteristic as example
Increase parameter values p1310 ... p1312 in steps of $\leq 5 \%$. Excessively high values in p1310 ... p1312 can cause the motor to overheat and switch off (trip) the converter due to overcurrent.

If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

Procedure

1. Switch on the motor with a setpoint of a few revolutions per minute.
2. Check whether the motor rotates smoothly.
3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
4. Accelerate the motor to the maximum speed with maximum load.
5. Check that the motor follows the setpoint.
6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

You have set the voltage boost.
\square

Function diagrams

Figure 6-61 FP 6301

Figure 6-62 FP 6310

Parameter

Number	Name	Factory setting
r0071	Output voltage, maximum	Vrms
p0310[M]	Rated motor frequency	0 Hz
p1310[D]	Starting current (voltage boost) permanent	50%
p1311[D]	Starting current (voltage boost) when accelerating	0%
p1312[D]	Starting current (voltage boost) when starting	0%

Further information is provided in the parameter list.

6.6.2.3 U/f control with Standard Drive Control

Overview

Figure 6-63 Default setting of the U/f control after selecting Standard Drive Control
Selecting application class Standard Drive Control in the quick commissioning adapts the structure and the setting options of the U/f control as follows:

- Starting current closed-loop control: At low speeds, a controlled motor current reduces the tendency of the motor to oscillate.
- With increasing speed, the converter changes from closed-loop starting current control to U/ f control with load-dependent voltage boost.
- The slip compensation is activated.
- Soft starting is not possible.
- Reduced setting options

Function description

Characteristics after selecting the application class Standard Drive Control

(1) The closed-loop starting current control optimizes the speed control at low speeds
(2) The converter compensates the voltage drop across the motor stator resistance

Figure 6-64 Characteristics after selecting Standard Drive Control

The application class Standard Drive Control reduces the number of characteristics and setting options:

- A linear and a parabolic characteristic are available.
- Selecting a technological application defines the characteristics.

Table 6-62 Linear and parabolic characteristics

Requirement	Application exam- ples	Remark	Charac- teristic	Parameter
The required torque is inde- pendent of the speed	Eccentric-worm pump, compressor	-	Linear	p0501 =0
The required torque increa- ses with the speed	Centrifugal pumps, radial fans, axial fans	Lower losses in the motor and con- verter than with the linear charac- teristic.	Parabol- ic	p0501=1

Parameters

Number	Name	Factory setting
r0025	CO: Output voltage, smoothed	- Vrms
r0066	CO: Output frequency	-Hz
r0071	Output voltage, maximum	-Vrms
p0310[M]	Rated motor frequency	0 Hz
p501	Technology application	0

6.6.2.4 Optimizing the motor start-up for application class Standard Drive Control

Overview

After selecting application class Standard Drive Control, in most applications no additional settings need to be made.
At standstill, the converter ensures that at least the rated motor magnetizing current flows. Magnetizing current p0320 approximately corresponds to the no-load current at 50\% ... 80\% of the rated motor speed.
In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

The current can be increased at low speeds to improve the starting behavior of the motor.

Precondition

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s (< 1 kW) ... 10 s (> 10 kW).

Function description

Starting current (boost) after selecting the application class Standard Drive Control

Figure 6-65 The resulting voltage boost using a linear characteristic as example
The converter boosts the voltage corresponding to the starting currents p1310 ... p1312. Increase parameter values p1310 ... p1312 in steps of $\leq 5 \%$. Excessively high values in p1310 ... p1312 can cause the motor to overheat and switch off (trip) the converter due to overcurrent.

If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

Procedure

1. Switch on the motor with a setpoint of a few revolutions per minute.
2. Check whether the motor rotates smoothly.
3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
4. Accelerate the motor with the maximum load.
5. Check that the motor follows the setpoint.
6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

You have set the voltage boost.
\square

Parameters

Number	Name	Factory setting
r0071	Output voltage, maximum	Vrms
p0310[M]	Rated motor frequency	0 Hz
p0320[M]	Rated motor magnetizing current / short-circuit current	0 Arms
p1310[D]	Starting current (voltage boost) permanent	50%
p1311[D]	Starting current (voltage boost) when accelerating	0%
p1312[D]	Starting current (voltage boost) when starting	0%

6.6.3 Encoderless vector control

6.6.3.1 Structure of vector control without encoder (sensorless)

Overview

The vector control comprises closed-loop current control and a higher-level closed-loop speed control.

Figure 6-66 Simplified function diagram for sensorless vector control with speed controller
Using the motor model, the converter calculates the following closed-loop control signals from the measured phase currents and the output voltage:

- Current component I_{q}
- Current component I_{q}
- Speed actual value

The setpoint of the current component I_{d} (flux setpoint) is obtained from the motor data. For speeds above the rated speed, the converter reduces the flux setpoint along the field weakening characteristic.

When the speed setpoint is increased, the speed controller responds with a higher setpoint for current component I_{q} (torque setpoint). The closed-loop control responds to a higher torque setpoint by adding a higher slip frequency to the output frequency. The higher output frequency also results in a higher motor slip, which is proportional to the accelerating torque. I_{q} and
I_{d} controllers keep the motor flux constant using the output voltage, and adjust the matching current component I_{q} in the motor.

Settings that are required

Restart quick commissioning and select the vector control in quick commissioning.
4 Commissioning (Page 123)
In order to achieve a satisfactory control response, as a minimum you must set the partial functions - shown with gray background in the diagram above - to match your particular application:

- Motor and current model: In the quick commissioning, correctly set the motor data on the rating plate corresponding to the connection type (Y/D), and carry out the motor data identification routine at standstill.
- Speed limits and torque limits: In the quick commissioning, set the maximum speed (p1082) and current limit (p0640) to match your particular application. When exiting quick commissioning, the converter calculates the torque and power limits corresponding to the current limit. The actual torque limits are obtained from the converted current and power limits and the set torque limits.
- Speed controller: Start the rotating measurement of the motor data identification. You must manually optimize the controller if the rotating measurement is not possible.

Function diagrams

Figure 6-67

Figure 6-68

Figure 6-69 FP 6060

Default settings after selecting the application class Dynamic Drive Control

Selecting application class Dynamic Drive Control adapts the structure of the vector control and reduces the setting options:

	Vector control after se- lecting the application class Dynamic Drive Control	Vector control without select- ing an application class
Hold or set the integral component of the speed controller	Not possible	Possible
Acceleration model for precontrol	Default setting	Can be activated
Motor data identification at standstill or with ro- tating measurement	Shortened, with option- al transition into opera- tion	Complete

6.6.3.2 Optimizing the speed controller

Optimum control response - post optimization not required

Preconditions for assessing the controller response:

- The moment of inertia of the load is constant and does not depend on the speed
- The converter does not reach the set torque limits during acceleration
- You operate the motor in the range $40 \% \ldots 60 \%$ of its rated speed

If the motor exhibits the following response, the speed control is well set and you do not have to adapt the speed controller manually:

The speed setpoint (broken line) increases with the set rampup time and rounding.
The speed actual value follows the setpoint without any overshoot.

Control optimization required

In some cases, the self optimization result is not satisfactory, or self optimization is not possible as the motor cannot freely rotate.

Initially, the speed actual value follows the speed setpoint with some delay, and then overshoots the speed setpoint.

First, the actual speed value increases faster than the speed setpoint. Before the setpoint reaches its final value, it passes the actual value. Finally, the actual value approaches the setpoint without any significant overshoot.

In the two cases describe above, we recommend that you manually optimize the speed control.

Optimizing the speed controller

Requirements

- Torque precontrol is active: $\mathrm{p} 1496=100 \%$.
- The load moment of inertia is constant and independent of the speed.
- The converter requires $10 \% \ldots 50 \%$ of the rated torque to accelerate.

When necessary, adapt the ramp-up and ramp-down times of the ramp-function generator (p1120 and p1121).

Procedure

1. Switch on the motor.
2. Enter a speed setpoint of approximately 40% of the rated speed.
3. Wait until the actual speed has stabilized.
4. Increase the setpoint up to a maximum of 60% of the rated speed.
5. Monitor the associated characteristic of the setpoint and actual speed.
6. Optimize the controller by adapting the ratio of the moments of inertia of the load and motor (p0342):

7. Switch off the motor.
8. Set $\mathrm{p} 0340=4$. The converter again calculates the speed controller parameters.
9. Switch on the motor.
10. Over the complete speed range check as to whether the speed control operates satisfactorily with the optimized settings.

You have optimized the speed controller.
\square
When necessary, set the ramp-up and ramp-down times of the ramp-function generator (p 1120 and p 1121) back to the value before optimization.

Mastering critical applications

The drive control can become unstable for drives with a high load moment of inertia and gearbox backlash or a coupling between the motor and load that can possibly oscillate. In this case, we recommend the following settings:

- Increase p1452 (smoothing the speed actual value).
- Increase p1472 (integral time T_{1}): $\mathrm{T}_{1} \geq 4 \cdot \mathrm{p} 1452$
- If, after these measures, the speed controller does not operate with an adequate dynamic performance, then increase p1470 (gain K K_{p}) step-by-step.

Parameters

Table 6-63 Encoderless speed control

Number	Name	Factory setting
p0342[M]	Ratio between the total and motor moments of inertia	1
p1452	Speed controller actual speed value smoothing time (enco- derless)	10 ms
p1470[D]	Speed controller encoderless operation P gain	0.3
p1472[D]	Speed controller encoderless operation integral time	20 ms
p1496[D]	Acceleration precontrol scaling	0%

6.6.4 Electrically braking the motor

Overview

Braking with the motor in generator operation

If the motor brakes the connected load electrically, it converts the kinetic energy of the motor into electrical energy. The electrical energy E released on braking the load is proportional to the moment of inertia J of the motor and load and to the square of the speed n . The motor attempts to pass the energy on to the converter.

Main features of the braking functions

DC braking

DC braking prevents the motor from transferring the braking energy to the converter. The converter impresses a DC current into the motor, which brakes the motor. The motor converts the braking energy E of the load into heat.

- Advantage: The motor brakes the load without the converter having to process regenerative power.
- Disadvantages: significant increase in the motor temperature; no defined braking characteristics; no constant braking torque; no braking torque at standstill; braking energy E is lost as heat; does not function when the power fails

Compound braking

One version of DC braking. The converter brakes the motor with a defined ramp-down time and superimposes a DC current on the output current.

6.6.4.1 DC braking

Function description

NOTICE

Motor overheating as a result of DC braking
The motor will overheat if you use DC braking too frequently or use it for too long. This may damage the motor.

- Monitor the motor temperature.
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

With DC braking, the converter outputs an internal OFF2 command for the time that it takes to de-energize the motor p0347-and then impresses the braking current for the duration of the DC braking.
The DC-braking function is possible only for induction motors.
4 different events initiate DC braking

DC braking when falling below a starting speed

Precondition:
p1230 = 1 and p1231 = 14
Function:

1. The motor speed has exceeded the starting speed.
2. The converter activates the DC braking as soon as the motor speed falls below the starting speed.

DC braking when a fault occurs

Precondition:
Fault number and fault response are assigned via p2100 and p2101.
Function:

1. A fault occurs, which initiates DC braking as response.
2. The motor brakes along the down ramp to the speed for the start of DC braking.
3. DC braking starts.

DC braking initiated by a control command

Precondition:
p1231 $=4$ and p1230 $=$ control command, e.g. p1230 = 722.3 (control command via DI 3)
Function:

1. The higher-level control issues the command for DC braking, e.g. using DI3: $\mathrm{p} 1230=722.3$.
2. DC braking starts.

If the higher-level control withdraws the command during DC braking, the converter interrupts DC braking and the motor accelerates to its setpoint.

DC braking when the motor is switched off

Precondition:
p1231 = 5 or p1230 = 1 and p1231 = 14
Function:

1. The higher-level control switches off the motor (OFF1 or OFF3).
2. The motor brakes along the down ramp to the speed for the start of DC braking.
3. DC braking starts.

Parameters

Settings for DC braking

Number	Name	Factory setting
$p 0347[\mathrm{M}]$	Motor de-excitation time	0 s
$\mathrm{p} 1230[\mathrm{C}]$	BI: DC braking activation	0
$\mathrm{p} 1231[\mathrm{M}]$	Configuring DC braking	0
$p 1232[\mathrm{M}]$	DC braking, braking current	0 Arms
$p 1233[\mathrm{M}]$	DC braking duration	1 s
$p 1234[\mathrm{M}]$	Speed at the start of DC braking	210000 rpm
$r 1239[8 \ldots 13]$	CO/BO: DC braking status word	-

Table 6-64 Configuring DC braking as a response to faults

Number	Name	Factory setting
p2100[0...19]	Changing the fault reaction, fault number	0
p2101[0...19]	Changing the fault reaction, reaction	0

6.6.4.2 Compound braking

Function description

Figure 6-70 Motor brakes with and without active compound braking
Compound braking prevents the DC-link voltage increasing above a critical value. The converter activates compound braking depending on the DC-link voltage. Above a DC-link voltage threshold (r1282), the converter adds a DC current to the motor current. The DC current brakes the motor and prevents an excessive increase in the DC-link voltage.

Note

Compound braking is possible only with the U/f control.
Compound braking does not operate in the following cases:

- The "flying restart" function is active
- DC braking is active
- Vector control is selected

NOTICE

Overheating of the motor due to compound braking
The motor will overheat if you use compound braking too frequently or for too long. This may damage the motor.

- Monitor the motor temperature.
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

Parameter

Table 6-65 Setting and enabling compound braking

Number	Name	Factory setting
r1282	Vdc_max controller, switch-on level (U/f)	- V
p3856[D]	Compound braking current (\%)	0%
r3859.0	CO/BO: Compound braking/DC quantity control status word	-

6.6.5 Pulse frequency wobbling

Note

This function is only available for the converters of frame sizes FSH and FSJ.

Overview

Pulse frequency wobbling damps the spectral components, which can generate unwanted noise in the motor. Wobbling is activated by default for the converters of frame sizes FSH and FSJ.

Wobbling causes the pulse frequency in a modulation interval to deviate from the setpoint frequency. This means that the actual pulse frequency might be higher than the average pulse frequency required.

A noise generator can be used to vary the pulse frequency around an average value. In this case, the average pulse frequency is equal to the setpoint pulse frequency. The pulse frequency can be varied in every current controller cycle if the cycle is constant. Current measurement errors resulting from asynchronous pulse and control intervals are compensated by a correction in the actual current value.

Parameter p1811[0...n] can be set to adjust the magnitude of variation in the pulse frequency wobble between 0 and 20%. The factory setting is 10%. For a wobble amplitude of p1811 $=0 \%$, the maximum possible pulse frequency is p1800 $=2 \times 1 /$ current controller cycle (4 kHz). With a wobble amplitude setting of p1811>0, the maximum possible pulse frequency is p1800 $=1$ / current controller cycle (2 kHz). These conditions apply to all indices.

Parameters

Parameter	Description	Factory setting
p1811	Pulse frequency wobbulation amplitude	10%

4] For more information about the parameters, see Chapter "Parameter list (Page 376)".

6.7 Drive protection

6.7.1 Overcurrent protection

Overview

A The U/f control prevents too high a motor current by influencing the output frequency and the motor voltage (I-max controller).

Precondition

You have selected U/f control.
The application must allow the motor torque to decrease at a lower speed.

Function description

The I-max controller influences the output frequency and the motor voltage.
If the motor current reaches the current limit during acceleration, the I-max controller extends the acceleration operation.

If the motor load is so high during steady-state operation that the motor current reaches the current limit, then the I-max controller reduces the speed and the motor voltage until the motor current returns to the permissible range again.
If the motor current reaches the current limit during deceleration, the I-max controller extends the deceleration operation.

Parameters

You only have to change the factory settings of the I-max controller if the drive tends to oscillate when it reaches the current limit or if it is shut down due to overcurrent.

Table 6-66 I-max controller parameters

Number	Name	Factory setting
r0056.0 ... 13	CO/BO: Status word, closed-loop control	-
p0305[M]	Rated motor current	0 Arms
p0640[D]	Current limit	0 Arms
p1340[D]	I_max frequency controller proportional gain	0
p1341[D]	I_max frequency controller integral time	0.300 s
r1343	CO: I_max controller frequency output	-rpm

You will find more information about this function in function diagram 6300 and in the parameter list.

6.7.2 Converter protection using temperature monitoring

Overview

T The converter temperature is essentially defined by the following effects:

- The ambient temperature
- The ohmic losses increasing with the output current
- Switching losses increasing with the pulse frequency

Monitoring types

The converter monitors its temperature using the following monitoring types:

- $I^{2 t}$ monitoring (alarm A07805, fault F30005)
- Measuring the chip temperature of the Power Module (alarm A05006, fault F30024)
- Measuring the heat sink temperature of the Power Module (alarm A05000, fault F30004)

Function description

Overload response for p0290 = 0

The converter responds depending on the control mode that has been set:

- In vector control, the converter reduces the output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.
If the measure cannot prevent a converter thermal overload, then the converter switches off the motor with fault F30024.

Overload response for p0290 = 1

The converter immediately switches off the motor with fault F30024.

Overload response for p0290 = 2

We recommend this setting for drives with square-law torque characteristic, e.g. fans.

The converter responds in 2 stages:

1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800.
In spite of the temporarily reduced pulse frequency, the base-load output current remains unchanged at the value that is assigned to parameter p1800.

Figure 6-71 Derating characteristic and base load output current for overload
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
2. If it is not possible to temporarily reduce the pulse frequency, or the risk of thermal overload cannot be prevented, then stage 2 follows:

- In vector control, the converter reduces its output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Overload response for p0290 = 3

If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

In spite of the temporarily reduced pulse frequency, the maximum output current remains unchanged at the value that is assigned to the pulse frequency setpoint. Also see p0290 = 2 .
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Overload response for p0290 $=12$

The converter responds in 2 stages:

1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800.
There is no current derating as a result of the higher pulse frequency setpoint. Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
2. If it is not possible to temporarily reduce the pulse frequency, or the risk of converter thermal overload cannot be prevented, then stage 2 follows:

- In vector control, the converter reduces the output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Overload response for p0290 $=13$

We recommend this setting for drives with a high starting torque.
If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

There is no current derating as a result of the higher pulse frequency setpoint.
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Parameters

Number	Name	Factory setting
r0036	CO: Power unit overload I2t	$\%$
r0037[0...19]	Power unit temperatures	${ }^{\circ} \mathrm{C}$
p0290	Power unit overload response	2
p0292[0...1]	Power unit temperature alarm threshold	$[0] 5^{\circ} \mathrm{C},[1] 15{ }^{\circ} \mathrm{C}$
p0294	Power Module alarm for I2t overload	95%

6.7.3 Motor protection with temperature sensor

Overview

The converter can evaluate one of the following sensors to protect the motor against overtemperature:

Tr $14 \mathrm{T1}$ MOTOR
-15T2 MOTOR
4

- KTY84 sensor
- Temperature switch (e.g. bimetallic switch)
- PTC sensor
- Pt1000 sensor

Function description
KTY84 sensor

NOTICE

Overheating of the motor due to KTY sensor connected with the incorrect polarity
If a KTY sensor is connected with incorrect polarity, the motor can be damaged by overheating, as the converter cannot detect a motor overtemperature condition.

- Connect the KTY sensor with the correct polarity.

Using a KTY sensor, the converter monitors the motor temperature and the sensor itself for wire-break or short-circuit:

- Temperature monitoring:

The converter uses a KTY sensor to evaluate the motor temperature in the range from $-48^{\circ} \mathrm{C} . . .+248^{\circ} \mathrm{C}$.
Set the temperature for the alarm and fault thresholds with parameter p0604 or p0605.

- Overtemperature alarm (A07910):
- motor temperature > p0604 and p0610 $=0$
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature >p0605
- motor temperature $>$ p0604 and p0610 >0
- Sensor monitoring (A07015 or F07016):
- Wire-break:

The converter interprets a resistance $>2120 \Omega$ as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

- Short-circuit:

The converter interprets a resistance $<50 \Omega$ as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

Bimetallic switch

The converter interprets a resistance $\geq 100 \Omega$ as an opened bimetallic switch and responds according to the setting for p0610.

PTC sensor

The converter interprets a resistance $>1650 \Omega$ as being an overtemperature and responds according to the setting for p0610.
The converter interprets a resistance $<20 \Omega$ as being a short-circuit and responds with alarm A07015. If the alarm is present for longer than 100 milliseconds, the converter shuts down with fault F07016.

Pt1000 sensor

Using a Pt1000 sensor, the converter monitors the motor temperature and the sensor itself for wire breakage and/or short-circuit:

- Temperature monitoring:

Using a Pt1000 sensor, the converter evaluates the motor temperature in the range from $-48^{\circ} \mathrm{C} . . .+248^{\circ} \mathrm{C}$.
Set the temperature for the alarm and fault thresholds with parameter p0604 or p0605.

- Overtemperature alarm (A07910):
- motor temperature > p0604 and p0610 $=0$
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature > p0605
- motor temperature > p0604 and p0610 >0
- Sensor monitoring (A07015 or F07016):
- Wire-break:

The converter interprets a resistance $>2120 \Omega$ as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

- Short-circuit:

The converter interprets a resistance $<603 \Omega$ as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

Parameters

Number	Name	Factory setting
p0335[M]	Type of motor cooling	0
p0601[M]	Motor temperature sensor type	0
p0604[M]	Mot_temp_mod 2/sensor alarm threshold	$130^{\circ} \mathrm{C}$
p0605[M]	Mot_temp_mod 1/2/sensor threshold and temperature value	$145^{\circ} \mathrm{C}$
p0610[M]	Motor overtemperature response	12
$p 0640[\mathrm{D}]$	Current limit	0 Arms

6.7.4 Motor protection by calculating the temperature

Overview

The converter calculates the motor temperature based on a thermal motor model.
The thermal motor model responds far faster to temperature increases than a temperature sensor.

If the thermal motor model is used together with a temperature sensor, e.g. a Pt1000, then the converter corrects the model according to the measured temperature.

Function description

Thermal motor model 2 for induction motors

The thermal motor model 2 for induction motors is a thermal 3-mass model, consisting of stator core, stator winding and rotor. Thermal motor model 2 calculates the temperatures - both in the rotor as well as in the stator winding.

Figure 6-72 Thermal motor model 2 for induction motors

Parameters

Table 6-67 Thermal motor model 2 for induction motors

Number	Name	Factory setting
r0034	CO: Thermal motor load	$-\%$
r0068[0 \ldots 1 1]	CO: Absolute actual current value	- Arms
p0344[M]	Motor weight (for thermal motor model)	0 kg
p0604[M]	Mot_temp_mod 2/KTY alarm threshold	$130^{\circ} \mathrm{C}$
p0605[M]	Mot_temp_mod 1/2/sensor threshold and temperature value	$145^{\circ} \mathrm{C}$
p0610[M]	Motor overtemperature response	12
p0612[M]	Mot_temp_mod activation	000000100000
p0625[M]	Motor ambient temperature during commissioning	$20^{\circ} \mathrm{C}$
p0627[M]	Motor overtemperature, stator winding	80 K
r0632[M]	Mot_temp_mod stator winding temperature	$-{ }^{\circ} \mathrm{C}$
p0640[D]	Current limit	0 Arms

Further information is provided in the parameter list.

Thermal motor model 1 for synchronous reluctance motors

Thermal motor model 1 calculates the temperature of the stator winding from the motor current and the thermal time constant of the motor model.

Figure 6-73 Thermal motor model 1 for reluctance motors

Parameters

Table 6-68 Thermal motor model 1 for reluctance motors

Number	Name	Factory setting
r0034	CO: Thermal motor load	- \%
r0068[0 ... 1]	CO : Absolute actual current value	- Arms
p0318[M]	Motor stall current	0 Arms
p0610[M]	Motor overtemperature response	12
p0611[M]	I2t thermal motor model time constant	0 s
p0612[M]	Mot_temp_mod activation	$\begin{aligned} & 000000100000 \\ & 0010 \text { bin } \end{aligned}$
p0613[M]	Mot_temp_mod 1/3 ambient temperature	$20^{\circ} \mathrm{C}$
p0625[M]	Motor ambient temperature during commissioning	$20^{\circ} \mathrm{C}$
p0627[M]	Motor overtemperature, stator winding	80 K
r0632[M]	Mot_temp_mod stator winding temperature	$-{ }^{\circ} \mathrm{C}$
p5390[M]	Mot_temp_mod 1/3 alarm threshold	$110^{\circ} \mathrm{C}$
p5391[M]	Mot_temp_mod 1/3 fault threshold	$120^{\circ} \mathrm{C}$

Further information is provided in the parameter list.

6.7.5 Motor and converter protection by limiting the voltage

Overview

An electric motor converts electrical energy into mechanical energy to drive the load. If the motor is driven by its load, e.g. by the inertia of the load during braking, the energy flow reverses: The motor operates temporarily as a generator, and converts mechanical energy into electrical energy. The electrical energy flows from the motor to the converter. The converter stores the energy in its DC-link capacitors. The DC-link voltage Vdc is consequently higher in the converter.

An excessively high DC-link voltage damages both the converter and the motor. The converter therefore monitors its DC-link voltage and, when necessary, switches off the connected motor and outputs the fault "DC-link overvoltage".

Function description

Protecting the motor and converter against overvoltage

Figure 6-74 Simplified representation of the Vdc_max control
The Vdc_max control lengthens the motor ramp-down time when braking. Consequently, the motor feeds only so much energy back into the converter to cover the losses in the converter. The DC-link voltage remains within the permissible range.
Electrically braking the motor (Page 317)

Parameters

The parameters differ depending on the motor control mode.

Table 6-69 Parameters for U/f control

Number	Name	Factory setting
$p 0210$	Device supply voltage	400 V
$p 1280[\mathrm{D}]$	Vdc controller configuration (U/f)	1
r1282	Vdc_max controller, switch-on level (U/f)	-V
$p 1283[\mathrm{D}]$	Vdc_max controller, dynamic factor (U/f)	100%
$p 1284[\mathrm{D}]$	Vdc_max controller, time threshold (U/f)	4 s
$p 1290[\mathrm{D}]$	Vdc controller proportional gain (U/f)	1
$p 1291[\mathrm{D}]$	Vdc controller integral time (U/f)	40 ms
$p 1292[\mathrm{D}]$	Vdc controller derivative-action time (U/f)	10 ms
$p 1294$	Vdc_max controller ON level for automatic detection (U/f)	0

Table 6-70 Parameters for vector control

Number	Name	Factory setting
p0210	Device supply voltage	400 V
$p 1240[\mathrm{D}]$	Vdc controller configuration (vector control)	1
r1242	Vdc_max controller, switch-on level	-V
$p 1243[\mathrm{D}]$	Vdc_max controller, dynamic factor	100%
$p 1250[\mathrm{D}]$	Vdc controller proportional gain	1
$p 1251[\mathrm{D}]$	Vdc controller integral time	0 ms
$p 1252[\mathrm{D}]$	Vdc controller derivative-action time	0 ms
p1254	Vdc_max controller ON level for automatic detection	0

Further information is provided in the parameter list.

6.7.6 Monitoring the driven load

In many applications, the speed and the torque of the motor can be used to determine whether the driven load is in an impermissible operating state. The use of an appropriate monitoring function in the converter prevents failures and damage to the machine or plant.

Examples:

- For fans, an excessively low torque indicates a torn drive belt.
- For pumps, insufficient torque can indicate a leakage or dry-running.
- The motor can be blocked by an excessively high torque at a low speed.

Functions for monitoring the driven load

The converter provides the following means to monitor the driven load via the torque of the motor:

Monitoring the driven load with a binary signal:

The speed monitoring evaluates a periodic binary signal. A signal failure indicates that the motor and the load are no longer mechanically connected with each other.

6.7.6.1 Stall protection

Function description

If the load of a standard induction motor exceeds the stall torque of the motor, the motor can also stall during operation on the converter. A stalled motor is stationary and does not develop sufficient torque to accelerate the load.

If the "Motor model fault signal stall detection" r 1746 for the time p 2178 is present via the "Motor model error threshold stall detection" p1745, the converter signals "Motor stalled" and fault F07902.

Parameters

Number	Name	Factory setting
r1408[0 ... 14]	CO/BO: Status word, current controller	-
p1745[D]	Motor model error threshold stall detection	5%
r1746	Motor model fault signal stall detection	$-\%$
p2178[D]	Motor stalled delay time	0.01 s
r2198	CO/BO: Status word monitoring functions 2	-

6.7.6.2 No-load monitoring

Function description

An inadequate motor current indicates an interruption in the power transmission from the motor to the load.

If the motor current for the time p2180 lies below the current level p2179, the converter signals "output load not available" and alarm A07929.

Parameters

Number	Name	Factory setting
r0068[0 .. 1]	CO: Absolute actual current value	- Arms
p2179[D]	Output load detection current limit	0 Arms
p2180[D]	Output load detection delay time	2000 ms
r2197[0 .. 13]	CO/BO: Status word monitoring functions 1	-

6.7.6.3 Blocking protection

Function description

If the mechanical load is too high, the motor may block. For a blocked motor, the motor current corresponds to the set current limit without the speed reaching the specified setpoint.
If the speed lies below the speed threshold p2175 for the time p2177 while the motor current reaches the current limit, the converter signals "Motor blocked" and fault F07900.

Parameters

Number	Name	Factory settings
p0045	Display values of smoothing time constant	4 ms
r0063	CO: Speed actual value	-rpm
p2175[D]	Motor blocked speed threshold	120 rpm
p2177[D]	Motor blocked delay time	3 s
r2198	Status word monitoring functions 2	-

6.7.6.4 Torque monitoring

Function description

In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.
The converter monitors the torque based on the envelope curve depending on the speed against a lower and upper torque.

If the torque lies in the impermissible range longer than time p2192, the converter reacts as specified in p2181.
The monitoring is not active below speed threshold 1 and above speed threshold 3 .

Parameters

Number	Name	Factory setting
p2181[D]	Load monitoring, response	0
p2182[D]	Load monitoring, speed threshold 1	150 rpm
p2183[D]	Load monitoring, speed threshold 2	900 rpm
p2184[D]	Load monitoring, speed threshold 3	1500 rpm
p2185[D]	Load monitoring, torque threshold 1, upper	10000000 Nm
p2186[D]	Load monitoring torque threshold 1, lower	0 Nm
p2187[D]	Load monitoring torque threshold 2, upper	10000000 Nm
p2188[D]	Load monitoring torque threshold 2, lower	0 Nm
p2189[D]	Load monitoring torque threshold 3, upper	10000000 Nm
p2190[D]	Load monitoring torque threshold 3, lower	0 Nm
p2191[D]	Load monitoring torque threshold, no load	0 Nm
p2192[D]	Load monitoring, delay time	10 s
p2193[D]	Load monitoring configuration	1

6.7.6.5 Blocking protection, leakage protection and dry-running protection

Overview

In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.

Function description

If the torque and speed lie in the impermissible range longer than time p2192, the converter reacts as specified in p2181.
For applications with pumps (p2193 = 4), the converter detects the following states of the driven load:

- Blocked
- Leakage
- Dry running

For applications with fans or compressors (p2193 = 5), the converter detects the following states of the driven load:

- Blocked
- Torn belt

The monitoring is not active below speed threshold 1 and above speed threshold 3 .
When using the control mode "U/f control" (p1300 < 10), the "Blocking protection" function becomes active when the current limit is reached.

6.7 Drive protection

Parameters

Number	Name	Factory setting
$p 1082[\mathrm{D}]$	Maximum speed	1500 rpm
p1300[D]	Open-loop/closed-loop control operating mode	See parameter list
p2165[D]	Load monitoring blocking monitoring threshold, upper	0 rpm
p2168[D]	Load monitoring blocking monitoring torque threshold	10000000 Nm
p2181[D]	Load monitoring, response	0
p2182[D]	Load monitoring, speed threshold 1	150 rpm
p2183[D]	Load monitoring, speed threshold 2	900 rpm
p2184[D]	Load monitoring, speed threshold 3	1500 rpm
p2186[D]	Load monitoring torque threshold 1, lower	0 Nm
p2188[D]	Load monitoring torque threshold 2, lower	0 Nm
p2190[D]	Load monitoring torque threshold 3, lower	0 Nm
p2191[D]	Load monitoring torque threshold, no load	0 Nm
p2192[D]	Load monitoring, delay time	10 s
p2193[D]	Load monitoring configuration	1

6.7.6.6 Rotation monitoring

Function description

The converter monitors the speed or velocity of a machine component via an electromechanic or electronic encoder, e.g. a proximity switch. Examples of how the function can be used:

- Drive belt monitoring for fans
- Blocking protection for pumps

The converter checks whether the encoder consistently supplies a 24 V signal during motor operation. If the encoder signal fails for time p2192, the converter signals fault F07936.

Figure 6-75 Function plan and time response of the speed monitoring

Parameters

Number	Name	Factory setting
r0722	CO/BO: CU digital inputs, status	-
p2192[D]	Load monitoring, delay time	10 s
p2193[D]	Load monitoring configuration	1
p3232[C]	BI: Load monitoring, failure detection	1

Further information is provided in the parameter list.

6.8 Drive availability

6.8.1 Flying restart - switching on while the motor is running

If you switch on the motor while it is still rotating, without the "Flying restart" function, there is a high probability that a fault will occur as a result of overcurrent (F30001 or F07801). Examples of applications involving an unintentionally rotating motor directly before switching on:

- The motor rotates after a brief line interruption.
- A flow of air turns the fan impeller.
- A load with a high moment of inertia drives the motor.

Principle of operation

The "Flying restart" function comprises the following steps:

1. After the on command, the converter impresses the search current in the motor and increases the output frequency.
2. When the output frequency reaches the actual motor speed, the converter waits for the motor excitation build up time.
3. The converter accelerates the motor to the actual speed setpoint.

Figure 6-76 Principle of operation of the "flying restart" function

Parameters

Table 6-71 Setting "flying restart" function

Number	Name	Factory setting
p1200[D]	Flying restart operating mode	0

No "Flying restart" function for group drives

It is not permissible that you enable the "Flying restart" function if the converter is simultaneously driving several motors.

Exception: a mechanical coupling ensures that all of the motors always operate with the same speed.

Table 6-72 Advanced settings

Number	Name	Factory setting
r0331[M]	Actual motor magnetizing current / short-circuit current	- Arms
$p 0346[\mathrm{M}]$	Motor excitation build-up time	0 s
p0347[M]	Motor de-excitation time	0 s
p1201[C]	BI: Flying restart enable signal source	1
p1202[D]	Flying restart detection current	$90 \% / 100 \%$
$p 1203[D]$	Flying restart search rate factor	$150 \% / 100 \%$

6.8.2 Automatic restart

Overview

3
The automatic restart includes two different functions:

- The converter automatically acknowledges faults.
- After a fault occurs or after a power failure, the converter automatically switches-on the motor again.

The converter interprets the following events as power failure:

- The converter signals fault F30003 (undervoltage in the DC link), after the converter line voltage has been briefly interrupted.
- All the converter power supplies have been interrupted and all the energy storage devices in the converter have discharged to such a level that the converter electronics fail.

Function description

Setting the automatic restart function

WARNING

Unexpected machine motion caused by the active automatic restart function
When the "automatic restart" function is active (p1210 > 1), the motor automatically starts after a line supply phase. Unexpected movement of machine parts can result in serious injury and material damage.

- Block off hazardous areas within the machine to prevent inadvertent access.

If it is possible that the motor is still rotating for a longer period of time after a power failure or after a fault, then you must also activate the "flying restart" function.

Flying restart - switching on while the motor is running (Page 340)
Using p1210, select the automatic restart mode that best suits your application.

Figure 6-77
Automatic restart modes

The principle of operation of the other parameters is explained in the following diagram and in the table below.

${ }^{1)}$ The converter automatically acknowledges faults under the following conditions:

- $p 1210=1$ or 26: Always.
- $\mathrm{p} 1210=4$ or 6 : If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).
- $p 1210=14$ or 16: Never.
${ }^{2)}$ The converter attempts to automatically switch the motor on under the following conditions:
- p1210 = 1: Never.
- $\mathrm{p} 1210=4,6,14,16$, or 26 : If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).
${ }^{3}$) If, after a flying restart and magnetization (r0056.4 = 1) no fault occurs within one second, then the start attempt was successful.
Figure 6-78 Time response of the automatic restart
Further information is provided in the parameter list.

Advanced settings

If you with to suppress the automatic restart function for certain faults, then you must enter the appropriate fault numbers in p1206[0 ... 9].

Example: p1206[0] = 07331 \Rightarrow No restart for fault F07331.

Suppressing the automatic restart only functions for the setting p1210 $=6,16$ or 26 .

Note

Motor starts in spite of an OFF command via the fieldbus

The converter responds with a fault if fieldbus communication is interrupted. For one of the settings p1210 $=6,16$ or 26 , the converter automatically acknowledges the fault and the motor restarts, even if the higher-level control attempts to send an OFF command to the converter.

- In order to prevent the motor automatically starting when the fieldbus communication fails, you must enter the fault number of the communication error in parameter p1206.

Parameter

Number	Name	Factory setting
$p 1206$	Automatic restart faults not active	0
$p 1210$	Automatic restart mode	0
$p 1211$	Automatic restart, start attempts	3
$p 1212$	Automatic restart, wait time start attempts	1 s
$p 1213[0]$	Automatic restart monitoring time for restart	60 s
$p 1213[1]$	Reset automatic restart monitoring time for start-up counter	0 s
$p 29630$	Activate continuous operation	0

6.8.3 Kinetic buffering (Vdc min control)

Overview

B
Kinetic buffering increases the drive availability. The kinetic buffering utilizes the kinetic energy of the load to buffer line dips and failures. During a line dip, the converter keeps the motor in the switched-on state for as long as possible. One second is a typical maximum buffer time.

Precondition

The following conditions have to be fulfilled to use the "kinetic buffering" function advantageously:

- The driven machine has a sufficiently high inertia.
- The application allows a motor to be braked during a power failure.

Function description

When the line supply dips, the DC-link voltage in the converter decreases. The kinetic buffering ($\mathrm{V}_{\mathrm{DC} \text { min }}$ control) intervenes at an adjustable threshold. The $\mathrm{V}_{\mathrm{DC} \text { min }}$ control forces the load to go into slightly regenerative operation. As a consequence, the converter covers its power loss and the losses in the motor with the kinetic energy of the load. The load speed decreases, but the DC-link voltage remains constant during the kinetic buffering. After the line supply returns, the converter immediately resumes normal operation.

Figure 6-79 Principle mode of operation of kinetic buffering

Parameters

Number	Name	Factory setting
r0056[0...15]	CO/BO: Status word, closed-loop control	-
p0210	Device supply voltage	400 V
p1240[D]	Vdc controller configuration (vector control)	1

Number	Name	Factory setting
p1245[D]	Vdc_min controller, switch-on level (kinetic buffering)	See parameter list
r1246	Vdc_min controller, switch-on level (kinetic buffering)	- V
p1247[D]	Vdc_min controller, dynamic factor (kinetic buffering)	300%
p1255[D]	Vdc_min controller, time threshold	0 s
p1257[D]	Vdc_min controller, speed threshold	50 rpm

6.8.4 Essential service mode

Overview

\leftrightarrow
In essential service mode (ESM), the converter attempts to operate the motor for as long as possible despite irregular ambient conditions.

The converter logs the essential service mode and any faults that occur during essential service mode. The log is accessible only for the service and repair organization.

Note

Warranty is lost in the essential service mode

When the essential service mode is active, and faults occur in the converter, all warranty claims associated with the converter become null and void. The faults can have the following causes:

- Exceptionally high temperatures inside and outside the converter
- Open fire inside and outside the converter
- Emissions of light, noise, particles or gases

Function description

Activating and terminating essential service mode

Signal p3880 = 1 activates the essential service mode.
Signal p3880 $=0$ deactivates the essential service mode.
Switching the motor on and off during active essential service mode
The OFF1, OFF2 and OFF3 commands for switching off the motor have no effect.
The converter blocks all functions that switch off the motor to save energy, e.g. PROFIenergy or hibernation mode.

The "Safe Torque Off" safety function terminates the essential service mode.

WARNING

Unexpected exiting of the essential service mode by selecting "Safe Torque Off"
An active Safe Torque Off (STO) safety function switches the motor off, thus terminating the essential service mode. The termination of essential service mode can cause severe injury or death, e.g. for the failure of a flue gas extraction.

- Prevent the STO safety function from being selected in essential service mode by controlling the converter appropriately.
- Take the unintentional selection of the STO safety function into account in the risk analysis of the system.

Setpoint during active essential service mode

The converter changes the speed setpoint to the ESM setpoint source.
P3881 determines the ESM setpoint source. If you have defined an analog input as setpoint source using p3881, the converter can switch over to setpoint p3882 in case of wire breakage.

Reaction to faults during active essential service mode

In "essential service mode", the converter does not switch off the motor when faults develop, but rather reacts differently depending on the fault type:

- The converter ignores faults, which do not directly result in the destruction of the converter or the motor.
- Faults with the reaction "OFF2" switch the motor off immediately.

In this case, the converter attempts to automatically acknowledge the faults using the automatic restart function.

- For faults that cannot be acknowledged, it is possible to switch over the motor to line operation using the bypass function.

Automatic restart during active essential service mode

The converter ignores the settings in p1206 (faults without automatic restart) and works with the setting "restart after a fault with further start attempts" (p1210=6).

The converter carries out the maximum number of restart attempts set in p1211 corresponding to the settings in p 1212 and p 1213 . The converter outputs fault F07320 if the restart attempts are not successful.

Interaction for bypass and essential service mode

- If the bypass mode is active when the essential service mode is activated, the converter changes to converter mode. This ensures that the converter uses the ESM setpoint source.
- If faults are still present after the number of start attempts parameterized in p 1211 , then the converter goes into a fault condition with F07320. In this case, there is an option of switching over to bypass operation and then directly connecting the motor to the line supply.

Procedure: Commissioning the essential service mode

1. Interconnect a free digital input as signal source for the ESM activation.

You must use a negated digital input if the essential service mode should also be active for a ground fault - or if the control cable is interrupted.
Example for negated digital input DI 3: Set p3880 = 723.3.
It is not permissible to interconnect the digital input for ESM activation with other functions.
2. Set the ESM setpoint source via p3881.
3. Set the alternative ESM setpoint source via p3882.
4. Set the source to select the direction of rotation.

- p3881 = 0, 1,2, 3 :

When you interconnect p3883 with a free digital input of your choice, p3883 inverts the direction of rotation during essential service mode.
For example, to interconnect p3883 with DI 4, set p3883 $=722.4$.

- p3881 = 4:

The technology setpoint direction of rotation is valid.
5. Optional switching to bypass mode

If the converter is not able to acknowledge pending faults with automatic restart, it signals fault F07320 and does not make any other attempts to restart.
If the motor still continues to operate in this case, you must set the following:

- Set p1266 = 3889.10. The converter switches the motor to bypass mode with r3889.10 = 1 .
- Ensure that the direction of rotation does not change when switching over to bypass operation.
- Set p1267.0 = 1. The converter switches the motor to bypass mode independent of the speed with control signal p1266.
- Commission the "Bypass" function.
\leadsto Bypass (Page 354)
You have commissioned the essential service mode.

Example

To improve the air circulation in the stairwells, the ventilation control creates an underpressure in the building. With this control, a fire would mean that flue gases enter into the stairwell. This would then mean that the stairs would be blocked as escape or evacuation route.

Using the essential service mode function, the ventilation switches over to the control of an overpressure. The essential service mode prevents the propagation of flue gas in the stairwell, thereby keeping the stairs free as an evacuation route as long as possible.

An application example for the essential service mode can be found on the Internet:
(3) http://support.automation.siemens.com/WW/view/en/63969509 (http:// support.automation.siemens.com/WW/view/en/63969509)

Function diagram

Figure 6-80

6.8 Drive availability

Parameters

Number	Name	Factory setting
$p 1206[0 \ldots 9]$	Automatic restart faults not active	0
$p 1210$	Automatic restart mode	0
$p 1211$	Automatic restart, start attempts	3
$p 1212$	Automatic restart, wait time start attempts	1 s
$p 1213$	Automatic restart monitoring time for restart	60 s
$p 1213$	Automatic restart reset monitoring time for start counter	0 s
$p 1266$	BI: Bypass control command	0
$p 1267$	Bypass changeover source configuration	0000 bin
$p 3880$	BI: ESM activation signal source	0
$p 3881$	ESM setpoint source	0
$p 3882$	ESM alternative setpoint source	0
$p 3883$	BI: ESM direction of rotation signal source	0
$p 3884$	CI: ESM technology controller setpoint	0
$r 3889[0 \ldots 10]$	CO/BO: ESM status word	-

6.9 Energy saving

6.9.1 Efficiency optimization

Overview

The efficiency optimization reduces the motor losses as far as possible.
Active efficiency optimization has the following advantages:

- Lower energy costs
- Lower motor temperature rise
- Lower motor noise levels

Active efficiency optimization has the following disadvantage:

- Longer acceleration times and more significant speed dips during torque surges.

The disadvantage is only relevant when the motor must satisfy high requirements relating to the dynamic performance. Even when efficiency optimization is active, the converter closed-loop motor control prevents the motor from stalling.

Precondition

Efficiency optimization functions under the following preconditions:

- Operation with an induction motor
- Vector control is set in the converter.

Function description

Figure 6-81 Efficiency optimization by changing the motor flux
The three variables that the converter can directly set, which define efficiency of an induction motor, are speed, torque and flux.

However, in all applications, speed and torque are specified by the driven machine. As a consequence, the remaining variable for the efficiency optimization is the flux.

The converter has two different methods of optimizing the efficiency.

Efficiency optimization, method 2

Generally, energy efficiency optimization method 2 achieves a better efficiency than method 1.
We recommend that you set method 2.

Figure 6-82 Determining the optimum flux from the motor thermal model
Based on its thermal motor model, the converter continually determines - for the actual operating point of the motor - the interdependency between efficiency and flux. The converter then sets the flux to achieve the optimum efficiency.

(1) Efficiency optimization is not active
(2) Efficiency optimization is active

Figure 6-83 Qualitative result of efficiency optimization, method 2
Depending on the motor operating point, the converter either decreases or increases the flux in partial load operation of the motor.

Efficiency optimization, method 1

Figure 6-84 Reduce the flux setpoint in the partial load range of the motor
The motor operates in partial load mode between no-load operation and the rated motor torque. Depending on p1580, in the partial load range, the converter reduces the flux setpoint linearly with the torque.

Figure 6-85 Qualitative result of efficiency optimization, method 1
The reduced flux in the motor partial load range results in higher efficiency.

Parameters

The converter calculates the parameters for the thermal motor model based on the motor data that has been set - and the motor data identification.

Table 6-73 Efficiency optimization, method 2

Number	Name	Factory setting
p1401[D]	Flux control configuration	000000000000 0110 bin
p1570[D]	CO: Flux setpoint	100%
p3315[D]	Efficiency optimization 2 minimum flux limit value	50%
p3316[D]	Efficiency optimization 2 maximum flux limit value	110%

Table 6-74 Efficiency optimization, method 1

Number	Name	Factory setting
p1570[D]	CO: Flux setpoint	100%
p1580[D]	Efficiency optimization	80%

6.9.2 Bypass

Overview

The "Bypass" function switches the motor between converter and line operation.

Figure 6-86 Bypass control via converter
Requirements placed on the K1 converter contactor and K2 line contactor:

- K1 and K2 are designed for switching under load.
- K2 is designed for switching an inductive load.
- K1 and K2 are interlocked against closing at the same time.

Preconditions

- The "Bypass" function is supported only for induction motors.
- The "Flying restart" function must be activated for the "Bypass" function (p1200 = 1 or 4).
\leadsto Flying restart - switching on while the motor is running (Page 340)

Function description

Switching from converter operation to line operation

1. The converter switches the motor OFF.
2. The converter opens the K1 converter contactor via a digital output.
3. The converter waits for the unlocking time of the motor.
4. The converter waits for the feedback that the K1 converter contactor is open.
5. The converter closes the K2 line contactor via a digital output.

The motor is now operated directly on the line supply.

Note

Current surge when switching from converter operation to line operation

When switching from converter operation to line operation, a current > $10 \times$ rated motor current can flow temporarily. The current depends on the random phase shift between the converter voltage and the line voltage.

Switching from line operation to converter operation

1. The converter opens the K2 line contactor via a digital output.
2. The converter waits for the unlocking time of the motor.
3. The converter waits for the feedback that the K2 line contactor is open.
4. The converter closes the K1 converter contactor via a digital output.
5. The converter switches the motor on.
6. The converter adjusts with the "Flying restart" function its output frequency to the speed of the motor.

The motor is now operated on the converter.

How is the changeover triggered?

The following options are provided to switch between converter operation and line operation:

- Changeover for activation via a control command

Figure 6-87 Changeover when activating via a control signal (p1267.0 $=1$)
The converter switches the motor between converter operation and line operation depending on the bypass control command p1266.

- Changeover depending on the speed

Figure 6-88 Changeover depending on the speed (p1267.1 $=1$)

If the speed setpoint r1119 lies above the bypass speed threshold p 1265 , the converter switches the motor to line operation.
If the speed setpoint falls below the bypass speed threshold, the converter switches the motor to converter operation.

Function diagram

Figure 6-89

Parameters

Number	Name	Factory setting
$p 0347[\mathrm{M}]$	Motor de-excitation time	0 s
p1260	Bypass configuration (factory setting: 0) 0: Bypass is deactivated 3: Bypass without synchronization	0
r1261	Bypass control/status word	-
p1262[D]	Bypass dead time	1 s
p1263	Debypass (revert to drive) delay time	1 s
p1264	Bypass delay time	1 s
p1265	Bypass speed threshold	1480 rpm
p1266	BI: Bypass control command	0
p1267	Bypass changeover source configuration	0000 bin
p1269	BI: Bypass switch feedback signal	$[0] 1261.0$
p1274[0...1]	Bypass switch monitoring time	1000 ms

Further information is provided in the parameter list.
P] Parameters (Page 373)

More information

Interaction with other functions:

- Essential service mode

The activated "Essential service mode" function influences the "Bypass" function.
\checkmark Essential service mode (Page 346)

- Converter control

For operation of the motor on the line supply, the converter no longer responds to the OFF1 command, but rather only to OFF2 and OFF3.

- Temperature monitoring for the motor

The converter evaluates the temperature sensor in the motor, also for line operation of the motor.
$\square>]$ Motor protection with temperature sensor (Page 327)

- Disconnecting the converter from the line supply If for line operation of the motor, you disconnect the converter from the line supply, the converter opens the K2 contactor and the motor coasts down.
To operate the motor on the line supply also for deactivated converter, the higher-level control must supply the signal for the K2 line contactor.

6.9.3 Hibernation mode

The hibernation mode saves energy, reduces mechanical wear and noise.
Pressure and temperature controls involving pumps and fans are typical applications for the hibernation mode.

Function

If the plant/system conditions permit it, the converter switches off the motor and switches it on again when there is a demand from the process.

The hibernation mode starts as soon as the motor speed drops below the hibernation mode start speed. The converter switches off the motor after an adjustable time. If, during this time, the speed setpoint increases above the hibernation mode start speed due to pressure or temperature changes, the converter exits the hibernation mode.

In the hibernation mode the motor is switched off, but the converter continues to monitor the speed setpoint or technology controller deviation.

- For an external setpoint input (without technology controller), the converter monitors the speed setpoint and switches on the motor again as soon as the setpoint increases above the restart speed.
In the factory setting, the converter monitors the positive speed setpoint. The converter switches on the motor as soon as the setpoint exceeds the restart speed.
If you also want to monitor the negative speed setpoint, you have to monitor the setpoint amount. To do this, set p1110 $=0$.
- When the setpoint is input from the technology controller, the converter monitors the technology controller deviation ($\mathbf{r} 2273$) and switches on the motor again if the deviation of the technology controller exceeds the hibernation mode restart value (p 2392).
In the factory setting, the converter monitors the positive deviation of the technology controller. The converter switches on the motor as soon as the technology controller deviation is higher than the hibernation mode restart value (p2392).
You must monitor the absolute value of the deviation to switch on the motor again for a negative technology controller deviation.
Set p2298 = 2292 and set the minimum threshold in p2292.

Note

Hibernation mode after switching on the converter
After switching the converter on, a wait time starts in the converter. The longest wait time is at the following times:

- p1120 (ramp-up time)
- p2391 (hibernation mode delay time)
- 20 s

If the motor does not reach the hibernation mode start speed within this wait time, the converter activates the hibernation mode and switches off the motor.

If you want to prevent frequent activation and deactivation, before deactivation you still have to set a short speed boost. The boost is deactivated with p2394 $=0$.

To avoid tank deposits, particularly where liquids are involved, it is possible to exit the hibernation mode after an adjustable time (p2396) has expired and switch to normal operation.

The settings required for the respective variant can be found in the following tables.

Interaction of the function with the cascade control

It is not possible to activate the hibernation mode as long as a motor is directly operated from the line supply using the cascade control function.
\square Cascade control (Page 287)

Activating the hibernation mode with setpoint input via the internal technology controller

With this operating mode you have to set the technology controller as the setpoint source (p 2200) and use the output of the technology controller as the main setpoint (p 2251). The boost can be deactivated.

Figure 6-90 Hibernation mode using the technology setpoint as main setpoint with boost

Activating the hibernation mode with external setpoint input

With this operating mode, an external source - e.g. a temperature sensor - inputs the main setpoint.

Restart speed $=$ p1080 + p2390 + p2393
Start speed $=$ p1080 + p2390 $\quad t_{y}=$ restart speed $/ p 1082 * p 1120$
Figure 6-91 Hibernation mode using an external setpoint with boost

Figure 6-92 Hibernation mode using an external setpoint without boost

Setting the hibernation mode

Number	Name	Via tech. setpoint	Via ex- ternal setpoint
p1080	Minimum speed 0 (factory setting) ... 19,500 rpm. Lower limit of the motor speed, independently of the speed target value.	\checkmark	\checkmark
p1110	Block negative direction Parameter to block the negative direction	-	\checkmark
p2200	Technology controller enable 0: Technology controller deactivated (factory setting), 1: Technology controller activated	\checkmark	-
p2251 =1	Technology controller mode 0: Technology controller as main setpoint (factory setting), 1: Technology controller as supplementary setpoint	\checkmark	-
p2298	Technology controller minimum limiting Parameter for the minimum limiting of the technology con- troller	\checkmark	-
p2398	Hibernation mode 0: Hibernation mode inhibited (factory setting) 1: Hibernation mode enabled	\checkmark	
p2390	Hibernation mode start speed 0 (factory setting) ... 21,000 rpm. As soon as this speed is fallen below, the hibernation mode delay time starts and switches off the motor once it expires. The hibernation mode start speed is calculated as follows: Start speed = p1080 + p2390 p1080 = minimum speed p2390 = hibernation mode start speed	\checkmark	\checkmark
p2391	Hibernation mode delay time 0 ... 3599 s (factory setting 120). The hibernation mode delay time starts as soon as the output frequency of the converter drops below the hibernation mode start speed p2390. If the output frequency increases above this threshold during the delay time, the hibernation mode delay time is interrupted. Otherwise, the motor is switched off after the delay time has expired (if necessary, after a short boost).	\checkmark	\checkmark
	Hibernation mode restart value (as a \%) ls required if the technology controller is used as the main setpoint. As soon as the technology controller deviation (r2273) ex- ceeds the hibernation restart value, the converter switches to normal operation and the motor starts up with a setpoint of 1.05 * (p1080 + p2390). As soon as this value is reached, the motor continues to operate with the setpoint of the technology controller (r2260).	\checkmark	\checkmark

Number	Name	Via tech. setpoint	Via ex- ternal setpoint
p2393	Hibernation mode restart speed (rpm) Required for external setpoint input. The motor starts as soon as the setpoint exceeds the restart speed. The restart speed is calculated as follows: Restart speed = p1080 + p2390 + p2393 p1080 = minimum speed p2390 = hibernation mode start speed p2393 = hibernation mode restart speed	\checkmark	
	Hibernation mode boost duration 0 (factory setting) ... 3599 s. Before the converter switches over into the hibernation mode, the motor is accelerated for the time set in p2394 according to the acceleration ramp, however, as a maximum to the speed set in p2395.	\checkmark	\checkmark
p2394	Hibernation mode boost speed 0 (factory setting) ... 21,000 rpm. Before the converter switches over to hibernation mode, the motor is accelerated for the time set in p2394 along the acceleration ramp, but not to more than the speed set in p2395. Caution: The boost may not result in any overpressure or overrun.	\checkmark	\checkmark
p2395	Maximum hibernation mode shutdown time 0 (factory setting) to 863,999 s. At the latest when this time expires, the converter switches to normal operation and ac- celerates up to the start speed (p1080 + p2390). If the con- verter is switched to normal operation in advance, the shut- down time is reset to the value set in this parameter. With p2396 = 0, automatic changeover to normal operation after a certain time is deactivated.	\checkmark	\checkmark
p2396	(

Note

Activate the motorized potentiometer as ramp-function generator to use the motorized potentiometer of the converter as setpoint for the hibernation mode.

- Motorized potentiometer: p1030.4 = 1
- Technology motorized potentiometer: p2230. = 1 .

Status of the hibernation mode

Number	Name
r2273	Display of the setpoint/actual value deviation of the technology controller
r2397	Actual hibernation mode output speed Actual boost speed before the pulses are inhibited or the actual start speed after restart.
r2399	Hibernation mode status word 00 Hibernation mode enabled (p2398 <> 0) 01 Hibernation mode active 02 Hibernation mode delay time active 03 Hibernation mode boost active 04 Hibernation mode motor switched off 05 Hibernation mode motor switched off, cyclic restart active 06 Energy-saving mode motor restarts 07 Hibernation mode supplies the total setpoint of the ramp-function generator 08 Hibernation mode bypasses the ramp-function generator in the setpoint channel

6.9.4 Line contactor control

Overview

到品 A line contactor disconnects the converter from the line supply, and therefore reduces the converter losses when the motor is not operational.

Function description

The converter controls its own line contactor using a digital output. The line contactor control requires a 24 V power supply from the converter. The 24 V power supply must be maintained even when the line contactor is open.

Figure 6-93 Line contactor control via DO 0 with feedback signal via DI 3
Activating the line contactor control
In order for the converter to control line contactor K1 using one of its own digital outputs, you must interconnect the digital output with signal r0863.1, e.g. for DO 0: p0730 $=863.1$.

Line contactor control with feedback signal

Interconnect p0860 with the signal of the corresponding digital input:

- p0860 = 722.x: Feedback signal of an NO contact via DIx
- p0860 = 723.x: Feedback signal of an NC contact via Dlx

Figure 6-94 Line contactor control via DO 2 with feedback signal via DI 3
If the line contactor feedback signal is not available for longer than the time set in p0861, the converter signals fault F07300.

Parameters

Number	Name	Factory setting
r0046.0..n	CO/BO: Missing enable signals	-
p0860	BI: Line contactor feedback signal	863.1
p0861	Line contactor monitoring time	100 ms
r0863.0...1	CO/BO: Drive coupling status word / control word	-
p0867	Power unit main contactor hold time after OFF1	50 ms
p0869	Configuration sequence control	0000 bin
p0870	BI: close main contactor	0

More information is provided in the parameter list.

6.9.5 Calculating the energy saving for fluid flow machines

Overview

\section*{| AD |
| :--- |
| B |
| C |}

Fluid flow machines, which mechanically control the flow rate using valves or throttle flaps, operate with a constant speed corresponding to the line frequency.

Figure 6-95 Flow control with pump and throttle connected to a 50 Hz line supply
The lower the flow rate, the poorer the efficiency of the fluid flow machine (pump). The fluid flow machine (pump) has the poorest efficiency when the throttle or valve is completely closed. Further, undesirable effects can occur, for example the formation of vapor bubbles in liquids (cavitation) or the temperature of the medium being pumped can increase.

The converter controls the flow rate by appropriately varying the speed of the fluid flow machine. By controlling the flow rate, the fluid flow machine operates at the optimum efficiency for each flow rate. This situation means that in the partial load range less electric power is required than when controlling the flow rate using valves and throttles.

Figure 6-96 Flow control with pump and converter

Function description

The converter calculates the energy saving from the flow characteristic associated with a mechanical flow control and the measured electric power that is drawn.
The calculation is suitable for centrifugal pumps, fans, radial and axial compressors, for instance.

Flow characteristic

Figure 6-97 Factory setting of the flow characteristic
To set the characteristic, you require the following data from the machine manufacturer for each speed interpolation point:

- The flow rate of the fluid-flow machine associated with the 5 selected converter speeds
- At constant speed, the power drawn which is associated with the 5 flow rates corresponds to the line frequency and mechanical throttling of the flow rate.

Parameters

Number	Name	Factory setting
r0039[0...n]	CO: Energy display	-
p0040	Reset energy consumption display	0
r0041	Energy saved	-
r0042[0..n]	CO: Process energy display	-
p0043	BI: Energy consumption display enabled.	0
p3320[0...n]	Fluid flow machine power, point 1	25
p3321[0..n]	Fluid flow machine speed, point 1	0
p3322[0..n]	Fluid flow machine power, point 2	50
p3323[0..n]	Fluid flow machine speed, point 2	25
p3324[0..n]	Fluid flow machine power, point 3	77
p3325[0..n]	Fluid flow machine speed, point 3	50
p3326[0..n]	Fluid flow machine power, point 4	92
p3327[0...n]	Fluid flow machine speed, point 4	75
p3328[0...n]	Fluid flow machine power, point 5	100
p3329[0...n]	Fluid flow machine speed, point 5	100

6.10 Switchover between different settings

Overview

There are applications that require different converter settings.

Example:

Different motors are operated on one converter. The converter must operate with the motor data of the particular motor and the appropriate ramp-function generator.

Function description

Drive Data Sets (DDS)

Some converter functions can be set differently, and there can be a switch between the different settings.

Note

You can only switch over the motor data of the drive data sets in the "ready for operation" state with the motor switched off. The switchover time is approx. 50 ms .

If you do not switch over the motor data together with the drive data sets (i.e. same motor number in p0826), then the drive data sets can also be switched over in operation.

The associated parameters are indexed (index $0,1,2$, or 3). One of the four indexes is selected with control commands, and thereby one of the four saved settings.

The settings in the converter with the same index are called a drive data set.

Selecting the number of drive data sets

Parameter p0180 defines the number of drive data sets (1 ... 4).

Parameter	Description
p0010 $=0$	Drive commissioning: Ready
p0010 $=15$	Drive commissioning: Data sets
p0180	Drive data set (DDS) number

Copying the drive data sets

Parameter	Description
$p 0819[0]$	Source drive data set
$p 0819[1]$	Target drive data set
$p 0819[2]=1$	Starts the copy operation

Parameters

Number	Name	Factory setting
p0010	Drive commissioning parameter filter	1
r0051	CO/BO: Drive data set DDS effective	-
p0180	Drive data set (DDS) number	1
p0819[0 $\ldots 2]$	Copy drive data set DDS	0
p0820[C]	BI: Drive data set DDS selection, bit 0	0
p0821[C]	BI: Drive data set DDS selection, bit 1	0
p0826[M]	Motor changeover, motor number	0

Parameters

7.1 Brief description of the parameters

Overview

The brief parameter description provides the most important information for all of the parameters that are assigned to a certain converter function.

If the number of parameter indices depends on the data sets, then the parameter index is shown in an abbreviated form.

	Number of indices $=$ number of command data sets (CDS) Number of indices = number of drive data sets (DDS) Number of indices = number of motor data sets (MDS) Parameters with indices 0... 3 Parameters with bits $0 . . .15$	
Number	Name	Factory setting
p1234[C] ——		
p1234[D] -		
p1234[M]		
p1234[0...3] -		
p1234.0... 15		

Figure 7-1 Brief parameter description

7.2 Explanation of the detailed parameter list

Overview

Figure 7-2 Parameter description

Function description

Parameter number

The parameter number is made up of a " p " or " r ", followed by a number and optionally the index or bit array.

- p1234
- r1234
- p1234[0...2]
- p1234.0 ... 15

Adjustable parameters (read and write)
Display parameters (read-only)
Adjustable parameters with index 0 to 2
Adjustable parameters with bit 0 to bit 15

- p1234[1]

Adjustable parameter index 1

- p1234.1

Adjustable parameter bit 1

Parameter name

The following abbreviations can appear in front of the names:

BI	Binector input
BO	Binector output
CI	Connector input

CO	Connector output
CO/BO	Connector/binector output
Interconnecting signals in the converter (Page 930)	

Can be changed

"-" The parameter can be changed in any state, and the change becomes immediately effective.
$\mathrm{C}(\mathrm{x}) \quad$ The parameter can only be changed for the following settings:
C: p0010 > 0
$\mathrm{C}(\mathrm{x}): \mathrm{p} 0010=\mathrm{x}$
$U \quad$ The motor is switched on
T The motor is switched off and p0010 $=0$

Unit group and unit selection

For parameters where the unit can be switched over.
"Unit group": to which group does the parameter belong?
"Unit selection": with which parameter do you switch over the unit?

Data type

- Integer8	I8	8-bit integer
- Integer16	I16	16-bit integer
- Integer32	I32	32-bit integer
- Unsigned8	U 8	8-bit without sign
- Unsigned16	U 16	16-bit without sign
- Unsigned32	U 32	32-bit without sign
- FloatingPoint32	Float	32-bit floating-point number

Scaling

Specification of the reference variable with which a signal value is automatically converted with a BICO interconnection.

The following reference variables are available:

- p2000 ... p2003: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- 4000H: 4000 hex $=100 \%$ (word) or 40000000 hex $=100 \%$ (double word)

More information

Firmware version: V1.00
Firmware version of the basic system V04712502_1000100

7.3 Parameter list
 All objects: CUG120X_PN

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
When executing a specific macro, the corresponding programmed settings are made and become active.

Note

Macros available as standard are described in the technical documentation of the particular product.

r0018	Control Unit firmware version / Firmware version		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	-
Description:	Displays the firmware version of the Control Unit.		
	Note		
	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0020	Speed setpoint smoothed / Speed setpoint		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 5020, 6799
		Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator).		
Dependency:	See also: r0060		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0021	CO: Actual speed smoothed / Actual speed		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the calculated and smoothed rotor speed.		
	Frequency components from the slip compensation (for induction motors) are not included.		
Dependency:	See also: r0022, r0063		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		

r0022	Actual speed rpm smoothed / Actual speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the calculated and smoothed rotor speed.		
	Frequency components from the slip compensation (for induction motors) are not included.		
	r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.		
Dependency:	See also: r0021, r0063		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
r0024	Output frequency smoothed / Output frequency		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6300, 6799
	Min:	Max:	Factory setting:
	- [Hz]	- [Hz]	- [Hz]
Description:			
	Frequency components from the slip compensation (for induction motors) are included.		
Dependency:	See also: r0066		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
r0025	CO: Output voltage smoothed / Output voltage		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 5730, 6300, 6799
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the smooth	unit.	
Dependency:	See also: r0072		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0026	CO: DC link voltage smoothed / DC link voltage		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [V]		- [V]

7.3 Parameter list

Description: Dependency:	Displays the smoothed actual value of the DC link voltage. See also: r0070
	NOTICE
	When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.
	Note Smoothing time constant $=100 \mathrm{~ms}$ The signal is not suitable as a process quantity and may only be used as a display quantity. The DC link voltage is available smoothed (r0026) and unsmoothed (r0070). r0026 sets itself to the lower value of the pulsating DC link voltage.
r0027	CO: Absolute actual current smoothed / Motor current
	Access level: $2 \quad$ Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: p2002 Dynamic index: -
	Unit group: - Unit selection: - Function diagram: 5730, 6799, 8850,8950
	Min: Max: Factory setting:
	- [Arms] - [Arms] - [Arms]
Description:	Displays the smoothed absolute actual current value.
Dependency:	See also: r0068
	NOTICE
	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.

Note

Smoothing time constant $=300 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.
The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068).

r0031	Actual torque smoothed / Actual torque		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 5730, 6799
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the smoothed torque actual value.		
Dependency:	See also: r0080		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		
r0032	CO: Active power actual value smoothed / Power		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dynamic index: -
	Unit group: 14_10	Unit selection: p0505	Function diagram: 5730, 6799, 8750, 8850, 8950
	Min:	Max:	Factory setting:
	- [kW]	- [kW]	- [kW]

Description: Dependency:	Displays the smoothed actual value of the active power. See also: r0082		
	NOTICE		
	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	Note Power delivered at the motor shaft. The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		
r0034	CO: Motor utilization thermal / Mot_util therm		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8017
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the motor utilization from motor temperature model 1 (I2t). For firmware version < 4.7 SP6 or p0612.12 = 0 : - r0034 = (motor model temperature - 40 K) / (p0605-40 K) * 100 \% From firmware version 4.7 SP6 and p0612.12 = 1: - r0034 = (motor model temperature - p0613) / (p0605-p0613) * 100%		
Dependency:	The thermal motor utilization is only determined when the motor temperature model 1 (I2t) is activated. The following conditions are a prerequisite for additional information. - a temperature sensor has not been parameterized (p0600, p0601). - the current corresponds to the stall current (p 0318). - speed n > 1 [rpm]. For firmware version <4.7 SP6 or p0612.12 $=0$, the following applies: - the temperature model operates with an ambient temperature of $20^{\circ} \mathrm{C}$. A motor utilization of 100% is displayed ($\mathrm{rO034}=100 \%$) when the following conditions are permanently fulfilled: - the ambient temperature is $40^{\circ} \mathrm{C}$ (model 1: p0625 $=40^{\circ} \mathrm{C}$, model 3: p0613 $=40^{\circ} \mathrm{C}$). From firmware version 4.7 SP6 and p0612.12 $=1$, the following applies: - the ambient temperature can be adapted to the conditions using p0613. See also: p0605, p0611, p0612, p0613, p0627, r0632 See also: F07011, A07012		
	NOTICE		
	After the drive is switched on, the system starts to determine the motor temperature with an assumed model value. This means that the value for the motor utilization is only valid after a stabilization time.		
	Note Smoothing time constant $=100 \mathrm{~ms}$ The signal is not suitable as a process quantity and may only be used as a display quantity. For r0034 = -200.0 \%, the following applies: The value is invalid (e.g. the motor temperature model is not activated or has been incorrectly parameterized).		
r0035	CO: Motor temperature / Mot temp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dynamic index: -
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8016, 8017
	Min:	Max:	Factory setting:
	- [$\left.{ }^{\circ} \mathrm{C}\right]$	- [${ }^{\circ} \mathrm{C}$]	- [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Display and connector output for the actual temperature in the motor.		

7.3 Parameter list

Note

For r0035 not equal to $-200.0^{\circ} \mathrm{C}$, the following applies:

- this temperature display is valid.
- a KTY/PT1000 temperature sensor is connected.
- the thermal model for the induction motor is activated (p0612 bit $1=1$ and temperature sensor deactivated: $\mathrm{p} 0600=$ 0 or p0601 = 0).
For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:
- this temperature display is not valid (temperature sensor error).
- a PTC sensor or bimetallic NC contact is connected.
- the temperature sensor of the synchronous motor is deactivated ($p 0600=0$ or $p 0601=0$).

r0036	CO: Power unit overload I2t / PM overload I2t		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the power unit overload determined using the 12 t calculation.		
	A current reference value is defined for the I 2 t monitoring of the power unit. It represents the current that can be conducted by the power unit without any influence of the switching losses (e.g. the continuously permissible current of the capacitors, inductances, busbars, etc.).		
	If the $12 t$ reference current of the power unit is not exceeded, then an overload (0%) is not displayed.		
	In the other case, the degree of thermal overload is calculated, whereby 100% results in a trip.		
Dependency:	See also: p0290		
	See also: F30005		
r0037[0...19]	CO: Power unit temperatures / PM temperatures		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dynamic index: -
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8021
	Min:	Max:	Factory setting:
	- [$\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Display and connector output for the temperature in the power unit.		

Index: \quad| $[0]=$ Inverter maximum value |
| :--- |
| $[1]=$ Depletion layer maximum value |
| $[2]=$ Rectifier maximum value |
| $[3]=$ Air intake |
| $[4]=$ Interior of power unit |
| $[5]=$ Inverter 1 |
| $[6]=$ Inverter 2 |
| $[7]=$ Inverter 3 |
| $[8]=$ Reserved |
| $[9]=$ Reserved |
| $[10]=$ Reserved |
| $[11]=$ Rectifier 1 |
| $[12]=$ Reserved |
| $[13]=$ Depletion layer 1 |
| $[14]=$ Depletion layer 2 |
| $[15]=$ Depletion layer 3 |
| $[16]=$ Depletion layer 4 |
| $[17]=$ Depletion layer 5 |
| $[18]=$ Depletion layer 6 |
| $[19]=$ Reserved |

NOTICE

Only for internal Siemens troubleshooting.
Note
The value of -200 indicates that there is no measuring signal.
r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]).
r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).
The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier.
In the case of a fault, the particular shutdown threshold depends on the power unit, and cannot be read out.

r0039[0...2] CO: Energy display / Energy display

Access level: 2	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
$-[\mathrm{kWh}]$	$-[\mathrm{kWh}]$	$-[\mathrm{kWh}]$

Description: Displays the energy values at the output terminals of the power unit.
Recommendation: r0042 should be used as process energy display. R0039 supplies as Bico source floating point values in Ws.
Index:
[0] = Energy balance (sum)
[1] = Energy drawn
[2] = Energy fed back
Dependency: See also: p0040
Note
For index 0:
Difference between the energy drawn and energy that is fed back.

p0040	Reset energy consumption display / Energy usage reset		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to reset the display in r0039 and r0041.		
	Procedure:		
	Set p0040 0 --> 1		
	The displays are reset and the parameter is automatically set to zero.		
Dependency:	See also: r0039		
	Note		
	When this display is reset (p0040), then the process energy display (r0042) is also reset.		
r0041	Energy consumption saved / Energy cons saved		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [kWh]	- [kWh]	- [kWh]
Description:	Displays the saved en	ng hours.	
Dependency:	See also: p0040		
	Note		
	This display is used for a fluid-flow machine.		
	The flow characteristic is entered into p3320 ... p3329.		
	For an operating time of below 100 hours, the display is interpolated up to 100 hours.		
r0042[0...2]	CO: Process energy display / Proc energy disp		
	Access level: 2	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [Wh]	$-[\mathrm{Wh}]$	$-[\mathrm{Wh}]$
Description:	Display and connector output for the energy values at the output terminals of the power unit.		
Index:	[0] E Energy balance (sum)		
	[1] = Energy drawn		
	[2] = Energy fed back		
Dependency:	See also: p0043		
	Note		
	The signal can be displayed as process variable (scaling: $1=1 \mathrm{~Wh}$).		
	This is enabled in p0043.		
	The display is also reset with p0040 $=1$.		
	If an enable is present in r0043 when the Control Unit powers up, then the value from r0039 is transferred into r0042. As r0039 serves as a reference signal for r0042, due to format reasons, the process energy display can only process values of r0039 up to 2147483 kWh . r0039 should also be reset using this value.		

7.3 Parameter list

Dependency:
See also: r0002

Note

The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit 01 = 1 (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (DC brake active) when:

- the signal source in p1230 has a 1 signal.

Bit $08=1$ (enable signal missing), if:

- the "STO via terminals at the Power Module" function is selected.

Bit $10=1$ (enable signal missing), if:

- the signal source in p 1140 is a 0 signal.

Bit $11=1$ (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.
Bit $12=1$ (enable signal missing), if:
- the signal source in p1142 is a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected ($\mathrm{p} 0010>0$).
- there is an OFF2 fault response.
- the drive is not operational.

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- sequence control does not have a finished message.

Bit $20=1$ (internal DC brake active), if:

- the drive is not in the state "Operation" or in "OFF1/OFF3".
- the internal pulse enable is missing (r0046.19 = 0).

Bit 21 = 1 (enable signal missing), if:

- the power unit does not issue an enable signal (e.g. because DC link voltage is too low).
- the hibernation mode is active.

Bit $25=1$ (function bypass active) if:

- the bypass function is active.

Bit $26=1$ (enable signal missing), if:

- the drive is not operational.

Bit 27 = 1 (enable signal missing), if:

- de-magnetization not completed.

Bit $30=1$ (speed controller inhibited), if one of the following reasons is present:

- the pole position identification is active.
- motor data identification is active (only certain steps).

Bit 31 = 1 (enable signal missing), if:

- the speed setpoint from jog 1 or 2 is entered.

11	I, M, P limit reached	No	Yes	-
13	Alarm motor overtemperature	No	Yes	-
14	Motor rotates forwards	Yes	No	-
15	Alarm drive converter overload	No	Yes	-
NOTICE				
p2080 is used to define the signal sources of the PROFIdrive status word interconnection.				

Note
For bit 03
This signal is inverted if it is interconnected to a digital output.
For r0052:
The status bits have the following sources:
Bit 00: r0899 Bit 0
Bit 01: r0899 Bit 1
Bit 02: r0899 Bit 2
Bit 03: r2139 Bit 3 (or r1214.10 for p1210>0)
Bit 04: r0899 Bit 4
Bit 05: r0899 Bit 5
Bit 06: r0899 Bit 6
Bit 07: r2139 Bit 7
Bit 08: 22197 Bit 7
Bit 09: r0899 Bit 7
Bit 10: r2197 Bit 6
Bit 11: r0056 Bit 13 (negated)
Bit 13: r2135 Bit 14 (negated)
Bit 14: r2197 Bit 3
Bit 15: r2135 Bit 15 (negated)

7.3 Parameter list

r0054.0... 15	CO/BO: Control word 1 / STW 1				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: -	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays control word 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	No	Yes	-
	02	OC / OFF3	No	Yes	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Continue ramp-function generator	Yes	No	-
	06	Enable speed setpoint	Yes	No	-
	07	Acknowledge fault	Yes	No	-
	08	Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
	10	Master control by PLC	Yes	No	-
	11	Direction reversal (setpoint)	Yes	No	-
	13	Motorized potentiometer raise	Yes	No	-
	14	Motorized potentiometer lower	Yes	No	-
	15	CDS bit 0	Yes	No	-
	Note				
	The following control bits are displayed in r0054:				
	Bit 00: r0898 Bit 0				
	Bit 01: r0898 Bit 1				
	Bit 02: r0898 Bit 2				
	Bit 03: r0898 Bit 3				
	Bit 04: r0898 Bit 4				
	Bit 05: r0898 Bit 5				
	Bit 06: r0898 Bit 6				
	Bit 07: 21388 Bit 7				
	Bit 08: r0898 Bit 8				
	Bit 09: r0898 Bit 9				
	Bit 10: r0898 Bit 10				
	Bit 11: r1198 Bit 11				
	Bit 13: r1198 Bit 13				
	Bit 14: r1198 Bit 14				
	Bit 15: r0836 Bit 0				
r0055.0... 15	CO/BO: Supplementary control word / Suppl STW				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2513	
	Min:		Max:	Factory setting:	
	-		-		
Description:	Display and BICO output for supplementary control word.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fixed setpoint bit 0	Yes	No	-
	01	Fixed setpoint bit 1	Yes	No	-

7.3 Parameter list

r0066	CO: Output frequency / f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 2_1	Unit selection: p0505	Function diagram: 6730, 6731, 6792, 6799, 6841, 6842, 6843
	Min:	Max:	Factory setting:
	- [Hz]	- [Hz]	- [Hz]
Description:	Display and connector output for the unsmoothed output frequency of the power unit.		
	Frequency components from the slip compensation (induction motor) are included.		
Dependency:	See also: r0024		
	Note		
	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0067	CO: Output current maximum / Current max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6300, 6640, 6724, 6828, 6850
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	See also: p0290, p0640		
r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6300, 6714, 6799, 7017, 8017, 8021, 8022
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
Dependency:	See also: r0027		
	NOTICE		
	The value is updated with the current controller sampling time.		
	Note		
	Absolute current value $=\operatorname{sqrt}\left(\mathrm{Iq}^{\wedge} 2+\operatorname{ld} \wedge 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		

r0070	CO: Actual DC link voltage / Vdc act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_2	Unit selection: p0505	Function diagram: 6723, 6724, 6730, 6731, 6799
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Display and connector	tual value of the DC link	
Dependency:	See also: r0026		
	NOTICE		
	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not supplied In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
	Note		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / Voltage max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6301, 6640, 6700, 6722, 6723, 6724, 6725, 6727
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the maximu		
Dependency:	The maximum output voltage depends on the actual $D C$ link voltage (r 0070) and the maximum modulation depth (p1803).		
	Note		
	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage		
r0072	CO: Output voltage / U_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	Function diagram: 5700, 6730, 6731, 6799
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connect	voltage of the power un	
Dependency:	See also: r0025		
	Note		
	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0075	CO: Current setpoint field-generating / Id_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6700, 6714, 6725
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]

Description:	Display and connector output for the field-generating current setpoint (Id_set).		
	Note		
	This value is irrelevant for the U/f control mode.		
r0076	CO: Current actual value field-generating / Id_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 5700, 5714, 5730, 6700, 6714, 6799
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current actual value (Id_act).		
	Note		
	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / lq_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6700, 6710
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current setpoint.		
	Note		
	This value is irrelevant for the U/f control mode.		
r0078	CO: Current actual value torque-generating / Iq_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6310, 6700, 6714, 6799
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current actual value (Iq_act).		
	Note		
	This value is irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		
r0079	CO: Torque setpoint / M_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6060, 6710
	Min:	Max:	Factory setting:
	$-[\mathrm{Nm}]$	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		

r0080[0...1]	CO: Torque actual value / Actual torque		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6714, 6799
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
Dependency:	See also: r0031, p0045		
	Note		
	The value is available smoothed (r0031 with 100 ms , $\mathrm{r} 0080[1]$ with p0045) and unsmoothed (r0080[0]).		
r0082[0...2]	CO: Active power actual value / P_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dynamic index: -
	Unit group: 14_5	Unit selection: p0505	Function diagram: 6714, 6799
	Min:	Max:	Factory setting:
	- [kW]	- [kW]	- [kW]
Description: Index:	Displays the instantaneous active power.		
	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
	[2] = Electric power		
Dependency:	See also: r0032		
	Note		
	The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
r0087	CO: Actual power factor / Cos phi act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	Displays the actual active power factor.		
	This value refers to the electrical power of the basic fundamental signals at the output terminals of the converter.		
p0096	Application class / Appl_class		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C2(1)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6019
	Min:	Max:	Factory setting:
	0	2	0
Description:	Setting the commissioning and control view for various application classes.		
Value:	0: Expert		
	$\begin{array}{ll}\text { 1: } & \text { Standard Drive Control (SDC) } \\ \text { 2: } & \text { Dynamic Drive Control (DDC) }\end{array}$		

Dependency:	The parameter is preset when commissioning the system for the first time and for the factory setting, depending on the power unit that is connected.
	Depending on the setting, the ability to see control parameters is restricted depending on the particular application.
	The following applies for p0096 > 0:
	The motor data identification routine is preset ($\mathrm{p} 1900=2$).
	The following applies for p0096 = 1:
	The motor type (p0300) synchronous or reluctance motor is not possible.

Note

When changing p0096 to 1 or 2 , when completing commissioning, fast parameterization should be executed (p3900 >0).
Depending on the setting, after quick commissioning and/or automatic parameterization, the procedure for motor data identification as well as the setting of the operating mode and parameterization of the closed-loop control must be appropriately adapted.

p0096	Application class / Appl_class		
CUG120X_PN	Access level: 1	Calculated: -	Data type: Integer16
(PM330)	Can be changed: C2(1)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6019
	Min:	Max:	Factory setting:
	0	2	0
Description:	Setting the commissioning and control view for various application classes.		
Value:	0: Expert		
	2: Dynamic Drive Control (DDC)		
Dependency:	The parameter is preset when commissioning the system for the first time and for the factory setting, depending on the power unit that is connected.		
	Depending on the setting, the ability to see control parameters is restricted depending on the particular application. The following applies for p0096>0:		
	The motor data identification routine is preset (p1900 = 2).		

Note

When changing p0096 to 1 or 2, when completing commissioning, fast parameterization should be executed (p3900 >0).
Depending on the setting, after quick commissioning and/or automatic parameterization, the procedure for motor data identification as well as the setting of the operating mode and parameterization of the closed-loop control must be appropriately adapted.

p0100	IEC/NEMA Standards / IEC/NEMA Standards		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C} 2(1,2)$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	2	0
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power, p0307) are expressed in [kW] or [hp].		
	Depending on the selection, the rated motor frequency (p0310) is either set to 50 Hz or 60 Hz .		
	For $\mathrm{p} 0100=0,2$, the following applies: The power factor (p 0308) should be parameterized.		
	For $00100=1$, the following applies: The efficiency (p0309) should be parameterized.		
Value:	$0: \quad \mathrm{IEC}(50 \mathrm{~Hz}$ line, SI units)		
	1: NEMA (60 Hz line, US units)		
	2. NEMA (60 Hz		

7.3 Parameter list

Note

It is possible to toggle between command parameters (BICO parameters) using this data set changeover.

Note

The parameter is used to identify when the drive is being commissioned for the first time.
The power unit commissioning can only be exited ($\mathrm{p} 0201=\mathrm{rO200}$), if the actual and acknowledged code numbers are identical (p0010 = 2).
When the code number is changed, the connection voltage (p0210) is checked and, if necessary, adjusted.

r0203[0...n]	Actual power unit type / PU actual type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: PDS, p0120
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	2	400	-
Description:	Displays the type of power unit found.		
Value:	$2:$	MICROMASTER 440	
	$3:$	MICROMASTER 411	
	$4:$	MICROMASTER 410	

7.3 Parameter list

| $5:$ | MICROMASTER 436 |
| :--- | :--- | :--- |
| $6:$ | MICROMASTER 440 PX |
| $7:$ | MICROMASTER 430 |
| $100:$ | SINAMICS S |
| $101:$ | SINAMICS S (value) |
| $102:$ | SINAMICS S (combi) |
| $103:$ | SINAMICS S120M (distributed) |
| $112:$ | PM220 (SINAMICS G120) |
| $113:$ | PM230 (SINAMICS G120) |
| $114:$ | PM240 (SINAMICS G120 / S120) |
| $115:$ | PM250 (SINAMICS G120 / S120) |
| $116:$ | PM260 (SINAMICS G120) |
| $118:$ | SINAMICS G120 Px |
| $120:$ | PM340 (SINAMICS S120 / G120) |
| $126:$ | SINAMICS ET200PRO |
| $130:$ | PM250D (SINAMICS G120D) |
| $133:$ | SINAMICS G120C |
| $135:$ | SINAMICS PMV40 |
| $136:$ | SINAMICS PMV60 |
| $137:$ | SINAMICS PMV80 |
| $138:$ | SINAMICS G110M |
| $140:$ | SINAMICS G120X/G120XA |
| $150:$ | SINAMICS G |
| $151:$ | PM330 (SINAMICS G120) |
| $200:$ | SINAMICS GM |
| $250:$ | SINAMICS SM |
| $260:$ | SINAMICS MC |
| $300:$ | SINAMICS GL |
| $350:$ | SINAMICS SL |
| $400:$ | SINAMICS DCM |

Note
For parallel circuit configurations, the parameter index is assigned to a power unit.
r0204[0...n] Power unit hardware properties / PU HW property

Access level: $3 \quad$ Calculated: -
Can be changed: - Scaling: -
Unit group: - Unit selection: -
Min:
-

Max:

-

Data type: Unsigned32
Dynamic index: PDS, p0120
Function diagram: -
Factory setting:

Description: Displays the properties supported by the power unit hardware.

Bit field:

Bit	Signal name	1 signal	0 signal	FP
01	RFI filter available	Yes	No	-
07	F3E regenerative feedback into the line supply	Yes	No	-
08	Internal Braking Module	Yes	No	-
12	Safe Brake Control (SBC) supported	No	Yes	-
14	Internal LC output filter	Yes	No	-
15	Line voltage	1-phase	3-phase	-

p0205	Power unit application / PU application		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C} 2(1,2)$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	7	0
Description:	The duty cycles can be overloaded provided that the drive converter is operated with its base load current before and after the overload. This is based on a load duty cycle of 300 s .		
Value:	0: Load duty cycle with high overload for vector drives		
	1: Load duty cycle with low overload for vector drives		
	6: S1 duty cycle (for internal use)		
	7: S6 duty cycle (for internal use)		
Dependency:	See also: r3996		
	NOTICE		
	The parameter value is not reset when the factory setting is restored (see p0010 $=30$, p0970). When the power unit use is changed, short-term communication interruptions may occur.		
	When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload. p0205 can only be changed to the settings that are saved in the power unit EEPROM.		
p0205	Power unit application / PU application		
CUG120X_PN(PM330)	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C} 2(1,2)$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	1
Description:	The duty cycles can be overloaded provided that the drive converter is operated with its base load current before and after the overload. This is based on a load duty cycle of 300 s .		
Value:	0 : Load duty cycle with high overload for vector drives		
	1: Load duty cycle with low overload for vector drives		
Dependency:	See also: r3996		
	NOTICE		
	The parameter value is not reset when the factory setting is restored (see p0010 $=30$, p0970). When the power unit use is changed, short-term communication interruptions may occur.		

[^1]| r0206[0...4] | Rated power unit power / PU P_rated | | |
| :--- | :--- | :--- | :--- |
| | Access level: 2 | Calculated: - | Data type: FloatingPoint32 |
| | Can be changed: - | Scaling: - | Dynamic index: - |
| | Unit group: $14 _6$ | Unit selection: p 0100 | Function diagram: - |
| | Min: | Max: | Factory setting: |
| | $-[\mathrm{kW}]$ | $-[\mathrm{kW}]$ | $-[\mathrm{kW}]$ |
| Description: | Displays the rated power unit power for various load duty cycles. | | |

7.3 Parameter list

Index:	$[0]=$ Rated value
	$[1]=$ Load duty cycle with low overload
	$[2]=$ Load duty cycle with high overload
	$[3]=$ S1 cont duty cyc
	$[4]=$ S6 load duty cycle
Dependency:	IECdrives $(p 0100=0)$: Units kW
	NEMA drives $(p 0100=1)$: Units hp
	See also: p0100, p0205

r0207[0...4]	Rated power unit current / PU PI_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	$-[$ Arms $]$	$-[$ Arms $]$	
Description:	Displays the rated power unit power for various load duty cycles.		
Index:	$[0]=$ Rated value		
	$[1]=$ Load duty cycle with low overload		
	$[2]=$ Load duty cycle with high overload		
	$[3]=$ S1 cont duty cyc		
	$[4]=$ S6 load duty cycle		
	See also: p0205		

r0207[0...4]	Rated power unit current / PU PI_rated	
CUG120X_PN	Access level: 3 Calculated: -	Data type: FloatingPoint32
(PM330)	Can be changed: - Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 8021
	Min: Max:	Factory setting:
	- [Arms] - [Arms]	- [Arms]
Description:	Displays the rated power unit power for various load duty cycles.	
Index:	[0] = Rated value	
	[1] = Load duty cycle with low overload	
	[2] = Load duty cycle with high overload	
	[3] = S1 cont duty cyc	
	[4] = S6 load duty cycle	
Dependency:	See also: p0205	
	Note	
	Wide voltage range device $500 \mathrm{~V}-690 \mathrm{~V}$:	
	The rated current displayed refers to a supply voltage of 500 V .	

r0208	Rated power unit line supply voltage / PU U_rated		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$-[V \mathrm{Vrms}]$	$-[\mathrm{Vrms}]$	
	Displays the rated line supply voltage of the power unit.		
	r0208 $=400: 380-480 \mathrm{~V}+/-10 \%$		
	$\mathrm{rO208}=500: 500-600 \mathrm{~V}+/-10 \%$		
	$\mathrm{rO208}=690: 660-690 \mathrm{~V}+/-10 \%$		

r0209[0...4]	Power unit maximum current / PU I_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8750, 8850, 8950
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum output current of the power unit.		
Index:	[0] = Catalog		
	[1] = Load duty cycle with low overload		
	[2] = Load duty cycle with high overload		
	[3] = S1 load duty cycle		
	[4] = S6 load duty cycle		
Dependency: See also: p0205			
p0210	Drive unit line supply voltage / U_connect		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1 [V]	63000 [V]	400 [V]
Description:	Sets the drive unit supply voltage (rms value of the phase-to-phase line supply voltage). Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.		
Dependency:			
	The switch-in thresholds of the Vdc_max controller (r1242, r1282) are then directly determined using p0210.		
	NOTICE		
	If, in the switched-off state (pulse inhibit), the supply voltage is higher than the entered value, the Vdc controller may be automatically deactivated in some cases to prevent the motor from accelerating the next time the system is switched on. In this case, an appropriate alarm A07401 is output.		
	Note		
	Setting ranges for p0210 as a function of the rated power unit voltage:		
	$\begin{aligned} & \text { U_rated }=400 \mathrm{~V} \text { : } \\ & - \text { p } 0210=380 \ldots 480 \mathrm{~V} \end{aligned}$		
	U_rated $=690 \mathrm{~V}$:		
	- $\mathrm{p} 0210=500 \ldots 690 \mathrm{~V}$		
p0230	Drive filter type motor side / Drv filt type mot		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C} 2(1,2)$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4	0
Description:	Sets the type of the filter at the motor side.		
Value:	0 : \quad No filter		
	Motor reactor		
	2: dv/dt filter		
	3: Sine-wave filter Siemens		
	4: Sine-wave filter third-party		

7.3 Parameter list

Dependency:	The following parameters are influenced using p0230: p0230 = 1: --> p0233 (power unit, motor reactor) = filter inductance p0230 $=3$: --> p0233 (power unit, motor reactor) = filter inductance --> p0234 (power unit sine-wave filter capacitance) = filter capacitance --> p0290 (power unit overload response) = inhibit pulse frequency reduction --> p1082 (maximum speed) = Fmax filter / pole pair number --> p1800 (pulse frequency) >= nominal pulse frequency of the filter --> p1802 (modulator modes) = space vector modulation without overcontrol $\mathrm{p} 0230=4$ --> p0290 (power unit overload response) = inhibit pulse frequency reduction --> p1802 (modulator modes) = space vector modulation without overcontrol The user must set the following parameters according to the data sheet of the sine-wave filter and also the user must check whether they are permitted. --> p0233 (power unit, motor reactor) = filter inductance --> p0234 (power unit sine-wave filter capacitance) = filter capacitance --> p1082 (maximum speed) = Fmax filter / pole pair number --> p1800 (pulse frequency) >= nominal pulse frequency of the filter See also: p0233, p0234, p0290, p1082, p1800, p1802

Note

The parameter cannot be changed if the power unit (e.g. PM260) is equipped with an internal sine-wave filter.
For sine-wave filters, the test pulse evaluation to detect short-circuits is always deactivated.
Only motor reactor filter type can be selected for a synchronous reluctance motor (RESM).
If a filter type cannot be selected, then this filter type is not permitted for the power unit.
p0230 = 1:
Power units with output reactor are limited to output frequencies of 150 Hz .
p0230 = 3
Power units with sine-wave filter are limited to output frequencies of 200 Hz .
p0230
CUG120X_PN
(PM330)

Description:
Value:

Dependency: The following parameters are influenced using p0230:
p0230 = 1:
--> p0233 (power unit, motor reactor) = filter inductance
See also: p0233, p0234, p0290, p1082, p1800, p1802

Note

If a filter type cannot be selected, then this filter type is not permitted for the power unit.
p0230 = 1:
Power units with output reactor are limited to output frequencies of 150 Hz .

r0231[0...1]	Power cable length maximum / Cable length max		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:		Factory setting:
	- [m]	- [m]	- [m]
Description:	Displays the maximum permissible cable lengths between the drive unit and motor.		
Index:	[0] = Unshielded		
	[1] = Shielded		
	Note		
	The display value is used to provide information for service and maintenance.		
p0233	Power unit motor reactor / PU mot reactor		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [mH]	1000.000 [mH]	$0.000[\mathrm{mH}]$
Description:	Enter the inductance of a filter	wer unit output.	
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	See also: p0230		
	Note		
	When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$) and then the controller calculation ($\mathrm{p} 0340=3$) is carried out.		
p0234	Power unit sine-wave filter capacitance / PU sine filter C		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [$\mu \mathrm{F}$]	$1000.000[\mu \mathrm{~F}]$	0.000 [$\mu \mathrm{F}$]
Description:	Enters the capacitance of a sine-wave filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	See also: p 0230		
	The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). When exiting the quick commissioning using p3900 $=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$).		
	The parameter cannot be changed if the power unit (e.g. PM260) is equipped with an internal sine-wave filter.		

p0235	Motor reactor in series number / L_mot in SeriesQty			
	Access level: 2	Calculated: -	Data type: Unsigned8	
	Can be changed: $\mathrm{C} 2(1,2)$	Scaling: -	Dynamic index: -	
	Unit group: - U	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	1	3	1	
Description: Dependency:	Sets the number of reactors connected in series at the power unit output. See also: p0230			
	NOTICE			
	The reactor inductances should be the same. If the number of motor reactors connected in series does not correspond to this parameter value, then this can result in an unfavorable control behavior.			
r0238	Internal power unit resistance / PU R internal			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	- [ohm] -	- [ohm]	- [ohm]	
Description:	Displays the internal resistance of the power unit (IGBT and line resistance).			
p0247	Voltage measurement configuring / U_mes	es config		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3 Calculated: - Data type: Unsigned32			
	Can be changed: T, U	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting: 0000000000100000 bin	
	-			
Description:	Sets the configuration for the output voltage measurement of the power unit.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activate voltage measurement	Yes	No	-
	01 Siemens internal	Yes	No	-
	02 Siemens internal	Yes	No	-
	05 Use voltage measured values for flying restart	rt Yes	No	-
	07 Voltage calibration when switching on	Yes	No	-
	08 Voltage monitoring when switching on	Yes	No	-
	09 Voltage monitoring cyclic	Yes	No	-

Note

The motor data identification must be executed when using the voltage measurement.

p0251[0...n]	Operating hours counter power unit fan / PU fan t_oper		
CUG120X_PN	Access level: 3	Calculated: -	Data type: Unsigned32
(PM330)	Can be changed: T	Scaling: -	Dynamic index: PDS, p0120
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [h]	$4294967295[\mathrm{~h}]$	$0[\mathrm{~h}]$
Description:	Displays the power unit fan operating hours.		
	The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced).		
Dependency:	See also: A30042		

7.3 Parameter list

Description:	Sets the response to a thermal overload condition of the power unit. The following quantities can result in a response to thermal overload: - heat sink temperature (r0037[0]). - chip temperature (r0037[1]). - power unit overload I2t (r0036). Possible measures to avoid thermal overload: - reduce the output current limit r0289 and r0067 (for closed-loop speed control) or the output frequency (for U/f control indirectly via the output current limit and the intervention of the current limiting controller). - reduce the pulse frequency. A reduction, if parameterized, is always realized after an appropriate alarm is output.
Value:	Reduce output current or output frequency No reduction shutdown when overload threshold is reached Reduce I_output or f_output and f_pulse (not using l2t) Reduce the pulse frequency (not using I2t) I_output or f_output and automatic pulse frequency reduction Automatic pulse frequency reduction
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction (p0290 = 0, 1). For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set. See also: r0036, r0037, p0230, r2135 See also: A05000, A05001, A07805 NOTICE If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter. Note The setting p0290 $=0$, 2 is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans). Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through. For p0290 $=2,3,12,13$, the 12 t overload detection of the power unit does not influence the response "Reduce pulse frequency". When the motor data identification routine is selected, p0290 cannot be changed. For short-circuit/ground fault detection, when the test pulse evaluation is active via p1901 "Test pulse evaluation configuration", the pulse frequency at the instant of switch on is briefly reduced.
p0292[0...1]	Power unit temperature alarm threshold / PU T_alrm thresh Access level: 3 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dynamic index: - Unit group: - Unit selection: - Function diagram: 8021 Min: Max: Factory setting: $0\left[{ }^{\circ} \mathrm{C}\right]$ $25\left[{ }^{\circ} \mathrm{C}\right]$ $[0] 5\left[{ }^{\circ} \mathrm{C}\right]$ $[1] 15\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the alarm threshold for power unit overtemperatures. The value is set as a difference to the tripping (shutdown) temperature. Drive: If this threshold is exceeded, an overload alarm is generated and the system responds as parameterized in p0290. Infeed: When the threshold value is exceeded, only an overload alarm is output.
Index:	[0] = Overtemperature heat sink [1] = Temperature rise power semiconductor (chip)
Dependency:	See also: r0037, p0290 See also: A05000, A05001

p0295	Fan run-on time / Fan run-on time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	600 [s]	0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		
	Note		
	- Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively high heat sink temperature).		
	- For values less than 1 s , a 1 s run on time for the fan is active.		
	- for a PM230 power unit, sizes D - F the parameter is ineffective.		
r0296	DC link voltage undervoltage threshold / Vdc U_lower_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Threshold to detect a DC link undervoltage.		
Dependency:	See also: F30003		
r0297	DC link voltage overvoltage threshold / Vdc U_upper_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8750, 8760, 8850, 8864, 8950, 8964
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Threshold to detect a DC link overvoltage.		
Dependency:	See also: F30002		
p0300[0...n]	Motor type selection / Mot type sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6310
	Min:	Max:	Factory setting:
	0	603	0

7.3 Parameter list

Description:	Selecting the motor type.
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:
	1 = induction motor
	2 = synchronous motor
	6 = synchronous reluctance motor
	$\mathrm{xx}=$ motor without code number
	$x \mathrm{xx}=$ motor with code number
	The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p0308) is neither used nor displayed (in the BOP-2/ IOP-2).
	The following applies for values < 100:
	Motor data must be manually entered.
	The following applies for values >= 100:
	Motor data are automatically loaded from an internal list.
Value:	0: \quad No motor
	1: Induction motor
	2. Synchronous motor
	6: Reluctance motor
	10: 1LE1 induction motor (not a code number)
	13: 1LG6 induction motor (not a code number)
	17: 1LA7 induction motor (not a code number)
	19: 1LA9 induction motor (not a code number)
	100: 1LE1 induction motor
	101: 1PC1 induction motor
	105: 1LE5 induction motor
	108: 1PH8 induction motor
	600: 1FP1 synchronous reluctance motor
	603: 1FP3 synchronous reluctance motor OEM
Dependency:	When selecting p $0300=10 \ldots 19$, parameters p0335, p 0626 , p 0627 , and p0628 of the thermal motor model are preassigned as a function of p0307 and p0311.
	For p0096 = 1 (Standard Drive Control) synchronous motor types cannot be selected.

CAUTION

If a motor is selected, which is not contained in the motor lists ($\mathrm{p} 0300<100$), then the motor code number must be reset (p0301 = 0), if previously a motor was parameterized from the motor list.

NOTICE

If a catalog motor is selected ($\mathrm{p} 0300>=100$) and an associated motor code number (p 0301), then the parameters that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 $=1$ for p0301 = 1xxxx). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters.
The motor type of a catalog motor corresponds to the upper three digits of the code number or the following assignment (if the particular motor type is listed):
Type/code number ranges
100 / 100xx, 110xx, 120xx, 130xx, 140xx, 150xx
108 / 108xx, 118xx, 128xx, 138xx, 148xx, 158xx

Note

Once the Control Unit has been switched on for the first time or if the factory settings have been defined accordingly, the motor type is preconfigured to induction motor ($\mathrm{p} 0300=1$).
If a motor type has not been selected ($\mathrm{p} 0300=0$), then the drive commissioning routine cannot be exited. A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.

CAUTION

If a motor is selected, which is not contained in the motor lists ($\mathrm{p} 0300<100$), then the motor code number must be reset ($\mathrm{p} 0301=0$), if previously a motor was parameterized from the motor list.

NOTICE

If a catalog motor is selected ($\mathrm{p} 0300>=100$) and an associated motor code number (p 0301), then the parameters that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 = 1 for p0301 = 1xxxx). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters.
The motor type of a catalog motor corresponds to the upper three digits of the code number or the following assignment (if the particular motor type is listed):
Type/code number ranges
100 / 100xx, 110xx, 120xx, 130xx, 140xx, 150xx

Note

Once the Control Unit has been switched on for the first time or if the factory settings have been defined accordingly, the motor type is preconfigured to induction motor ($\mathrm{p} 0300=1$).
If a motor type has not been selected ($\mathrm{p} 0300=0$), then the drive commissioning routine cannot be exited.
A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.

p0301[0...n]	Motor code number selection / Mot code No. sel		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: C2(1, 3)	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Max:	Function diagram: -
	Min:	65535	Factory setting:
	0	0	

Note

The motor code number can only be changed if the matching catalog motor was first selected in p0300.
When selecting a catalog motor ($\mathrm{p} 0300>=100$), drive commissioning can only be exited if a code number is selected. If a change is made to a non-catalog motor, then the motor code number should be reset ($\mathrm{p} 0301=0$).

p0304[0...n]	Rated motor voltage / Mot U_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6301, 6724
	Min:	Max:	Factory setting:
	0 [Vrms]	20000 [Vrms]	0 [Vrms]
Description:	Sets the rated motor voltage (rating plate).		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Note		
	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account. Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.		
p0305[0...n]	Rated motor current / Mot l_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6301
	Min:	Max:	Factory setting:
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly.		

Note

When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.
Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0306[0...n]	Number of motors connected in parallel / Motor qty		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	50	1
Description:	Sets the number (count) of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be observed in motors connected in parallel:		
	Rating plate data should only be entered for one motor: p0305, p0307		
	The following parameters are also only valid for one motor: p 0320 , p0341, p0344, p0350 ... p0361		
	All other motor parameters take into account the replacement/equivalent motor (e.g. r0331, r0333).		
Recommendation:	For motors connected in parallel, external thermal protection should be provided for each individual motor.See also: r0331		
Dependency:			

CAUTION

The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)).
The mounting regulations when connecting motors in parallel must be carefully maintained!
The number of motors set must correspond to the number of motors that are actually connected in parallel.
After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1, p3900 > 0).
For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:

- an individual motor must not be loaded beyond its stall point.

NOTICE

If p0306 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned.

Note

Only operation with U/f characteristic makes sense if more than 10 identical motors are connected in parallel.
p0307[0...n] Rated motor power / Mot P_rated
Access level: 1
Can be changed: $\mathrm{C} 2(1,3)$
Unit group: $14 _6$
Min:
$0.00[\mathrm{~kW}]$
Sets the rated motor power (rating plate).
IECdrives (p0100 = 0): Units kW
NEMA drives $(p 0100=1)$: Units hp
NEMA drives $(p 0100=2)$: Unit kW
See also: p0100

Calculated: -

Scaling: -
Unit selection: p0100
Max:
100000.00 [kW]

Data type: FloatingPoint32
Dynamic index: MDS, p0130
Function diagram: -
Factory setting:
0.00 [kW]

Description: Sets the rated motor power (rating plate).
Dependency: IECdrives $(\mathrm{p} 0100=0)$: Units kW
NEMA drives ($p 0100=1$): Units hp
NEMA drives ($\mathrm{p} 0100=2$): Unit kW
See also: p0100

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected.
Information in p0300 should be carefully observed when removing write protection.

Note

Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0308[0...n]	Rated motor power factor / Mot cos phi rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1, 3)	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000	1.000	0.000
Description:	Sets the rated motor power factor (cos phi, rating plate).		
	For a parameter value of 0.000, the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only available for $\mathrm{p} 0100=0,2$.		
	See also: p0100, p0309, r0332		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is assigned to match the power unit.		
p0309[0...n]	Rated motor efficiency / Mot eta_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	99.9 [\%]	0.0 [\%]
Description:	Sets the rated motor efficiency (rating plate).		
	For a parameter value of 0.0 , the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only visible for NEMA motors ($\mathrm{p} 0100=1,2$).		
	See also: p0100, p0308, r0332		

Note

The parameter is not used for synchronous motors.

p0310[0...n]	Rated motor frequency / Mot f_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1, 3)	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6301
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~Hz}]$	$650.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311),		
	if p0314 $=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz.		
	See also: p0311, r0313		

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
If $p 0310$ is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.

Note

Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.

p0310[0...n]	Rated motor frequency / Mot f_rated		
CUG120X_PN	Access level: 1	Calculated: -	Data type: FloatingPoint32
(PM330)	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6301
	Min:	Max:	Factory setting:
	0.00 [Hz]	103.00 [Hz]	0.00 [Hz]
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r 0313) is automatically re-calculated when the parameter is changed (together with p0311), if $\mathrm{p} 0314=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 100.00 Hz .		
	See also: p0311, r0313		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.		

Note

Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.

p0311[0...n]	Rated motor speed / Mot n_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the rated motor speed (rating plate).		
	For p0311 $=0$, the rated motor slip of induction motors is internally calculated and displayed in r0330.		
	It is especially important to correctly enter the rated motor speed for vector control and slip compensation for U/f control.		
Dependency:	If p0311 is changed and for $\mathrm{p} 0314=0$, the pole pair (r0313) is re-calculated automatically.		
	See also: p0310, r0313		

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
If p0311 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.

Note

Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.

r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 5300
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of motor pole pairs. The value is used for internal calculations.		
Dependency:	For p0314>0, the entered value is displayed in r0313.		
	For $\mathrm{p} 0314=0$, the pole pair number (r 0313) is automatically calculated from the rated power (p 0307), rated frequency (p 0310) and rated speed (p 0311).		
	See also: p0307, p		

Note

For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero.

p0316[0...n] Motor torque constant / Mot kT

Access level: 3
Can be changed: C2(1), T, U
Unit group: 28_1
Min:
0.00 [Nm / A]

Calculated: -

Scaling: -
Unit selection: p0100
Max:
$400.00[\mathrm{Nm} / \mathrm{A}]$

Data type: FloatingPoint32
Dynamic index: MDS, p0130
Function diagram: -
Factory setting:
0.00 [Nm / A]

Description: Sets the torque constant of the synchronous motor.

$$
\mathrm{p} 0316=0 \text { : }
$$

The torque constant is calculated from the motor data.
p0316>0:
The selected value is used as torque constant.

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).

p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [Arms]	5000.000 [Arms]	0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		
	Synchronous motors:		
	Sets the rated motor short-circuit current.		

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The magnetizing current p 0320 for induction motors is reset when quick commissioning is exited with $\mathrm{p} 3900>0$. If, for induction motors, the magnetizing current p0320 is changed outside the commissioning phase ($\mathrm{p} 0010>0$), then the magnetizing inductance p0360 is changed so that the EMF r0337 remains constant.

p0322[0...n]	Maximum motor speed / Mot n_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1, 3)	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	See also: p1082		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly.		

Note
The parameter has no significance for a value of p0322 $=0$.

p0323[0...n]	Maximum motor current / Mot I_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly.		

Note

The parameter has no effect for induction motors.
The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640.

p0325[0...n]	Motor pole position identification current 1st phase / Mot PollD I 1st Ph		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [Arms]	10000.000 [Arms]	0.000 [Arms]
Description:	Sets the current for the 1st phase of the two-stage technique for pole position identification routine. The current of the 2nd phase is set in p0329. The two-stage technique is selected with p1980 $=4$. See also: p0329, p1980, r1992		
Dependency:			

NOTICE
When the motor code $(\mathrm{p} 0301)$ is changed, it is possible that p 0325 is not pre-assigned.
p 0325 can be pre-assigned using $\mathrm{p} 0340=3$.

Note

The value is automatically pre-assigned for the following events:

- For p0325 = 0 and automatic calculation of the closed-loop control parameters (p0340 = 1, 2, 3).
- for quick commissioning (p3900 $=1,2,3$).

p0327[0...n]	Optimum motor load angle / Mot phi_load opt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6721, 6838
	Min:	Max:	Factory setting:
	0.0 [${ }^{\prime}$]	$135.0\left[^{\circ}\right]$	$\left.90.0{ }^{[}\right]$
Description:	Sets the optimum load angle for synchronous motors with reluctance torque.		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

This parameter has no significance for induction motors.
For synchronous motors without reluctance torque, a angle of 90 degrees must be set.
When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0329[0...n]	Motor pole position identification current / Mot PollD current		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0000 [Arms]	10000.0000 [Arms]	0.0000 [Arms]
Description:	Sets the current for the pole position identification routine (p1980 = 1).		
	For a two-stage technique (p1980 = 4), the current is set for the 2nd phase.		
	The current for the 1st phase is set in p0325.		
Dependency:	The following applies for vector drives: If a maximum current (p 0323) was not parameterized, then p0329 is limited to the rated motor current. See also: p0325, p1980, r1992		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

r0330[0...n]	Rated motor slip / Mot slip_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$
Description:	Displays the rated motor slip.		

Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. See also: p0310, p0311, r0313		
	Note		The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For p0320 $=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not entered, then the parameter is calculated from the rating plate parameters.		
r0332[0...n]	Rated motor power factor / Mot cos phi rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the rated power factor for induction motors.		
	For IEC motors, the following applies ($\mathrm{p} 0100=0$):		
	For $0308=0$, the internally calculated power factor is displayed.		
	For p0308>0, this value is displayed.		
	For NEMA motors, the following applies ($\mathrm{p} 0100=1,2$):		
	For p0309 $=0$, the internally calculated power factor is displayed.		
	For p0309 > 0, this value is converted into the power factor and displayed.		
Dependency:	If p0308 is not entered, the parameter is calculated from the rating plate parameters.		
	Note		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0333[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 7_4	Unit selection: p0100	Function diagram: -
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit Nm		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf ft		

Note

For induction motors, rO 333 is calculated from p0307 and p0311. For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328.

p0335[0...n]	Motor cooling type / Mot cool type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	128	0
Description:	Sets the motor cooling system used.		
Value:	$0: \quad$ Natural ventilation		
	1: Forced cooling		
	2: Liquid cooling		
	128: No fan		
Dependency:	For 1LA7 motors (p 0300), the parameter is pre-set as a function of p0307 and p0311.		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Note The parameter influences the thermal 3-mass motor model. 1LA7 motors, frame size 56 are operated without fan.		
p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	5	0
Description:	Setting to automatically calculate motor parameters and U/f open-loop and closed-loop control parameters from the rating plate data.		
Value:	0: No calculation		
	1: Complete calculation		
	2: Calculation of equivalent circuit	m parameters	
	3: Calculation of closed-loop cont	meters	
	4: Calculation of controller parame		
	5: \quad Calculation of technological limits and threshold values		

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
The following parameters are influenced using p0340:
p0340 = 1:
--> All of the parameters influenced for $p 0340=2,3,4,5$
--> p0341, p0342, p0344, p0612, p0640, p1082, p1231, p1232, p1333, p1349, p1611, p1654, p1726, p1825, p1828 ...
p1832, p1909, p1959, p2000, p2001, p2002, p2003, p3927, p3928
p0340 = 2:
--> p0350, p0354 ... p0360
--> p0625 (matching p0350), p0626 ... p0628
p0340 = 3:
--> All of the parameters influenced for p0340 $=4,5$
--> p0346, p0347, p0622, p1320 ... p1327, p1582, p1584, p1616, p1755, p1756, p2178
p0340 $=4$:
--> p1290, p1292, p1293, p1338, p1339, p1340, p1341, p1345, p1346, p1461, p1463, p1464, p1465, p1470, p1472, p1703, p1715, p1717, p1740, p1756, p1764, p1767, p1780, p1781, p1783, p1785, p1786, p1795
p0340 = 5:
--> p1037, p1038, p1520, p1521, p1530, p1531, p1570, p1580, p1574, p1750, p1759, p1802, p1803, p2140, p2142,
p2148, p2150, p2161, p2162, p2163, p2164, p2170, p2175, p2177, p2194, p2390, p2392, p2393

Note

p0340 $=1$ contains the calculations of $p 0340=2,3,4,5$.
p0340 $=2$ calculates the motor parameters (p0350 \ldots p0360).
p0340 $=3$ contains the calculations of p0340 $=4,5$.
p0340 $=4$ only calculates the controller parameters.
p $0340=5$ only calculates the controller limits.
When quick commissioning is exited using p3900 >0, p0340 is automatically set to 1 .
At the end of the calculations, p0340 is automatically set to 0 .

p0341[0...n]	Motor moment of inertia / Mot M_mom of inert		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 25_1	Unit selection: p0100	Function diagram: 6020, 6030, 6031, 6822
	Min:	Max:	Factory setting:
	$0.000000\left[\mathrm{kgm}^{2}\right]$	$100000.000000\left[\mathrm{kgm}^{2}\right]$	$0.000000\left[\mathrm{kgm}^{2}\right]$
Description:	Sets the motor moment of inertia (without load).		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	The parameter value is included, together with p0342, in the rated starting time of the motor.See also: $0342, \mathrm{r} 345$		

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The product of p0341 * p0342 is used when the speed controller (p0340 $=4$) is calculated automatically.

7.3 Parameter list

p0342[0...n]	Ratio between the total and motor moment of inertia / Mot Mominert Ratio		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6020, 6030, 6031, 6822
	Min:	Max:	Factory setting:
	1.000	10000.000	1.000
Description:	Sets the ratio between the total moment of inertia/mass (load + motor) and the intrinsic motor moment of inertia/mass (no load).		
Dependency:	This means that together with p0341, the rated starting (accelerating time) of the motor is calculated for a vector drive. See also: p0341, r0345		
	Note		
	The product of p0341 * p0342 is used when the speed controller (p0340 $=4$) is calculated automatically.		
p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 27_1	Unit selection: p0100	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [kg]	50000.0 [kg]	0.0 [kg]
Description:	Sets the motor weight.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit kg		
	NEMA drives (p0100 = 1): unit lb		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Note		
	The parameter influences the thermal 3 mass model of the induction motor.		
	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [s]	- [s]	- [s]
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333).		
Dependency:	See also: r0313, r0333, p0341, p0342		
p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	$20.000[s]$	0.000 [s]

Description: \quad| Sets the excitation build-up time of the motor. |
| :--- |
| This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction |
| motor is magnetized during this time. |

CAUTION

If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note).

Note

The parameter is calculated using p0340 $=1,3$.
For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1^{*} r0384). For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.000[s]$	$20.000[s]$	$0.000[s]$
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled.		
	The inverter pulses cannot be switched in (enabled) within this delay time.		

Note

The parameter is calculated using p $0340=1,3$.
For induction motors, the result depends on the rotor time constant (r0384).
if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).

p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 3	Calculated: CALC_MOD_EQU Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00000[o h m]$	2000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		
Dependency:	See also: p0625		

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The motor identification routine determines the stator resistance from the total stator resistance minus the cable resistance (p0352).

7.3 Parameter list

p0352[0...n]	Cable resistance / R_cable		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable betw	unit and motor.	
	CAUTION		
	The cable resistance should be en which p0352 was changed must b repeated.	tor data identifica m the stator resista	ed subsequently, the difference motor data identification mus

Note

The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0352[0...n]	Cable resistance / R_cable		
CUG120x_PN	Access level: 3	Calculated: -	Data type: FloatingPoint32
(PM330)	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00000[0 h m]$	120.00000 [ohm]	0.00000 [ohm]
	Resistance of the power cable between the power unit and motor.		

CAUTION

The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.
The difference with which p0352 was manually changed, must also be subtracted from reference parameter p0629 of the Rs measurement.

Note

The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0354[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6727
	Min:	Max:	Factory setting:
	0.00000 [ohm]	300.00000 [ohm]	0.00000 [ohm]
Description:	Sets the rotor/secondary section resistance of the motor at the ambient temperature p0625.		
	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor data identification routine (p 1910).		
Dependency:	See also: p0625		

NOTICE
 When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The parameter is not used for synchronous motors ($\mathrm{p} 0300=2$).

p0356[0...n]	Motor stator leak	stator leak.	
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00000 [mH]	1000.00000 [mH]	0.00000 [mH]
Description:	Induction machine: sets the stator leakage inductance of the motor.		
	Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p1910).		

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

If the stator leakage inductance (p 0356) for induction motors is changed outside the commissioning phase (p 0010 > 0), the magnetizing inductance (p 0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).
For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is, therefore, ideal for a low current.
For a controlled reluctance motor $(\mathrm{p} 0300=6)$, this is the direct axis stator inductance at the rated operating point.

p0357[0...n]	Motor stator inductance d axis / Mot L_stator d		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the stator direct-axis inductance of the synchronous motor.		
	This parameter value is automatically calculated using the motor model $(\mathrm{p} 0340=1,2)$ or using the motor identification		
	routine $(\mathrm{p} 1910)$.		

Note

For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is ideal for a low current. For a controlled reluctance motor $(\mathrm{p} 0300=6)$, this is the direct axis stator inductance at the rated operating point.

p0358[0...n]	Motor rotor leakage inductance / Mot L_rot leak		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6727
	Min:	Max:	Factory setting:
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the rotor/secondary section leakage inductance of the motor.		
	The value is automatically calculated using the motor model (p0340 =1, 2) or using the motor identification routine		
	(p1910).		

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

If the rotor leakage inductance (p 0358) for induction motors is changed outside the commissioning phase ($\mathrm{p} 0010>0$), then the magnetizing inductance (p 0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).

p0360[0...n]	Motor magnetizing inductance / Mot Lh		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 6727
	Min:	Max:	Factory setting:
	0.00000 [mH]	$10000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the magnetizing inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p1910).		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

The parameter is not used for synchronous motors (p0300 = 2).

r0395[0...n]	Actual stator resistance / R_stator act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual stator resistance (phase value).		
	The parameter value also contains the temperature-independent cable resistance.		
Dependency:	In the case of induction motors the parameter is also affected by the motor temperature model.		
	See also: p0350, p0352		
	Note		
	In each case, only the stator resistance of the active Motor Data Set is included with the stator temperature of the thermal motor model.		
r0396[0...n]	Actual rotor resistance / R_rotor act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:			
	The parameter is affected by the motor temperature model.		
Dependency:	See also: p0354		
	Note		
	In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the therm motor model.		
	This parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
p0500	Technology application / Tec application		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	5	0
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.		
Value:	0: Standard drive		
	1: Pumps and fans		
	2: Sensorless closed-loop control down to $\mathrm{f}=0$ (passive load		
	3: Pumps and fans, efficiency optimization		
	5: Starting with a high break loose torque		
Dependency:	For p0096 = 1, 2 (Standard, Dynamic Drive Control) p0500 cannot be changed.		
	NOTICE		
	If the technological application is set to p0500 $=0 \ldots 3$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.		

Note

The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900 > 0
- when writing p0340 $=1,3,5$

For $\mathrm{p} 0500=0$ and when the calculation is initiated, the following parameters are set:

- p1574 = 10 V
- p1750.2 = 0
- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0, PM260: p1802 = 2)
- p1803 = 106 \% (PM260: p1803 = 103 \%)

For p0500 $=1$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
- p1750.2 = 0
- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0)
- p1803 = 106 \% (PM260: p1803 = 103 \%)

For $\mathrm{p} 0500=2$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V (separately excited synchronous motor: 4 V)
- p1750.2 = 1
- p1802 $=4($ SVM/FLB without overcontrol) $($ PM240: p1802 $=0)$
- p1803 = 106 \% (PM260: p1803 = 103 \%)

For $\mathrm{p} 0500=3$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
- p1750.2 = 1
- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0)
- p1803 = 106 \% (PM260: p1803 = 103 \%)

For p0500 = 5:

- p1574, p1750.2, p1802, p1803 same as for p0500 = 0
- p1610 $=80 \%$, p1611 $=80 \%$ (average up to higher starting torque)
- p1310 = 80%, p1311 = 30%

In all cases, the DC component compensation is activated (p3855 = 7).
For p1750:
The setting of p1750 is only relevant for induction motors.
p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
For p1802 / p1803:
p1802 and p1803 are only changed, in all cases, if a sine-wave output filter $(p 0230=3,4)$ has not been selected.

p0500

CUG120X_PN (PM330)

Description:

Value:

Dependency:

Technology application / Tec application

Access level: 2
Can be changed: C2(1), T
Unit group: -
Min:
1

Calculated: Scaling: -
Unit selection: -
Max:
3

Data type: Integer16
Dynamic index: -
Function diagram: -
Factory setting: 3

Sets the technology application.
The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.

1:	Pumps and fans
3:	Pumps and fans, efficiency optimization

For p0096 $=2$ (Dynamic Drive Control) p0500 cannot be changed.

NOTICE

If the technological application is set to p0500 = $0 \ldots 3$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.

Note

The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900 > 0
- when writing p0340 $=1,3,5$

For $\mathrm{p} 0500=1$ and when the calculation is initiated, the following parameters are set:

- p1570 = 100%
- p1580 = 0% (no efficiency optimization)
- p1574 = 2 V
- p1750.2 = 0
- p1802 = 9 or 19 (optimized pulse pattern for p0300 $=14$)
- p1803 = 106%

For p0500 $=3$ and when the calculation is initiated, the following parameters are set:

- p1570 = 103% (flux boost for full load)
- p1580 = 100% (efficiency optimization)
- p1574 = 2 V
- p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
- p1802 $=9$ or 19 (optimized pulse pattern for p0300 $=14$)
- p1803 = 106%

p0501	Technological application (Standard Drive Control) / Techn appl SDC		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.		
Value:	0: Constant load (linear characteristic)		
	1: Speed-dependent load (parabolic characteristic)		
Dependency:	See also: p1300		
	NOTICE		
	If the technological application is set to $\mathrm{p} 0501=0,1$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.		

Note

The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900 >0
- when writing p0340 $=1,3,5$

For p0501 = 0, 1 and when the calculation is initiated, the following parameters are set:

- p1802 = 0
- p1803 = 106%
- p3855.0 = 1 (DC quantity control on)

For p1802 / p1803:
These parameters are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.

p0502

Technological application (Dynamic Drive Control) / Techn appl DDC		
Access level: 2	Calculated: -	Data type: Integer16
Can be changed: C2(1), T	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram:-
Min:	Max:	Factory setting:
0	5	0

7.3 Parameter list

Description:	Sets the technology application for dynamic applications (p0096-2).
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 or p3900.
Value:	0: Standard drive (e.g. pumps, fans)
	1: Dynamic starting or reversing
	5: Heavy-duty starting (e.g. extruders, compressors)
Dependency:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 >0 - when writing p0340 $=1,3$ or 5 See also: p1610, p1750
	Note
	When entering p0502 and initiating the calculation, the following parameters are set: p0502 $=0$:
	- p1750.0/1/7 = 1 (start and reverse in open-loop control with rugged switchover limits)
	- p1610 = 50\%, p1611 = 30% (low up to average starting torque)
	p0502 = 1:
	- p1750.0/1/7 = 0 (start and reverse in closed-loop speed control with shorter acceleration times)
	- p1610 $=50 \%$, p1611 $=30 \%$ (only effective, if the drive is switched-on with a speed setpoint of zero)
	p0502 = 5:
	- p1750.0/1/7 = 1 (start and reverse in open-loop control with rugged switchover limits)
	- p1610 $=80 \%$, p1611 $=80 \%$ (average up to higher starting torque)
	$\mathrm{p} 1750.6=1$ is always set, p1574 (voltage reserve) is preassigned, depending on p0205 (power unit application).
	Technological application (Dynamic Drive Control) / Techn appl DDC
CUG120X_PN (PM330)	Access level: $2 \quad$ Calculated: - Data type: Integer16
	Can be changed: C2(1), T Scaling: - Dynamic index: -
	Unit group: - Unit selection: - Function diagram: -
	Min: Max: Factory setting:
	3 3 3
Description:	Sets the technology application for dynamic applications (p0096 = 2).
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 or p3900.
Value:	3: Pumps and fans, efficiency optimization
Dependency:	The calculation of parameters dependent on the technology application can be called up as follows:
	- when exiting quick commissioning using p3900 > 0
	- when writing p0340 $=1,3$ or 5
	See also: p1610, p1750

Note

The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900 >0
- when writing p0340 $=1,3,5$

For p0500 $=3$ and when the calculation is initiated, the following parameters are set:

- p1570 = 103% (flux boost for full load)
- p1580 = 100 \% (efficiency optimization)
- p1574 = 2 V
- p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
- p1802 = 9 or 19 (optimized pulse pattern for p0300 = 14)
- p1803 = 106 \%

p0505	Selecting the system of units / Unit sys select		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C2(5)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	4	1
Description:	Sets the actual system of units.		
Value:	1: SI system of units		
	2: System of units referred/S		
	3: US system of		
	4: System of units referred/US		
Dependency:	The parameter can only be changed in an offline project using the commissioning software.		
	CAUTION		
	If a per unit representation is selected and if the reference parameters (e.g. p2000) are subsequently changed, then the physical significance of several control parameters is also adapted at the same time. As a consequence, the control behavior can change (see p1744, p1752, p1755).		
	Note		
	Reference parameter for the unit system \% are, for example, p2000 ... p2004. Depending on what has been selected these are displayed using either SI or US units.		
p0514[0...9]	Scaling-specific reference values / Scal spec ref val		
	Access level: 3	Calculated: CALC	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000001	10000000.000000	1.000000
Description:	Sets the reference values for the specific scaling of BICO parameters.		
	The specific scaling is active when interconnecting with other BICO parameters, and can be used in the following cases:		
	1. Parameter with the marking "Scaling: p0514".		
	2. Changing the standard scaling for parameters with the marking "Scaling: p2000" ... "Scaling: p2007".		
	Relative values refer to the corresponding reference value. The reference value corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	To specifically scale BICO parameters, proceed as follows:		
	- set the reference value (p0514[0...9]).		
	- set the numbers of the parameters, which should be active for the scaling, corresponding to the index of p0514 (p0515[0...19] ... p0524[0...19]).		
	For parameters with the marking "Scaling: p0514", which are not entered in p0515[0...19] to p0524[0...19], the reference value 1.0 (factory setting) applies.		
Index:	[0] = Parameters in p0515[0...19]		
	[1] = Parameters in p0516[0...19]		
	[2] = Parameters in p0517[0...19]		
	[3] = Parameters in p0518[0...19]		
	[4] = Parameters in p0519[0...19]		
	[5] = Parameters in p0520[0...19]		
	[6] = Parameters in p0521[0...19]		
	[7] = Parameters in p0522[0...19]		
	[8] = Parameters in p0523[0...19]		
	[9] = Parameters in p0524[0...19]See also: p0515, p0516, p0517, p0518, p0519, p0520, p0521, p0522, p0523, p0524		
Dependency:			

p0515[0...19]	Scaling specific parameters referred to p0514[0] / Scal spec p514[0]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[0] for the specific scaling.		
	p0515[0]: parameter number		
	p0515[1]: parameter number		
	p0515[2]: parameter number		
	...		
	p0515[19]: parameter number		
Dependency:	See also: p0514		

p0516[0...19] Scaling specific parameters referred to p0514[1] / Scal spec p514[1]

Access level: 3
Can be changed: T
Unit group: -
Min:
0
Sets the parameters with reference value in p0514[1] for the specific scaling.
p0516[0]: parameter number
p0516[1]: parameter number
p0516[2]: parameter number
p0516[19]: parameter number
Dependency: See also: p0514
p0517[0...19] Scaling specific parameters referred to p0514[2] / Scal spec p514[2]
Access level: 3
Can be changed: T
Unit group: -
Min:
0
Sets the parameters with reference value in p0514[2] for the specific scaling.
p0517[0]: parameter number
p0517[1]: parameter number
p0517[2]: parameter number
p0517[19]: parameter number
Dependency: See also: p0514
p0518[0...19] Scaling specific parameters referred to p0514[3] / Scal spec p514[3]
Access level: 3

Description:	Sets the parameters with reference value in p0514[1] for the specific scaling.
p0516[0]: parameter number	
p0516[1]: parameter number	
p0516[2]: parameter number	
	..
p0516[19]: parameter number	
Dependency:	See also: p0514

Description:	Sets the parameters with reference value in p0514[2] for the specific scaling.
p0517[0]: parameter number	
p0517[1]: parameter number	
p0517[2]: parameter number	
	..
	p0517[19]: parameter number
Dependency:	See also: p0514

Can be changed: T
Unit group: -
Min:
0

Calculated: CALC_MOD_ALL Data type: Unsigned32
Scaling: - Dynamic index: -
Unit selection: - Function diagram: -
Max:
4294967295

Factory setting: 0

Calculated: CALC_MOD_ALL Data type: Unsigned32
Scaling: -
Unit selection: - Function diagram: Max: Factory setting: 42949672950

Description:	Sets the parameters with reference value in p0514[3] for the specific scaling. p0518[0]: parameter number p0518[1]: parameter number p0518[2]: parameter number p0518[19]: parameter number	
p0519[0...19]	Scaling specific parameters referred to p0514[4] / Scal spec p514	[4] Data type: Unsigned32 Dynamic index: - Function diagram: - Factory setting: 0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[4]$ for the specific scaling. p0519[0]: parameter number p0519[1]: parameter number p0519[2]: parameter number p0519[19]: parameter number See also: p0514	
p0520[0...19]	Scaling specific parameters referred to p0514[5] / Scal spec p514	[5] Data type: Unsigned32 Dynamic index: - Function diagram: - Factory setting: 0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[5]$ for the specific scaling. p0520[0]: parameter number p0520[1]: parameter number p0520[2]: parameter number p0520[19]: parameter number See also: p0514	
p0521[0...19]	Scaling specific parameters referred to p0514[6] / Scal spec p514	
	Access level: 3 Calculated: CALC_MOD_ALL Can be changed: T Scaling: - Unit group: - Unit selection: - Min: Max: 0 4294967295	Data type: Unsigned32 Dynamic index: - Function diagram: - Factory setting: 0
Description:	Sets the parameters with reference value in p0514[6] for the specific scaling. p0521[0]: parameter number p0521[1]: parameter number p0521[2]: parameter number p0521[19]: parameter number	
Dependency:	See also: p0514	

NOTICE
This parameter is pre-assigned in the case of motors from the motor list (p 0301) if a bearing version (p 0530) is
selected.
When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530 should
be observed when removing write protection.
If p0532 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also
associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the
motor (p0010 = 3).

p0573	Inhibit automatic reference value calculation / Inhibit calc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters (p0340, p3900).		
Value:	0: No		
	1: Yes		
	NOTICE		
	The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and only one drive data set exists ($\mathrm{p} 0180=1$). This is the case during initial commissioning. Once the motor and control parameters have been calculated (p 0340 , p 3900), the inhibit for the reference value calculation is automatically re-activated.		

Note

If value $=0$:
The automatic calculation (p0340, p3900) overwrites the reference parameters.
If value = 1 :
The automatic calculation ($\mathrm{p} 0340, \mathrm{p} 3900$) does not overwrite the reference parameters.

Technological unit selection / Tech unit select
Access level: $1 \quad$ Calculated: -

Data type: Integer16
 Dynamic index: -
 Function diagram: -
 Factory setting:
 1

Description: Selects the units for the parameters of the technology controller.
Value:
For p0595 = 1, 2, the reference quantity set in p0596 is not active.

1:	\%
$2:$	1 referred no dimensions
3:	bar
$4:$	${ }^{\circ} \mathrm{C}$
$5:$	Pa
6:	$\mathrm{ltr} / \mathrm{s}$
$7:$	$\mathrm{m}^{3} / \mathrm{s}$
$8:$	$\mathrm{Itr} / \mathrm{min}$
$9:$	$\mathrm{m}^{3} / \mathrm{min}$
$10:$	$\mathrm{Itr} / \mathrm{h}$
$11:$	m / h
$12:$	kg / s

```
13: }\quad\textrm{kg}/\textrm{min
14: kg/h
15: t/min
16: t/h
17: N
18: kN
19: Nm
20: psi
21: o
22: gallon/s
23: inch/3
24: gallon/min
25: inch}\mp@subsup{}{3}{/min
26: gallon/h
27: inch}\mp@subsup{}{}{3}/\textrm{h
28: lb/s
29: lb/min
30: lb/h
31: lbf
32: lbf ft
33: K
34: rpm
35: parts/min
36: m/s
37: ft/s
38: ft m}/\textrm{min
39: BTU/min
40: BTU/h
41: mbar
42: inch wg
43: ft wg
44: mwg
45: % r.h.
46: g/kg
47: ppm
48: }\quad\textrm{kg}/\mp@subsup{\textrm{cm}}{}{2
Dependency: Only the unit of the technology controller parameters are switched over (unit group 9_1).
See also: p0596
Note
When switching over from % into another unit, the following sequence applies:
- set p0596
- set p0595 to the required unit
```

Technological unit reference quantity / Tech unit ref qty		
Access level: 1	Calculated: -	Data type: FloatingPoint32
Can be changed: T	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0.01	340.28235 E 36	1.00

7.3 Parameter list

Description:	Sets the reference quantity for the technological units.
When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the	
reference quantity.	
Dependency:	See also: p0595
NOTICE When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.	

Dependency: A thermal motor model is calculated corresponding to 00612.

CAUTION

For p0601 $=2,6$:
If the motor temperature sensor is not connected but another encoder, then the temperature adaptation of the motor resistances must be switched out (p0620 $=0$). Otherwise, in controlled-loop operation, torque errors will occur that will mean that the motor will not be able to be stopped.

Note

For p0601 = 1:
Tripping resistance $=1650$ Ohm. Wire breakage and short-circuit monitoring.

p0604[0...n]	Mot_temp_mod 2/sensor alarm threshold / Mod 2/sens A_thr		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: $21 _1$	Unit selection: p0505	Function diagram: 8016
	Min:	Max:	Factory setting:
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	$240.0\left[{ }^{\circ} \mathrm{C}\right]$	$130.0\left[{ }^{\circ} \mathrm{C}\right]$

Description: Sets the alarm threshold for monitoring the motor temperature for motor temperature model 2 or KTY/PT1000.
Alarm A07910 is output after the alarm threshold is exceeded.
Dependency: See also: p0612
See also: F07011, A07910

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The hysteresis is 2 K .
When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0605[0...n]	Mot_temp_mod 1/2/sensor threshold and temperature value / Mod1/2/sens T_thr		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8016, 8017
	Min:	Max:	Factory setting:
	0.0 [${ }^{\circ} \mathrm{C}$]	240.0 [${ }^{\circ} \mathrm{C}$]	145.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the threshold and temperature value to monitor the motor temperature.		
	Temperature model 1 (12 t , p0612.0 = 1):		
	The following applies for firmware version < 4.7 SP6 or p0612.8 $=0$:		
	- sets the alarm threshold. If the model temperature (r0034) exceeds the alarm threshold, then alarm A07012 is output.		
	- this value is simultaneously used as rated winding temperature.		
	The following applies from firmware version 4.7 SP6 and p0612.8 $=1$:		
	- p5390: when commissioning a catalog motor for the first time, p0605 is copied to p5390.		
	- p5390: p5390 is of significance when evaluating the alarm threshold.		
	- p5390: the stator winding temperature (r0632) is used to initiate the signal.		
	- p0627: when a catalog motor is commissioned for the first time, p0605-40 ${ }^{\circ} \mathrm{C}$ is copied to p0627.		
	- p0627: p0627 is of significance for the rated temperature.		
	Motor temperature model 2 (p0612.1 $=1$) or measurement:		
	- sets the fault threshold. If the temperature (r0035) exceeds the fault threshold, then fault F07011 is output.		
Dependency:	See also: r0034, p0611, p0612		
	See also: F07011, A07012		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. Motor temperature model 1 (I2t): The following applies for firmware version < 4.7 SP6 or p0612.8 = 0: p0605 also defines the final temperature of the model for r0034 $=100 \%$. Therefore, p0605 has no influence on the time up to alarm A07012 being issued. The time is only determined by time constant p0611, the actual current and the reference value p 0318 . For $\mathrm{p} 0318=0$, the rated motor current is used as reference value.		

Note

The hysteresis is 2 K .
When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0610[0...n]	Motor overtemperature response / Mot temp response		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 8016, 8017, 8018
	Min:	Max:	Factory setting:
	0	12	12
Description:	Sets the system response when the motor temperature reaches the alarm threshold.		
Value:	0: Noresp	of I_max	
	1: Messag		
	2: Messag		
	12: Messag	perature storage	
Dependency:	See also: p0601, p0604, p0605, p0614, p0615		
	See also: F07011, A07012, A07910		

Note

The I_max reduction is not executed for PTC (p0601 = 1) or bimetallic NC contact (p0601 = 4).
The I_max reduction results in a lower output frequency.
If value $=0$:
An alarm is output and I_max is not reduced.
If value = 1:
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.

- for KTY/PT1000, the following applies: I_max. is reduced
- for PTC, the following is valid: I_max. is not reduced

If value $=2$:
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.
If value $=12$:
Behavior is always the same as for value 2.
For motor temperature monitoring without temperature sensor, when switching off, the model temperature is saved in a non-volatile fashion. When switching on, the same value (reduced by p0614) is taken into account in the model calculation. As a consequence, the UL508C specification is fulfilled.

p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1), \mathrm{T}, \mathrm{U}$	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 8017
	Min:	Max:	Factory setting:
	0 [s]	20000 [s]	0 [s]
Description:	Sets the winding time constant.		
	The time constant specifies the warm-up time of the cold stator winding when loaded with the motor standstill current (rated motor current, if the motor standstill current is not parameterized) up until a temperature rise of 63% of the continuously permissible winding temperature has been reached.		
Dependency:	The parameter is only used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}, 4$) and synchronous reluctance motors ($\mathrm{p} 0300=$ $6 x x$).		
	See also: r0034, p0612, p0615		
	See also: F07011, A07012, A07910		
	NOTICE		
	This parameter is automatically pre-set from the motor database for motors from the motor list (p0301). When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection. When exiting commissioning, p0612 is checked, and where relevant, is pre-assigned to a value that matches the motor power, if a temperature sensor was not parameterized (see p0601).		

Note

When parameter p0611 is reset to 0 , then this switches out the thermal I2t motor model (refer to p0612).
If no temperature sensor is parameterized, then the ambient temperature for the thermal motor model is referred to p0625.
p0612[0...n] Mot_temp_mod activation / Mot_temp_mod act

Access level: 2	Calculated: CALC_MOD_ALL	Data type: Unsigned16
Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
Unit group: -	Unit selection: -	Function diagram: 8017, 8018
Min:	Max:	Factory setting:
-	-	0000001000000010 bin
Setting to activate the motor temperature model.		
Bit Signal name	1 signal	0 signal \quad FP
00 Activate mot_temp_mod 1 (12t)	Yes	No
01 Activate mot_temp_mod 2	Yes	No

	08	Activate mot_temp_mod $1(12 t)$ extensions	Yes	No
	09	Activate mot_temp_mod 2 extensions	Yes	No

NOTICE

For bit 00:
This bit is only automatically activated for permanent-magnet 1 FT 7 synchronous motors and synchronous reluctance motors. For other permanent-magnet synchronous motors, the user himself must activate motor temperature model 1 (I2t).
It is only possible to activate this motor temperature model (I2t) for a time constant greater than zero ($\mathrm{p} 0611>0$).

Note

Mot_temp_mod: motor temperature model
For bit 00:
This bit is used to activate/deactivate the motor temperature model for permanent-magnet synchronous motors and synchronous reluctance motors.
For bit 01 (see also bit 9):
This bit is used to activate/deactivate the motor temperature model for induction motors.
For bit 08:
This bit is used to extend the motor temperature model 1 (I2t).
The following applies for firmware version < 4.7 SP6 (only bit 0):

- this bit has no function. Temperature model 1 operates in the standard mode.

Overtemperature at rated load: p0605-40 ${ }^{\circ} \mathrm{C}$
Alarm threshold: p0605
Fault threshold: p0615
The following applies from firmware version 4.7 SP6 (bits 0 and 8):

- temperature model 1 operates in the extended mode.

Overtemperature at rated load: p0627
Alarm threshold: p5390
Fault threshold: p5391
For bit 09:
This bit is used to extend the motor temperature model 2.
For firmware version < 4.7 following applies (only bit 1):

- this bit has no function. Temperature model 2 operates in the standard mode.

From firmware version 4.7 the following applies (bits 1 and 9):

- this bit should be set. Temperature model 2 then operates in the extended mode and the result of the model is more precise.
For bit 12 (only effective if a temperature sensor has not been parameterized):
This bit is used to set the ambient temperature for the motor temperature model 1 (I2t).
The following applies for firmware version < 4.7 SP6 (only bit 0):
- this bit has no function. Temperature model 1 operates with an ambient temperature of $20^{\circ} \mathrm{C}$.

The following applies from firmware version 4.7 SP6 (bits 0 and 12):

- the ambient temperature can be adapted to the conditions using p0613.

p0613[0...n]	Mot_temp_mod 1/3 ambient temperature / Mod 1/3 amb_temp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: $21 _1$	Unit selection: p0505	Function diagram: 8017
Min:	Max:	Factory setting:	
	$-40\left[{ }^{\circ} \mathrm{C}\right]$	$100\left[{ }^{\circ} \mathrm{C}\right]$	$20\left[{ }^{\circ} \mathrm{C}\right]$

7.3 Parameter list

Description: Dependency:	Sets the ambient temperature for motor temperature model 1 or 3. - temperature model 1 (I2t, p0612.0 = 1): For firmware version < 4.7 SP6 or p0612.12 $=0$, the following applies: The parameter is not relevant. From firmware version 4.7 SP6 and p0612.12 = 1, the following applies: The parameter defines the current ambient temperature. - temperature model 3 (p0612.2 = 1): The parameter defines the current ambient temperature. See also: p0612 See also: F07011, A07012
p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red
Description:	Sets the reduction factor for the overtemperature of the thermal adaptation of the stator/rotor resistance. The value is a starting value when switching on. Internally, after switch-on, the reduction factor has no effect corresponding to the thermal time constant.
Dependency:	See also: p0610 Note The reduction factor is only effective for $\mathrm{p} 0610=12$, and refers to the overtemperature.
p0615[0...n]	Mot_temp_mod 1 (I2t) fault threshold / I2t F thresh
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model 1 (I2t). The following applies for firmware version < 4.7 SP6: - fault F07011 is output after the fault threshold is exceeded. - fault threshold for r0034 = 100 \% * (p0615-40) / (p0605-40). The following applies from firmware version 4.7 SP6 and p0612.8 = 1: - the fault threshold in p0615 is preset when commissioning. - when a catalog motor with motor temperature model 1 (12t) is being commissioned for the first time, the threshold value is copied from p0615 to p5391. - p5391 is of significance for evaluating the fault threshold.
Dependency:	The parameter is only used for motor temperature model 1 (I2t). See also: r0034, p0611, p0612 See also: F07011, A07012
	NOTICE
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note
The hysteresis is 2 K .

p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	2	0
Description:	Selects the identification of the stator resistance of induction motors after the Control Unit runs-up (only for vector control).		
	The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p 0350) to the matching ambient temperature (p 0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model.		
	p0621 $=1$:		
	Identification of the stator resistance only when the drive is switched on for the first time (pulse enable) after booting the Control Unit.		
	p0621 $=2$:		
	Identification of the stator resistance every time the drive is switched on (pulse enable).		
Value:	0: \quad No Rs identification		
	1: Rs identification after switching-on again		
	2: \quad Rs identification after switching-on each time		
Dependency:	- perform motor data identification (see p1910) with cold motor.		
	- enter ambient temperature at time of motor data identification in p0625.		

See also: p0622

NOTICE

The determined stator temperature of the induction motor can only be compared with the measured value of a temperature sensor (KTY/PT1000) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding.
Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor.

Note

The measurement is carried out:

- For induction motors
- When vector control is active (see p1300)
- if a temperature sensor (KTY/PT1000) has not been connected
- When the motor is at a standstill when switched on

When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure). If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing ($p 1401.6$) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.

p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart		
CUG120X_PN	Access level: 2	Calculated: -	Data type: Integer16
(PM330)	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	2	0

Description:	Selects the identification of the stator resistance of induction motors after the Control Unit runs-up (only for vector control).
	The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p 0350) to the matching ambient temperature (p 0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model.
	p0621 = 1:
	Identification of the stator resistance only when the drive is switched on for the first time (pulse enable) after booting the Control Unit.
	p0621 = 2:
	Identification of the stator resistance every time the drive is switched on (pulse enable).
	If a reference value for the stator resistance at an ambient temperature is entered into p0629, then the setting value for the stator temperature is generated from this value and not from p0350.
	When activating the measurement (p0621 = 1, 2), p0629 is determined when first starting the drive. p0629 should be saved for subsequent use. In order that p0629 matches the ambient temperature (p0625), the function should be activated with the motor in the cold condition.
Value:	0: No Rs identification
	1: Rs identification after switching-on again
	2: Rs identification after switching-on each time
Dependency:	- perform motor data identification (see p1910) with cold motor.
	- enter ambient temperature at time of motor data identification in p0625.
	- Reference stator resistance p0629 saved after it has been determined.
	See also: p0622, p0629
	NOTICE
	The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY/ PT1000) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding. The accuracy depends very heavily on how precisely the motor feeder cable resistance is known (see p0352).
	The accuracy of the measurement can be improved by entering the feeder cable resistance p0352 and by determining the reference stator resistance p0629 for the ambient temperature. p0629 is the measured value r0623, which was determined immediately after the first commissioning with the motor in a cold state. For p0621 = 1, p0629 is also measured when switching on for the first time and not after the Control Unit has switched on.

Note

The measurement is carried out:

- For induction motors
- When vector control is active (see p1300)
- if a temperature sensor (KTY/PT1000) has not been connected
- When the motor is at a standstill when switched on

When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure). If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing (p1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.
p0622[0...n] Motor excitation time for Rs_ident after switching on again / t_excit Rs_id
Access level: $3 \quad$ Calculated: CALC_MOD_REG Data type: FloatingPoint32
Can be changed: T, U Scaling: - Dynamic index: MDS, p0130
Unit group: - Unit selection: - Function diagram: -

Min:
0.000 [s]

Max:
Factory setting:
20.000 [s] 0.000 [s]

Description:
Dependency:

Sets the excitation time of the motor for the stator resistance identification after switching on again (restart).
See also: p0621

Note

For p0622 < p0346 the following applies:
If identification is activated, the magnetizing time is influenced by p0622. The speed is enabled after measurement is complete, but not before the time in p0346 has elapsed (see r0056 bit 4). The time taken for measurement also depends on the settling time of the measured current.
For p0622 >= p0346 the following applies:
Parameter p0622 is internally limited to the magnetizing time p0346, so that p0346 represents the maximum possible magnetizing time during identification. The entire measurement period (magnetizing plus measurement settling time plus measuring time) will always be greater than p0346.

p0625[0...n]	Motor ambient temperature during commissioning / Mot T_ambient		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T , U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8017, 8018
	Min:	Max:	Factory setting:
	$-40\left[{ }^{\circ} \mathrm{C}\right]$	$80\left[{ }^{\circ} \mathrm{C}\right]$	$20\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Defines the ambient temperature of the motor for calculating the motor temperature model.See also: p0350, p0354		
Dependency:			

Note
The parameters for stator and rotor resistance (p 0350 , p 0354) refer to this temperature.
If the thermal I2t motor model is activated for permanent-magnet synchronous motors (refer to p0611), p0625 is included in the model calculation if a temperature sensor is not being used (see p0601).

p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator		
	Access level: 2	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, \cup	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 21_2	Unit selection: p0505	Function diagram: 8017, 8018
	Min:	Max:	Factory setting:
	15 [K]	200 [K]	$80[\mathrm{~K}]$
Description:	Defines the rated overtemperature of the stator winding referred to the ambient temperature.		
	The following applies for firmware version < 4.7 SP6 or p0612.8 $=0$:		
	p0605 is of significance for the rated temperature.		
	The following applies from firmware version 4.7 SP6 and p0612.8 $=1$:		
	Overtemperature at the rated operating point.		
	- motor temperature model 2 (p0612.1 = 1):		
	Overtemperature at the rated operating point.		
Dependency:	For 1LA5 and 1LA7 motors ($\mathrm{p} 0300=15,17$), the parameter is pre-set as a function of p0307 and p0311.See also: 0625		

NOTICE

When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100$, p0301 > 10000), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).
The signal is not suitable as a process quantity and may only be used as a display quantity.

p0641[0...n]	CI: Current limit, variable / Curr lim var		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6640
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the variable current limit. The value is referred to p0640		
$\begin{aligned} & \text { p0644[0...n] } \\ & \text { CUG120x_PN } \\ & \text { (PM330) } \end{aligned}$	Current limit excitation induction motor / Imax excitat ASM		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	50.0 [\%]	300.0 [\%]	300.0 [\%]
Description: Dependency:	Maximum excitation current of the induction motor referred to the permissible rated current of the power unit (r0207[0]). Only effective for vector control.		
	Note		
	The parameter is pre-assigned in the automatic calculation for chassis power units.		
p0650[0...n]	Actual motor operating hours / Oper hours motor		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [h]	$4294967295[\mathrm{~h}]$	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	See also: p0651		
	See also: A01590		
	Note		
	For p0651 $=0$, the operating hours counter is disabled.		
	The operating hours counter in p0650 can only be reset to 0 . The operating hours counter only runs with drive data set 0 and 1 (DDS).		
p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [h]	150000 [h]	0 [h]
Description:	Sets the service/maintenance intervals in hours for the appropriate motor. An appropriate message is output when the operating hours set here are reached.		
Dependency:	See also: p0650		
	See also: A01590		

	12	DI 12 (X132. 10, 11) Al 1		High	Low	-
	Not Al: DI: X20	nalog Input gital Input IO module terminal				
r0722.0.. 12	CO/BO: CU digital inputs status / CU DI status					
	Access level: 2		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2201, 2221,	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the status of the digital inputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	DI 0 (X133.5)		High	Low	-
	01	DI 1 (X133.6)		High	Low	-
	02	DI 2 (X133.7)		High	Low	-
	03	DI 3 (X133. 8)		High	Low	-
	04	DI 4 (X133.16)		High	Low	-
		DI 5 (X133.17)		High	Low	-
	06	DI 6 (X203. 88)		High	Low	-
		DI 7 (X203. 87)		High	Low	-
	11	DI 11 (X132.3, 4) Al 0		High	Low	-
	12	DI 12 (X132. 10, 11) Al 1		High	Low	-
Dependency:	See also: r0723					
	Note					
	Al: Analog Input					
	DI: Digital Input					
	X203: IO module terminal					
r0723.0.. 12	CO/BO: CU digital inputs status inverted / CU DI status inv					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2119, 2120, 2121, 2130, 2131, 2132, 2133	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the inverted status of the digital inputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	DI 0 (X133.5)		High	Low	-
	01	DI 1 (X133.6)		High	Low	-
	02	DI 2 (X133.7)		High	Low	-
	03	DI 3 (X133. 8)		High	Low	-
	04	DI 4 (X133.16)		High	Low	-
	05	DI 5 (X133.17)		High	Low	-
	06	DI 6 (X203. 88)		High	Low	-
	07	DI 7 (X203. 87)		High	Low	-
	11	DI 11 (X132.3, 4) AI 0		High	Low	-

7.3 Parameter list

Note

DO: Digital Output
X204: IO module terminal
Relay output: NO = normally open

Note

DO: Digital Output
X204: IO module terminal
Relay output: NO = normally open, NC = normally closed
Inversion using p0748 has been taken into account.

p0748	CU invert digital outputs / CU DO inv		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2201, 2242
	Min:	Max:	Factory setting:
	-	-	00000000 bin
Description:	Setting to invert the signals at the digital outputs.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 DO 0 (NO: X134. 19 / NC: X134. 18)	Inverted	Not inverted

7.3 Parameter list

Note

AI: Analog Input
X202: IO module terminal

p0753[0...3]	CU analog inputs smoothing time constant/ CU AI T_smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order lowpass filter for the analog inputs.[0] = AIO (X132 3/4)		
Index:			
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		
	Note		
	AI: Analog Input		
	X202: IO module terminal		
r0755[0...3]	CO: CU analog inputs actual value in percent / CU AI value in \%		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs.		
	When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	[0] = AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		
	Note		
	Al: Analog Input		
	X202: IO module terminal		
p0756[0...3]	CU analog inputs type / CU Al type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	0	10	[0] 4
			[1] 4
			[2] 8
			[3] 8

7.3 Parameter list

Description:	Sets the type of analog inputs.
	$\mathrm{p} 0756[0 \ldots 1]=0,1,4$ corresponds to a voltage input (r 0752 , p0757, p0759 are displayed in V).
	p0756[0...2] = 2, 3 corresponds to a current input (r0752, p0757, p0759 are displayed in mA).
	$\mathrm{p} 0756[2 \ldots 3]=6,7,10$ corresponds to a resistor input for temperature measurement (r0752, p0757, p0759 are displayed in ${ }^{\circ} \mathrm{C}$).
	p0756[2...3] = 8 No temperature sensor connected. Mode for deactivating sensor monitoring (alarm A03520).
	In addition, the associated DIP switch must be set.
	For the voltage input, DIP switch AI0/1 must be set to "U".
	For the current input, DIP switch AI0/1 or Al2 must be set to "I".
	For the temperature input, DIP switch Al2 must be set to "TEMP".
Value:	0: Unipolar voltage input ($0 \mathrm{~V} \ldots+10 \mathrm{~V}$)
	1: Unipolar voltage input monitored (+2 V ... +10 V)
	2: Unipolar current input ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)
	3: Unipolar current input monitored (+4 mA to +20 mA)
	4: Bipolar voltage input (-10 V ... +10 V)
	6: Temperature sensor LG-Ni1000
	7: Temperature sensor PT1000
	8: No sensor connected
	10: Temperature sensor DIN Ni 1k (6180 ppm / K)
Index:	[0] = AIO (X132 3/4)
	[1] = Al1 (X132 10/11)
	[2] = NI 10000 (X202 80/82)
	[3] = NI 10001 (X202 81/82)
Dependency:	See also: A03520

WARNING

The maximum voltage difference between analog input terminals Al+, Al-, and the ground must not exceed 35 V . If the system is operated when the load resistor is switched on (DIP switch set to "I"), the voltage between differential inputs $\mathrm{Al}+$ and Al - must not exceed 10 V or the injected 80 mA current otherwise the input will be damaged.

Note

When changing p0756, the parameters of the scaling characteristic (p0757, p0758, p0759, p0760) are overwritten with the following default values:
For p0756 $=0,4, \mathrm{p} 0757$ is set to $0.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}$ and p0760 $=100.0 \%$.
For p0756 $=1, \mathrm{p} 0757$ is set to $2.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}$ and $\mathrm{p} 0760=100.0 \%$.
For $\mathrm{p} 0756=2, \mathrm{p} 0757$ is set to $0.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA}$ and $\mathrm{p} 0760=100.0 \%$.
For p0756 $=3$, p 0757 is set to $4.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA}$ and $\mathrm{p} 0760=100.0 \%$.
For p0756 $=6,7, \mathrm{p} 0757$ is set to $0^{\circ} \mathrm{C}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=100^{\circ} \mathrm{C}$ and $\mathrm{p} 0760=100.0 \%$.
X202: IO module terminal

p0757[0...3]	CU analog inputs characteristic value x1/CU Al char x1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	-50.000	160.000	0.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate ($\mathrm{V}, \mathrm{mA},{ }^{\circ} \mathrm{C}$) of the 1 st value pair of the characteristic.		

p0760[0...3]	CU analog inputs characteristic value y2 / CU Al char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AIO (132 3/4)		
	[1] = Al1 (132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		

Note

The parameters for the characteristic do not have a limiting effect.
X202: IO module terminal

p0761[0...3]	CU analog inputs wire breakage monitoring response threshold / CU WireBrkThresh	
	Access level: $2 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 9566, 9568
	Min: Max:	Factory setting:
	0.0020 .00	2.00
Description:	Sets the response threshold for the wire breakage monitoring of the analog inputs.	
	The unit for the parameter value depends on the set analog input type.	
Index:	[0] = AIO (X132 3/4)	
	[1] = Al1 (X132 10/11)	
	[2] = NI 10000 (X202 80/82)	
	[3] = NI 10001 (X202 81/82)	
Dependency:	For the following analog input type, the wire breakage monitoring is active:	
	p0756[0...1] = 1 (unipolar voltage input monitored (+2 V ... +10 V)), unit [V]	
	p0756[0...2] = 3 (unipolar current input monitored ($+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$), , unit [mA]	
	$\mathrm{p} 0756[3]$: Wire breakage monitoring is not supported for this analog input.	
	See also: p0756	

Note

AI: Analog Input
When p0761 = 0 , wire breakage monitoring is not carried out.
X202: IO module terminal

p0762[0...3]	CU analog inputs wire breakage monitoring delay time / CU wire brk t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568
	Min:	Max:	Factory setting:
	0 [ms]	1000 [ms]	100 [ms]
Description:	Sets the delay time for the wire breakage monitoring of the analog inputs.		

Index:	[0] = AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		
	Note		
	AI: Analog Input		
	X202: IO module terminal		
p0764[0...3]	CU analog inputs dead zone / CU Al dead zone		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2251
	Min:	Max:	Factory setting:
	0.000	20.000	0.000
Description:	Determines the width of the dead zone at the analog input.		
	Analog input type unipolar (e.g. $0 \ldots+10 \mathrm{~V}$):		
	The dead zone starts with the characteristic value $\mathrm{x} 1 / \mathrm{y} 1$ ($\mathrm{p} 0757 / \mathrm{p} 0758$).		
	Analog input type bipolar (e.g. -10 V ... +10 V):		
	The dead zone is located at the symmetrical center between characteristic value $x 1 / y 1$ ($00757 / p 0758$) and $\times 2 / y 2$ (p0759/p0760). The set value doubles the dead zone.		
Index:	[0] = AIO (132 3/4)		
	[1] = AI1 (132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		
	Note		
	Al: Analog Input		
	X202: IO module terminal		
p0771[0...2]	$\mathrm{Cl}: \mathrm{CU}$ analog outputs signal source / CU AO S_src		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2261
	Min:	Max:	Factory setting:
			[0] 21[0]
			[1] 27[0]
			$\text { [2] } 0$
Description:	Sets the signal source for the analog outputs.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		

r0772[0...2]	CU analog outputs output value currently referred / CU AO outp act ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual referred output value of the analog outputs.[0] = AOO (X133 12/13)		
Index:			
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
p0773[0...2]	CU analog outputs smoothing time constant / CU AO T_smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description: Index:	Sets the smoothing time constant of the 1st order lowpass filter for the analog outputs.		
	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
r0774[0...2]	CU analog outputs output voltage/current actual / CU AO U/I_outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	倍	-	
Description:	Displays the actual output voltage or output current at the analog outputs.		
Index:	[0] = AO0 (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	See also: p0776		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
p0775[0...2]	CU analog outputs activate absolute value generation / CU AO absVal act		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	0	1	0

p0795	CU digital inputs simulation mode / CU DI simulation					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: T, U		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2201, 2221, 2256	
	Min:		Max:		Factory setting:	
	- -				0000000000000000 bin	
Bit field:	Sets the simulation mode for digital inputs.					
	Bit	Signal name		1 signal	0 signal	FP
	00	DI 0 (X133.5)		Simulation	Terminal eval	-
	01	DI 1 (X133.6)		Simulation	Terminal eval	-
	02	DI 2 (X133.7)		Simulation	Terminal eval	-
	03	DI 3 (X133.8)		Simulation	Terminal eval	-
	04	DI 4 (X133.16)		Simulation	Terminal eval	-
	05	DI 5 (X133.17)		Simulation	Terminal eval	-
	06	DI 6 (X203. 88)		Simulation	Terminal eval	-
		DI 7 (X203. 87)		Simulation	Terminal eval	-
	11	DI 11 (X132. 3, 4) AI O		Simulation	Terminal eval	-
		DI 12 (X132.10, 11) Al 1		Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p0796. See also: p0796					
	This parameter is not saved when data is backed up (p0971). AI: Analog Input DI: Digital Input X203: IO module terminal					
p0796	CU digital inputs simulation mode setpoint / CU DI simul setp					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: T, U		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2201, 2221, 2256	
	Min:		Max:		Factory setting:	
	-		-		000000000000000	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	DI 0 (X133.5)		High	Low	-
	01	DI 1 (X133.6)		High	Low	-
	02	DI 2 (X133.7)		High	Low	-
	03	DI 3 (X133.8)		High	Low	-
	04	DI 4 (X133.16)		High	Low	-
	05	DI 5 (X133.17)		High	Low	-
	06	DI 6 (X203. 88)		High	Low	-
	07	DI 7 (X203. 87)		High	Low	-
	11	DI 11 (X132.3, 4) Al 0		High	Low	-
	12	DI 12 (X132. 10, 11) Al 1		High	Low	-
Dependency:	The simulation of a digital input is selected using p0795. See also: p0795					

	Note This parameter is not saved when data is backed up (p0971). AI: Analog Input DI: Digital Input X203: IO module terminal	
p0797[0...3]	CU analog inputs simulation mode / CU AI sim_mode	
	Access level: $3 \quad$ Calculated: -	Data type: Integer16
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0 1	0
Description:	Sets the simulation mode for the analog inputs.	
Value:	0 : Terminal evaluation for analog input x	
	1: Simulation for analog input x	
Index:	[0] = AIO (X132 3/4)	
	[1] = Al1 (X132 10/11)	
	[2] = NI 10000 (X202 80/82)	
	[3] = NI 10001 (X202 81/82)	
Dependency:	The setpoint for the input voltage is specified via p0798.	
	See also: p0798	
	Note	
	This parameter is not saved when data is backed up (p0971).	
	Al: Analog Input	
	X202: IO module terminal	
p0798[0...3]	CU analog inputs simulation mode setpoint / CU Al sim setp	
	Access level: $3 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	-50.000 2000.000	0.000
Description:	Sets the setpoint for the input value in the simulation mode of the analog inputs.	
Index:	[0] = AIO (X132 3/4)	
	[1] = Al1 (X132 10/11)	
	[2] = NI 10000 (X202 80/82)	
	[3] = NI 10001 (X202 81/82)	
Dependency:	The simulation of an analog input is selected using p0797.	
	If Al x is parameterized as a voltage input (p 0756), the setpoint is a voltage in V .	
	If Al x is parameterized as a current input (p 0756), the setpoint is a current in mA .	
	See also: p0756, p0797	
	Note	
	This parameter is not saved when data is backed up (p0971).	
	AI: Analog Input	
	$\underline{\text { X202: IO module terminal }}$	

p0802	Data transfer: memory card as source/target / mem_card src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	100	0
Description:	Sets the number for data transfer of a parameter backup from/to memory card.		
	- sets the source of parameter backup (e.g. p0802 = 48 --> PS048xxx.ACX is the source).		
	Transfer from non-volatile device memory to memory card (p0804 = 2): - sets the target of parameter backup (e.g. p0802 = 23 --> PS023xxx.ACX is the target).		
Dependency:	See also: p0803, p0804		
	Note		
	The volatile device memory is not influenced by data transfer.		
p0803	Data transfer: device memory as source/target / Dev_mem src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	30	0
Description:	Sets the number for data transfer of a parameter backup from/to the non-volatile device memory.		
	- sets the target of the parameter backup (e.g. p0803 = 10--> PS010xxx.ACX is the target).		
	Transfer from non-volatile device memory to memory card ($\mathrm{p} 0804=2$):		
	- sets the source of the parameter backup (e.g. p0803 = 11 --> PS011xxx.ACX is the source).		
Value:	$0: \quad$ Source/target standard		
	10: Source/target with setting 10		
	11: Source/target with setting 11		
	12: Source/target with setting 12		
	30: Source/target with setting 30		
Dependency:	See also: p0802, p0804		
	Note		
	The volatile device memory is not influenced by data transfer.		
p0804	Data transfer start / Data transf start		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1100	0

Description:	Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1:
	The parameter backup is to be transferred from the non-volatile device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22.
	p0802 $=22$ (parameter backup stored on memory card as target with setting 22)
	p0803 $=0$ (parameter backup stored in device memory as source with setting 0)
	p0804 = 2 (start data transfer from device memory to memory card)
	--> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX.
	--> the parameter backup PS022xxx.ACX on the memory card can be used for data backup.
	Example 2:
	The parameter backup is to be transferred from the memory card to the non-volatile device memory with setting 22 . The parameter backup is to be stored in the device memory as setting 10.
	p0802 $=22$ (parameter backup stored on memory card as source with setting 22)
	p0803 $=10$ (define parameter backup with setting 10 as target in the device memory)
	p0804 = 1 (start data transfer from memory card to device memory)
	--> PS022xxx.ACX is transferred from memory card to device memory and stored as PS010xxx.ACX.
	--> this parameter backup can be loaded to the volatile device memory using p0010 = 30 and p0970 = 10.
	--> to permanently save in the device memory and also on the memory card, this parameter backup should be saved using p0971 $=1$.
	Example 3 (only supported for PROFIBUS/PROFINET):
	The PROFIBUS or PROFINET device master data (GSD) should be transferred from the device memory to the memory card.
	p0802 $=$ (not relevant)
	p0803 = (not relevant)
	p0804 $=12$ (start transferring the GSD files to the memory card)
	--> The GSD files are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/ DATA/CFG directory.
Value:	0: Inactive
	1: Memory card to device memory
	2: Device memory to memory card
	12: Device memory (GSD files) to memory card
	1001: File on memory card cannot be opened
	1002: File in device memory cannot be opened
	1003: Memory card not found
	1100: File cannot be transferred
Recommendation:	When switching off/switching on, a possibly valid parameter backup is loaded to the memory card with setting 0 . Therefore, we do not recommend parameter backup with setting $0(\mathrm{p} 0803=0)$ in the non-volatile device memory.
Dependency:	See also: p0802, p0803
	NOTICE
	The memory card must not be removed while data is being transferred.

7.3 Parameter list

Note

If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory.
When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").
Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes:
p0804 = 1001:
The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.
p0804 = 1002:
The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
p0804 = 1003:
No memory card has been inserted.

p0806	BI: Inhibit master control / PcCtrl inhibit			
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary	
	Can be changed: T	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-	-	0	
Description:	Sets the signal source to block the master control.			
Dependency:	See also: r0807			
	Note			
	The commissioning software (drive control panel) uses the master control, for example.			
r0807.0	BO: Master control active / PcCtrl active			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
		-	-	
Description:	Displays what has the master control.			
	The drive can be controlled via the BICO interconnection or from external (e.g. the commissioning software).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Master control active	Yes	No	3030
Dependency:	See also: p0806			
	NOTICE			
	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.			

Note

Bit $0=0$: BICO interconnection active
Bit $0=1$: Master control for PC/AOP
The commissioning software (drive control panel) uses the master control, for example.

p0809[0...2]	Copy Command Data Set CDS / Copy CDS		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
	0	3	0
Description:	Copies one Command Data Set (CDS) into another.		
Index:	[0] = Source Command Data Set		
	[1] = Target Command Data Set		
	[2] = Start copying procedure		
Dependency:	See also: r3996		
	NOTICE		
	When the command data sets are copied, short-term communication interruptions may occur.		
	Note		
	Procedure:		
	1. In Index 0 , enter which command data set should be copied.		
	2. In index 1, enter the command data set that is to be copied into.		
	3. Start copying: set index 2 from 0 to 1 .		
	p0809[2] is automatically set to 0 when copying is completed.		
p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
		促	722.4
Description:	Sets the signal source	ta Set bit 0 (CDS	
Dependency:	See also: r0050, p0811, r0836		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Note		
	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		
p0811	BI : Command data set selection CDS bit 1 / CDS select., bit 1		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select the Command Data Set bit 1 (CDS bit 1).		
Dependency:	See also: r0050, p0810, r0836		
	Note		
	The Command Data Set selected using the binector inputs is displayed in r0836. The currently effective command data set is displayed in r0050.		

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS	
	Access level: 2	Calculated: -
	Can be changed: C2(15)	Scaling: -
	Unit group: -	Unit selection: -
	Min:	Max:
	0	3
Description:	Copies one Drive Data Set (DDS) into another.	Function diagram: 8565
Index:	$[0]=$ Source Drive Data Set	0
	$[1]=$ Target Drive Data Set	
	$[2]=$ Start copying procedure	
Dependency:	See also: r3996	
	NOTICE	
	When the drive data sets are copied, short-term communication interruptions may occur.	

Note

Procedure:

1. In Index 0 , enter which drive data set is to be copied.
2. In index 1, enter the drive data set data that is to be copied into.
3. Start copying: set index 2 from 0 to 1.
p0819[2] is automatically set to 0 when copying is completed.

p0821[0...n]	BI: Drive Data Set selection DDS bit $1 /$ DDS select., bit 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 8565,8570
	Min:	Max:	Factory setting:
	-	0	
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	See also: r0051, r0837		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:	
	3	0	

Description:	Sets the freely assignable motor number for the drive data set changeover.
	If the same motor is driven by different drive data sets, the same motor number must also be entered in these data sets. If the motor is also switched with the drive data set, different motor numbers must be used. In this case, the data set can only be switched when the pulse inhibit is set.

Note

If the motor numbers are identical, the same thermal motor model is used for calculation after data set changeover. If different motor numbers are used, different models are also used for calculating (the inactive motor cools down in each case).
For the same motor number, the correction values of the Rs, Lh or kT adaptation are applied for the data set changeover (refer to r1782, r1787, r1797).

r0835.2... 8	CO/BO: Data set changeover status word / DDS_ZSW					
	Access level: 2		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 8575	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the status word for the drive data set changeover.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Internal parameter calculation active		Yes	No	-
	04	Armature short circuit active		Yes	No	-
		Identification running		Yes	No	-
	07	Rotating measurement running		Yes	No	-
		Motor data identification running		Yes	No	-

Note

For bit 02:
A data set changeover is delayed by the time required for the internal parameter calculation.
For bit 04:
A data set changeover is only carried out when the armature short circuit is not activated.
For bit 05:
A data set changeover is only carried out when pole position identification is not running.
For bit 07:
A data set changeover is only carried out when rotating measurement is not running.
For bit 08:
A data set changeover is only carried out when motor data identification is not running.

r0837.0... 1	CO/BO: Drive Data Set DDS selected / DDS selected			
	Access level: 3	Calculated: -	Data type: Un	
	Can be changed: -	Scaling: -	Dynamic inde	
	Unit group: -	Unit selection: -	Function diag	
	Min:	Max:	Factory settin	
	-	-	-	
Description:	Displays the drive data set (DDS) selected via the binector input.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DDS selection bit 0	ON	OFF	-
	01 DDS selection bit 1	ON	OFF	-
Dependency:	See also: r0051, p0820, p0821			
	Note			
	Drive data sets are selected via binector input p0820 and following.			
	The currently effective drive data set is displayed in r0051.			
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector inputs.			
p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)			
	Access level: 3	Calculated: -	Data type: Un	/ Binary
		Scaling: -	Dynamic inde	0170
	Can be changed: \uparrow Unit group: -	Unit selection: -	Function diag	, 2512
	Min:	Max:	Factory setting:	
	-	-	[0] 2090.0	
			[1] 0	
			[2] 0	
			[3] 0	
Description:	Sets the signal source for the command "ON/OFF (OFF1)".			
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).			
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.			
Dependency:	See also: p1055, p1056			
	CAUTION			
	When "master control from PC" is activated, this binector input is ineffective.			
	NOTICE			
	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056. The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056. For binector input p0840 $=0$ signal, the switching on inhibited is acknowledged. Only the signal source that originally switched on can also switch off again. The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			

Note

For drives with closed-loop speed control (p1300 = 20), the following applies:

- BI: p0840 = 0 signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switching on inhibited)
For drives with closed-loop torque control ($p 1300=22$), the following applies:
- BI: p0840 = 0 signal: immediate pulse suppression

For drives with closed-loop torque control (activated using p1501), the following applies:

- BI: p0840 = 0 signal: No dedicated braking response, but pulse cancelation when standstill is detected (p1226, p1227)

For drives with closed-loop speed/torque control, the following applies:

- BI: p0840 = 0/1 signal: ON (pulses can be enabled)

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
	Access level: 3	Calculated: -	Data type: Unsigned 32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 8720, 8820, 8920
	Min:	Max:	Factory setting:
	-		[0] 2090.1
			[1] 1
			[2] 2090.1
			[3] 2090.1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1). BI: p0844 $=0$ signal or BI: p $0845=0$ signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	BI: $\mathrm{p} 0844=1$ signal and BI: $0845=1$ signal		
	- no OFF2 (enable is possible)		
	CaUtion		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2		
	Access level: 3	Calculated: -	Data type: Unsigned 32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 8720, 8820, 8920
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- Bl: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- Bl: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1). BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	BI: $\mathrm{p} 0844=1$ signal and BI: $\mathrm{p} 0845=1$ signal		
	- no OFF2 (enable is possible)		
	CaUtion		
	When "master cont	binector input is eff	

p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2		
CUG120X_PN (PM330)	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 8720, 8820, 8920
	Min:	Max:	Factory setting:
	-	-	4022.3
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- Bl: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1). B1: p0844 $=0$ signal or BI: p $0845=0$ signal		
	- OFF2 (immediate pulse suppression and switching on inhibited)		
	BI: p0844 $=1$ signal and BI: $\mathrm{p} 0845=1$ signal		
	- no OFF2 (enable is possible)		
	CAUTION		
	When "master control from PC" is activated, this binector input is effective.		
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
			[0] 2090.2
			[1] 1
			[2] 2090.2
			[3] 2090.2
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- Bl: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching on inhibited)		
	BI: $08848=1$ signal and BI: $\mathrm{p} 0849=1$ signal		
	- no OFF3 (enable is possible)		

CAUTION

When "master control from PC" is activated, this binector input is ineffective.

NOTICE

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

Note

For drives with closed-loop torque control (activated using p1501), the following applies:
BI: p0848 = 0 signal:

- no dedicated braking response, but pulse suppression when standstill is detected (p1226, p1227).

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: p0848 = 0 signal or BI: $00849=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching on inhibited)		
	BI : p0848 = 1 signal and BI: p0849 = 1 signal		
	- no OFF3 (enable is possible)		

CAUTION

When "master control from PC " is activated, this binector input is effective.

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	4022.2
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching on inhibited)		
	BI: p0848 = 1 signal and BI: p0849 = 1 signal		
	- no OFF3 (enable is possible)		

CAUTION
When "master control from PC" is activated, this binector input is effective.
p0852[0...n] BI: Enable operation/inhibit operation / Enable operation

Access level: 3
Can be changed: T
Unit group: -
Min:

Calculated: -
Scaling: -
Unit selection: -
Max:

Data type: Unsigned32 / Binary
Dynamic index: CDS, p0170
Function diagram: 2501
Factory setting:
[0] 2090.3
[1] 1
[2] 2090.3
[3] 2090.3

7.3 Parameter list

Description:	Sets the signal source for the command "enable operation/inhibit operation".
For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).	
BI: p0852 $=0$ signal	
Inhibit operation (suppress pulses).	
BI: p0852 $=1$ signal	
Enable operation (pulses can be enabled).	

CAUTION

When "master control from PC" is activated, this binector input is ineffective.

NOTICE

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	[0] 2090.10
			[1] 1
			$\text { [2] } 2090.10$
			[3] 2090.10
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	BI: p0854 $=0$ signal		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		

CAUTION

When "master control from PC" is activated, this binector input is ineffective.

NOTICE

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

Note

This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .
If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration (p0922 = 999).

p0857	Power unit monitoring time / PU t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8760, 8864, 8964
	Min:	Max:	Factory setting:
	100.0 [ms]	60000.0 [ms]	10000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The monitoring time is started after an 0/1 edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, fault F07802 is output.		
Dependency:	See also: F07802, F07840, F30027		

NOTICE

The maximum time to precharge the DC link is monitored in the power unit and cannot be changed. The maximum precharging duration depends on the power unit.
The monitoring time for the precharging is started after the ON command (BI : p0840 $=0 / 1$ signal). Fault F30027 is output when the maximum precharging duration is exceeded.

Note

The factory setting for p0857 depends on the power unit.
The monitoring time for the ready signal of the power unit includes the time to precharge the DC link and, if relevant, the de-bounce time of the contactors.
If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.

p0860	BI: Line contactor feedback signal / Line contact feedb		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2634
	Min:	Max:	Factory setting:
	-	-	863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommendation:	When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	See also: p0861, r0863		
	See also: F07300		
	NOTICE		
	The line contactor monitoring is deactivated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: p0860 = r0863.1).		
	Note		
	The state of the line contactor is monitored depending on signal BO: r0863.1.		
	When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		
p0861	Line contactor monitoring time / LineContact t_mon		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2634
	Min:	Max:	Factory setting:
	0 [ms]	5000 [ms]	100 [ms]
Description:	Sets the monitoring time of the line contactor.		
	This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.		
Dependency:	See also: p0860, r0863		
	See also: F07300		

Note

The monitoring function is disabled for the factory setting of p 0860 .

r0863.0...	CO/BO: Drive coupling status word/control word / CoupleZSW/STW		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:

7.3 Parameter list

Note

After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.
For p0869 = 1 (keep main contactor closed for STO), after withdrawing STO, the switching on inhibited must be acknowledged via the source of p0840 $=0$ (OFF1) - and before the main contactor holding time expires, should go back to 1 , otherwise the main contactor will open.
When operating a drive connected to SINUMERIK, which only closes the main contactor with the OFF1 command (blocksize, chassis), p0867 should be set as a minimum to 50 ms .

p0868	Power unit thyristor rectifier wait time / PU thy_rect t		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [ms]	65000 [ms]	0 [ms]
Description: Dependency:	Sets the debounce time for the DC circuit breaker for power units in the "chassis" format. The parameter is only active for PM330 power units.		
	Note		
	The following applies if p0868 $=65000 \mathrm{~ms}$:		
	The debounce time defined internally in the power unit's EEPROM is implemented.		
p0869	Sequence control configuration / Seq_ctrl config		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0000 bin
Description:	Sets the configuration for the sequence control.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 Keep main contactor closed for STO	Yes	No
Dependency:	See also: p0867		

Note

For bit 00:
After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.
For p0869.0 = 1, after withdrawing STO, the switching on inhibited must be acknowledged via the source of p0840 = 0 (OFF1) - and before the main contactor holding time expires (p0867), should go back to 1 , otherwise the main contactor will open.

p0870	BI: Close main contactor / Close main cont		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	0	

Note

The main contactor is also closed when the converter is switched on after issuing the necessary enable signals. A binector input p0870 = 1 signal prevents the main contactor from being opened when enable signals are withdrawn.

Note

OC: Operating condition

r0899.0...11	CO/BO: Status word sequence control / ZSW seq_ctrl		
	Access level: 2	Calculated: -	Data type: Unsigned16

7.3 Parameter list

r0945[0...63]	Fault code / Fault code		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the numbers of faults that have occurred.		
Dependency:	See also: r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122		
	NOTICE		
	The properties of the fault buffer should be taken from the corresponding product documentation.		
	Note The buffer parameters are cy Fault buffer structure (general r0945[0], r0949[0], r0948[0], r r0945[7], r0949[7], r0948[7], r r0945[8], r0949[8], r0948[8], r r0945[15], r0949[15], r0948[1 r0945[56], r0949[56], r0948[5 r0945[63], r0949[63], r0948[63]	e background (ref ult case, fault 1 ult case, fault 8 owledged fault ca acknowledged fau acknowledged fau acknowledged fau	nal in r2139).
r0946[0...65534]	Fault code list / Fault code list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	Lists the fault codes stored in the drive unit.		
Dependency:	The parameter assigned to the fault code is entered in r0951 under the same index.		
r0947[0...63]	Fault number / Fault number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	This parameter is identical to		
r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	-[ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	See also: r0945, r0947, r0949, r2109, r2130, r2133, r2136, p8400		
SINAMICS G120X converter			
Operating Instructions	03/2019, FW V1.0, A5E44751	co.ir	48

NOTICE
 The time comprises r2130 (days) and r0948 (milliseconds).

Note

The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the fault buffer and the assignment of the indices is shown in r0945.
When the parameter is read via PROFIdrive, the TimeDifference data type applies.

r0949[0...63]	Fault value / Fault value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	See also: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3120, r3122		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
p0952	Fault cases counter / Fault cases qty		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6700, 8060
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0.		
	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0964[0...6]	Device identification / Device ident		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the device identification.		
Index:	[0] = Company (Siemens = 42)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		

```
Note
Example:
r0964[0] = 42 --> SIEMENS
r0964[1] = device type, see below
r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)
r0964[3] = 2010 --> year 2010
r0964[4] = 1705 --> 17th of May
r0964[5] = 2 --> 2 drive objects
r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00)
Device type:
r0964[1] = 5700 --> SINAMICS G120 CU230P-2_DP
r0964[1] = 5701 --> SINAMICS G120 CU230P-2_PN
r0964[1] = 5702 --> SINAMICS G120 CU230P-2_CAN
r0964[1] = 5703 --> SINAMICS G120 CU230P-2_HVAC
r0964[1] = 5705 --> SINAMICS G120 CU230P-2_BT
```

r0965	PROFIdrive profile number / PD profile number		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the PROFIdrive profile number and profile version.		
	Constant value $=0329$ hex .		
	Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile		
	Byte 2: Profile version $=29$ hex $=$ Version 4.1		
	Note		
	When the parameter is read via PROFIdrive, the Octet String 2 data type applies.		
p0969	System runtime relative / t_System relative		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
	Note		
	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		
p0970	Reset drive parameters / Drive par reset		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: C2(1, 30)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	300	
Description:	The parameter is used to initiate the reset of the drive parameters.		
	Parameters p0100, p0205 are not reset.		
	The following motor parameters are defined in accordance with the power unit: p0300 ... p0311.		
Value:	$0: \quad$ Inactive		

7.3 Parameter list

Fixed speed setpoint

6:	Fieldbus
$7:$	Analog setpoint 2

10: \quad Motor potentiometer + no main setpoint
11: \quad Motor potentiometer + motor potentiometer
12: \quad Motor potentiometer + analog setpoint
13: \quad Motor potentiometer + fixed speed setpoint
16: \quad Motor potentiometer + fieldbus
17: \quad Motor potentiometer + analog setpoint 2
20: Analog setpoint + no main setpoint
21:

Analog setpoint + motor potentiometer22:
Analog setpoint + analog setpoint

$$
\text { 23: } \quad \text { Analog setpoint }+ \text { fixed speed setpoint }
$$

$$
\text { 26: } \quad \text { Analog setpoint }+ \text { fieldbus }
$$

$$
\text { 27: } \quad \text { Analog setpoint }+ \text { analog setpoint } 2
$$

$$
\text { 30: } \quad \text { Fixed speed setpoint }+ \text { no main setpoint }
$$

$$
\text { 31: } \quad \text { Fixed speed setpoint }+ \text { motor potentiometer }
$$

$$
\text { 32: } \quad \text { Fixed speed setpoint }+ \text { analog setpoint }
$$

$$
\text { 33: } \quad \text { Fixed speed setpoint }+ \text { fixed speed setpoint }
$$

$$
\text { 36: } \quad \text { Fixed speed setpoint }+ \text { fieldbus }
$$

$$
\text { 37: } \quad \text { Fixed speed setpoint }+ \text { analog setpoint } 2
$$

$$
\text { 60: } \quad \text { Fieldbus + no main setpoint }
$$

$$
\text { 61: } \quad \text { Fieldbus + motor potentiometer }
$$

$$
\text { 62: } \quad \text { Fieldbus }+ \text { analog setpoint }
$$

$$
\text { 63: } \quad \text { Fieldbus }+ \text { fixed speed setpoint }
$$

$$
\text { 66: } \quad \text { Fieldbus+fieldbus }
$$

$$
\text { 67: } \quad \text { Fieldbus }+ \text { analog setpoint } 2
$$

$$
\text { 70: } \quad \text { Analog setpoint } 2+\text { no main setpoint }
$$

$$
\text { 71: } \quad \text { Analog setpoint } 2+\text { motor potentiometer }
$$

72: \quad Analog setpoint $2+$ analog setpoint
73: \quad Analog setpoint $2+$ fixed speed setpoint
76: \quad Analog setpoint $2+$ fieldbus
77: \quad Analog setpoint $2+$ analog setpoint 2
200: Analog output connection
Dependency: When changing this parameter, the following settings are influenced:
See also: p1070, p1071, p1075, p1076

CAUTION

If p1000 is selected as the main setpoint of the fieldbus, the following BICO interconnection is set automatically: p2051[1] = r0063

NOTICE

The parameter is possibly protected as a result of p0922.
For PROFIBUS/PROFINET Control Units, the following applies: The parameter can be freely set by setting p0922 = 999.

When executing a specific macro, the corresponding programmed settings are made and become active.

p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 1.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 2.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 3.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 4.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 5.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n _set_fixed 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	$210000.000[\mathrm{rpm}]$	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 6.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 7 . See also: p1020, p1021, p1022, p1023, r1024		
Dependency:			
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 8.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 9 .		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 10.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 11.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 12.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 13.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 14.		
	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 15.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1016	Fixed speed setpoint select mode / n _set_fix select		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 3010, 3011
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the mode to select the fixed speed setpoint.		
Value:	1: Direct		
	2: Binary		
	Note For p1016 = 1: In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1004. Up to 16 different setpoints are obtained by adding the individual fixed speed setpoints. For p1016 = 2: In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1015.		

p1020[0...n]	Bl: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3010, 3011
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	See also: p1021, p1022, p1023		
	Note		
	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3010, 3011
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints $1 . .15$ using p1001 ... p1015.		
	See also: p1020, p1022, p1023		
	Note		
	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3010, 3011
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	See also: p1020, p1021, p1023		
	Note		
	If a fixed speed setpoint has not been selected (p1020 ... p1023 = 0, r1197 = 0), then r1024 = 0 (setpoint $=0$).		

p1023[0...n]	BI: Fixed speed setpoint selection Bit 3/n_set_fixed Bit 3			
	Access level: 3	Calculated: -	Data type: U	/ Binary
	Can be changed: T	Scaling: -	Dynamic inde	0170
	Unit group: -	Unit selection: -	Function diag 3011	3010,
	Min:	Max:	Factory settin	
	-	-	0	
Description:	Sets the signal source for selecting the fixed speed setpoint.			
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.			
	Displays the number of the actual fixed speed setpoint in r1197.			
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.			
	See also: p1020, p1021, p1022			
	Note			
	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$), then r1024 $=0$ ((etpoint $=0$).			
r1024	CO: Fixed speed setpoint effective / Speed fixed setp			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: p2000	Dynamic index: -	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3001, 3010, 3011	
	Min:	Max:	Factory settin	
	- [rpm]	- [rpm]	- [rpm]	
Description:	Display and connector output for the selected and active fixed speed setpoint.			
	This setpoint is the output value for the fixed speed setpoints and must be appropriately interconnected (e.g. with the main setpoint).			
Recommendation: Dependency:	Interconnect the signal with the main setpoint (Cl : $\mathrm{p} 1070=\mathrm{r} 1024$).			
	Selects the required fixed speed setpoint using p1020 ... p1023.			
	Displays the number of the actual fixed speed setpoint in r1197.			
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.			
	See also: p1070			
	Note If a fixed speed setpoint has not been selected (p1020 \ldots p1023 $=0, r 1197=0$), then $r 1024=0$ (setpoint $=0$).			
r1025.0	BO: Fixed speed setpoint status / n_setp_fix status			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: -	Scaling: -	Dynamic inde	
	Unit group: -	Unit selection: -	Function diag	
	Min:	Max:	Factory settin	
		-		
Description:	Display and binector output for the status when selecting the fixed speed setpoints.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Fixed speed setpoint selected	Yes	No	3011
Dependency:	See also: p1016			
	Note			
	For bit 00:			
	When the fixed speed setpoints are directly selected (p1016 $=1$), this bit is set if at least 1 fixed speed setpoint is selected.			

p1030[0...n]	Motorized potentiometer configuration / Mop configuration					
	Access level: 3		Calculated: -		Data type: Unsigned16	
		be changed: T, U	Scaling: -		Dynamic index: DDS, p0180	
		group: -	Unit selection: -		Function diagram: 3020	
	Min		Max:		Factory setting:	
	-		-		00000110 bin	
Description:	Sets the configuration for the motorized potentiometer.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Data save active		Yes	No	-
		Automatic mode	cive	Yes	No	-
		Initial rounding-off		Yes	No	-
	03	Save in NVRAM		Yes	No	-
	04	Ramp-function ge		Yes	No	-
	No For 0: 1: in a For 0: 1: For For 0 : 1: sen The spe $r=$ The con p10 For 0: 1: For Wh of th	00: setpoint for the m setpoint for the m on-volatile fashion 01: hout ramp-functio h ramp-function g manual operation it 02: hout initial roundin h initial rounding-o ive way of specify erk for the initial ro (p 1082). It is cal 01 \% * p1082 [1/s] erk acts up until th ues to run linearly 7 is), the longer the it 03: n-volatile data sav setpoint for the m it 04: the bit is set, the r motorized potent	not sa aved ic mod mode. ramp own sive of the reach celera with re saved ompu	ter ON is nd after ON p/ramp-do enerator is espondingly hen keys ar me and only $x=p 1082[$ igher the m e set ramp olatile fash ndent of th	d using p1040 o the saved val $\mathrm{ne}=0 \text {). }$ s active. eeded. The ini essed). pends on the s p1047 [s]), and um accelerati me. for bit $00=1$). se enable. The	er to gg-off axim drive wer th put
p1035[0...n]	BI : Motorized potentiometer setpoint raise / Mop raise					
	Access level: 3		Calculated: -		Data type: Unsigned32 / Binary	
	Can be changed: T		Scaling: -		Dynamic index: CDS, p0170	
			Unit selection: -		Function diagram: 2505, 3020	
			Max:		Factory setting:	
					[0] 2090.13	
	[1] 0					
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer. The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).					
Dependency:	See also: p1036					

NOTICE
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3020
	Min:	Max:	Factory setting:
	-	-	[0] 2090.14
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	See also: p1035		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		

Note

This parameter is automatically pre-assigned in the commissioning phase.
The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).

p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		
	Note		
	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
p1039[0...n]	BI : Motorized potentiometer inversion / MotP inv		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	-	-	0

	Note		
p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	See also: p1043		
	Note		
	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from zero up to the speed/velocity limit (p 1082) within this time (if no initial rounding-off has been activated).		
Dependency:	See also: p1030, p1048, p1082		
	Note		
	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	0.000 [s]	1000.000 [s]	
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from the speed/velocity limit (p 1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	See also: p1030, p1047, p1082		
	Note		
	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		

r1050	CO: Motorized potentiometer setpoint after ramp-function generator / Mot poti setpoint
	Access level: 2 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: p2000 Dynamic index: -
	Unit group: 3_1 Unit selection: p0505 Function diagram: 3001, 3020
	Min: Max: Factory setting:
	- [rpm] - [rpm] - [rpm]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator.
	This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).
Recommendation: Dependency:	Interconnect the signal with main setpoint (p1070).
	See also: p1070
	Note
	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0).
p1051[0...n]	CI: Speed limit RFG positive direction of rotation / n_limit RFG pos
	Access level: $3 \quad$ Calculated: - Data type: Unsigned32 1
	Can be changed: T Scaling: p2000 Dynamic index: CDS, p0170
	Unit group: - Unit selection: - Function diagram: 3050
	Min: Max: Factory setting:
	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction on the ramp-function generator input.
	Note
	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.
p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
	Access level: 3 Calculated: - Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T Scaling: p2000 Dynamic index: CDS, p0170
	Unit group: - Unit selection: - Function diagram: 3050
	Min: Max: Factory setting:
	1086[0]
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input.
	Note
	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.
p1055[0...n]	BI: Jog bit 0 / Jog bit 0
	Access level: 3 Calculated: - Data type: Unsigned32 / Binary
	Can be changed: T Scaling: - Dynamic index: CDS, p0170
	Unit group: - Unit selection: - Function diagram: 2501, 3030
	Min: Max: Factory setting:
	[0] 0
	[1] 722.0
	[2] 0
	[3] 0
Description:	Sets the signal source for jog 1.
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.

7.3 Parameter list

p1063[0...n]	Setpoint channel speed limit / Setp_chan n_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3040
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	210000.000 [rpm]
Description:	Sets the speed limit effective in the setpoint channel.		
Dependency:	See also: p1082, p1083, p1085, p1086, p1088		
p1070[0...n]	Cl: Main setpoint / Main setpoint		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3001, 3030
	Min:	Max:	Factory setting:
	-	-	[0] 2050[1]
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	See also: p1071, r1073, r1078		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3001, 3030
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the main setpoint.		
r1073	CO: Main setpoint effective / Main setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3030
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective main setpoint. The value shown is the main setpoint after scaling.		

WARNING

The minimum speed is preassigned to 20% of the rated motor speed.
After all of the enable signal have been switched on, with the appropriate direction specified, the motor accelerates to this minimum speed.

NOTICE

The effective minimum speed is formed from p1080 and p1106.

Note

The parameter value applies for both motor directions.
In exceptional cases, the motor can operate below this value (e.g. when reversing).

p1081	Maximum speed scaling / n_max scal		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 3050, 3095
	Min:	Max:	Factory setting:
	100.00 [\%]	105.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the maximum speed (p1082).		
	For a higher-level speed control, this scaling allows the maximum speed to be briefly exceeded.		
Dependency:	See also: p1082		
	NOTICE		
	Continuous operation above a scaling of 100% is not permitted.		

p1082[0...n]	Maximum speed / n_max		
	Access level: 1	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020, 3050, 3070
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
	Example:		
	Induction motor p0310 $=50 / 60 \mathrm{~Hz}$ without output filter and Blocksize power unit		
	p1082 <= $60 \times 240 \mathrm{~Hz} / \mathrm{r} 0313$ (vector control)		
	p1082 <= $60 \times 550 \mathrm{~Hz} / \mathrm{r} 0313$ (U/f control)		
Dependency:	For vector control, the maximum speed is restricted to 60.0 / ($8.333 \times 500 \mu \mathrm{~s} \times \mathrm{r} 0313$). This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters (p0230		speed is limited corresponding to en using sine-wave filters (p0230 e filter capacitance and the motor

See also: p0230, r0313, p0322

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

Note

The parameter applies for both motor directions.
The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).
The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311, p0322.
The following limits are always effective for p1082:
p1082 <= $60 \times$ minimum ($15 \times \mathrm{p} 0310,550 \mathrm{~Hz}$) / r0313
p1082 <= $60 \times$ maximum power unit pulse frequency / ($\mathrm{k} \times \mathrm{r} 0313$), with $\mathrm{k}=12$ (vector control), $\mathrm{k}=6.5$ (U/f control)
During automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$), the parameter value is assigned the maximum motor speed (p0322). For p0322 = 0 the rated motor speed (p0311) is used as default (pre-assignment) value. For induction motors, the synchronous no-load speed is used as the default value ($\mathrm{p} 0310 \times 60 / \mathrm{r} 0313$).
For synchronous motors, the following additionally applies:
During automatic calculation (p0340, p3900), p1082 is limited to speeds where the EMF does not exceed the DC link voltage.
p 1082 is also available in the quick commissioning ($\mathrm{p} 0010=1$); this means that when exiting via $\mathrm{p} 3900>0$, the value is not changed.

p1082[0...n]	Maximum speed / n_max		
CUG120X_PN	Access level: 1	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
(PM330)	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020, 3050,
			3070
	Min:	Max:	Factory setting:
	$0.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$	$1500.000[\mathrm{rpm}]$
Description:	Sets the highest possible speed setpoint.		
Dependency:	The maximum speed is limited to: p1082 <= $60 \times 150 \mathrm{~Hz} / \mathrm{ro313}$		
	See also: p0230, p0310, r0313, p0322		

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

Note

The parameter applies for both motor directions.
The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).
The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311 and p0322 ($\mathrm{p} 0310 \times 60 / \mathrm{r} 0313$, for $\mathrm{p} 0322=0$).

p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
Min:	Max:	Factory setting:	
	$0.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$	
Description:	Sets the maximum speed for the positive direction.		
NOTICE			
A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.			

r1084	CO: Speed limit positive effective / n_limit pos eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: $3 _1$	Unit selection: p0505	Function diagram: 3050, 7958
	Min:	Max:	Factory setting:
	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$
Description:	Display and connector output for the active positive speed limit.		
Dependency:	See also: p1082, p1083, p1085		

> Note
> Vector control: r1084 <= $60 \times 240 \mathrm{~Hz} / \mathrm{r} 0313$

p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction.		
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	0.000 [rpm]	-210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		

7.3 Parameter list

	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
r1087	CO: Speed limit negative effective / n_limit neg eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050, 7958
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active negative speed limit.		
Dependency:	See also: p1082, p1086, p1088		
	Note		
	Vector control: r1087 >= -60 x $240 \mathrm{~Hz} / \mathrm{r0313}$		
p1088[0...n]	Cl : Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-	-	1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		
p1091[0...n]	Skip speed 1 / n_skip 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 1.		
Dependency:	See also: p1092, p1093, p1094, p1101		
	NOTICE		
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

Note

The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.

p1092[0...n]	Skip speed 2 / n_skip 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	$0.000[$ rpm		
Description:	Sets skip speed 2.		
Dependency:	See also: p1091, p1093, p1094, p1101		
	NOTICE		
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

p1093[0...n]	Skip speed 3 / n_skip 3			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050	
	Min:	Max:	Factory setting:	
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]	
Description: Dependency:	Sets skip speed 3.			
	See also: p1091, p1092, p1094, p1101			
	NOTICE			
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.			
p1094[0...n]	Skip speed 4 / n_skip 4			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050	
	Min:	Max:	Factory setting:	
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]	
Description:	Sets skip speed 4.			
	See also: p1091, p1092, p1093, p1101			
Dependency:	NOTICE			
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.			
p1098[0...n]	CI: Skip speed scaling / n_skip scal			
	Access level: 3	Calculated: -	Data type: U FloatingPoin	
	Can be changed: T	Scaling: PERCENT	Dynamic index	0170
	Unit group: -	Unit selection: -	Function diag	
	Min:	Max:	Factory settin	
	-	-		
Description:	Sets the signal source for scaling the skip speeds.			
Dependency:	See also: p1091, p1092, p1093, p1094			
r1099.0	CO/BO: Skip band status word / Skip band ZSW			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	连	-		
Description:	Display and BICO output for the skip bands.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 r 1170 within the skip band	Yes	No	3050
Dependency:	See also: r1170			
	Note For bit 00: With the bit set, the setpoint speed The signal can be used to switch	With the bit set, the setpoint speed is within the skip band after the ramp-function generator (r 1170). The signal can be used to switch over the drive data set (DDS).		

p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3040
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source to disable the negative direction.		
Dependency:	See also: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3040
	Min:	Max:	Factory setting:

Description: Sets the signal source to disable the positive direction.
Dependency: See also: p1110

p1113[0...n]	BI: Setpoint inversion / Setp inv		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2441, 2442, $2505,3040$
	Min:	Max:	Factory setting:
	-	-	[0] 2090.11
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoin		
Dependency:	See also: r1198		
	CAUTION		
	If the technology controller is being used as the speed main setpoint (p2251 = 0), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r1114	CO: Setpoint after the direction limiting / Setp after limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3001, 3040, 3050
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed/velocity setpoint afte	geover and limiting the	
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050, 3070, 6300, 8022
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the setpoint at the input of the ramp-function generator.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Note		
	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p 1082) in this time.		

7.3 Parameter list

Dependency:	See also: p1082		
	Note		
	The ramp-up time can be scaled via connector input p1138.		
	The parameter is adapted during the rotating measurement (p1960>0). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.		
	For U/f control and sensorless vector control (see p1300), a ramp-up time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
CUG120X_PN	Access level: 1	Calculated: -	Data type: FloatingPoint32
(PM330)	Can be changed: $\mathrm{C} 2(1), \mathrm{T}, \mathrm{U}$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	999999.000 [s]	20.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p 1082) in this time.		
Dependency:	See also: p1082		

Note

The ramp-up time can be scaled via connector input p1138.
The parameter is adapted during the rotating measurement ($\mathrm{p} 1960>0$). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.
For U/f control and sensorless vector control (see p1300), a ramp-up time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
CUG120X_PN	Access level: 1	Calculated: -	Data type: FloatingPoint32
(PM330)	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$30.000[\mathrm{~s}]$	
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill		
	(setpoint =0) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
	The parameter is pre-assigned depending on the size of the power unit.		

Note

Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.
Rounding off is not active if the technology controller is used as main speed setpoint ($\mathrm{p} 2251=0$).

p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	30.000 [s]	3.000 [s]
Description:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
	Note		
	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system. Rounding off is not active if the technology controller is used as main speed setpoint ($\mathrm{p} 2251=0$).		
p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the smoothed response to the OFF1 command or the reduced setpoint for the extended ramp-function generator.		
Value:	0 0 Continuous smoothing		
	1: Discontinuous smoothing		
Dependency:	No effect up to initial ro		

Note

p1134 = 0 (continuous smoothing)
If the setpoint is reduced while ramping-up, initially a final rounding-off is carried out and then the ramp-up completed. During the final rounding-off, the output of the ramp-function generator continues to go in the direction of the previous setpoint (overshoot). After the final rounding-off has been completed, the output goes toward the new setpoint. p1134 = 1 (discontinuous smoothing)
If the setpoint is reduced while ramping-up, then the output goes immediately in the direction of the new setpoint. For the setpoint change there is no rounding-off.

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$5400.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
Description:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		

Note

This time can be exceeded if the DC link voltage reaches its maximum value.

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
CUG120X_PN (PM330)	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1), \mathrm{T}, \mathrm{U}$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	5400.000 [s]	3.000 [s]
Description: Dependency:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
	The parameter is pre-assigned depending on the size of the power unit.		
	Note		
	This time can be exceeded if the DC link voltage reaches its maximum value.		
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	30.000 [s]	0.500 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for OFF3 for the extended ramp generator.		
p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCEN	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator.		
Dependency:	See also: p1120		
	Note The ramp-up time is set in p1120		

p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the ramp-down time of the ramp-function generator. See also: p1121		
Dependency:			
	Note		
	The ramp-down time is set in p1121.		
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
			[0] 2090.4
			[1] 1
			[2] 2090.4
			[3] 2090.4
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4).		
	BI: p1140 $=0$ signal:		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 $=1$ signal:		
	Enable ramp-function generator.		
Dependency:	See also: r0054, p1141, p1142		
	CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1141[0...n]	BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
		-	[0] 2090.5
			[1] 1
			[2] 2090.5
			[3] 2090.5
Description:	Sets the signal source for the command "continue ramp-function generator/freeze ramp-function generator".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 5 (STW1.5).		
	BI: p1141 $=0$ signal:		
	Freezes the ramp-function generator.		
	Bl: p1141 $=1$ signal:		
	Continue ramp-function generator.		
Dependency:			

CAUTION

When "master control from PC" is activated, this binector input is ineffective.

NOTICE

The ramp-function generator is, independent of the state of the signal source, active in the following cases: - OFF1/OFF3.

- ramp-function generator output within the suppression bandwidth.
- ramp-function generator output below the minimum speed.

p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	[0] 2090.6
			[1] 1
			[2] 2090.6
			[3] 2090.6
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).		
	BI: p1142 $=0$ signal		
	Inhibits the setpoint (the ramp-function generator input is set to zero).		
	BI: p1142 = 1 signal		
	Setpoint enable.		
Dependency:	See also: p1140, p1141		
	CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note

When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:
BI: p1142 = 0 signal

p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set \mathbf{v}		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	-	29640.0	
Description:	Sets the signal source for accepting the setting value of the ramp-function generator.		
Dependency:	The signal source for the ramp-function generator setting value is set using parameters.		
	See also: p1144		

r1198.0.. 15	CO/BO: Control word setpoint channel / STW setpoint chan				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2505	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and BICO output for the control word of the setpoint channel.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fixed setpoint bit 0	Yes	No	3010
	01	Fixed setpoint bit 1	Yes	No	3010
	02	Fixed setpoint bit 2	Yes	No	3010
	03	Fixed setpoint bit 3	Yes	No	3010
	05	Inhibit negative direction	Yes	No	3040
	06	Inhibit positive direction	Yes	No	3040
	11	Setpoint inversion	Yes	No	3040
	13	Motorized potentiometer raise	Yes	No	3020
	14	Motorized potentiometer lower	Yes	No	3020
	15	Bypass ramp-function generator	Yes	No	3070

p1200[0...n]	Flying restart operating mode / FlyRest op_mode		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6850
	Min:	Max:	Factory setting:
	0	4	0
Description:	Sets the operating mode for flying restart.		
	The flying restart allows the drive converter to be switched on while the motor is still rotating. In so doing, the drive converter output frequency is changed until the actual motor speed/velocity is found. The motor then accelerates up to the setpoint at the ramp-function generator setting.		
Value:	$0: \quad$ Flying restart inactive		
	1: Flying restart always active (start in setpoint direction)		
	4: Flying restart always active (start only in setpoint direction)		
Dependency:	A differentiation is made between flying restart for U/f control and for vector control (p 1300).		
	Flying restart, U/f control: p1202, p1203, r1204		
	Flying restart, vector control: p1202, p1203, r1205		
	For synchronous motors, flying restart cannot be activated.		
	See also: p1201		
	See also: F07330, F07331		

NOTICE

The "flying restart" function must be used in cases where the motor may still be running (e.g. after a brief line supply interruption) or is being driven by the load. The system might otherwise shut down as a result of overcurrent.

7.3 Parameter list

Note

For p1200 = 1, 4, the following applies:
Flying restart is active after faults, OFF1, OFF2, OFF3.
For p1200 = 1, the following applies:
The search is made in both directions.
For p1200 = 4, the following applies:
The search is only made in the setpoint direction.
For U/f control (p1300 < 20), the following applies:
The speed can only be sensed for values above approx. 5% of the rated motor speed. For lower speeds, it is assumed that the motor is at a standstill.
If $p 1200$ is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	1	

Note

Withdrawing the enable signal has the same effect as setting p1200 $=0$.
p1202[0...n] Flying restart search current / FlyRest I_srch

Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
$10[\%]$	$400[\%]$	$100[\%]$
Sets the search current for the "flying restart" function.		
The value is referred to the motor magnetizing current.		
See also: r0331		

CAUTION

An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.

NOTICE

The following applies for a synchronous reluctance motor:
The minimum search current is limited (p1202 >= 50%).

Note

In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the actual search current is set as a function of the frequency based on the voltage setpoints.
Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example).
The following applies for a synchronous reluctance motor:
Adjusting the search current only has an effect if a motor data identification run is then performed (see p1909 bit 22). It is possible that a value exceeding 100% cannot be reached if the motor rated power is significantly less than that of the power unit.
If the motor rated power is significantly higher than that of the power unit, then the search current should be increased for the higher speed range.

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	10 [\%]	4000 [\%]	100 [\%]
Description:	Sets the factor for the search speed for flying restart.		
	The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.		
Recommendation:	For sensorless vector control and motor cables longer than 200 m , set the factor p1203 >= 300%.		
	CAUTION		
	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion. For vector control, a value that is too low or too high can cause flying restart to become unstable.		
	Note		
	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).		
	With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).		
	For the flying restart of a reluctance motor, the minimum search velocity is limited (p1203 >= 50%).		
p1206[0...9]	Automatic restart faults not active / AR fault not act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Sets faults for which automatic restart should not be effective.		
Dependency:	The setting is only effective for $\mathrm{p} 1210=6,16,26$.		
	See also: p1210		
p1210	Automatic restart mode / AR mode		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	26	0
Description:	Sets the automatic restart mode (AR).		
	The parameters must be saved in the non-volatile memory p0971 = 1 in order that the setting becomes effective.		
Value:	$0: \quad$ Inhibit automatic restart		
	1: Acknowle		
	4: Restart aft	ditional start attem	
	6: Restart aft	attempts	
	14: Restart aft	g man. acknowle	
	16: Restart aft	knowledgment	
	26: Acknowledging all faults and reclosing for an ON command		
Recommendation:	For brief line supply fail might need to be activ	ill be rotating whe or shaft is still rot	he "flying restart" function (p1200)

7.3 Parameter list

Dependency:	The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210>1, there is no active ON command, then the automatic restart is interrupted.
	When using an Operator Panel in the LOCAL mode, then there is no automatic start.
	For p1210 $=14,16$, a manual acknowledgment is required for an automatic restart.
	See also: p0840, p0857, p1267
	See also: F30003

DANGER

If the automatic restart is activated ($\mathrm{p} 1210>1$) if there is an ON command (refer to p0840), the drive is switched on as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is present again. This automatic switching-on operation can only be interrupted by withdrawing the ON command.

NOTICE

A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). When faults are present, therefore, the parameter cannot be changed.
For p1210>1, the motor is automatically started.

Note

For p1210 = 1 :
Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.
For p1210 = 4:
An automatic restart is only performed if fault F30003 has occurred on the power unit. If additional faults are present, then these faults are also acknowledged and when successful, starting continues.
For p1210 = 6:
An automatic restart is carried out if any fault has occurred.
For p1210 = 14:
as for $\mathrm{p} 1210=4$. However, active faults must be manually acknowledged.
For p1210 = 16:
as for $\mathrm{p} 1210=6$. However, active faults must be manually acknowledged.
For p1210 = 26:
as for $\mathrm{p} 1210=6$. For this mode, the switch-on command can be entered with a delay. The restart is interrupted with either OFF2 or OFF3. Alarm A07321 is only displayed if the cause of the fault has been removed and the drive is restarted by setting the switch-on command.

Automatic restart start attempts / AR start attempts

Access level: 3
Can be changed: T, U
Unit group: -
Min:
0

Calculated: -
Scaling: -
Unit selection: Max:
10

Data type: Unsigned16
Dynamic index: -
Function diagram: -
Factory setting:
3

Sets the start attempts of the automatic restart function for p1210 $=4,6,14,16,26$.
A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
See also: p1210
See also: F07320

NOTICE

After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure (blackout) the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2 , the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2.

Note
 A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired.
 As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgment starts again from the beginning.
 Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
 At least one start attempt is always carried out.
 After a line supply failure, acknowledgment is immediate and when the line supply returns, the system is switched on. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgment also causes the start counter to be decremented.
 For p1210 = 26:
 The start counter is decremented if after a successful fault acknowledgment, the on command is present.

p1212	Automatic restart delay time start attempts / AR t_wait start		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.1 [s]	1000.0 [s]	1.0 [s]
Description:	Sets the delay time up to restart.		
Dependency:	This parameter setting is active for $\mathrm{p} 1210=4,6,26$.		
	For p1210 = 1, the following applies:		
	Faults are only automatically acknowledged in half of the waiting time, no restart.		
	See also: p1210		
	NOTICE		
	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).		

Note

The faults are automatically acknowledged after half of the delay time has expired and the full delay time.
If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the delay time.
p1213[0...1] Automatic restart monitoring time / AR t_monit

Access level: 3
Can be changed: T, U
Unit group: -
Min:
0.0 [s]

Calculated: -

Scaling: -
Unit selection: -
Max:
10000.0 [s]

Data type: FloatingPoint32
Dynamic index: -
Function diagram: -
Factory setting:
[0] 60.0 [s]
[1] 0.0 [s]

Description: Sets the monitoring time of the automatic restart (AR).
Index:

Dependency: See also: p1210

NOTICE

A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.

7.3 Parameter list

Note

For index 0 :
The monitoring time starts when the faults are detected. If the automatic acknowledgments are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 = 1), then fault F07320 is output. The monitoring is deactivated with $\mathrm{p} 1213=0$. If p 1213 is set lower than the sum of p 1212 , the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for p1210 = 1, the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.
The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).

In the case of $p 1210=14,16$, the faults which are present must be acknowledged manually within the time in $p 1213[0]$. Otherwise, fault F07320 is generated after the set time.
For index 1 :
The start counter (refer to r1214) is only set back to the starting value p1211 if, after successful restart, the time in $\mathrm{p} 1213[1]$ has expired. The delay time is not effective for fault acknowledgment without automatic restart (p1210=1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the switch-on command is withdrawn and the fault is acknowledged. The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.
For p1210 $=26$, the fault must have been successfully acknowledged and the switch-on command issued within the time in p1213[0]. Otherwise, fault F07320 is generated after the set time.

p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8022
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
Dependency:	See also: p1227		

CAUTION

The following applies for encoderless speed control:
If p1226 is set to values under approx. 1% of the rated motor speed, then the model switchover limits of the vector control must be increased in order to guarantee reliable shutdown (see p1755, p1750.7).

NOTICE

For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the Control Unit boots.

Note

Standstill is identified in the following cases:

- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.
- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.

The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low.

Zero speed detection monitoring time / n_standst t_monit

Access level: 3
Can be changed: T, U
Unit group: -
Min:
0.000 [s]

Calculated: -
Scaling: -
Unit selection: -
Max:
300.000 [s]

Data type: FloatingPoint32
Dynamic index: -
Function diagram: -
Factory setting:
300.000 [s]

Description:	Sets the monitoring time for the standstill identification.		
	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
	See also: p1226		
	NOTICE		
	For p1145>0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.		
	Note		
	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. For p1227 $=300.000$ s the following applies:		
	Monitoring is deactivated.		
	For p1227 $=0.000 \mathrm{~s}$, the following applies:		
	With OFF1 or OFF3 and	pulses are imme	ssed and the motor "coasts" down.
	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the		
p1228	Pulse suppression delay time / Pulse suppr t_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8022
	Min:	Max:	Factory setting:
	0.000 [s]	299.000 [s]	0.010 [s]
Description:	Sets the delay time for pulse suppression.		
	After OFF1 or OFF3, the pulses are canceled, if at least one of the following conditions is fulfilled:		
	- the speed actual value falls below the threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint fal	26 and the time	is in p1227 has expired.
Dependency:	See also: p1226, p1227		
p1230[0...n]	BI: DC braking activation / DC brake act		
CUG120X_PN (DC braking)	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7017
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source		
Dependency:	See also: p1231, p1232, p1233, p1234, r1239		
	Note		
	1 signal: DC braking activated.		
	0 signal: DC braking deactivated.		
p1231[0...n]	DC braking configuration / DCBRK config		
CUG120X_PN (DC braking)	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 7014, 7016, 7017
	Min:	Max:	Factory setting:
	0	14	0

7.3 Parameter list

Description:	Setting to activate DC braking.	
Value:	$0:$	No function
	$4:$	DC braking
	$5:$	DC braking for OFF1/OFF3
	$14:$	DC braking below starting speed
	See also: p0300, p1232, p1233, p1234, r1239	

Note

DCBRK: DC Braking
For p1231 = 4:
The function is activated as soon as the activation criterion is fulfilled.

- the function can be superseded by an OFF2 response.

Activation criterion (one of the following criteria is fulfilled):

- binector input p1230 $=1$ signal (DC braking activation, depending on the operating mode).
- the drive is not in the state " S 4 : Operation" or in " S 5 x ".
- the internal pulse enable is missing ($\mathrm{r} 0046.19=0$)

DC braking can only be withdrawn ($\mathrm{p} 1231=0$) if it is not being used as a fault response in p2101.
In order that DC braking is active as fault response, the corresponding fault number must be entered in p2100 and fault response p2101 set = 6 .
For p1231 = 5:
DC braking is activated if the OFF1 or OFF3 command is present. Binector input p1230 is ineffective. If the drive speed still lies above the speed threshold p1234, then initially, the drive is ramped-down to this threshold, demagnetized (see p0347) and is then switched into DC braking for the time set in p1233. After this, the drive is switched-off. If, at OFF1, the drive speed is below p1234, then it is immediately demagnetized and switched into DC braking. The system switches back to normal operation if the OFF1 command is withdrawn prematurely (the system waits for demagnetization). Flying restart must be activated if the motor is still rotating.
DC braking by means of fault response continues to be possible.
For p1231 = 14:
In addition to the function for p1231 = 5, binector input p1230 is evaluated.
DC braking is only automatically activated when the speed threshold p1234 is fallen below if binector input p1230 $=1$ signal. This is also the case, if no OFF command is present.
After demagnetization and after the time in p1233 has expired, the drive changes back into normal operation or is switched-off (for OFF1/OFF3).
If a 0 signal is applied to binector input p1230, for OFF1 and OFF3 no DC braking is executed.

p1232[0...n]	DC braking braking current / DCBRK I_brake		
CUG120X_PN (DC	Access level: 2	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
braking $)$	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: -	Unit selection: -	Function diagram: 7017
	Min:	Max:	Factory setting:
	$0.00[$ Arms $]$	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the braking current for DC braking.		
Dependency:	See also: p1230, p1231, p1233, p1234, r1239, p1345, p1346		

Note

A change to the braking current becomes effective the next time that DC braking is switched on.
The value for p 1232 is specified as an rms value in the 3-phase system. The magnitude of the braking current is the same as that of an identical output current at frequency zero (see r0067, r0068, p0640). The braking current is internally limited to r0067.
For the current controller, the settings of parameters p1345 and p1346 (I_max limiting controller) are used.

7.3 Parameter list

Note

The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1242 and the controller output is zero.

p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
CUG120X_PN	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
(Vdc_max)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	$1[\%]$	100 [\%]	
	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		

p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering)/Vdc_min on_level		
CUG120X_PN	Access level: 3	Calculated: -	Data type: FloatingPoint32
(Vdc_min)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$65[\%]$	76 [\%]	
	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
Description:	The value is obtained as follows:		
	r1246[V] $=$ p1245[\%] * sqrt(2) * p0210		
	See also: p0210		

WARNING

An excessively high value possibly negatively influences normal drive operation, and can mean that after the line supply returns, the Vdc minimum control can no longer be exited.

r1246	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
CUG120X_PN	Access level: 3	Calculated: -	Data type: FloatingPoint32
(Vdc_min)	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
	The Vdc_min controller is not switched back off until the DC link voltage rises above the threshold 1.05 * p1246 and the controller output is zero.		

p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor		
CUG120X_PN	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
(PM330, Vdc_min,	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	1 [\%]	10000 [\%]	300 [\%]
Description:	Sets the dynamic factor for the Vdc_min controller (kinetic buffering).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1247.		

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
CUG120X_PN	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
(Vdc_max)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00[r p m]$	10.00 [rpm]	
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the		
	ramp-function generator.		

[^2]| p1250[0...n] | Vdc controller proportional gain / Vdc_ctrl Kp | | |
| :--- | :--- | :--- | :--- |
| | Access level: 3 | Calculated: - | Data type: FloatingPoint32 |
| | Can be changed: T, U | Scaling: - | Dynamic index: DDS, p0180 |
| | Unit group: - | Unit selection: - | Function diagram: - |
| | Min: | Max: | Factory setting: |
| | 0.00 | 1.00 | |
| Description: | Sets the proportional gain for the DC link voltage controller (Vdc_min controller, Vdc_max controller). | | |
| Dependency: | The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor) and the DC | | |
| | link capacitance of the power unit. | | |
| | | | |

p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	$0[\mathrm{~ms}]$	0 [ms	
Description:	Sets the integral time for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		

Note
 $\mathrm{p} 1251=0$: The integral component is deactivated.

p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	$0[\mathrm{~ms}]$	$0[\mathrm{~ms}]$	
Description:	Sets the rate time constant for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		

p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	1
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	$0:$	Automatic detection inhibited	
	$1:$	Automatic detection enabled	

p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
CUG120X_PN	Access level: 3	Calculated: -	Data type: FloatingPoint32
(Vdc_min)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	1800.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1256=1		

Dependency:	See also: F07406		
	NOTICE		
	If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1240=3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
CUG120X_PN	Access level: 3	Calculated: -	Data type: Integer16
(Vdc_min)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, n<p1257-> F07405		
	1: Buff. Vdc until undervolt., n<p1257 -> F07405, t>p1255-> F07406		
Dependency:	See also: F07405, F07406		
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
CUG120X_PN	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
(Vdc_min)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized Kinetic buffering is not started below the speed threshold.		

Note

Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.
However, the maximum braking torque can be set via the appropriate torque limiting.

r1258	CO: Vdc controller output / Vdc_ctrl output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6220
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
	Note		
	The regenerative power limit p1531 is used for vector control to precontrol the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		
p1260	Bypass configuration / Bypass config		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the configuration for the bypass function.		

7.3 Parameter list

Value:	0: Bypass deactivated					
	3: Bypass without synchronization					
Dependency:	The "Bypass" function is only available for induction motors.					
	Not Wh If th 1, c stat The a fa The	the converter is switched on, the state of the automatic restart is active $(\mathrm{p} 1210=4)$ and figuration p1267.0 $=1$) are still present durin (r0899.0 = 1 and r0046.25 = 1) after power "bypass" function can only be switched off ag t. flying restart" function must be activated (p1	bridging contactor is eval th an ON command (r005 power up, the converter go , and the motor continues in ($\mathrm{p} 1260=0$) if the bypass 00).	1) and the byp o "ready for op directly on th t active or the		$1266=$ ypass" on has
r1261.0... 11	CO/BO: Bypass control/status word / Bypass STW / ZSW					
	Access level: 2		Calculated: -	Data type: Unsigned32		
	Can be changed: -		Scaling: -	Dynamic inde		
	Unit group: -		Unit selection: -	Function diag		
	Min:		Max:	Factory settin		
	-		-	-		
Description: Bit field:	Control and feedback signals of the bypass switch.					
		Signal name	1 signal	0 signal		
Bit field:		Command switch motor - power unit	Close	Open	-	
		Command switch motor - line supply	Close	Open		
	01 05	Feedback signal switch motor - power unit	Closed	Opened	-	
		Feedback signal switch motor - line supply	Closed	Opened		
		Bypass command (from p1266)	Yes	No		
		Bypass in process sequence	Yes	No	-	
		Bypass enabled	Yes	No		
Dependency:	The "Bypass" function is only available for induction motors.					
	Control bits 0 and 1 should be interconnected to the signal outputs via which the switches in the motor feeder cables should be controlled. These should be selected/dimensioned for switching under load.					
p1262[0...n]	Bypass dead time / Bypass t_dead					
	Access level: 2		Calculated: CALC_MOD_REG Data type: FloatingPoint32			
	Can be changed: T, U		Scaling: -	Dynamic index: DDS, p0180		
	Unit group: -		Unit selection: -	Function diag		
	Min:		Max:	Factory setting:		
	0.000 [s]		20.000 [s]	1.000 [s]		
Description:		the dead time for non-synchronized bypass.				
Dependency:	The "Bypass" function is only available for induction motors.					
	Note					
	This parameter is used to define the changeover time of the contactors. It should not be shorter than the de-magnetizing time of the motor (p0347).					netizing itch

p1263	Debypass delay time / Debypass t_del		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	300.000 [s]	1.000 [s]
Description:	Sets the delay time to switch back to converter operation for a non-synchronized bypass.		
Dependency:	The "Bypass" function is only available for induction motors.		
p1264	Bypass delay time / Bypass t_del		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	300.000 [s]	1.000 [s]
Description:	Sets the delay time for switching to line operation for a non-synchronized bypass.		
Dependency:	The "Bypass" function is only available for induction motors.		
p1265	Bypass speed threshold / Bypass n_thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	1480.00 [rpm]
Description:	Sets the speed threshold to activate the bypass.		
Dependency:	The "Bypass" function is only available for induction motors. If the drive setpoint speed is entered via a motorized potentiometer, then the configuration bit p1030.4 should be set in order to ensure the bypass via speed threshold function.		
	Note		
	When selecting p1260 $=3$ and p1267.1 $=1$, the bypass is automatically activated when this speed is reached. The bypass speed threshold is only effective for positive directions of rotation. If the drive connected to the line supply requires negative speeds, then this can be achieved using p1820 (direction of rotation reversal).		
p1266	BI: Bypass control command / Bypass command		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the control command to the bypass.		
Dependency:	The "Bypass" function is only available for induction motors.		
p1267	Bypass changeover source configuration / Chngov_src config		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0000 bin
Description:	Sets the cause that should initiate the bypass.		

7.3 Parameter list

Bit field:	Bit Signal name	R signal

Note

The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).

p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir		
CUG120X_PN	Access level: 3	Calculated: -	Data type: FloatingPoint32
(PM330)	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0[\mathrm{~Hz}]$	$650[\mathrm{~Hz}]$	$5[\mathrm{~Hz}]$
	Sests the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).		

Note

The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).

Note

For bit 00:
Deactivate the ramp-up for Vdc_min control.
For drives with a mechanical system that can oscillate and high moment of inertia, the speed can be more quickly tracked.
For bit 02:
When the line supply returns, normal operation is resumed earlier, and the system does not wait until the Vdc min controller reaches the setpoint speed.

Note

The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1282 and the controller output is zero.

p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (Vdc_max) } \end{aligned}$	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1283.		
p1284[0...n]	Vdc_max controller time threshold (U/f) / Vdc_max t_thresh		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	300.000 [s]	4.000 [s]
Description:	Sets the monitoring time for the Vdc_max controller.		
	If the down ramp of the speed setpoint is held for longer than the time set in p1284, then fault F07404 is output.		

p1285[0...n]	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
	$\mathrm{r} 1286[\mathrm{~V}]=\mathrm{p} 1285[\%]$ * sqrt(2) * p0210		
	WARNING		
	An excessively high value may adversely affect normal drive operation.		
r1286	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
	Access level: 3	Calculated:	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
	Note		
	The Vdc_min controller is not switched back off until the DC link voltage rises above the threshold 1.05 * r1286 and the controller output is zero.		
p1287[0...n]	Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor		
	Access level: 3	Calculated: CAL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the Vdc_min controller (kinetic buffering).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1287.		
p1290[0...n]	Vdc controller proportional gain (U/f) / Vdc_ctrl Kp		
	Access level: 3	Calculated: CAL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	0.00	100.00	1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
	Note		
	The gain factor is proportional to the capacitance of the DC link. The parameter is pre-set to a value that is optimally adapted to the capacitance of the power unit.		

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the rate time cons	DC link voltage controller).	
p1294	Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	0	1	0
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is deactivated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p 0210 .		
Value:	$0: \quad$ Automatic detection inhibited		
	1: Automatic detection enabled		

p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1296 = 1		

NOTICE
If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1280 $=3$) so that the
drive does not shut down with overvoltage when Vdc.min control is exited (due to the time violation) and in the event
of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.

p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f) / Vdc_min response		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	0	

	Note					
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode					
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 2 Can be changed: C2(1), T		Calculated: -		Data type: Integer16	
			Scaling:		Dynamic inde	180
	Unit group: -		Unit selection: -		Function diagram: 6300, 6301, 6851, 8012	
	Min:		Max:		Factory setting:	
	0		20		20	
Description:	Sets the open and closed-loop control mode of a drive.					
Value:	0: U/f control with					
	1: U/f control with		d FCC			
	2: U/f control with					
	4: U/f control with		d ECO			
	7: U/f control for		c and EC			
	20: Sp					
Dependency:	For Only See	ynamic Drive Control operation with U/f cha also: p0300, p0311, p	$0=20 \mathrm{car}$ the rated	speed is	tered (p0311).	
	NOTICE					
	The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.					
		Note				For motors, type p0300 $=14$, operation with U/f control is only recommended for diagnostic purposes.
p1302[0...n]	U/f control configuration / U/f config					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: T		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	-				0000000000000000 bin	
Description:	Sets the configuration for the U/f control.					
Bit field:		Signal name		1 signal	0 signal	FP
		Field orientation		Yes	No	-
		Starting current when	ux boost	Yes	No	-
		Inhibit Iq,max control		Yes	No	-
		Saturation characteri		Yes	No	-
		Current boost for fast		Yes	No	-
	NO	CE				
	$\begin{array}{\|l} \hline \text { p13 } \\ \text { This } \end{array}$	2 bit $5=1$: (only for fie setting is only selected	$\text { it } 4=1 \text {) }$ tion.			

Note
 For bit 04:
 Field orientation for the closed-loop control of application class Standard Drive Control ($\mathrm{p} 0096=1$). The field orientation is activated with the automatic calculation if p0096 is set $=1$.
 For bit 05 (only effective for p1302.4 = 1):
 The starting current when accelerating (p 1311) generally results in an increase in the absolute current and flux. With p1302.5 = 1 the current is only increased in the direction of the load. p1302.5 - in conjunction with p1310 and p1311 - are decisive when it comes to defining the quality of the starting response.
 For bit 07:
 For field orientation (bit04 = 1), an Iq, max controller supports the current limiting controller (see p1341). Inhibiting the integral component can prevent the drive from stalling under overload conditions.
 For bit 08:
 Taking into account the saturation characteristic can be activated to improve faster starting operations for high-rating motors.
 For bit 09:
 For field orientation (bit04 = 1), while the induction motor is being magnetized, the current is automatically increased if the magnetization time p0346 is shortened.

p1310[0...n]	Starting current (voltage boost) permanent / I_start (Ua) perm		
	Access level: 2	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6301, 6851
	Min:	Max:	Factory setting:
	0.0 [\%]	250.0 [\%]	50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).		
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100%		
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:		
	- magnetize the induction motor.		
	- hold the load.		
	- compensate for losses in the system.		
	This is the reason that the output voltage can be increased using p1310.		
	The voltage boost can be used for both linear as well as square-law U/f characteristics.		
	For field orientation ($p 1302.4=1$, default setting for Standard Drive Control p0096 = 1), in the vicinity of low output frequencies, a minimum current is impressed with the magnitude of the rated magnetizing current. In this case, for p1310 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case. For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor current.		
Dependency:	The starting current (voltage boost) is limited by the current limit p0640.		
	Only for p1302.4 = 0 (no field orientation):		
	The accuracy of the starting current depends on the setting of the stator and feeder cable resistance ($\mathrm{p} 0350, \mathrm{p} 0352$). For vector control, the starting current is realized using p1610.		
	See also: p1300, p1311, p1312, r1315		
	NOTICE		
	The starting current (vater		

7.3 Parameter list

Note

The starting current as a result of the voltage boost is only effective for U/f control (p1300).
The boost values are combined with one another if the permanent voltage boost (p1310) is used in conjunction with other boost parameters (acceleration boost (p1311), voltage boost for starting (p1312)).
However, these parameters are assigned the following priorities: p1310 > p1311, p1312
For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), then p1310 together with p1311 and p1302.5 are mainly responsible for the quality of the drive response.

p1311[0...n]	Starting current (voltage boost) when accelerating / I_start accel		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6301, 6851
	Min:	Max:	Factory setting:
	0.0 [\%]	250.0 [\%]	0.0 [\%]
Description:	p1311 only results in a voltage boost when accelerating and generates a supplementary torque to accelerate the load.		
	The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows (not for field orientation): Voltage boost [V] $=1.732$ * p0305 (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) x p1311 (voltage boost when accelerating [\%]) / 100%		
Dependency:	The current limit p0640 limits the boost.		
	For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), p1311 is pre-assigned by the automatic calculation. For vector control, the starting current is realized using p1611.		
	See also: p1300, p1310, p1312, r1315		
	NOTICE		
	The voltage boost results in a higher motor temperature increase.		
	Note		
	The voltage boost when accelerating can improve the response to small, positive setpoint changes.		
	For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), then p1311 together with p1310 and p1302.5 are mainly responsible for the quality of the drive response.		
p1312[0...n]	Starting current (voltage boost) when starting / I_start start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6301, 6851
	Min:	Max:	Factory setting:
	0.0 [\%]	250.0 [\%]	0.0 [\%]
Description:	Setting for an additional voltage boost when powering-up, however, only for the first acceleration phase.		
	The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed.		
Dependency:	The current limit p0640 limits the boost.		
	See also: p1300, p1310, p1311, r1315		
	NOTICE		
	The voltage boost results in a higher motor temperature increase.		

Note

The voltage boost when accelerating can improve the response to small, positive setpoint changes.
Assigning priorities for the voltage boosts: refer to p1310
For field orientation (p1302.4 = 1, not PM230, PM250, PM260), p1312 of the voltage boost is also added in the direction of the load current (non-linear).

r1315	Voltage boost total / U_boost total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6301, 6851
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the total resulting voltage boost in volt.		
	For field orientation (p1302.4 = 1, not for PM230, PM250, PM260), at low speeds, as a minimum the magnetizing current is set, so that the voltage depends on r0331.		
Dependency:	See also: p1310, p1311, p1312		
p1331[0...n]	Voltage limiting / U_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6300
	Min:	Max:	Factory setting:
	50.00 [Vrms]	2000.00 [Vrms]	1000.00 [Vrms]
Description:	Limiting the voltage setpoint.		
	This means that the output voltage can be reduced with respect to the calculated maximum voltage r 0071 and the start of field weakening.		

Note

The output voltage is only limited if, as a result of p 1331 , the maximum output voltage (r0071) is fallen below.

p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6301
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$	
Description:	Sets the starting frequency at which FCC (Flux Current Control) is activated.		
Dependency:	The correct operating mode must be set (p1300 = 1, 6).		
	WARNING		
	An excessively low value can result in instability.		

Note

For p1333 $=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency.
p1334[0...n] U/f control slip compensation starting frequency / Slip comp start
Access level: 3 Calculated: CALC MOD

Can be changed: T, U
Unit group: -
Min:
0.00 [Hz]

Description: Sets the starting frequency of the slip compensation.

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: 6310, 6853
$\begin{array}{ll}\text { Scaling: - } & \text { Dynamic index: } \\ \text { Unit selection: - } & \text { Function diagram: } \\ \text { Max: } & \text { Factory setting: } \\ 3000.00[\mathrm{~Hz}] & 0.00[\mathrm{~Hz}]\end{array}$
$\begin{array}{ll}\text { Scaling: - } & \text { Dynamic index: } \\ \text { Unit selection: - } & \text { Function diagram } \\ \text { Max: } & \text { Factory setting: } \\ 3000.00[\mathrm{~Hz}] & 0.00[\mathrm{~Hz}]\end{array}$

Note

For p1334 = 0, the starting frequency of the slip compensation is automatically set to 6% of the rated motor frequency.

p1335[0...n]	Slip compensation scaling / Slip comp scal	
	Access level: 3	Data type: FloatingPoint32
	Can be changed: T, U	Dynamic index: DDS, p0180
	Unit group: -	Function diagram: 6300, 6310, 6853
	Min:	Factory setting:
	0.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation deactivated. p1335 $=100.0 \%$: The slip is completely compensated.	
Dependency:	Prerequisite for a precise slip compensation for p1335 = 100% are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335.	
	For p0096 = 1 (Standard Drive Control), the scaling of the slip compensation is set as default to 100\%.	

Note

The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.
For synchronous motors, this effect does not occur and the parameter has no effect in this case.
For the open-loop control modes p1300 $=5$ and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.
If p 1335 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1335[0...n]
 CUG120X_PN

Slip compensation scaling / Slip comp scal

Access level: 3
Can be changed: T, U Unit group: -
Min:
0.0 [\%]

Calculated: CALC_MOD_ALL Data type: FloatingPoint32
Scaling: - Dynamic index: DDS, p0180
Unit selection: -
Max:
600.0 [\%]

Function diagram: 6300, 6310
Factory setting:
100.0 [\%]

Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation deactivated. p1335 = 100.0% : The slip is completely compensated.
Dependency: Prerequisite for a precise slip compensation for p1335 $=100 \%$ are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335.
For U/f control types with Eco optimization (4 and 7), the slip compensation must be activated in order to guarantee correct operation.

Note

The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.
For synchronous motors, this effect does not occur and the parameter has no effect in this case.
For the open-loop control modes $\mathrm{p} 1300=5$ and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.
If p 1335 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1336[0...n]	Slip compensation limit value / Slip comp lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6310, 6853
	Min:	Max:	Factory setting:
	0.00 [\%]	600.00 [\%]	250.00 [\%]
Description:	Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).		
r1337	CO: Actual slip compensation / Slip comp act val		
	Access level: 3	Calculated:	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6310, 6853
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip). p1335 > 0 \%: Slip compensation active.		
Dependency:			
	See also: p1335		
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6310, 6853
	Min:	Max:	Factory setting:
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	See also: p1300, p1349		
	Note		
	The resonance damping function dampens active current oscillations that frequency occur under no-load conditions. The resonance damping is active in a range from approximately 6% of the rated motor frequency (p 0310). The shutoff frequency is determined by p1349.		
	For the open-loop control modes $\mathrm{p} 1300=5$ and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.		
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300
	Min:	Max:	Factory setting:
	0.000	0.500	0.000
Description:	Sets the proportional gain of the I_max frequency controller.		
	The I_max controller reduces the drive converter output current if the maximum current (r0067) is exceeded. In the U/f operating modes (p1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).		
Dependency:	In the U/f modes (p 1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.		

NOTICE

When deactivating the I_max controller, the following must be carefully observed:
When the maximum current (r0067) is exceeded, the output current is no longer reduced. The drive is switched off when the overcurrent limits are exceeded.

Note

The I_max limiting controller becomes ineffective if the ramp-function generator is deactivated with p1122 $=1$. p1341 = 0:
I_max frequency controller deactivated and I_max voltage controller activated over the complete speed range.

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:-	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300,6850
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	0.000 [s]	
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	See also: p1340		

Note

When p1341 $=0$, the current limiting controller influencing the frequency is deactivated and only the current limiting controller influencing the output voltage remains active ($\mathrm{p} 1345, \mathrm{p} 1346$).
In the case of power units with regenerative feedback (PM250, PM260), current limitation control for a regenerative load is always implemented by influencing the frequency. This current limiting function is deactivated with p1340 = $\mathrm{p} 1341=0$.

r1343	CO: I_max controller frequency output / I_max_ctrl f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6300, 6850
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective frequency limit.		
Dependency:	See also: p1340		
r1344	I_max controller voltage output / I_max_ctrl U_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6300
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the amount by which the converter output voltage is reduced.		
Dependency:	See also: p1340		
p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 7017
	Min:	Max:	Factory setting:
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the I_max voltage controller.		

Note

For bit 16:
When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit.
For bit 19, 20 :
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
For bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.
For bit 25:
When the bit is set, for high dynamic starting in the l/f mode, the acceleration precontrol torque smoothing only has a short minimum time (4 ms).

Note

For bit 16:

When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit.
For bit 19, 20 :
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
For bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.
For bit 25 :
When the bit is set, for high dynamic starting in the l/f mode, the acceleration precontrol torque smoothing only has a short minimum time (4 ms).

p1401[0...n]	Flux control configuration / Flux ctrl config		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6491
	Min:	Max:	Factory setting:
	-	-	0000000000001110 bin
Description:	Sets the configuration for flux setpoint control		
Bit field:	Bit Signal name	1 signal	0 signal

02	Flux build-up control active	Yes	No	6722,
03	Flux characteristic load-dependent			6723
06	Quick magnetizing	Yes	No	6725
09	Dynamic load-dependent flux boost	Yes	No	6722
		Yes	No	6790,
10	Flux boost low speed			6823
14	Efficiency optimization 2 active	Yes	No	-
			No	6722,

Note

RESM: reluctance synchronous motor (synchronous reluctance motor)
For bit 01:
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p1570 is reached again at the end of the magnetizing time p0346.
The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.
For bit 02:
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant.
For bit 03:
Synchronous-reluctance motor:
Activation of the load-dependent optimum flux characteristic.
For bit 06:
Magnetizing is performed with maximum current (0.9 * r0067). With active identification of the stator resistance (see p0621) quick magnetizing is internally deactivated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
For bit 09:
Synchronous reluctance motor (RESM):
Dynamic increase in the flux setpoint when torque is quickly established.
For bit 10:
Synchronous reluctance motor (RESM):
For load-dependent optimum flux characteristic (p1401.3 = 1) the flux setpoint is increased at low speeds.
For bit 14:
When the function is activated, the following applies:

- the optimum flux is calculated and the power loss is entered for optimization purposes
- the efficiency optimization (p1580) is not active.

It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp). Further, the smoothing time of the flux setpoint filter (p1582) should be increased.
r1407.0... 23 CO/BO: Status word speed controller / ZSW n_ctrl

Access level: 3	Calculated: -	Data type: Unsigned32
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: 2522
Min:	Max:	Factory setting:

Description: Display and BICO output for the status word of the speed controller. Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	U/f control active	Yes	No	-
01	Encoderless operation active	Yes	No	-
02	Reserved	-	-	-
03	Speed control active	Yes	No	6040
05	Speed controller I component frozen	Yes	No	6040

7.3 Parameter list

	06	Speed controller I component set		Yes	No	6040
	07	Torque limit reached		Yes	No	6060
	08	Upper torque limit active		Yes	No	6060
	09	Lower torque limit active		Yes	No	6060
	10	Reserved		-	-	-
	11	Speed setpoint limited		Yes	No	6030
	12	Ramp-function generator set		Yes	No	-
	13	Encoderless operation due to a fault		Yes	No	-
	14	I/f control active		Yes	No	
	15	Torque limit reached (without precontrol)		Yes	No	6060
	17	Speed limiting control active		Yes	No	6640
	23	Acceleration model activated		Yes	No	-
r1438		Speed controller speed setpoint /	ctrl n			
		ss level: 3	Calcula		Data typ	
		be changed: -	Scaling		Dynamic	
		group: 3_1	Unit se	p0505	Function 6031	, 6020,
	Min		Max:		Factory	
			- [rpm]		- [rpm]	
Description:		ay and connector output of the speed setpo U/f operation, the value that is displayed is	after se no relev	miting	omponen	ntrolle

Note

In the standard state (the reference model is deactivated), r1438 $=$ r1439.

p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6020,6040
Min:	Max:	Factory setting:	
	$0.00[\mathrm{~ms}]$	$32000.00[\mathrm{~ms}]$	$10.00[\mathrm{~ms}]$

Description: Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control.
Note
The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 = 4).

p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6050
	Min:	Max:	Factory setting:
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (> p1465).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1470).		
Dependency:	See also: p1464, p1465		

Note
 If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n_ctr Tn n up scal		
	Access level: 3	Calculated: CAL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6050
	Min:	Max:	Factory setting:
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p 1472).		
Dependency:	See also: p1464, p1465		

Note

If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6050
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the speed controller.		
Dependency:	See also: p1461, p1463, p1465		
	Note If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1465[0...n]	Speed controller adaptation speed upper / n_ctrl n upper		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6050
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the upper adaptation speed of the speed controller.		
	No adaptation is effective above this speed.		
	For the proportional gain, p1470 \times p1461 is effective.		
	For the integral time, p1472 \times p1463 is effective.		
Dependency:	See also: p1461, p1463, p1464		
	Note If the upper transition po p1464, then the control implemented for low sp	roller adaptation is set to lower va with p1461 or p1463. This mea nge the controller parameters.	alues than the lower transition point ns that an adaptation can be

p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp		
	Access level: 2	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6040, 6050
	Min:	Max:	Factory setting:
	0.000	999999.000	0.300
Description:	Sets the P gain for encoderless operation for the speed controller.		
	Note		
	The product $\mathrm{p} 0341 \times \mathrm{p} 0342$ is taken into account when automatically calculating the speed controller ($\mathrm{p} 0340=1,3,4$) .		
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn		
	Access level: 2	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6040, 6050
	Min:	Max:	Factory setting:
	0.0 [ms]	100000.0 [ms]	20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
	Note		
	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		
r1482	CO: Speed controller I torque output / n_ctrl I-M_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 5040, 5042, 5210, 6030, 6040
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the I speed controller.		
r1493	CO: Moment of inertia total, scaled / M_inert tot scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: 25_1	Unit selection: p0100	Function diagram: 6031
	Min:	Max:	Factory setting:
	- [kgm]	- [kgm^{2}]	- [kgm^{2}]
Description:	Display and connector output for the parameterized total moment of inertia. The value is calculated as follows: (p 0341 * p 0342) +p 1496		
p1496[0...n]	Acceleration precontrol scaling / a_prectrl scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6020, 6031
	Min:	Max:	Factory setting:
	0.0 [\%]	10000.0 [\%]	0.0 [\%]
Description:	Sets the scaling for the acceleration precontrol of the speed/velocity controller. See also: p0341, p0342		
Dependency:			

WARNING

The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking ($\mathrm{p} 1145=0$) or the acceleration precontrol (p1496 = 0).
The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).

```
Note
The parameter is set to \(100 \%\) by the rotating measurement (refer to p 1960 ).
The acceleration precontrol may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.
We also recommend that the precontrol mode is not used if there is gearbox backlash.
```

p1496[0...n]	Acceleration precontrol scaling / a_prectrl scal		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6020, 6031
	Min:	Max:	Factory setting:
	0.0 [\%]	10000.0 [\%]	100.0 [\%]
Description: Dependency:	Sets the scaling for the acceleration precontrol of the speed/velocity controller.		
	See also: p0341, p0342		
	WARNING		
	The acceleration precontrol r 1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 $=0$) or the acceleration precontrol (p1496 = 0). The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).		

Note

The parameter is set to 100% by the rotating measurement (refer to p 1960).
The acceleration precontrol may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.
We also recommend that the precontrol mode is not used if there is gearbox backlash.

r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6030, 6060, 6722
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controller output.		
r1518[0...1]	CO: Accelerating torque / M_accel		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6060
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the accelerating torque for precontrol of the speed controller.		

7.3 Parameter list

Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed		
Dependency:	See also: p0341, p0342, p1496		
p1520[0..n]	CO: Torque limit upper / M_max upper		
	Access level: 2	Calculated:	
	CALC_MOD_LIM_REF	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: p2003	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6630
	Min:	Max:	Factory setting:

DANGER

Negative values when setting the upper torque limit (p1520<0) can result in the motor accelerating in an uncontrollable fashion.

| NOTICE |
| :--- | :--- |
| A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. |

Note

The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).

p1521[0...n]	CO: Torque limit lower / M_max lower		
	Access level: 2	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2003	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6630
	Min:	Max:	Factory setting:
	-20000000.00 [Nm]	1000000.00 [Nm]	0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	See also: p1520, p1522, p1523		
	4 DANGER		
	Positive values when setting the lower torque limit $(\mathrm{p} 1521>0)$ can result in the motor accelerating in an uncontrollable fashion.		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters ($p 0340$), the torque limit is set to match the current limit (p0640).		
p1522[0...n]	CI: Torque limit upper / M_max upper		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6630
	Min:	Max:	Factory setting:
	-	-	1520[0]
Description:	Sets the signal source for the upper torque limit.		

r1533	Current limit torque-generating total / Iq_max total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6640
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum torque/force generating current as a result if all current limits.		
r1538	CO: Upper effective torque limit / M_max upper eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6640
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm$]$
Description:	Display and connector output for the actual effective upper torque limit.		
	Note		
	The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	This may be the case for rotating measurements (see p1960).		
	The torque limit p1520 can be re-calculated using p0340 $=1,3$ or 5 .		
r1539	CO: Lower effective torque limit / M_max lower eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6640
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective lower torque limit.		
	Note		
	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6060
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque limit to limit the speed controller output.		
Index:	$[0]=$ Upper limit		
	[1] = Lower limit		

p1552[0...n]	CI: Torque limit upper scaling without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6060
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6060
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
r1566[0...n]	Flux reduction torque factor transition value / Flux red M trans		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6790
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	The following applies for a synchronous reluctance motor:		
	Displays the transition value for the start of the evaluation of the optimum flux characteristic. The value is referred to the rated motor torque.		
	Note		
	The transition value corresponds with the lower limit of the flux setpoint (p1581). For a lower absolute torque setpoint, the flux setpoint remains at the lower limit (p1581).		
p1570[0...n]	CO: Flux setpoint / Flex setp		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	50.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the flux setpoint referred to rated motor flux.		
	The following applies for a synchronous reluctance motor:		
	Scaling the flux setpoint.		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

Note

For p1570 > 100\%, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.
The following applies for a synchronous reluctance motor:
The scaling allows the flux setpoint to be adapted when operating with load-dependent optimum flux characteristic or with constant flux setpoint.

p1570[0...n]	CO: Flux setpoint / Flex setp		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	50.0 [\%]	200.0 [\%]	103.0 [\%]
Description:	Sets the flux setpoint referred to rated motor flux. The following applies for a synchronous reluctance motor: Scaling the flux setpoint.		
Dependency:	See also: p0500		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

Note

For p1570 > 100\%, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.
The following applies for a synchronous reluctance motor:
The scaling allows the flux setpoint to be adapted when operating with load-dependent optimum flux characteristic or with constant flux setpoint.

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6723, 6724
	Min:	Max:	Factory setting:
	0.0 [Vrms]	150.0 [Vrms]	10.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	See also: p0500		

Note

In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
CUG120X_PN	Access level: 3	Calculated:	Data type: FloatingPoint32
(PM330)		CALC_MOD_LIM_REF	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6723,6724
	Min:	Max:	Factory setting:
	$0.0[V r m s]$	$150.0[V \mathrm{rms}]$	2.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	See also: p0500		

7.3 Parameter list

Note

It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp). Further, the smoothing time of the flux setpoint filter (p 1582) should be increased.

p1580[0...n]	Efficiency optimization / Efficiency opt.		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	0 [\%]	100 [\%]	100 [\%]
Description:	When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load. For p1580 $=100 \%$, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
Dependency:	See also: p0500		
	Note It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp). Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		
p1581[0...n]	Flux reduction factor / Flux red factor		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [\%]	100 [\%]	100 [\%]
Description:	The following applies for a synchronous reluctance motor:		
	Sets the lower limit of the flux setpoint to evaluate the optimum flux characteristic.		
	The value is referred to the rated motor flux (p0357 * r0331).		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722, 6724
	Min:	Max:	Factory setting:
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723, 6724
	Min:	Max:	Factory setting:
	10 [ms]	10000 [ms]	300 [ms]
Description:	Sets the integral-action time of the field-weakening controller.		
r1598	CO: Total flux setpoint / Flux setp total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6714, 6723, 6724, 6725, 6726
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]

7.3 Parameter list

Description:	Displays the effective flux setpoint. The value is referred to the rated motor flux.	
p1601[0...n]	Current injection ramp time / I_inject t_ramp	
	Access level: 3 Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: - Unit selection: -	Function diagram: 6790
	Min: Max:	Factory setting:
	1 [ms] 10000 [ms]	20 [ms]
Description:	Synchronous-reluctance motor:	
	Sets the ramp-up time of the current setpoint (p1610, p1611) when switching over from loop controlled operation.	om closed-loop controlled to open-
p1610[0...n]	Torque setpoint static (sensorless) / M_set static	
	Access level: $2 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: - Unit selection: -	Function diagram: 6700, 6721, 6722, 6726
	Min: Max:	Factory setting:
	-200.0 [\%] 200.0 [\%]	50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control in the low speed range. This parameter is entered as a percentage referred to the rated motor torque (r0333).	
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.	

NOTICE
p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.

Note

For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current, RESM: no-load magnetizing current).
For p1610 = 100%, a current setpoint is calculated that corresponds to the rated motor torque.
Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors as well as closed-loop controlled reluctance motors.

p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel		
	Access level: 2	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6700, 6721, 6722, 6726
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	30.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control.This parameter is entered as a percentage referred to the rated motor torque (r0333).		

Note

When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled.
For pure accelerating torques, it is always favorable to use the torque precontrol of the speed controller (p1496).

p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6721, 6722
	Min:	Max:	Factory setting:
	4 [ms]	10000 [ms]	40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
	Note		
	This parameter is only effective in the range where current is injected for sensorless vector control.		
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
	Access level: 3	Calculated: CALC_MOD_CON Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: - Dynamic index: DDS, p0180	
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000	10.000	0.025
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.		
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	1000.0 [\%]	5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1 .		
Dependency:	If a stalled drive is detected $(r 1408.12=1)$, fault F07902 is output after the delay time set in p2178. See also: p2178		
	Note		
	Monitoring is only effective in the low-speed range (below p1755 * (100\% - p1756)).		
r1746	Motor model error signal stall detection / MotMod sig stall		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Signal to initiate stall detection		
	Note		
	The signal is not calculated while magnetizing and only in the low speed range (below p1755 * (100\% - p1756)).		

p1750[0...n] Motor model configuration / MotMod config

Access level: 3	Calculated:	Data type: Unsigned16
Can be changed: T, U	CALC_MOD_LIM_REF	
Unit group: -	Scaling: -	Dynamic index: DDS, p0180
Min:	Unit selection: -	Function diagram: -
-	Max:	Factory setting:

Description:
Sets the configuration for the motor model.
Bit $0=1$: Forces open-loop speed-controlled starting (ASM).
Bit 1 = 1: Forces the system to pass through frequency zero, open-loop-controlled (ASM).
Bit 2 = 1: Drive remains in full closed-loop control mode, even at zero frequency (ASM).
Bit $3=1$: Motor model evaluates the saturation characteristic (ASM).
Bit 6 = 1: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).
Bit 7 = 1: Use rugged switchover limits to switchover the model (open-loop/closed-loop controlled) for regenerative operation (ASM).
Bit 8 = 1: Open-loop speed controlled operation independent of the speed setpoint (except for OFF3) (ASM).
Bit field:

Dependency:

Bit	Signal name	1 signal	0 signal	FP
00	Controlled start	Yes	No	-
01	Controlled through 0 Hz	Yes	No	-
02	Closed-loop ctrl oper. down to zero freq. for passive loads	Yes	No	-
03	Motor model Lh_pre $=f($ PsiEst $)$	Yes	No	-
06	Closed-loop/open-loop controlled (PMSM) for a blocked	Yes	No	-
	motor		No	-
07	Use rugged changeover limits	Yes	No	-
08	Closed-loop controlled until wait time p1758 has expired	Yes		
See also: p0500				

CAUTION

Do not use bit $6=1$ if the motor can be slowly reversed by the load at the torque limit. Long delay times due to blocking (p2177 > p1758) can cause the motor to stall. In this case you should deactivate the function or use closed-loop control throughout the speed range (note the information re bit $2=1$).

Note

Bits 0 ... 2 only have an influence for sensorless vector control, bit 2 is pre-assigned depending on p0500.
For bit $2=1$:
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p 1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
For bit $2=0$:
Bit 3 is also automatically deactivated.
For bit $6=1$:
The following applies for sensorless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into openloop controlled operation.
For bit $7=1$:
The following applies for sensorless vector control of induction motors:
If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
The effective time condition for changing over into open-controlled operation is obtained from the minimum value of p1758 and 0.5 * r0384.
Is recommended that bit 7 is activated for applications that demand a high torque at low frequencies, and at the same time require low speed gradients..
Adequate parameterization of the current setpoint must be ensured (p1610, p1611).
For bit $8=1$: no influence on the functionality of bits $0,1,2$
The following applies for sensorless vector control of induction motors:
Changeover into open-loop speed controlled operation is no longer dependent on the speed setpoint (except for OFF3), but instead is essentially dependent on time condition p1758. As a consequence, a drive can be started or reversed in closed-loop speed controlled operation with setpoints from an external control system, if these briefly lie in the open-loop speed control range.

p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl		
	Access level: 3	Calculated: CALC_MOD_REG Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00[\mathrm{rpm}]$	$210000.00[\mathrm{rpm}]$	$210000.00[\mathrm{rpm}]$
Description:	Sets the speed to change over the motor model to encoderless operation.		
Dependency:	See also: p1756		

NOTICE

The changeover speed represents the steady-state minimum speed up to which the motor model can be used in sensorless steady-state operation.
If the stability is not adequate close to the changeover speed, it may make sense to increase the parameter value. On the other hand, very low changeover speeds can negatively impact the stability.

Note

The changeover speed applies for the changeover between open-loop and closed-loop control mode.

p1756	Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys					
	Access level: 3		Calculated: CALC_MOD_REG Data type: FloatingPoint32			
	Can be changed: T, U		Scaling: -		Dynamic index:	
	Unit group: -		Unit selection: -		Function diagram: 6730,6731	
	Min:		Max:		Factory setting:	
	0.0 [\%]		95.0 [\%]		50.0 [\%]	
Description: Dependency:	Sets the hysteresis for the changeover speed of the motor model for encoderless operation. See also: p1755					
	Note					
	The parameter value refers to p1755.					
	Extremely small hystereses can have a negative impact on the stability in the changeover speed range, and very high hystereses in the standstill range.					
p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf					
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3		Calculated: CALC_MOD_CON		Data type: Unsigned16	
	Can be changed: T, U		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	-		-		0000100000010100 bin	
Description:	Sets the configuration for the adaptation circuit of the motor model.					
	Induction motor (ASM):					
	Rs, Lh and offset compensation.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Select motor mod		Yes	No	-
		Select motor mod		Yes	No	-
		Select motor mod		Yes	No	-
		Select T(valve) w		Yes	No	-
		Filter time combin	trl integral time	Yes	No	-
		Fast flying restart	ction motor	Yes	No	-
Dependency:	In the U/f characteristic operating mode, only bit 7 and bit 11 are relevant.					
	For active motor model feedback (see p1784), the Lh adaptation is internally deactivated automatically.					

Note

When selecting the compensation of the valve interlocking via Rs (bit 7), the compensation in the gating unit is deactivated and is instead taken into account in the motor model.
In order that the correction values of the Rs and Lh adaptation (selected using bit 0 ... bit 1) are correctly accepted when changing over the drive data set, a dedicated motor number must be entered into p0826 for each different motor.
ASM: Induction motor
RESM: synchronous reluctance motor

p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	0.500 [kHz]	16.000 [kHz]	4.000 [kHz]
Description:	Sets the pulse frequency for the converter.		
Dependency:	Minimum pulse freque See also: p0230	$\text { r0313 / } 60$	

```
Note
The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse
frequency: 2 kHz or 4 kHz).
When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be
reduced (derating, refer to r0067).
If a sine-wave filter is parameterized as output filter (p0230 = 3), then the pulse frequency cannot be set below the
minimum value required for the filter.
For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).
If p1800 is changed during commissioning (p0010 > 0), then it is possible that the old value will no longer be able to be
set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the
drive was commissioned (e.g. p1082).
The pulse frequency cannot be changed when the motor data identification is activated.
\begin{tabular}{|c|c|c|c|}
\hline p1800[0...n] & \multicolumn{3}{|l|}{Pulse frequency setpoint / Pulse freq setp} \\
\hline CUG120X_PN & Access level: 2 & Calculated: - & Data type: FloatingPoint32 \\
\hline (PM330) & Can be changed: \(T, U\) & Scaling: - & Dynamic index: DDS, p0180 \\
\hline & Unit group: - & Unit selection: - & Function diagram: 8021 \\
\hline & Min: & Max: & Factory setting: \\
\hline & \(0.500[\mathrm{kHz}]\) & 4.000 [kHz] & 4.000 [kHz] \\
\hline Description: & \multicolumn{3}{|l|}{Sets the drive converter switching frequency.} \\
\hline & \multicolumn{3}{|l|}{This parameter is pre-set to twice the rated converter value when the drive is first commissioned.} \\
\hline Dependency: & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Minimum pulse frequency: p1800 >= 12 * p1082 * r0313/60}} \\
\hline & See also: p0230 & & \\
\hline
\end{tabular}
```


Note

The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).
When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).
If a sine-wave filter is parameterized as output filter (p0230 = 3), then the pulse frequency cannot be set below the minimum value required for the filter.
For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).
If p 1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).
The pulse frequency cannot be changed when the motor data identification is activated.

r1801[0...1]	CO: Pulse frequency / Pulse frequency		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$-[k H z]$	$-[k H z]$	
Description:	Display and connector output for the actual converter switching frequency.		
Index:	$[0]=$ Actual		
	$[1]=$ Modulator minimum value		

Note

The selected pulse frequency (p 1800) may be reduced if the drive converter has an overload condition (p 0290).

p1802[0...n]	Modulator mode / Modulator mode		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	10	0
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: \quad Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
	10: SVM/FLB with modulation depth reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type ($\mathrm{p} 1802=3$). This does not apply to power units PM260. p1802 $=10$ can only be set for power units PM230 and PM240 and for r0204.15 $=0$. See also: p0230, p0500		
	Note When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple. When changing $\mathrm{p} 1802[\mathrm{x}]$, the values for all of the other existing indices are also changed.		
p1803[0...n]	Maximum modulation depth / Modulat depth max		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723
	Min:	Max:	Factory setting:
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	See also: p0500		
	Note p1803 = 100\% is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [ms]	$10000.0[\mathrm{~ms}]$	0.0 [ms]
Description:	Sets the filter time constant for the DC link voltage.This time constant is used to calculate the modulation depth.		

7.3 Parameter list

Dependency:	See also: p1300, p1910, p1960
See also: A07980, A07981, F07983, F07984, F07985, F07986, F07988, F07990, A07991	
	NOTICE p1900 $=3:$ This setting should only be selected if the motor data identification was already carried out at standstill. To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971). During the rotating measurement it is not possible to save the parameter (p0971).

Note

The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300 < 20 (U/f controls).
An appropriate alarm is output when the parameter is set.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p 1900 is automatically set to 0 after the motor data identification routine has been completed.
If a reluctance motor has been parameterized, a pole position identification is carried out during the stationary measurement. As a consequence, faults that occur can also be assigned to the pole position identification. For U/f control (p1300), identification with speed controller optimization does not make sense (e.g. P1900 = 1).
p1900
CUG120X_PN
(PM330)

Motor data identification and rotating measurement / MotID and rot meas

Access level: 2	Calculated: -	Data type: Integer16
Can be changed: $\mathrm{C2}(1), \mathrm{T}$	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram:
Min:	Max:	Factory setting:
0	12	2

7.3 Parameter list


```
Note
The following applies to permanent-magnet synchronous motors:
Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.
When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current. If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.
For bit \(19=1\) :
All parameters are automatically saved after a successful motor data identification.
If a speed controller optimization run is then selected, the parameters are only saved after this measurement has been completed.
For bit \(21=1\) :
```

The converter output voltage measurement is calibrated at the start of the motor data identification.

p1910	Motor data identification selection / MotID selection		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	28	0
Description:	Sets the motor data identification routine.		
	The motor data identification routine is carried out after the next switch-on command. p1910 = 1:		
	All motor data and the drive converter characteristics are identified and then transferred to the following parameters: p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830		
	After this, the control parameter $\mathrm{p} 0340=3$ is automatically calculated.		
	p1910 $=20$:		
	Only for internal SIEMENS use.		
Value:	0: Inhibited		
	1: Complete identification (ID) and acceptance of motor data		
	2: Complete identification (ID) of motor data without acceptance		
	20: Voltage vector input		
	21: Voltage vector input without filter		
	22: Rectangular voltage vector input without filter		
	23: Triangular voltage vector input without filter		
	24: Rectangular voltage vector input with filter		
	25: Triangular voltage vector input with filter		
	26: Enter voltage vector with DTC correction		
	27: Enter voltage vector with AVC		
	28: Enter voltage vector with DTC + AVC correction		
Dependency:	"Quick commissioning" must be carried out ($\mathrm{p} 0010=1, \mathrm{p} 3900>0$) before executing the motor data identification routine!		
	When selecting the motor data identification routine, the drive data set changeover is suppressed.		
	See also: p1900		
	See also: F07990, A07991		

NOTICE

After the motor data identification ($\mathrm{p} 1910>0$) has been selected, alarm A07991 is output and a motor data identification routine is carried out as follows at the next switch-on command:

- current flows through the motor and a voltage is present at the drive converter output terminals.
- during the identification routine, the motor shaft can rotate through a maximum of half a revolution.
- however, no torque torque is generated.

7.3 Parameter list

Note

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
When setting p1910, the following should be observed:

1. "With acceptance" means:

The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting.
2. "Without acceptance" means:

The identified parameters are only displayed in the range r1912 ... r1926 (service parameters). The controller settings remain unchanged.
3 . For settings 27 and 28 , the AVC configuration set using p1840 is active.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it. The duration of the measurements can lie between 0.3 s and several minutes. This time is mainly influenced by the motor size. At the end of the motor data identification, p1910 is automatically set to 0 , if only the stationary measurement is selected, then p1900 is also reset to 0 , otherwise, the rotating measurement is activated.

Note

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
When setting p1910, the following should be observed:

1. "With acceptance" means:

The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting.
2. "Without acceptance" means:

The identified parameters are only displayed in the range r1912 ... r1926 (service parameters). The controller settings remain unchanged.
3 . For settings 27 and 28 , the AVC configuration set using p1840 is active.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it. The duration of the measurements can lie between 0.3 s and several minutes. This time is mainly influenced by the motor size. At the end of the motor data identification, p1910 is automatically set to 0 , if only the stationary measurement is selected, then p1900 is also reset to 0 , otherwise, the rotating measurement is activated.

Note

The following parameters are influenced for the individual optimization steps:
Bit 01: p0320, p0360, p0362 ... p0369
Bit 02: p0341, p0342
Bit 03: p1400.0, p1458, p1459, p1463, p1470, p1472, p1496
Bit 04: Dependent on p1960
p1960 = 1, 3: p1400.0, p1458, p1459, p1470, p1472, p1496

p1959[0...n]	Rotating measurement configuration / Rot meas config		
CUG120X_PN	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned16
(PM330)	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0001000000011110 bin
Description:	Sets the configuration of the rotating measurement.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	01 Saturation characteristic identification	Yes	No
	02 Moment of inertia identification	Yes	No

7.3 Parameter list

DANGER

For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.

NOTICE

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
During the rotating measurement it is not possible to save the parameter (p0971).

Note

When the rotating measurement is activated, it is not possible to save the parameters (p0971).
Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.
The ramp-up and ramp-down times ($\mathrm{p} 1120, \mathrm{p} 1121$) are limited, for the rotating measurement, to 900 s .

Note

In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds to the lower speed setpoint. This value is increased by 20% for the upper speed value.
The q leakage inductance (refer to p1959.5) is determined at zero speed and at 50% of $p 1965$-however, with a maximum output frequency of 15 Hz and at a minimum of 10% of the rated motor speed.

Dependency:	This parameter is only updated during the automatic calculation (p0340 $=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 . See also: p2001, p2002, p2003, r2004, r3996 NOTICE When the reference speed / reference frequency is changed, short-term communication interruptions may occur. Note If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. Example 1: The signal of an analog input (e.g. r0755[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000). Example 2: The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).
p2001	Reference voltage / Reference voltage
Description: Dependency:	Sets the reference quantity for voltages. All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values (= rms value) like the DC link voltage. The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word). Note: This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value. p2001 is only updated during automatic calculation (p0340 $=1, \mathrm{p} 3900>0$) if motor commissioning has been carried out first for drive data set zero and as a result overwriting of the parameter has not been blocked by setting p0573 = 1. See also: r3996
p2002	Reference current / I_ref Access level: 3 Calculated: CALC_MOD_ALL Data type: FloatingPoint32 Can be changed: T Scaling: - Dynamic index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: $0.10[A r m s]$ 100000.00 [Arms] 100.00 [Arms]
Description:	Sets the reference quantity for currents. All currents specified as relative value are referred to this reference quantity. The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 . See also: r3996

NOTICE

If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor must be taken into account.
Example:
p2002 = 100 A
Reference quantity 100 A corresponds to 100 \%
p0305[0] = 100 A
Rated motor current 100 A for MDSO in DDS0 --> 100% corresponds to 100% of the rated motor current p0305[1] = 50 A
Rated motor current 50 A for MDS1 in DDS1 --> 100 \% corresponds to 200% of the rated motor current When the reference current is changed, short-term communication interruptions may occur.

Note

Pre-assigned value is p0640.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage ($\mathrm{p} 2002=\mathrm{r} 0206 / \mathrm{p} 0210 / 1.73$) is pre-assigned as the reference quantity.
Example:
The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p 2002) and output according to the parameterized scaling.

p2003	Reference torque / M_ref		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: 7_2	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.01 [Nm]	$20000000.00[\mathrm{Nm}]$	1.00 [Nm]
Description:	Sets the reference quantity for torque.		
	All torques specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .		
	See also: r3996		
	NOTICE		
	When the reference torque is changed, short-term communication interruptions may occur.		
	Note		
	Preassigned value is 2 * p0333.		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example:		
	The actual value of the total torque (r0079) is connected to a test socket (e.g. p0771[0]). The actual torque is cyclically converted into a percentage of the reference torque (p2003) and output according to the parameterized scaling.		
r2004	Reference power / P_ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: 14_10	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	- [kW]	- [kW]	- [kW]

7.3 Parameter list

7.3 Parameter list

p2051[0...16]	Cl : PROFldrive PZD send word / PZD send word		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Integer16
	Can be changed: T, U	Scaling: 4000H	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2450, 2470, 9370
	Min:	Max:	Factory setting:
	-	-	[0] 2089[0]
			[1] 63[0]
			[2...16] 0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r2053[0...16]	PROFIdrive diagnostics send PZD word / Diag send word		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2450, 2470, 9370
	Min:	Max:	Factory setting:
	-		
Description:	Displays the PZD (actu	sent to the fieldbu	

Index:	[0] = PZD 1					
	[1] = PZD 2					
	[2] = PZD 3					
	[3] = PZD 4					
	[4] = PZD 5					
	[5] = PZD 6					
	[6] = PZD 7					
	[7] = PZD 8					
	[8] = PZD 9					
	[9] = PZD 10					
	[10] = PZD 11					
	[11] = PZD 12					
	[12] = PZD 13					
	[13] = PZD 14					
	[14] = PZD 15					
	[15] = PZD 16					
	[16] = PZD 17					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Bit 0		ON	OFF	-
	01	Bit 1		ON	OFF	-
	02	Bit 2		ON	OFF	-
	03	Bit 3		ON	OFF	-
	04	Bit 4		ON	OFF	-
	05	Bit 5		ON	OFF	-
	06	Bit 6		ON	OFF	
	07	Bit 7		ON	OFF	-
	08	Bit 8		ON	OFF	-
	09	Bit 9		ON	OFF	-
	10	Bit 10		ON	OFF	-
	11	Bit 11		ON	OFF	-
	12	Bit 12		ON	OFF	-
	13	Bit 13		ON	OFF	-
	14	Bit 14		ON	OFF	-
	15	Bit 15		ON	OFF	-
r2060[0...10]	CO: PROFIdrive PZD receive double word / PZD recv DW					
	Access level: 3		Calculated: -		Data type: Integer32	
	Can be changed: -		Scaling: 4000H		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2440, 2468	
	Min:		Max:		Factory setting:	
	-		-			
Description:		ector output to	with double word	format recter	drom the field	oller.

7.3 Parameter list

Index:	$[0]=$ PZD $1+2$
	$[1]=\operatorname{PZD} 2+3$
	$[2]=\operatorname{PZD} 3+4$
	$[3]=\operatorname{PZD} 4+5$
	$[4]=\operatorname{PZD} 5+6$
	$[5]=\operatorname{PZD} 6+7$
	$[6]=\operatorname{PZD} 7+8$
	$[7]=\operatorname{PZD} 8+9$
	$[8]=\operatorname{PZD} 9+10$
	$[9]=\operatorname{PZD} 10+11$
	$[10]=\operatorname{PZD} 11+12$
	See also: r2050

NOTICE

Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.
A BICO interconnection for a single PZD can only take place either on r2050 or r2060.

p2061[0...15]	CI: PROFIdrive PZD send double word / PZD send DW Access level: 3	Calculated: -	Data type: Unsigned32 /
			Integer32
	Can be changed: $T, ~ U$	Scaling: 4000 H	Dynamic index: -
	Unit group: -	Max:	Function diagram: 2470
Min:	-	Factory setting:	

Description: Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.
Index:
[0] = PZD $1+2$
[1] $=$ PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] $=$ PZD $5+6$
[5] $=$ PZD $6+7$
[6] $=$ PZD $7+8$
$[7]=$ PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11] = PZD $12+13$
[12] = PZD $13+14$
[13] = PZD $14+15$
[14] = PZD $15+16$
[15] = PZD 16 + 17
Dependency: See also: p2051
NOTICE
A BICO interconnection for a single PZD can only take place either on p2051 or p2061.
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

r2063[0...15]	PROFldrive diagnostics PZD send double word / Diag send DW				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2470	
	Min:		Max:	Factory setting:	
	-		-	-	
Description: Index:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.				
	$\text { [0] = PZD } 1+2$				
	[1] = PZD $2+3$				
	[2] $=$ PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] = PZD $5+6$				
	[5] = PZD $6+7$				
	[6] = PZD $7+8$				
	[7] = PZD $8+9$				
	[8] = PZD $9+10$				
	[9] = PZD $10+11$				
	[10] = PZD $11+12$				
	[11] = PZD $12+13$				
	[12] = PZD $13+14$				
	[13] = PZD $14+15$				
	[14] $=$ PZD 15 + 16				
	[15] = PZD $16+17$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-

7.3 Parameter list

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1	
	Access level: 3 Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 2472
	Min: Max:	Factory setting:
	- -	[0] 899.0
		[1] 899.1
		[2] 899.2
		[3] 2139.3
		[4] 899.4
		[5] 899.5
		[6] 899.6
		[7] 2139.7
		[8] 2197.7
		[9] 899.9
		[10] 2199.1
		[11] 1407.7
		[12] 0
		[13] 2135.14
		[14] 2197.3
		[15] 2135.15
Description:	Selects bits to be sent to the PROFIdrive controller.	
	The individual bits are combined to form status word 1.	
Index:	[0] = Bit 0	
	[1] = Bit 1	
	[2] = Bit 2	
	[3] = Bit 3	
	[4] $=$ Bit 4	
	[5] = Bit 5	
	[6] = Bit 6	
	[7] = Bit 7	
	[8] = Bit 8	
	[9] = Bit 9	
	[10] = Bit 10	
	[11] $=$ Bit 11	
	[12] = Bit 12	
	[13] = Bit 13	
	[14] = Bit 14	
	[15] = Bit 15	
Dependency:	See also: p2088, r2089	
	NOTICE	
	The parameter may be protected as a result of p0922 or p2079 and cannot be chan	anged.

p2081[0...15] BI: Binector-connector converter status word 2 / Bin/con ZSW2

Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: 2472
Min:	Max:	Factory setting:
-	-	0

7.3 Parameter list

p2083[0...15]	BI: Binector-connector converter status word 4 / Bin/con ZSW4	
	Access level: $3 \quad$ Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 2472
	Min: Max:	Factory setting:
	- -	0
Description:	Selects bits to be sent to the PROFIdrive controller.	
	The individual bits are combined to form free status word 4.	
Index:	[0] = Bit 0	
	[1] = Bit 1	
	[2] = Bit 2	
	[3] = Bit 3	
	[4] $=$ Bit 4	
	[5] = Bit 5	
	[6] = Bit 6	
	[7] = Bit 7	
	[8] = Bit 8	
	[9] = Bit 9	
	[10] = Bit 10	
	[11] = Bit 11	
	[12] = Bit 12	
	[13] = Bit 13	
	[14] = Bit 14	
	[15] = Bit 15	
Dependency:	See also: p2088, r2089	
p2084[0...15]	BI: Binector-connector converter status word 5 / Bin/con ZSW5	
	Access level: $3 \quad$ Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 2472
	Min: Max:	Factory setting:
	- -	0
Description:	Selects bits to be sent to the PROFIdrive controller.	
	The individual bits are combined to form free status word 5.	
Index:	[0] = Bit 0	
	[1] = Bit 1	
	[2] = Bit 2	
	[3] $=$ Bit 3	
	[4] = Bit 4	
	[5] = Bit 5	
	[6] = Bit 6	
	[7] = Bit 7	
	[8] = Bit 8	
	[9] = Bit 9	
	[10] = Bit 10	
	[11] = Bit 11	
	[12] = Bit 12	
	[13] = Bit 13	
	[14] = Bit 14	
	[15] = Bit 15	
Dependency:	See also: p2088, r2089	

7.3 Parameter list

p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv			
	Access level: 3		Calculated: -	Data type: Unsigned16
	Can be changed: T, U		Scaling: -	Dynamic index: -
	Unit group: -		Unit selection: -	Function diagram: 2472
	Min:		Max:	Factory setting:
	-		-	[0] 1010100000000000 bin [1...4] 0000000000000000 bin
Description:Index:	Setting to invert the individual binector inputs of the binector-connector converter.			
	[1] = Status word 2			
	[2] = Free status word 3			
	[3] = Free status word 4			
	[4] = Free status word 5			
Bit field:	Bit	Signal name	1 signal	0 signal FP
	00	Bit 0	Inverted	Not inverted
	01	Bit 1	Inverted	Not inverted
	02	Bit 2	Inverted	Not inverted
	03	Bit 3	Inverted	Not inverted
	04	Bit 4	Inverted	Not inverted
	05	Bit 5	Inverted	Not inverted
	06	Bit 6	Inverted	Not inverted
	07	Bit 7	Inverted	Not inverted
	08	Bit 8	Inverted	Not inverted
	09	Bit 9	Inverted	Not inverted
	10	Bit 10	Inverted	Not inverted
	11	Bit 11	Inverted	Not inverted
	12	Bit 12	Inverted	Not inverted
	13	Bit 13	Inverted	Not inverted
	14	Bit 14	Inverted	Not inverted
	15	Bit 15	Inverted	Not inverted
Dependency:	See also: p2080, p2081, p2082, p2083, r2089			
r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send			
	Access level: 3		Calculated: -	Data type: Unsigned16
	Can be changed: -		Scaling: -	Dynamic index: -
	Unit group: -		Unit selection: -	Function diagram: 2472
	Min:		Max:	Factory setting:
			-	-
Description:	Connector output to interconnect the status words to a PZD send word.			
Index:	[0] = Status word 1			
	[1] = Status word 2			
	[2] = Free status word 3			
	[3] = Free status word 4			
	[4] = Free status word 5			
Bit field:	Bit	Signal name	1 signal	0 signal \quad FP
	00	Bit 0	ON	OFF
	01	Bit 1	ON	OFF
	02	Bit 2	ON	OFF
	03	Bit 3	ON	OFF

	04	Bit 4	ON	OFF
0	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF

r2091.0... 15	BO: PROFldrive PZD2 receive bit-serial / PZD2 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2468, 9204, 9206	
	Min			Factory settin	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2092.0... 15	BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2468, 9204, 9206	
	Min:		Max:	Factory setting:	
	-		-		
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-

7.3 Parameter list

	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:		also: p2099			
r2095.0... 15		Connector-bin	or output / Con/bin out		
		ss level: 3	Calculated: -	Data type: Unsig	
		be changed: -	Scaling: -	Dynamic index: -	
		group: -	Unit selection: -	Function diagram:	9360
	Min		Max:	Factory setting:	
	-		-	-	
Description:		tor output for bit-s	ZD word received from the	Fldrive controller.	
		PZD is selected via			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:		also: p2099			
p2098[0...1]		rter connector-	ector output / Con/bi	tp inv	
		ss level: 3	Calculated: -	Data type: Unsig	
		be changed: T, U	Scaling: -	Dynamic index: -	
		group: -	Unit selection: -	Function diagram	9360
	Min		Max:	Factory setting:	
	-		-	000000000000	
Description:		ng to invert the indi	he connector-binector con		
		p2098[0], the sign	$99[0]$ are influenced.		
		p2098[1], the sign	99[1] are influenced.		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-

p2103[0...n]	BI: 1st acknowledge faults / 1st acknowledge		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2441, 2442,
			$2443,2447,2475,2546,9220$,
	Min:	Max:	Factory setting:
	-	-	$[0] 2090.7$
		$[1] 722.2$	
		$[2] 2090.7$	
		$[3] 2090.7$	

	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	A fault acknowledgment is triggered with a $0 / 1$ signal.		
p2104[0...n]	BI: 2nd acknowledge faults / 2nd acknowledge		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546, 8060
	Min:	Max:	Factory setting:
	-	-	[0] 722.5
			[1] 722.5
			[2] 0
			[3] 0
Description:	Sets the second signal source to acknowledge faults.		
	Note		
	A fault acknowledgment is triggered with a $0 / 1$ signal.		
p2105[0...n]	$\mathrm{BI}: 3 \mathrm{rd}$ acknowledge faults / 3rd acknowledge		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546, 8060
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the third signal source to acknowledge faults.		
	Note		
	A fault acknowledgment is triggered with a $0 / 1$ signal.		
p2106[0...n]	BI: External fault 1 / External fault 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	
Description:	Sets the signal source for external fault 1.		
Dependency:	See also: F07860		
	Note		
	An external fault is triggered with a $1 / 0$ signal.		
p2107[0...n]	BI: External fault 2 / External fault 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external fault 2.		
Dependency:	See also: F07861		

r2110[0...63]	Alarm number / Alarm number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	-
Description:	This parameter is identical to r2122.		
p2111	Alarm counter / Alarm counter		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8065
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		
Dependency:	When p2111 is set to 0 , the following is initiated:		
	- all of the alarms of the alarm buffer that have gone [0...7] are transferred into the alarm history [8...63].		
	- the alarm buffer [0...7] is deleted.		
	See also: r2110, r2122, r2123, r2124, r2125		
	Note		
	The parameter is reset to 0 at POWER ON.		
p2112[0...n]	BI: External alarm 1 / External alarm 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-		1
Description:	Sets the signal source for external alarm		
Dependency:	See also: A07850		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
r2114[0...1]	System runtime total / Sys runtime tot		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	Displays the total system runtime for the drive unit.		
	The time comprises $\mathrm{r} 2114[0]$ (milliseconds) and $\mathrm{r} 2114[1]$ (days).		
	After $22114[0]$ has reached a value of 86.400 .000 ms (24 hours) this value is reset and $\mathrm{r} 2114[1]$ is incremented.		
Index:	[0] = Milliseconds		
	[1] = Days		
Dependency:	See also: r0948, r2109, r2123, r2125, r2130, r2136, r2145, r2146		
	Note		
	When the electronic power supply is switched out, the counter values are saved.		
	After the drive unit is switched on, the counter continues to run with the last value that was saved.		

p2116[0...n]	BI: External alarm 2 / External alarm 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external alarm 2.		
Dependency:	See also: A07851		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external alarm 3.		
Dependency:	See also: A07852		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	4022.0
Description:	Sets the signal source for external alarm 3.		
Dependency:	See also: A07852		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
p2118[0...19]	Change message type message number / Chng type msg_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects faults or alarms for which the message type should be changed.		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2119		
	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		

p2119[0...19]	Change message type type / Change type type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	1	3	1
Description:	Sets the message type for the selected fault or alarm.		
Value:	1: \quad Fault (F)		
	2: Alarm (A)		
	3: \quad No message (N)		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2118		
	Note		
	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
	The message type can only be changed for messages with the appropriate identification (exception, value $=0$). Example:		
	F12345(A) --> Fault F12345 can be changed to alarm A12345.		
	In this case, the message number that may be possibly entered in p2100[0...19] and p2126[0...19] is automatically removed.		
r2121	CO: Counter alarm buffer changes / Alrm buff changed		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	
Description:	This counter is incremented every time the alarm buffer changes.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2125		
r2122[0...63]	Alarm code / Alarm code		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8065
	Min:	Max:	Factory setting:
		-	
Description:	Displays the number of alarms that have occurred.		
Dependency:	See also: r2110, r2123, r2124, r2125, r2134, r2145, r2146, r3121, r3123		
	NOTICE		
	The properties of the alarm buffer should be taken from the corresponding product documentation.		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Alarm buffer structure (general principle):		
	r2122[0], r2124[0], r2123[0], r2125[0] --> alarm 1 (the oldest)		
	r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm 8 (the latest)		
	When the alarm buffer is full, the alarms that have gone are entered into the alarm history:		
	r2122[63], r2124[63], r2123[63], r2125[63] --> alarm 56 (the oldest)		

r2123[0...63]	Alarm time received in milliseconds / t_alarm recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8065
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm occurred.		
Dependency:	See also: r2110, r2122, r2124, r2125, r2134, r2145, r2146, p8400		
	NOTICE		
	The time comprises r2145 (days) and r2123 (milliseconds).		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		
r2124[0...63]	Alarm value / Alarm value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8065
	Min:	Max:	Factory setting:
		-	-
Description: Dependency:	Displays additional information about the active alarm (as integer number).		
	See also: r2110, r2122, r2123, r2125, r2134, r2145, r2146, r3121, r3123		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).The structure of the alarm buffer and the assignment of the indices is shown in r2122.		
r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8065
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2134, r2145, r2146, p8400		
	NOTICE		
	The time comprises r2146 (days) and r2125 (milliseconds).		

Note

The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.
p2126[0...19] Change acknowledge mode fault number / Chng ackn F_no
Access level: $3 \quad$ Calculated: - Data type: Unsigned16

Can be changed: T, U Scaling: -
Unit group:
Min:
0

Unit selection: -
Max:
65535

Dynamic index: -
Function diagram: 8050, 8075
Factory setting:
0

Description: Selects the faults for which the acknowledge mode is to be changed

7.3 Parameter list

	01	Trigger signal p2128[1]	ON	OFF	
	02	Trigger signal p2128[2]	ON	OFF	
	03	Trigger signal p2128[3]	ON	OFF	
	04	Trigger signal p2128[4]	ON	OFF	
	05	Trigger signal p2128[5]	ON	OFF	-
	06	Trigger signal p2128[6]	ON	OFF	
	07	Trigger signal p2128[7]	ON	OFF	
	08	Trigger signal p2128[8]	ON	OFF	-
	09	Trigger signal p2128[9]	ON	OFF	
	10	Trigger signal p2128[10]	ON	OFF	
	11	Trigger signal p2128[11]	ON	OFF	
	12	Trigger signal p2128[12]	ON	OFF	
	13	Trigger signal p2128[13]	ON	OFF	
	14	Trigger signal p2128[14]	ON	OFF	-
	15	Trigger signal p2128[15]	ON	OFF	
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0... 15 is set. See also: p2128				
	Note CO: r2129 = 0 --> None of the selected messages has occurred. CO: r2129 > 0 --> At least one of the selected messages has occurred.				
r2130[0...63]	Fault time received in days / t_fault recv days				
	Access level: 3		Calculated: -	Data type:	
	Can be changed: -		Scaling: -	Dynamic	
	Unit group: -		Unit selection: -	Function di	
	Min:		Max:	Factory set	
	-		-	-	
Description:					
Dependency:	Displays the system runtime in days when the fault occurred. See also: r0945, r0947, r0948, r0949, r2109, r2133, r2136, p8401				
	NOTICE				
	The time comprises r2130 (days) and r0948 (milliseconds).				
	Note				
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
r2131	CO: Actual fault code / Act fault code				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 8060	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the code of the oldest active fault.				
Dependency:	See also: r3131, r3132				
	Note				
	0: No fault present.				

r2132	CO: Actual alarm code / Actual alarm code		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the code of the last alarm that occurred.		
	Note		
	0: No alarm present.		
r2133[0...63]	Fault value for float values / Fault val float		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8060
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays additional information about the fault that occurred for float values.		
	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2136		
Dependency:	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2134[0...63]	Alarm value for float values / Alarm value float		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	-
Description:Dependency:	Displays additional information about the active alarm for float values.		
	See also: r2110, r2122, r2123, r2124, r2125, r2145, r2146, r3121, r3123		
Dependency:	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2135.12.. 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2548
	Min:		Factory setting:
	-	-	
Description:	Display and BICO output for the second status word of faults and alarms.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	12 Fault motor overtemperature	Yes	No 8016
	13 Fault power unit thermal overload	Yes	No 8021
	14 Alarm motor overtemperature	Yes	No 8016
	15 Alarm power unit thermal overload	Yes	No 8021

r2136[0...63]	Fault time removed in days / t_flt resolv days			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: 8060	
	Min:	Max:	Factory setting:	
	-	-	-	
Description: Dependency:	Displays the system runtime in days when the fault was removed.			
	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, p8401			
	NOTICE			
	The time comprises r2136 (days) and r2109 (milliseconds).			
	Note			
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2138.7... 15	CO/BO: Control word faults/alarms / STW faultalarm			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: 2546	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Display and BICO output for the control word of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	07 Acknowledge fault	Yes	No	8060
	10 External alarm 1 (A07850) effective	Yes	No	8065
	11 External alarm 2 (A07851) effective	Yes	No	8065
	12 External alarm 3 (A07852) effective	Yes	No	8065
	13 External fault 1 (F07860) effective	Yes	No	8060
	14 External fault 2 (F07861) effective	Yes	No	8060
	15 External fault 3 (F07862) effective	Yes	No	8060
Dependency:	See also: p2103, p2104, p2105, p2106, p2	2108, p2112, p2116, p211	10, p3111, p3	
r2139.0... 15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: 2548	
	Min:	Max:	Factory setting:	
Description:	Display and BICO output for status word 1 of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Being acknowledged	Yes	No	-
	01 Acknowledgment required	Yes	No	-
	03 Fault present	Yes	No	8060
	06 Internal message 1 present	Yes	No	-
	07 Alarm present	Yes	No	8065
	08 Internal message 2 present	Yes	No	-
	11 Alarm class bit 0	High	Low	-
	12 Alarm class bit 1	High	Low	-
	13 Maintenance required	Yes	No	-
	14 Maintenance urgently required	Yes	No	-

7.3 Parameter list

Dependency:	See also: p2163, p2164, p2166, r2197, r2198 See also: F07900	
	Note When interconnecting the enable signal with r 2197.7 then the stall signal is suppressed if there is no speed setpoint actual value deviation.	
r2145[0...63]	Alarm time received in days / t_alarm recv days	
	Access level: 3 Calculated: -	Data type: Unsigned16
	Can be changed: - Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 8065
	Min: Max:	Factory setting:
	- -	
Description:	Displays the system runtime in days when the alarm occurred.	
Dependency:	See also: r2110, r2122, r2123, r2124, r2125, r2134, r2146, p8401	
	NOTICE	
	The time comprises r2145 (days) and r2123 (milliseconds).	

Note
The buffer parameters are cyclically updated in the background (refer to status signal in r2139).

r2146[0...63]	Alarm time removed in days / t_alarm res days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Mnit selection: -	Function diagram: 8065
	Min:	-	Factory setting:
	-	-	
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2125, r2134, r2145, p8401		
	NOTICE		
	The time comprises r2146 (days) and r2125 (milliseconds).		

Note

The buffer parameters are cyclically updated in the background (refer to status signal in r2139).

p2148[0...n]	BI: RFG active / RFG active		
	Access level: 3	Calculated:	Data type: Unsigned32 / Binary
	CaLC_MOD_LIM_REF		
	Unit group: -	Scaling: -	Dynamic index: CDS, p0170
	Uin:	Unit selection: -	Function diagram: 8011
	-	Max:	Factory setting:
		0	0

Description: Sets the signal source for the signal "ramp-function generator active" for the following signals/messages:
"Speed setpoint - actual value deviation within tolerance t_on" (BO: r2199.4)
"Ramp-up/ramp-down completed" (BO: r2199.5)

NOTICE
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

Note
The binector input is automatically interconnected to r1199.2 as a default setting.

p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010
	Min:	Max:	Factory setting:
	0.00 [rpm]	60000.00 [rpm]	0.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).		
Dependency:	See also: r1084, r1087, r2197		
	NOTICE		
	For p0322 $=0$, the foll For p0322 > 0, the foll If one of the conditions mode.	$\begin{aligned} & 1^{*} \text { p0311 } \\ & 02 \text { * p0322-p1082 } \end{aligned}$ riately and automatically	d when exiting the commissioning
	Note		
	For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r1084) above the limit value.		
	If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can only be increased by more than 10% of the rated speed when the maximum speed (p 0322) of the motor is sufficiently greater		
p2163[0...n]	Speed threshold 4 / n_thresh val 4		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8011
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	90.00 [rpm]
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	See also: p2164, p2166, r2197		
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8011
	Min:	Max:	Factory setting:
	0.00 [rpm]	200.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the "speed setpoint - actual value deviation in tolerance t _off" signal/ message (BO: r2197.7).		
Dependency:	See also: p2163, p2166, r2197		
p2165[0...n]	Load monitoring stall monitoring upper threshold / Stall_mon up thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]

Description:	Sets the upper speed threshold of the stall monitoring of the pump or fan. The lower limit is formed by the speed threshold 1 of the load monitoring (p2182). The stall monitoring is active between p2182 and p2165. Dependency:\quadThe following applies: p2182 < p2165 See also: p2181, p2182, p2193 See also: A07891, F07894, A07926

Note

For p2165 = 0 or p2165 < p2182, the following applies:
There is no special stall monitoring for the pump/fan, but only the remaining load monitoring functions (e.g. leakage monitoring for a pump) for the pump or fan are active.

p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8011
	Min:	Max:	Factory setting:
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t _off" signal/message (BO: r2197.7).		
Dependency:	See also: p2163, p216		

p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8011
	Min:	Max:	Factory setting:
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		

p2168[0...n]	Load monitoring stall monitoring torque threshold / Stall_mon M_thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	If, in the monitored speed range from p2182 to p2165, the torque exceeds this threshold, then this is evaluated as either the motor having stalled or heavy-duty starting.		
Dependency:	For pumps, the following applies (p2193 = 4):		
	- the leakage characteristic must lie below the torque threshold for the stall monitoring		
	- the torque threshold for dry running operation must lie below the torque threshold for stall monitoring		
	For fans, the following applies (p2193 = 5):		
	- the torque threshold for the stall monitoring must lie above the torque threshold to identify belt breakage (p 2191).		
	See also: p2165, p2181, p2191, p2193		
	See also: A07891, F07894, A07926		

Note

The following applies for p2168 = 0:
The special stall monitoring for pump/fan is deactivated.
Then, only the remaining load monitoring functions (e.g. the leakage monitoring for a pump) for pump or fan are realized.

p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8012
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description: Dependency:	Sets the speed threshold for the message "Motor blocked" (BO: r 2198.6).		
	See also: p0500, p2177, r2198		
	See also: F07900		
	Note		
	The following applies for sensorless vector control for induction motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected.		
p2177[0...n]	Motor blocked delay time / Mot lock t_del		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8012
	Min:	Max:	Factory setting:
	0.000 [s]	65.000 [s]	3.000 [s]
Description:	Sets the delay time for the message "Motor blocked" (BO: r2198.6).		
Dependency:	See also: p0500, p2175, r2198		
	See also: F07900		

Note

The following applies for sensorless vector control:
At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly ($\mathrm{p} 2177<\mathrm{p} 1758$) before time p2177 has elapsed in order to detect the locked state reliably.
As countermeasure, it is generally also possible to set p1750.6. This is only not permitted if the drive is slowly reversed by the load at the torque limit (speed below p1755 for longer than p1758).

p2178[0...n]	Motor stalled delay time / Mot stall t_del		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8012
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$10.000[\mathrm{~s}]$	$0.010[\mathrm{~s}]$
Description:	Sets the delay time for the message "Motor stalled" (BO: r 2198.7$).$		
Dependency:	See also: 2198		

Note

In the open-loop speed controlled operating range (see p1755, p1756), vector control stall monitoring depends on threshold p1745.
At higher speeds, the difference between flux setpoint r0083 and flux actual value r0084 is monitored.

p2179[0...n]	Output load identification current limit / Outp_Id iden I_lim		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2002	Dynamic index: DDS, p0180
	Unit group: 6_2	Unit selection: p0505	Function diagram: 8022
	Min:	Max:	Factory setting:
	0.00 [Arms]	1000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit for output load identification.		
	A missing output load is displayed using the "Output load not available" message (r2197.11 = 1).		
	This message is output with a delay time (p 2180).		
Dependency:	See also: p2180		
	NOTICE		
	For synchronous motors the output current can be almost zero under no load conditions.		
	Note		
	Missing output load is signaled in the following cases:		
	- the motor is not connected. - a phase failure has occurred.		
p2180[0...n]	Output load detection delay time / Out_load det t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8022
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	2000 [ms]
Description:	Sets the delay time for the message "output load not available" (r2197.11 $=1$).		
Dependency:	See also: p2179		
p2181[0...n]	Load monitoring response / Load monit resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8013
	Min:	Max:	Factory setting:
	0	8	0
Description:	Sets the response when	oring.	
Value:	0 : Load monitoring disabled		
	1: A07920 for torque/speed too low		
	2: A07921 for torque/speed too high		
	3: A07922 for torque/speed out of tolerance		
	4: F07923 for torque/speed too low		
	5: F07924 for torque/speed too high		
	6: \quad F07925 for torque/speed out of tolerance		
	7: Pump/fan load monitoring as alarm		
	8: Pump/fan load monitoring as fault		
Dependency:	See also: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, p2193, r2198, p3230, p3231 See also: A07891, A07892, A07893, F07894, F07895, F07896, F07898, A07920, A07921, A07922, F07923, F07924, F07925		

Note

In order that the load monitoring can reliably respond, the speed threshold p2182 should always be set lower than the minimum motor speed to be monitored.

p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < 2183 < 2184		
	See also: p2182, p2184, p2187, p2188		
	See also: A07926		

p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		

Dependency:	The following applies: p2182 < p2183 < p2184 See also: p2182, p2183, p2189, p2190 See also: A07926	
	In order that the load monitoring can reliably respond, the speed threshold p2184 should always be set higher than the maximum motor speed to be monitored.	
p2185[0...n]	Load monitoring torque threshold 1 upper / M_thresh 1 upper	
	Access level: $3 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1 Unit selection: p0505	Function diagram: 8013
	Min: Max:	Factory setting:
	0.00 [Nm] 20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.	
Dependency:	The following applies: p2185 > p2186	
	See also: p2182, p2186	
	See also: A07926	
	Note	
	The upper envelope curve is defined by p2185, p2187 and p2189.	
p2186[0...n]	Load monitoring torque threshold 1 lower / M_thresh 1 lower	
	Access level: $3 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1 Unit selection: p0505	Function diagram: 8013
	Min: Max:	Factory setting:
	0.00 [Nm] 20000000.00 [Nm$]$	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.	
Dependency:	The following applies: p2186 < p2185	
	See also: p2182, p2185	
	See also: A07926	
	Note	
	The lower envelope curve is defined by p2186, p2188 and p2190.	
p2187[0...n]	Load monitoring torque threshold 2 upper / M_thresh 2 upper	
	Access level: $3 \quad$ Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1 Unit selection: p0505	Function diagram: 8013
	Min: Max:	Factory setting:
	$0.00[\mathrm{Nm}] \quad 20000000.00[\mathrm{Nm}]$	10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.	
Dependency:	The following applies: p2187 > p2188	
	See also: p2183, p2188	
	See also: A07926	
	Note	
	The upper envelope curve is defined by p2185, p2187 and p2189.	

p2188[0...n]	Load monitoring torque threshold 2 lower / M_thresh 2 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	See also: p2183, p2187		
	See also: A07926		
	Note		
	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2189[0...n]	Load monitoring torque threshold 3 upper / M_thresh 3 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2189 > p2190		
	See also: p2184, p2190		
	See also: A07926		
	Note		
	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: $\mathrm{p} 2190<\mathrm{p} 2189$		
	See also: p2184, p2189		
	See also: A07926		
	Note		
	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2191[0...n]	Load monitoring torque threshold no load / M_thresh no load		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Setting of the torque threshold to identify dry running operation for pumps or belt breakage for fans.		

7.3 Parameter list

07	Speed setpoint - actual value deviation in tolerance t_off	Yes	No	8011
08	l_act >= I_threshold value p2170	Yes	No	8022
09	Vdc_act <= Vdc_threshold value p2172	Yes	No	8022
10	Vdc_act > Vdc_threshold value p2172	Yes	No	8022
11	Output load is not present	Yes	No	8022
13	\|n_act \mid > n_max (F07901)	Yes	No	-

NOTICE

For bit 06:
When the overspeed is reached, this bit is set and F07901 output immediately following this. The bit is canceled again as soon as the next pulse inhibit is present.

Note

For bit 00:
The threshold value is set in p1080 and the hysteresis in p2150.
For bit 01, 02:
The threshold value is set in p2155 and the hysteresis in p2140
For bit 03:
1 signal direction of rotation positive.
0 signal: direction of rotation negative.
The hysteresis is set in p2150.
For bit 04:
The threshold value is set in r1119 and the hysteresis in p2150.
For bit 05:
The threshold value is set in p1226 and the delay time in p1228.
For bit 06:
The hysteresis is set in p2162.
For bit 07:
The threshold value is set in p2163 and the hysteresis is set in p2164.
For bit 08:
The threshold value is set in p2170 and the delay time in p2171.
For bit 09, 10:
The threshold value is set in p2172 and the delay time in p2173.
For bit 11:
The threshold value is set in p2179 and the delay time in p2180.
For bit 13:
Only for internal Siemens use.
r2198.4... 12 CO/BO: Status word monitoring 2 / ZSW monitor 2

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: 2536
Min:	Max:	Factory setting:
-	-	-

Description: Display and BICO output for the second status word of the monitoring functions.

Bit field:

Bit	Signal name	1 signal	0 signal	FP	
04	\|n_set $<$ p2161	Yes	No	8011	
05	n_set > 0	Yes	No	8011	
06	Motor blocked	Yes	No	8012	
07	Motor stalled	Yes	No	8012	
08	\|l_act	< I_threshold value p2170	Yes	No	8022
11	Load in the alarm range	Yes	No	8013	
12	Load in the fault range	Yes	No	8013	

Note

For bit 12:
This bit is reset after the fault cause disappears, even if the fault itself is still present.

r2199.0...5	CO/BO: Status word monitoring 3 / ZSW monitor 3		
	Access level: 3	Calculated: -	Data type: Unsigned16

Note

For bit 00:
The speed threshold value 3 is set in p2161.
For bit 01:
The comparison value is set in p2141. We recommend setting the hysteresis (p 2142) for canceling the bit to a value lower than that in p2141. Otherwise, the bit is not reset.

p2200[0...n]	BI : Technology controller enable / Tec_ctrl enable		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source to switch in/switch out the technology controller. The technology controller is switched in with a 1 signal.		
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	$-200.00[\%]$	$200.00[\%]$	$20.00[\%]$

7.3 Parameter list

p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2205[0...n]	CO: Technology controller fixed value $5 /$ Tec_ctr fix val 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: $9 _1$	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	$-200.00[\%]$	50.00 [\%]	
Description:	Sets the value for fixed value 5 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2206[0...n]	CO: Technology controller fixed value $6 /$ Tec_ctr fix val $\mathbf{6}$		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: $9 _1$	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	$-200.00[\%]$	60.00 [\%]	
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		

NOTICE

A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:		Factory setting:
	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description: Dependency:	Sets the value for fixed value 8 of the technology controller.		
	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
		Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	90.00 [\%]
Description: Dependency:	Sets the value for fixed value 9 of the technology controller.		
	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the value for fixed value 10 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	110.00 [\%]
Description: Dependency:	Sets the value for fixed value 11 of the technology controller.		
	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2212[0...n]	CO: Technology controller fixed value 12 / Tec_ctr fix val 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	120.00 [\%]
Description: Dependency:	Sets the value for fixed value 12 of the technology controller.		
	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2213[0...n]	CO: Technology controller fixed value 13 / Tec_ctr fix val 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	130.00 [\%]
Description:	Sets the value for fixed value 13 of the technology controller. See also: p2220, p2221, p2222, p2223, r2224, r2229		
Dependency:			
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	140.00 [\%]
Description:	Sets the value for fixed value 14 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:		Factory setting:
	-200.00 [\%]	200.00 [\%]	150.00 [\%]
Description:	Sets the value for fixed value 15 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the method to select the fixed setpoints.		
Value:	1: Direct selection		
	2: Binary selection		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	See also: p2221, p2222, p2223		
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	See also: p2220, p2222, p2223		
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller. See also: p2220, p2221, p2223		
Dependency:			

p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3		
	Access level: 3	Calculated: -	Data type: Unsigned 32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:			
r2224	CO: Technology controller fixed value effective / Tec_ctr FixVal eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
		Max:	Factory setting:
	$\begin{aligned} & \text { Min: } \\ & -[\%] \end{aligned}$	- [\%]	- [\%]
Description: Dependency:	Display and connector output for the selected and active fixed value of the technology controller.		
	See also: r2229		
r2225.0	CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and BICO output for the status word of the fixed value selection of the technology controller.		
Bit field:	Bit Signal name	1 signal	0 signal \quad PP
	00 Technology controller fixed value selected	Yes	No 7950,

r2229	Technology controller number actual / Tec_ctrl No. act		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7950
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of the selected fixed setpoint of the technology controller.See also: r2224		
Dependency:			

Dependency:	04 Ramp-function generator always active		No	
	See also: r2231, p2240			
	Note For bit 00: 0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p2240. 1: The setpoint for the motorized potentiometer is saved and after ON is entered using r2231. In order to save in a nonvolatile fashion, bit 03 should be set to 1 . For bit 02: 0 : Without initial rounding-off 1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed). The jerk for initial rounding is independent of the rampup time and only depends on the selected maximum value (p 2237). It is calculated as follows: $r=0.0001 \times \max (\mathrm{p} 2237,\|\mathrm{p} 2238\|)[\%] / 0.13^{\wedge} 2\left[\mathrm{~s}^{\wedge} 2\right]$ The jerk is effective until the maximum acceleration is reached (a_max = p2237 [\%]/p2247 [s] or a_max = p2238 [\%]/ p2248 [s]), after which the drive continues to run linearly with constant acceleration. The higher the maximum acceleration (the lower that p2247 is), the longer the ramp-up time increases with respect to the set ramp-up time. For bit 03: 0 : Non-volatile data save deactivated. 1. The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for p2230.0 $=1$). For bit 04: When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r2250.			
r2231	Technology controller motorized pote Access level: 3 Can be changed: - Unit group: 9_1 Min: - [\%]	meter setpoint me Calculated: - Scaling: - Unit selection: p0595 Max: - [\%]	Tec_ctr Data typ Dynamic Function Factory - [\%]	
Description:	Displays the setpoint memory for the motorized potentiometer of the technology controller. For p2230.0 = 1, the last setpoint that was saved is entered after ON.			
p2235[0...n]	BI: Technology controller motorized Access level: 3 Can be changed: T Unit group: - Min:	ntiometer raise se Calculated: - Scaling: - Unit selection: - Max:	Tec_ctr Data typ Dynamic Function Factory 0	/ Binary 0170
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer of the technology controller. The setpoint change (CO: r2250) depends on the set ramp-up time (p2247) and the duration of the signal that is present (BI: p2235).			
Dependency:	See also: p2236			

p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to continually reduce the setpoint for the motorized potentiometer of the technology controller. The setpoint change (CO: r2250) depends on the set ramp-down time (p 2248) and the duration of the signal that is present (BI: p2236).		
Dependency:	See also: p2235		
p2237[0...n]	Technology controller motorized potentiometer maximum value / Tec_ctrl mop max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum value for the motorized potentiometer of the technology controller.		
Dependency:			
p2238[0...n]	Technology controller motorized potentiometer minimum value / Tec_ctrl mop min		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the minimum value for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2237		
p2240[0...n]	Technology controller motorized potentiometer starting value / Tec_ctrl mop start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the starting value for the motorized potentiometer of the technology controller. For p2230.0 $=0$, this setpoint is entered after ON.		
Dependency:	See also: p2230		
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.		
Dependency:	See also: r2250		

p2247[0...n]	Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2248		
	Note		
	The time is referred to 100%. When the initial rounding-off is activated ($\mathrm{p} 2230.2=1$) the ramp-up is correspondingly extended.		
p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2247		
	Note		
	The time is referred to 100%. When the initial rounding-off is activated $(\mathrm{p} 2230.2=1$) the ramp-down is correspondingly extended.		
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	See also: r2245		
p2251	Technology controller mode / Tec_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	0	0
Description:	Sets the mode for using the technology controller output.		
Value:	0 : Technology controller as main speed setpoint		
Dependency:	$\mathrm{p} 2251=0$ is only effective if the enable signal of the technology controller is interconnected (p2200 >0).		

p2252	Technology controller configuration / Tec_ctrl config				
	Access level: 3		Calculated: CALC_MOD_ALL	Data type: Unsigned16	
	Can be changed: T, U S		Scaling: -	Dynamic index: -	
	Unit group: - U		Unit selection: -	Function diagram: -	
	Min: M		Max:	Factory setting:	
	- -			0000000000000000 bin	
Description:	Sets the configuration of the technology controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Ramp-up/ramp-down function generator bypass	Deactivated	Activated	-
		Integrator active for skip speeds	Yes	No	-
		Internal controller limit not displayed	Yes	No	-
		Activate Kp adaptation	Yes	No	7958
		Activate Tn adaptation	Yes	No	7958
Dependency:	For bit $04=0$:				
	The setting is only effective when the PID controller is deactivated.				

CAUTION

For bit 04 = 1:
The PID controller can oscillate if the ramp-up and ramp-down times of the speed setpoint channel are not taken into account when setting controller parameters p2280 and p2285.

Note

For bit $04=0$:
The ramp-function generator in the speed setpoint channel is bypassed when the technology controller is operational.
As a consequence, ramp times p1120, p1121 are not taken into consideration when configuring the controller.
For bit $04=1$:
The ramp-function generator in the speed setpoint channel is not bypassed when the technology controller is operational.
As a consequence, the ramp-up and ramp-down times (p1120, p1121) remain effective, and must be taken into account as controlled system variables when setting the PID controller parameters (p2280, p2285).
The enable ramps of the PID controller are ensured in this setting by p1120, p1121 as well as rounding functions p1130 and p1131. The ramp-up/ramp-down time of the PID controller limiting p2293 must be set appropriately shorter, as otherwise this has an impact on the speed setpoint channel.
For bit $05=0$:
The integral component of the PID controller is held if a skip band or the minimum speed range is passed through in the speed set point channel.
This prevents the speed from oscillating between the edges of the skip band.
For bit $05=1$:
The setting is only effective if a skip band is no longer active.
The integral component of the PID controller is not held in the range of the skip speeds.
The skip band is passed through even for small system deviations and low controller gain factors. In so doing, the controller integral time must be selected large enough so that no undesirable speed oscillations occur between the skip band edges.
The influence of a minimum speed p1080 on the integration behavior can be reduced by raising the lower PID controller limit to p1080 / p2000 * 100\%.
For bit $06=1$:
In r2349, bit 10 and bit 11 are not displayed when reaching internal limits (e.g. for OFF1/3).

p2253[0...n]	CI: Technology controller setpoint $1 /$ Tec_ctrl setp 1		
	Access level: 2	Calculated: -	Data type: Unsigned32 /
	Can be changed: $T, ~ U$	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
Min:	Max:	Factory setting:	
	-	-	0

Description: Dependency:	Sets the signal source for the setpoint 1 of the technology controller. See also: p2254, p2255		
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoint 2 of the technology controller. See also: p2253, p2256		
Dependency:			
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller.		
Dependency:	See also: p2253		
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 2 of the technology controller.		
Dependency:	See also: p2254		
p2257	Technology controller ramp-up time / Tec_ctrl t_ramp-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description: Dependency:	Sets the ramp-up time of the technology controller.		
	See also: p2258		
	Note		
	The ramp-up time is referred to 100%.		
p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time of the technology controller.		

Dependency:	See also: p2257		
	The ramp-down time is referred to 100%.		
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:		Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		
p2263	Technology controller type / Tec_ctrl type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the type of technology controller.		
Value:	0 : D component in the actual value signal		
	1: D component in system deviation		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source	echnology controller.	

p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed actual value after the filter (PT1) of the technology controller.		
p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the technology controller.		
Dependency:	See also: p2264, p2265, p2271		
	See also: F07426		
	NOTICE		
	If the actual value exceeds this upper limit, this results in fault F07426.		
p2268	Technology controller lower limit actual value / Tec_ctrl I_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description: Dependency:	Sets the lower limit for the actual value signal of the technology controller.		
	See also: p2264, p2265, p2271		
	See also: F07426		
	NOTICE		
	If the actual value falls below this lower limit, this results in fault F07426.		
p2269	Technology controller gain actual value / Tech_ctrl gain act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	Sets the scaling factor for the actual value of the technology controller. See also: p2264, p2265, p2267, p2268, p2271		
Dependency:			

Note

For 100%, the actual value is not changed.

p2270	Technology controller actual value function / Tec_ctr ActVal fct		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	3	0
Description:	Setting to use an arithmetic function for the actual value signal of the technology controller.		
Value:	$0: \quad$ Output (y)		
	1: Root functio		
	2: Square fun		
	3: Cube function		
Dependency:	See also: p2264, p226	2271	

p2271	Technology controller actual value inversion (sensor type) / Tech_ctrl act inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to invert the actual value signal of the technology controller.		
	The inversion depends on the sensor type for the actual value signal.		
Value:	0 : No inversion		
	1: Inversion actual value signal		

CAUTION

If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!

Note

The correct setting can be determined as follows:

- inhibit the technology controller (p2200 = 0).
- increase the motor speed and in so doing, measure the actual value signal of the technology controller.
--> If the actual value increases as the motor speed increases, then p2271 should be set to 0 (no inversion).
--> If the actual value decreases as the motor speed increases, then p2271 should be set to 1 (the actual value signal is inverted).
r2272

Description:
Dependency:

CO: Technology controller actual value scaled / Tech_ctrl act scal
Access level: 2
Can be changed: -
Unit group: 9_1
Min:

- [\%]

Calculated: -
Scaling: PERCENT
Unit selection: p0595
Max:

- [\%]

Data type: FloatingPoint32
Dynamic index: -
Function diagram: 7958
Factory setting:

- [\%]

Display and connector output for the scaled actual value signal of the technology controller.
See also: p2264, p2265, r2266, p2267, p2268, p2269, p2270, p2271

r2273	CO: Technology controller system deviation / Tec_ctrl sys_dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the system deviation between the setpoint and actual value of the technology controller.		
Dependency:	See also: p2263		
p2274	Technology controller differentiation time constant / Tec_ctrl D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the technology controller.		
	Note		
p2280	Technology controller proportional gain / Tec_ctrl Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000	1000.000	0.500
Description:	Sets the proportional gain (P component) of the technology controller.		
	$\underline{\mathrm{p} 2280}=0$: The proportional gain is disabled.		
p2285	Technology controller integral time / Tec_ctrl Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	10.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the technology controller.		
	NOTICE		
	The following applies for p2251 $=0$: If the output of the technology controller lies within the range of a suppression (skip) bandwidth (p1091 ... p1094, p1101) or below the minimum speed (p1080), the integral component of the controller is held so that the controller temporarily works as a P controller. This is necessary in order to prevent the controller from behaving in an unstable manner, as the ramp-function generator switches to the parameterized up and down ramps ($\mathrm{p} 1120, \mathrm{p} 1121$) at the same time in order to avoid setpoint steps. This state can be exited or avoided by changing the controller setpoint or by using the start speed (= minimum speed).		
	Note		
	When the controller output reaches the limit, the I component of the controller is held. p2285 = 0:		

p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	56.13
Description:	Sets the signal source to hold the integrator for the technology controller.		
p2289[0...n]	CI: Technology controller precontrol signal / Tec_ctr prectr_sig		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the precontrol signal of the technology controller.		
p2290[0...n]	BI: Technology controller limiting enable / Tec_ctrl lim enab		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source to enable the technology controller output. The technology controller output is enabled with a 1 signal. The technology controller output is held with a 0 signal.		
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:	See also: p2292		
	CAUTION		
	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit		
Dependency:	See also: p2291		
	CAUTION		
	The maximum limit must always be greater than the minimum limit (p2291 > p 2292).		

p2293	Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller.		
Dependency:	See also: p2291, p2292		
	Note		
	The time refers to the set maximum and minimum limits (p2291, p2292).		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the technology controller.		
Dependency:	See also: p2295		
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-100.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	2295[0]
Description:	Sets the signal source for the scaling value of the technology controller. See also: p2295		
Dependency:			
p2297[0...n]	Cl : Technology controller maximum limit signal source / Tec_ctrMaxLimS_src		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	1084[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:			

Note
In order that the output of the technology controller does not exceed the maximum speed limit, its upper limit p2297 should be connected to the actual maximum speed r1084.

p2298[0...n]	Cl: Technology controller minimum limit signal source $/$ Tec_ctrl min_l s_s Access level: 3	Calculated: -	Data type: Unsigned32 /
			FloatingPoint32

Note

If the technology controller is rotated in a negative direction in mode p2251 $=0$, its lower limit p2298 should be connected to the actual minimum speed r1087.

p2299[0...n]	Cl : Technology controller limit offset / Tech_ctrl lim offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the offset of the output limiting of the technology controller.		
p2302	Technology controller output signal starting value / Tec_ctr start val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	If the drive is switched on and the technology controller is already enabled (see p2200, r0056.3), then its output signal r2294 first goes to the start value p2302, before the controller starts to operate.		
Dependency:	The starting value is only effective in the mode "technology controller as main speed setpoint" (p2251 = 0). If the technology controller is first enabled when the drive is switched on, a start speed remains ineffective, and the controller output starts with the actual setpoint speed of the ramp-function generator.		

Note

If the technology controller operates on the speed/setpoint channel (p2251 $=0$), then the starting value is interpreted as the starting speed and when operation is enabled, is connected to the output of the technology controller (r2294). If fault F07426 "technology controller actual value limited" occurs while ramping up to the starting value and if the associated reaction has been set to "NONE" (see p2100, p2101), the starting value is kept as the speed setpoint instead of a switch to closed-loop control operation.

7.3 Parameter list

p2312	Technology controller Kp adaptation upper value / Kp adapt upper val		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.000	1000.000	10.000
Description:	Sets the upper value for the adaptation of proportional gain Kp for the technology controller.		
Dependency:	See also: p2310, p2311, p2313, p2314, p2315, r2316		
	CAUTION		
	The upper value must be set higher than the lower value (p2312 > p2311).		
	Note		
	Kp adaptation is activated with p2252.7 $=1$.		
p2313	Technology controller Kp adaptation lower starting point / Kp adapt lower pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description: Dependency:	Sets the lower starting point for the adaptation of proportional gain Kp for the technology controller.		
	See also: p2310, p2311, p2312, p2314, p2315, r2316		
	CAUTION		
	The upper starting point must be set higher than the lower starting point (p2314 > p2313).		
	Note		
	Kp adaptation is activated with p2252.7 $=1$.		
p2314	Technology controller Kp adaptation upper starting point / Kp adapt upper pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.00 [\%]	400.00 [\%]	100.00 [\%]
Description:	Sets the upper activation point for the adaptation of proportional gain Kp for the technology controller.		
Dependency:	See also: p2310, p2311, p2312, p2313, p2315, r2316		
	CAUTION		
	The upper starting point must be set higher than the lower starting point (p2314 > p2313).		

Note

$\underline{K p}$ adaptation is activated with p2252.7 $=1$.

p2315	CI: Technology controller Kp adaptation scaling signal source / Kp adapt scal s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:

Description: Sets the signal source to scale the results of the adaptation of the proportional gain Kp for the technology controller.

Note
Tn adaptation is activated with p2252.8 $=1$.

p2320	Technology controller Tn adaptation lower starting point / Tn adapt lower pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	$0.00[\%]$	$400.00[\%]$	0.00 [\%]
	Ses the lower activation point for the adaptation of integral time Tn for the technology controller.		
Description:	See also: p2317, p2318, p2319, p2321, r2322		

CAUTION

The upper starting point must be set higher than the lower starting point (p2321 > p2320).

Note

Tn adaptation is activated with p2252.8 $=1$.

p2321	Technology controller Tn adaptation upper starting point / Tn adapt upper pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	$0.00[\%]$	$400.00[\%]$	100.00 [\%]
	Sets the upper activation point for the adaptation of integral time Tn for the technology controller.		
Description:	See also: p2317, p2318, p2319, p2320, r2322		

CAUTION

The upper starting point must be set higher than the lower starting point (p2321 > p2320).

Note

Tn adaptation is activated with p2252.8 $=1$.
r2322

| Description: | Display and connector output for the output signal of the adaption of integral time Tn for the technology controller |
| :--- | :--- | :--- |
| Dependency: | See also: p2252, p2317, p2318, p2319, p2320, p2321 |

Description:	Sets the threshold value for the system deviation of the technology controller, which controls holding the controller integral component in the range of the skip speeds of the ramp-function generator.
Recommendation:	To avoid speed setpoint steps in the range of the skip speeds, we recommend setting p2252 bit $4=1$ (ramp-function generator bypass deactivated).
Dependency:	The parameter has no effect for p2252 bit $5=1$ (integrator hold deactivated). See also: r2273
	Note Only p2251 = 0: If the output signal of the technology controller reaches a skip band in the speed setpoint channel, then the integral component of the controller is held, if at the same time, the system deviation is lower than the threshold value set here. By holding the integral component, it can be avoided that the controller oscillates in the range of the skip bands.
r2344	CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: PERCENT Dynamic index: -
	Unit group: - Unit selection: - Function diagram: 7958
	Min: Max: Factory setting:
	- [\%] - [\%] - [\%]
Description:	Displays the smoothed speed setpoint of the technology controller prior to switching to operation with fault response (see p2345).
Dependency:	See also: p2345
	Note
	$\underline{\text { Smoothing time }=10 \mathrm{~s}}$
p2345	Technology controller fault response / Tech_ctrl flt resp
	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: T, U Scaling: - Dynamic index: -
	Unit group: - Unit selection: - Function diagram: 7958
	Min: Max: Factory setting:
	020
Description:	Sets the response of the technology controller to the occurrence of fault F07426 (technology controller actual value limited).
	The fault response is executed if status bit 8 or 9 in the technology controller status word r 2349 is set. If both status bits are zero, a switch back to technology controller operation will follow.
Value:	$0: \quad$ Function inhibited
	1: On fault: Changeover to r2344 (or p2302)
	2: On fault: Changeover to p2215
Dependency:	The parameterized fault response is only effective if the technology controller mode is set to p2251 $=0$ (technology controller as main setpoint). See also: p2267, p2268, r2344 See also: F07426
	NOTICE
	Dependent upon the application, the changing over of the setpoint when fault F07426 occurs can lead to the fault condition disappearing and the re-activation of the technology controller. This can repeat itself and cause limit oscillations. In this case, a different fault response or a different fixed setpoint 15 for the fault response p2345 = 2 should be selected.

7.3 Parameter list

Note
 The parameterized fault response can only be achieved if the default fault response of the technology controller fault F07426 is set to "NONE" (see p2100, p2101). If a fault response other than "NONE" is entered in p2101 for F07426, p2345 must be set to zero.
 If the fault occurs during ramping up to the starting setpoint p2302, this starting setpoint is retained as the final value (there is no changeover to the fault response setpoint).

Note

While the technology controller is enabled, the following applies:
When switching off with OFF1, OFF3 and for pulse inhibit, bits 10 and 11 are simultaneously set to 1 as the controller output is defined by the internal limiting.

p2350	Enable PID autotuning / PID autotuning		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4	0
Description:	Activates the function to automatically tune the PID controller.		
Value:	$0: \quad$ PID autotuning deactivated		
	PID autotuning with ZN technique		
	2: As 1 with	As 1 with low overshoot	
	3: As $2+$ low	As $2+$ low or no overshoot	
	4: PID aut	PID autotuning, only PI	
Dependency:	Active if the PID controller is enabled (see P2200).		

```
Note
P2350 = 1
This is the Ziegler-Nichols standard tuning (ZN tuning). In this case, it should involve a response to a step.
P2350 = 2
For this tuning, a low overshoot is obtained (O/S). However, it should be faster than option 1.
```

P2350 $=3$
For this tuning, a low or no overshoot is obtained. However, it is not as fast as option 2.
P2350 $=4$
For this tuning, only values P and I are changed, and it should involve a dampened response.
Which option should be selected depends on the particular application. It can be generally stated that option 1
manifests a good response. However, if a faster response is required, then option 2 should be selected.
If no overshoot is desirable, then option 3 should be the preferred choice.
Option 4 should be selected for cases in which no D component is required.
The tuning technique is identical for all options.
Only the P, I and D values are calculated differently.
This parameter is set to zero after automatic tuning has been completed.

p2354	PID autotuning monitoring time / PID tuning t_monit		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	60 [s]	65000 [s]	240 [s]
Description:	Sets the monitoring time for the PID autotuning		
	This time is started after activating PID autotuning (p2350). If, within this time, the control loop is not excited, then the automatic setting is canceled and an appropriate fault is output.		
Dependency:	See also: p2350		
	See also: F07445		
p2355	PID autotuning offset / PID autotun.offset		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [\%]	20 [\%]	5 [\%]
Description:	This parameter is used to set the excitation type of the PID control loop to be used.		
p2370[0...n]	Closed-loop cascade control enable / Csc_ctrl enab		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the signal source to switch in/switch out the closed-loop cascade control function. 1 signal: The function is switched in.		
Value:	0: Closed-		
	1: Closed		

7.3 Parameter list

Note

The technology controller must be activated (p2200) and configured (p2251 = 0) in order to use the function. Negative speed setpoints should be excluded.

p2371	Closed-loop cascade control configuration / Csc_ctrl config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	8	0
Description:	Parameter for configuring the connection and disconnection of external motors to and from the line voltage.		
	Connecting external motors to the line voltage enables up to three additional drives to be controlled by the technology controller in addition to the main drive. The complete system, therefore, comprises one closed-loop-controlled main drive and up to three other drives, which can be controlled via contactors or motor starters. The contactors or motor starters are switched by the converter's digital outputs (see also r2379).		
	Switching-in motor:		
	If the main drive is operated at maximum speed and the deviation at the technology controller input increases further, the control will in addition connect external motors M1 through M3 to the line voltage. At the same time, the main drive is ramped down to the closed-loop cascade control switch-in/switch-out speed (p 2378) via the down ramp, so that the total output power can be kept as constant as possible. During this time the technology controller is switched off.		
	If the main drive is operated at minimum speed and the deviation at the technology controller input decreases further, the control will disconnect external motors M1 through M3 from the line voltage. At the same time, the main drive is ramped up to the closed-loop cascade control switch-in/switch-out speed (p2378) via the up ramp, so that the total output power can be kept as constant as possible.		
Value:	0: Closed-loop cascade control inhibited		
	1: $\quad M 1=1 X$		
	2: $\quad M 1=1 X, M 2=1 X$		
	3: $\quad M 1=1 X$		
	4: $\quad M 1=1 X$		
	5: $\quad M 1=1 X$		
	6: $\quad M 1=1 X$		
	7: $\quad M 1=1 X$		
	8: $\quad \mathrm{M} 1=$		
Dependency:	See also: p2372		
	Note		
	Selecting 2X means that a motor is switched in with twice the power (as opposed to 1 X , which equates to the motor power at the converter).		
p2372	Closed-loop cascade control mode motor selection / Csc_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
		3	0
Description:	Parameter for selecting the control mode for switching-in and switching-out external motors.		
	Selection 2 and 3 support selection options for automatically interchanging the motors, which are connected to the line supply.		
Value:	0: Fixed se		
	1: Closed-l	olute operating hours	
	2: Automatic	us operating hours	

Note

For p2372 = 0:
Motor selection for switching-in/switching-out follows a fixed sequence and is dependent on the closed-loop cascade control configuration (p2371).
For p2372 = 1:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
For p2372 = 2:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
In addition, those motors which have been in operation continuously for longer than the time set in p2381 are interchanged automatically.
If p2371 = 4 (selection of three identical motors), the switch is only performed between two motors, if the required input power of one single external motor is sufficient for the actual operating point.
For p2372 = 3:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
In addition, those motors which have been in operation for a total time longer than that set in p2382 are interchanged automatically.
For $\mathrm{p} 2372=2,3$:
This automatic interchange (autochange) is only possible if the designated motor is not in operation. If all motors are in operation, the interchange will not be possible and alarm A07427 appears.
Autochange mode is only possible if p2371 $=2,4$ (motors of the same size).

p2373	Closed-loop cascade control switch-in threshold / Csc_ctrl sw-in thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	20.0 [\%]
Description:	Threshold value for the delayed switching-in or non-delayed switching-out of external motors connected to the line. Motor switching-in is activated if the maximum speed is reached and the wait time in p2374 has expired.		
Dependency:	See also: p2374		
p2374	Closed-loop cascade control switch-in delay / Csc_ctrl t_in_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	650 [s]	30 [s]
Description:	Additional delay time for connecting external motors to the line voltage after the system deviation of the technology controller has exceeded the threshold value p2373 and the motor has reached the maximum speed.		
Dependency:	See also: p2373		

Note

If the deviation at the technology controller input exceeds the overcontrol threshold p2376, the delay time is bypassed.

p2375	Closed-loop cascade control switch-out delay / Csc_ctrl t_out_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	650 [s]	30 [s]
Description:	Additional delay time for the disconnection of external motors from the line after the system deviation of the technology controller has exceeded the threshold p2373 and the motor has reached the minimum speed p1080.		
Dependency:	See also: p2373, p2376		
	Note		If the deviation at the technology controller input exceeds the overcontrol threshold -p2376, the delay time is bypassed.
p2376	Closed-loop cascade control overcontrol threshold / Csc_ctr ovctr_thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	25.0 [\%]
Description:	Threshold value for instantaneous switching-in or switching-out external motors.		
	Note If the maximum speed is reached and the deviation at the technology controller input exceeds the overcontrol threshold p2376 at the same time, the delay time p2374 is bypassed and the motor is immediately switched-in (connected). If the minimum speed is reached and the deviation at the technology controller input exceeds the overcontrol threshold -p2376 at the same time, the delay time p2375 is bypassed and the motor is immediately switched-out (disconnected).		
p2377	Closed-loop cascade control interlocking time / Csc_ctrl t_interl		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	650 [s]	0 [s]
Description:	Interlocking time during which, following the connection or disconnection of an external motor, no further motors are connected or disconnected using the closed-loop cascade control. This avoids duplicate switching operations.		
p2378	Closed-loop cascade control switch-in/switch-out speed / Csc_ctrl n_in/out		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	50.0 [\%]
Description:	Sets the speed for the main drive, which is approached directly after an external motor has been connected or disconnected.		

p2383	Closed-loop cascade control switch-out sequence / Csc_ctr sw-out seq		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Selection of the response used to stop the motors when the OFF command is sent.		
	OFF1 disconnects the external motors from the line in the order 3-2-1. The time set in p2387 is applied as a delay time between the disconnection of each motor. The main motor is only switched off if all the external motors have already been switched off.		
	In the case of OFF2 and OFF3, the external motors and the main motor are switched off immediately with the OFF command (same behavior as with p2383 $=0$).		
Value:	0: Normal stop		
	1: Sequential stop		
	CAUTION		
	If p2383 $=1$ and the OFF1 command is pending, the main motor will not be stopped until all external motors have been disconnected and time p2387 has elapsed. By switching off the external motors the main motor can be accelerated again.		

p2384	Closed-loop cascade control motor switch-on delay / Csc_ctr t_del_on		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$	
Description:	Delay time once the switch-in conditions have been met until the external motor is switched on.		
	The activation of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by		
	this time, while the main motor speed already decreases down to the switch-in speed (p2378).		

p2385	Closed-loop cascade control holding time switch-in speed / Csc_ctr t_hld n_in		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$999.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
	Time during which the switch-in speed (see p2378) of the main motor is maintained after an external motor has been		
	switched-in and the main motor has been decelerated to the switch-in speed.		

p2386

Description:

Closed-loop cascade control motor switch-off delay / Csc_ctrl t_del_off		
Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
$0.000[\mathrm{~s}]$	$999.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
Delay time once the switch-out conditions have been met until the external motor is switched off.		
The resetting of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by		
this time, while the main motor ramps up to the switch-out speed (p2378).		

p2387	Closed-loop cascade control holding time switch-out speed / CscCtr t_hld n_out		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	999.000 [s]	0.000 [s]
Description:	Time during which the switch-out speed (see p2378) of the main motor is maintained after an external motor has been switched-out and the main motor has been accelerated to the switch-out speed.		
p2390[0...n]	Speed start of hibernation mode / Hib mode n_start		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the speed for the start of the "hibernation mode" function.		
	If the speed setpoint undershoots this start speed, the delay time in p2391 is started. If the restart threshold is no longer reached before the delay time expires, the hibernation mode boost speed p2395 is impressed for the time period p2394 and then the motor is brought to a standstill via the down ramp of the setpoint channel. The drive is switched off (hibernation mode active). The drive is automatically switched on again as soon as the speed setpoint exceeds the restart threshold.		

Note
The speed at which the hibernation mode is started is set to 4% of the nominal speed when commissioning is completed.

p2391[0...n]	Hibernation mode delay time / Hib mode t_delay		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7038
	Min:	Max:	Factory setting:
	$0[\mathrm{~s}]$	$120[\mathrm{~s}]$	
Description:	Sets the delay time for the "hibernation mode" function.		
	To ensure that the drive can be shut down (pulse inhibit), a restart condition must not occur during this time.		
Dependency:	See also: p2390, p2392, p2393		

p2392	Hibernation mode restart value with technology controller / Hib start w/ tec		
Access level: 3	Calculated:	Data type: FloatingPoint32	
		CALC_MOD_LIM_REF	
	Can be changed: T, U	Scaling: -	Unit selection: p0595

Note

The restart value is set to 5% when commissioning is completed.

7.3 Parameter list

p2393[0...n]	Hibernation mode restart speed relative w/o techn controller / Hib start w/o tec		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting speed to restart the motor for the "hibernation mode" function.		
	When the hibernation mode is active, a speed setpoint is still supplied to the setpoint channel. If the setpoint increases again and in so doing exceeds the restart speed, the drive is automatically switched on and the speed setpoint is controlled to p1080 + p2390 + p2393 via the up ramp of the setpoint channel.		
	The restart speed is the sum of the minimum speed p1080, the hibernation start speed p2390 and the relative restart speed p2393.		
Dependency:	See also: p1080		
	Note		
	The parameter is set to 6% of the nominal speed when commissioning is exited.		
p2394[0...n]	Hibernation mode boost time period / Hib mode t_boost		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7038
	Min:	Max:	Factory setting:
	0 [s]	3599 [s]	0 [s]
Description:	Sets the boost time period for the "hibernation mode" function.		
	Before the drive is finally switched off (hibernation mode), the setpoint speed is moved to the boost speed p2395 for the time set in p2394. Depending on the application, this allows the hibernation intervals to be extended (in time).		

CAUTION

The controller is not operational while the boost speed is being impressed. As a result, for example, for pump applications, it must be ensured that the tank does not overflow as a result of the additional boost. For compressors, it must be ensured that the boost speed does not result in an overpressure condition.

Note

For p2394 $=0$ s, the following applies:
The boost speed is not used.

p2395[0...n]	Hibernation mode boost speed / Hib mode n_boost		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the boost speed for the "hibernation mode" function.		
	The motor is accelerated to the hibernation mode boost speed p2395 for the hibernation mode boost time period p2394 before it is brought to a standstill via the down ramp of the setpoint channel (p 1121) and subsequently switched off (pulse inhibit).		
Dependency:	See also: p2394		

CAUTION

The controller is not operational while the boost speed is being impressed. As a result, for example, for pump applications, it must be ensured that the tank does not overflow as a result of the additional boost. For compressors, it must be ensured that the boost speed does not result in an overpressure condition.

p2396[0...n]	Hibernation mode max. shutdown time / Hib t_off max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7038
	Min:	Max:	Factory setting:
	0 [s]	863999 [s]	0 [s]
Description:	Sets the maximum shutdown time for the "Hibernation mode" function.		
	If the drive is in the hibernation mode (pulse inhibit) then it is switched on again at the latest after the maximum switchoff time has expired. If the restart conditions are fulfilled earlier, then the drive is correspondingly switched on earlier.		
	4 DANGER		
	The drive automatically powers itself up at the latest after the maximum switch-off time has expired.		
	CAUTION		
	Once the maximum shutdown time has expired, the drive switches itself on automatically and accelerates to the start speed. The technology controller only becomes effective again when this speed is reached (for p2398 $=1$). Depending on the application, for instance for pumps, it should be ensured that as a result of cyclic starts the tank does not overflow or for compressors, an overpressure condition does not occur.		
	Note		
	Automatic restart once the maximum OFF time has elapsed is deactivated by setting p2396 $=0 \mathrm{~s}$.		
r2397[0...1]	CO: Hibernation mode output speed actual / Hib n_outp act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the actual output speed for the "hibernation mode" function.		
	Note		
	Zero is displayed if the boost or starting speed is not active.		
p2398	Hibernation mode operating type / Hib mode op_type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7038
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the operating mode for the "Hibernation mode" function.		
Value:	$0: \quad$ Hibernation mode inhibited		
	1: Hibernation mode activated		
Dependency:	See also: p2200, p2251		
	See also: A07325		
	CAUTION		
	When the "hibernation mode" function is active, the motor can start again automatically.		

7.3 Parameter list

NOTICE
A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

Note

The value can, for example, be used to interconnect a supplementary torque.

r2969[0...6]	Flux model value display / Psi_mod val displ	
	Access level: 3 Calculated: -	Data type: FloatingPoint32
	Can be changed: - Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	-	-
Description:	Displays the values of the direct access flux model for the synchronous reluctance motor (RESM) for diagnostic purposes.	
	Valid values are only displayed when the pulses are inhibited.	
	For index 0:	
	Displays the entered direct axis current id in Arms:	
	For index 1, 2, 3:	
	Displays the saturation curves of the direct axis flux psid(id, iq):	
	- r2969[1]: flux in Vsrms with respect to the direct axis current for iq $=0$	
	- r2969[2]: flux in Vsrms with respect to the direct axis current for iq $=0.5^{*}$ p2950	
	- r2969[3]: flux in Vsrms with respect to the direct axis current for iq $=\mathrm{p} 2950$	
	For index 4, 5, 6:	
	Displays the relative error of the current inversion (id(psid, iq) - id) / p2950:	
	- r2969[4]: error with respect to direct axis current for iq $=0$	
	- r2969[5]: error with respect to direct axis current for iq $=0.5$ * p2950	
	- r2969[6]: error with respect to direct axis current for iq $=$ p2950	
Index:	[0] = d-current	
	[1] = d-flux iq0	
	[2] = d-flux iq1	
	[3] = d-flux iq2	
	[4] = d-current error iq0	
	[5] = d-current error iq1	
	[6] = d-current error iq2	

Note

RESM: reluctance synchronous motor (synchronous reluctance motor)

p3110	External fault 3 switch-on delay / Ext fault 3 t_on		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	$0[\mathrm{~ms}]$	$1000[\mathrm{~ms}]$	0 [ms]
	Sets the delay time for external fault 3.		
Description:	See also: p2108, p3111, p3112		
Dependency:	See also: F07862		

p3111[0...n]	BI: External fault 3 enable / Ext fault 3 enab					
		ss level: 3	Calculated: -		Data type: Unsigned32 / Binary	
		be changed: T, U	Scaling: -		Dynamic index: CDS, p0170	
		group: -	Unit selection: -		Function diagram:	
	Min		Max:		Factory setting:	
	-		-		1	
Description:	Sets the signal source for the enable signal of external fault 3.					
	External fault 3 is initiated by the following AND logic operation:					
	- BI: p2108 negated					
	- BI: p3111					
	- BI: p3112 negated					
Dependency:	See also: p2108, p3110, p3112					
	See also: F07862					
p3112[0...n]	BI: External fault 3 enable negated / Ext flt 3 enab neg					
	Access level: 3		Calculated: -		Data type: Unsigned32 / Binary	
	Can be changed: $T, ~ U$		Scaling: -		Dynamic index: CDS, p0170	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	-		-			
Description:	Sets the signal source for the negated enable signal of external fault 3 .					
	External fault 3 is initiated by the following AND logic operation:					
	- BI: p2108 negated					
	- BI: p3111					
	- BI: p3112 negated					
Dependency:	See also: p2108, p3110, p3111					
	See also: F07862					
r3113.0... 15	CO/BO: NAMUR message bit bar / NAMUR bit bar					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
Description:	Display and BICO output for the status of the NAMUR message bit bar.					
	The faults and alarms are assigned to the appropriate signaling/message classes and influence a specific message bit.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Fault converter in	vare error	Yes	No	-
	01	Network fault		Yes	No	-
	02	DC link overvolta		Yes	No	-
	03	Fault drive conve		Yes	No	-
	04	Drive converter o		Yes	No	-
	05	Ground fault		Yes	No	-
	06	Motor overload		Yes	No	-
	07	Bus error		Yes	No	-
	08	External safety-re		Yes	No	-
	10	Error communica		Yes	No	-
	11	Fault infeed		Yes	No	-

15 Other faults
Note
For bit 00:
Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occurs again,
contact Technical Support.
For bit 01:
A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply
voltage. Check the wiring.
For bit 02:
The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply,
reactor, voltages). Check the infeed settings.
For bit 03:
An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure, ...).
Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).
For bit 04:
The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature /
control cabinet cooling.
For bit 05:
A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power
cables (connection). Check the motor.
For bit 06:
The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and
limits that have been set. Check the ambient temperature / motor cooling.
For bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is faulted or
interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the
bus configuration / clock cycles.
For bit 08:
A safety operation monitoring function (Safety) has detected an error.
For bit 09:
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was
detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
For bit 10:
The internal communication between the sINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ
wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles.
For bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check
the closed-loop infeed control.
For bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.

[^3]| r3123[0...63] | Diagnostic attribute alarm / Diag_attr alarm | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Access level: 3 | | Calculated: - | Data type: Unsigned32 | |
| | Can be changed: - | | Scaling: - | Dynamic index: - | |
| | Unit group: - | | Unit selection: - | Function diagram: 8065 | |
| | Min: | | Max: | Factory setting: | |
| | - | | - | - | |
| Description: | Displays the diagnostic attribute of the alarm which has occurred. | | | | |
| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| | 00 | Hardware replacement recommended | Yes | No | - |
| | 11 | Alarm class bit 0 | High | Low | - |
| | 12 | Alarm class bit 1 | High | Low | - |
| | 13 | Maintenance required | Yes | No | - |
| | 14 | Maintenance urgently required | Yes | No | - |
| | 15 | Message has gone | Yes | No | - |
| | 16 | PROFIdrive fault class bit 0 | High | Low | - |
| | 17 | PROFIdrive fault class bit 1 | High | Low | - |
| | 18 | PROFIdrive fault class bit 2 | High | Low | - |
| | 19 | PROFIdrive fault class bit 3 | High | Low | - |
| | 20 | PROFIdrive fault class bit 4 | High | Low | - |
| Dependency: | | also: r2110, r2122, r2123, r2124, r2125, | 4, r2145, r2146, r3121 | | |

```
Note
The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.
For bit 12, 11:
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.
For bits 20 ... 16:
Bits 20, 19, 18, 17, \(16=0,0,0,0,0\)--> PROFIdrive message class 0 : not assigned
Bits 20, 19, 18, 17, \(16=0,0,0,0,1\)--> PROFIdrive message class 1 : hardware fault/software error
Bits \(20,19,18,17,16=0,0,0,1,0-->\) PROFIdrive message class 2 : line fault
Bits \(20,19,18,17,16=0,0,0,1,1\)--> PROFIdrive message class 3 : supply voltage fault
Bits 20, 19, 18, 17, \(16=0,0,1,0,0\)--> PROFIdrive message class 4: DC link fault
Bits \(20,19,18,17,16=0,0,1,0,1-->\) PROFIdrive message class 5 : power electronics faulted
Bits 20, 19, 18, 17, \(16=0,0,1,1,0\)--> PROFIdrive message class 6 : overtemperature electronic components
Bits \(20,19,18,17,16=0,0,1,1,1-->\) PROFIdrive message class 7 : ground fault/phase fault detected
Bits 20, 19, 18, 17, \(16=0,1,0,0,0\)--> PROFIdrive message class 8: motor overload
Bits 20, 19, 18, 17, \(16=0,1,0,0,1\)--> PROFIdrive message class 9 : communication error to the higher-level control
Bits \(20,19,18,17,16=0,1,0,1,0-->\) PROFIdrive message class 10 : safe monitoring channel has identified an error
Bits 20, 19, 18, 17, \(16=0,1,0,1,1\)--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
Bits 20, 19, 18, 17, \(16=0,1,1,0,0\)--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error
Bits 20, 19, 18, 17, \(16=0,1,1,0,1-->\) PROFIdrive message class 13 : infeed unit faulted
Bits \(20,19,18,17,16=0,1,1,1,0\)--> PROFIdrive message class 14: braking controller/Braking Module faulted
Bits \(20,19,18,17,16=0,1,1,1,1\)--> PROFIdrive message class 15 : line filter faulted
Bits \(20,19,18,17,16=1,0,0,0,0-->\) PROFldrive message class 16 : external measured value/signal state outside the permissible range
Bits 20, 19, 18, 17, \(16=1,0,0,0,1\)--> PROFIdrive message class 17: application/technology function faulted
Bits 20, 19, 18, 17, \(16=1,0,0,1,0\)--> PROFIdrive message class 18: error in the parameterization/configuration/ commissioning sequence
Bits \(20,19,18,17,16=1,0,0,1,1\)--> PROFIdrive message class 19: general drive fault
Bits \(20,19,18,17,16=0,1,1,0,0\)--> PROFIdrive message class 20 : auxiliary unit faulted
```

r3131	CO: Actual fault value / Act fault val		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the fault value of the oldest active fault.		
Dependency:	See also: r2131, r3132		
r3132	CO: Actual component number / Comp_no act		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the component number of the oldest fault that is still active.		
Dependency:			

p3230[0...n]	Cl : Load monitoring speed actual value / Load monit n_act		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 8012, 8013
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the speed actual value of the load monitoring.		
Dependency:	See also: r2169, p2181, p2192, p2193, p3231		
	See also: A07920, A07921, A07922, F07923, F07924, F07925		
	Note		
	The parameter is only effective for $\mathrm{p} 2193=2$.		
p3231[0...n]	Load monitoring speed deviation / Load monit n_dev		
	Access level: 3	Calculated:	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	Sets the permissible speed deviation during load monitoring (for p2193-2).		
Dependency:	See also: r2169, p2181, p2193, p3230		
	See also: A07920, A07921, A07922, F07923, F07924, F07925		
p3232[0...n]	BI: Load monitoring failure detection / Load_moni fail_det		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 8013
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for detecting a failure.		
Dependency:	See also: p2192, p2193		
	See also: F07936		
	Note		
	Monitoring is triggered with a 0 signal, as soon as the time in p2192 has expired.		
p3233[0...n]	Torque actual value filter time constant / M_act_filt T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8013
	Min:	Max:	Factory setting:
	0 [ms]	1000000 [ms]	
Description:	Sets the time constant for the PT1 element to smooth the torque actual value.		
	The smoothed torque actual value is compared with the threshold values and is only used for messages and signals.		

r3313	Efficiency optimization 2 optimum flux / Optimum flux		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6722, 6837
	Min:		Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated		
Dependency:	See also: p1401, p3315, p3316		
	Note		
	The function is activated via p1401.14 $=1$.		
p3315[0...n]	Efficiency optimization 2 minimum flux limit value / Min flux lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722, 6837
	Min:	Max:	Factory setting:
	10.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the minimal limit value for the calculated optimum flux.		
Dependency:	See also: p1401, r3313, p3316		
	Note		
	The function is activated via p1401.14=1.		
p3316[0...n]	Efficiency optimization 2 maximum flux limit value / Max flux lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722, 6837
	Min:	Max:	Factory setting:
	10.0 [\%]	200.0 [\%]	110.0 [\%]
Description: Dependency:	Sets the maximum limit value for the calculated optimum flux.		
	See also: p1401, r3313, p3315		
	Note		
	The function is activated via p1401.14=1.		
p3320[0...n]	Fluid flow machine power point 1 / Fluid_mach P1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P) / speed (n)		
	p3320 / p3321 --> point 1 (P1/n1)		
	p3322 / p3323 --> point 2 (P2/n2)		
	p3324 / p3325 --> point 3 (P3/n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		

7.3 Parameter list

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3322[0...n]	Fluid flow machine power point 2 / Fluid_mach P2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 2 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3323[0...n]	Fluid flow machine speed point 2 / Fluid_mach n2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 2 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3324, p3325, p3326, p3327, p3328, p3329		

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	77.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 3 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329		

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 3 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329		

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 4 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 4 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $\mathrm{P}=\mathrm{f}(\mathrm{n})$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 5 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 5 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328		

Note

The reference value for power and speed is the rated power/rated speed.
The energy saved is displayed in r0041.

p3330[0...n]	BI: $2 / 3$ wire control command $1 / 2 / 3$ wire cmd 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, \cup	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2272, 2273
	Min:	Max:	Factory setting:
	-	-	0

Description: Sets the signal source for command 1 for the two-wire control/three-wire control.

7.3 Parameter list

Dependency:$\begin{aligned} & \text { See also: p3342, p3343, r3344 } \\ & \text { See also: A07352 } \end{aligned}$			
p3342[0...n]	BI: Limit switch plus / Lim switch plus		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the limit switch plus.		
	BI: p3342 = 1-signal:		
	Limit switch is inactive.		
	BI: p3342 $=0$ signal:		
	Limit switch is active.		
Dependency:	See also: p3340, p3343, r3344		
	Note		
	For p1113 $=0$, the drive traverses with a positive speed setpoint towards the positive limit switch - or for p1113 $=1$ with a negative speed setpoint.		
p3343[0...n]	BI: Limit switch minus / Lim switch minus		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the limit switch minus.		
	BI: p3343 $=1$-signal:		
	Limit switch is inactive.		
	BI: p3343 = 0 signal:		
	Limit switch is active.		
Dependency:	See also: p3340, p3342, r3344		
	Note		
	For $\mathrm{p} 1113=0$, the drive traverses with a negative speed setpoint towards the minus limit switch - or for $\mathrm{p} 1113=1$ with a positive speed setpoint.		
r3344.0... 5	CO/BO: Limit switch status word / Lim sw ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	Display and BICO output for the status word of the limit switch.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 Limit switch ON/OFF1	Yes	No
	01 Limit switch OFF3	No	Yes
	02 Limit switch axis stationary (standstill)	Yes	No
	04 Plus limit switch reached	Yes	No
	05 Minus limit switch reached	Yes	No
Dependency:	See also: p3340, p3342, p3343		

Note

For bit $00=1$:
The limit switch enables motion.
For example, this bit can be used for interconnection with binector input p0840 (ON/OFF1).
For bit $01=0$:
The drive cannot be moved as a result of the limit switch function (e.g. as a result of the switching on inhibited).
For example, this bit can be used for interconnection with binector input p0848 (OFF3).
For bit $02=1$:
The axis is at zero speed.
For bit $04=1$:
The plus limit switch reached.
For bit $05=1$:
The minus limit switch reached.

NOTICE

If drive units are not commissioned within 2 years after their original manufacture, then the DC link capacitors must be reformed before use. If this is not done, then the units could be damaged in operation.

Note

The "DC link capacitor forming" function can only be activated online in the drive unit.
If switched off while forming is active, the remaining time (r3381) is lost, and forming must be repeated for the full forming time. If the forming duration is changed, then forming starts again from the beginning.

r3381

Forming remaining time / Forming t_remain		
Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
$-[\mathrm{h}]$	$-[\mathrm{h}]$	$-[\mathrm{h}]$

Description: Dependency:	Displays the remaining time after activating the "DC link capacitor forming" function. See also: p3380, r3382			
r3382	Forming status word / Forming ZSW			
	Access level: 3	Calculated: -	Data type: Un	
	Can be changed: -	Scaling: -	Dynamic index	
	Unit group: -	Unit selection: -	Function dia	
	Min:	Max:	Factory settin	
	-	-	-	
Description:	Displays the status word of the "DC link capacitor forming" function.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Forming activated	Yes	No	-
	01 Forming active	Yes	No	-
	02 Forming completed	Yes	No	-
	03 Forming fault	Yes	No	-
Dependency:	See also: p3380, r3381			
	See also: F07390, A07391			

Note

For bit $00=1$:
The parameter for activation/duration has been set (p3380 > 0) - however, forming has still not been started (p0840 = 0 signal).
For bit $01=1$:
The parameter for activation/duration has been set $(\mathrm{p} 3380>0)$ - however, forming has still not been started $(\mathrm{p} 0840=$ $0 / 1$ signal).
This status is displayed through alarm A07391.
The procedure can be interrupted via binector input p0840, p0844, p0848 (r3382.1 = 0) - and reactivated again using p0840.
For bit $03=1$:
Forming was not able to be successfully performed within the set duration.
This status is displayed using fault F07390.
p3855[0...n] DC quantity controller configuration / Rect_ctrl config

Access level: 3	Calculated:	Data type: Unsigned32
Can be changed: T, U	CALC_MOD_LIM_REF	
Unit group: -	Scaling: -	Dynamic index: DDS, p0180
Min:	Unit selection: -	Function diagram: 6797, 6844,
-	Max:	6855

Description:	Sets the configuration for the DC quantity controller in the overmodulation range. There is no DC quantity control for power units that can also be connected through 1 phase to the line supply (r0204.15 $=1)$.			
Bit field:	Bit	Signal name	signal	0 signal

NOTICE

Motor identification must be carried out before activating the DC quantity control in the overmodulation range.

p3856[0...n]	Compound braking current / Compound I_brake		
CUG120X_PN (Compound brake)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	250.00 [\%]	0.00 [\%]
Description:	Compound braking current is used to define the amount of $D C$ current that is produced on stopping the motor during U/f operation to further increase the DC braking function.		
	Compound braking is a superimposition of the DC braking function with regenerative braking (net braking along the ramp) after OFF1 or OFF3. This permits braking with controlled motor frequency and minimum power input into the motor.		
	Effective braking without using additional hardware components is obtained by optimizing the ramp down time and compound braking.		
Dependency:	The compound braking current is only activated if the DC link voltage exceeds the threshold value in r 1282 .		
	Compound braking does not operate in the following cases:		
	- DC braking activated (p1230, r1239).		
	- motor is still not magnetized (e.g. for flying restart).		
	- vector control parameterized (p1300 >= 20).		
	- synchronous motor used (p0300 = 2xx).		
	NOTICE		
	Generally, increasing the braking current improves the braking effect when stopping the motor. However, if the value is set too high, then the drive can be tripped (shut down) as a result of overcurrent or ground fault. Recommendation: p3856 < 100 \% x (r0209-r0331) / p0305 / 2 Compound braking generates a current in the motor with a ripple manifesting the rotational frequency. The higher the braking current is set, the higher the resulting ripple, especially when the Vdc_max control is simultaneously active (refer to p1280).		

Note

The parameter value is entered relative to the rated motor current (p 0305).
Compound braking is deactivated with p3856 $=0 \%$.

p3857[0...n]	DC quantity controller P gain / DC_ctrl Kp		
	Access level: 3	Calculated: CALC_MOD_CON Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6797
	Min:	Max:	Factory setting:
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the DC quantity controller for the overmodulation range.		

p3858[0...n]	DC quantity controller integral time / DC_ctrl Tn		
	Access level: 3	Calculated: CALC_MOD_CON Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6797
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~ms}]$	$1000.00[\mathrm{~ms}]$	$2.00[\mathrm{~ms}]$
Description:	Sets the integral time for the DC quantity controller.		

WARNING

For p3881 = 4
If the technology controller is used as setpoint source, then this must first be configured. p2251 must be set to 0 .

```
Note
ESM: Essential Service Mode
When the essential service mode is activated, the effective speed setpoint is displayed in r1114.
For p3881 = 0:
```

The last known setpoint value is only transmitted safely if it was present consistently for at least 30 s prior to activating
the essential service mode. If this condition is not met, fixed speed setpoint 15 (p 1015) is used.
For p3881 = 6:
n_act $=0$: pulse suppression and switching on inhibited.
$\mathrm{n} _$active >0 : braking along the ramp-function generator down ramp (p 1121), pulse cancellation and switching on
inhibited.
For p3881 = 7
n_act = 0: pulse suppression and switching on inhibited.
n _act > 0: immediate pulse cancellation and switching on inhibited.

p3882	ESM setpoint source alternative / ESM setp_src alt		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7033
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the alternative setpoint source for essential service mode (ESM).		
	This setpoint is used when the setpoint source set in p3881 is lost.		
Value:	0: Last known setpoint (r1078 smoothed)		
	1: Fixed speed setpoint 15 (p1015)		
	2: Maximum speed (p1082)		
Dependency:	See also: p3881		
	Note		
	ESM: Essential Service Mode		
	The alternative setpoint source is only active for p3881 $=2,3,4$.		
p3883	BI: ESM direction of rotation signal source / ESM rot dir s s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7033
	Min:	Max:	Factory setting:
	-	兂	0
Description:	Sets the signal source for the direction of rotation during essential service mode (ESM).		
	p3883 = 0 signal:		
	Direction of rotation of the setpoint parameterized for essential service mode is kept.		

WARNING

The direction reversal is not taken into account if p3881 $=4$ is set (technology controller) and the technology controller is also active as the setpoint source.

```
Note
ESM: Essential Service Mode
```


Description:	Exits quick commissioning ($\mathrm{p} 0010=1$) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning.
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 $=1$) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning.
	The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p15 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 = 1).
	p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p15 and p1500 and the calculations corresponding to p0340 $=1$.
	p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to $\mathrm{p} 0340=1$.
Value:	0: No quick parameterization
	1: Quick parameterization after parameter reset
	2: Quick parameterization (only) for BICO and motor parameters
	3: Quick parameterization for motor parameters (only)
	NOTICE
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

Note

When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero.
When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters associated with a selected Siemens catalog motor are not overwritten.
If a catalog motor has not been selected (p 0300), then the following parameters are reset with p3900 >0 in order to restore the situation that applied when commissioning the drive for the first time:
induction motor: p0320, p0352, p0362 ... p0369, p0604, p0605, p0626 ... p0628
synchronous motor: p0326, p0327, p0352, p0604, p0605

r3925[0...n]	Identification final display / Ident final_disp					
	Access level: 3		Calculated: CALC_MOD_ALL		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the commissioning steps that have been carried out.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Motor/control	= 1, p3900		No	-
	02	Motor data id	still (p1910		No	-
	03	Rotating mea	1, 2)	Yes	No	-
	08	Identified mo	ed up	Yes	No	-
	11	Automatic pa	ve Control	Yes	No	-
	12	Automatic pa	ve Control	Yes	No	-
	14	First motor		Yes	No	-
	15	Equivalent ci		Yes	No	-
	18	Circle identifi		Yes	No	-

Note

The individual bits are only set if the appropriate action has been initiated and successfully completed.
The identification final display is reset when changing the type plate parameters.

Note
The parameter is a copy of p 1909 .

7.3 Parameter list

DANGER

When changing the master control in operation, the drive can manifest undesirable behavior - e.g. it can accelerate up to another setpoint.

r3986	Number of parameters / Param count		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the number of parameters for this drive unit.		
	The number comprises the device-specific and the drive-specific parameters.		

r3996[0...1]	Parameter write inhibit status / Par_write inhib st			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-		-	
Description:	Displays whether writing to parameters is inhibited.			
	$\mathrm{r} 3996[0]=0$:			
	Parameter write not inhibited.			
	$0<r 3996[0]<100$:			
	Parameter write inhibited. The value shows how the calculations are progressing.			
Index:	[0] = Progress calculations			
	[1] = Cause			
	Note			
	For index 1:			
	Only for internal Siemens troubleshooting.			
r4022.0... 3	CO/BO: PM330 digital inputs status / PM330 DI status			
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the status of the digital inputs of the PM330 power unit.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X9.3, external alarm)	High	Low	-
	01 DI 1 (X9.4, external fault)	High	Low	-
	02 DI 2 (X9.5, Emergency Off category 0)	High	Low	-
	03 DI 3 (X9.6, Emergency Off category 1)	High	Low	-
Dependency:	See also: r4023			
	Note			
	DI: Digital Input			
r4023.0... 3	CO/BO: PM330 digital inputs status inverted / PM330 DI stat inv			
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the inverted status of the digital inputs of Power Module 330 (PM330).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X9.3, external alarm)	High	Low	-
	01 DI 1 (X9.4, external fault)	High	Low	-
	02 DI 2 (X9.5, Emergency Off category 0)	High	Low	-
	03 DI 3 (X9.6, Emergency Off category 1)	High	Low	-
Dependency:	See also: r4022			
	Note			
	DI: Digital Input			

r4047	PM330 digital outputs status / PM330 DO status				
CUG120X_PN (PM330)	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: -	
	Min:		Max:	Factory setting:	
	-		-	-	
Description: Bit field:	Displays the status of the digital outputs of Power Module 330 (PM330).				
		Signal name	1 signal	0 signal	FP
		DO 0 (X9.8: enable signal UDC link charged)	High	Low	-
		DO 1 (X9.11/X9.12: main contactor control)	High	Low	-
	Note				
p4095 CUG120X_PN (PM330)	PM330 digital inputs simulation mode / PM330 DI sim_mode				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: -	
	Min:		Max:	Factory setting:	
	-		-	0000 bin	
Description: Bit field:	Sets the simulation mode for digital inputs of the PM330 power unit.				
		Signal name	1 signal	0 signal	FP
		DI 0 (X9.3, external alarm)	Simulation	Terminal eval	-
		DI 1 (X9.4, external fault)	Simulation	Terminal eval	-
		DI 2 (X9.5, Emergency Off category 0)	Simulation	Terminal eval	-
		DI 3 (X9.6, Emergency Off category 1)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p4096. See also: p4096				
	Note This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input				
p4096	PM330 digital inputs simulation mode setpoint / PM330 DI sim setp				
$\begin{aligned} & \text { CUG120X_PN } \\ & \text { (PM330)_ } \end{aligned}$	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2275	
	Min:		Max:	Factory setting:	
	-			0000 bin	
Description:	Sets the setpoint for the input signals in the digital input simulation mode of the PM330 power unit.				
Bit field:	Bit Signal name		1 signal	0 signal	FP
		DI 0 (X9.3, external alarm)	High	Low	-
		1 DI 1 (X9.4, external fault)	High	w	-
		DI 2 (X9.5, Emergency Off category 0)	High	Low	-
	03 DI 3 (X9.6, Emergency Off category 1)			Low	-
Dependency:	The simulation of a digital input is selected using p4095. See also: p4095				

Note

This parameter is not saved when data is backed-up (p0971, p0977).
DI: Digital Input

p5350[0...n]	Mot_temp_mod 1/3 boost factor at standstill / Standst boost_fact					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
	Can be changed: T, U Sc			Scaling: -	Dynamic index: MDS, p0130	
	Unit group: -		Unit selection: -		Function diagram: 8017	
	Min:		Max:		Factory setting:	
	1.0000		2.0000		2.0000	
Description:	Sets the boost factor for the copper losses at standstill for motor temperature models 1 and 3 .					
	This factor is linearly reduced down to 1 between speeds $\mathrm{n}=0 \ldots 1$ [rm] .					
	The following values are required to calculate the boost factor: - stall current (I_0, p0318, catalog value)					
	- thermal stall current (I_th0, catalog value)					
	The boost factor is calculated as follows:					
	- p5350 = (I_0 / I_th0)^2					
Dependency:	See also: p0612, p5390, p5391					
	See also: F07011, A07012, F07013, A07014					
	NOTICE					
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.					
	Note					
	Temperature model 1 (12t):					
	The following applies for firmware version <4.7 SP6 or p0612.8 $=0$: - parameter p5350 is not active. Internally, a fixed boost factor of 1.333 is used as basis for the calcula					
	The following applies from firmware version 4.7 SP6 and p0612.8 $=1$:					
r5389.0... 8	CO/BO: Mot_temp status word faults/alarms / Mot_temp ZSW F/A					
	Access level: 2		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 8016	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Display and BICO output for faults and alarms of the motor temperature monitoring.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Motor temperatur		Yes	No	-
	01	Motor temperatur		Yes	No	-
	02	Encoder tempera	ctive	Yes	No	-
	04	Motor temperatur		Yes	No	-
	05	Motor temperatur		Yes	No	-
	08	Current reduction		Yes	No	-
Dependency:	See also: r0034, p0612, r0632					
		See also: F07011, A07012, A07910				

Note

For bit 00, 04:
The motor temperature is measured using a temperature sensor (p 0600 , p0601). When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 01, 05:
The motor temperature is monitored based on a temperature model (p0612). When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 02:
The encoder temperature is measured using a temperature sensor. When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 08:
When reaching the motor temperature alarm threshold, reduction of the maximum current is set as response (p0610 $=1$). When the bit is set, reduction of the maximum current is active.

p5390[0...n]	Mot_temp_mod 1/3 alarm threshold / A thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8017
	Min:	Max:	Factory setting:
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	200.0 [${ }^{\circ} \mathrm{C}$]	110.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for monitoring the motor temperature for motor temperature models 1 and 3 .		
	The stator winding temperature (r0632) is used to initiate the signal.		
	The following applies for temperature model 1 (12t):		
	- only effective from firmware version 4.7 SP6 and p0612.8 = 1 .		
	- Alarm A07012 is output after the alarm threshold is exceeded.		
	- when commissioning a catalog motor for the first time, the threshold value is copied from p0605 to p5390.		
	The following applies for temperature model 3 :		
	- after the alarm threshold is exceeded, alarm A07012 is output and a calculated delay time ($t=p 5371 / p 5381$) is started.		
	- if the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output.		
Dependency:	See also: r0034, p0605, p0612, r0632, p5391		
	See also: F07011, A07012, F07013, A07014		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

The hysteresis is 2 K .

p5391[0...n]	Mot_temp_mod 1/3 fault threshold / F thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: MDS, p0130
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8017
	Min:	Max:	Factory setting:
	0.0 [${ }^{\circ} \mathrm{C}$]	200.0 [${ }^{\circ} \mathrm{C}$]	120.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature models 1 and 3 .		
	Fault F07011 is output after the fault threshold is exceeded.		
	The stator winding temperature (r0632) is used to initiate the signal.		
	The following applies for temperature model 1 (12t):		
	- only effective from firmware version 4.7 SP6 and p0612.8 $=1$.		
	- when commissioning a catalog motor for the first time, the threshold value is copied from p0615 to p5391.		

Dependency:	See also: r0034, p0612, p0615, r0632, p5390		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Note		The hysteresis is 2 K .
r5600	Pe energy-saving mode ID / Pe mode ID		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2381, 2382
	Min:	Max:	Factory setting:
	0	255	
Description: Value:	Displays the PROFlenergy mode ID of the effective energy-saving mode.		
	0: POWER OFF		
	2: Energy-saving mode 2		
	240: Operation		
	255: Ready		
	Note		
	Pe: PROFlenergy profiles		
p5602[0...1]	Pe energy-saving mode pause time minimal / Pe mod t_pause min		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 2381
	Min:	Max:	Factory setting:
	300000 [ms]	4294967295 [ms]	[0] 300000 [ms]
			[1] 480000 [ms]
Description:	Sets the minimum possible pause time for the energy-saving mode.		
	The value is the sum of the following times:		
	- Energy-saving mode transition time		
	- Operating state transition time regular		
	- Energy-saving mode, time of minimum stay		
Index:	[0] = Reserved		
	[1] = Mode 2		
	Note It is not permissible that the value is less than the sum of the "energy-saving mode transition time" and the "operating state transition time" (system properties). Pe: PROFlenergy profiles		
p5606[0...1]	Pe energy-saving mode time of maximum stay / Pe t_max_stay		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2381
	Min:	Max:	Factory setting:
	0 [ms]	4294967295 [ms]	4294967295 [ms]
Description:	Sets the time of maximum stay for the energy-saving mode.		

7.3 Parameter list

Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$					
	Pe: PROFlenergy profiles					
p5611	Pe energy-saving properties general / Pe properties gen					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: T		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection		Function diagram: 2381, 2382	
	Min:		Max:		Factory setting:	
	-		-		0000 bin	
Description:	Sets the general properties for energy-saving.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Inhibit PROFI		Yes	No	-
		Drive initiates mode	nergy-saving	Yes	No	-
	02	Trans to energ poss	ive state $\mathrm{S} 3 / 4$	Yes	No	-
	No					
		ROFlenergy pr				
		Fldrive state S4:				
p5612[0...1]	Pe energy-saving properties mode-dependent / Pe properties mod					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: T		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection		Function diagram: -	
	Min:		Max:		Factory setting:	
	-		-		[0] 0110 bin	
					[1] 0000 bin	
Description:	Sets the mode-dependent properties for energy-saving.					
Index:	[0] = Reserved					
	[1] = Mode 2					
Bit field:		Signal name		1 signal	0 signal	FP
		Reserved		Yes	No	-
	Note					
	Pe: PROFlenergy profiles					
r5613.0... 1	CO/BO: Pe energy-saving active/inactive / Pe save act/inact					
	Access level: 3		Calculated: -		Data type: Unsigned8	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2382	
	Min:				Factory setting:	
Description:	Display and binector output for the state display PROFlenergy energy saving active or inactive.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Pe active		Yes	No	-
	01	Pe inactive		Yes	No	-

```
Note
Bit 0 and bit }1\mathrm{ are inverse of one another.
Pe: PROFlenergy profiles
```

p5614	BI: Pe set switching on inhibited signal source / Pe sw-on_inh s_src		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2382
	Min:	Max:	Factory setting:
	-	0	
Description:	Sets the signal source to set in the PROFIdrive state S1 "switching on inhibited".		
Dependency:	See also: r5613		

Note

Pe: PROFlenergy profiles

r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual serial number of the Control Unit.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	For the commissioning software, the ASCII characters are displayed uncoded.		
Dependency:	See also: p7765, p7766, p7767, p7768		
	NOTICE		
	An ASCII table (excerpt) can be found, for example, in the chapter of parameters.		

Dependency:	See also: r7760		
	Note		
p7762	Write protection multi-master fieldbus system access behavior / Fieldbus acc_behav		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the behavior for write protection when accessing via multi-master fieldbus systems (e.g. CAN, BACnet).		
Value:	$0: \quad$ Write access independent of p7761		
	1: Write access dependent on p7761		
Dependency:	See also: r7760, p7761		
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	500	1
Description:	Sets the number of parameters for the OEM exception list (p7764[0...n]). p7764[0...n], with $n=$ p7763-1		
Dependency:	See also: p7764		
	Note		
	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		
p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: p7763
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	65535	$\begin{aligned} & {[0] 7766} \\ & {[1 \ldots 499] 0} \end{aligned}$
Description:	OEM exception list (p7764[0...n] for setting parameters that should be excluded from know-how protection. p7764[0...n], with $n=p 7763-1$		
Dependency:	The number of indices depends on p7763.		
	See also: p7763		
	Note		
	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		
p7765	KHP configuration / KHP config		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0000 bin

7.3 Parameter list

Description:	Configuration settings for know-how protection.	
For bit 00, 01:		
When KHP is activated, this means that the OEM can define whether the parameters and DCC data encrypted on the		
memory card should be protected before using on other memory cards/Control Units.		
For bit 02:		
This means that the OEM can define whether it is possible or not to trace the drive data using the device trace function		
although KHP is activated.		F signal

p7766[0...29] KHP password input / KHP passw input

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
-	-	-

Description: Sets the password for know-how protection.
Example of a password:
$123 \mathrm{aBc}=495051976699 \mathrm{dec}$ (ASCII characters)
[0] = character 1 (e.g. 49 dec)
[1] = character 2 (e.g. 50 dec)
[5] = character 6 (e.g. 99 dec)
[29] = 0 dec (completes the entry)
Dependency: See also: p7767, p7768

NOTICE

An ASCII table (excerpt) can be found, for example, in the chapter of parameters.
When using the commissioning software, the password should be entered using the associated dialogs.
The following rules apply when entering the password:

- password entry must start with p7766[0].
- no gaps are permissible in the password.
- entering a password is completed when writing to p7766[29] (p7766[29] = 0 for passwords less than 30 characters).

Note

KHP: Know-How Protection
When reading, p7766[0...29] = 42 dec (ASCII character = "*") is displayed.
Parameters with the "KHP_WRITE_NO_LOCK" attribute are not involved in the know-how protection.
Parameters with the "KHP_ACTIVE_READ" attribute can be read even when know-how protection is activated.

p7767[0...29]	KHP password new / KHP passw new		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Sets the new password for know-how protection.		
Dependency:	See also: p7766, p7768		
	Note		
	KHP: Know-How Protection		
	When reading, p7767[0...29] $=42 \mathrm{dec}($ ASCII character $=$ "*") is displayed.		
p7768[0...29]	KHP password confirmation / KHP passw confirm		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Confirms the new password for know-how protection		
Dependency:	See also: p7766, p7767		
	Note		
	KHP: Know-How Protection		
	When reading, p7768[0...29] $=42 \mathrm{dec}($ ASCII character $=$ "*") is displayed.		
p7769[0...20]	KHP memory card reference serial number / KHP mem ref ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Sets the reference serial number for the memory card.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	See also: p7765, p7766, p7767, p7768		
	Note		
	KHP: Know-How Protection		
	- the OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		
p7775	NVRAM data backup/import/delete / NVRAM backup		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C} 1, \mathrm{~T}, \mathrm{U}$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	17	0

7.3 Parameter list

	Note Example: displaying the serial number for a memory card: r7843[0] = 49 dec --> ASCII characters = "1" --> serial number, character 1 r7843[1] = 49 dec --> ASCII characters = "1" --> serial number, character 2 r7843[2] = 49 dec --> ASCII characters = "1" --> serial number, character 3 r7843[3] = 57 dec --> ASCII characters = "9" --> serial number, character 4 r7843[4] = 50 dec --> ASCII characters = "2" --> serial number, character 5 r7843[5] = 51 dec --> ASCII characters = "3" --> serial number, character 6 r7843[6] = 69 dec --> ASCII characters = "E" --> serial number, character 7 r7843[7] = 0 dec --> ASCII characters = " " --> serial number, character 8 r7843[19] = 0 dec --> ASCII characters = " " --> serial number, character 20 r7843[20] $=0$ dec Serial number $=111923 \mathrm{E}$
r7844[0...2]	Memory card/device memory firmware version / Mem_crd/dev_mem FW
Description: Index:	Displays the version of the firmware stored on the memory medium of the drive device. Depending on the drive device being used, the memory medium is a memory card, or an internal non-volatile device memory. [0] = Internal [1] = External [2] = Parameter backup
	Note For index 0 : Displays the internal firmware version (e.g. 04402315). This firmware version is the version of the memory card/device memory and not the CU firmware (r0018), however, normally they have the same versions. For index 1 : Displays the external firmware version (e.g. 04040000 -> 4.4). For automation systems with SINAMICS Integrated this is the runtime version of the automation system. For index 2: Displays the internal firmware version of the parameter backup. With this CU firmware version, the parameter backup was saved, which was used when powering up.
r7903	Hardware sampling times still assignable / HW t_samp free
Description:	Displays the number of hardware sampling times that can still be assigned. These free sampling times can be used by OA applications such as DCC or FBLOCKS.
	Note OA: Open Architecture

7.3 Parameter list

p8400[0...2]	RTC time / RTC time		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	59	0
Description:	Sets and displays the time on the real-time clock in hours, minutes, and seconds.		
	The time is stored in the internal clock block in the drive and continues to run even if the supply voltage for the Control Unit is interrupted (for approx. 5 days).		
Index:	[0] $=\operatorname{Hour}$ (0 ... 23)		
	[1] = Minute (0 ... 59)		
	[2] = Second (0 ... 59)		
	Note		
	The time from p8400 and p8401 is used to display the fault and alarm times.		
	When displaying the fault time and alarm time, the switchover to daylight saving time is not taken into account. The parameter is not reset when the factory setting is restored (p0010 $=30$, p0970).		
	The time is entered and displayed in 24 -hour format.		
	RTC: Real-time clock		
p8401[0...2]	RTC date / RTC date		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	9999	[0] 1
			[1] 1
			[2] 1970
Description:	Sets and displays the date on the real-time clock in year, month, and day.		
	The date is stored in the internal clock block in the drive and continues to run even if the supply voltage for the Control Unit is interrupted (for approx. 5 days).		
Recommendation:	When the date is set as an index, the day should always be written last because, if a date is invalid, the day is always corrected to the last valid day in that particular month of the year.		
Index:	[0] = Day ($1 . . .31$)		
	[1] = Month ($1 . . .12$)		
	[2] = Year (YYYY)		

Note

The time from p8400 and p8401 is used to display the fault and alarm times.
When displaying the fault time and alarm time, the switchover to daylight saving time is not taken into account.
The parameter is not reset when the factory setting is restored ($p 0010=30, p 0970$).
RTC: Real-time clock

```
p8402[0...8] RTC daylight saving time setting / RTC DST
    Access level: 3 Calculated: -
    Can be changed: T, U
    Unit group: -
    Min:
    0
Scaling: -
Unit selection: -
Max:
23
```

Data type: Unsigned16
Dynamic index: -
Function diagram: -
Factory setting:
[0] 0
[1] 3
[2] 6
[3] 7
[4] 2
[5] 10
[6] 6
[7] 7
[8] 3

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Description:} & Setting the daylight saving time. \\
\hline & The factory setting corresponds to the time change for central european summer time (CEST). You only have to set p8402[0] = 1 to activate CEST. \\
\hline \multirow[t]{9}{*}{Index:} & [0] = Difference (0 ... 3 hours) \\
\hline & [1] = Start of month (1 ... 12) \\
\hline & [2] = Start of the week of the month (1 ... 4, 6) \\
\hline & [3] = Start of weekday (1 ... 7) \\
\hline & [4] = Start of hour (0 ... 23) \\
\hline & [5] = End of month (1 ... 12) \\
\hline & [6] = End of the week of the month ( \(1 . . .4,6\) ) \\
\hline & [7] = End of weekday ( \(1 . . .7\) ) \\
\hline & [8] = End of hour (0 ... 23) \\
\hline
\end{tabular}
```


Note

The switchover to daylight saving time only effects the RTC and DTC parameters (p8400 ... p8433).
When displaying the fault time and alarm time, the switchover to daylight saving time is not taken into account.
There must be at least two months between the start and end of daylight saving time.
For index 0 :
0 : daylight saving time switchover deactivated
1 ... 3: time difference
For indices 1 and 5 :
1 = January, ... , 12 = December
For indices 2 and 6:
$1=$ from the 1 st to the 7 th of the month
2 = from the 8th to the 14th of the month
$3=$ from the 15 th to the 21 st of the month
$4=$ from the 22nd to the 28th of the month
$6=$ the last 7 days of the month
For indices 3 and 7:
1 = Monday, ... , $7=$ Sunday

RTC actual daylight saving time difference / RTC act DST

Access level: 3
Can be changed: -
Unit group: -
Min:

Description: Displays the actual time difference in hours for the daylight saving time

Data type: Unsigned16
Dynamic index: -
Function diagram: -
Factory setting:

7.3 Parameter list

Note

The value is 0 , if daylight saving time has not been defined using p8402.
If it is presently daylight saving time according to what is defined in p8402, then the parameter indicates the time difference between daylight saving time and normal time (p8402[0]).

r8404	RTC weekday / RTC weekday		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	7	-
Description:	Displays the weekday on the real-time clock.		
Value:	1: Monday		
	2: Tuesday		
	3: Wednesday		
	4: Thursday		
	5: Friday		
	6: Saturday		
	7: Sunday		
	Note		
	RTC: Real-time clock		
p8405	Activate/deactivate RTC alarm A01098 / RTC A01098 act		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	1
Description:	Sets whether the real-time clock outputs an alarm if the time is not synchronized (e.g. if the power supply was switched off for an extended period).		
Value:	0: Alarm A01098 deactivated		
	1: Alarm A01098 activated		
Dependency:	See also: A01098		
	Note		
	RTC: Real-time clock		
p8409	RTC DTC activation / RTC DTC act		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 -	1	1

7.3 Parameter list

Index:	[0] = Hour (0 ... 23)	
	[1] = Minute (0... 59)	
Dependency:	See also: p8409, p8410, r8413	
	NOTICE	
	This parameter can only be changed when $\mathrm{p} 8409=0$.	
	Note DTC: Digital Time Clock (timer) RTC: Real-time clock	
p8412[0...1]	RTC DTC1 off time / RTC DTC1 t_OFF	
	Access level: 3 Calculated: -	Data type: Unsigned16
	Can be changed: T Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0 59	0
Description:	Sets the switch-off time in hours and minutes for time switch 1 (DTC1). BO: $\mathrm{r} 8413=0$ signal:	
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \end{aligned}$	
Dependency:	See also: p8409, p8410, r8413	
	NOTICE	
	This parameter can only be changed when $\mathrm{p} 8409=0$.	

Note

DTC: Digital Time Clock (timer)
RTC: Real-time clock

r8413.0... $1 \quad$ BO: RTC DTC1 output / RTC DTC1 output

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
-	-	-

Description:
Display and binector output for the output of time switch 1 (DTC1).
Where a weekday is deactivated, the following applies (p8410):

- the binector output for this timer is inactive (r8413.0 = 0).

Where a weekday is activated, the following applies (p8410):

- the ON/OFF time setting (p8411, p8412) for this timer has an instant effect on the binector output (r8413).

Bit field:

Dependency:

| Bit | Signal name | 1 signal | 0 signal |
| :--- | :--- | :--- | :--- | FP

Note

DTC: Digital Time Clock (timer)
RTC: Real-time clock

7.3 Parameter list

p8430[0...6] RTC DTC3 weekday of activation / RTC DTC3 day act

Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	1	0
Sets the weekday on which timer 3 is activated (DTC3).		
The switch-on/off time is set in p8431/p8432 and the result displayed via binector output r8433.		
$0:$		
$1:$	Weekday deactivated	

Index:	[0] = Monday	
	[1] = Tuesday	
	[2] = Wednesday	
	[3] = Thursday	
	[4] = Friday	
	[5] = Saturday	
	[6] = Sunday	
Dependency:	See also: p8409, p8431, p8432, r8433	
	NOTICE	
	This parameter can only be changed when p8409 $=0$.	
	Note	
	DTC: Digital Time Clock (timer)	
	RTC: Real-time clock	
p8431[0...1]	RTC DTC3 switch-on time / RTC DTC3 t_ON	
	Access level: 3 Calculated: -	Data type: Unsigned16
	Can be changed: T Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0 59	0
Description:	Sets the switch on time in hours and minutes for timer 3 (DTC3).	
	BO: r8433 $=1$ signal:	
	The condition for the set weekday (p 8430) and switch-on time has been fulfilled.	
Index:	[0] = Hour (0 ... 23)	
	[1] = Minute (0 ... 59)	
Dependency:	See also: p8409, p8430, r8433	
	NOTICE	
	This parameter can only be changed when p8409 $=0$.	
	Note	
	DTC: Digital Time Clock (timer)	
	RTC: Real-time clock	
p8432[0...1]	RTC DTC3 off time / RTC DTC3 t_OFF	
	Access level: 3 Calculated: -	Data type: Unsigned16
	Can be changed: T Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0 59	0
Description:	Sets the switch off time in hours and minutes for timer 3 (DTC3).	
	BO: r8433 $=0$ signal:	
	The condition for the set weekday (p 8430) and switch-off time has been fulfilled.	
Index:	[0] = Hour (0 ... 23)	
	[1] = Minute (0... 59)	
Dependency:	See also: p8409, p8430, r8433	
	NOTICE	
	This parameter can only be changed when $\mathrm{p} 8409=0$.	

CO: Speed setpoint from the IOP in the manual mode / n_set IOP

Access level: 3
Can be changed: -
Unit group: 3_1
Min:

- [rpm]

Data type: FloatingPoint32
Dynamic index: -
Function diagram: -
Factory setting:

- [rpm]

Description: For the manual mode: the speed setpoint entered from the IOP is displayed.
p8542[0...15] BI: Active STW1 in the BOP/IOP manual mode / STW1 act OP

Access level: 3
Can be changed: T
Unit group: -
Min:

Calculated: -
Scaling: -
Unit selection: -
Max:

Data type: Unsigned32 / Binary
Dynamic index: -
Function diagram: -
Factory setting:
[0] 8540.0
[1] 8540.1
[2] 8540.2
[3] 8540.3
[4] 8540.4
[5] 8540.5
[6] 8540.6
[7] 8540.7
[8] 8540.8
[9] 8540.9
[10] 8540.10
[11] 8540.11
[12] 8540.12
[13] 8540.13
[14] 8540.14
[15] 8540.15
Description: For the manual mode: Setting of the signal sources for STW1 (control word 1).
Index:
[0] = ON/OFF1
[1] = OC / OFF2
[2] = OC / OFF3
[3] = Enable operation
[4] = Enable ramp-function generator
[5] = Continue ramp-function generator
[6] = Enable speed setpoint
[7] = Acknowledge fault
[8] = Jog bit 0
[9] = Jog bit 1
[10] = Master control by PLC
[11] = Direction reversal (setpoint)
[12] = Enable speed controller
[13] = Motorized potentiometer raise
[14] = Motorized potentiometer lower
[15] = CDS bit 0

p8805	Identification and maintenance 4 configuration / I\&M 4 config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the configuration for the content of identification and maintenance 4 (I\&M 4, p8809).		
Value:	0: Standard value for I\&M 4 (p8809)		
	1: User value for I\&M 4 (p8809)		
Dependency:	For p8805 $=0$, if the user writes at least one value in p8809[0...53], then p8805 is automatically set to $=1$. When p8805 is reset $=0$, then the content of the factory setting is set in p8809.		
	Note For p8805 = 0 : PROFINET I\&M 4 (p8809) contains the information for the SI change tracking. For p8805 = 1: PROFINET I\&M 4 (p8809) contains the values written by the user.		
p8806[0...53]	Identification and Maintenance 1/I\&M 1		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, \cup	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1). This information is known as "System identifier" and "Location identifier".		
Dependency:	See also: p8807, p8808		
	NOTICE		
	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		
	Note An ASCII table (excerpt) For p8806[0...31]: System identifier. For p8806[32...53]: Location identifier.	e, in the chapter	
p8807[0...15]	Identification and Maintenance 2 / I\&M 2		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	兂	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 2" (I\&M 2). This information is known as "Installation date".		
Dependency:	See also: p8806, p8808		

7.3 Parameter list

	Note An ASCII table (excerpt) can be found, for example, in the chapter of parameters. For p8807[0...15]: Dates of installation or first commissioning of the device with the following format options (ASCII): YYYY-MM-DD or YYYY-MM-DD hh:mm - YYYY: year - MM: month 01 ... 12 - DD: day 01 ... 31 - hh: hours 00 ... 23 - mm: minutes 00 ... 59 Separators must be placed between the individual data, i.e. a hyphen '-', space ' ' and colon ':'.
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
Description: Dependency:	Parameters for the PROFINET data set "Identification and Maintenance 3" (I\&M 3). This information is known as "Supplementary information". See also: p8806, p8807
	NOTICE Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec). Note An ASCII table (excerpt) can be found, for example, in the chapter of parameters. For p8808[0...53]: Any supplementary information and comments (ASCII).
p8809[0...53]	Identification and Maintenance 4 / I\&M 4
Description:	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4). This information is known as "Signature".
Dependency:	This parameter is preassigned as standard (see note). After writing information to p8809, p8805 is automatically set to $=1$. See also: p8805
	Note For p8805 = 0 (factory setting) the following applies: Parameter p8809 contains the information described below. For p8809[0...3]: Contains the value from r9781[0] "SI change tracking checksum functional". For p8809[4...7]: Contains the value from r9782[0] "SI change tracking time stamp checksum functional". For p8809[8...53]: Reserved.

r8859[0...7] PROFINET identification data / PN ident data

p8920[0...239]	PN Name of Station / PN Name Stat		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Sets the station name for the onboard PROFINET interface on the Control Unit. The actual station name is displayed in r8930.		
Dependency:	See also: p8925, r8930		
	Note		
	An ASCII table (excerpt) can be found, for example, in the chapter of parameters.		
	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		
	PN: PROFINET		
p8921[0...3]	PN IP address / PN IP addr		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	0
Description:	Sets the IP address for the onboard PROFINET interface on the Control Unit.		
Dependency:	See also: p8925, r8931		
	Note		
	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		
p8922[0...3]	PN Default Gateway / PN Def Gateway		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection:-	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	0
Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit.		
Dependency:	See also: p8925, r8932		
	Note		
	The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting.		
p8923[0...3]	PN Subnet Mask / PN Subnet Mask		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection:-	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	0
Description:	Sets the subnet mask for the onboard PROFINET interface on the Control Unit. The actual subnet mask is displayed in r8933.		

Dependency:	See also: p8925, r8933		
	Note The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting.		
p8924	PN DHCP Mode / PN DHCP mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the DHCP mode for the onboard PROFINET interface on the Control Unit. The actual DHCP mode is displayed in r8934.		
Value:	0: DHCP off		
	2: DHCP on, identification using MAC address		
	3: DHCP on, identification via name of station		
Dependency:	See also: p8925, r8934		
	NOTICE		
	When the DHCP mode is active (p8924 not equal to 0), then PROFINET communication via this interface is no longer possible!		
	Note The interface configuration (p8920 and following) is activated with p8925. The active DHCP mode is displayed in parameter 88934 . The parameter is not influenced by setting the factory setting.		
p8925	Activate PN interface configuration / PN IF config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	0
Description:	Setting to activate the interface configuration for the onboard PROFINET interface on the Control Unit. p8925 is automatically set to 0 at the end of the operation.		
Value:	0 0 No function		
	1: Reserved		
	2: Activate and save configuration		
	3: Delete configuration		
Dependency:	See also: p8920, p8921, p8922, p8923, p8924		
	NOTICE		
	When the DHCP mode is active (p8924 > 0), then PROFINET communication via this interface is no longer possible!		
	Note For p8925 = 2: The interface configuration (p8920 and following) is saved and activated after the next POWER ON. For p8925 = 3 : The factory setting of the interface configuration is loaded after the next POWER ON.		

r8930[0...239]	PN Name of Station actual / PN Name Stat act		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling:	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual station name for the onboard PROFINET interface on the Control Unit.		
r8931[0...3]	PN IP address actual / PN IP addr act		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	-
Description:	Displays the actual	OFINET interface	Unit.
r8932[0...3]	PN Default Gateway actual / PN Def Gateway act		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling:	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	-
Description:	Displays the actual	ard PROFINET inte	Ontrol Unit.
r8933[0...3]	PN Subnet Mask actual / PN Subnet Mask act		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	-
Description:	Displays the actual	PROFINET interfac	trol Unit.
r8934	PN DHCP Mode actual / PN DHCP Mode act		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	-
Description:	Displays the actual DHCP mode for the onboard PROFINET interface on the Control Unit.		
Value:	0 : DHCP off		
	2: DHCP on, identification using MAC address		
	3: DHCP on, identification via name of station		
	NOTICE		
	When the DHCP mode is active (parameter value not equal to 0), PROFINET communication via this interface is no longer possible!		

r8935[0...5]	PN MAC address / PN MAC addr		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0000 hex	00FF hex	-
Description:	Displays the MAC address for the onboard PROFINET interface on the Control Unit.		
r8939	PN DAP ID / PN DAP ID		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	,	(D)	-
Description:	Displays the PROFINET Device Access Point ID (DAP ID) for the onboard PROFINET interface. The combination of device ID (r8909) and DAP ID uniquely identifies a PROFINET access point.		
	Note		
	List of the SINAMICS DAP IDs:		
	20007 hex: CBE20 V4.5		
	20008 hex: CBE20 V4.6		
	20107 hex: CU310-2 PN V4.5		
	20108 hex: CU310-2 PN V4.6		
	20307 hex: CU320-2 PN V4.5		
	20308 hex: CU320-2 PN V4.6		
	20407 hex: CU230P-2 PN /CU240x-2 PN V4.5		
	20408 hex: CU230P-2 PN /CU240x-2 PN /CU250S-2 PN /G110M PN V4.6		
	20507 hex: CU250D-2 PN V4.5		
	20508 hex: CU250D-2 PN V4.6		
p8980	Ethernet/IP profile / Eth/IP profile		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2473
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the profile for Ethernet/IP.		
Value:	0: SINAMICS		
	1: ODVA AC/DC		
	Note		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	ODVA: Open DeviceNet Vendor Association		
p8981	Ethernet/IP ODVA STOP mode / Eth/IP ODVA STOP		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2473
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the STOP mode for the Ethernet/IP ODVA profile (p8980 = 1).		

7.3 Parameter list

Value:	$0:$	OFF1
	$1:$	OFF2
Dependency:	See also:	p8980

Note

Changes only become effective after POWER ON.
The parameter is not influenced by setting the factory setting.

p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	123	133	128
Description:	Sets the scaling for the speed for Ethernet/IP ODVA profile (p8980 = 1).		
Value:	123: 32		
	124: 16		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency:	See also: p8980		

Note

Changes only become effective after POWER ON.
The parameter is not influenced by setting the factory setting.

p8983	Ethernet/IP ODVA torque scaling / Eth/IP ODVA M scal		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	123	133	128
Description:	Sets the scaling for the torque for Ethernet/IP ODVA profile (p8980 = 1).		
Value:	123: 32		
	124: 16		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency:	See also: p8980		

Note

The status when the memory card is being "removed safely" is shown in r9401.
For value $=0,1,3,100$:
These values can only be displayed, not set

r11049.0... 11	CO/BO: Free tec_ctrl 0 status word / Ftec0 stat_word		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the status word of the free technology controller 0 .		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 Deactivated	Yes	No
	01 Limited	Yes	No
	08 Actual value at the minimum	Yes	No
	09 Actual value at the maximum	Yes	No
	10 Output at the minimum	Yes	No
	11 Output at the maximum	Yes	No
p11053	Cl : Free tec_ctrl 0 setpoint signal source / Ftec0 setp s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoin	echnology controller 0.	
p11057	Free tec_ctrl 0 setpoint ramp-up time / Ftec0 setp t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description: Dependency:	Sets the ramp-up time for the free technology controller 0 .		
	See also: p11058		
Dependency:	Note		
	The ramp-up time is referred to 100%.		
p11058	Free tec_ctrl 0 setpoint ramp-down time / Ftec0 setp t_r-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description: Dependency:	Sets the ramp-down time for the free technology controller 0 .		
	See also: p11057		
	Note		
	The ramp-down time is referred to 100%.		

r11060	CO: Free tec_ctrl 0 setpoint after ramp-function generator / Ftec0 setp aft RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint after the ramp-function generator of the free technology controller 0 .		
p11063	Free tec_ctrl 0 system deviation inversion / Ftec0 sys_dev inv		
	Access level: 3	Calculated: -	Data type: Integer 16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the system deviation of the free technology controller 0 . The setting depends on the type of control loop.		
Value:	$0: \quad$ No inversion		
	1: Inversion		
	CAUTION		
	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
	Note The correct setting can be determined as follows: - inhibit free technology controller (p11200 = 0). - increase the motor speed and in so doing, measure the actual value signal (of the free technology controller). - if the actual value increases with increasing motor speed, then deactivate inversion. - if the actual value decreases with increasing motor speed, then activate inversion. If value $=0$: The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor). If value $=1$: The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).		
p11064	Cl : Free tec_ctrl 0 actual value signal source / Ftec0 act v s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the actual value of the free technology controller 0 .		
p11065	Free tec_ctrl 0 actual value smoothing time constant / Ftec0 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 0 .		

p11067	Free tec_ctrl 0 actual value upper limit / Ftec0 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 0 .		
Dependency:	See also: p11064		
p11068	Free tec_ctrl 0 actual value lower limit / Ftec0 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 0 .		
Dependency:	See also: p11064		
p11071	Free tec_ctrl 0 actual value inversion / Ftec0 act vinv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 0 .		
Value:	$0: \quad$ No inversion		
	1: Inversion		
r11072	CO: Free tec_ctrl 0 actual value after limiter / Ftec0 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 0 .		
r11073	CO: Free tec_ctrl 0 system deviation / Ftec0 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 0 .		

p11074	Free tec_ctrl 0 differentiation time constant / Ftec0 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 0 .		
	Note		
	Value $=0$: Differentiation is deactivated.		
p11080	Free tec_ctrl 0 proportional gain / Ftec0 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 0.		
	Note		
	Value $=0$: The proportional gain is deactivated.		
p11085	Free tec_ctrl 0 integral time / Ftec0 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 0 .		
	Note		
	Value $=0$: The integral time is disabled.		
p11091	CO: Free tec_ctrl 0 limit maximum / Ftec0 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit	troller 0.	
Dependency:	See also: p11092		
	Note		
	The maximum limit must always be greater than the minimum limit (p11091 > p11092).		
p11092	CO: Free tec_ctrl 0 limit minimum / Ftec0 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]

Description: Dependency:	Sets the minimum limit of the free technology controller 0 . See also: p11091		
	The maximum limit must always be greater than the minimum limit (p11091 > p11092).		092).
p11093	Free tec_ctrl 0 limit ramp-up/ramp-down time / Ftec0 lim r-u/r-dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p11091, p11092) of the free technology controller 0 .		
Dependency:	See also: p11091, p11092		
	Note		
	The ramp-up/ramp-down times are referred to 100%.		
r11094	CO: Free tec_ctrl 0 output signal / Ftec0 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 0.		
p11097	CI: Free tec_ctrl 0 limit maximum signal source / Ftec0 lim max s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11091[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 0 . See also: p11091		
Dependency:			
p11098	Cl : Free tec_ctrl 0 limit minimum signal source / Ftec0 lim min s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11092[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 0 . See also: p11092		
Dependency:			

p11099	CI: Free tec_ctrl 0 limit offset signal source / Ftec0 lim offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the limit offset of the free technology controller 0 .		
p11100	BI: Free tec_ctrl 1 enable / Ftec1 enab		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to switch in/switch out the free technology controller 1. 1 signal: The technology controller is switched in. 0 signal: The technology controller is switched out.		
p11126	Free tec_ctrl 1 unit selection / Ftec1 unit sel		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C2(5)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	1	48	1
Description:	Sets the unit for the parameters of the free technology controller 1.		
Value:	1: \%		
	2: $\quad 1$ referred no dimensions		
	3: bar		
	4. ${ }^{\circ} \mathrm{C}$		
	5: $\quad \mathrm{Pa}$		
	6: $\mathrm{ltr} / \mathrm{s}$		
	7: $\quad \mathrm{m}^{3} / \mathrm{s}$		
	8: $\quad \mathrm{tr} / \mathrm{min}$		
	9: $\quad \mathrm{m}^{3} / \mathrm{min}$		
	10: $\mathrm{ltr} / \mathrm{h}$		
	11: $\mathrm{m}^{3} / \mathrm{h}$		
	12: kg / s		
	13: $\quad \mathrm{kg} / \mathrm{min}$		
	14: kg / h		
	15: $\quad \mathrm{t} / \mathrm{min}$		
	16: t/h		
	17: N		
	18: kN		
	19: Nm		
	20: psi		
	21: ${ }^{\circ} \mathrm{F}$		
	22: gallon/s		
	23: $\quad \mathrm{inch}^{3} / \mathrm{s}$		

7.3 Parameter list

3:	512 ms
4:	1024 ms

r11149.0... 11	CO/BO: Free tec_ctrl 1 status word / Ftec1 stat_word				
	Access level: 3	Calculated: -		Data type: Unsigned32	
	Can be changed: -	Scaling: -		Dynamic index: -	
	Unit group: -	Unit selection: -		Function diagram: 7030	
	Min:	Max:		Factory setting:	
	-	-		-	
Description:	Displays the status word of the free technology controller 1.				
Bit field:	Bit Signal name		1 signal	0 signal	FP
	00 Deactivated		Yes	No	-
	01 Limited		Yes	No	-
	08 Actual value at the minimum		Yes	No	-
	09 Actual value at the maximum		Yes	No	-
	10 Output at the minimum		Yes	No	-
	11 Output at the maximum		Yes	No	-
p11153	Cl : Free tec_ctrl 1 setpoint signal source / Ftec1 setp s_s				
	Access level: 2	Calculated: -		Data type: Unsigned32 / FloatingPoint32	
	Can be changed: T, U	Scaling: PERCENT		Dynamic index: -	
	Unit group: -	Unit selection: -		Function diagram: 7030	
	Min:	Max:		Factory setting:	
	-	-		0	
Description:	Sets the signal source for the setpoint of the free technology controller 1.				
p11157	Free tec_ctrl 1 setpoint ramp-up time / Ftec1 setp t_r-up				
	Access level: 2	Calculated: -		Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -		Dynamic index: -	
	Unit group: -	Unit selection: -		Function diagram: 7030	
	Min:	Max:		Factory setting:	
	0.00 [s]	650.00 [s]		1.00 [s]	
Description: Dependency:	Sets the ramp-up time for the free technology controller 1.				
	See also: p11158				
	Note				
	The ramp-up time is referred to 100%.				
p11158	Free tec_ctrl 1 setpoint ramp-down time / Ftec1 setp t_r-dn				
	Access level: 2	Calculated: -		Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -		Dynamic index: -	
	Unit group: -	Unit selection: -		Function diagram: 7030	
	Min:	Max:		Factory setting:	
	0.00 [s]	650.00 [s]		1.00 [s]	
Description:	Sets the ramp-down time of the free technology controller 1.				
Dependency:	See also: p11157				
	Note				
	The ramp-down time is referred to 100%.				

7.3 Parameter list

Note

The correct setting can be determined as follows:

- inhibit free technology controller (p11200 = 0).
- increase the motor speed and in so doing, measure the actual value signal (of the free technology controller).
- if the actual value increases with increasing motor speed, then deactivate inversion.
- if the actual value decreases with increasing motor speed, then activate inversion.

If value $=0$:
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).
If value = 1 :
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).

p11164

CI: Free tec_ctrl 1 actual value signal source / Ftec1 act v s_s

Access level: 2	Calculated: -	Data type: Unsigned32 /
Can be changed: T, U		FloatingPoint32
Unit group: -	Scaling: PERCENT	Dynamic index: -
Min:	Unit selection: -	Function diagram: 7030
-	Max:	Factory setting:

Description: Sets the signal source for the actual value of the free technology controller 1.

p11165	Free tec_ctrl 1 actual value smoothing time constant / Ftec1 act $\mathbf{v} \mathbf{T}$		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, \cup	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~s}]$	$60.00[\mathrm{~s}]$	$0.00[\mathrm{~s}]$
	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 1.		

p11167	Free tec_ctrl 1 actual value upper limit / Ftec1 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 1.		
Dependency:	See also: p11164		
p11168	Free tec_ctrl 1 actual value lower limit / Ftec1 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 1.		
Dependency:	See also: p11164		
p11171	Free tec_ctrl 1 actual value inversion / Ftec1 act vinv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 1 .		
Value:	$0: \quad$ No inversion		
	1: Inversion		
r11172	CO: Free tec_ctrl 1 actual value after limiter / Ftec1 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 1.		
r11173	CO: Free tec_ctrl 1 system deviation / Ftec1 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 1 .		

7.3 Parameter list

p11174	Free tec_ctrl 1 differentiation time constant / Ftec1 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 1.		
	Note		
	Value $=0$: Differentiation is deactivated.		
p11180	Free tec_ctrl 1 proportional gain / Ftec1 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 1.		
		Value $=0$: The proportional gain is deactivated.	
p11185	Free tec_ctrl 1 integral time / Ftec1 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 1.		
	Note Value $=0$: The integral time is disabled. If the parameter is set to zero during operation, the I component retains its most recent value.		
p11191	CO: Free tec_ctrl 1 limit maximum / Ftec1 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology controller 1. See also: p11192		
Dependency:			

Note
The maximum limit must always be greater than the minimum limit (p11191>p11192).
p11192
CO: Free tec_ctrl 1 limit minimum / Ftec1 lim min

Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: 7030
Min:	Max:	Factory setting:
$-200.00[\%]$	$200.00[\%]$	$0.00[\%]$

		3: $\quad 512 \mathrm{~ms}$				
		4: $\quad 1024 \mathrm{~ms}$				
r11249.0... 11	CO/BO: Free tec_ctrl 2 status word / Ftec2 stat_word					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 7030	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the status word of the free technology controller 2.					
Bit field:		Signal name		1 signal	0 signal	FP
		Deactivated		Yes	No	-
		Limited		Yes	No	-
		Actual value at the minimum		Yes	No	-
		Actual value at the maximum		Yes	No	-
		Output at the minimum		Yes	No	-
		Output at the maximum		Yes	No	-
p11253	Cl : Free tec_ctrl 2 setpoint signal source / Ftec2 setp s_src					
		ss level: 2	Calculated: -		Data type: Unsigned32 / FloatingPoint32	
		be changed: T, U	Scaling: PERCENT		Dynamic index: -	
	Unit	group: -	Unit selection: -		Function diagram: 7030	
	Min		Max:		Factory setting:	
	-		-		0	
Description:	Sets the signal source for the setpoint of the free technology controller 2.					
p11257	Free tec_ctrl 2 setpoint ramp-up time / Ftec2 setp t_r-up					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
	Can	be changed: T, U	Scaling: -		Dynamic index: -	
		group: -	Unit selection: -		Function diagram: 7030	
	Min		Max:		Factory setting:	
	0.00		650.00 [s]		1.00 [s]	
Description: Dependency:	Sets the ramp-up time for the free technology controller 2.					
	See also: p11258					
	Note					
	The ramp-up time is referred to 100%.					
p11258	Free tec_ctrl 2 setpoint ramp-down time / Ftec2 setp t_r-dn					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
		be changed: T, U	Scaling: -		Dynamic index: -	
		group: -	Unit selection: -		Function diagram: 7030	
	Min		Max:		Factory setting:	
	0.00		650.00 [s]		1.00 [s]	
Description:	Sets the ramp-down time of the free technology controller 2.					
Dependency:	See also: p11257					
	Note					
	The ramp-down time is referred to 100%.					

r11260	CO: Free tec_ctrl 2 setpoint after ramp-function generator / Ftec2 setp aft RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint after the ramp-function generator of the free technology controller 2 .		
p11263	Free tec_ctrl 2 system deviation inversion / Ftec2 sys_dev inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the system deviation of the free technology controller 2. The setting depends on the type of control loop.		
Value:	0: $1 . \quad$ No inversion		
	CAUTION		
	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
	Note The correct setting can be determined as follows: - inhibit free technology controller (p11200 = 0). - increase the motor speed and in so doing, measure the actual value signal (of the free technology controller). - if the actual value increases with increasing motor speed, then deactivate inversion. - if the actual value decreases with increasing motor speed, then activate inversion. If value $=0$: The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor). If value $=1$: The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).		
p11264	CI: Free tec_ctrl 2 actual value signal source / Ftec2 act v s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for the actual value of the free technology controller 2.		
p11265	Free tec_ctrl 2 actual value smoothing time constant / Ftec2 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 2.		

p11267	Free tec_ctrl 2 actual value upper limit / Ftec2 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 2.		
Dependency:	See also: p11264		
p11268	Free tec_ctrl 2 actual value lower limit / Ftec2 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 2.		
Dependency:	See also: p11264		
p11271	Free tec_ctrl 2 actual value inversion / Ftec2 act v inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 2.		
Value:	$0: \quad$ No inversion		
	1: Inversion		
r11272	CO: Free tec_ctrl 2 actual value after limiter / Ftec2 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 2.		
r11273	CO: Free tec_ctrl 2 system deviation / Ftec2 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 2.		

p11274	Free tec_ctrl 2 differentiation time constant / Ftec2 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 2.		
	Note		
	Value $=0$: Differentiation is deactivated.		
p11280	Free tec_ctrl 2 proportional gain / Ftec2 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 2.		
	Note		
	Value $=0$: The proportional gain is deactivated.		
p11285	Free tec_ctrl 2 integral time / Ftec2 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 2.		
	Note		
	Value $=0$: The integral time is disabled.		
p11291	CO: Free tec_ctrl 2 limit maximum / Ftec2 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit	troller 2.	
Dependency:	See also: p11292		
	Note		
	The maximum limit must always be greater than the minimum limit (p 11291 > p 11292).		
p11292	CO: Free tec_ctrl 2 limit minimum / Ftec2 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]

Description: Dependency:	Sets the minimum limit of the free technology controller 2. See also: p11291		
	Note		
p11293	Free tec_ctrl 2 limit ramp-up/ramp-down time / Ftec2 lim r-u/r-dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p11291, p11292) of the free technology controller 2.		
Dependency:	See also: p11291, p11292		
	Note		
	The ramp-up/ramp-down times are referred to 100%.		
r11294	CO: Free tec_ctrl 2 output signal / Ftec2 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 2.		
p11297	CI: Free tec_ctrl 2 limit maximum signal source / Ftec2 lim max s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11291[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 2. See also: p11291		
Dependency:			
p11298	Cl : Free tec_ctrl 2 limit minimum signal source / Ftec2 lim min s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11292[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 2. See also: p11292		
Dependency:			

Description:	Additional delay time for switch-out motor after the system deviation of the technology controller has exceeded the threshold p29523 and the motor has reached the speed threshold p1080+P29528.					
Dependency:	Refer to P29523, P29526					
	If the deviation at the technology controller input exceeds the overcontrol threshold p29526, the delay time is bypassed If the hibernation mode is active, ensure that p2391 is longer than p29525 to avoid false operation of hibernation.					
p29526	Multi-pump control overcontrol threshold / Mpc overctrl thr					
	Access level: 3	Calculated: -	Data type: FloatingPoint32			
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -			
	Unit group: 9_1	Unit selection: p0595	Function diagram: -			
	Min:	Max:	Factory setting:			
	0.0 [\%]	200.0 [\%]	25.0 [\%]			
Description:	Sets the threshold value for instaneous switching-in or switching-out motors.					
	Note					
	If the PID error rises above the multi-pump control overcontrol threshold p29526, the inverter skips the switch-in delay time and performs the switch-in operation immediately.					
	If the PID error drops below the multi-pump control overcontrol threshold -p29526, the inverter skips the switch-out delay and performs the switch-out operation immediately.					
p29527	Multi-pump control interlocking time / Mpc t_interl					
	Access level: 3	Calculated: -	Data type: Unsigned16			
	Can be changed: T	Scaling: -	Dynamic index: -			
	Unit group: -	Unit selection: -	Function diagram: -			
	Min:	Max:	Factory setting:			
	0 [s] 650		0 [s]			
Description:	Interlocking time during which, following the connection or disconnection of a motor, no further motors are connected or disconnected using the multi-control control. This avoids duplicate switching operations.					
p29528	Multi-pump control switch-out speed offset / Mpc sw_out offset					
	Access level: 3	Calculated: -	Data type: FloatingPoint32			
	Can be changed: T, U	Scaling: -	Dynamic index: - Function diagram: -			
	Unit group: 3_1	Unit selection: p0505				
	Min:	Max:	Factory setting:			
	0.0 [rpm]	21000.0 [rpm]	100.0 [rpm]			
Description:	Sets the speed offset which pluses p1080 as the speed threshold. If the system deviation of the technology controller has exceeded the threshold p29523 for p29525s (or exceeded the threshold p29526) and the motor has reached the speed threshold p1080+p29528, a motor will be switched out.					
r29529.0... 7	CO/BO: Multi-pump control status word / Mpc ZSW					
	Access level: 3	Calculated: -	Data type: Unsigned32			
	Can be changed: -	Scaling: -	Dynamic index: -			
	Unit group: -	Unit selection: -	Function diagram: -			
	Min:	Max:	Factory setting:			
	-	-	-			
Description:	Displays the status word of the multi-pump control					
Bit field:	Bit Signal name	1 signal	0 signal	FP		
	00 Start motor 1	Yes	No	-		
	01 Start motor 2	Yes	No	-		
	02 Start motor 3	Yes	No	-		

	Note When a pump is in service mode, the inverter locks the corresponding relay. Then you can perform troubleshooting of this pump without interrupting the operation of other pumps.			
p29542.0... 3	CO/BO: Multi-pump control service mode interlock manually / Mpc ser_interl			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: T, U	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-	-	0000 bin	
Description:	Sets the service mode manually.			
	When a motor fault is activated or a motor is not to run, user can set the corresponding bit to 1 to lock it.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 motor 1 locked	Yes	No	-
	01 motor 2 locked	Yes	No	-
	02 motor 3 locked	Yes	No	-
	03 motor 4 locked	Yes	No	-
p29543[0...3]	BI: Multi-pump control motor under repair / Mpc mtr_und_ser			
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary	
	Can be changed: T, U	Scaling: -	Dynamic index:	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
		-	[0] 29542.0	
			[1] 29542.1	
			[2] 29542.2	
			[3] 29542.3	
Description:				
	The signal indicates the motor/motors which is/are under repair or locked manually.			
Index:	[0] = motor 1 under repair			
	[1] = motor 2 under repair			
	[2] = motor 3 under repair			
	[3] = motor 4 under repair			
r29544	Multi-pump control index of motors under repair / Mpc mtr und repair			
	Access level: 3	Calculated: -	Data type: Un	
	Can be changed: -	Scaling: -	Dynamic inde	
	Unit group: -	Unit selection: -	Function diag	
	Min:	Max:	Factory settin	
	-	-		
Description:	Displays the motors which are interlocked/under repair.			
	Value:			
	r29544.0 = 1: Motor 1 is interlocked / under repair			
	r29544.1 = 1: Motor 2 is interlocked / under repair			
	r29544.2 = 1: Motor 3 is interlocked / under repair			
	r29544.3 = 1: Motor 4 is interlocked/ under repair			

\begin{tabular}{|c|c|c|c|}
\hline p29571[0...n]

Description: \& \begin{tabular}{l}
Threshold speed 2 / Thresh_2_Ramp

Access level: 3

Can be changed: T

Unit group: 3_1

Min:

0.00 [rpm]

Defines the threshold 2 for comparing the speed

 \&

Calculated: -

Scaling: p2000

Unit selection: p0505

Max:

210000.00 [rpm]

ctual value with the spe

 \&

Data type: FloatingPoint32

Dynamic index: DDS, p0180

Function diagram: -

Factory setting:

30.00 [rpm]

hold.
\end{tabular}

\hline p29572[0...n] \& | Ramp-up scaling 2 / RmpUpScaling2 |
| :--- |
| Access level: 3 |
| Can be changed: T |
| Unit group: - |
| Min: |
| 0.00 [\%] | \& | Calculated: - |
| :--- |
| Scaling: - |
| Unit selection: - |
| Max: |
| 9999999.00 [\%] | \& | Data type: FloatingPoint32 |
| :--- |
| Dynamic index: DDS, p0180 |
| Function diagram: - |
| Factory setting: $100.00 \text { [\%] }$ |

\hline Description: \& \multicolumn{3}{|l|}{Sets the ramp-up scaling 2 for the dual ramp function [\%].}

\hline p29573[0...n] \& | Ramp-down scaling 1 / RmpDnScaling |
| :--- |
| Access level: 3 |
| Can be changed: T |
| Unit group: - |
| Min: |
| 0.00 [\%] | \& | Calculated: - |
| :--- |
| Scaling: - |
| Unit selection: - |
| Max: |
| 9999999.00 [\%] | \& | Data type: FloatingPoint32 |
| :--- |
| Dynamic index: DDS, p0180 |
| Function diagram: - |
| Factory setting: $100.00 \text { [\%] }$ |

\hline Description: \& \multicolumn{3}{|l|}{Defines the ramp-down scaling 1 for the dual ramp function [\%].}

\hline p29574[0...n] \& | Threshold speed 3 / Thresh_3_Ramp |
| :--- |
| Access level: 3 |
| Can be changed: T |
| Unit group: 3_1 |
| Min: |
| 0.00 [rpm] | \& | Calculated: - |
| :--- |
| Scaling: p2000 |
| Unit selection: p0505 |
| Max: |
| 210000.00 [rpm] | \& | Data type: FloatingPoint32 |
| :--- |
| Dynamic index: DDS, p0180 |
| Function diagram: - |
| Factory setting: |
| 30.00 [rpm] |

\hline Description: \& \multicolumn{3}{|l|}{Defines the threshold 3 for comparing the speed actual value to the speed threshold.}

\hline p29575[0...n] \& | Ramp-down scaling 2 / RmpDnScaling |
| :--- |
| Access level: 3 |
| Can be changed: T |
| Unit group: - |
| Min: |
| 0.00 [\%] | \& | Calculated: - |
| :--- |
| Scaling: - |
| Unit selection: - |
| Max: |
| 9999999.00 [\%] | \& | Data type: FloatingPoint32 |
| :--- |
| Dynamic index: DDS, p0180 |
| Function diagram: - |
| Factory setting: |
| 100.00 [\%] |

\hline Description: \& \multicolumn{3}{|l|}{Sets the ramp-down scaling 2 for dual ramp function [\%].}

\hline r29576 \& | CO: Ramp-up scaling output / RmpUp |
| :--- |
| Access level: 3 |
| Can be changed: - |
| Unit group: - |
| Min: |
| - [\%] | \& | Calculated: - |
| :--- |
| Scaling: PERCENT |
| Unit selection: - |
| Max: |
| - [\%] | \& | Data type: FloatingPoint32 |
| :--- |
| Dynamic index: - |
| Function diagram: - |
| Factory setting: - [\%] |

\hline Description: \& Displays the actual output of the ramp-up scaling \& \&

\hline
\end{tabular}

r29577	CO: Ramp-down scaling output / RmpDnSca		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual output of the ramp-down scaling.		
p29578[0...n]	CI: Ramp-up scaling input / Rup scale input		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator when p1138 is BICO to r29576. When the dual ramp functionality is not enabled, p29578 will function.		
p29579[0...n]	CI: Ramp-down scaling input / Rdown scale input		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the ramp-down time of the ramp-function generator when p 1139 is BICO to 29577 . When the dual ramp functionality is not enabled, p29579 will function.		
p29580[0...n]	BI: Dual ramp enable / DuRamp En		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to enable the dual ramp	ction.	
p29590[0...n]	Deragging mode / Derag mod		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	0
Description:	Select the startup mode of deragging, if the condition is met with selected mode, deragging will perform when drive start to run, then switch to user setpoint automatically.		
Value:	0 : deragging disable		
	enabled on first run after power up		
	enabled on every run		
	enabled by Bl input		

Note

If deragging is enabled (P29590 > 0), make sure that reverse direction is not inhibited, i.e. P1110 = 0; If P29590=3, enable source is defined by P29591

Note

The actual speed setpoint is limited by minimal(P1080) and maximum(P1082) value.
If both reverse speed(P29593) and the time of duration(P29597) are 0 , reverse rotation will not perform in each cycle.
p29594[0...n] Deragging ramp up time / Derag rup

Access level: 3
Can be changed: T
Unit group: -
Min:
0.00 [s]

Calculated: -
Scaling: -
Unit selection: -
Max:
1000.00 [s]

Data type: FloatingPoint32
Dynamic index: DDS, p0180 Function diagram: -
Factory setting:
5.00 [s]

Description:
Defines ramp time from 0 to forward/reverse speed setpoint for deragging.

Note

Too short ramp up time for deragging may trigger F7902, and speed jump may occur.
The minimal time is upon the inertia of motor and power stage.

p29595[0...n]	Deragging ramp down time / Derag rdn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	1000.00 [s]	5.00 [s]
Description:	Defines ramp time from forward/reverse speed setpoint to 0 for deragging.		
	Note Speed jump may occur if ramp down time is too short, and that may trigger the fault of DC-link overvoltage. The minimal time is upon the inertia of motor and power stage.		
p29596[0...n]	Deragging forward time / Derag fw time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	1000.00 [s]	5.00 [s]
Description:	Defines the duration time at each forward speed for	or deragging.	
p29597[0...n]	Deragging reverse time / Derag rev tim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	1000.00 [s]	5.00 [s]
Description:	Defines the duration time at reverse speed for der	agging.	
p29598[0...n]	Number of deragging cycles / Derag cycs		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	999	1
Description:	The number of the deragging cycle is repeated		
p29610[0...n]	Pipe filling enable / PF En		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Enable the pipe filling function.		
Value:	0 : The pipe filling function is disabled		
	1: The pipe filling function is enabled		
	Note		
	The pipe filling function allows the inverter to fill an empty pipe slowly when the inverter works for the first time after ea power-up.		

p29611[0...n]	Pipe filling mode / PF mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Selects the mode for pipe filling.		
Value:	0 : The pipe is filled based on specified time		
	1: The pipe is filled based on the actual pressure feedback		
p29612[0...n]	Pipe filling speed / PF spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	-210000.00 [rpm]	210000.00 [rpm]	900.00 [rpm]
Description:	Sets the speed applied to the motor for the pipe filling.		
p29613[0...n]	Pipe filling time / PF time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.50 [s]	10000.00 [s]	50.00 [s]
Description:	Sets the duration time for the pipe filling.		
p29614[0...n]	Pipe filling threshold / PF thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	10.00 [\%]
Description:	Defines the threshold for stopping the pipe filling. The filling stops if the actual PID feedback reaches the threshold. It's used when p29611=1.		
p29615[0...n]	Pipe filling monitoring time / PF mon time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	0.00 [s]
Description:	Monitors the duration time for actual pressure (r2272) $>=$ the threshold (p29614). The pipe filling stops if the duration time is reached.		
	Note		
	It is used when p29611 $=1$.		

p29622[0...n]	BI: Frost protection enable / Fro en		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to enable frost protection. If the binary input is equal to 1 , then protection will be initiated. If the inverter is stopped and the protection signal becomes active, protection measure is applied as follows: - If p29623 != 0 , frost protection is activated by applying the specified speed to the motor; - If p29623 $=0$, and p29624 ! $=0$, condensation protection is activated by applying the specified current to the motor.		
	Note The protection function may be overridden un - If the inverter is running and the protection - If the inverter is turning a motor due to active overrides the frost protection signal. - Issuing an OFF command while protection	he following conditions becomes active, the si tection signal and a ve will stop the motor.	nored. and is received, RUN command
p29623[0...n]	Frost protection speed / Fro spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Specifies the speed applied to the motor when frost protection is active.		
	And this parameter can't be changed when the frost or condensation function is active.		
Dependency:	See also p29622.		
p29624[0...n]	Condensation protection current / Cond current		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [\%]	100.000 [\%]	30.000 [\%]
Description:	Specifies the DC current (as a percentage of active.	current) applied to the	hen condensation protection is
Dependency:	See also p29622.		
	Note		
	The change to the current becomes effective the next time condensation protection is active.		
p29625[0...n]	Cavitation protection enable / Cavi en		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	2	0
Description:	Enables the cavitation protection function. A fault/alarm is generated when cavitation conditions are deemed to be present.		
Value:	0: The cavitation protection function is deactivated		
	1: The cavitation protection function triggers fault F52960		
	2: The cavitation protection function	ers warning A52961	


```
Note
p29630 = 1
Sets the following parameter values to minimize likelihood of a trip:
p0290 = 2 (inverter overload reaction: reduce pulse frequency, output current and output frequency)
p1210 = 4 (restart after line supply failure without additional start attempts)
P1211 = 10 (number of times inverter will attempt to restart)
p1240 = 2 and p1280 = 2 (configuration of Vdc controller: Vdc_max controller and kinetic buffering (KIB) enabled)
p29630 = 0
Resets the parameters to their default values:
p0290 = 2 (inverter overload reaction: reduce pulse frequency, output current and output frequency)
p1210 = 0 (automatic restart function: trip reset after power on, p1211 disabled)
p1211 = 3 (number of times inverter will attempt to restart)
p1240 = 1 and p1280 = 1(configuration of Vdc controller: Vdc_max controller enabled)
```

p29631[0...4]	Flow meter pump power / FlowM_power		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [KW]	$340.28235 \mathrm{E} 36[\mathrm{KW}]$	0.00 [kW]
Description:	Determines the power points for flow estimation.		
	Five power values are put into the indexes of this parameter. These values should be spread across the full power range of the inverter.		
	User should guarantee values in all indexes is increasing in sequence (p29631[0] <= p29631[1] <= p29631[2] <= ...). Otherwise the calculated flow value will be 0 .		

p29632[0...4]	Flow meter pump flow / FlowM_flow		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00\left[\mathrm{~m}^{3} \mathrm{~h}\right]$	$340.28235 \mathrm{E} 36\left[\mathrm{~m}^{3} \mathrm{~h}\right]$	$0.00\left[\mathrm{~m}^{3} / \mathrm{h}\right]$
Description:	Determines the flow for the corresponding pump power point used for flow estimation.		
	Five correcponding flow values should be ent	derived from the ma	pump characteristic cur

r29633	Flow meter calculated flow / FlowM_calc flow		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [$\left.\mathrm{m}^{3} / \mathrm{h}\right]$	- [m³/h]	- [m³/h]
Description:	The calculation result of flow meter.		
r29640.0... 18	CO/BO: Extented setpoint channel selection output / Setp selection		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual output of the extended setpoint channel selection.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
SINAMICS G120X converter			
Operating Instruc	03/2019, FW V1.0, A5E44751209B A aC.	co.ir	

7.3 Parameter list

	00	Extend speed setpoint selected	1	0	-
	01	Frost or condensation executing	1	0	-
	03	Deragging executing	1	0	-
	04	Pipe filling executing	1	0	-
	05	Total executing	1	0	-
	06	Normal executing	1	0	-
	16	Ramp up status	1	0	-
	17	Ramp down status	1	0	-
	18	Target setpoint reached flag	1	0	-
r29641		Extented setpoint channel	output / Setp outpu		
		ss level: 3	Calculated: -	Data type	
		e changed: -	Scaling: p2000	Dynami	
		group: 3_1	Unit selection: p0505	Functio	
	Min		Max:	Factory	
	-		- [rpm]	- [rpm]	
Description:	Dis	ays the actual output of the extend	channel setpoint.		
p29642		Ramp-function generator, ac	point / Total setp s		
		ss level: 3	Calculated: -	Data typ	/ Binary
		be changed: T	Scaling: -	Dynam	
		group: -	Unit selection: -	Functio	
	Min		Max:	Factory	
	-		-		
Description:		the signal source for accepting the	the ramp-function gene		
p29643		amp-function generator se	ut / Total Setpoint		
		ss level: 3	Calculated: -	Data ty Floating	
		be changed: T	Scaling: p2000	Dynami	
		group: -	Unit selection: -	Functio	
	Min		Max:	Factory	
			-		
Description:	Set	the signal source for inputting the sers	the ramp-function gener		
p29650[0...n]		election for ON/OFF2 / DI s	$F 2$		
		ss level: 3	Calculated: -	Data typ	
		be changed: T	Scaling: -	Dynami	0170
		group: -	Unit selection: -	Functio	
	Min		Max:	Factory	
	-1				
Description:		es the DI selection for ON/OFF2. $0[0 \ldots . . \mathrm{n}]=\mathrm{r} 29659.0$	configuration will be	rnally(Ex	iants),
		$4[0 \ldots \mathrm{n}]=\mathrm{r} 29659.1$			
		2[0...n] $=722 . n$			
		can also configure p29651[0...n] and	[...n] after setting p2965		
		ar to p0840[0...n] and p0844[0...n], ctively.	n] and p29652[0...n] a	N/OFF1	input
Value:	-1:	NONE			

	0: DIO		
	1: DI1		
	2: DI2		
	3: DI3		
	4: DI4		
	5: DI5		
	On variants with PN/DP interface , when ON/OFF2 enabled(p29650>=0), the configuration of p840 and p844 will not be updated internally. ON/OFF2 is only effective if both are configured as r 29659 bit0 and bit1 respectively.		
p29651[0...n]	BI: ON/OFF1 (OFF1) / ON/OFF1 (OFF1)		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the command "ON/OFF1 (OFF1)".		
p29652[0...n]	BI: ON/OFF2 (OFF2) / ON/OFF2 (OFF2)		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
		-	722.0
Description:	Sets the signal source for the command "ON/OFF2 (OFF2)".		
r29659	CO/BO: Status word:command / Cmd stat		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
		Max:	Factory setting:
			-
Description:	Command status is for ON/OFF1, OFF2 which can connect to p0840, p0844.		
p60000	PROFIdrive reference speed reference frequency / PD n_ref f_ref		
	Access level: 2	Calculated: CALC	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	6.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: reference frequency (in Hz) = reference speed (in ((rpm)/60) x pole pair number)		
Dependency:	See also: p2000		
	NOTICE		
	When the reference	is changed, short	ation interruptions may occur.

7.3 Parameter list

7.4 ASCII table

Function description

The following table contains the characters that can be used for certain parameters, e.g. serial number, password or device name on a fieldbus.

Table 7-1 Permissible characters

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
$($	40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2F	Slash, slant
0	48	30	Digit 0
\ldots	\ldots	\ldots	\ldots
9	57	39	Digit 9
:	58	3A	Colon
;	59	3B	Semicolon
<	60	3C	Less than
$=$	61	3D	Equals
$>$	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At
A	65	41	Capital Letter A
\ldots	\ldots	\ldots	\ldots
Z	90	5A	Capital letter Z
[91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
\wedge	94	5E	Circumflex
-	95	5F	Underline

Character	Decimal	Hexadecimal	Meaning
\downarrow	96	60	Opening single quotation mark
a	97	61	Small letter a
\ldots	\ldots	\ldots	\ldots
z	122	$7 A$	Small Letter z
$\{$	123	$7 B$	Opening brace
l	124	$7 C$	Vertical line
$\}$	125	7D	Closing brace
\sim	126	7E	Tilde

Saving the settings and series commissioning

Overview

After commissioning, your settings are saved in the converter so that they are protected against power failure.

We recommend that you additionally back up the settings on a storage medium outside the converter. Without backup, your settings could be lost if the converter develops a defect.
The following storage media are available for your settings:

- Memory card
- Operator panel
- SINAMICS G120 Smart Access

8.1 Memory card

8.1.1 Recommended memory cards

Function description

Table 8-1 Memory card to back up converter settings

Scope of delivery	Article number
Memory card without firmware	6SL3054-4AG00-2AAO

More information

Using memory cards from other manufacturers

If you use a different SD memory card, then you must format it as follows:

- Insert the card into your PC's card reader.
- Command to format the card:
format x : /fs:fat or format x : /fs:fat32 (x: Drive code of the memory card on your PC.)

Functional restrictions with memory cards from other manufacturers

The following functions are either not possible - or only with some restrictions - when using memory cards from other manufacturers:

- Know-how protection is only possible with one of the recommended memory cards.
- In certain circumstances, memory cards from other manufacturers do not support writing or reading data from/to the converter.

8.1.2 Saving setting on a memory card

Overview

We recommend that you insert the memory card before switching on the converter. The converter always also backs up its settings on an inserted card.

If you wish to back up the converter settings on a memory card, you have two options:

See also

Firmware upgrade and downgrade (Page 887)

8.1.2.1 Automatic backup

Precondition

The converter power supply has been switched off.

Function description

Procedure

1. Insert an empty memory card into the converter.
2. Switch on the power supply for the converter.

After the power supply has been switched on, the converter copies its changed settings to the memory card.
\square

Note

Accidental damage to the converter firmware

If the memory card contains converter firmware, the converter may perform an operating system update the next time the supply voltage is switched on. If you switch off the supply voltage during the operating system update, the converter firmware may be incompletely loaded and damaged. The converter cannot be operated with corrupt firmware.

- Before inserting the memory card, ascertain whether it also contains converter firmware.
- Do not switch off converter power supply during an operating system update.

2] Firmware upgrade and downgrade (Page 887)

Note

Accidental overwrite of the converter settings

When the supply voltage is switched on, the converter automatically accepts the settings already backed up on the memory card. If you use a memory card on which settings are already backed up, you will overwrite the settings of the converter.

- To automatically backup your settings, use only a memory card that does not contain any other settings.

8.1 Memory card

8.1.2.2 Manual backup

Precondition

- The converter power supply has been switched on.
- No memory card is inserted in the converter.

Function description

Procedure with BOP-2

Set the number of your data backup. You can back up 99 different settings on the memory card.
 Start data transfer with OK.

Wait until the converter has backed up the settings to the memory card.

You have backed up the settings of the converter to the memory card.
\square

8.1.3 Transferring the setting from the memory card

8.1.3.1 Automatic transfer

Precondition
The converter power supply has been switched off.

Function description

Procedure

1. Insert the memory card into the converter.
2. Then switch on the converter power supply.

If there is valid parameter data on the memory card, then the converter accepts the data from the memory card.
口

8.1.3.2 Manually transferring

Precondition

- The converter power supply has been switched on.
- No memory card is inserted in the converter.

Function description

Procedure with the BOP-2

Start data transfer with OK.

FROM CRD -dOnE-

Wait until the converter has transferred the settings from the memory card.
Switch off the converter power supply.
Wait until all LEDs on the converter are dark.
Switch on the converter power supply again.
You have transferred the settings from the memory card to the converter.
\square

8.1.4 Safely remove the memory card

NOTICE

Data loss from improper handling of the memory card
If you remove the memory card when the converter is switched on without implementing the "safe removal" function you may destroy the file system on the memory card. The data on the memory card are lost. The memory card will only function again after formatting.

- Only remove the memory card using the "safe removal" function.

Function description

Procedure with the BOP-2

PARAMS
STANDARD
FTILER
P9400
$-\quad 1 弓 2$

1. Set $\mathrm{p} 9400=2$.

If a memory card is inserted, p9400 $=1$.
2. The converter sets $\mathrm{p} 9400=3$ or $\mathrm{p} 9400=100$.

- $\mathrm{p} 9400=3$: You may remove the memory card from the converter.
- p9400 = 100: You must not remove the memory card. Wait for several seconds and then set p9400 $=2$ again.

3. Remove the memory card. After removing the memory card, p9400 $=0$.

You have now safely removed the memory card using BOP-2.

\square

8.1.5 Message for a memory card that is not inserted

Function description

The converter identifies that a memory card is not inserted, and signals this state. The message is deactivated in the converter factory setting.

Activate message
Procedure

1. Set $\mathrm{p} 2118[\mathrm{x}]=1101, \mathrm{x}=0,1, \ldots 19$
2. Set $\mathrm{p} 2119[\mathrm{x}]=2$

Message A01101 for a memory card that is not inserted is activated.
\square
To cyclically signal to the higher-level control that a memory card is not inserted, connect parameter r9401 to the send data of the fieldbus interface.

Deactivate message

Procedure

1. Set $\mathrm{p} 2118[\mathrm{x}]=1101, \mathrm{x}=0,1, \ldots 19$
2. Set $\mathrm{p} 2119[\mathrm{x}]=3$

Message A01101 for a memory card that is not inserted is deactivated.
\square

Parameter

Parameter	Explanation	Factory setting
p2118[0 ... 19]	Change message type, message number	0
p2119[0 ... 19]	Change message type, type	0
r9401	Safely remove memory card status	-

8.2 Operator panel

8.2.1 Backup using the operator panel

Precondition

The converter power supply has been switched on.

Function description

Procedure

1. In the "OPTIONS" menu, select "TO BOP".

2. Start data transfer with OK.

SAVING PArAS
3. Wait until the converter has backed up the settings to the BOP-2.

TOBOP -dOnE-

You have backed up the settings to the BOP-2.
\square

8.2.2 Transfer to the converter

Precondition

The converter power supply has been switched on.

Function description

Procedure

2. Start data transfer with OK.

XXX-YYY
UNZIPING
FILES
3. Wait until the oonverter has written the settings to the memory card.

FROMBOP -dOnE-

1. In the "OPTIONS" menu, select "FROM BOP".
2. Switch off the converter power supply.
3. Wait until all converter LEDs are dark.
4. Switch on the converter power supply again. Your settings become active after switching on.

You have transferred the settings to the converter.

8.3 Other ways to back up settings

Function description

In addition to the default setting, the converter has an internal memory for backing up three other settings.
On the memory card, you can back up 99 other settings in addition to the default setting.
2 2 Additional information is available on the Internet: Memory options (http:// support.automation.siemens.com/WW/view/en/43512514).

8.4 Series commissioning

Overview

Series commissioning is the commissioning of several identical drives.

Precondition

The converter to which the settings are transferred has the same article number and the same or a higher firmware version as the source converter.

Function description

Procedure

1. Commission the first converter.
2. Back up the settings of the first converter to an external storage medium.
3. Transfer the settings from the first converter to another converter via the data storage medium.

8.5 Write protection

Overview

The write protection prevents unauthorized changing of the converter settings.

Function description

Write protection is applicable for all user interfaces:

- Operator panel BOP-2 and IOP-2
- SINAMICS G120 Smart Access
- Parameter changes via fieldbus

No password is required for write protection.

Activate and deactivate write protection

Parameter		
r7760	Write protection/know-how protection status	
	.00	1 signal: Write protection active
	Write protection (factory setting: 0)	
	$0:$	Deactivate write protection
	$1:$	Activate write protection

Parameters

Table 8-2 Parameters that can be changed with active write protection

Number	Name
$p 0003$	Access level / Acc_level
$p 0010$	Drive commissioning parameter filter / Drv comm par_filt
$p 0124[0 \ldots \mathrm{n}]$	CU detection using LED / CU detect LED
$p 0970$	Reset drive parameters / Drive par reset
p0971	Save parameters / Sav par
p0972	Drive unit reset / Drv_unit reset
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
$p 3981$	Acknowledge drive object faults / Ackn DO faults
$p 3985$	Master control mode selection / PcCtrl mode select
$p 7761$	Write protection / Write protection
$p 8805$	Identification and Maintenance 4 Configuration / I\&M 4 Config
$p 8806[0 \ldots 53]$	Identification and Maintenance 1 / I\&M 1
$p 8807[0 \ldots 15]$	Identification and Maintenance 2 / I\&M 2
$p 8808[0 \ldots 53]$	Identification and Maintenance 3 / I\&M 3
$p 8809[0 \ldots 53]$	Identification and Maintenance 4 / I\&M 4

Number	Name
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

Note
Write protection for multimaster fieldbus systems
Via multimaster fieldbus systems, e.g. BACnet or Modbus RTU, in spite of write protection being activated, parameters can still be changed. So that write protection is also active when accessing via these fieldbuses, you must additionally set p7762 to 1.

8.6 Know-how protection

Overview

Know-how protection prevents unauthorized reading of the converter settings.
To protect your converter settings against unauthorized copying, in addition to know-how protection, you can also activate copy protection.

Precondition

Know-how protection requires a password.

| Combination of know-how protection and copy
 protection | Is a memory card necessary? | |
| ---: | :---: | :---: | :---: |
| Know-how protection without copy protection | The converter can be operated with or without mem- | |
| ory card. | | |

Function description

The active know-how protection provides the following:

- With just a few exceptions, the values of all adjustable parameters p ... are invisible.
- Several adjustable parameters can be read and changed when know-how protection is active.
In addition, you can define an exception list of adjustable parameters, which end users may change.
- Several adjustable parameters can be read but not changed when know-how protection is active.
- The values of monitoring parameters r... remain visible.
- Adjustable parameters cannot be changed using commissioning tools.
- Locked functions:
- Automatic controller optimization
- Stationary or rotating measurement of the motor data identification
- Deleting the alarm history and the fault history
- Generating acceptance documents for safety functions
- Executable functions:
- Restoring factory settings
- Acknowledging faults
- Displaying faults, alarms, fault history, and alarm history
- Reading out the diagnostic buffer
- Uploading adjustable parameters that can be changed or read when know-how protection is active.

When know-how protection is active, support can only be provided (from Technical Support) after prior agreement from the machine manufacturer (OEM).

Know-how protection without copy protection

You can transfer converter settings to other converters using a memory card or an Operator Panel.

Know-how protection with basic copy protection

After replacing a converter, to be able to operate the new converter with the settings of the replaced converter without knowing the password, the memory card must be inserted in the new converter.

Know-how protection with extended copy protection

It is not possible to insert and use the memory card in another converter without knowing the password.

Commissioning know-how protection

1. Check as to whether you must extend the exception list.
\rightarrow List of exceptions (Page 775)
2. Activate the know-how protection.
4] Know-how protection (Page 776)

Parameters

Table 8-3 Parameters that can be changed with active know-how protection

Number	Name
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm par_filt
p0124[0...n]	CU detection using LED / CU detect LED
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO

Number	Name
$p 0970$	Reset drive parameters / Drive par reset
$p 0971$	Save parameters / Sav par
$p 0972$	Drive unit reset / Drv_unit reset
$p 2040$	Fieldbus interface monitoring time / Fieldbus t_monit
$p 2111$	Alarm counter / Alarm counter
$p 3950$	Service parameter / Serv par
$p 3981$	Acknowledge drive object faults / Ackn DO faults
$p 3985$	Master control mode selection / PcCtrl mode select
$p 7761$	Write protection / Write protection
$p 8402[0 \ldots 8]$	Identification and Maintenance 4 Configuration / I\&M 4 Config
$p 8805$	Identification and Maintenance 1 / I\&M 1
$p 8806[0 \ldots . .53]$	Identification and Maintenance 2 / I\&M 2
$p 8807[0 \ldots 15]$	Identification and Maintenance 3 / I\&M 3
$p 8808[0 \ldots 53]$	Identification and Maintenance 4 / I\&M 4
$p 8809[0 \ldots 53]$	EtherNet/IP profile / Eth/IP profile
$p 8980$	EtherNet/IP ODVA STOP mode / Eth/IP ODVA STOP
$p 8981$	EtherNet/IP ODVA speed scaling / Eth/IP ODVA n scal
$p 8982$	EtherNet/IP ODVA torque scaling / Eth/IP ODVA M scal
$p 8983$	Safely remove memory card / Mem_card rem
$p 9400$	BICO interconnections search signal source / BICO S_src srch
$p 9484$	

Table 8-4 Parameters that can be read with active know-how protection

Number	Name
$p 0015$	Macro drive unit / Macro drv unit
$p 0100$	IEC/NEMA Standards / IEC/NEMA Standards
$p 0170$	Number of Command Data Sets (CDS) / CDS count
$p 0180$	Number of Drive Data Sets (DDS) / DDS count
$p 0300[0 \ldots n]$	Motor type selection / Mot type sel
$p 0304[0 \ldots n]$	Rated motor voltage / Mot U_rated
$p 0305[0 \ldots n]$	Rated motor current / Mot I_rated
$p 0505$	Selecting the system of units / Unit sys select
$p 0595$	Technological unit selection / Tech unit select
$p 0730$	BI: CU signal source for terminal DO 0 / CU S_src DO 0
$p 0731$	BI: CU signal source for terminal DO 1 / CU S_src DO 1
$p 0732$	BI: CU signal source for terminal DO 2 / CU S_src DO 2
$p 0806$	BI: Inhibit master control / Inhibit PcCtrl
$p 0870$	BI: Close main contactor / Close main cont
$p 0922$	PROFldrive PZD telegram selection / PZD telegr_sel
$p 1080[0 \ldots n]$	Minimum velocity / v_min
$p 1082[0 \ldots n]$	Maximum velocity / v_max

Number	Name
p1520[0...n]	CO: Torque limit upper / M_max upper
p2000	Reference speed reference frequency / n_ref f_ref
p2001	Reference voltage / Reference voltage
p2002	Reference current / I_ref
p2003	Reference torque / M_ref
p2006	Reference temperature / Ref temp
p2030	Fieldbus interface protocol selection / Fieldbus protocol
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079	PROFIdrive PZD telegram selection extended / PZD telegr ext
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7765
p7764[0...n]	KHP OEM exception list / KHP OEM excep list
p11026	Free tec_ctrl 0 unit selection / Ftec0 unit sel
p11126	Free tec_ctrl 1 unit selection / Ftec1 unit sel
p11226	Free tec_ctrl 2 unit selection / Ftec2 unit sel

8.6.1 Extending the exception list for know-how protection

In the factory setting, the exception list only includes the password for know-how protection.
Before activating know-how protection, you can additionally enter the adjustable parameters in the exception list, which must still be able to be read and changed by end users - even if knowhow protection has been activated.

You do not need to change the exception list, if, with exception of the password, you do not require additional adjustable parameters in the exception list.

Absolute know-how protection

If you remove password $p 7766$ from the exception list, it is no longer possible to enter or change the password for know-how protection.

You must reset the converter to the factory settings in order to be able to gain access to the converter adjustable parameters. When restoring the factory settings, you lose what you have configured in the converter, and you must recommission the converter.

Parameter

Parameter	Description	Factory setting
p7763	KHP OEM exception list, number of indices for p7764	1
p7764[0...p7763]	KHP OEM exception list p7766 is the password for know-how protection	$[0] 7766$ $[1 \ldots 499] 0$

8.6.2 Activating and deactivating know-how protection

Conditions for know-how protection

- The converter has now been commissioned.
- You have generated the exception list for know-how protection.
- To guarantee know-how protection, you must ensure that the project does not remain at the end user as a file.

Preventing data reconstruction from the memory card

As soon as know-how protection has been activated, the converter only backs up encrypted data to the memory card.
In order to guarantee know-how protection, after activating know-how protection, we recommend that you insert a new, empty memory card. For memory cards that have already been written to, previously backed up data that was not encrypted can be reconstructed.

Parameter

Parameter	Description	Factory setting
r7758[0...19]	KHP Control Unit serial number	---
$p 7759[0 \ldots 19]$	KHP Control Unit reference serial number	---
r7760	Write protection/know-how protection status	---
$p 7765$	KHP configuration	0000 bin
$p 7766[0 \ldots 29]$	KHP password, input	---
$p 7767[0 \ldots 29]$	KHP password, new	---
p7768[0...29]	KHP password, confirmation	---
$p 7769[0 \ldots 20]$	KHP memory card reference serial number	---
$r 7843[0 \ldots 20]$	Memory card serial number	---

Warnings, faults and system messages

The converter has the following diagnostic types:

- LED

The LEDs at the front of the converter immediately inform you about the most important converter states.

- Alarms and faults

Every alarm and every fault has a unique number.
The converter signals alarms and faults via the following interfaces:

- Fieldbus
- Terminal strip with the appropriate setting
- Interface to the BOP-2 or IOP-2 operator panel
- Interface to SINAMICS G120 Smart Access
- Identification \& maintenance data (I\&M)

If requested, the converter sends data to the higher-level control via PROFINET:

- Converter-specific data
- Plant-specific data

9.1 Operating states indicated on LEDs

Table 9-1 Explanation of symbols for the following tables

	LED is ON
\square	LED is OFF
	LED flashes slowly
	LED flashes quickly
	LED flashes with variable frequency

Please contact Technical Support for LED states that are not described in the following.

Table 9-2 Basic states

RDY	Explanation
	Temporary state after the supply voltage is switched on.

Table 9-3 PROFINET fieldbus

LNK	Explanation
$\square_{1}^{\prime}=$	Communication via PROFINET is error-free
\square	No communication via PROFINET

Table 9－4 Fieldbuses via RS 485 interface

BF	Explanation	
\square	Data exchange between the converter and control system is active	
	The fieldbus is active，however，the converter is not receiving any process data	
昗	$\begin{aligned} & \hline \text { RDY } \\ & \text { 消隹 } \end{aligned}$	When LED RDY flashes simultaneously： Converter waits until the power supply is switched off and switched on again after a firmware update
	No fieldbus connection is available	
	$\begin{array}{\|c} \hline \text { RDY } \\ \text { 沙首 } \\ \hline 1 \end{array}$	When LED RDY flashes simultaneously： Incorrect memory card
消只	Firmware update failed	
	Firmware update is active	

Communication via Modbus or USS：

If the fieldbus monitoring is deactivated with $\mathrm{p} 2040=0$ ，the $B F-L E D$ remains dark，independent of the communication state．

Table 9－5 PROFINET fieldbus

BF	Explanation	
消咟	Data exchange between the converter and control system is active	
\square	Fieldbus interface is not being used	
	The fieldbus is improperly configured．	
景	$\begin{aligned} & \text { RDY } \\ & \text { 消和 } \end{aligned}$	In conjunction with a synchronously flashing LED RDY： Converter waits until the power supply is switched off and switched on again after a firmware update
	No communication with higher－level controller	
旦		In conjunction with an asynchronously flashing LED RDY： Incorrect memory card
澋采	Firmware update failed	
	Firmware update is active	

9.2 System runtime

9.2 System runtime

Overview

By evaluating the system runtime of the converter, you can decide when you should replace components subject to wear in time before they fail - such as fans, motors and gear units.

Function description

The system runtime is started as soon as the Control Unit power supply is switched-on. The system runtime stops when the Control Unit is switched off.

The system runtime comprises $\mathrm{r} 2114[0]$ (milliseconds) and r2114[1] (days):
System runtime $=r 2114[1] \times$ days $+\mathrm{r} 2114[0] \times$ milliseconds
If $\mathrm{r} 2114[0]$ has reached a value of $86,400,000 \mathrm{~ms}$ (24 hours), $\mathrm{r} 2114[0]$ is set to the value 0 and the value of $\mathrm{r} 2114[1]$ is increased by 1 .

Example

Parameter	Description
$\mathrm{r} 2114[0]$	System runtime (ms)
$\mathrm{r} 2114[1]$	System runtime (days)

You cannot reset the system runtime.

Parameters

Parameter	Description	Factory setting
$\mathrm{r} 2114[0 \ldots 1]$	Total system runtime	-

9.3 Identification \& maintenance data (I\&M)

I\&M data

The converter supports the following identification and maintenance (I\&M) data.

I\&M data	Format	Explanation	Associated parameters	Example for the content
I\&M0	u8[64] PROFIBUS u8[54] PROFINET	Converter-specific data, read only	-	See below
I\&M1	Visible String [32]	Plant/system identifier	p8806[0 ... 31]	$\begin{array}{\|l\|} \hline \text { "ak12- } \\ \text { ne.bo2=fu1" } \end{array}$
	Visible String [22]	Location code	p8806[32 ... 53]	"sc2+or45"
I\&M2	Visible String [16]	Date	p8807[0 ... 15]	$\begin{array}{\|l\|} \hline \text { "2013-01-21 } \\ 16: 15 " \end{array}$
I\&M3	Visible String [54]	Any comment	p8808[0 ... 53]	-
I\&M4	Octet String[54]	Check signature to track changes for Safety Integrated. This value can be changed by the user. The test signature is reset to the value generated by the machine if p8805 $=0$ is used.	p8809[0 ... 53]	Values of r9781[0] and r9782[0]

When requested, the converter transfers its I\&M data to a higher-level control or to a PC/PG with installed STEP 7 or TIA Portal.

I\&MO

Designation	Format	Example for the content	Valid for PRO- FINET	Valid for PRO- FIBUS
Manufacturer-specific	u8[10]	00 ... 00 hex	---	\checkmark
MANUFACTURER_ID	u16	42d hex (=Sie- mens)	\checkmark	\checkmark
ORDER_ID	Visible String [20]	"6SL3246-0BA22- 1FA0"	\checkmark	\checkmark
SERIAL_NUMBER	Visible String [16]	"T-R32015957"	\checkmark	\checkmark
HARDWARE_REVISION	u16	0001 hex	\checkmark	\checkmark
SOFTWARE_REVISION	char, u8[3]	"V" 04.70.19	\checkmark	\checkmark
REVISION_COUNTER	u16	0000 hex	\checkmark	\checkmark
PROFILE_ID	u16	3A00 hex	\checkmark	\checkmark
PROFILE_SPECIFIC_TYPE	u16	0000 hex	\checkmark	\checkmark
IM_VERSION	u8[2]	01.02	\checkmark	\checkmark
IM_SUPPORTED	bit[16]	001 hex	\checkmark	\checkmark

9.4 Alarms, alarm buffer, and alarm history

Overview

An alarm generally indicates that the converter may no longer be able to maintain the operation of the motor in future.
The extended diagnostics have an alarm buffer and an alarm history, in which the converter stores the most recent alarms.

Function description

Alarms have the following properties:

- Incoming alarms have no direct influence on the converter.
- A warning disappears as soon as its cause is eliminated.
- Alarms do not have to be acknowledged.
- Alarms are displayed as follows:
- Display via the fieldbus
- Display on the operator panel with Axxxxx
- Display via SINAMICS G120 Smart Access

Alarm code or alarm value describe the cause of the alarm.

Alarm buffer

Alarm code	Alarm value		Alarm time received			Alarm time removed	
	132	float	Days	ms		Days	ms
r2122[0]	r2124[0]	r2134[0]	r2145[0]	r2123[0]	old	r2146[0]	r2125[0]
[1]	[1]	[1]	[1]	[1]		[1]	[1]
[2]	[2]	[2]	[2]	[2]		[2]	[2]
[3]	[3]	[3]	[3]	[3]		[3]	[3]
[4]	[4]	[4]	[4]	[4]		[4]	[4]
[5]	[5]	[5]	[5]	[5]		[5]	[5]
[6]	[6]	[6]	[6]	[6]	∇	[6]	[6]
[7]	[7]	[7]	[7]	[7]	new	[7]	[7]

Figure 9-1 Alarm buffer
The converter saves incoming alarms in the alarm buffer. An alarm includes an alarm code, an alarm value, and two alarm times:

- Alarm code: r2122
- Alarm value: r2124 in fixed-point format "I32", r2134 in floating-point format "Float"
- Alarm time received $=r 2145+r 2123$
- Alarm time removed $=\mathrm{r} 2146+\mathrm{r} 2125$

The converter takes its internal time calculation to save the alarm times.
Sy System runtime (Page 780)
Up to 8 alarms can be saved in the alarm buffer.

In the alarm buffer, the alarms are sorted according to "Alarm time received". If the alarm buffer is completely filled and an additional alarm occurs, then the converter overwrites the values with Index [7].

Alarm history

Figure 9-2 Shifting removed alarms into the alarm history
If the alarm buffer is completely filled and an additional alarm occurs, the converter shifts all removed alarms into the alarm history. The following occurs in detail:

1. To create space after position [8] in the alarm history, the converter shifts the alarms already stored in the alarm history "down" by one or more positions.
If the alarm history is completely full, the converter will delete the oldest alarms.
2. The converter moves the removed alarms from the alarm buffer to the now freed up positions of the alarm history.
Alarms that have not been removed remain in the alarm buffer.
3. The converter closes gaps in the alarm buffer that occurred when the removed alarms were shifted in the alarm history by shifting the alarms that have not been removed "up".
4. The converter saves the received alarm as the latest alarm in the alarm buffer.

The alarm history saves up to 56 alarms.
In the alarm history, alarms are sorted according to the "alarm time received". The latest alarm has Index [8].

Parameters

Table 9-6 Parameters of the alarm buffer and the alarm history

Parameter	Description	Factory setting
p2111	Alarm counter	0
r2122[0 .. 63]	Alarm code	-

Parameter	Description	Factory setting
$\mathrm{r} 2123[0 \ldots 63]$	Alarm time received in milliseconds	-ms
$\mathrm{r} 2124[0 \ldots 63]$	Alarm value	-
$\mathrm{r} 2125[0 \ldots 63]$	Alarm time removed in milliseconds	-ms
r 2132	CO: Actual alarm code	-
$\mathrm{r} 2134[0 \ldots 63]$	Alarm value for float values	-
$\mathrm{r} 2145[0 \ldots 63]$	Alarm time received in days	-
$\mathrm{r} 2146[0 \ldots 63]$	Alarm time removed in days	-

Table 9-7 Extended settings for alarms

Parameter	Description	Factory setting
You can change up to 20 different alarms into a fault or suppress alarms:		
p2118[0 .. 19]	Change message type, message number	0
p2119[0 .. 19]	Change message type, type	1

Further information is provided in the parameter list.

9.5 Faults, alarm buffer and alarm history

Overview

A fault generally indicates that the converter can no longer maintain the operation of the motor.
The extended diagnostics have a fault buffer and a fault history, in which the converter stores the most recent faults.

Function description

Faults have the following properties:

- In general, a fault leads to the motor being switched off.
- A fault must be acknowledged.
- Faults are displayed as follows:
- Display via the fieldbus
- Display on the operator panel with Fxxxxx
- Display on the converter via the LED RDY
- Display via SINAMICS G120 Smart Access

Fault buffer

Fault code	Fault value		Fault time received			Fault time removed	
	132	float	Days	ms		Days	ms
r0945[0]	r0949[0]	r2133[0]	r2130[0]	r0948[0]	Old	r2136[0]	r2109[0]
[1]	[1]	[1]	[1]	[1]		[1]	[1]
[2]	[2]	[2]	[2]	[2]		[2]	[2]
[3]	[3]	[3]	[3]	[3]		[3]	[3]
[4]	[4]	[4]	[4]	[4]		[4]	[4]
[5]	[5]	[5]	[5]	[5]		[5]	[5]
[6]	[6]	[6]	[6]	[6]	∇	[6]	[6]
[7]	[7]	[7]	[7]	[7]	New	[7]	[7]

Figure 9-3 Fault buffer
The converter saves incoming faults in the fault buffer. A fault includes a fault code, a fault value, and two fault times:

- Fault code: r0945

The fault code and fault value describe the cause of the fault.

- Fault value: r0949 in fixed-point format "I32", r2133 in floating-point format "Float"
- Fault time received $=$ r2130 + r0948
- Fault time removed $=r 2136+r 2109$

The converter takes its internal time calculation to save the fault times.
4] System runtime (Page 780)
Up to 8 faults can be saved in the fault buffer.

In the fault buffer, the faults are sorted according to "Fault time received". If the fault buffer is completely filled and an additional fault occurs, then the converter overwrites the values with Index [7].

Acknowledging a fault

To acknowledge a fault, you have the following options:

- Acknowledge via the fieldbus
- Acknowledge via a digital input
- Acknowledge via the operator panel
- Switch off the converter power supply and switch on again

Faults detected during the converter-internal monitoring of hardware and firmware can be acknowledged only by switching the supply voltage off and on again. The list of fault codes and alarm codes includes the note on the limitations on the acknowledgment for the corresponding fault codes.

Fault history

Figure 9-4 Fault history after acknowledging the faults
If at least one of the fault causes in the fault buffer has been removed and you acknowledge the faults, the following takes place:

1. The converter shifts the values previously saved in the fault history by eight indexes. The converter deletes the faults that were saved in the indexes [56 ... 63] before the acknowledgement.
2. The converter copies the contents of the fault buffer to the memory locations [8 ... 15] in the fault history.
3. The converter deletes the faults that have been removed from the fault buffer.

The faults that have not been removed are now saved both in the fault buffer and in the fault history.
4. The converter writes the time of acknowledgement of the removed faults to "Fault time removed".
The "Fault time removed" of the faults that have not been removed retains the value $=0$.
The fault history can contain up to 56 faults.

Deleting the fault history

To delete all faults from the fault history, set parameter p0952 $=0$.

Parameters

Table 9-8 Parameters of the fault buffer and the fault history

Parameter	Description	Factory setting
r0945[0 $\ldots 63]$	Fault code	-
r0948[0 ...63]	Fault time received in milliseconds	-ms
r0949[0 ...63]	Fault value	-
p0952	Fault cases counter	0
r2109[0 .. 63]	Fault time removed in milliseconds	-ms
r2130[0 ...63]	Fault time received in days	-
r2131	CO: Actual fault code	-
r2133[0 $\ldots 63]$	Fault value for float values	-
r2136[0 $\ldots 63]$	Fault time removed in days	-

Extended settings for faults

Parameter	Description	Factory setting
$p 2100[0 \ldots 19]$	Changing the fault reaction, fault number	0
$p 2101[0 \ldots 19]$	Changing the fault reaction, reaction	0
$p 2118[0 \ldots 19]$	Change message type, message number	0
$p 2119[0 \ldots 19]$	Change message type, type	1
$p 2126[0 \ldots 19]$	Changing the acknowledge mode, fault number	0
$p 2127[0 \ldots 19]$	Changing the acknowledge mode	1

Further information is provided in the parameter list.

9.6 List of fault codes and alarm codes

9.6.1 Overview of faults and alarms

Overview

A message comprises a letter followed by the relevant number.
The letters have the following meaning:
A....
Alarm code
F....
Fault code
N....
No report or internal message

9.6.2	Fault codes and alarm codes All objects: CUG120X_PN
F01000	Internal software error Reaction:
OFF2	
Acknowledge:	POWER ON Cause:An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- evaluate fault buffer (ro945). - carry out a POWER ON (switch-off/switch-on) for all components. - if required, check the data on the non-volatile memory (e.g. memory card). - upgrade firmware to later version. - contact Technical Support. - replace the Control Unit.

F01001 FloatingPoint exception

Reaction: OFF2
Acknowledge: POWER ON
Cause:
An exception occurred during an operation with the FloatingPoint data type.
The error may be caused by the basic system or an OA application (e.g. FBLOCKS, DCC).
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Note:
Refer to r9999 for further information about this fault.
r9999[0]: Fault number.
r9999[1]: Program counter at the time when the exception occurred.
r9999[2]: Cause of the FloatingPoint exception.
Bit 0 = 1: Operation invalid
Bit $1=1$: Division by zero
Bit $2=1$: Overflow
Bit $3=1$: Underflow
Bit $4=1$: Inaccurate result
Remedy: \quad - carry out a POWER ON (switch-off/switch-on) for all components.

- check configuration and signals of the blocks in FBLOCKS.
- check configuration and signals of DCC charts.
- upgrade firmware to later version.
- contact Technical Support.

F01002	Internal software error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - contact Technical Support.

F01003	Acknowledgment delay when accessing the memory
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A memory area was accessed that does not return a "READY". Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- contact Technical Support.

N01004 (F, A)	Internal software error
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- read out diagnostics parameter (r9999).
	- contact Technical Support.
	See also: r9999 (Software error internal supplementary diagnostics)

9.6 List of fault codes and alarm codes

F01005	File upload/download error
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The upload or download of EEPROM data was unsuccessful.
	Fault value (r0949, interpret hexadecimal):
	$y y x x x x$ hex: $\mathrm{y} y=$ component number, $\mathrm{xxxx}=$ fault cause
	xxxx $=000 \mathrm{~B}$ hex $=11 \mathrm{dec}$:
	Power unit component has detected a checksum error.
	xxxx $=000 \mathrm{~F}$ hex $=15 \mathrm{dec}$:
	The selected power unit will not accept the content of the EEPROM file.
	xxxx = 0011 hex = 17 dec :
	Power unit component has detected an internal access error.
	xxxx $=0012$ hex $=18$ dec:
	After several communication attempts, no response from the power unit component.
	xxxx $=008 \mathrm{~B}$ hex $=140 \mathrm{dec}$:
	EEPROM file for the power unit component not available on the memory card.
	xxxx $=008 \mathrm{D}$ hex $=141 \mathrm{dec}$:
	An inconsistent length of the firmware file was signaled. It is possible that the download/upload has been interrupted. xxxx $=0090$ hex $=144 \mathrm{dec}$:
	When checking the file that was loaded, the component detected a fault (checksum). It is possible that the file on the memory card is defective.
	xxxx $=0092 \mathrm{hex}=146 \mathrm{dec}$:
	This SW or HW does not support the selected function.
	xxxx = 009C hex = 156 dec :
	Component with the specified component number is not available (p7828).
	xxxx $=$ Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Save a suitable firmware file or EEPROM file for upload or download in folder "/ee_sac/" on the memory card.
A01009 (N)	CU: Control module overtemperature
Reaction:	NoNE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit.
	- check the Control Unit fan.
	Note:
	The alarm is automatically withdrawn once the limit value has been fallen below.
F01010	Drive type unknown
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
Remedy:	- replace Power Module.
	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.
F01015	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON

Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
Remedy: \quad	Only for internal Siemens troubleshooting.
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

A01016 (F) Firmware changed

Reaction: NONE
Acknowledge: NONE

Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0 : Checksum of one file is incorrect.
	1: File missing.
	2: Too many files.
	3: Incorrect firmware version.
	4: Incorrect checksum of the back-up file.
Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
	Note:
	The file involved can be read out using parameter r9925.
	The status of the firmware check is displayed using r9926.
	See also: r9925 (Firmware file incorrect), r9926 (Firmware check status)

A01017	Component lists changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been
	Allarm vally changed with respect to that supplied from the factory. No changes are permitted in this directory.
	$z y x$ dec: $x=$ Problem, $y=$ Directory, $z=$ File name
	$x=1:$ File does not exist.
	$x=2:$ Firmware version of the file does not match the software version.
	$x=3:$ File checksum is incorrect.
	$y=0:$ Directory /SIEMENS/SINAMICS/DATA/
	$y=1:$ Directory /ADDON/SINAMICS/DATA/
	$z=0:$ File MOTARM.ACX
	$z=1:$ File MOTSRM.ACX
	$z=2:$ File MOTSLM.ACX
	$z=3:$ File ENCDATA.ACX
	$z=4:$ File FILTDATA.ACX
	$z=5:$ File BRKDATA.ACX
	$z=6:$ File DAT_BEAR.ACX
	$z=7:$ File CFG_BEAR.ACX
	For the file on the memory card involved, restore the status originally supplied from the factory.

F01018	Booting has been interrupted several times
Reaction:	NONE
Acknowledge:	POWER ON

9.6 List of fault codes and alarm codes

Cause: \quad\begin{tabular}{l}
Module booting was interrupted several times. As a consequence, the module boots with the factory setting.

Possible reasons for booting being interrupted:

- power supply interrupted.

- CPU crashed.

- parameterization invalid.

- carry out a POWER ON (switch-off/switch-on). After switching on, the module reboots from the valid parameterization (if

available).

- restore the valid parameterization.

Examples:

a) Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch-on).

b) Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-off/switch-on).

Note:

If the fault situation is repeated, then this fault is again output after several interrupted boots.
\end{tabular}

A01019	Writing to the removable data medium unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the removable data medium was unsuccessful.
Remedy:	Remove and check the removable data medium. Then run the data backup again.

A01020	Writing to RAM disk unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930). See also: p9930 (System logbook activation)

A01021	Removable data medium as USB data storage medium from the PC used
Reaction:	NONE
Acknowledge:	NONE
Cause:	The removable data medium is used as USB data storage medium from a PC
	As a consequence, the drive cannot access the removable data medium. When backing up, the configuration data cannot
	be saved on the removable data medium.
	Alarm value (r2124, interpret decimal):
	1: The know-how protection as well as the copy protection for the removable data medium is active. Backup is inhibited.
	2: The configuration data are only backed up in the Control Unit.
	See also: r7760 (Write protection/know-how protection status), r9401 (Safely remove memory card status)
Remedy:	Deactivate the USB connection to the PC and back up the configuration data.
	Note:
	The alarm is automatically canceled when disconnecting the USB connection or when removing the removable data
	medium.
	See also: r9401 (Safely remove memory card status)

F01023	Software timeout (internal)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.

Remedy: - carry out a POWER ON (switch-off/switch-on) for all components.

- upgrade firmware to later version.
- contact Technical Support.

A01028 (F)	Configuration error
Reaction:	NONE
Acknowledge:	NONE
Caus:	The parameterization that was downloaded was generated with a different module type (Order No., MLFB). Remedy: Save parameters in a non-volatile fashion (p0971 = 1).
F01030	Sign-of-life failure for master control
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Caus:	For active PC master control, no sign-of-life was received within the monitoring time. The master control was returned to the lactive BICO interconnection.
Remedy:	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. For the commissioning software, the monitoring time is set as follows: <Drive>-> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
	Notice: The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!

F01033	Units changeover: Reference parameter value invalid
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0
	Fault value (r0949, parameter): Reference parameter whose value is 0.0. See also: p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Set the value of the reference parameter to a number different than 0.0. See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004

F01034 Units changeover: Calculation parameter values after reference value change unsuccessful
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.
Fault value (r0949, parameter):
Parameter whose value was not able to be re-calculated.
See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy: - Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.

- Technology unit selection (p0595) before changing the reference parameter p0596, set p0595 $=1$.

A01035 (F)	ACX: Parameter back-up file corrupted
Reaction:	NONE
Acknowledge:	NONE

9.6 List of fault codes and alarm codes

Cause:	When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out.
	It is possible that the backup was interrupted by switching off or withdrawing the memory card.
	Alarm value (r2124, interpret hexadecimal): ddccbbaa hex: aa $=01$ hex:
	Power up was realized without data backup. The drive is in the factory setting. aa $=02$ hex:
	The last available internal backup data record was loaded. The parameterization must be checked. It is recommended that the parameterization is downloaded again. aa $=03$ hex:
	The last available data record from the memory card was loaded. The parameterization must be checked. aa $=04$ hex:
	An invalid data backup was loaded from the memory card into the drive. The drive is in the factory setting. dd, cc, bb:
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save parameters)
Remedy:	- Download the project again with the commissioning software.
	- save all parameters (p0971 = 1 or "copy RAM to ROM").
	See also: p0971 (Save parameters)
F01036 (A)	ACX: Parameter back-up file missing
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy $=000$--> consistency back-up file
	yyy $=001$... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2, 3, 4:
	Only for internal Siemens troubleshooting.
Remedy:	If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0971 = 1 .
	This means that the parameter files are again completely written into the non-volatile memory.
	Note:
	If the project data have not been backed up, then a new first commissioning is required.

F01038 (A) ACX: Loading the parameter back-up file unsuccessful
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory. Fault value (r0949, interpret hexadecimal): Byte 1: yyy in the file name PSxxxyyy.ACX yyy = 000 --> consistency back-up file yyy $=001$... 062 --> drive object number yyy = 099 --> PROFIBUS parameter back-up file Byte 2: 255: Incorrect drive object type. 254: Topology comparison unsuccessful -> drive object type was not able to be identified. Reasons could be: - incorrect component type in the actual topology - Component does not exist in the actual topology. - Component not active. Additional values: Only for internal Siemens troubleshooting. Byte 4, 3 : Only for internal Siemens troubleshooting. - if you have saved the project data using the commissioning software, download the project again. Save using the function "Copy RAM to ROM" or with p0971 = 1. This means that the parameter files are again completely written to the non-volatile memory. - replace the memory card or Control Unit.
F01039 (A) Reaction: Acknowledge: Cause:	ACX: Writing to the parameter back-up file was unsuccessful NONE (OFF1, OFF2, OFF3) IMMEDIATELY Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful. - in the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten. - there is not sufficient free memory space available. - the non-volatile memory is defective and cannot be written to. Fault value (r0949, interpret hexadecimal): dcba hex $\mathrm{a}=$ yyy in the file names PSxxxyyy.*** a = 000 --> consistency back-up file $a=001$... 062 --> drive object number a = 099 --> PROFIBUS parameter back-up file $b=x x x$ in the file names PSxxxyyy.*** b = 000 --> data save started with p0971 = 1 $b=010$--> data save started with p0971 $=10$ $b=011$--> data save started with p0971 $=11$ b = 012 --> data save started with p0971 $=12$ d, c: Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable". - check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system. - replace the memory card or Control Unit.

F01040 Save parameter settings and carry out a POWER ON
Reaction: OFF2
Acknowledge: POWER ON

Cause:	A parameter has been changed that requires the parameters to be backed up and the Control Unit to be switched OFF and ON again.
Remedy:	- Save parameters (p0971).
	- carry out a POWER ON (switch-off/switch-on) for the Control Unit.
F01042	Parameter error during project download
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
	For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
	Fault value (r0949, interpret hexadecimal): ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	0 : Parameter number illegal.
	1: Parameter value cannot be changed.
	2: Lower or upper value limit exceeded.
	3: Sub-index incorrect.
	4: No array, no sub-index.
	5: Data type incorrect.
	6: Setting not permitted (only resetting).
	7: Descriptive element cannot be changed.
	9: Descriptive data not available.
	11: No master control.
	15: No text array available.
	17: Task cannot be executed due to operating state.
	20: lllegal value.
	21: Response too long.
	22: Parameter address illegal.
	23: Format illegal.
	24: Number of values not consistent.
	108: Unit unknown.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- enter the correct value in the specified parameter.
	- identify the parameter that restricts the limits of the specified parameter.

F01043 Fatal error at project download

Reaction: OFF2 (OFF1, OFF3)
Acknowledge: IMMEDIATELY

Cause:	A fatal error was detected when downloading a project using the commissioning software.
	Fault value (r0949, interpret decimal):
	1: Device status cannot be changed to Device Download (drive object ON?).
	2: Incorrect drive object number.
	8: Maximum number of drive objects that can be generated exceeded.
	11: Error while generating a drive object (global component).
	12: Error while generating a drive object (drive component).
	13: Unknown drive object type.
	14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
	15: Drive status cannot be changed to drive download.
	16: Device status cannot be changed to "ready for operation".
	18: A new download is only possible if the factory settings are restored for the drive unit.
	20: The configuration is inconsistent.
	21: Error when accepting the download parameters.
	22: SW-internal download error.
	100: The download was canceled, because no write requests were received from the commissioning client (e.g. for communication error).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- use the current version of the commissioning software.
	- modify the offline project and download again (e.g. compare the motor and Power Module in the offline project and on the drive).
	- change the drive state (is a drive rotating or is there a message/signal?).
	- carefully note any other messages/signals and remove their cause.
	- boot from previously saved files (switch-off/switch-on or p0970).
F01044	CU: Descriptive data error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy:	Replace the memory card or Control Unit.
A01045	Configuring data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408. Alarm value (r2124, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- check the parameters displayed in r9406 up to r9408, and correct these if required.
	- Restore the factory setting using ($0970=1$) and re-load the project into the drive unit.
	Then save the parameterization with p0971 = 1. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.
	See also: r9406 (PS file parameter number parameter not transferred), r9407 (PS file parameter index parameter not transferred), r9408 (PS file fault code parameter not transferred)
A01049	It is not possible to write to file
Reaction:	NONE
Acknowledge:	NONE

9.6 List of fault codes and alarm codes

Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted.
	Alarm value (r2124, interpret decimal):
Drive object number.	
Remedy:	Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/ SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

F01054 CU: System limit exceeded
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: At least one system overload has been identified.
Fault value (r0949, interpret decimal):
1: Computing time load too high (r9976[1]).
5: Peak load too high (r9976[5]).
Note:
As long as this fault is present, it is not possible to save the parameters (p 0971).
See also: r9976 (System utilization)
Remedy: \quad For fault value $=1,5$:

- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100%.
- check the sampling times and adjust if necessary (p0115, p0799, p4099).
- deactivate function modules.
- deactivate drive objects.
- remove drive objects from the target topology.
- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.

When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies:

- the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or r20005 (FBLOCKS).
- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r21001, r20001).
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).

A01066	Buffer memory: 70\% fill level reached or exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to at least 70%. This can also occur if the buffer memory is active ($\mathrm{p} 0014=1$) and parameters are continually changed via a fieldbus system.
Remedy:	If required, deactivate and clear the buffer memory ($\mathrm{p} 0014=0$). If required, clear the buffer memory (p0014 = 2). In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: $\text { - p0971 = } 1$ - switch-off/switch-on Control Unit See also: p0014 (Buffer memory mode)

A01067 Buffer memory: 100 \% fill level reached

Reaction: NONE

Acknowledge: NONE
Cause: The non-volatile buffer memory for parameter changes is filled to 100%.
All additional parameter changes will no longer be taken into account in the non-volatile buffer memory. However, parameter changes can still be made in the volatile memory (RAM).
This can also occur if the buffer memory is active ($\mathrm{p} 0014=1$) and parameters are continually changed via a fieldbus system.

Remedy:	If required, deactivate and clear the buffer memory ($\mathrm{p} 0014=0$). If required, clear the buffer memory ($\mathrm{p} 0014=2$). In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: - p0971 = 1 - switch-off/switch-on Control Unit See also: p0014 (Buffer memory mode)
F01068	CU: Data memory memory overflow
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The utilization for a data memory area is too large. Fault value (r0949, interpret binary): Bit $0=1$: High-speed data memory 1 overloaded Bit $1=1$: High-speed data memory 2 overloaded Bit $2=1$: High-speed data memory 3 overloaded Bit $3=1$: High-speed data memory 4 overloaded
Remedy:	- deactivate the function module. - deactivate drive object. - remove the drive object from the target topology.
A01069	Parameter backup and device incompatible
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match. The module boots with the factory settings. Example: Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON. - insert a memory card without parameter backup and carry out a POWER ON. - if required, withdraw the memory card and carry out POWER ON. - save the parameters ($00971=1$).
F01072	Memory card restored from the backup copy
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective. After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.
Remedy:	Check that the firmware and parameterization is up-to-date.
A01073 (N)	POWER ON required for backup copy on memory card
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter assignment on the visible partition of the memory card has changed. In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out a POWER ON or hardware reset (p0972) of the Control Unit. Note: It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).
Remedy:	- carry out a POWER ON (power off/on) for the Control Unit. - carry out a hardware reset (RESET button, p0972).

9.6 List of fault codes and alarm codes

A01098	RTC: Date and time setting required
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power supply for the Control Unit was interrupted for an extended period. The date and time displayed on the real-time clock are no longer accurate.
	Note:
	This alarm is only output when p8405 = 1 (factory setting).
	See also: p8405 (Activate/deactivate RTC alarm A01098)
Remedy:	Set the date and time on the real-time clock.
	Note:
	RTC: Real-time clock
	See also: p8400 (RTC time), p8401 (RTC date)

N01101 (A)	CU: memory card not available
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card is not available for the drive.
Remedy:	Insert a memory card.

F01105 (A)	CU: Insufficient memory
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many data sets are configured on this Control Unit.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- reduce the number of data sets.

F01107	Save to memory card unsuccessful
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save to the memory card was not able to be successfully carried out.
	- Memory card defective
	- insufficient space on memory card.
	Fault value (r0949, interpret decimal):
	1: The file on the RAM was not able to be opened.
	2: The file on the RAM was not able to be read.
	3: A new directory could not be created on the memory card.
	4: A new file could not be created on the memory card.
	5: A new file could not be written on the memory card.
Remedy:	- try to save again.
	- replace the memory card or Control Unit.

F01112 CU: Power unit not permissible
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:	The connected power unit cannot be used together with this Control Unit.
	Fault value (r0949, interpret decimal):
	1: Power unit is not supported (e.g. PM340).
Remedy:	Replace the power unit that is not permissible by a component that is permissible.

F01120 (A)	Terminal initialization has failed
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. Remedy: - carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - contact Technical Support. - replace the Control Unit.

F01152	CU: Invalid constellation of drive object types
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA.
	A maximum of 2 of these drive object types can be operated on a Control Unit.
Remedy:	- switch off the unit.
	- restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2.
	- re-commission the unit.

F01205	CU: Time slice overflow
Reaction:	OFF2
Acknowledge:	POWER ON Insufficient computation time. Cause: Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. Contact Technical Support.
Remedy:	CU: CU-EEPROM incorrect read-only data
F01250	NONE (OFF2)
Reaction:	POWER ON
Acknowledge:	
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit.
	Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON.
- replace the Control Unit.	

A01251	CU: CU-EEPROM incorrect read-write data
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Control Unit. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	For alarm value r2124<256, the following applies: - carry out a POWER ON. - replace the Control Unit. For alarm value r2124 >= 256, the following applies: - clear the fault memory (p0952 = 0). - replace the Control Unit.

9.6 List of fault codes and alarm codes

F01257	CU: Firmware version out of date
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The Control Unit firmware is too old.
	Fault value (r0949, interpret hexadecimal):
	bbbbbbaa hex: aa = unsupported component
	The firmware being used does not support the Control Unit. aa $=02$ hex $=2$ dec:
	The firmware being used does not support the Control Unit. aa $=03$ hex $=3 \mathrm{dec}$:
	The firmware being used does not support the Power Module. aa $=04$ hex $=4 \mathrm{dec}$:
	The firmware being used does not support the Control Unit.
Remedy:	For fault value $=1,2,4$:
	- Upgrade the firmware of the Control Unit.
	For fault value = 3:
	- Upgrade the firmware of the Control Unit.
	- Replace the Power Module by a component that is supported.

F01340	Topology: Too many components on one line
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	xyy hex: $x=$ fault cause, $\mathrm{y} y=$ component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers
	$3 y \mathrm{y}$:
	Cyclic communication is fully utilized.
	$4 y \mathrm{y}$:
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of 31.25μ s have not been maintained.
	$5 y y$:
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	$6 y y$:
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7 yy :
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8 yy :
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware.

Remedy: | - check the DRIVE-CLiQ wiring. |
| :--- |
| - reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets |
| of the Control Unit. This means that communication is uniformly distributed over several lines. |
| For fault value = 1yy - 4yy in addition: |
| - increase the sampling times (p0112, p0115, p4099). If necessary, for DCC or FBLOCKS, change the assignment of the |
| run-time group (p21000, p20000) so that the sampling time (r21001, r20001) is increased. |
| - if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS). |
| - reduce the function modules (r0108). |
| - establish the conditions for operation with a current controller sampling time of 31.25 s (at the DRIVE-CLiQ line, only |
| operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, |
| this means a 3 at the last position of the order number)). |
| - For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to |
| a free DRIVE-CLiQ socket of the NX. |
| For fault value = 8yy in addition: |
| - check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer |
| multiples of one another. Asclock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters |
| apply, which have components on the line involved. |
| For fault value = 9yy in addition: |
| - check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock |
| cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the |
| numerical values of the clock cycles. |

F01505 (A)	BICO: Interconnection cannot be established
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A PROFIdrive telegram has been set (p0922).
	An interconnection contained in the telegram was not able to be established. Fault value (r0949, interpret decimal): Parameter receiver that should be changed. Remedy:\quadEstablish another interconnection.

F01510	BICO: Signal source is not float type
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested connector output does not have the correct data type. This interconnection is not established.
	Fault value (r0949, interpret decimal):
	Parameter number to which an interconnection should be made (connector output).
Remedy:	Interconnect this connector input with a connector output having a float data type.

F01511 (A) BICO: Interconnection with different scalings

Reaction: NONE
Acknowledge: IMMEDIATELY

9.6 List of fault codes and alarm codes

\begin{tabular}{|c|c|}
\hline Cause:

Remedy: \& | The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values. |
| :--- |
| - the BICO output has different normalized units than the BICO input. |
| - message only for interconnections within a drive object. |
| Example: |
| The BICO output has, as normalized unit, voltage and the BICO input has current. |
| This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input. |
| p2002: contains the reference value for current |
| p2001: contains the reference value for voltage |
| Fault value (r0949, interpret decimal): |
| Parameter number of the BICO input (signal sink). |
| Not necessary. |

\hline | F01512 |
| :--- |
| Reaction: |
| Acknowledge: |
| Cause: |
| Remedy: | \& | BICO: No scaling available |
| :--- |
| OFF2 |
| POWER ON |
| An attempt was made to determine a conversion factor for a scaling that does not exist. |
| Fault value (r0949, interpret decimal): |
| Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor. |
| Apply scaling or check the transfer value. |

\hline | F01513 (N, A) |
| :--- |
| Reaction: |
| Acknowledge: |
| Cause: | \& | BICO: Interconnection cross DO with different scalings |
| :--- |
| NONE |
| IMMEDIATELY |
| The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values. |
| An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different. |
| Example 1: |
| BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input. p2002: contains the reference value for current |
| p2001: contains the reference value for voltage |
| Example 2: |
| BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input. |
| p2001: contains the reference value for voltage, drive objects 1, 2 |
| Fault value (r0949, interpret decimal): |
| Parameter number of the BICO input (signal sink). |

\hline Remedy: \& Not necessary.

\hline
\end{tabular}

A01514 (F)	BICO: Error when writing during a reconnect
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
	Example:
	When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
	Alarm value (r2124, interpret decimal):
	Parameter number of the BICO input (signal sink).

Remedy:	Not necessary.
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.
Remedy:	If required, return the master control and repeat the operation.
A01590 (F)	Drive: Motor maintenance interval expired
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached.
	Alarm value (r2124, interpret decimal): Motor data set number.

F01910 (N, A) Fieldbus interface setpoint timeout
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY

9.6 List of fault codes and alarm codes

Cause:	The reception of setpoints from the fieldbus interface has been interrupted. - bus connection interrupted. - communication partner switched off. CU230P-2 DP: - PROFIBUS master set into the STOP state. See also: p2040 (Fieldbus interface monitoring time), p2047 (PROFIBUS additional monitoring time)
Remedy:	Ensure bus connection has been established and switch on communication partner. CU230P-2 BT, CU230P-2 HVAC: - if required, adapt p2040. CU230P-2 DP: - set the PROFIBUS master to the RUN state. - if the error is repeated, check the set response monitoring in the bus configuration (HW Config). - slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave parameterization.

A01920 (F)	PROFIBUS: Interruption cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
	Note:
	lf there is no communication to a higher-level control system, then p2030 should be set $=0$ to suppress this message.
	See also: p2030 (Field bus interface protocol selection)

A01945	PROFIBUS: Connection to the Publisher failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed. Alarm value (r2124, interpret binary): Bit $0=1$: Publisher with address in r2077[0], connection failed. Bit $15=1$: Publisher with address in r2077[15], connection failed.
Remedy:	Check the PROFIBUS cables.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
	Fault value (r0949, interpret binary):
	Bit $0=1:$ Publisher with address in r2077[0], connection aborted.
	...
	Bit $15=1:$ Publisher with address in r2077[15], connection aborted.
Remedy:	- check the PROFIBUS cables.
	- check the state of the Publisher that has the aborted connection.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

A02150	OA: Application cannot be loaded
Reaction:	NONE
Acknowledge:	NONE

Cause:	The system was not able to load an OA application.
Alarm value (r2124, interpret hexadecimal):	
16:	
The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded.	
Only for internal Siemens troubleshooting.	
Remedy: \quad - carry out a POWER ON (switch-off/switch-on) for all components.	
- upgrade firmware to later version.	
- contact Technical Support.	
For alarm value = 16:	
Load a compatible DCB user library (compatible to the interface of the DCC standard library).	
Note:	
OA: Open Architecture	
DCB: Drive Control Block	
DCC: Drive Control Chart	
See also: r4950, r4955, p4956, r4957	

F02151 (A)	OA: Internal software error
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
	Note:
	OA: Open Architecture
	See also: r4950, r4955, p4956, r4957

F02152 (A)	OA: Insufficient memory
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc.). Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. Remedy: - change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc. - use an additional Control Unit.
	Note: OA: Open Architecture

F03000 NVRAM fault on action
Reaction: NONE
Acknowledge: IMMEDIATELY

9.6 List of fault codes and alarm codes

Cause:	A fault occurred during execution of action $\mathrm{p} 7770=1$ or 2 for the NVRAM data.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: y y $=$ fault cause, $\mathrm{xx}=$ application ID
	$y \mathrm{y}=1$:
	The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned.
	$y \mathrm{y}=2$:
	The data length of the specified application is not the same in the NVRAM and the backup.
	yy $=3$:
	The data checksum in p7774 is not correct.
	yy = 4:
	No data available to load.
Remedy:	- Perform the remedy according to the results of the troubleshooting.
	- if necessary, start the action again.

F03001	NVRAM checksum incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit. Remedy:
	The NVRAM data affected was deleted.
	Carry out a POWER ON (switch-off/switch-on) for all components.

F03505 (N, A) Analog input wire breakage

Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)

Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has undershot the threshold value parameterized in p0761[0...3].
	p0756[0]: Analog input 0
	p0756[1]: Analog input 1
	p0756[2]: Analog input 2
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=\operatorname{analog} \operatorname{input}(0=\operatorname{analog} \operatorname{input} 0$ (AI 0), $1=\operatorname{analog}$ input 1 (AI 1), $2=$ analog input 2 (AI 2))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	p0756[0...1] = 1 ($2 \ldots 10 \mathrm{~V}$ with monitoring)
	p0756[0...2] $=3$ ($4 \ldots 20 \mathrm{~mA}$ with monitoring)
Remedy:	- Check the connection to the signal source for interruptions.
	- check the magnitude of the injected current - it is possible that the infed signal is too low.
	Note:
	The input current measured by the analog input can be read in $\mathrm{r} 0752[\mathrm{x}]$.

A03510 (F, N)	Calibration data not plausible
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility.
	At least one calibration data point was determined to be invalid.

Remedy: - switch-off/switch-on the power supply for the Control Unit.
Note:
If it reoccurs, then replace the module.
In principle, operation could continue.
The analog channel involved possibly does not achieve the specified accuracy.

A03520 (F, N)	Temperature sensor fault
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	It is expected that one of the following temperature sensors is connected via an analog input:
	- LG-Ni1000 (p0756[2...3] = 6)
	- PT1000 (p0756[2...3] = 7)
	- DIN Ni 1k (p0756[2...3] = 10)
	Alarm value (r2124, interpret decimal):
	33: Analog input 2 (Al2) wire breakage or sensor not connected.
	34: Analog input 2 (Al2) measured resistance too low (short circuit).
	49: Analog input 3 (AI3) wire breakage or sensor not connected.
	50: Analog input 3 (AI3) measured resistance too low (short circuit).
	See also: p0756 (CU analog inputs type)
Remedy:	- make sure that the sensor is connected correctly.
	- check the sensor for correct function and if required, replace.
	- change over the analog input to type "no sensor connected" (p0756 = 8).

A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. If the heat sink temperature exceeds the value set in p0292[0], then fault F30004 is output.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed?

A05001 (N) Power unit: Overtemperature depletion layer chip
Reaction: NONE

Acknowledge: NONE
Cause: Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached.
Note:

- the response is set using p0290.
- if the temperature of the barrier layer increases by the value set in p0292[1], then fault F30025 is initiated.

Remedy: Check the following:

- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?
- pulse frequency too high?

See also: r0037, p0290

A05002 (N) Power unit: Air intake overtemperature
 Reaction: NONE

9.6 List of fault codes and alarm codes

Acknowledge:	NONE
Cause:	For chassis power units, the following applies:
	The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is 42 ${ }^{\circ} \mathrm{C}$ (hysteresis 2 K$)$. The response is set using p0290. If the air intake temperature increases by an additional 13 K, then fault F30035 is output. Check the following:
Remedy: \quadChe - is the ambient temperature within the defined limit values? - has the fan failed? Check the direction of rotation.	

A05003 (N)	Power unit: Internal overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies: The alarm threshold for internal overtemperature has been reached. If the temperature inside the power unit increases by an additional 5 K, then fault F30036 is triggered. Remedy: Check the following: - is the ambient temperature within the defined limit values? - has the fan failed? Check the direction of rotation.

A05004 (N)	Power unit: Rectifier overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is triggered.
Remedy:	Check the following: - is the ambient temperature within the defined limit values?
	- have the load conditions and the load duty cycle been appropriately dimensioned?
	- has the fan failed? Check the direction of rotation.
- has a phase of the line supply failed?	
- is an arm of the supply (incoming) rectifier defective?	

A05006 (N)	Power unit: Overtemperature thermal model
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize power units only). Depending on p0290, an appropriate overload response is initiated. See also: r0037 (Power unit temperatures)
Remedy:	Not necessary.
	The alarm disappears automatically once the limit value is undershot.
	Note:
	If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024.
	See also: p0290 (Power unit overload response)

A05065 (F, N) Voltage measured values not plausible

Reaction: NONE

Acknowledge: NONE

Cause:	The voltage measurement does not supply any plausible values and is not used.
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U
	Bit 2: Phase V
	Bit 3: Phase W
Remedy:	The following parameterization must be made in order to deactivate the alarm:
	- Deactivate voltage measurement (p0247.0 = 0).
	- Deactivate flying restart with voltage measurement (p0247.5 = 0) and deactivate fast flying restart ($\mathrm{p} 1780.11=0$)
F06310 (A) Reaction: Acknowledge: Cause:	Supply voltage (p0210) incorrectly parameterized
	NONE (OFF1, OFF2)
	IMMEDIATELY (POWER ON)
	The measured DC voltage lies outside the tolerance range after precharging has been completed.
	Permissible range:
	1.16 * p0210 < r0070 < 1.6 * p0210
	Note:
	The fault can only be acknowledged when the drive is switched off.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)
F07011 Reaction: Acknowledge: Cause:	Drive: Motor overtemperature
	OFF2 (NONE, OFF1, OFF3, STOP2)
	IMMEDIATELY
	KTY84/PT1000:
	The motor temperature has exceeded the fault threshold (p0605) or a timer after the alarm threshold was exceeded (p0604) has expired. The response parameterized in p0610 becomes active. The alarm is withdrawn if the response threshold for wire breakage or sensor not connected is exceeded ($R>2120$ Ohm).
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened and a timer has expired. The response parameterized in p0610 becomes active.
	Possible causes:
	- motor is overloaded.
	- motor ambient temperature too high.
	- wire breakage or sensor not connected.
	Fault value (r0949, interpret decimal):
	200:
	Motor temperature model 1 (I2t): temperature too high.
	See also: p0351, p0604, p0605, p0606, p0612, p0613, p0617, p0618, p0619, p0625, p0626, p0627, p0628
Remedy:	- reduce the motor load.
	- check the ambient temperature and the motor ventilation.
	- check the wiring and the connection of the PTC or bimetallic NC contact.
	See also: p0351, p0604, p0605, p0606, p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628

A07012 (N) Drive: Motor temperature model 1/3 overtemperature
Reaction: NONE
Acknowledge: NONE

9.6 List of fault codes and alarm codes

Cause:
The motor temperature model $1 / 3$ identified that the alarm threshold was exceeded.
Hysteresis:2K.
Alarm value (r2124, interpret decimal):
200:
Motor temperature model 1 (I2t): temperature too high.
300:
Motor temperature model 3: temperature too high.
See also: r0034, p0351, p0605, p0611, p0612, p0613
Remedy: \quad - check the motor load and if required, reduce.

- check the motor ambient temperature.
- check activation of the motor temperature model (p0612).
Motor temperature model 1 (I2t):
- check the thermal time constant (p0611).
- check alarm threshold.
Motor temperature model 3:
- check the motor type.
- check alarm threshold.
- check the model parameters.
See also: r0034, p0351, p0605, p0611, p0612, r5397

A07014 (N)	Drive: Motor temperature model configuration alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	1:
	All motor temperature models: It is not possible to save the model temperature
	See also: p0610 (Motor overtemperature response)
Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I_max" (p0610 = 2). See also: p0610 (Motor overtemperature response)

A07015	Drive: Motor temperature sensor alarm
Reaction:	NONE
Acknowledge:	NONE

Cause: An error was detected when evaluating the temperature sensor set in p0601.
With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.
Possible causes:

- wire breakage or sensor not connected (KTY: R > 2120 Ohm, PT1000: R > 2120 Ohm).
- measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT1000: $R<603$ Ohm).

Remedy: - make sure that the sensor is connected correctly.

- check the parameterization (p0601).

See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault timer)

Cause:	An error was detected when evaluating the temperature sensor set in p0601.
Possible causes:	
- wire breakage or sensor not connected (KTY: $\mathrm{R}>2120$ Ohm, PT1000: $\mathrm{R}>2120$ Ohm).	
- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: $\mathrm{R}<603$ Ohm).	
	Note:
If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault	
	F07016 is output; however, at the earliest, 50 ms after alarm A07015.
See also: p0607 (Temperature sensor fault timer)	
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	- induction motors: Deactivate temperature sensor fault (p0607 = 0).
See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault timer)	

F07080	Drive: Incorrect control parameter
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0).
	Fault value (r0949, interpret decimal):
	The fault value includes the parameter number involved.
	See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit >0).
	See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0640, p1082

F07082	Macro: Execution not possible
Reaction:	NONE
Acknowledge:	IMMEDIATELY

9.6 List of fault codes and alarm codes

Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	ccccbbaa hex:
	cccc $=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.
	22: Called file is not valid for parameter 1000.
	23: Called file is not valid for parameter 1500.
	24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
	Fault causes for the parameters to be set:
	25: Error level has an undefined value.
	26: Mode has an undefined value.
	27: A value was entered as string in the tag value that is not "DEFAULT".
	31: Entered drive object type unknown.
	32: A device was not able to be found for the determined drive object number.
	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved.
	- check the macro file and BICO interconnection.
	See also: p0015, p0700, p1000, p1500
F07083	Macro: ACX file not found
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, interpret decimal):
	Parameter number with which the execution was started.
	See also: p0015, p0700, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.
F07084	Macro: Condition for WaitUntil not fulfilled
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal):
	Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.

F07086	Units changeover: Parameter limit violation due to reference value change
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting. Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.
	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
	See also: r9450 (Reference value change parameter with unsuccessful calculation)
F07088	Units changeover: Parameter limit violation due to units changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".
	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.
	Fault value (r0949, interpret decimal):
	Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
	See also: p0100 (IEC/NEMA Standards), p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Check the adapted parameter values and if required correct.
	See also: r9451 (Units changeover adapted parameters)
A07089	Changing over units: Function module activation is blocked because the units have been changed over
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to activate a function module. This is not permissible if the units have already been changed over. See also: p0100 (IEC/NEMA Standards), p0505 (Selecting the system of units)
Remedy:	Restore units that have been changed over to the factory setting.
A07094	General parameter limit violation
Reaction:	NONE
Acknowledge:	NONE
Cause:	As a result of the violation of a parameter limit, the parameter value was automatically corrected.
	Minimum limit violated --> parameter is set to the minimum value.
	Maximum limit violated --> parameter is set to the maximum value.
	Alarm value (r2124, interpret decimal):
	Parameter number, whose value had to be adapted.
Remedy:	Check the adapted parameter values and if required correct.
A07200	Drive: Master control ON command present
Reaction:	NONE

Acknowledge:	NONE
Cause:	The ON/OFF1 command is present (no 0 signal).
	The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master con
Remedy:	Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0 .
F07220 (N, A)	Drive: Master control by PLC missing
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
	If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

F07300 (A)	Drive: Line contactor feedback signal missing
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	- the line contactor was not able to be closed within the time in p0861. - the line contactor was not able to be opened within the time in p0861. - the line contactor dropped out during operation
Remedy:	- the line contactor has closed although the drive converter is switched off.
	- check the setting of p0860.
	- check the feedback circuit from the line contactor.
	- increase the monitoring time in p0861.
See also: p0860 (Line contactor feedback signal), p0861 (Line contactor monitoring time)	

F07311	Bypass motor switch
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault value (r0949, interpret bitwise binary):
	Bit 1: Switch "Closed" feedback signal missing.
	Bit 2: Switch "Open" feedback signal missing.
	Bit 3: Switch feedback signal too slow.
	After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued. Bit 6: Drive switch feedback signal not consistent with the bypass state. The drive switch is closed when switching-on or when switching-in the motor. Semedy: p1260, r1261, p1266, p1267, p1269, p1274
	- check the transfer of the feedback signals.
	- check the switch.

F07312 Bypass Line Side Switch:
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause:	Fault value (r0949, interpret bitwise binary):
	Bit 1: Switch "Closed" feedback signal missing.
	Bit 2: Switch "Open" feedback signal missing.
	Bit 3: Switch feedback signal too slow.
	After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued.
	Bit 6: Line Side Switch feedback signal not consistent with the bypass state.
	When switching-on or when switching-in the motor, the line side switch is closed without this having been requested from the bypass.
	See also: p1260, r1261, p1266, p1267, p1269, p1274
Remedy:	- check the transfer of the feedback signals.
	- check the switch.
F07320	Drive: Automatic restart interrupted
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- the specified number of restart attempts (p 1211) has been completely used up because within the monitoring time ($p 1213$) the faults were not able to be acknowledged. The number of restart attempts (p 1211) is decremented at each new start attempt.
	- the monitoring time for the power unit has expired (p0857).
	- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically switched on again.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- increase the number of restart attempts (p 1211). The actual number of starting attempts is displayed in r1214.
	- increase the delay time in p1212 and/or the monitoring time in p1213.
	- either increase or disable the monitoring time of the power unit (p0857).
	- reduce the delay time to reset the start counter (p1213[1]) so that fewer faults are registered in the time interval.
A07321	Drive: Automatic restart active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.
	For p1210 $=26$, restarting is realized with the delayed setting of the ON command.
Remedy:	- the automatic restart (AR) should, if required, be inhibited (p1210 = 0).
	- an automatic restart can be directly interrupted by withdrawing the switch-on command (BI: p0840).
	- for p1210 = 26: by withdrawing the OFF2- / OFF3 command.
A07325	Drive: Hibernation mode active - drive automatically switched-on again
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "hibernation" function is active (p2398). The drive automatically powers itself up again as soon as the restart conditions are present.
	See also: p2398 (Hibernation mode operating type), r2399 (Hibernation mode status words)
Remedy:	Not necessary.
	The alarm is automatically withdrawn when the motor is restarted or when the motor is manually switched off.
F07330	Flying restart: Measured search current too low
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY

9.6 List of fault codes and alarm codes

Cause:	During a flying restart, it was identified that the search current reached is too low.
	It is possible that the motor is not connected.
Remedy:	Check the motor feeder cables.

F07331	Flying restart: Function not supported
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart).
	In the following cases, the "flying restart" function is not supported:
	PMSM: operation with U/f characteristic and sensorless vector control.
	Note:
	PMSM: permanent-magnet synchronous motor
Remedy:	Deactivate the "flying restart" function (p1200 = 0).

F07332 Flying restart: maximum speed reduced
Reaction: OFF2 (NONE, OFF1)

Acknowledge:	IMMEDIATELY
Cause:	The maximum speed that can be reached is reduced; at very high speeds problems associated with the flying restart can be encountered.
	Possible causes: - power ratio, power unit/motor too high
Remedy:	Parameter changes are not required. Note: A flying restart at speeds above 3000 rpm should be avoided.

A07352	Drive: Limit switch signals not plausible
Reaction:	NONE
Acknowledge:	NONE
Cause:	Limit switch signals are not plausible. Possible causes: - BICO interconnections are not OK (p3342, p3343). - sensors are not supplying a valid signal (both supply a 0 signal).
Remedy:	- check the BICO interconnections for the limit switch signals. - check the sensors. See also: p3342 (Limit switch plus), p3343 (Limit switch minus)

A07353	Drive: DC quantity control deactivated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC quantity control has deactivated itself.
Remedy:	The manipulated variable of the DC quantity control was at its limit. Note: After changing the corresponding parameters, the DC quantity control is re-enabled and the alarm is automatically withdrawn. See also: p3857, p3858

F07390 Drive: DC link capacitor forming fault

Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause:	The "DC link capacitor forming" function was canceled with fault (r3382.3 = 1). The expected DC link voltage is out of tolerance.
	See also: p3380 (Forming activation/duration), r3382 (Forming status word)
Remedy:	- check drive device (supply voltage, terminals, ...).
	- set activation/duration again (p3380 > 0).
	- restart forming (p0840 $=0 / 1$ signal).

A07391	Drive: DC link capacitor forming active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "DC link capacitor forming" function is active. The remaining time of the operation is displayed in parameter r3381. See also: p3380 (Forming activation/duration)
Remedy:	Not necessary. The alarm is automatically withdrawn after forming has been completed (r3382.2 = 1). See also: r3382 (Forming status word)

A07400 (N)	Drive: DC link voltage maximum controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds.
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller configuration (U/f))
Remedy:	If the controller is not to intervene:
	- increase the ramp-down times.
	- switch off the Vdc_max controller (p1240 = 0 for vector control, p1280 $=0$ for U/f control).
	If the ramp-down times are not to be changed:
	- use a chopper or regenerative feedback unit.

A07401 (N) Drive: DC link voltage maximum controller deactivated
Reaction: NONE

Acknowledge: NONE
Cause: \quad The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled).

- the line supply voltage is permanently higher than specified for the power unit.
- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.

Remedy: - check whether the input voltage is within the permissible range (if required, increase the value in p0210).

- check whether the load duty cycle and load limits are within the permissible limits.

A07402 (N)	Drive: DC link voltage minimum controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246, r1286). The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller configuration (U/f))
Remedy:	The alarm disappears when power supply returns.

\(\left.\begin{array}{ll}\hline F07405 (N, A) \& Drive: Kinetic buffering minimum speed fallen below

Reaction: \& OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)\end{array}\right]\)| Acknowledge: | IMMEDIATELY |
| :--- | :--- |
| Cause: | During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line
 supply did not return. |
| Remedy: | Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).
 See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f)) |

\(\left.\begin{array}{ll}\hline F07406 (N, A) \& Drive: Kinetic buffering maximum time exceeded

Reaction: \& OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)\end{array}\right]\)| Acknowledge: | IMMEDIATELY |
| :--- | :--- |
| Cause: | The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply
 having returned. |
| Remedy: | Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).
 See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f)) |

A07409 (N)	Drive: U/f control, current limiting controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm is automatically withdrawn after one of the following measures: - increase current limit (p0640). - reduce the load. - slow down the ramp up to the setpoint speed.

F07410 Drive: Current controller output limited
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause: | | The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: |
| :--- | :--- |
| | - motor not connected or motor contactor open. |
| | - motor data and motor configuration (star-delta) do not match. |
| | - no DC link voltage present. |
| | - power unit defective. |
| Remedy: \quad - the "flying restart" function is not activated. | |
| | - connect the motor or check the motor contactor. |
| | - check the motor parameterization and the connection type (star-delta). |
| | - check the DC link voltage (r0070). |
| | - check the power unit. |
| | - activate the "flying restart" function (p1200). |

F07411	Drive: Flux setpoint not reached when building up excitation
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Cause:
When quick magnetizing is configured (p1401.6=1) the specified flux setpoint is not reached although 90% of the
maximum current is specified.

- incorrect motor data.
- motor data and motor configuration (star-delta) do not match.
- the current limit has been set too low for the motor.
- induction motor (encoderless, open-loop controlled) in I2t limiting.
- power unit is too small.
Remedy: \quad - the magnetizing time is too short.
- correct the motor data. Perform motor data identification and rotating measurement.
- check the motor configuration.
- correct the current limits (p0640).
- reduce the induction motor load.
- if necessary, use a larger power unit.
- check motor supply cable.
- check power unit.
- increase p0346.

A07416	Drive: Flux controller configuration
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the flux control (p 1401) is contradictory.
	Alarm value (r2124, interpret hexadecimal):
	ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	1: Quick magnetizing (p1401.6) for soft starting (p1401.0).
	2: Quick magnetizing for flux build-up control (p1401.2).
	3: Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2).
Remedy:	For fault cause = 1:
	- Shut down soft start (p1401.0 = 0).
	- Shut down quick magnetizing (p1401.6 = 0).
	For fault cause $=2$:
	- switch-on flux build-up control (p1401.2 = 1).
	- Shut down quick magnetizing ($\mathrm{p} 1401.6=0$).
	For fault cause = 3:
	- Re-parameterize Rs identification (p0621 = 0, 1)
	- Shut down quick magnetizing (p1401.6 = 0).

F07426 (A) Technology controller actual value limited

Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The actual value for the technology controller, interconnected via connector input p2264, has reached a limit.
Fault value (r0949, interpret decimal):
1: upper limit reached.
2: lower limit reached.
Remedy: - adapt the limits to the signal level (p2267, p2268).

- check the actual value normalization (p0595, p0596).

See also: p0595, p0596, p2264, p2267, p2268

9.6 List of fault codes and alarm codes

A07427	Motor switch-in alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm value (r2124, interpret decimal):
	1:
	The technology controller is not active or is not being used to control the main setpoint (see p2251).
	$2:$
	The operating time limits have been exceeded in at least one external motor.
	For alarm value $=1:$
	- enable technology controller (p2200).
	- set technology controller mode p2251 $=0$ (main setpoint).
	For alarm value $=2:$
	- increase $\mathrm{p} 2381, \mathrm{p} 2382$ or set $\mathrm{p} 2380=0$.

A07428 (N)	Technology controller parameterizing error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	For alarm value =1:
	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)

F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen.
Remedy:	- deactivate the holding command for the ramp-function generator (p1141). - suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.6).

F07436 (A) Free tec_ctrl 0 actual value limited

Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:	The actual value for the free technology controller 0 has reached the limit.
The signal source for the actual value is set via connector input p11064.	
Fault value (r0949, interpret decimal):	
1: The actual value has reached the upper limit.	
2: The actual value has reached the lower limit.	
Remedy: \quad - adapt the limit settings to the actual value signal (p11067, p11068).	
- check the scaling of the actual value signal.	
- check the signal source setting for the actual value (p11064).	
See also: p11064 (Free tec_ctrl 0 actual value signal source), p11067 (Free tec_ctrl 0 actual value upper limit), p11068	
(Free tec_ctrl 0 actual value lower limit)	

F07437 (A)	Free tec_ctrl 1 actual value limited
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)

Acknowledge:	IMMEDIATELY
Cause:	The actual value for the free technology controller 1 has reached the limit.
	The signal source for the actual value is set via connector input p11164.
	Fault value (r0949, interpret decimal):
	1: The actual value has reached the upper limit.
2: The actual value has reached the lower limit.	
Remedy:	- adapt the limit settings to the actual value signal (p11167, p11168).
	- check the scaling of the actual value signal.
	- check the signal source setting for the actual value (p11164).
	See also: p11164 (Free tec_ctrl 1 actual value signal source), p11167 (Free tec_ctrl 1 actual value upper limit), p11168
	(Free tec_ctrl 1 actual value lower limit)

F07438 (A)	Free tec_ctrl 2 actual value limited
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: The actual value for the free technology controller 2 has reached the limit.

The signal source for the actual value is set via connector input p11264.
Fault value (r0949, interpret decimal):
1: The actual value has reached the upper limit.
2: The actual value has reached the lower limit.
Remedy: - adapt the limit settings to the actual value signal (p11267, p11268).

- check the scaling of the actual value signal.
- check the signal source setting for the actual value (p11264).

See also: p11264 (Free tec_ctrl 2 actual value signal source), p11267 (Free tec_ctrl 2 actual value upper limit), p11268 (Free tec_ctrl 2 actual value lower limit)

A07444	PID autotuning is activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	Automatic setting of the PID controller parameters (PID autotuning) was activated (p2350). Seme also: p2350 (Enable PID autotuning)
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the PID autotuning has been completed.

F07445 PID autotuning canceled

Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The PID autotuning was canceled as a result of an error.
Remedy: - increase the offset.

- check system configuration.

A07530	Drive: Drive Data Set DDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837
Remedy:	- select the existing drive data set. - set up additional drive data sets.

9.6 List of fault codes and alarm codes

A07531	Drive: Command Data Set CDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available ($\mathrm{p} 0836>\mathrm{p} 0170$). The command data set was not changed over. See also: p0810, p0811, p0812, p0813, r0836
Remedy:	- select the existing command data set. - set up additional command data sets.
F07800	Drive: No power unit present
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit.
	Note:
	This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit.
	See also: r0200 (Power unit code number actual)
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check the power unit and replace if necessary.
	- check the Control Unit, and if required replace it.
	- after correcting the topology, the parameters must be again downloaded using the commissioning software.

F07801	Drive: Motor overcurrent
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.
	- effective current limit set too low.
	- current controller not correctly set.
	- U/f operation: Up ramp was set too short or the load is too high.
	- U/f operation: Short-circuit in the motor cable or ground fault.
	- U/f operation: Motor current does not match current of power unit.
	- Switch to rotating motor without flying restart function (p1200).
	Note:
	Limit current $=2 \times$ minimum (p0640, $4 \times \mathrm{p} 0305 \times \mathrm{p} 0306)>=2 \times \mathrm{p} 0305 \times \mathrm{p} 0306$
Remedy:	- check the current limits (p0640).
	- vector control: Check the current controller (p1715, p1717).
	- U/f control: Check the current limiting controller (p1340 ... p1346).
	- increase the up ramp (p1120) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the motor for the star-delta configuration and rating plate parameterization.
	- Choose "flying restart" function (p1200) if switched to rotating motor.

F07802 Drive: Infeed or power unit not ready
Reaction: OFF2 (NONE)

Acknowledge: IMMEDIATELY
Cause: \quad After an internal switch-on command, the infeed or drive does not signal ready.

- monitoring time is too short.
- DC link voltage is not present.
- associated infeed or drive of the signaling component is defective.
- supply voltage incorrectly set.

Remedy:	- increase the monitoring time (p 0857). - ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed. - replace the associated infeed or drive of the signaling component. - check the line supply voltage setting (p 0210). See also: p0857 (Power unit monitoring time)
A07805 (N)	Drive: Power unit overload I2t
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for I2t overload (p0294) of the power unit exceeded. The response parameterized in p0290 becomes active. See also: p0290 (Power unit overload response)
Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the assignment of the motor and power unit rated currents.
F07806	Drive: Regenerative power limit exceeded (F3E)
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	For blocksize power units, types PM250 and PM260, the regenerative rated power r0206[2] was exceeded for more than 10 s . See also: r0206 (Rated power unit power), p1531 (Power limit regenerative)
Remedy:	- increase the down ramp. - reduce the driving load. - use a power unit with a higher regenerative feedback capability. - for vector control, the regenerative power limit in p1531 can be reduced so that the fault is no longer triggered.
F07807	Drive: Short-circuit/ground fault detected
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A phase-phase short-circuit or ground fault was detected at the motor-side output terminals of the converter. Fault value (r0949, interpret decimal): 1: Short-circuit, phase UV. 2: Short-circuit, phase UW. 3: Short-circuit, phase VW. 4: Ground fault with overcurrent. 1yxxx: Ground fault with current in phase U detected ($y=$ pulse number, $x x x x=$ component of the current in phase V in per mille). 2yxxx: Ground fault with current in phase V detected ($\mathrm{y}=$ pulse number, $\mathrm{xxxx}=$ component of the current in phase U in per mille). Note: Also when interchanging the line and motor cables is identified as a motor-side short circuit. The ground fault test only functions when the motor is stationary. Connecting to a motor that is either not de-energized or partially de-energized is possibly detected as ground fault.

9.6 List of fault codes and alarm codes

Remedy:	- check the motor-side converter connection for a phase-phase
	- rule-out interchanged line and motor cables.
	- check for a ground fault.
	For a ground fault the following applies:
	- do not enable the pulses when connecting to a rotating motor
	- increase the de-energization time (p0347).
- increase pulse suppression delay time (p1228) to ensure stan	
	- if required, deactivate the monitoring (p1901).
F07810	Drive: Power unit EEPROM without rated data
Reaction:	NONE Acknowledge: IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM.
Remedy:	See also: p0205, r0206, r0207, r0208, r0209
	Replace the power unit or inform Siemens Customer Service.

A07850 (F)	External alarm 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 1" is satisfied.
	Note:
	The "External alarm 1" is initiated by a 1/0 edge via binector input p2112.
	See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.

A07851 (F)	External alarm 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 2" is satisfied.
	Note:
	The "External alarm 2" is initiated by a 1/0 edge via binector input p2116.
	See also: p2116 (External alarm 2)
	Eliminate the causes of this alarm.

A07852 (F)	External alarm 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 3" is satisfied.
	Note:
	The "External alarm 3" is initiated by a 1/0 edge via binector input p2117.
	See also: p2117 (External alarm 3)
Remedy:	Eliminate the causes of this alarm.

F07860 (A) External fault 1

Reaction: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
\(\left.\begin{array}{ll}Cause: \& The condition for "External fault 1" is satisfied.

\& Note:

The "External fault 1" is initiated by a 1/0 edge via binector input p2106.

See also: p2106 (External fault 1)\end{array}\right]\)| | - eliminate the causes of this fault. |
| :--- | :--- |
| - acknowledge fault. | |

A07891	Drive: Load monitoring pump/fan blocked
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump or fan $(p 2193=4,5)$.
	The monitoring function detects when the pump/fan is blocked.
	It is possible that the blocking torque threshold (p2168) is set too low (e.g. heavy duty starting).
	See also: p2165, p2168, p2181, p2193
Remedy:	- check whether the pump/fan is blocked, and if blocked, then resolve the problem.
	- check that the fan can freely move, and if necessary, resolve the problem.
	- adapt the parameterization corresponding to the load (p2165, p2168)..

A07892 Drive: Load monitoring pump/fan no load condition
Reaction: NONE
Acknowledge: NONE
Cause: \quad The load monitoring is configured for a pump or fan (p2193 = 4, 5).
The monitoring function detects when the pump/fan is operating under no load conditions.
The pump is running in the dry state (no medium to be pumped) - or the fan has a broken belt.
It is possible that the detection torque threshold is too low (p2191).
See also: p2181 (Load monitoring response), p2191 (Load monitoring torque threshold no load), p2193 (Load monitoring configuration)

Remedy:	- for a pump, check the medium being pumped, and if required, provide the medium. - for a fan, check the belt, and if required, replace. - if necessary, increase the detection torque threshold (p2191).
A07893	Drive: Load monitoring pump leakage
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump (p2193 = 4).
	The monitoring function detects a leak in the pump circuit. In this case, the pump requires a torque that is lower than in normal operation to pump the reduced quantity.
	See also: p2181, p2182, p2183, p2184, p2186, p2188, p2190, p2193
Remedy:	- remove the leak in the pump circuit. - for a nuisance trip, reduce the torque thresholds of the leakage characteristic (p2186, p2188, p2190).

F07894 Drive: Load monitoring pump/fan blocked
Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge:	IMMEDIATELY
Cause:	The load monitoring is configured for a pump or fan (p2193 = 4, 5).
	The monitoring function detects when the pump/fan is blocked. It is possible that the blocking torque threshold (p2168) is set too low (e.g. heavy duty starting). Remedy:\quadSee also: p2165, p2168, p2181, p2193
	- check whether the pump/fan is blocked, and if blocked, then resolve the problem.
	- check that the fan can freely move, and if necessary, resolve the problem.
	- adapt the parameterization corresponding to the load (p2165, p2168)..

F07895	Drive: Load monitoring pump/fan no load condition
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring is configured for a pump or fan (p2193 = 4, 5). The monitoring function detects when the pump/fan is operating under no load conditions.
	The pump is running in the dry state (no medium to be pumped) - or the fan has a broken belt. It is possible that the detection torque threshold is too low (p2191). See also: p2181 (Load monitoring response), p2191 (Load monitoring torque threshold no load), p2193 (Load monitoring configuration) - for a pump, check the medium being pumped, and if required, provide the medium. - for a fan, check the belt, and if required, replace.
Remedy:	- if necessary, increase the detection torque threshold (p2191).

F07896 Drive: Load monitoring pump leakage
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: \quad The load monitoring is configured for a pump (p2193 = 4).
The monitoring function detects a leak in the pump circuit.
In this case, the pump requires a torque that is lower than in normal operation to pump the reduced quantity.
See also: p2181, p2182, p2183, p2184, p2186, p2188, p2190, p2193
Remedy: - remove the leak in the pump circuit.

- for a nuisance trip, reduce the torque thresholds of the leakage characteristic (p2186, p2188, p2190).

F07900 (N, A) Drive: Motor blocked

Reaction: OFF2 (NONE, OFF1, OFF3, STOP2)

Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in p2175. This signal can also be triggered if the speed is oscillating and the speed controller output repeatedly goes to its limit. It may also be the case that thermal monitoring of the power unit reduces the current limit (see p0290), thereby causing the motor to decelerate. See also: p2175 (Motor blocked speed threshold), p2177 (Motor blocked delay time)
Remedy:	- check that the motor can freely move. - check the effective torque limit (r1538, r1539). - check the parameter, message "Motor blocked" and if required, correct (p2175, p2177). - check the direction of rotation enable signals for a flying restart of the motor ($\mathrm{p} 1110, \mathrm{p} 1111$). - for U/f control: check the current limits and acceleration times (p0640, p1120).
F07901	Drive: Motor overspeed
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible speed was either positively or negatively exceeded. The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162 The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:	The following applies for a positive direction of rotation: - check r1084 and if required, correct p1082, CI:p1085 and p2162. The following applies for a negative direction of rotation: - check r1087 and if required, correct p1082, CI:p1088 and p2162. Activate precontrol of the speed limiting controller (p1401.7 = 1). Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A) Drive: Motor stalled

Reaction:

Acknowledge
OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)

Cause: \quad The system has identified that the motor has stalled for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Reserved.
2: Stall detection using r1408.12 (p1745) or via (r0084 ... r0083).
See also: p2178 (Motor stalled delay time)
Remedy: Steps should always be taken to ensure that both motor data identification and the rotating measurement were carried out (see p1900, r3925).

- check whether the drive stalls solely due to the load in controlled mode or when the speed setpoint is still zero. If yes, then increase the current setpoint using p1610.
- if the motor excitation time (p0346) was significantly reduced and the drive stalls when it is switched on and run immediately, p0346 should be increased again.
- check whether a line phase failure is affecting power unit PM230, PM250, PM260.
- check whether the motor cables are disconnected (see A07929).

If there is no fault, then the fault tolerance (p 1745) or the delay time (p 2178) can be increased.

- check the current limits (p0640, r0067, r0289). If the current limits are too low, then the drive cannot be magnetized.
- if the fault occurs with fault value 2 when the motor accelerates very quickly to the field weakening range, the deviation between the flux setpoint and flux actual value can be reduced and, in turn, the message prevented, by reducing p1596 or p1553.

A07903	Drive: Motor speed deviation
Reaction:	NONE
Acknowledge:	NONE

9.6 List of fault codes and alarm codes

Cause:	The absolute value of the speed difference from the setpoint (p 2151) and the speed actual value (r 2169) exceeds the tolerance threshold (p 2163) longer than tolerated ($\mathrm{p} 2164, \mathrm{p} 2166$).
	The alarm is only enabled for p2149.0 $=1$.
	Possible causes:
	- the load torque is greater than the torque setpoint.
	- when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small.
	- for active Vdc controller.
	For U/f control, the overload condition is detected as the I_max controller is active.
	See also: p2149 (Monitoring configuration)
Remedy:	- increase p2163 and/or p2166.
	- increase the torque/current/power limits.
	- deactivate alarm with p2149.0 $=0$.

A07910 (N)	Drive: Motor overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY84/PT1000 or no sensor:
	The measured motor temperature or the temperature of the motor temperature model 2 has exceeded the alarm threshold (p0604). The response parameterized in p0610 becomes active.
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened.
	Alarm value (r2124, interpret decimal):
	11: No output current reduction.
	12: Output current reduction active.
	See also: p0604 (Mot_temp_mod 2/sensor alarm threshold), p0610 (Motor overtemperature response)
Remedy:	- check the motor load.
	- check the motor ambient temperature.
	- check KTY84/PT1000.
	- check overtemperatures of the motor temperature model 2 (p0626 ... p0628).
	See also: p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628

A07920 Drive: Torque/speed too low
Reaction: NONE
Acknowledge: NONE
Cause: \quad For p2193 = 1
The torque deviates from the torque/speed envelope characteristic (too low).
For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low).
See also: p2181 (Load monitoring response)
Remedy: - check the connection between the motor and load.

- adapt the parameterization corresponding to the load.

A07921	Drive: Torque/speed too high
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).

Remedy: - check the connection between the motor and load.

- adapt the parameterization corresponding to the load.

A07922	Drive: Torque/speed out of tolerance
Reaction:	none
Acknowledge:	NONE
Cause:	For p2193 $=1$:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
	The speed signal from the external encoder (refer to p 3230) deviates from the speed (r2169).
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.
F07923	Drive: Torque/speed too low
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	immediately
Cause:	For p2193 $=1$:
	The torque deviates from the torque/speed envelope characteristic (too low).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low).
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07924	Drive: Torque/speed too high
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1: The torque deviates from the torque/speed envelope characteristic (too high). For p2193 = 2: The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high). Remedy: - check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07925	Drive: Torque/speed out of tolerance
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1: The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2: The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

A07926	Drive: Envelope curve parameter invalid
Reaction:	NONE
Acknowledge:	NONE

9.6 List of fault codes and alarm codes

Cause:	Invalid parameter values were entered for the envelope characteristic of the load monitoring.
	The following rules apply for the speed thresholds:
	p2182 < 2183 < 2184
	The following rules apply for the torque thresholds:
	p2185 > p2186
	p2187 > p2188
	p2189 > p2190
	Load monitoring configuration and response must match.
	It is not permissible that the individual load torque monitoring areas overlap.
	Alarm value (r2124, interpret decimal):
	Number of the parameter with the invalid value.
	The load torque monitoring has not been activated as long as the alarm is active.
Remedy:	- set the parameters for the load monitoring according to the applicable rules.
	- if necessary, deactivate the load monitoring ($\mathrm{p} 2181=0, \mathrm{p} 2193=0$).

A07927	DC braking active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked with DC current. DC braking is active.
	1)
	A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the duration set
in in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.	
	2)
	DC braking has been activated at binector input $p 1230$ with the DC braking set ($p 1230=4$). Braking current p1232 is injected until this binector input becomes inactive.
Remedy:	Not necessary.
	The alarm automatically disappears once DC braking has been executed.

A07929 (F)	Drive: No motor detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute current value is so small after enabling the inverter pulses that no motor is detected.
	Note:
	- in the case of vector control and an induction motor, this alarm is followed by fault F07902.
	- PM330: Correction currents are calculated and displayed in the optimized pulse pattern range.
	See also: p2179 (Output load identification current limit)
Remedy:	- check the motor feeder cables.
	- reduce the threshold value (p2179), e.g. for synchronous motors.
	- increase threshold value (PM330).
	- check the voltage boost of the U/f control (p1310).
	- carry out a standstill measurement to set the stator resistance (p0350).

F07936 Drive: load failure
Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: \quad The load monitoring has detected a load failure.
Remedy: - check the sensor.

- if necessary, deactivate the load monitoring (p2193).

See also: p2193 (Load monitoring configuration), p3232 (Load monitoring failure detection)

F07950 (A)	Motor parameter incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor parameters were incorrectly entered while commissioning (e.g. p0300
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0315, p03
Remedy:	Compare the motor data with the rating plate data and if required, correct.
F07967	Drive: Incorrect pole position identification
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, interpret decimal):
	10: Stage 1: The ratio between the measured current and zero current is too low. 12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
Remedy:	For fault value = 10:
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	Deactivate technique (p1909).
	For fault value = 12:
	Check whether motor data have been correctly entered.
	Deactivate technique (p1909).
	For fault value = 16:
	Deactivate technique (p1909).
	For fault value = 17:
	Repeat technique.

F07969	Drive: Incorrect pole position identification
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

9.6 List of fault codes and alarm codes

Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, interpret decimal):
	1: Current controller limited
	2: Motor shaft locked.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	18: First harmonic too low.
	20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.
Remedy:	For fault value = 1:
	Check whether the motor is correctly connected.
	Check whether motor data have been correctly entered.
	Replace the power unit involved.
	For fault value = 2 :
	Bring the motor into a no-load condition.
	For fault value = 10:
	When selecting p1980 = 4: Increase the value for p0325.
	When selecting p1980 = 1: Increase the value for p 0329 .
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	For fault value = 11:
	Increase the value for p 0329.
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	For fault value = 12:
	When selecting p1980 = 4: Reduce the value for p 0325.
	When selecting p1980 = 1: Reduce the value for p 0329.
	Check whether motor data have been correctly entered.
	For fault value = 13:
	Reduce the value for p 0329.
	Check whether motor data have been correctly entered.
	For fault value = 14:
	Increase the value for p 0329.
	For fault value $=15$:
	Increase the value for p 0325 .
	Motor not sufficiently anisotropic, change the technique (p1980 = 1, 10).
	For fault value = 16:
	Change the technique (p1980).
	For fault value = 17:
	Repeat technique.
	For fault value = 18:
	Increase the value for p 0329.
	Saturation not sufficient, change the technique (p1980 = 10).
	For fault value $=20$:
	Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

A07980	Drive: Rotating measurement activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next switch-on command.
	Note:
	During the rotating measurement it is not possible to save the parameters (p0971).
	See also: p1960 (Rotating measurement selection)
Remedy:	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for the
	setting p1900 $=0$.

A07981	Drive: Enable signals for the rotating measurement missing
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals. For p1959.13 = 1, the following applies: - enable signals for the ramp-function generator missing (see p1140 ... p1142). - enable signals for the speed controller integrator missing (see p1476, p1477).
Remedy:	- acknowledge faults that are present. - establish missing enable signals. See also: r0002 (Drive operating display), r0046 (Missing enable signal)

F07983	Drive: Rotating measurement saturation characteristic
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while determining the saturation characteristic.
	Fault value (ro949, interpret decimal):-
	1: The speed did not reach a steady-state condition.
	2: The rotor flux did not reach a steayd-state condition.
	3: The adaptation circuit did not reach a steady-state condition.
	4: The adaptation circuit was not enabled.
	5: Field weakening active.
	6: The speed setpoint was not able to be approached as the minimum limiting is active.
	7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	8: The speed setpoint was not able to be approached as the maximum limiting is active.
	9: Several values of the determined saturation characteristic are not plausible.
	10: Saturation characteristic could not be sensibly determined because load torque too high.

9.6 List of fault codes and alarm codes

Remedy:	For fault value $=1$: - the total drive moment of inertia is far higher than that of the motor ($\mathrm{p} 0341, \mathrm{p} 0342$). De-select rotating measurement (p1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement. For fault value = 1 ... 2 : - increase the measuring speed (p1961) and repeat the measurement. For fault value = $1 . . .4$: - check the motor parameters (rating plate data). After the change: Calculate p0340=3. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 . - carry out a motor data identification routine (p 1910). - if required, reduce the dynamic factor (p1967<25\%). For fault value $=5$: - the speed setpoint (p 1961) is too high. Reduce the speed. For fault value $=6$: - adapt the speed setpoint (p1961) or minimum limiting (p1080). For fault value $=7$: - adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101). For fault value $=8$: - adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086). For fault value $=9,10$: - the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements. Note: The saturation characteristic identification routine can be disabled using p1959.1. See also: p1959 (Rotating measurement configuration)
F07984 Reaction: Acknowledge: Cause:	Drive: Speed controller optimization, moment of inertia OFF1 (NONE, OFF2) IMMEDIATELY A fault has occurred while identifying the moment of inertia. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4. The speed setpoint was not able to be approached as the maximum limiting is active. 5: It is not possible to increase the speed by 10% as the minimum limiting is active. 6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active. 7: It is not possible to increase the speed by 10% as the maximum limiting is active. 8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia. 9: Too few data to be able to reliably identify the moment of inertia. 10: After the setpoint step, the speed either changed too little or in the incorrect direction. 11: The identified moment of inertia is not plausible. The measured moment of inertia is less than the 0.1 x or greater than $500 x$ the preset moment of inertia of the motor p0341.

Remedy:	For fault value =1: - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967 < 25%). For fault value $=2,5$: - adapt the speed setpoint (p1965) or adapt the minimum limit (p1080). For fault value $=3,6$: - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). For fault value $=4,7$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). For fault value $=8$: - the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-sele measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=$ measurement. For fault value =9: - check the moment of inertia ($00341, \mathrm{p} 0342$). After the change, re-calculate ($\mathrm{p} 0340=3$ or 4). For fault value $=10$: - check the moment of inertia ($\mathrm{p} 0341, \mathrm{p} 0342$). After the change: Calculate $\mathrm{p} 0340=3$. For fault value $=11$: - reduce the moment of inertia of the motor p0341 (e.g. factor of 0.2) or increase (e.g. factor of 5) and measurement. Note: The moment of inertia identification routine can be disabled using p1959.2. See also: p1959 (Rotating measurement configuration)
F07985 Reaction: Acknowledge: Cause:	Drive: Speed controller optimization (oscillation test) OFF1 (NONE, OFF2) IMMEDIATELY A fault has occurred during the vibration test. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4: The speed setpoint was not able to be approached as the maximum limiting is active. 5: Torque limits too low for a torque step. 6: No suitable speed controller setting was found.

9.6 List of fault codes and alarm codes

Remedy:	For fault value = 1:
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < 25 \%).
	For fault value $=2$:
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3$:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	For fault value $=4$:
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=5$:
	- increase the torque limits (e.g. p1520, p1521).
	For fault value $=6$:
	- reduce the dynamic factor (p1967).
	- disable the vibration test (p1959.4 = 0) and repeat the rotating measurement.
	See also: p1959 (Rotating measurement configuration)

F07986	Drive: Rotating measurement ramp-function generator
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	During the rotating measurements, problems with the ramp-function generator occurred.
	Fault value (r0949, interpret decimal): 1: The positive and negative directions are inhibited. Remedy: For fault value $=1:$ Enable the direction (p1110 or p1111).

F07988	Drive: Rotating measurement, no configuration selected
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	When configuring the rotating measurement (p1959), no function was selected.
Remedy:	Select at least one function for automatic optimization of the speed controller (p1959).

F07990 Drive: Incorrect motor data identification
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause:	A fault has occurred during the identification routine.
	Fault value (r0949, interpret decimal):
	1: Current limit value reached.
	2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	4: identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	5: identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} \ldots 5 \mathrm{~s}$.
	7: identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn .
	8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	10: Motor has been incorrectly connected.
	11: Motor shaft rotates.
	12: Ground fault detected.
	15: Pulse inhibit occurred during motor data identification.
	20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$.
	30: Current controller in voltage limiting.
	40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
	60: Incorrect power stack data for the calibration of the converter output voltage
	61: Incorrect measured values for the calibration of the converter output voltage
	Note:
	Percentage values are referred to the rated motor impedance:
	$\mathrm{Zn}=$ Vmot.nom / sqrt(3) / Imot, nom
Remedy:	For fault value = $1 . . .40$:
	- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
	- is there an appropriate relationship between the motor power rating and that of the power unit? The ratio of the power unit to the rated motor current should not be less than 0.5 and not be greater than 4 .
	- check connection type (star-delta).
	For fault value $=4,7$:
	- check whether the inductance in p0233 is correctly set.
	- check whether motor has been correctly connected (star-delta).
	For fault value $=11$ in addition:
	- deactivate oscillation monitoring (p1909.7 = 1).
	For fault value $=12$:
	- check the power cable connections.
	- check the motor.
	- check the CT.
A07991 (N)	Drive: Motor data identification activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next switch-on command.
	If rotating measurement is selected (see p 1900 , p 1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or deactivated, the option to save the parameter assignment will be made available again.
	See also: p1910 (Motor data identification selection)
Remedy:	Not necessary.
	The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.

A07994 (F, N)	Drive: motor data identification not performed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Vector control" mode or application class "Standard Drive Control, STC" (p0096 = 1) has been selected, and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases:
	- vector control is parameterized in the actual drive data set (p1300 >= 20). and
	- motor data identification has still not been performed in the actual drive data set (see r3925).
	Note:
	For SINAMICS G120, a check is made and the alarm is output also when exiting commissioning and when the system powers up.
Remedy:	- Perform motor data identification (see p1900).
	- if required, parameterize "U/f control" (p1300 < 20) or set p0096 = 0 (only G120).
	switch over to a drive data set, in which the conditions do not apply

F08010 (N, A)	CU: Analog-to-digital converter
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The analog-to-digital converter on the Control Unit has not supplied any converted data.
Remedy:	- check the power supply. \quad - replace Control Unit.

F08501 (N, A) PROFINET: Setpoint timeout
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)

| Acknowledge: | IMMEDIATELY |
| :--- | :--- | :--- |
| Cause: | The reception of setpoints from PROFINET has been interrupted. |

- bus connection interrupted.
- controller switched off.
- controller set into the STOP state.

Remedy: - Restore the bus connection and set the controller to RUN.

- if the error is repeated, check the update time set in the bus configuration (HW Config).
F08502 (A) PROFINET: Monitoring time sign-of-life expired
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:	The monitoring time for the sign-of-life counter has expired.
The connection to the PROFINET interface was interrupted.	
Remedy:	- carry out a POWER ON (switch-off/switch-on). - contact Technical Support.

A08511 (F)	PROFINET: Receive configuration data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarrm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	2: Too many PZD data words for input or output. The number of possible PZD is specified by the number of indices in r2050/
	p2051.
	3: Uneven number of bytes for input or output.

Remedy:	Check the receive configuration data. For alarm value $=2$: - check the number of data words for output and input.
A08526 (F)	PROFINET: No cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no connection to a PROFINET controller.
Remedy:	Establish the cyclic connection and activate the controller with cyclic operation. Check the parameters "Name of Station" and "IP of Station" (r61000, r61001).

A08564	PN/COMM BOARD: syntax error in the configuration file
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the Communication Board Ethernet. The saved configuration file has not been loaded.
Remedy:	- correct the PROFINET interface configuration (p8920 and following) and activate (p8925 = 2). Noinitialize the station. The configuration is not applied until the next POWER ON! See also: p8925 (Activate PN interface configuration)

A08565	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0 : general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway)
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask)
Remedy:	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925). or
	- reconfigure the station via the "Edit Ethernet node" screen form.
	See also: p8925 (Activate PN interface configuration)

F13009	Licensing OA application not licensed
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one OA application which is under license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed OA applications.
Remedy:	- enter and activate the license key for OA applications under license (p9920, p9921).
	- if necessary, deactivate unlicensed OA applications (p4956).

F13100	Know-how protection: Copy protection error
Reaction:	OFF1

9.6 List of fault codes and alarm codes

Acknowledge:	IMMEDIATELY
Cause:	The know-how protection with copy protection for the memory card is active.
	An error has occurred when checking the memory card.
	Fault value (r0949, interpret decimal):
	0: A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
2: An invalid memory card is inserted.	
3: The memory card is being used in another Control Unit.	
12: An invalid memory card is inserted (OEM input incorrect, p7769).	
	13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
Remedy:	See also: p7765 (KHP configuration)
	For fault value $=0,1:$
	- insert the correct memory card and carry out POWER ON.
	For fault value $=2,3,12,13:$
	- contact the responsible OEM.
	- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
	- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).
	Note:
	In general, the copy protection can only be changed when know-how protection is deactivated.
	KHP: Know-How Protection
	See also: p3981 (Acknowledge drive object faults), p7765 (KHP configuration)

F13101 Know-how protection: Copy protection cannot be activated

Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:	An error occurred when attempting to activate the copy protection for the memory card.
	Fault value (r0949, interpret decimal):
0: A memory card is not inserted.	
1: An invalid memory card is inserted (not SIEMENS).	
	Note:
KHP: Know-How Protection	
Remedy:	- insert a valid memory card.
	- Try to activate copy protection again (p7765).
	See also: p7765 (KHP configuration)

F13102 Know-how protection: Consistency error of the protected data
Reaction: OFF1
Acknowledge: IMMEDIATELY
Cause: An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex: yyyy = object number, $x x x x=$ fault cause
$x x x x=1$:
A file has a checksum error.
$x x x x=2$:
The files are not consistent with one another.
$x x x x=3$:
The project files, which were loaded into the file system via load (download from the memory card), are inconsistent.
Note:
KHP: Know-How Protection

Remedy: - Replace the project on the memory card or replace project files for download from the memory card.

- Restore the factory setting and download again.

F30001	Power unit: Overcurrent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- High discharge and post-charging current for line supply voltage interruptions.
	- High post-charging currents for overload when motoring and DC link voltage dip. - short-circuit currents at switch-on due to the missing line reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star/delta).
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the line supply quality.
	- reduce motor load.
	- correct connection of line reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	- check the line supply phases.

F30002 Power unit: DC link voltage overvoltage
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected an overvoltage condition in the DC link.

- motor regenerates too much energy.
- line supply voltage too high.
- line phase interrupted.
- DC link voltage control switched off.
- dynamic response of DC link voltage controller excessive or insufficient.

Fault value (r0949, interpret decimal):
DC link voltage at the time of trip [0.1 V].

9.6 List of fault codes and alarm codes

Remedy:	-increase the ramp-down time (p1121).
	- set the rounding times (p1130, p1136). This is particularly recommended in U/f operation to r
controller with rapid ramp-down times of the ramp-function generator.	
	- Activate the DC link voltage controller (p1240, p1280).
	- adapt the dynamic response of the DC link voltage controller (p1243, p1247, p1283, p1287).
- check the line supply and DC link voltage. set p0210 as low as possible (also see A07401, p	
- check and correct the phase assignment at the power unit.	
- check the line supply phases.	
See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller configuration (vector co	

F30004	Power unit: Overtemperature heat sink AC inverter
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	Fault value (r0949, interpret decimal):
	Temperature $\left[1\right.$ bit $\left.=0.01^{\circ} \mathrm{C}\right]$.

F30005 Power unit: Overload I2t

Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: \quad The power unit was overloaded (r0036 = 100%).

- the permissible rated power unit current was exceeded for an inadmissibly long time.
- the permissible load duty cycle was not maintained.

Fault value (r0949, interpret decimal):
I2t [100 \% = 16384].

Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the motor and power unit rated currents. - reduce the current limit (p0640). - during operation with U/f characteristic: reduce the integral time of the current limiting controller (p1341). See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)
F30011	Power unit: Line phase failure in main circuit
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	At the power unit, the DC link voltage ripple has exceeded the permissible limit value.
	Possible causes:
	- a line phase has failed.
	- the 3 line phases are inadmissibly asymmetrical.
	- the capacitance of the DC link capacitor forms a resonance frequency with the line inductance and the reactor integrated in the power unit.
	- the fuse of a phase of a main circuit has ruptured.
	- a motor phase has failed.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the main circuit fuses.
	- check whether a single-phase load is distorting the line voltages.
	- Detune the resonant frequency with the line inductance by using an upstream line reactor.
	- Dampen the resonant frequency with the line inductance by switching over the DC link voltage compensation in the software (see p1810) - or increase the smoothing (see p1806). However, this can have a negative impact on the torque ripple at the motor output.
	- check the motor feeder cables.

F30012 Power unit: Temperature sensor heat sink wire breakage
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The connection to a heat sink temperature sensor in the power unit is interrupted.
Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)
Bit 1: Air intake
Bit 2: Inverter 1
Bit 3: Inverter 2
Bit 4: Inverter 3
Bit 5: Inverter 4
Bit 6: Inverter 5
Bit 7: Inverter 6
Bit 8: Rectifier 1
Bit 9: Rectifier 2
Remedy: Contact the manufacturer.
F30013 Power unit: Temperature sensor heat sink short-circuit
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY

9.6 List of fault codes and alarm codes

\begin{tabular}{|c|c|}
\hline Cause:

Remedy: \& | The heat sink temperature sensor in the power unit is short-circuited. |
| :--- |
| Fault value (r0949, interpret hexadecimal): |
| Bit 0: Module slot (electronics slot) |
| Bit 1: Air intake |
| Bit 2: Inverter 1 |
| Bit 3: Inverter 2 |
| Bit 4: Inverter 3 |
| Bit 5: Inverter 4 |
| Bit 6: Inverter 5 |
| Bit 7: Inverter 6 |
| Bit 8: Rectifier 1 |
| Bit 9: Rectifier 2 |
| Contact the manufacturer. |

\hline | F30015 (N, A) |
| :--- |
| Reaction: |
| Acknowledge: |
| Cause: | \& | Power unit: Phase failure motor cable |
| :--- |
| OFF2 (NONE, OFF1, OFF3) |
| IMMEDIATELY |
| A phase failure in the motor feeder cable was detected. |
| The signal can also be output in the following cases: |
| - the motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents. |
| - the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated. |
| Note: |
| Chassis power units do not feature phase failure monitoring. |

\hline Remedy: \& | - check the motor feeder cables. |
| :--- |
| - increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control. |
| - check the speed controller settings. |

\hline | A30016 (N) |
| :--- |
| Reaction: |
| Acknowledge: |
| Cause: | \& | Power unit: Load supply switched off |
| :--- |
| NONE |
| NONE |
| The DC link voltage is too low. |
| Alarm value (r2124, interpret decimal): |
| DC link voltage at the time of trip [0.1 V]. |

\hline | F30017 |
| :--- |
| Reaction: |
| Acknowledge: |
| Cause: | \& | Power unit: Hardware current limit has responded too often |
| :--- |
| OFF2 |
| IMMEDIATELY |
| The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit. |
| - closed-loop control is incorrectly parameterized. |
| - fault in the motor or in the power cables. |
| - the power cables exceed the maximum permissible length. |
| - motor load too high |
| - power unit defective. |
| Fault value (r0949, interpret binary): |
| Bit 0: Phase U |
| Bit 1: Phase V |
| Bit 2: Phase W |

\hline
\end{tabular}

Remedy:	- check the motor data.
	- check the motor circuit configuration (star-delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
F30021	Power unit: Ground fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power has detected a ground fault.
	Possible causes:
	- ground fault in the power cables.
	- ground fault at the motor.
	- CT defective.
	- when the brake closes, this causes the hardware DC current monitoring to respond.
	Fault value (r0949, interpret decimal):
	$0:$
	- the hardware DC current monitoring has responded.
	> 0:
Absolute value, summation current [32767 = 271 \% rated current].	
Remedy:	- check the power cable connections.
- check the motor.	
- check the CT.	
- check the cables and contacts of the brake connection (a wire is possibly broken).	
See also: p0287 (Ground fault monitoring thresholds)	

F30022 Power unit: Monitoring U_ce
Reaction: OFF2
Acknowledge: POWER ON

Cause:	In the power unit, the monitoring of the collector-emitter voltage (\mathbf{U} _ce) of the semiconductor has responded.
	Possible causes:
	- fiber-optic cable interrupted.
	- power supply of the IGBT gating module missing.
	- short-circuit at the power unit output.
	- defective semiconductor in the power unit.
	Fault value (r0949, interpret binary):
	Bit 0: Short-circuit in phase U
	Bit 1: Short circuit in phase V
	Bit 2: Short-circuit in phase W
	Bit 3: Light transmitter enable defective
	Bit 4: U_ce group fault signal interrupted
	See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace.
	- check the power supply of the IGBT gating module (24 V).
	- check the power cable connections.
	- select the defective semiconductor and replace.

F30024
Power unit: Overtemperature thermal model
Reaction: OFF2

9.6 List of fault codes and alarm codes

Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. See also: r0037 (Power unit temperatures)
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. - if DC braking is active: reduce braking current (p1232).
F30025	Power unit: Chip overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature of the semiconductor has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949, interpret decimal): Temperature difference between the heat sink and chip $\left[0.01^{\circ} \mathrm{C}\right]$.
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after the alarm threshold for alarm A05001 has been undershot. See also: r0037 (Power unit temperatures)

F30027	Power unit: Precharging DC link time monitoring
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Cause: \quad The power unit DC link was not able to be precharged within the expected time.

1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The precharging resistors are overheated as there were too many precharging operations per time unit.
6) The precharging resistors are overheated as the DC link capacitance is too high.
7) The DC link has either a ground fault or a short-circuit.
8) Precharging circuit may be defective.

Fault value (r0949, interpret binary):
yyyyxxxx hex:
yyyy = power unit state
0 : Fault status (wait for OFF and fault acknowledgment).
1: Restart inhibit (wait for OFF).
2: Overvoltage condition detected -> change into the fault state.
3: Undervoltage condition detected -> change into the fault state.
4: Wait for bridging contactor to open -> change into the fault state.
5: Wait for bridging contactor to open -> change into restart inhibit.
6: Commissioning.
7: Ready for precharging.
8: Precharging started, DC link voltage less than the minimum switch-on voltage.
9: Precharging, DC link voltage end of precharging still not detected.
10: Wait for the end of the de-bounce time of the main contactor after precharging has been completed.
11: Precharging completed, ready for pulse enable.
12: Reserved.
xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down.
Bit 1: Ground fault detected.
Bit 2: Peak current intervention.
Bit 3: 12 t exceeded.
Bit 4. Thermal model overtemperature calculated.
Bit 5: (heat sink, gating module, power unit) overtemperature measured.
Bit 6: Reserved.
Bit 7: Overvoltage detected.
Bit 8: Power unit has completed precharging, ready for pulse enable.
Bit 9: Reserved.
Bit 10: Overcurrent detected.
Bit 11: Reserved.
Bit 12: Reserved.
Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
Bit 14: Undervoltage detected.
See also: p0210 (Drive unit line supply voltage)

9.6 List of fault codes and alarm codes

Remedy: | In general: |
| :--- |
| - check the line supply voltage at the input terminals. |
| - check the line supply voltage setting (p0210). |
| - wait until the precharging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line |
| supply. |
| For 5): |
| - carefully observe the permissible precharging frequency (refer to the appropriate Equipment Manual). |
| For 6): |
| - check the capacitance of the DC link and, if necessary, reduce it in accordance with the maximum permissible DC link |
| capacitance (see relevant Equipment Manual). |
| For 7): |
| - check the DC link for a ground fault or short circuit. |
| See also: p0210 (Drive unit line supply voltage) |

A30030	Power unit: Internal overtemperature alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- possibly use an additional fan.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

A30031	Power unit: Hardware current limiting in phase U
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification ($p 1910=1, p 1960=1$).
	- check the motor circuit configuration (star/delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.

A30032 Power unit: Hardware current limiting in phase V
Reaction: NONE
Acknowledge NONE

Cause:	Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	Check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1). - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.
A30033	Power unit: Hardware current limiting in phase W
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1). - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.

A30034 Power unit: Internal overtemperature
Reaction: NONE
Acknowledge: NONE

Cause:	The alarm threshold for internal overtemperature has been reached.
If the temperature inside the unit continues to increase, fault F30036 may be triggered.	
- ambient temperature might be too high.	
- insufficient cooling, fan failure.	
Alarm value (r2124, interpret decimal):	
Only for internal Siemens troubleshooting.	
Remedy: \quad	- check the ambient temperature.
- check the fan for the inside of the unit.	

F30035 Power unit: Air intake overtemperature
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY

9.6 List of fault codes and alarm codes

Cause:	The air intake in the power unit has exceeded the permissible temperature limit.
	For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.
	- ambient temperature too high.
- insufficient cooling, fan failure.	
	Fault value (r0949, interpret decimal):
	Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.
Remedy:	- check whether the fan is running.
- check the fan elements.	
- check whether the ambient temperature is in the permissible range.	
	Notice:
This fault can only be acknowledged after the alarm threshold for alarm A05002 has been undershot.	

F30037	Power unit: Rectifier overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- line supply phase failure.
	Fault value (r0949, interpret decimal):
	Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.

[^4]| Cause: | The maximum operating time of at least one fan will soon be reached, or has already been exceeded. |
| :---: | :---: |
| | Alarm value (r2124, interpret binary): |
| | Bit 0 : heat sink fan will reach the maximum operating time in 500 hours. |
| | Bit 1: heat sink fan has exceeded the maximum operating time. |
| | Bit 8: internal device fan will reach the maximum operating time in 500 hours. |
| | Bit 9: internal device fan has exceeded the maximum operating time. |
| | Note: |
| | The maximum operating time of the heat sink fan in the power unit is displayed in p0252. |
| | The maximum operating time of the internal device fan in the power unit is internally specified and is fixed. |
| Remedy: | For the fan involved, carry out the following: |
| | - replace the fan. |
| | - reset the operating hours counter (p0251, p0254). |
| | See also: p0251, p0252, p0254 |
| A30049 | Power unit: Internal fan faulty |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The internal fan has failed. |
| Remedy: | Check the internal fan and replace if necessary. |
| F30051 | Power unit: Motor holding brake short circuit detected |
| Reaction: | OFF2 |
| Acknowledge: | IMMEDIATELY |
| Cause: | A short-circuit at the motor holding brake terminals has been detected. |
| | Fault value (r0949, interpret decimal): |
| | Only for internal Siemens troubleshooting. |
| Remedy: | - check the motor holding brake for a short-circuit. |
| | - check the connection and cable for the motor holding brake. |
| F30052 | EEPROM data error |
| Reaction: | OFF2 |
| Acknowledge: | POWER ON |
| Cause: | EEPROM data error of the power unit module. |
| | Fault value (r0949, interpret decimal): |
| | 0, 2, 3, 4: |
| | The EEPROM data read in from the power unit module is inconsistent. |
| | |
| | EEPROM data is not compatible to the firmware of the Control Unit. |
| Remedy: | Replace power unit module. |
| A30057 | Power unit: Line asymmetry |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase. It is also possible that a motor phase has failed. |
| | Fault F30011 is output if the alarm is present and at the latest after 5 minutes. |
| | The precise duration depends on the power unit type and the particular frequencies. For booksize and chassis power units, the duration also depends on how long the alarm has been active. |
| | Alarm value (r2124, interpret decimal): |
| | Only for internal Siemens troubleshooting. |

9.6 List of fault codes and alarm codes

Remedy:	- check the line phase connection.
- check the motor feeder cable connections.	
If there is no phase failure of the line or motor, then line asymmetry is involved.	
- reduce the power in order to avoid fault F30011.	

F30059 Power unit: Internal fan faulty

Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.
Remedy:	Check the internal fan and replace if necessary.

A30065 (F, N)	Voltage measured values not plausible
Reaction:	None
Acknowledge:	NONE
Cause:	The voltage measurement is not supplying any plausible values
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U.
	Bit 2: Phase V.
	Bit 3: Phase W.
Remedy:	- Deactivate voltage measurement ($\mathrm{p} 0247.0=0$) .
	- Deactivate flying restart with voltage measurement (p0247.5 = 0) and deactivate fast flying restart (p1780.11 = 0)

F30068	Power unit: undertemperature inverter heat sink
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The actual inverter heat sink temperature is below the permissible minimum value. Possible causes:
- the power unit is being operated at an ambient temperature that lies below the permissible range. - the temperature sensor evaluation is defective.	
Fault value (r0949, interpret decimal): inverter heat sink temperature $\left[0.1^{\circ} \mathrm{C}\right]$.	

F30071	No new actual values received from the Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one actual value telegram from the power unit module has failed.
Remedy:	Check the interface (adjustment and locking) to the power unit module.

F30072	Setpoints can no longer be transferred to the Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one setpoint telegram was not able to be transferred to the power unit module.
Remedy:	Check the interface (adjustment and locking) to the power unit module.

F30074 (A) Communication error between the Control Unit and Power Module
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:	Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
	Fault value (r0949, interpret hexadecimal):
	0 hex:
	- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
	- with the Power Module switched off, the external 24 V supply for the Control Unit was interrupted for some time.
	1 hex:
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.
	20A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	20B hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number. The Control Unit executes an automatic warm restart to accept the new calibration data.
Remedy:	For fault value $=0$ and 20A hex:
	Insert the Control Unit on an appropriate Power Module and continue operation. If required, carry out a POWER ON of the Control Unit.
	For fault value = 1 hex:
	Carry out a POWER ON of the Control Unit.
F30075	Configuration of the power unit unsuccessful
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A communication error has occurred while configuring the power unit using the Control Unit. The cause is not clear.
	Fault value (r0949, interpret decimal):
	0 :
	The output filter initialization was unsuccessful.
	Activation/deactivation of the regenerative feedback functionality was unsuccessful.
Remedy:	- acknowledge the fault and continue operation.
	- if the fault reoccurs, carry out a POWER ON (switch-off/switch-on).
	- if required, replace the power unit.
F30080	Power unit: Current increasing too quickly
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.

9.6 List of fault codes and alarm codes

Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star-delta) - U/f operation: Increase up ramp. - U/f operation: Check assignment of rated currents of motor and power unit. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.
F30081	Power unit: Switching operations too frequent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has executed too many switching operations for current limitation. - closed-loop control is incorrectly parameterized. - motor has a short-circuit or fault to ground (frame). - U/f operation: Up ramp set too low. - U/f operation: rated current of motor much greater than that of power unit. - power cables are not correctly connected. - power cables exceed the maximum permissible length. - power unit defective. Fault value (r0949, interpret bitwise binary): Bit 0: Phase U. Bit 1: Phase V. Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star-delta) - U/f operation: Increase up ramp. - U/f operation: Check assignment of rated currents of motor and power unit. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.

F30105 PU: Actual value sensing fault
Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA).
	The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters.
	If the actual value channel is incorrect, check the components and if required, replace.

A30502	Power unit: DC link overvoltage
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit.
	- device connection voltage too high.
	- line reactor incorrectly dimensioned.
	Alarm value (r0949, interpret decimal):
	DC link voltage [1 bit = 100 mV].
	See also: r0070 (Actual DC link voltage)

Remedy:	- check the device supply voltage (p0210). - check the dimensioning of the line reactor. See also: p0210 (Drive unit line supply voltage)
F30662	Error in internal communications
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on). - upgrade firmware to later version. - contact Technical Support.

F30664	Error while booting
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error has occurred during booting.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on). - upgrade firmware to later version. - contact Technical Support.

N30800 (F)	Power unit: Group signal
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.

F30802	Power unit: Time slice overflow
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred. Fault value (r0949, interpret decimal): xx: Time slice number xx
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. \quad - upgrade firmware to later version.

F30804 (N, A) Power unit: CRC
Reaction: OFF2 (OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: A checksum error (CRC error) has occurred for the power unit.
Remedy: - carry out a POWER ON (switch-off/switch-on) for all components.

- upgrade firmware to later version.
- contact Technical Support.

9.6 List of fault codes and alarm codes

F30805	Power unit: EEPROM checksum error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY Cause:
	Internal parameter data is corrupted. Fault value (r0949, interpret hexadecimal): 01: EEPROM access error. 02: Too many blocks in the EEPROM. Replace the module.
Remedy:	
F30809	Power unit: Switching information not valid
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit, the following applies: The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

A30810 (F)	Power unit: Watchdog timer
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

F30850	Power unit: Internal software error
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit.
	Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.	
Remedy:	- replace power unit.
	- if required, upgrade the firmware in the power unit.
	- contact Technical Support.

F30903	Power unit: I2C bus error occurred
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or an analog/digital converter.
	Fault value (r0949, interpret hexadecimal):
	80000000 hex:
	- internal software error.
	00000001 hex ... 0000FFFF hex:
	- module fault.
	For fault value $=80000000$ hex:
Remedy:	- upgrade firmware to later version.
	For fault value $=00000001$ hex ... 0000FFFF hex:
	- replace the module.

A30920 (F)	Temperature sensor fault
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY: $\mathrm{R}>2120$ Ohm, PT1000: $\mathrm{R}>2120$ Ohm
	2: Measured resistance too low.
	PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.

F30950	Power unit: Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal): Information about the fault source.
	Only for internal Siemens troubleshooting. Remedy:
	- if necessary, upgrade the firmware in the power unit to a later version.
	- contact Technical Support.

A30999 (F, N)	Power unit: Unknown alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128).
	- upgrade the firmware on the Control Unit (r0018).

F35950	TM: Internal software error
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal): Information about the fault source.
	Only for internal Siemens troubleshooting. Remedy:
	- if necessary, upgrade the firmware in the Terminal Module to a later version.
	- contact Technical Support.

A50010 (F)	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE

9.6 List of fault codes and alarm codes

Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set
configuration has not been activated.	
Alarm value (r2124, interpret decimal):	
0: general consistency error	
1: error in the IP configuration (IP address, subnet mask or standard gateway).	
2: Error in the station names.	
3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.	
4: a cyclic PROFINET connection is not possible as DHCP is activated.	
Note:	
DHCP: Dynamic Host Configuration Protocol	
See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask),	
p8924 (PN DHCP Mode)	
Remedy: \quad - check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).	
or	
- reconfigure the station via the "Edit Ethernet node" screen form.	
See also: p8925 (Activate PN interface configuration)	

A50011 (F)	Ethernet/IP: configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	An EtherNet/IP controller attempts to establish a connection using an incorrect configuring telegram.
	The telegram length set in the controller does not match the parameterization in the drive device.
Remedy:	Check the set telegram length.
	For p0922 not equal to 999, then the length of the selected telegram applies.
	For p0922 = 999, the maximum interconnected PZD (r2067) applies.
	See also: p0922 (PROFIdrive PZD telegram selection), r2067 (PZD maximum interconnected)

F52960 Cavitation protection failure
Reaction: OFF2

Acknowledge:	IMMEDIATELY
Cause:	Conditions exist for cavitation damage. Cavitation damage is damage caused to a pump in pumping systems when the fluid is not flowing sufficiently. This can lead to heat build up and subsequent damage to the pump.
Remedy:	If cavitation is not occurring, reduce the cavitation threshold p29626, or increase the cavitation protection delay. Ensure sensor feedback is working.

A52961	Cavitation protection warning
Reaction:	NONE
Acknowledge:	NONE
Cause:	Conditions for possible cavitation damage are detected.
Remedy:	See F52960.

A52962	Mpc operating time limit exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The continuous operating time of at least one motor has exceeded the limit.
Remedy:	Incease p29531 or set p29547 $=0$.

A52963	Mpc PID deviation exceeded
Reaction:	NONE
Acknowledge:	NONE

Cause:	The PID deviation (p2273) has exceeded the threashold (p29544) and all motors are running except the motors under service or locked.
Remedy:	- Repair or unlock motors if there are motors under service or locked. - Add more motors in the system if the number of motors is less than four.
A52964	Mpc one motor available
Reaction:	NONE
Acknowledge:	NONE
Cause:	Only one motor is not under service or locked manually. All the other motors are under service or locked manually. Remedy:
Repair or unlock motors.	

Corrective maintenance

WARNING

Fire or electric shock due to defective components
If an overcurrent protection device is triggered, the converter may be defective. A defective converter can cause a fire or electric shock.

- Have the converter and the overcurrent protection device checked by a specialist.

Repair

WARNING

Fire or electric shock due to improper repair
Improper repair of the converter may cause malfunctions or result in consequential damage such as fire or electric shock.

- Only commission the following persons to repair the converter:
- Siemens customer service
- A repair center that has been authorized by Siemens
- Specialist personnel who are thoroughly acquainted with all the warnings and operating procedures contained in this manual.
- Only use original spare parts when carrying out repairs.

CAUTION

Burns due to touching hot surfaces
Certain components (e.g. the heat sink or line reactor) can become very hot during operation. The components can remain hot for some time after operation. Touching hot surfaces can cause burns to the skin.

- Do not touch hot components during operation or immediately following operation.

10.1 Replacing the converter

10.1.1 Overview of how to replace a converter

Permissible replacement

You must replace the converter if it continually malfunctions.

Figure 10-1 Replacing a defective converter
In the following cases you will need to replace the converter:

- The new and replaced converters have the same power rating.
- The new and replaced converters have the same frame size. The new converter has a higher power rating than the converter it replaced.
In this case, the rated powers of converter and motor must not differ too much:
Ratio of the rated powers of the motor and the converter $>1 / 4$

WARNING

Unexpected machine motion caused by incorrect/inappropriate converter settings
Replacing converters of different types can result in incomplete or incorrect/inappropriate converter settings. As a consequence, unexpected machine motion, e.g. speed oscillation, overspeed or incorrect direction of rotation. Unexpected machine motion can result in death, injury or material damage.

- In all cases not permitted according to the above description, recommission the drive after replacing a converter.

10.1.2 Replacing a converter with data backup

Replacing a converter with data backup on a memory card

Procedure

1. Disconnect the line voltage to the converter.

WARNING

Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 min . until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.

- Check the voltage at the converter connections before you carry out any installation work.

2. Remove the connecting cables of the converter.
3. Remove the defective converter.
4. Install the new converter.
5. Remove the memory card from the old converter
6. Insert the memory card into the new converter.
7. Connect all of the cables to the converter.

NOTICE

Damage from swapping the motor's connection lines

The direction in which the motor rotates switches if you exchange the two phases of the motor line.

- Connect the three phases of the motor lines in the right order.
- After replacing the converter, check the direction in which the motor rotates.

8. Reconnect the line voltage to the converter.
9. The converter loads the settings from the memory card.
10.After loading, check whether the converter outputs Alarm A01028.

- Alarm A01028:

The loaded settings are not compatible with the converter.
Clear the alarm with p0971 = 1 and recommission the drive.

- No alarm A01028:

The converter has accepted the settings that have been loaded.
You have successfully replaced the converter.
\square

Replacing a converter with data backup in the Operator Panel

Precondition

You have backed up the actual settings of the Control Unit to be replaced to an operator panel.

Procedure

1. Disconnect the line voltage to the converter.

WARNING

Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 min . until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.

- Check the voltage at the converter connections before you carry out any installation work.

2. Remove the connecting cables of the converter.
3. Remove the defective converter.
4. Install the new converter.
5. Connect all of the cables to the converter.
6. Reconnect the line voltage to the converter.
7. Plug the Operator Panel onto the converter or connect the handheld device of the Operator Panel to the converter.
8. Transfer the settings from the operator panel to the converter.
9. Wait until the transfer is complete.
10.After loading, check whether the converter outputs Alarm A01028.

- Alarm A01028:

The loaded settings are not compatible with the converter.
Clear the alarm with p0971 $=1$ and recommission the drive.

- No alarm A01028: Proceed with the next step.
11.Back up the settings so they are not lost when the power fails:
- For BOP-2 in the menu "EXTRAS" - "RAM-ROM".
- For IOP-2 in the menu "SAVE RAM TO ROM".

You have replaced the converter and transferred the converter settings from the operator panel to the new converter.
-

10.1.3 Replacing a converter without data backup

If the settings have not been backed up, after replacing the converter, you must recommission the drive.

Procedure

1. Disconnect the line voltage to the converter.
2. Remove the connecting cables of the converter.
3. Remove the defective converter.
4. Install the new converter.
5. Connect all of the cables to the converter.
6. Switch on the line voltage again.
7. Recommission the drive.

Converter replacement has been completed once it has been commissioned.
ロ

10.2 Replacing spare parts

10.2.1 Spare parts compatibility

Continuous development within the scope of product maintenance

Converter components are being continuously developed within the scope of product maintenance. Product maintenance includes, for example, measures to increase the ruggedness or hardware changes which become necessary as components are discontinued.

These further developments are "spare parts-compatible" and do not change the article number.

In the scope of such spare parts-compatible ongoing development, plug connector or connection positions are sometimes slightly modified. This does not cause any problems when the components are properly used. Please take this fact into consideration in special installation situations (e.g. allow sufficient reserve regarding the cable length).

10.2.2 Spare parts overview

The look of the spare part can differ from the picture.

Spare parts		Frame size	Article number
CU spare part kit, consisting of 2 sets of labels, 1 CU door, 1 ESD cover, 2 U clamps, 1 functional grounding clamp, 2 STO connectors, 1 RS485 connector, and 1 set of I/O connectors		FSA ... FSJ	6SL3200-0SK10-0AA0
1 set of small parts for installation		FSD ... FSG	6SL3200-0SK08-0AAO
Shield connection kit for the Power Module		FSA	6SL3262-1AA01-0DA0
		FSB	6SL3262-1AB01-0DA0
		FSC	6SL3262-1AC01-0DA0
		FSD	6SL3262-1AD01-0DA0
		FSE	6SL3262-1AE01-0DA0
		FSF	6SL3262-1AF01-0DA0
		FSG	6SL3262-1AG01-0DA0
Shield connection kit for the Control Unit		FSD ... FSG	6SL3264-1EA00-0YA0

Spare parts		Frame size	Article number
Terminal cover kit		FSD	6SL3200-0SM13-0AA0
		FSE	6SL3200-0SM14-0AA0
		FSF	6SL3200-0SM15-0AA0
		FSG	6SL3200-0SM16-0AA0
External fan unit for the heat sink		FSA	6SL3200-0SF52-0AA0
		FSB	6SL3200-0SF53-0AA0
		FSC	6SL3200-0SF54-0AA0
		FSD	6SL3200-0SF15-0AA0
		FSE	6SL3200-0SF16-0AA0
		FSF	6SL3200-0SF17-0AA0
		FSG	6SL3200-0SF18-0AA0
		FSH/FSJ	6SL3300-0SF01-0AA0
Internal fan unit		FSH/FSJ	6SL3200-0SF50-0AA0
Free programmable interface		FSH/FSJ	6SL3200-0SP05-0AA0
Power supply board		FSH/FSJ	6SL3200-0SP06-0AA0
Current sensor		FSH/FSJ	6SL3200-0SE01-0AA0
		FSJ	6SL3200-0SE02-0AA0

10.2.3 Fan units

The average service life of the fan is 40,000 hours. In practice, however, the service life may deviate from this value. Especially a dusty environment can block up the fan. The defective fan must be replaced timely to ensure that the converter is ready for operation.

When must the fan unit be replaced?

A defective fan in operation results in an overtemperature condition of the converter. For example, the following messages indicate that the fan unit is defective:

- A05002 (air intake overtemperature)
- A05004 (rectifier overtemperature)
- F30004 (heat sink overtemperature)
- F30024 (temperature model overtemperature)
- F30025 (chip overtemperature)
- F30035 (air intake overtemperature)
- F30037 (rectifier overtemperature)

Precondition

Switch off the converter power supply before replacing the fan unit.

WARNING

Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.
Therefore, touching the converter immediately after powering off can result in electric shock due to residual charge in the power components.

- Check the voltage at the converter connections before you replace the fan unit.

10.2.3.1 Replacing the fan unit, FSA ...
 FSC

The fan unit is installed at the top.

Procedure

1. Switch off the converter power supply.
2. For a converter mounted directly on the cabinet panel/mounting plate, skip this step and proceed to Step 3.
For a push-through mounted converter, you must first remove the top frame by loosening the two screws before replacing the fan unit.

3. Use a screwdriver to remove the fan unit from the converter as shown below.
(1)

(2)

4. Install the new fan unit in the inverse sequence as shown below.

By inserting the fan unit, you have established the electrical connection between the converter and fan unit.
5. For a push-through mounted converter, you must also mount the top push-through mounting frame back.
You have replaced the fan unit.
\square

10.2.3.2 Replacing the fan unit, FSD FSG

The fan unit is installed at the top.
Procedure

1. Switch off the converter power supply.
2. Press the release clips to remove the fan unit from the converter as shown below. Use a screwdriver if necessary.

3. Install the new fan unit in the inverse sequence as shown below.

By inserting the fan unit, you have established the electrical connection between the converter and fan unit.

You have replaced the fan unit.
\square

10.2.3.3 Replacing the fan unit, FSH/FSJ

Two external fan units are installed at the bottom of the converter.

Procedure

1. Switch off the converter power supply.
2. Release the fixing screws from one fan unit using a screwdriver (①). The screws are captive.

1

3. Shift this fan unit from position "2" to position "1" (this is marked on the housing) (2). The connector is simultaneously released.

4. Remove the fan unit from the converter (3).
(3)

5. Repeat steps 2 to 4 to remove the other fan unit.
6. Install the new fan units in the inverse sequence (tightening torque for the captive fixing screws: $1.8 \mathrm{Nm} / 15.9 \mathrm{lbf} . \mathrm{in})$.
You have replaced the fan unit.

10.2.3.4 Replacing the internal fan, FSH/FSJ only

Preconditions

The converter power supply is switched off.
Required tools
Torque wrench for TX-25 screws.

Function description

Removing the fan

1. Remove the screws (TX-25) of the upper and lower terminal cover.

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Remove the front cover.
5. Remove the fan connector.

6. Remove 2 screws (TX-25).

7. Remove the fan.

The fan is removed.
\square

Installing the fan

1. Mount the fan into the converter.
2. Tighten 2 fan screws (TX-25).
3. Plug the fan connector.
4. Mount the front cover.
5. Tighten 2 screws (TX-25) of the front cover.
6. Mount the terminal covers.
7. Tighten the screws (TX-25) of the upper and lower terminal cover.

The fan is installed.

10.2.4 Assemblies for FSH and FSJ

10.2.4.1 Replacing the power supply board

Precondition

The converter power supply is switched off.

Required tools

Torque wrench for the following screws:

- TX-20
- TX-25

Function description

Removing the power supply board

1. Remove the screws (TX-25) of the upper and lower terminal cover.

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Remove the front cover.
5. Remove the connectors on the power supply board.

6. Remove 5 screws (TX-20).

7. Remove the power supply board.

The power supply board is removed.
\square

Installing the power supply board

1. Align the power supply board to the screw holes.
2. Tighten 5 screws (TX-20)
3. Plug the connectors onto the power supply board.
4. Mount the front cover.
5. Tighten 2 screws (TX-25) of the front cover.
6. Mount the terminal covers.
7. Tighten the screws (TX-25) of the upper and lower terminal cover

The power supply board is installed.

10.2.4.2 Replacing the free programmable interface (FPI)

Precondition

The converter power supply is switched off.
Required tools
Torque wrench for the following screws:

- TX-20
- TX-25

Function description

Removing the FPI board

1. Remove the screws (TX-25) of the upper and lower terminal cover.

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Remove the front cover.
5. Remove the connectors on the FPI board.

6. Open the locking devices of the IPD.
7. Remove the IPD.

8. Remove the 6 screws on the FPI board (TX-20).

9. Remove the FPI board.

The FPI board is removed.
\square
Installing the FPI board

1. Align the FPI board to the screw holes.
2. Insert 6 screws (TX-20)
3. Plug the IPD.
4. Close the locking devices of the IPD.
5. Plug the connectors onto the FPI board.
6. Mount the front cover.
7. Tighten 2 screws (TX-25) of the front cover.
8. Mount the terminal covers.
9. Tighten the screws (TX-25) of the upper and lower terminal cover.

The FPI board is installed.
\square

10.2.4.3 Replacing the current sensor

Precondition

The converter power supply is switched off.
Required tools
Torque wrench for the following screws:

- TX-20
- TX-25
- TX-30

Function description

Removing the current sensor

1. Remove screws (TX-25) of the upper and lower terminal cover:

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Open the front door.
5. Remove the IP20 cover (TX-25).

6. Remove the upper copper bar (TX30 and TX-25).

7. Remove the lower copper bar (TX-25).

8. Remove the connector of the current sensor.

9. Remove the current sensor (TX-20).

The current sensor is removed.

Installing the current sensor

1. Mount the current sensor.
2. Plug the connector of the current sensor.
3. Mount the lower copper bar (TX-25).
4. Mount the upper copper bar (TX30 and TX25).
5. Mount the IP20 cover.
6. Mount the front cover.
7. Tighten 2 screws (TX-25) of the front cover.
8. Mount the terminal covers.
9. Tighten the screws (TX-25) of the upper and lower terminal cover The current sensor is installed.
\square

10.3 Firmware upgrade and downgrade

Overview

Figure 10-2 Overview of the firmware upgrade and firmware downgrade

10.3.1 Preparing the memory card

Overview

You can load the converter firmware from the Internet to a memory card.

Precondition

You have the appropriate memory card.
R] Recommended memory cards (Page 760)

Function description

Procedure

1. Download the required firmware to your PC from the Internet.
(5) Download (https://support.industry.siemens.com/cs/ww/en/view/67364620)
2. Extract the files to a directory of your choice on your PC.
3. Transfer the unzipped files into the root directory of the memory card.

- TL5 Fis
_日INFF:
923 3

FLIMP IT Tr

开3010.

Figure 10-3 Example of memory card contents after the file transfer

Depending on the firmware, the filenames and the number of files may differ from the display above
The "USER" directory does not exist on unused memory cards. After the memory card is plugged in for the first time, the converter creates a new "USER" directory.

You have prepared the memory card for the firmware upgrade or downgrade.
\square

10.3.2 Upgrading the firmware

Overview

When upgrading the firmware, you replace the converter firmware by a later version.

Precondition

Converter and memory card have different firmware versions.

Function description

Procedure

1. Switch off the converter power supply.
2. Wait until all LEDs on the converter are dark.
3. Insert the card with the matching firmware into the converter slot until it latches into place.

4. Switch on the converter power supply again.
5. The converter transfers the firmware from the memory card into its memory.
The transfer takes approximately 5 ... 10 minutes.
While data is being transferred, the LED RDY on the converter stays red. The LED BF flashes orange with a variable frequency.
6. At the end of the transfer, the LED RDY and BF slowly flash red (0.5 Hz).
Power supply failure during transfer
The converter firmware will be incomplete if the power supply fails during the transfer.

- Start again with step 1 of the instructions.

7. Switch off the converter power supply.
8. Wait until all LEDs on the converter are dark.

Decide whether you want to withdraw the memory card from the converter:

- You remove the memory card:
\Rightarrow The converter keeps its settings.

- You leave the memory card in the converter:
\Rightarrow If the memory card still does not have a data backup of the converter settings, in step 9 the converter writes its settings to the memory card.
\Rightarrow If the memory card already includes a data backup, the converter imports the settings from the memory card in step 9.

9. Switch on the converter power supply again.

10 If the firmware upgrade was successful, after several seconds the converter LED RDY turns green.
If the memory card is still inserted, depending on the previous content of the memory card, one of the two following cases has occurred:

- The memory card contains a data backup: \Rightarrow The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
\Rightarrow The converter has written its settings to the memory card.
You have upgraded the converter firmware.
\square

10.3.3 Firmware downgrade

Overview

When downgrading the firmware, you replace the converter firmware by an older version.

Precondition

- Converter and memory card have different firmware versions.
- The settings have been saved on a memory card or in an operator panel.

Function description

Procedure

1. Switch off the converter power supply.
2. Wait until all LEDs on the converter are dark.
3. Insert the card with the matching firmware into the converter slot until it latches into place.

4. Switch on the converter power supply again.
5. The converter transfers the firmware from the memory card into its memory.
The transfer takes approximately $5 \ldots 10$ minutes.
While data is being transferred, the LED RDY on the converter stays red. The LED BF flashes orange with a variable frequency.
6. At the end of the transfer, the LED RDY and BF slowly flash red (0.5 Hz).

Power supply failure during transfer

The converter firmware will be incomplete if the power supply fails during the transfer.

- Start again with Step 1 of these instructions.

7. Switch off the converter power supply.
8. Wait until all LEDs on the converter are dark.

Decide whether you want to withdraw the memory card from the converter:

- The memory card contains a data backup: \Rightarrow The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
 \Rightarrow The converter has the factory setting.

9. Switch on the converter power supply again.

10 If the firmware downgrade was successful, after several seconds the converter LED RDY turns green.
If the memory card is still inserted, depending on the previous content of the memory card, one of the two following cases has occurred:

- The memory card contains a data backup: \Rightarrow The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
\Rightarrow The converter has the factory setting.
11 If the memory card did not contain a data backup of the converter settings, then you must transfer your settings to the converter from another data backup.
Saving the settings and series commissioning (Page 759)
You have replaced the converter firmware by an older version.
\square

10.3.4 Correcting an unsuccessful firmware upgrade or downgrade

Precondition

The converter signals an unsuccessful firmware upgrade or downgrade by a quickly flashing LED RDY and the lit LED BF.

Function description

You can check the following to correct an unsuccessful firmware upgrade or downgrade:

- Have you correctly inserted the card?
- Does the card contain the correct firmware?

Repeat the firmware upgrade or downgrade

10.4 Reduced acceptance test after component replacement and firmware change

After a component has been replaced or the firmware updated, a reduced acceptance test of the safety functions must be performed.

Measure	Reduced acceptance test	
	Acceptance test	Documentation
Replacing the converter with an identical type	No. Only check the direction of rotation of the motor.	- Supplement the converter data - Log the new checksums - Countersignature - Supplement the hardware version in the converter data.
Replacing the motor with an identical pole pair number		No change.
Replace the gearbox with an identical ratio		
Replacing safety-related I/O devices (e.g. Emergency Stop switch).	No. Only check the control of the safety functions affected by the components that have been replaced.	No change.
Converter firmware update.	No.	- Supplement firmware version in the converter data - Log the new checksums - Countersignature.

11.1 Technical data of inputs and outputs

Property	Explanation
Fieldbus interface	With PROFINET interface for the following protocols: - PROFINET IO - EtherNet/IP
24 V power supply	There are two options regarding the 24 V supply: - The converter generates its 24 V power supply from the line voltage. - The converter obtains its 24 V power supply via terminals 31 and 32 with $20.4 \ldots 28.8$ VDC. Current consumption: Maximum 0.5A (The current consumption can be higher if the Control Unit supplies I/O extension module, additional 0.4 A is needed.)
Output voltages	- 24 V (max. 250 mA$)$ - 10 V (max. 10 mA$)$
Setpoint resolution	0.01 Hz
Digital inputs	6 (DI $0 \ldots$ DI 5) - Electrically isolated - Type 3 in accordance with EN 61131-2 - Voltage for "low" state: < 5 V - Voltage for "high" state: > 11 V - Current for 24 V input voltage: 4 mA - Minimum current for the "high" state: 2.5 mA - Maximum input voltage: 30 V - PNP/NPN switchable - Compatible to SIMATIC outputs - 10 ms response time for debounce time p0724 $=0$
	Additional on FSH, FSJ: 4 (DI $0 \ldots$ DI 3) - Electrically isolated - Type 3 in accordance with EN 61131-2 - Voltage for "low" state: < 5 V - Voltage for "high" state: > 15 V - Current for 24 V input voltage: 6.4 mA - Minimum current for the "high" state: 4 mA - Maximum input voltage: 30 V

11.1 Technical data of inputs and outputs

Property	Explanation	
Failsafe digital input	1 (STO_A, STO_B)	- Electrically isolated - Maximum input voltage: 60 V
	$\begin{aligned} & \text { Only on FSH, FSJ: } \\ & 1 \text { (STO_A1, } \\ & \text { STO_A2) } \end{aligned}$	- Electrically isolated - Digital inputs in accordance with EN 61131-2 - Voltage for "low" state: < 5 V - Voltage for "high" state: > 15 V - Current for 24 V input voltage: 15 mA - Maximum input voltage: 30 V
Analog inputs	$2(\mathrm{Al} 0 \ldots \mathrm{Al} \mathrm{1}$)	- Differential input - 12-bit resolution - 13 ms response time - Switchable between voltage and current via mechanical switch: - $0 \mathrm{~V} \ldots 10 \mathrm{~V}$ or $-10 \mathrm{~V} \ldots+10 \mathrm{~V}$: typical current drain: 0.1 mA , maximum voltage 35 V - $0 \mathrm{~mA} . .20 \mathrm{~mA}: 120 \Omega$ input resistance, voltage $<10 \mathrm{~V}$, current $<80 \mathrm{~mA}$ - If AI 0 and Al 1 are configured as supplementary digital inputs: Voltage < 35 V , low $<1.6 \mathrm{~V}$, high $>4.0 \mathrm{~V}$, $13 \mathrm{~ms} \pm 1 \mathrm{~ms}$ response time for debounce time $\mathrm{p} 0724=0$.
Digital outputs	2 (DO $0 \ldots$... ${ }^{\text {D }} 1$)	- DO 0 ... DO 1: $250 \mathrm{~V} \mathrm{AC} 2 \mathrm{~A} / 30 \mathrm{~V}$ DC 2 A , for resistive, inductive or capacitive load (For FSB/FSC, the maximum current is 0.5 A to be UL-compliant) - Type C relay - Update time: 2 ms - Overvoltage category: II - Switching cycle: 1 Hz
	Only on FSH, FSJ: 1 (FB_Ax, FB_Bx)	- 30 V DC 0.5 A , for resistive load - Overvoltage category: II
Analog outputs	1 (AO 0)	- Not isolated - 16-bit resolution - Switchable between voltage and current via parameter setting: - $0 \ldots 10 \mathrm{~V}$ - 0/4 ... 20 mA - Update time: 4 ms - $<400 \mathrm{mV}$ offset at 0%

11.2 Load cycles and overload capability

Overload capability is the property of the converter to temporarily supply a current that is higher than the rated current to accelerate a load. Two typical load cycles are defined to clearly demonstrate the overload capability: "Low Overload" and "High Overload".

Definitions

Base load

Constant load between the accelerating phases of the converter

Low Overload

- LO base load input current

Permissible input current for a "Low Overload" load cycle

- LO base load output current

Permissible output current for a "Low Overload" load cycle

- LO base load power

Rated power based on the LO base load output current
High Overload

- HO base load input current

Permissible input current for a "High Overload" load cycle

- HO base load output current

Permissible output current for a "High Overload" load cycle

- HO base load power

Rated power based on the HO base load output current
If not specified otherwise, the power and current data in the technical data always refer to a load cycle according to Low Overload.

Load cycles and typical applications

"Low Overload" load cycle
The "Low Overload" load cycle assumes a uniform base load with low requirements placed on brief accelerating p phases. Typical "Low Overload" applications include the following:

- Centrifuge pump, fan and compressor
- Axial flow fan
- Propeller pump
"High Overload" load cycle
The "High Overload" load cycle permits, for reduced base load, dynamic accelerating phases. Typical "High Overload" applications include the following:
- Displacement pump and fan and compressor
- Geared pump
- Screw pump
- Roots blower

Permissible converter overload

The converter has two different power data: "Low Overload" (LO) and "High Overload" (HO), depending on the expected load.

Note that the rated ambient temperature for the above load cycles is $45^{\circ} \mathrm{C}$.

Note

Permissible converter overload for converter FSH/FSJ

When converter FSH/FSJ is operated in low overload, either 135% overload or 110% overload is permissible, but not together.

11.3 General converter technical data

Property	Explanation
Line voltage	FSA ... FSG: - for systems according to IEC: - 3 AC $380 \vee(-20 \%) . .480 \vee(+10 \%)$ - 3 AC 500 V (-20 \%) ... 690 V (+10 \%) - for systems according to UL: $\begin{aligned} & -\quad 3 \mathrm{AC} 380 \mathrm{~V} \ldots 480 \mathrm{~V} \\ & -\quad 3 \mathrm{AC} 500 \mathrm{~V} \ldots 600 \mathrm{~V} \end{aligned}$ The actual permissible line voltage depends on the installation altitude. FSH, FSJ: - 3 AC $380 \vee(-15 \%) . . .480 \mathrm{~V}(+10 \%)$ - 3 AC 500 V (-15 \%) ... 690 V (+10 \%)
Output voltage	0 V 3 AC ... line voltage $\times 0.97$
Input frequency	$47 \mathrm{~Hz} \ldots 63 \mathrm{~Hz}$
Output frequency	- FSA ... FSG: $0 \mathrm{~Hz} \ldots 550 \mathrm{~Hz}$, depending on the control mode - FSH/FSJ: $0 \mathrm{~Hz} \ldots 150 \mathrm{~Hz}$, depending on the control mode
Power factor λ	- FSA ... FSG: 0.75 ... 0.93 - FSH/FSJ with line reactor uk $=2$ \%: 0.75 ... 0.93
Line impedance uk	4 \%
Inrush current	< $2 \times$ peak input current The converter can withstand 100,000 power cycles with an inverval of 120 s .
Overvoltage category	According to IEC 61800-5-1: - III for Power Module - II for Control Unit
Line harmonics	The converter fulfils the requirements of IEC 61000-3-12 with Rsce $=120$. Further technical data on request.
Pulse frequency (factory setting)	FSA ... FSG - 400 V converters: - 4 kHz for devices with an LO base load power < 100 kW - 2 kHz for devices with an LO base load power $\geq 100 \mathrm{~kW}$ - 690 V converters: 2 kHz
	FSH/FSJ: 4 kHz

Property	Explanation
Safety Integrated	An external safety device is necessary, e. g. F-PLC or Siemens Safety device 3SK2xxx. The higher-level control system must monitor the selection of STO and the feedback from the converter. "Safe Torque Off" safety function (Page 106)
	STO fulfils the requirements of the following standards: - SIL 3 according to IEC61508, part 1 to 3 (2010) - PL e according to IEC61800-5-2 (2016) - Category 3 according to ISO13849 part 1 (2015) The function STO corresponds to stop category 0 according to IEC60204 (2005)
	Response time: 20 ms The response time of the Safe Torque Off function is the time between selecting the function and the function becoming active.
	Probability of failures: - Probability of failures per hour: $\mathrm{PFH}, \mathrm{PFH}_{\mathrm{D}}=5 \times 10^{-8} 1 / \mathrm{h}$ PFH according to IEC 61800-5-2, $\mathrm{PFH}_{\mathrm{D}}$ according to IEC 62061 - Mean probability of failure for a low demand rate of the safety function according to IEC 61508: PFD $=5 \times 10^{-3}$
	Mission time: 20 years You may not operate converters with integrated safety functions for longer than the mission time. The mission time starts when the device is delivered. The mission time cannot be extended. This is the case even if a service department checks the converter - or in the meantime, the converter was decommissioned.
Degree of protection	- IP20/UL Open Type - IP21/UL Open Type can be realized for converters FSA ... FSG, with an IP21 top cover
Maximum short-circuit current (SCCR or Icc)	When using fuses: 100 kA rms You can find the data for further overcurrent protection devices on the Internet: Branch protection and short-circuit strength according to UL and IEC (https:// support.industry.siemens.com/cs/us/en/view/109762895)
Minimum short-circuit current	18 kA rms The length of the connecting cable from the line to the converter may not reduce the minimum short-circuit current.
Surrounding air temperature during operation	- FSA ... FSG: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (with a lateral clearance of 5 cm) or $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (without lateral clearance), $>45^{\circ} \mathrm{C}$ with derating With operator panel BOP-2 or IOP-2: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ - FSH/FSJ: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C},>45^{\circ} \mathrm{C}$ with derating With operator panel BOP-2 or IOP-2: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ Current derating as a function of the ambient temperature (Page 908)
Relative humidity	< 95\% (non-condensing)
Installation altitude	Up to 1000 m above sea level without derating Above 1000 m with derating Current derating as a function of the installation altitude (Page 907)
Surrounding air temperature during storage	- FSA ... FSG: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - FSH/FSJ: $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ for maximal 24 h

Property	Explanation
Shock and vibration	- FSA ... FSG - Transport in transportation packaging according to Class 2M3 according to EN 61800-5-1 and EN 60068-2-6 - Vibration in operation according to Class 3M1 according to EN 60721-3-3: 1995 - FSH/FSJ - Vibration during operation: Fc test according to EN 60068-2-6 0.075 mm for 10 ... $58 \mathrm{~Hz} 9.81 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{xg})$ at > $58 \ldots 200 \mathrm{~Hz}$ - Shock during operation: Test according to EN 60068-2-27 (EA shock type) $49 \mathrm{~m} /$ $\mathrm{s}^{2}(5 \times \mathrm{g}) / 30 \mathrm{~ms} 147 \mathrm{~m} / \mathrm{s}^{2}(15 \times \mathrm{g}) / 11 \mathrm{~ms}$ - Vibration during product packaging: Fc test according to EN 60068-2-6 $\pm 1.5 \mathrm{~mm}$ for $5 \ldots 9 \mathrm{~Hz} 0.5 \mathrm{~g}$ at 9 ... 200 Hz - Shock during product packaging: Fc test according to EN 60068-2-6 $\pm 1.5 \mathrm{~mm}$ for $5 \ldots 9 \mathrm{~Hz} 0.5 \mathrm{~g}$ at $9 \ldots 200 \mathrm{~Hz}$
Protection against chemical substances	Protected according to 3C2 to EN 60721-3-3
Pollution	Suitable for environments with degree of pollution 2 according to EN 61800-5-1
Sound pressure level LPA (1 m)	$\leq 74 \mathrm{~dB}$ (A) ${ }^{1)}$
Cooling method	Air forced cooling
Cooling air	Clean and dry air

11.4 Technical data dependent on the power

FSA, 3-phase 380 ... 480 VAC

FSA					
Based on low overload					
- Power (kW)	0.75	1.1	1.5	2.2	3
- Power (hp)	1	1.5	2	3	4
- Input current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	2.1	2.8	3.6	5.5	6.9
- Input current (A) at $480 \mathrm{~V}, 45^{\circ} \mathrm{C}$	2.0	2.7	3.0	4.6	5.8
- Output current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	2.2	3.1	4.1	5.9	7.7
- Output current (A) at $480 \mathrm{~V}, 45^{\circ} \mathrm{C}$	2.1	3.0	3.4	4.8	6.2
Based on high overload					
- Power (kW)	0.55	0.75	1.1	1.5	2.2
- Power (hp)	0.75	1	1.5	2	3
- Input current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	1.7	2.1	2.8	3.6	5.5
- Input current (A) at $480 \mathrm{~V}, 45^{\circ} \mathrm{C}$	1.6	2.0	2.7	3.0	4.6
- Output current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	1.7	2.2	3.1	4.1	5.9
- Output current (A) at $480 \mathrm{~V}, 45^{\circ} \mathrm{C}$	1.6	2.1	3.0	3.4	4.8
Power loss (kW)					
- Without filter	0.043	0.055	0.071	0.090	0.123
- With filter	0.043	0.055	0.072	0.091	0.125
Net weight (kg)					
- Without filter	3.3	3.3	3.3	3.4	3.4
- With filter	3.5	3.5	3.5	3.6	3.6

FSB/FSC, 3-phase 380 ... 480 VAC

	FSB		FSC		
Based on low overload					
\bullet Power (kW)	4	5.5	7.5	11	15
\bullet Power (hp)	5	7.5	10	15	20
\bullet Input current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	9.75	12	17	24.5	29.5
\bullet Output current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	10.2	13.2	18	26	32
\bullet Output current (A) at $480 \mathrm{~V}, 45^{\circ} \mathrm{C}$	7.6	11	14	21	27
Based on high overload					
\bullet Power (kW)	3	4	5.5	7.5	11
\bullet Power (hp)	4	5	7.5	10	15
\bullet Input current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	7.75	9.75	13.25	18.25	24.5
\bullet Output current (A) at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$	7.7	10.2	13.2	18	26

11.4 Technical data dependent on the power

	FSB		FSC		
\bullet Output current (A) at $480 \mathrm{~V}, 45^{\circ} \mathrm{C}$	6.2	7.6	11	14	21
Power loss (kW)					
\bullet Without filter	0.136	0.18	0.245	0.316	0.396
\bullet With filter	0.138	0.183	0.253	0.32	0.402
Net weight (kg)					
\bullet Without filter	5.8	5.8	5.8	7.1	7.1
\bullet With filter	6.2	6.2	6.2	7.7	7.7

FSD ... FSG, 3-phase 380 ... 480 VAC

Frame size	Rated power kW(hp)	Rated input current -kW -A (hp - A)	Rated output current - kW A (hp-A)	Power kW(hp)	Input current - kW A (hp - A)	Output current kW -A (hp - A)	Powe	s (kW)	Net	(kg)
	Based on Low Overload			Based on High Overload			Without filter	With filter	Without filter	With filter
FSD	18.5 (25)	36 (32)	38 (34)	15 (20)	33 (28)	32 (27)	0.59	0.60	16.6	18.3
	22 (30)	42 (37)	45 (40)	18.5 (25)	38 (35)	38 (34)	0.72	0.73	16.6	18.3
	30 (40)	57 (49)	60 (52)	22 (30)	47 (41)	45 (40)	0.83	0.84	16.6	18.3
	37 (50)	70 (61)	75 (65)	30 (40)	62 (54)	60 (52)	1.10	1.11	18.8	19.5
FSE	45 (60)	86 (74)	90 (77)	37 (50)	78 (69)	75 (65)	1.33	1.34	17.6	18.3
	55 (75)	104 (91)	110 (96)	45 (60)	94 (80)	90 (77)	1.73	1.71	26.7	28.7
FSF	75 (100)	140 (120)	145 (124)	55 (75)	117 (102)	110 (96)	1.97	2.00	61	67.5
	90 (125)	172 (151)	178 (156)	75 (100)	154 (132)	145 (124)	2.57	2.61	61	67.5
	110 (150)	198 (174)	205 (180)	90 (125)	189 (166)	178 (156)	2.37	2.41	66.5	71
	132 (200)	241 (232)	250 (240)	110 (150)	218 (191)	205 (180)	3.10	3.16	66.5	71
FSG	160 (200)	301 (301)	302 (302)	132 (200)	275 (263)	250 (240)	3.22 *	3.66 **	--	105
	200 (250)	365 (356)	370 (361)	160 (250)	330 (327)	302 (302)	4.61 *	4.61 **	--	113
	250 (300)	471 (471)	477 (477)	200 (300)	400 (392)	370 (361)	6.17 *	6.17 **	--	120
FSH	315 (400)	585 (486)	570 (477)	250 (300)	477 (397)	468 (390)	--	6.79	--	151
	355 (450)	654 (525)	640 (515)	250 (300)	501 (402)	491 (394)	--	7.69	--	157
	400 (500)	735 (602)	720 (590)	315 (350)	562 (461)	551 (452)	--	8.39	--	159
FSJ	450 (500)	850 (687)	820 (663)	355 (450)	696 (561)	672 (542)	--	10.42	--	235
	500 (600)	924 (751)	890 (724)	400 (500)	756 (614)	728 (591)	--	10.89	--	250
	560 (700)	1038 (862)	1000 (830)	450 (500)	816 (677)	786 (652)	--	12.50	--	250

* With C3 filter
** With C2 filter

3-phase 500 ... 690 VAC *

Frame size	Rated power kW(hp)	Rated input current - kW A (hp - A)	Rated output current kW A (hp - A)	Power kW(hp)	Input current - kW A (hp - A)	Output current kW -A (hp - A)	Power	ss (kW)	Weigh	
	Based on Low Overload			Based on High Overload			Without filter	With filter	Without filter	With filter
FSD	3 (3)	5 (5)	5 (5)	2.2 (3)	4.4 (4.4)	4 (4)	0.16	0.16	16.6	18.3
	4 (5)	6 (6)	6.3 (6.3)	3 (4)	5.2 (5.2)	5 (5)	0.19	0.19	16.6	18.3
	5.5 (7.5)	9 (9)	9 (9)	4 (5)	6.9 (6.9)	6.3 (6.3)	0.26	0.26	16.6	18.3
	7.5 (10)	11 (11)	11 (11)	5.5 (7.5)	9.9 (9.9)	9 (9)	0.31	0.31	16.6	18.3
	11 (n/a)	14 (14)	14 (14)	7.5 (10)	$\begin{array}{\|l\|} \hline 12.1 \\ (12.1) \\ \hline \end{array}$	11 (11)	0.36	0.36	16.6	18.3
	15 (15)	18 (18)	19 (19)	11 (n/a)	$\begin{aligned} & 14.6 \\ & (14.6) \end{aligned}$	14 (14)	0.45	0.45	16.6	18.3
	18.5 (20)	22 (22)	23 (23)	15 (15)	20 (20)	19 (19)	0.53	0.54	16.6	18.3
	22 (25)	25 (25)	27 (27)	18.5 (20)	$\begin{aligned} & 23.4 \\ & (23.4) \\ & \hline \end{aligned}$	23 (23)	0.61	0.62	16.6	18.3
	30 (30)	33 (33)	35 (35)	22 (25)	28 (28)	27 (27)	0.80	0.80	16.6	18.3
	37 (40)	40 (40)	42 (42)	30 (30)	$\begin{aligned} & 36.6 \\ & (36.6) \end{aligned}$	35 (35)	0.97	0.98	18.8	19.5
FSE	45 (50)	50 (50)	52 (52)	37 (40)	$\begin{aligned} & 44.4 \\ & (44.4) \\ & \hline \end{aligned}$	42 (42)	1.11	1.12	17.6	18.3
	55 (60)	59 (59)	62 (62)	45 (50)	$\begin{aligned} & 54.4 \\ & (54.4) \\ & \hline \end{aligned}$	52 (52)	1.35	1.36	26.7	28.7
FSF	75 (75)	78 (78)	80 (80)	55 (60)	$\begin{aligned} & 66.4 \\ & (66.4) \\ & \hline \end{aligned}$	62 (62)	1.41	1.41	61	68
	90 (100)	97 (97)	100 (100)	75 (75)	$\begin{aligned} & 85.2 \\ & (85.2) \\ & \hline \end{aligned}$	80 (80)	1.80	1.82	61	68
	110 (125)	121 (121)	125 (125)	90 (100)	$\begin{aligned} & 106.3 \\ & (106.3) \\ & \hline \end{aligned}$	100 (100)	2.22	2.25	66.5	71
	132 (150)	138 (138)	144 (144)	110 (125)	$\begin{aligned} & 131.6 \\ & (131.6) \\ & \hline \end{aligned}$	125 (125)	2.64	2.67	66.5	71
FSG	160 (n/a)	171 (171)	171 (171)	132 (150)	$\begin{aligned} & 158.2 \\ & (158.2) \end{aligned}$	144 (144)	--	2.93	--	105
	200 (200)	205 (205)	208 (208)	160 (n/a)	$\begin{array}{\|l} 185.1 \\ (185.1) \\ \hline \end{array}$	171 (171)	--	3.70	--	113
	250 (250)	249 (249)	250 (250)	200 (200)	$\begin{array}{\|l\|} \hline 227.5 \\ (227.5) \\ \hline \end{array}$	208 (208)	--	4.63	--	120
FSH	315 (350)	343 (375)	330 (345)	250 (250)	283 (307)	272 (295)	--	5.40	--	158
	355 (400)	401 (408)	385 (388)	315 (300)	327 (333)	314 (320)	--	6.19	--	158
	400 (450)	437 (461)	420 (432)	355 (350)	362 (381)	348 (367)	--	6.88	--	162
	450 (450)	489 (526)	470 (487)	400 (450)	410 (440)	394 (423)	--	7.72	--	162
FSJ	500 (500)	540 (591)	520 (546)	450 (450)	461 (501)	444 (482)	--	8.13	--	236
	560 (600)	602 (665)	580 (610)	500 (500)	494 (543)	476 (523)	--	8.83	--	236
	630 (700)	675 (737)	650 (679)	560 (500)	552 (602)	532 (580)	--	9.94	--	246

Technical data
11.4 Technical data dependent on the power

* For systems according to UL: 500 V ... 600 V

11.5 Derating data

11.5.1 Current derating as a function of the installation altitude

The permissible converter output current is reduced above an installation altitude of 1000 m .

Permissible line supplies dependent on the installation altitude

- For installation altitudes $\leq 2000 \mathrm{~m}$ above sea level, it is permissible to connect the converter to any of the line supplies that are specified for it.
- For installation altitudes $2000 \mathrm{~m} . . .4000 \mathrm{~m}$ above sea level, the following applies:
- Connection to a TN line system with grounded neutral point is permissible.
- TN systems with grounded line conductor are not permitted.
- The TN line system with grounded neutral point can also be supplied using an isolation transformer.
- The phase-to-phase voltage does not have to be reduced.

Note

Using converters connected to TN line supplies with voltages $\geq 600 \mathrm{~V}$ for installation altitudes 2000 m ... 4000 m

For voltages $\geq 600 \mathrm{~V}$, the TN line supply must have a grounded neutral point established using an isolation transformer.

11.5.2 Current derating as a function of the ambient temperature

Note that Operator Panel can restrict the maximum permissible operating ambient temperature of the converter.

11.5.3 Current derating as a function of the line voltage

400 V converters

Figure 11-1 Current and voltage derating as a function of the input voltage for FSA ... FSG

Figure 11-2 Current derating as a function of the input voltage for FSH/FSJ

690 V converters

Figure 11-3 Current and voltage derating as a function of the input voltage for FSA .. FSG

Figure 11-4 Current derating as a function of the input voltage for FSH/FSJ

11.5.4 Current derating as a function of the pulse frequency

FSA ... FSG converters

Table 11-1 400 V variants

Frame size	Rated power based on LO (kW)	Output current (A) (at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of							
		2 kHz	4 kHz	6 kHz	8 kHz	10 kHz	12 kHz	14 kHz	16 kHz
FSA	0.75	2.2	2.2	1.87	1.54	1.32	1.1	0.99	0.88
	1.1	3.1	3.1	2.635	2.17	1.86	1.55	1.395	1.24
	1.5	4.1	4.1	3.485	2.87	2.46	2.05	1.895	1.64
	2.2	5.9	5.9	5.015	4.13	3.54	2.95	2.655	2.36
	3	7.7	7.7	6.545	5.39	4.62	3.85	3.465	3.08
FSB	4	10.2	10.2	8.67	7.14	6.12	5.1	4.59	4.08
	5.5	13.2	13.2	11.22	9.24	7.92	6.6	5.94	5.28
	7.5	18	18	15.3	12.6	10.8	9	8.1	7.2
FSC	11	26	26	22.1	18.2	15.6	13	11.7	10.4
	15	32	32	27.2	22.4	19	18	14.4	12.8
FSD	18.5	38	38	32.3	26.6	22.8	19	17.1	15.2
	22	45	45	38.2	31.5	27	22.5	20.2	18
	30	60	60	51	42	36	30	27	24
	37	75	75	63.7	52.5	45	37.5	33.7	30
FSE	45	90	90	76.5	63	54	45	40.5	36
	55	110	110	93.5	77	66	55	49.5	44
FSF	75	145	145	123.2	101.5	87	72.5	65.2	58
	90	178	178	151	124.6	107	89	80.1	71.2
	110	205	143.5	103	82	--	--	--	--
	132	250	175	125	100	--	--	--	--
FSG	160	302	211.4	151	121	--	--	--	--
	200	370	259	185	148	--	--	--	--
	250	477	334	239	191	--	--	--	--
FSH	315	585	$468{ }^{1)}$	--	--	--	--	--	--
	355	655	$524{ }^{1)}$	--	--	--	--	--	--
	400	735	$588{ }^{1)}$	--	--	--	--	--	--
FSJ	450	840	$672{ }^{1)}$	--	--	--	--	--	--
	500	910	$728{ }^{1)}$	--	--	--	--	--	--
	560	1021	$817{ }^{1)}$	--	--	--	--	--	--

The rated output currents in bold refer to the default pulse frequency at $45^{\circ} \mathrm{C}$ ambient temperature.
${ }^{1)}$ In the factory setting, the converter starts with a pulse frequency of 4 kHz and reduces automatically the pulse frequency to the associated required frequencies when loaded. When the load decreases, the pulse frequency is increased automatically up to 4 kHz .

Table 11-2 690 V variants

Frame Size	Rated power based on LO (kW)	Output current (A) (at $45^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of	
		2 kHz	4 kHz
FSD	3	6	3.6
	4	7	4.2
	5.5	10	6
	7.5	13	7.8
	11	16	9.6
	15	21	12.6
	18.5	25	15
	22	29	17.4
	30	38	22.8
	37	46	27.6
FSE	45	58	34.8
	55	68	40.8
FSF	75	90	54
	90	112	67.2
	110	128	76.8
	132	158	94.8
FSG	160	196	118
	200	236	142
	250	288	173
FSH	315	330	215 ${ }^{1)}$
	355	385	250 ${ }^{1)}$
	400	420	273 ${ }^{1)}$
	450	470	$306{ }^{1)}$
FSJ	500	520	$338{ }^{1)}$
	560	580	$377^{1)}$
	630	650	$423{ }^{1)}$

The rated output currents in bold refer to the default pulse frequency at $45^{\circ} \mathrm{C}$ ambient temperature.
${ }^{1)}$ In the factory setting, the converter starts with a pulse frequency of 4 kHz and reduces automatically the pulse frequency to the associated required frequencies when loaded. When the load decreases, the pulse frequency is increased automatically up to 4 kHz .
The values of the rated current refer to a pulse frequency of 2 kHz at $45^{\circ} \mathrm{C}$ ambient temperature and are reached at any time by the automatic adaptation of the output pulse frequency.

11.6 Low frequency performance

The converter can only be operated with reduced output current at low output frequencies.

NOTICE

Reduced converter service life as a result of overheating
Loading the converter with a high output current and at the same time with a low output frequency can cause the current-conducting components in the converter to overheat. Excessively high temperatures can damage the converter or reduce the converter service life.

- Never operate the converter continuously with an output frequency $=0 \mathrm{~Hz}$.
- Only operate the converter in the permissible operating range.

- Continuous operation (green area in the figure)

Operating state that is permissible for the complete operating time.

- Short-time duty (yellow area in the figure)

Operating state that is permissible for less than 2% of the total operating time.

- Sporadic short-time duty (red area in the figure)

Operating state that is permissible for less than 0.1% of the total operating time.

11.7 Data regarding the power loss in partial load operation

You can find data regarding power loss in partial load operation in the Internet:
(5) Partial load operation (http://support.automation.siemens.com/WW/view/en/94059311)

11.8 Electromagnetic compability of the converter

11.8.1 Overview

Definition of terms

EMC stands for electromagnetic compatibility.
EMC means that the devices function satisfactorily without interfering with or being disrupted by other devices. EMC applies when both the emitted interference (emission level) and the interference immunity are matched with each other.

The product standard IEC/EN 61800-3 describes the EMC requirements placed on variablespeed drives.

A variable-speed drive (referred to as "Power Drive System", or PDS, in IEC/EN 61800-3) consists of the converter as well as the associated motors and encoders including the connecting cables.

The driven machine is not part of the drive.

General information

IEC/EN 61800-3 makes a distinction between the "first environment" and "second environment" - and defines different requirements for these environments

- First environment

Residential buildings or locations at which the drive is directly connected to the public lowvoltage system without an intermediate transformer.

- Second environment

An environment that includes all other equipment which is not connected directly to a public low-voltage line supply for residential buildings. These are basically industrial areas that have their own medium-voltage supply via their own transformers.

Note

The drive is intended for commercial or industrial use in stationary machines and systems.

Note

The drive is intended to be installed and put into operation by specially trained personnel, in observance of EMC conditions and the installation information in the operating instructions and "EMC layout guidelines" configuration manual.
(2) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)

Note

The drive as a component of machines or systems

For the integration of the drive in machines or systems, additional measures may be necessary in order to comply with the product standards of these systems or machines. These additional measures are the responsibility of the system or machine manufacturer.

Note

In a residential environment, the drive may cause radio interference. In such cases, additional interference suppression measures may be required.

11.8.2 Operation in the Second EMC environment

11.8.2.1 High-frequency interference emissions EMC category C3

Description

The drive may be used in the second EMC environment if at least the limit values of IEC 61800-3 Category C3 with regard to conducted and radiated interference emissions are complied with. The following requirements must be met for this purpose:

- Operation on TN or TT line supply with star-point grounded
- Permissible motor cable length
\checkmark Maximum permissible motor cable length (Page 78)
- Shielded motor cable with low capacitance
- Pulse frequency \leq factotory setting
- With line filter (external or internal)
- Converters with integrated C2 line filter or C3 line filter
- Unfiltered converters with external C2 line filter or C3 line filter

Note

If devices without integrated C3 filters or filters other than those listed above are used, the machine builder or plant engineer must certify that the emitted interference does not exceed the limit values of category C3. Separate line filters for each device or a shared line filter for several devices can be used.

11.8.2.2 High-frequency interference emissions EMC category C2

Description

The drive meets the limit values of IEC 61800-3 Category C2 with regard to conducted and radiated interference emissions under the following conditions:

- Operation on TN or TT line supply with grounded neutral point
- Permissible motor cable length 2] Maximum permissible motor cable length (Page 78)
- Shieled motor cable with low capacitance
- Pulse frequency \leq factotory setting
- With C2 line filter (external or internal)
- Converters with integrated C2 line filter
- Unfiltered FSA ... FSF converters with external C2 line filter
- FSH/FSJ converters with external C2 line filter and line reactor

Note

If devices without integrated C2 filters or filters other than those listed above are used, the machine builder or plant engineer must certify that the emitted interference does not exceed the limit values of category C 2 . Separate line filters for each device or a shared line filter for several devices can be used.

11.8.2.3 Current harmonics

Overview

IEC 61800-3 does not define any limits for the emission of current harmonics when used in industrial networks. A system evaluation according to IEC 61000-3-14 or 61800-3 Annex B. 4 is recommended.

11.8.3 Operation in the First EMC environment

11.8.3.1 General information

Overview

Devices and systems that are operated on the public low-voltage system must comply with the limit values for electromagnetic interference (interference immunity and interference emission) defined in the relevant standards. Industrial networks are facing increased requirements, particularly regarding emitted interference. The requirements for standard-conformant operation on the public low-voltage system are explained in more detail in the following.

Note

Requirements may be defined in the technical connection conditions of the local network operator that exceed the standard requirements described in this document.

Note

The flicker behavior can only be evaluated in a combination of the drive with an application (see IEC 61800-3, Section 6.2.4.2). The drive behaves passively in this regard, i.e. load fluctuations of the application will be visible without changes on the line side.

Note

Influence by ripple control signals
Ripple control signals in public supply systems can affect the operation of the drive system in unfavorable cases and cause fault shutdowns (e.g. "undervoltage" or "phase failure"). This particularly applies to FSA-C devices if they are operated in the factory-set U/f control mode.

- If ripple control signals are exerting unwanted influence, replace the U/f control mode (Standard Drive Control application class) with the vector control (Dynamic Drive Control application class).
11.8.3.2 High-frequency, conducted and radiated interference emissions, EMC Category C2

Description

The drive may only be used in the first EMC environment if at least the limit values of EMC Category C 2 are adhered to in regard to the interference emissions. To this end, the requirements listed below must be satisfied:

- Operation on a TN or TT system with a grounded neutral point.
- Use of shielded motor cables with a length of max. 150 meters.
- Operation using the default pulse frequency (or with a reduced pulse frequency)
11.8 Electromagnetic compability of the converter
- FSA - FSG: Use converters with an integrated C2 line filter (-0AF0 in the last block of the article number)
- FSH, FSJ: Use of an external line filter
- 400-480 V 3 AC: 6SL3760-0MR00-0AA0
- 500-690 V 3 AC: 6SL3760-0MS00-0AA0

Note

If converters without integrated C2 filters or filters other than those listed above are used, the machine builder or plant engineer must certify that the interference emissions are limited according to EMC Category C2, at a minimum. Separate line filters for each converter or a shared line filter for several converters can be used.
11.8.3.3 High-frequency, conducted interference emissions, EMC Category C1

Description

In conjunction with upstream C1 line filters, the converter meets the limits of IEC 61800-3 Category C1 with respect to conducted interference.
Conditions for compliance with the limits:

- TN or TT system with a grounded neutral point.
- Use of shielded motor cables
- Compliance with maximum motor cable length 4 Maximum permissible motor cable length (Page 78)
- Converter operation using the default pulse frequency or with reduced pulse frequency

11.8.3.4 Current harmonics of individual devices

Description

In regard to the adherence to limit values for the harmonic currents, the EMC product standard IEC 61800-3 for PDS refers to the compliance with standards IEC 61000-3-2 and IEC 61000-3-12. The limit values of these standards apply to devices that are designed for connecting to the public low-voltage system.

Depending on the rated output and the rated input current of the device, different requirements result for the direct connection to the low-voltage system.

LO base load power	LO input current	
$\leq 1 \mathrm{~kW}$	-	The converters comply with the requirements of IEC 61000-3-2.
> 1 kW	$\leq 16 \mathrm{~A}$	No limit value requirements are defined in IEC 61000-3-2 for professionally used devices of this output range. Notification of the network operator and a system evaluation according to IEC 61000-3-14 or 61800-3 Annex B. 4 are recommended.
	$\begin{aligned} & >16 \mathrm{~A} \text { and } \leq \\ & 75 \mathrm{~A} \end{aligned}$	The converters comply with IEC 61000-3-12 (Table 4), provided that the short-circuit capacity (SSC) at the point of connection of the customer system to the public network is greater than or equal to the value in the formula below. $\mathrm{S}_{\mathrm{sc}}=\mathrm{U}_{\text {rated }}^{2} / \mathrm{Z} \geq 120 \cdot \sqrt{ } 3 \cdot U_{\text {rated }} \cdot \mathrm{I}_{\mathrm{Lo}}$ The installer or plant operator must ensure that the converters are only connected to a supply system with sufficient short-circuit capacity. If the converters are to be connected to a supply system with a lower short-circuit capacity, the installer or plant operator must obtain a connection approval from the network operator in regard to harmonic currents.
	> 75 A :	No limit values for current harmonics are defined for these devices in the IEC standards. Notification of the network operator and a system evaluation according to IEC 61000-3-14 or 61800-3 Annex B. 4 are recommended. The converters FSH and FSJ always require an upstream line reactor and an upstream line filter for operating on the public low-voltage system.

When operated with LO rated power, the converter generates the following typical current harmonics (as a percentage of the fundamental current):

Converter	$\mathbf{R}_{\text {sc }}$	$\mathbf{1 5}$	$\mathbf{1 7}$	$\mathbf{1 1 1}$	$\mathbf{I} \mathbf{1 3}$	$\mathbf{I} \mathbf{1 7}$	$\mathbf{I} 19$	$\mathbf{I 2 3}$	$\mathbf{I 2 5}$	THC
FSA \ldots FSG	120	38%	18%	8%	5%	4%	3%	3%	2%	43%
FSH, FSJ with 2% line reactor	50	37%	13%	7%	3%	3%	2%	1%	1%	40%

The SIZER configuration tool allows the individual calculation of the harmonic parameters.
(8) Download SIZER (http://support.automation.siemens.com/WW/view/en/ 10804987/130000)

Line Harmonics Filter (LHF) for reducing current harmonics

The passive LHF (Line Harmonics Filters) available for the converter allow a significant reduction of the current harmonics. It is especially recommended that LHF be used if devices FSE ... FSG (above 75 A rated input current) are to be operated on the public low-voltage system.
11.8 Electromagnetic compability of the converter

Typical current harmonics with LHF when operating with LO rated power (in percentage of the fundamental current):

Converter	$\mathrm{R}_{\text {Sc }}$	15	17	111	113	115	117	123	125	THC
$\begin{aligned} & \text { FSB } \ldots \text { FSG / } \\ & 400 \mathrm{~V} \end{aligned}$	33	1.7\%	1.9\%	2.2\%	1.5\%	0.8\%	0.8\%	0.7\%	0.6\%	4.2\%
	120	1.8\%	2.2\%	2.4\%	1.6\%	0.8\%	0.8\%	0.7\%	0.6\%	4.4\%

The power factor λ improves with LHF to approx. 98% when operating with rated output.
With an upstream LHF, the converters satisfy the limit values of IEC 61000-3-2 and IEC 61000-3-12.
11.8.3.5 Harmonics at the power supply connection point acc. to IEC 6100-2-2

Description

IEC 61000-2-2 defines the compatibility level for voltage harmonics for the point of common coupling (PCC) with the public supply system.

For systems in which converters or other non-linear loads are widely used, a circuit feedback calculation that takes the individual system configuration into consideration should always be performed.

The converter with upstream Line Harmonics Filters (LHF) allows adherence to the compatibility level for voltage harmonics, regardless of what percentage of the overall load is made up of the converter load.

Note

The voltage distortions behavior in the frequency range of 2 kHz to 9 kHz (IEC 61000-2-2 AMD 1) and from 9 kHz to 150 kHz (IEC 61000-2-2 AMD 2) must be evaluated specifically for each system as a function of the impedance at the power supply connection point.

11.8.3.6 Harmonics at the power supply connection point acc. to IEEE 519

Description

IEEE 519 defines limit values for voltage and current harmonics for all of the loads at the point of common coupling (PCC).

As a rule, systems only satisfy the limit values of IEEE 519 without implementing special measures if the share of converters and other non-linear loads in the overall load is relatively low. The respective system should always be individually considered.
The converter with upstream Line Harmonics Filters (LHF) enables adherence to the limit values of IEEE 519 (precondition: $\mathrm{R}_{\mathrm{SC}} \geq 20$).

See also

Maximum permissible motor cable length (Page 78)
EMC-compliant setup of the machine or plant (Page 48)

11.9 Protecting persons from electromagnetic fields

Overview

Protection of workers from electromagnetic fields is specified in the European EMF Directive 2013/35/EU. This directive is implemented in national law in the European Economic Area (EEA). Employers are obligated to design workplaces in such a way that workers are protected from impermissibly strong electromagnetic fields.
To this end, assessments and/or measurements must be performed for workplaces.

Precondition

1. The laws for protection from electromagnetic fields in force in individual EU member states can go beyond the minimum requirements of the EMF Directive 2013/35/EU and always take precedence.
2. The ICNIRP 2010 limits for the workplace are the basis for the assessment.
3. The 26th BlmSchV (German Federal Emission Protection Regulation) defines $100 \mu \mathrm{~T}$ (RMS) for the assessment of active implants.
According to Directive 2013/35/EU, $500 \mu \mathrm{~T}$ (RMS) at 50 Hz is applicable here.
4. Compliance with the limit values was assessed for the following frequencies:

- Line frequency 47 ... 63 Hz
- Pulse frequency, for example $4 / 8 / 16 \mathrm{kHz}$ and multiples thereof, assessed up to a maximum of 100 kHz

5. The routing of power cables has a significant impact on the electromagnetic fields that occur. Install and operate the components inside metallic cabinets in compliance with the documentation and use shielded motor cables.
$\geqslant]$ EMC-compliant setup of the machine or plant (Page 48)

Description

The following information regarding electromagnetic fields relates solely to converters supplied by Siemens.

The converters are normally used in machines. The assessment and testing is based on DIN EN 12198.

The indicated minimum distances apply to the head and complete torso of the human body. Shorter distances are possible for extremities.

Table 11-3 Minimum distances to the converter

Individuals without active implants		Individuals with active implants	
Control cabinet closed	Control cabinet open	Control cabinet closed	Control cabinet open
0 cm	Forearm length (ap- prox. 35 cm$)$	Must be separately assessed depending on the active implant.	

See also

EMC installation guideline (http://support.automation.siemens.com/WW/view/en/60612658)

Appendix

A. 1 Handling the BOP-2 operator panel

${ }^{1)}$ Status display once the power supply for the converter has been switched on.
Figure A-1 Menu of the BOP-2

Procedure for switching the motor on and off via the

Figure A-2 Other keys and symbols of the BOP-2
A. 1 Handling the BOP-2 operator panel

A.1.1 Changing settings using BOP-2

Changing settings using BOP-2

You can modify the settings of your converter by changing the values of the its parameters. The converter only permits changes to "write" parameters. Write parameters begin with a "P", e.g. P45.

The value of a read-only parameter cannot be changed. Read-only parameters begin with an "r", for example: r2.

The converter retentively saves all the changes made using the BOP-2 so that they are protected against power failure.

Procedure

1. Select the menu to display and change parameters.

Press the OK key.
2. Select the parameter filter using the arrow keys.

Press the OK key.

- STANDARD: The converter only displays the most important parameters.
- EXPERT: The converter displays all of the parameters.

3. Select the required number of a write parameter using the arrow keys. Press the OK key.
4. Select the value of the write parameter using the arrow keys.

Accept the value with the OK key.
You have now changed a write parameter using the BOP-2.
\square

A.1.2 Changing indexed parameters

Changing indexed parameters

For indexed parameters, several parameter values are assigned to a parameter number. Each of the parameter values has its own index.

Procedure

1. Select the parameter number.
2. Press the OK key.
3. Set the parameter index.
4. Press the OK key.
5. Set the parameter value for the selected index.

You have now changed an indexed parameter.
A. 1 Handling the BOP-2 operator panel

A.1.3 Directly entering the parameter number and value

Directly select the parameter number

The BOP-2 offers the possibility of setting the parameter number digit by digit.

Precondition

The parameter number is flashing in the BOP-2 display.

Procedure

1. Press the OK button for longer than five seconds.
2. Change the parameter number digit-by-digit. If you press the OK button then the BOP-2 jumps to the next digit.
3. If you have entered all of the digits of the parameter number, press the OK button.

You have now entered the parameter number directly.

Entering the parameter value directly

The BOP-2 offers the option of setting the parameter value digit by digit.

Precondition

The parameter value flashes in the BOP-2 display.

Procedure

1. Press the OK button for longer than five seconds.
2. Change the parameter value digit-by-digit. If you press the OK button then the BOP-2 jumps to the next digit.
3. If you have entered all of the digits of the parameter value, press the OK button.

You have now entered the parameter value directly.
\square

A.1.4 A parameter cannot be changed

When cannot you change a parameter?

The converter indicates why it currently does not permit a parameter to be changed:

For each parameter, the parameter list contains the operating state in which the parameter can be changed.

A. $2 \quad$ Interconnecting signals in the converter

The following functions are implemented in the converter:

- Open-loop and closed-loop control functions
- Communication functions
- Diagnosis and operating functions

Every function comprises one or several blocks that are interconnected with one another.

Figure A-3 Example of a block: Motorized potentiometer (MOP)
Most of the blocks can be adapted to specific applications using parameters.
You cannot change the signal interconnection within the block. However, the interconnection between blocks can be changed by interconnecting the inputs of a block with the appropriate outputs of another block.

The signal interconnection of the blocks is realized, contrary to electric circuitry, not using cables, but in the software.

Figure A-4 Example: Signal interconnection of two blocks for digital input 0

Binectors and connectors

Connectors and binectors are used to exchange signals between the individual blocks:

- Connectors are used to interconnect "analog" signals (e.g. MOP output speed)
- Binectors are used to interconnect digital signals (e.g. "Enable MOP up" command)

Figure A-5 Symbols for binector and connector inputs and outputs
Binector/connector outputs (CO/BO) are parameters that combine more than one binector output in a single word (e.g. r0052 CO/BO: status word 1). Each bit in the word represents a digital (binary) signal. This summary reduces the number of parameters and simplifies parameter assignment.
Binector or connector outputs (CO, BO or CO/BO) can be used more than once.

Interconnecting signals

When must you interconnect signals in the converter?

If you change the signal interconnection in the converter, you can adapt the converter to a wide range of requirements. This does not necessarily have to involve highly complex functions.

Example 1: Assign a different function to a digital input.
Example 2: Switch the speed setpoint from the fixed speed to the analog input.

Principle when connecting BICO blocks using BICO technology

When interconnecting the signal, the following principle applies: Where does the signal come from?

An interconnection between two BICO blocks consists of a connector or a binector and a BICO parameter. The input of a block must be assigned the output of a different block: In the BICO parameters, enter the parameter numbers of the connector/binector that should supply its output signal to the BICO parameter.

How much care is required when you change the signal interconnection?
Note which changes you make. A subsequent analysis of the set signal interconnections is possible only by evaluating the parameter list.

Where can you find additional information?

- All the binectors and connectors are located in the Parameter list.
- The function diagrams provide a complete overview of the factory setting for the signal interconnections and the setting options.

A. 3 Manuals and technical support

A.3.1 Overview of the manuals

Manuals with additional information that can be downloaded

- 3 Compact hardware installation instructions (https:/l support.industry.siemens.com/cs/us/en/view/109762897)
Installing the converter

- Operating instructions (https://support.industry.siemens.com/cs/us/en/view/ 109762826)

Installing, commissioning and maintaining the converter. Advanced commissioning (this manual)

- (30P-2 operating instructions (https://support.industry.siemens.com/cs/ww/en/view/ 109483379)

Operating the converter with the BOP-2 operator panel Nㅡㅇ

- Operating instructions IOP-2 (https://support.industry.siemens.com/cs/ww/en/view/ 109752613)

Operating the converter with the IOP-2 operator panel VN

- 0 SINAMICS G120 Smart Access Operating Instructions (https:// support.industry.siemens.com/cs/ww/en/view/109758122)
Operating the converter from a PC, tablet or smartphone

- (h) Protective devices (https://support.industry.siemens.com/cs/us/en/view/109762895) Overcurrent protection devices of the converter NㅡN

A．3．2 Configuring support

Catalog

Ordering data and technical information for the converter．

河以川

Catalogs for download or online catalog（Industry Mall）：
（5）SINAMICS G120X（www．siemens．com／sinamics－g120x）

EMC（electromagnetic compatibility）technical overview
Standards and guidelines，EMC－compliant control cabinet design

（8）EMC overview（https：／／support．industry．siemens．com／cs／ww／en／view／103704610）

EMC Guidelines configuration manual

EMC－compliant control cabinet design，potential equalization and cable routing

（3）EMC installation guideline（http：／／support．automation．siemens．com／WW／view／en／ 60612658）

A.3.3 Product Support

You can find additional information about the product on the Internet:
Product support (https://support.industry.siemens.com/cs/ww/en/)
This URL provides the following:

- Up-to-date product information (product announcements)
- FAQs
- Downloads
- The Newsletter contains the latest information on the products you use.
- The Knowledge Manager (Intelligent Search) helps you find the documents you need.
- Users and specialists from around the world share their experience and knowledge in the Forum.
- You can find your local representative for Automation \& Drives via our contact database under "Contact \& Partner".
- Information about local service, repair, spare parts and much more can be found under "Services".

Index

3

3RK3 (modular safety system), 113

8

87 Hz characteristic, 93
87 Hz characteristic, 93

A

AC/DC drive profile, 196
Acceleration precontrol scaling p1496[0...n], 550, 551
Acceptance test
Reduced scope, 894
Test scope, 894
Access level p0003, 376
Acknowledge drive object faults p3981, 682
Activate PN interface configuration p8925, 711
Activate/deactivate RTC alarm A01098 p8405, 698
Actual macro r9463, 716
Actual motor magnetizing current/short-circuit current r0331[0...n], 421
Actual motor operating hours p0650[0...n], 449
Actual power unit type r0203[0...n], 401
Actual rotor resistance r0396[0...n], 429
Actual speed rpm smoothed r0022, 379
Actual stator resistance r0395[0...n], 429
Actual torque smoothed r0031, 380
Acyclic communication, 189
Additional acceleration torque (sensorless) p1611[0...n], 560
Additional technology controller 0, 218
Air barrier, 53
Alarm, 292, 777, 782

Alarm buffer, 292, 782
Alarm code, 782
r2122[0...63], 605
Alarm counter
p2111, 603
Alarm history, 783
Alarm number
r2110[0...63], 603
Alarm time, 292, 782
Alarm time received in days r2145[0...63], 612
Alarm time received in milliseconds r2123[0...63], 606
Alarm time removed in days r2146[0...63], 612
Alarm time removed in milliseconds r2125[0...63], 606
Alarm value, 782
r2124[0...63], 606
Alarm value for float values r2134[0...63], 609
Alert
A01009 (N), 790
A01016 (F), 791
A01017, 791
A01019, 792
A01020, 792
A01021, 792
A01028 (F), 793
A01035 (F), 793
A01045, 797
A01049, 797
A01066, 798
A01067, 798
A01069, 799
A01073 (N), 799
A01098, 800
A01251, 801
A01514 (F), 804
A01590 (F), 805
A01900 (F), 805
A01920 (F), 806
A01945, 806
A02150, 806
A03510 (F, N), 808
A03520 (F, N), 809
A05000 (N), 809
A05001 (N), 809
A05002 (N), 809

A05003 (N), 810
A05004 (N), 810
A05006 (N), 810
A05065 (F, N), 810
A07012 (N), 811
A07014 (N), 812
A07015, 812
A07089, 815
A07094, 815
A07200, 815
A07321, 817
A07325, 817
A07352, 818
A07353, 818
A07391, 819
A07400 (N), 819
A07401 (N), 819
A07402 (N), 819
A07409 (N), 820
A07416, 821
A07427, 822
A07428 (N), 822
A07444, 823
A07530, 823
A07531, 824
A07805 (N), 825
A07850 (F), 826
A07851 (F), 826
A07852 (F), 826
A07891, 827
A07892, 827
A07893, 828
A07903, 829
A07910 (N), 830
A07920, 830
A07921, 830
A07922, 831
A07926, 831
A07927, 832
A07929 (F), 832
A07980, 835
A07981, 835
A07991 (N), 839
A07994 (F, N), 840
A08511 (F), 840
A08526 (F), 841
A08564, 841
A08565, 841
A30016 (N), 846
A30030, 850
A30031, 850
A30032, 850

A30033, 851
A30034, 851
A30042, 852
A30049, 853
A30057, 853
A30065 (F, N), 854
A30502, 856
A30810 (F), 858
A30920 (F), 859
A30999 (F, N), 859
A50010 (F), 859
A50011 (F), 860
A52961, 860
A52962, 860
A52963, 860
A52964, 861
A52966, 861
F01000, 788
F01001, 788
F01002, 789
F01003, 789
F01005, 790
F01010, 790
F01015, 790
F01018, 791
F01023, 792
F01030, 793
F01033, 793
F01034, 793
F01036 (A), 794
F01038 (A), 794
F01039 (A), 795
F01040, 795
F01042, 796
F01043, 796
F01044, 797
F01054, 798
F01068, 799
F01072, 799
F01105 (A), 800
F01107, 800
F01112, 800
F01120 (A), 801
F01152, 801
F01205, 801
F01250, 801
F01257, 802
F01340, 802
F01505 (A), 803
F01510, 803
F01511 (A), 803
F01512, 804

F01513 (N, A), 804	F07902 (N, A), 829
F01515 (A), 805	F07923, 831
F01662, 805	F07924, 831
F01910 (N, A), 805	F07925, 831
F01946 (A), 806	F07936, 832
F02151 (A), 807	F07950 (A), 833
F02152 (A), 807	F07967, 833
F03000, 807	F07968, 833
F03001, 808	F07969, 833
F03505 (N, A), 808	F07983, 835
F06310 (A), 811	F07984, 836
F07011, 811	F07985, 837
F07016, 812	F07986, 838
F07080, 813	F07988, 838
F07082, 813	F07990, 838
F07083, 814	F08010 (N, A), 840
F07084, 814	F08501 (N, A), 840
F07086, 815	F08502 (A), 840
F07088, 815	F13009, 841
F07220 (N, A), 816	F13100, 841
F07300 (A), 816	F13101, 842
F07311, 816	F13102, 842
F07312, 816	F30001, 843
F07320, 817	F30002, 843
F07330, 817	F30003, 844
F07331, 818	F30004, 844
F07332, 818	F30005, 844
F07390, 818	F30011, 845
F07405 (N, A), 820	F30012, 845
F07406 (N, A), 820	F30013, 845
F07410, 820	F30015 (N, A), 846
F07411, 820	F30017, 846
F07426 (A), 821	F30021, 847
F07435 (N), 822	F30022, 847
F07436 (A), 822	F30024, 847
F07437 (A), 822	F30025, 848
F07438 (A), 823	F30027, 848
F07445, 823	F30035, 851
F07800, 824	F30036, 852
F07801, 824	F30037, 852
F07802, 824	F30051, 853
F07806, 825	F30052, 853
F07807, 825	F30059, 854
F07810, 826	F30068, 854
F07860 (A), 826	F30071, 854
F07861 (A), 827	F30072, 854
F07862 (A), 827	F30074 (A), 854
F07894, 828	F30075, 855
F07895, 828	F30080, 855
F07896, 828	F30081, 856
F07900 (N, A), 828	F30105, 856
F07901, 829	F30662, 857

F30664, 857
F30802, 857
F30804 (N, A), 857
F30805, 858
F30809, 858
F30850, 858
F30903, 858
F30950, 859
F35950, 859
F52960, 860
F52965, 861
N01004 (F, A), 789
N01101 (A), 800
N30800 (F), 857
Ambient temperature, 329, 330
Analog input, 99
Function, 165
Analog output, 99
Function, 171
Application class
p0096, 398, 399
Application example, 121, 155, 171, 258, 259
Application example, 160, 168
Automatic calculation motor/control parameters p0340[0...n], 422
Automatic mode, 214, 215
Automatic restart, 342
Automatic restart delay time start attempts p1212, 521
Automatic restart faults not active
p1206[0...9], 519
Automatic restart mode p1210, 519
Automatic restart monitoring time p1213[0...1], 521
Automatic restart start attempts p1211, 520

B

Bearing code number selection p0531[0...n], 437
Bearing maximum speed p0532[0...n], 437
Bearing version selection p0530[0...n], 436
BF (Bus Fault), 778, 779
BI : 1st acknowledge faults p2103[0...n], 600
$\mathrm{BI}: 2 / 3$ wire control command 1 p3330[0...n], 670
$\mathrm{BI}: 2 / 3$ wire control command 2 p3331[0...n], 671
$\mathrm{BI}: 2 / 3$ wire control command 3 p3332[0...n], 671
BI : 2nd acknowledge faults p2104[0...n], 601
BI : 3rd acknowledge faults p2105[0...n], 601
BI: Active STW1 in the BOP/IOP manual mode p8542[0...15], 705
BI: Binector-connector converter status word 1 p2080[0...15], 591
BI: Binector-connector converter status word 2 p2081[0...15], 591
BI: Binector-connector converter status word 3 p2082[0...15], 592
BI: Binector-connector converter status word 4 p2083[0...15], 593
BI: Binector-connector converter status word 5 p2084[0...15], 593
BI : Bypass control command p1266, 531
BI: Bypass switch feedback signal p1269[0...1], 532
BI : Close main contactor p0870, 481
BI : Command data set selection CDS bit 0 p0810, 471
BI : Command data set selection CDS bit 1 p0811, 471
BI : Continue ramp-function generator/freeze ramp-
function generator p1141[0...n], 514
BI: Control by PLC/no control by PLC p0854[0...n], 478
BI : CU analog outputs invert signal source p0782[0...2], 465
BI: CU signal source for terminal DO 0 p0730, 452
$\mathrm{BI}: \mathrm{CU}$ signal source for terminal DO 1 p0731, 453
BI: CU signal source for terminal DO 2 p0732, 453
BI: CU signal source for terminal DO 3 p0733, 454
BI : CU signal source for terminal DO 4 p0734, 454
BI : CU signal source for terminal DO 5 p0735, 455
BI : DC braking activation p1230[0...n], 523

BI: Deragging enable
p29591[0...n], 748
BI: Drive Data Set selection DDS bit 0 p0820[0...n], 472
BI: Drive Data Set selection DDS bit 1
p0821[0...n], 472
BI: Dual ramp enable p29580[0...n], 747
BI : Enable energy usage display p0043, 385
BI: Enable operation/inhibit operation p0852[0...n], 477
BI: Enable ramp-function generator/inhibit ramp-
function generator p1140[0...n], 514
BI: Enable setpoint/inhibit setpoint p1142[0...n], 515
BI: ESM activation signal source p3880, 676
BI : ESM direction of rotation signal source p3883, 677
BI: External alarm 1 p2112[0...n], 603
BI: External alarm 2 p2116[0...n], 604
BI: External alarm 3 p2117[0...n], 604
BI: External fault 1 p2106[0...n], 601
BI: External fault 2 p2107[0...n], 601
BI: External fault 3 p2108[0...n], 602
BI: External fault 3 enable p3111[0...n], 661
BI: External fault 3 enable negated p3112[0...n], 661
BI: Fixed speed setpoint selection Bit 0 p1020[0...n], 493
BI: Fixed speed setpoint selection Bit 1 p1021[0...n], 493
BI: Fixed speed setpoint selection Bit 2 p1022[0...n], 493
BI: Fixed speed setpoint selection Bit 3 p1023[0...n], 494
BI: Flying restart enable signal source p1201[0...n], 518
BI: Free tec_ctrl 0 enable p11000, 718
BI: Free tec_ctrl 1 enable p11100, 725

BI: Free tec_ctrl 2 enable p11200, 732
BI: Frost protection enable p29622[0...n], 751
BI: Hold technology controller integrator p2286[0...n], 640
BI: Inhibit master control p0806, 470
BI: Inhibit negative direction p1110[0...n], 508
BI: Inhibit positive direction p1111[0...n], 508
BI: Jog bit 0 p1055[0...n], 499
BI: Jog bit 1 p1056[0...n], 500
BI: Limit switch minus p3343[0...n], 672
BI: Limit switch plus p3342[0...n], 672
BI: Limit switch start p3340[0...n], 671
BI: Line contactor feedback signal p0860, 479
BI : Load monitoring failure detection p3232[0...n], 666
BI: Motor stall monitoring enable (negated) p2144[0...n], 611
BI: Motorized potentiometer accept setting value p1043[0...n], 497
BI: Motorized potentiometer inversion p1039[0...n], 496
BI: Motorized potentiometer lower setpoint p1036[0...n], 496
BI: Motorized potentiometer manual/automatic p1041[0...n], 497
BI: Motorized potentiometer setpoint raise p1035[0...n], 495
BI: Multi-pump control motor under repair p29543[0...3], 744
BI: No coast-down / coast-down (OFF2) signal source 1
p0844[0...n], 475
BI: No coast-down / coast-down (OFF2) signal source 2
p0845[0...n], 475, 476
BI: No Quick Stop / Quick Stop (OFF3) signal source 1
p0848[0...n], 476
BI: No Quick Stop / Quick Stop (OFF3) signal source 2
p0849[0...n], 477

BI: ON / OFF (OFF1) p0840[0...n], 474
BI: ON/OFF1 (OFF1) p29651[0...n], 755
BI: ON/OFF2 (OFF2) p29652[0...n], 755
BI : Pe set switching on inhibited signal source p5614, 689
BI: Ramp-function generator, accept setpoint p29642, 754
BI : Ramp-function generator, accept setting value p1143[0...n], 515
BI: RFG active p2148[0...n], 612
BI: Select IOP manual mode p8558, 706
BI: Setpoint inversion p1113[0...n], 509
BI: Technology controller enable p2200[0...n], 625
BI: Technology controller fixed value selection bit 0 p2220[0...n], 629
BI: Technology controller fixed value selection bit 1 p2221[0...n], 629
BI: Technology controller fixed value selection bit 2 p2222[0...n], 629
BI: Technology controller fixed value selection bit 3 p2223[0...n], 630
BI: Technology controller limiting enable p2290[0...n], 640
BI: Technology controller motorized potentiometer
lower setpoint p2236[0...n], 632
BI: Technology controller motorized potentiometer
raise setpoint p2235[0...n], 631
BICO block, 930
BICO interconnections search signal source p9484, 716
BICO interconnections signal source search count r9485, 717
BICO interconnections signal source search first
index
r9486, 717
Bimetallic switch, 327
Binectors, 931
Block, 930
BO: Connector-binector converter binector output r2094.0...15, 597 r2095.0...15, 598
BO: CU analog inputs status word r0751.0...11, 456

BO: CU analog outputs status word r0785.0...2, 465
BO: Fixed speed setpoint status r1025.0, 494
BO: Master control active
r0807.0, 470
BO: PROFIdrive PZD state
r2043.0...2, 585
BO: PROFIdrive PZD1 receive bit-serial r2090.0...15, 595
BO: PROFIdrive PZD2 receive bit-serial r2091.0...15, 596
BO: PROFIdrive PZD3 receive bit-serial r2092.0...15, 596
BO: PROFIdrive PZD4 receive bit-serial r2093.0...15, 597
BO: RTC DTC1 output r8413.0...1, 700
BO: RTC DTC2 output r8423.0...1, 702
BO: RTC DTC3 output r8433.0...1, 704
BO: STW1 from IOP in the manual mode r8540.0...15, 704
BOP-2
Menu, 925
Symbols, 925
Braking functions, 318
Braking method, 317
Bus termination, 94, 95
Bypass, 354
Bypass changeover source configuration p1267, 531
Bypass configuration p1260, 529
Bypass dead time p1262[0...n], 530
Bypass delay time p1264, 531
Bypass speed threshold p1265, 531
Bypass switch monitoring time p1274[0...1], 533

C

Cable resistance, 295
p0352[0...n], 426
Cascade control, 287
Catalog, 933
Cavitation protection, 240

Cavitation protection enable p29625[0...n], 751
Cavitation protection threshold p29626[0...n], 752
Cavitation protection time p29627[0...n], 752
Change acknowledge mode fault number p2126[0...19], 606
Change acknowledge mode mode p2127[0...19], 607
Change fault response fault number p2100[0...19], 599
Change fault response response p2101[0...19], 600
Change message type message number p2118[0...19], 604
Change message type type p2119[0...19], 605
Change safety message type p3117, 662
Characteristic
Additional, 298
Linear, 298, 307
parabolic, 298, 307
square-law, 298, 307
Checklist
PROFINET, 195
Cl : Active speed setpoint in the BOP/IOP manual
mode
p8543, 706
CI: Comm IF USS PZD send word p2016[0...3], 583
CI: Connector-binector converter signal source p2099[0...1], 599
$\mathrm{Cl}: \mathrm{CU}$ analog outputs signal source p0771[0...2], 461
CI: Current limit, variable p0641[0...n], 449
CI: ESM setpoint technology controller p3884, 678
CI: Free tec_ctrl 0 actual value signal source p11064, 721
Cl : Free tec_ctrl 0 limit maximum signal source p11097, 724
CI: Free tec_ctrl 0 limit minimum signal source p11098, 724
CI: Free tec_ctrl 0 limit offset signal source p11099, 725
CI: Free tec_ctrl 0 setpoint signal source p11053, 720
CI: Free tec_ctrl 1 actual value signal source p11164, 728

CI: Free tec_ctrl 1 limit maximum signal source p11197, 731
CI: Free tec_ctrl 1 limit minimum signal source p11198, 731
CI: Free tec_ctrl 1 limit offset signal source p11199, 732
CI: Free tec_ctrl 1 setpoint signal source p11153, 727
CI: Free tec_ctrl 2 actual value signal source p11264, 735
CI: Free tec_ctrl 2 limit maximum signal source p11297, 738
CI: Free tec_ctrl 2 limit minimum signal source p11298, 738
CI: Free tec_ctrl 2 limit offset signal source p11299, 739
CI: Free tec_ctrl 2 setpoint signal source p11253, 734
Cl : Load monitoring speed actual value p3230[0...n], 666
CI: Main setpoint p1070[0...n], 501
Cl : Main setpoint scaling p1071[0...n], 501
Cl : Minimum speed signal source p1106[0...n], 508
Cl : Motorized potentiometer automatic setpoint p1042[0...n], 497
Cl : Motorized potentiometer setting value p1044[0...n], 498
Cl : PROFIdrive PZD send double word p2061[0...15], 588
CI: PROFIdrive PZD send word p2051[0...16], 586
CI: Ramp-down scaling input p29579[0...n], 747
Cl : Ramp-function generator ramp-down time scaling p1139[0...n], 514
Cl : Ramp-function generator ramp-up time scaling p1138[0...n], 513
CI: Ramp-function generator setpoint input p29643, 754
Cl : Ramp-function generator setting value p1144[0...n], 516
CI: Ramp-up scaling input p29578[0...n], 747
Cl : Skip speed scaling p1098[0...n], 507
CI: Speed limit in negative direction of rotation p1088[0...n], 506
CI: Speed limit in positive direction of rotation p1085[0...n], 505

CI: Speed limit RFG negative direction of rotation p1052[0...n], 499
CI: Speed limit RFG positive direction of rotation p1051[0...n], 499
CI: Speed setpoint for messages/signals p2151[0...n], 613
CI: Supplementary setp p1075[0...n], 502
Cl : Supplementary setpoint scaling p1076[0...n], 502
Cl : Technology controller actual value p2264[0...n], 636
CI: Technology controller Kp adaptation input value signal source p2310, 643
Cl : Technology controller Kp adaptation scaling signal source p2315, 644
CI: Technology controller limit offset p2299[0...n], 642
Cl : Technology controller maximum limit signal source p2297[0...n], 641
Cl : Technology controller minimum limit signal source p2298[0...n], 642
CI: Technology controller output scaling p2296[0...n], 641
Cl : Technology controller precontrol signal p2289[0...n], 640
CI: Technology controller setpoint 1 p2253[0...n], 634
Cl : Technology controller setpoint 2 p2254[0...n], 635
CI: Technology controller Tn adaptation input value
signal source p2317, 645
CI: Torque limit lower p1523[0...n], 553
CI : Torque limit lower scaling without offset p1554[0...n], 556
CI : Torque limit upper p1522[0...n], 552
CI : Torque limit upper scaling without offset p1552[0...n], 556
Closed-loop cascade control configuration p2371, 650
Closed-loop cascade control enable p2370[0...n], 649
Closed-loop cascade control holding time switch-in speed
p2385, 654

Closed-loop cascade control holding time switch-out speed p2387, 655
Closed-loop cascade control interlocking time p2377, 652
Closed-loop cascade control max time for continuous operation
p2381, 653
Closed-loop cascade control mode motor selection p2372, 650
Closed-loop cascade control motor switch-off delay p2386, 654
Closed-loop cascade control motor switch-on delay p2384, 654
Closed-loop cascade control operating hours p2380[0...2], 653
Closed-loop cascade control operating time limit p2382, 653
Closed-loop cascade control overcontrol threshold p2376, 652
Closed-loop cascade control switch-in delay p2374, 651
Closed-loop cascade control switch-in threshold p2373, 651
Closed-loop cascade control switch-in/switch-out speed p2378, 652
Closed-loop cascade control switch-out delay p2375, 652
Closed-loop cascade control switch-out sequence p2383, 654
CO/BO: 2/3 wire control control word r3333.0...3, 671
CO/BO: Bypass control/status word r1261.0...11, 530
CO/BO: Closed-loop cascade control status word r2379.0...7, 653
CO/BO: Command Data Set CDS effective r0050.0...1, 388
CO/BO: Command Data Set CDS selected r0836.0...1, 473
CO/BO: Compound braking/DC quantity control
status word
r3859.0...1, 676
CO/BO: Control word 1 r0054.0...15, 391
CO/BO: Control word faults/alarms r2138.7...15, 610
CO/BO: Control word sequence control r0898.0...10, 481
CO/BO: Control word setpoint channel r1198.0...15, 517

CO/BO: CU digital inputs status r0722.0...12, 451
CO/BO: CU digital inputs status inverted r0723.0...12, 451
CO/BO: Data set changeover status word r0835.2...8, 473
CO/BO: DC braking status word r1239.8...13, 525
CO/BO: Drive coupling status word/control word r0863.0...1, 479
CO/BO: Drive Data Set DDS effective r0051.0...1, 388
CO/BO: Drive Data Set DDS selected r0837.0...1, 474
CO/BO: ESM status word r3889.0...10, 678
CO/BO: Extented setpoint channel selection output r29640.0...18, 753
CO/BO: Faults/alarms trigger word r2129.0...15, 607
CO/BO: Free tec_ctrl 0 status word r11049.0...11, 720
CO/BO: Free tec_ctrl 1 status word r11149.0...11, 727
CO/BO: Free tec_ctrl 2 status word r11249.0...11, 734
CO/BO: Gating unit status word 1 r1838.0...15, 567
CO/BO: Hibernation mode status words
r2399.0...8, 658
CO/BO: Limit switch status word
r3344.0...5, 672
CO/BO: Missing enable signal
r0046.0...31, 385
CO/BO: Mot_temp status word faults/alarms r5389.0...8, 685
CO/BO: Multi-pump control bypass command r29545, 745
CO/BO: Multi-pump control feedback signal for contactor
r29549, 745
CO/BO: Multi-pump control service mode interlock manually
p29542.0...3, 744
CO/BO: Multi-pump control status word
r29529.0...7, 741
CO/BO: NAMUR message bit bar
r3113.0...15, 661
CO/BO: Pe energy-saving active/inactive
r5613.0...1, 688
CO/BO: PM330 digital inputs status
r4022.0...3, 683

CO/BO: PM330 digital inputs status inverted r4023.0...3, 683
CO/BO: PolID diagnostics
r1992.0...15, 579
CO/BO: Safely remove memory card status r9401.0...3, 716
CO/BO: Skip band status word r1099.0, 507
CO/BO: Status word 1 r0052.0...15, 388
CO/BO: Status word 2 r0053.0...11, 389, 390
CO/BO: Status word faults/alarms 1 r2139.0...15, 610
CO/BO: Status word faults/alarms 2 r2135.12...15, 609
CO/BO: Status word monitoring 1 r2197.0...13, 623
CO/BO: Status word monitoring 2 r2198.4...12, 624
CO/BO: Status word monitoring 3 r2199.0...5, 625
CO/BO: Status word sequence control r0899.0...11, 481
CO/BO: Status word speed controller r1407.0...23, 547
CO/BO: Status word, closed-loop control r0056.0...15, 393
CO/BO: Status word: application r29629, 752
CO/BO: Status word:command r29659, 755
CO/BO: Supplementary control word r0055.0...15, 391, 392
CO/BO: Technology controller fixed value selection
status word
r2225.0, 630
CO/BO: Technology controller status word r2349.0...13, 648
CO/BO: Write protection/know-how protection status r7760.0...12, 690
CO: Absolute actual current smoothed r0027, 380
CO: Absolute current actual value r0068[0...1], 395
CO: Accelerating torque
r1518[0...1], 551
CO: Active power actual value
r0082[0...2], 398
CO: Active power actual value smoothed r0032, 380

CO: Actual alarm code
r2132, 609
CO: Actual component number r3132, 665
CO: Actual DC link voltage
r0070, 396
CO: Actual fault code
r2131, 608
CO: Actual fault value
r3131, 665
CO: Actual power factor r0087, 398
CO: Actual slip compensation r1337, 543
CO: Actual speed r0063[0...2], 394
CO: Actual speed smoothed r0021, 378
CO: Actual speed smoothed signals r2169, 617
CO: Counter alarm buffer changes r2121, 605
CO: Counter for fault buffer changes r0944, 482
CO: CU analog inputs actual value in percent r0755[0...3], 457
CO: CU analog inputs input voltage/current actual r0752[0...3], 456
CO: Current actual value field-generating r0076, 397
CO: Current actual value torque-generating r0078, 397
CO: Current setpoint field-generating r0075, 396
CO: Current setpoint torque-generating r0077, 397
CO: DC link voltage smoothed
r0026, 379
CO: Energy display
r0039[0...2], 383
CO: Extented setpoint channel setpoint output r29641, 754
CO: Fixed speed setpoint 1
p1001[0...n], 489
CO: Fixed speed setpoint 10
p1010[0...n], 491
CO: Fixed speed setpoint 11
p1011[0...n], 491
CO: Fixed speed setpoint 12
p1012[0...n], 491
CO: Fixed speed setpoint 13
p1013[0...n], 492

CO: Fixed speed setpoint 14 p1014[0...n], 492
CO: Fixed speed setpoint 15
p1015[0...n], 492
CO: Fixed speed setpoint 2
p1002[0...n], 489
CO: Fixed speed setpoint 3
p1003[0...n], 489
CO: Fixed speed setpoint 4
p1004[0...n], 489
CO: Fixed speed setpoint 5
p1005[0...n], 490
CO: Fixed speed setpoint 6 p1006[0...n], 490
CO: Fixed speed setpoint 7 p1007[0...n], 490
CO: Fixed speed setpoint 8 p1008[0...n], 490
CO: Fixed speed setpoint 9 p1009[0...n], 491
CO: Fixed speed setpoint effective r1024, 494
CO: Fixed value 1 [\%] p2900[0..n], 658
CO: Fixed value 2 [\%]
p2901[0...n], 659
CO: Fixed value $M[\mathrm{Nm}]$
p2930[0...n], 659
CO: Fixed values [\%]
r2902[0...14], 659
CO: Flux setpoint
p1570[0...n], 556, 557
CO: Free tec_ctrl 0 actual value after limiter r11072, 722
CO: Free tec_ctrl 0 limit maximum p11091, 723
CO: Free tec_ctrl 0 limit minimum
p11092, 723
CO: Free tec_ctrl 0 output signal
r11094, 724
CO: Free tec_ctrl 0 setpoint after ramp-function
generator
r11060, 721
CO: Free tec_ctrl 0 system deviation
r11073, 722
CO: Free tec_ctrl 1 actual value after limiter r11172, 729
CO: Free tec_ctrl 1 limit maximum
p11191, 730
CO: Free tec_ctrl 1 limit minimum
p11192, 730

CO: Free tec_ctrl 1 output signal
r11194, 731
CO: Free tec_ctrl 1 setpoint after ramp-function generator
r11160, 728
CO: Free tec_ctrl 1 system deviation r11173, 729
CO: Free tec_ctrl 2 actual value after limiter r11272, 736
CO: Free tec_ctrl 2 limit maximum
p11291, 737
CO: Free tec_ctrl 2 limit minimum
p11292, 737
CO: Free tec_ctrl 2 output signal
r11294, 738
CO: Free tec_ctrl 2 setpoint after ramp-function
generator
r11260, 735
CO: Free tec_ctrl 2 system deviation r11273, 736
CO: Hibernation mode output speed actual
r2397[0...1], 657
CO: I_max controller frequency output r1343, 544
CO: Lower effective torque limit
r1539, 555
CO: Main setpoint effective
r1073, 501
CO: Maximum power unit output current
r0289, 409
CO: Moment of inertia total, scaled
r1493, 550
CO: Mot. potentiometer speed setp. in front of ramp-
fct. gen.
r1045, 498
CO: Motor temperature
r0035, 381
CO: Motor utilization thermal
r0034, 381
CO: Motorized potentiometer setpoint after ramp-
function generator
r1050, 499
CO: Output current maximum
r0067, 395
CO: Output frequency
r0066, 395
CO: Output voltage
r0072, 396
CO: Output voltage smoothed r0025, 379
CO: Power unit overload I2t
r0036, 382

CO : Power unit temperatures r0037[0...19], 382
CO: Process energy display r0042[0...2], 384
CO: PROFIdrive PZD receive double word r2060[0...10], 587
CO: PROFIdrive PZD receive word r2050[0...11], 585
CO: Pulse frequency
r1801[0...1], 565
CO: Ramp-down scaling output r29577, 747
CO: Ramp-function generator acceleration r1149, 516
CO: Ramp-function generator setpoint at the input r1119, 509
CO: Ramp-up scaling output r29576, 746
CO: Send binector-connector converter status word r2089[0...4], 594
CO: Setpoint after the direction limiting r1114, 509
CO: Speed controller I torque output r1482, 550
CO: Speed controller setpoint sum r1170, 516
CO: Speed controller speed setpoint r1438, 548
CO: Speed controller system deviation r0064, 394
CO: Speed limit in negative direction of rotation p1086[0...n], 505
CO: Speed limit in positive direction of rotation p1083[0...n], 505
CO: Speed limit negative effective r1087, 506
CO: Speed limit positive effective r1084, 505
CO: Speed setpoint after the filter r0062, 394
CO: Speed setpoint before the setpoint filter r0060, 393
CO: Speed setpoint from the IOP in the manual mode r8541, 705
CO: Supplementary setpoint effective
r1077, 502
CO: Technology controller actual value after filter
r2266, 637
CO: Technology controller actual value scaled
r2272, 638
CO: Technology controller fixed value 1
p2201[0...n], 625

CO: Technology controller fixed value 10 p2210[0...n], 627
CO: Technology controller fixed value 11 p2211[0...n], 628
CO: Technology controller fixed value 12 p2212[0...n], 628
CO: Technology controller fixed value 13 p2213[0...n], 628
CO: Technology controller fixed value 14 p2214[0...n], 628
CO: Technology controller fixed value 15 p2215[0...n], 629
CO: Technology controller fixed value 2 p2202[0...n], 625
CO: Technology controller fixed value 3 p2203[0...n], 626
CO: Technology controller fixed value 4 p2204[0...n], 626
CO: Technology controller fixed value 5 p2205[0...n], 626
CO: Technology controller fixed value 6 p2206[0...n], 626
CO: Technology controller fixed value 7 p2207[0...n], 627
CO: Technology controller fixed value 8 p2208[0...n], 627
CO: Technology controller fixed value 9 p2209[0...n], 627
CO: Technology controller fixed value effective r2224, 630
CO: Technology controller last speed setpoint
(smoothed)
r2344, 647
CO: Technology controller maximum limiting p2291, 640
CO: Technology controller minimum limiting p2292, 640
CO: Technology controller mot. potentiometer
setpoint before RFG r2245, 632
CO: Technology controller motorized potentiometer
setpoint after RFG r2250, 633
CO: Technology controller output scaling p2295, 641
CO: Technology controller output signal r2294, 641
CO: Technology controller setpoint after filter r2262, 636
CO: Technology controller setpoint after rampfunction generator
r2260, 636

CO: Technology controller system deviation r2273, 639
CO: Technology controller Tn adaptation output r2322, 646
CO: Technology controller, Kp adaptation output r2316, 645
CO: Torque actual value r0080[0...1], 398
CO: Torque limit for speed controller output r1547[0...1], 555
CO: Torque limit lower
p1521[0...n], 552
CO: Torque limit lower scaling
p1525[0...n], 553
CO: Torque limit lower without offset r1527, 554
CO: Torque limit upper
p1520[0...n], 552
CO: Torque limit upper without offset r1526, 554
CO: Torque limit upper/motoring scaling p1524[0...n], 553
CO: Torque setpoint r0079, 397
CO: Torque setpoint before supplementary torque r1508, 551
CO: Total flux setpoint r1598, 559
CO: Total setpoint effective r1078, 502
CO: Upper effective torque limit r1538, 555
CO: Vdc controller output
r1258, 529
CO: Vdc controller output (U/f)
r1298, 537
Comm IF address
p2011, 582
Comm IF baud rate p2010, 582
Command data set, 214
Command data set (CDS), 214
Commissioning
Guidelines, 123
Communication
Acyclic, 189
Completion of quick commissioning p3900, 678
Component alarm
r3121[0...63], 663
Component fault
r3120[0...63], 663

Compound braking, 321, 322
Compound braking current p3856[0...n], 675
Compressor, 134, 141
Condensation protection, 238
Condensation protection current
p29624[0...n], 751
Connectors, 931
Control terminals, 99
Control Unit firmware version r0018, 378
Control word
Control word 3, 179
Control word 1, 177
Control word 3 (STW3), 179
Converter
Update, 894
Cooling, 53
Copy Command Data Set CDS
p0809[0...2], 471
Copy Drive Data Set DDS p0819[0...2], 472
CU analog inputs characteristic value x1 p0757[0...3], 458
CU analog inputs characteristic value x2 p0759[0...3], 459
CU analog inputs characteristic value y1 p0758[0...3], 459
CU analog inputs characteristic value y2 p0760[0...3], 460
CU analog inputs dead zone p0764[0...3], 461
CU analog inputs simulation mode p0797[0...3], 467
CU analog inputs simulation mode setpoint p0798[0...3], 467
CU analog inputs smoothing time constant p0753[0...3], 457
CU analog inputs type p0756[0...3], 457
CU analog inputs wire breakage monitoring delay time p0762[0...3], 460
CU analog inputs wire breakage monitoring response threshold p0761[0...3], 460
CU analog outputs activate absolute value generation p0775[0...2], 462
CU analog outputs characteristic value $\times 1$ p0777[0...2], 463
CU analog outputs characteristic value $\times 2$ p0779[0...2], 464

CU analog outputs characteristic value y1 p0778[0...2], 464
CU analog outputs characteristic value y2 p0780[0...2], 465
CU analog outputs output value currently referred r0772[0...2], 462
CU analog outputs output voltage/current actual r0774[0...2], 462
CU analog outputs smoothing time constant p0773[0...2], 462
CU analog outputs type p0776[0...2], 463
CU detection via LED p0124[0...n], 400
CU digital inputs debounce time p0724, 452
CU digital inputs simulation mode p0795, 466
CU digital inputs simulation mode setpoint p0796, 466
CU digital inputs terminal actual value r0721, 450
CU digital outputs status r0747, 455
CU invert digital outputs p0748, 455
CU number of inputs and outputs r0720[0...4], 450
Current injection ramp time p1601[0...n], 560
Current input, 165
Current limit p0640[0...n], 448
Current limit excitation induction motor p0644[0...n], 449
Current limit torque-generating total r1533, 555
Current setpoint smoothing time p1616[0...n], 561
Current threshold value p2170[0...n], 617
Current threshold value reached delay time p2171[0...n], 617
Cyclic communication, 187

D

Data backup, 759
Data transfer, 763, 766
Data transfer start
p0804, 468

Data transfer: device memory as source/target p0803, 468
Data transfer: memory card as source/target p0802, 468
Date, 292
Daylight saving time, 293
DC braking, 179, 319, 320
DC braking braking current p1232[0...n], 524
DC braking configuration p1231[0...n], 523
DC braking time p1233[0...n], 525
DC link voltage, 331
DC link voltage comparison delay time p2173[0...n], 617
DC link voltage overvoltage threshold r0297, 411
DC link voltage threshold value p2172[0...n], 617
DC link voltage undervoltage threshold r0296, 411
DC quantity controller configuration p3855[0...n], 674
DC quantity controller integral time p3858[0...n], 675
DC quantity controller P gain p3857[0...n], 675
DC-link overvoltage, 331
Deadband, 169
Debypass delay time p1263, 531
Delta connection, 93
Delta connection (Δ), 125, 126
Deragging, 241
Deragging forward speed p29592[0...n], 748
Deragging forward time p29596[0...n], 749
Deragging mode p29590[0...n], 747
Deragging ramp down time p29595[0...n], 749
Deragging ramp up time p29594[0...n], 748
Deragging reverse speed p29593[0...n], 748
Deragging reverse time p29597[0...n], 749
Device identification
r0964[0...6], 484

DI selection for ON/OFF2 p29650[0...n], 754
Diagnostic attribute alarm r3123[0...63], 664
Diagnostic attribute fault r3122[0...63], 663
Digital input, 99
Digital output, 99
Function, 161, 166, 171
Dimension drawings, 58, 61
DIP switch
Analog input, 165
Direction of rotation, 257
Display values smoothing time constant p0045, 385
Download, 763
Drive commissioning parameter filter p0010, 377
Drive control, 147
Drive Data Set, DDS, 370
Drive data sets, 370
Drive filter type motor side p0230, 405, 406
Drive operating display r0002, 376
Drive unit line supply voltage p0210, 405
Drive unit reset p0972, 487
Drive unit status word r3974, 682
DS 47, 189
DTC (Digital Time Clock), 294
Dual ramp, 267

E

Efficiency optimization p1580[0...n], 558, 559
Efficiency optimization 2 maximum flux limit value p3316[0...n], 667
Efficiency optimization 2 minimum flux limit value p3315[0...n], 667
Efficiency optimization 2 optimum flux r3313, 667
EMC, 48
EMERGENCY STOP, 220
EMERGENCY SWITCHING OFF, 220
EN 60204-1, 220
EN 61800-5-2, 219
Enable PID autotuning
p2350, 648

Energy consumption saved r0041, 384
Energy-saving display, 368
ESM, 347
ESM setpoint source p3881, 676
ESM setpoint source alternative p3882, 677
Essential service mode, 347
Ethernet/IP, 194
Ethernet/IP ODVA speed scaling p8982, 714
Ethernet/IP ODVA STOP mode p8981, 713
Ethernet/IP ODVA torque scaling p8983, 714
Ethernet/IP profile p8980, 713
Extending the telegram, 188
External fault 3 switch-on delay p3110, 660

F

Factory assignment, 99
Factory settings
Restoring the, 145
Fan, 134, 141
Fan run-on time p0295, 411
Fans, 324, 869
Fault, 292, 777, 785
Acknowledge, 785, 786
Fault buffer, 292, 785
Fault case, 787
Fault cases counter p0952, 484
Fault code, 785 r0945[0...63], 483
Fault code list r0946[0...65534], 483
Fault history, 786
Fault number r0947[0...63], 483
Fault time, 292, 785
received, 785
removed, 785
Fault time received in days r2130[0...63], 608
Fault time received in milliseconds r0948[0...63], 483

Fault time removed in days r2136[0...63], 610
Fault time removed in milliseconds r2109[0...63], 602
Fault value, 785 r0949[0...63], 484
Fault value for float values r2133[0...63], 609
Faults and alarms Overview, 788
Faults/alarms trigger selection p2128[0...15], 607
FCC, 296
FCC (Flux Current Control), 298
Field bus interface protocol selection p2030, 583
Field weakening, 93
Field weakening controller integral-action time p1596[0...n], 559
Fieldbus interfaces, 94, 95
Filter time constant Vdc correction p1806[0...n], 566
Firmware Update, 894
Firmware check status r9926, 717
Firmware downgrade, 891
Firmware file incorrect r9925[0...99], 717
Fixed speed setpoint select mode p1016, 492
Flow control, 269
Flow meter calculated flow r29633, 753
Flow meter pump flow p29632[0...4], 753
Flow meter pump power p29631[0...4], 753
Fluid flow machine power point 1 p3320[0...n], 667
Fluid flow machine power point 2 p3322[0...n], 668
Fluid flow machine power point 3 p3324[0...n], 669
Fluid flow machine power point 4 p3326[0...n], 669
Fluid flow machine power point 5 p3328[0...n], 670
Fluid flow machine speed point 1 p3321[0...n], 668
Fluid flow machine speed point 2 p3323[0...n], 668

Fluid flow machine speed point 3 p3325[0...n], 669
Fluid flow machine speed point 4 p3327[0...n], 670
Fluid flow machine speed point 5 p3329[0...n], 670
Flux control configuration p1401[0...n], 546
Flux current control, 296
Flux model value display r2969[0...6], 660
Flux reduction factor p1581[0...n], 559
Flux reduction flux build-up time constant p1579[0...n], 558
Flux reduction flux decrease time constant p1578[0...n], 558
Flux reduction torque factor transition value r1566[0...n], 556
Flux setpoint smoothing time p1582[0...n], 559
Flying restart, 340
Flying restart maximum frequency for the inhibited
direction p1271[0...n], 532
Flying restart operating mode p1200[0...n], 517
Flying restart search current p1202[0...n], 518
Flying restart search rate factor p1203[0...n], 519
Formatting, 760
Forming activation/duration p3380, 673
Forming remaining time r3381, 673
Forming status word r3382, 674
Forming the DC link capacitors, 127
Free tec_ctrl 0 actual value inversion p11071, 722
Free tec_ctrl 0 actual value lower limit p11068, 722
Free tec_ctrl 0 actual value smoothing time constant p11065, 721
Free tec_ctrl 0 actual value upper limit p11067, 722
Free tec_ctrl 0 differentiation time constant p11074, 723
Free tec_ctrl 0 integral time p11085, 723

Free tec_ctrl 0 limit ramp-up/ramp-down time p11093, 724
Free tec_ctrl 0 proportional gain p11080, 723
Free tec_ctrl 0 sampling time p11028, 719
Free tec_ctrl 0 setpoint ramp-down time p11058, 720
Free tec_ctrl 0 setpoint ramp-up time p11057, 720
Free tec_ctrl 0 system deviation inversion p11063, 721
Free tec_ctrl 0 unit reference quantity p11027, 719
Free tec_ctrl 0 unit selection p11026, 718
Free tec_ctrl 1 actual value inversion p11171, 729
Free tec_ctrl 1 actual value lower limit p11168, 729
Free tec_ctrl 1 actual value smoothing time constant p11165, 728
Free tec_ctrl 1 actual value upper limit p11167, 729
Free tec_ctrl 1 differentiation time constant p11174, 730
Free tec_ctrl 1 integral time p11185, 730
Free tec_ctrl 1 limit ramp-up/ramp-down time p11193, 731
Free tec_ctrl 1 proportional gain p11180, 730
Free tec_ctrl 1 sampling time p11128, 726
Free tec_ctrl 1 setpoint ramp-down time p11158, 727
Free tec_ctrl 1 setpoint ramp-up time p11157, 727
Free tec_ctrl 1 system deviation inversion p11163, 728
Free tec_ctrl 1 unit reference quantity p11127, 726
Free tec_ctrl 1 unit selection p11126, 725
Free tec_ctrl 2 actual value inversion p11271, 736
Free tec_ctrl 2 actual value lower limit p11268, 736
Free tec_ctrl 2 actual value smoothing time constant p11265, 735
Free tec_ctrl 2 actual value upper limit p11267, 736

Free tec_ctrl 2 differentiation time constant p11274, 737
Free tec_ctrl 2 integral time p11285, 737
Free tec_ctrl 2 limit ramp-up/ramp-down time p11293, 738
Free tec_ctrl 2 proportional gain p11280, 737
Free tec_ctrl 2 sampling time p11228, 733
Free tec_ctrl 2 setpoint ramp-down time p11258, 734
Free tec_ctrl 2 setpoint ramp-up time p11257, 734
Free tec_ctrl 2 system deviation inversion p11263, 735
Free tec_ctrl 2 unit reference quantity p11227, 733
Free tec_ctrl 2 unit selection p11226, 732
Frost protection, 237
Frost protection speed
p29623[0...n], 751
Functions
BOP-2, 925

G

Gain resonance damping for encoderless closed-loop control
p1740[0...n], 561
Generator operation, 317
Getting Started, 932
Ground fault monitoring thresholds
p0287[0...1], 409

H

Hardware sampling times still assignable r7903, 695
Hibernation mode boost speed p2395[0...n], 656
Hibernation mode boost time period p2394[0...n], 656
Hibernation mode delay time p2391[0...n], 655
Hibernation mode max. shutdown time p2396[0...n], 657
Hibernation mode operating type p2398, 657

Hibernation mode restart speed relative w/o techn controller p2393[0...n], 656
Hibernation mode restart value with technology controller p2392, 655
Hotline, 934
Hysteresis speed 1 p2142[0...n], 611
Hysteresis speed 2 p2140[0...n], 611
Hysteresis speed 3 p2150[0...n], 613
Hysteresis speed 4 p2164[0...n], 615
Hysteresis speed n_act > n_max p2162[0...n], 615

I

I_max controller, 323
I_max controller voltage output r1344, 544
I_max frequency controller integral time p1341[0...n], 544
I_max frequency controller proportional gain p1340[0...n], 543
I_max voltage controller integral time p1346[0...n], 545
I_max voltage controller proportional gain p1345[0...n], 544
i2t monitoring, 326
12 t motor model thermal time constant p0611[0...n], 442
Identification and Maintenance 1 p8806[0...53], 707
Identification and Maintenance 2 p8807[0...15], 707
Identification and Maintenance 3 p8808[0...53], 708
Identification and Maintenance 4 p8809[0...53], 708
Identification and maintenance 4 configuration p8805, 707
Identification final display r3925[0...n], 679
Identification stator resistance after restart p0621[0...n], 445
IEC/NEMA Standards p0100, 399
IND (page index), 184
Industry Mall, 933

Inhibit automatic reference value calculation p0573, 438
Installation, 57
Interfaces, 94
Internal power unit resistance r0238, 408
Interpolator clock cycle for speed setpoints p1079, 502
Invert binector-connector converter status word p2088[0...4], 594
Inverter connector-binector converter binector output p2098[0...1], 598
IO extension module status r0719, 450
IOP speed unit p8552, 706

J

Jog 1 speed setpoint p1058[0...n], 500
Jog 2 speed setpoint p1059[0...n], 500
JOG function, 212

K

Keep-running operation enable p29630, 752
KHP configuration p7765, 691
KHP Control Unit reference serial number p7759[0...19], 689
KHP Control Unit serial number r7758[0...19], 689
KHP memory card reference serial number p7769[0...20], 693
KHP OEM exception list p7764[0...n], 691
KHP OEM exception list number of indices for p7764 p7763, 691
KHP password confirmation p7768[0...29], 693
KHP password input p7766[0...29], 692
KHP password new p7767[0...29], 693
Kinetic buffering, 345
Know-how protection, 760, 773
KTY84 sensor, 327

L
LED
BF, 778, 779
LNK, 778
RDY, 778
LED (light emitting diode), 777
Level control, 269
Line contactor, 219
Line contactor monitoring time p0861, 479
Line dip, 345
Linear characteristic, 298, 307
List of faults and alarms, 788
LNK (PROFINET Link), 778
Load monitoring configuration p2193[0...n], 623
Load monitoring delay time p2192[0...n], 623
Load monitoring response p2181[0...n], 619
Load monitoring speed deviation p3231[0...n], 666
Load monitoring speed threshold value 1 p2182[0...n], 620
Load monitoring speed threshold value 2 p2183[0...n], 620
Load monitoring speed threshold value 3 p2184[0...n], 620
Load monitoring stall monitoring torque threshold p2168[0...n], 616
Load monitoring stall monitoring upper threshold p2165[0...n], 615
Load monitoring torque threshold 1 lower p2186[0...n], 621
Load monitoring torque threshold 1 upper p2185[0...n], 621
Load monitoring torque threshold 2 lower p2188[0...n], 622
Load monitoring torque threshold 2 upper p2187[0...n], 621
Load monitoring torque threshold 3 lower p2190[0...n], 622
Load monitoring torque threshold 3 upper p2189[0...n], 622
Load monitoring torque threshold no load p2191[0...n], 622

M

Macro drive object r8570[0...39], 706
Macro drive unit p0015, 377
Macro execution actual r8585, 706
Manual mode, 214, 215
Master control control word effective r2032, 583
Master control mode selection p3985, 682
Maximum cable length PROFINET, 120
Maximum current controller, 323
Maximum modulation depth p1803[0...n], 566
Maximum motor current p0323[0...n], 419
Maximum motor speed p0322[0...n], 419
Maximum output voltage r0071, 396
Maximum speed, 130, 257 p1082[0...n], 504
Maximum speed scaling p1081, 503
Memory card, 760
Memory card serial number r7843[0...20], 694
Memory card/device memory firmware version r7844[0...2], 695
Menu
BOP-2, 925
Operator panel, 925
Minimum speed, 130, 257, 262
p1080[0...n], 503
Modular Safety System, 113
Modulator configuration p1810, 567
Modulator mode p1802[0...n], 566
Monitoring configuration p2149[0...n], 613
MOP (motorized potentiometer), 249
Mot_temp_mod 1 (I2t) fault threshold p0615[0...n], 444
Mot_temp_mod 1/2/sensor threshold and
temperature value
p0605[0...n], 441

Mot_temp_mod 1/3 alarm threshold p5390[0...n], 686
Mot_temp_mod $1 / 3$ ambient temperature p0613[0...n], 443
Mot_temp_mod $1 / 3$ boost factor at standstill p5350[0...n], 685
Mot_temp_mod 1/3 fault threshold p5391[0...n], 686
Mot_temp_mod 2/sensor alarm threshold p0604[0...n], 440
Mot_temp_mod activation p0612[0...n], 442
Mot_temp_mod stator winding temperature r0632[0...n], 448
MotID (motor data identification), 136, 138, 142
Motor ambient temperature during commissioning p0625[0...n], 447
Motor blocked delay time p2177[0...n], 618
Motor blocked speed threshold p2175[0...n], 618
Motor changeover motor number p0826[0...n], 472
Motor code, 126
Motor code number selection p0301[0...n], 414
Motor configuration p0133[0...n], 400
Motor control, 148
Motor cooling type p0335[0...n], 422
Motor data, 125
Identify, 136, 138, 142, 316 Measure, 136, 138, 142
Motor data identification and rotating measurement p1900, 568, 569
Motor data identification and speed controller
optimization r0047, 387
Motor data identification control word
p1909[0...n], 571, 572 r3927[0...n], 680
Motor data identification selection p1910, 573, 574
Motor de-excitation time p0347[0...n], 425
Motor excitation build-up time p0346[0...n], 424
Motor excitation time for Rs_ident after switching on again
p0622[0...n], 446
Motor holding brake, 219

Motor magnetizing inductance p0360[0...n], 428
Motor model adaptation configuration p1780[0...n], 564
Motor model changeover speed encoderless
operation p1755[0...n], 563
Motor model changeover speed hysteresis
encoderless operation p1756, 564
Motor model configuration p1750[0...n], 562
Motor model error signal stall detection r1746, 561
Motor model error threshold stall detection p1745[0...n], 561
Motor moment of inertia p0341[0...n], 423
Motor operating hours maintenance interval p0651[0...n], 449
Motor overtemperature response p0610[0...n], 441
Motor overtemperature, stator winding p0627[0...n], 447
Motor pole pair number, actual (or calculated) r0313[0...n], 418
Motor pole position identification current p0329[0...n], 420
Motor pole position identification current 1st phase p0325[0...n], 419
Motor rated magnetizing current/short-circuit current p0320[0...n], 418
Motor reactor in series number p0235, 408
Motor rotor leakage inductance p0358[0...n], 427
Motor rotor resistance cold p0354[0...n], 426
Motor rotor time constant / damping time constant d axis r0384[0...n], 428
Motor stalled delay time p2178[0...n], 618
Motor standard, 216
Motor stator inductance d axis p0357[0...n], 427
Motor stator leakage inductance p0356[0...n], 427
Motor stator resistance cold p0350[0...n], 425
Motor temperature sensor, 99

Motor temperature sensor type p0601[0...n], 440
Motor torque constant p0316[0...n], 418
Motor type selection p0300[0...n], 411, 413
Motor weight (for the thermal motor model) p0344[0...n], 424
Motorized potentiometer, 249
Motorized potentiometer configuration p1030[0...n], 495
Motorized potentiometer maximum speed p1037[0...n], 496
Motorized potentiometer minimum speed p1038[0...n], 496
Motorized potentiometer ramp-down time p1048[0...n], 498
Motorized potentiometer ramp-up time p1047[0...n], 498
Motorized potentiometer starting value p1040[0...n], 497
Multi-pump control, 222
Pump switch-in, 224
Pump switch-out, 226
Pump switchover, 232
Service mode, 234
Stop mode, 229
Multi-pump control absolute operating hours p29530[0...3], 742
Multi-pump control continunous operating hours p29547[0...3], 745
Multi-pump control deviation threshold p29546, 745
Multi-pump control disconnection lockout time p29537, 743
Multi-pump control enable p29520, 739
Multi-pump control index of motors under repair r29544, 744
Multi-pump control interlocking time p29527, 741
Multi-pump control maximum time for continuous operation p29531, 742
Multi-pump control motor configuration p29521, 739
Multi-pump control motor selection mode p29522, 740
Multi-pump control overcontrol threshold p29526, 741
Multi-pump control pump switchover enable p29539, 743

Multi-pump control service mode enable p29540, 743
Multi-pump control switch-in delay p29524, 740
Multi-pump control switch-in threshold p29523, 740
Multi-pump control switch-off sequence p29533, 742
Multi-pump control switch-out delay p29525, 740
Multi-pump control switch-out speed offset p29528, 741
Multi-pump control variable-speed motor r29538, 743

N

Nominal motor starting time r0345[0...n], 424
Number of Command Data Sets (CDS) p0170, 400
Number of deragging cycles p29598[0...n], 749
Number of Drive Data Sets (DDS) p0180, 401
Number of motors connected in parallel p0306[0...n], 415
Number of parameters r3986, 682
NVRAM data backup/import/delete p7775, 693

0

OA version r29018[0...1], 739
Off delay n_act = n_set p2166[0...n], 616
OFF3 final rounding-off time p1137[0...n], 513
OFF3 initial rounding-off time p1136[0...n], 513
OFF3 ramp-down time, 266 p1135[0...n], 512, 513
On delay comparison value reached p2156[0...n], 614
Open-loop/closed-loop control operating mode p1300[0...n], 537, 538
Operating hours counter power unit fan p0251[0...n], 408

Operating hours counter power unit fan inside the converter
p0254[0...n], 409
Operating instruction, 23
Operating Instructions, 932
Operation, 150
Operator panel
BOP-2, 925
Menu, 925
Optimizing the closed-loop speed controller, 316
Optimum motor load angle p0327[0...n], 420
Options for electrical cabinets p3931, 681
Output frequency smoothed r0024, 379
Output load detection delay time p2180[0...n], 619
Output load identification current limit p2179[0...n], 619
Output reactor, 295
Overload, 323
Overvoltage, 331
Overvoltage protection, 118

P

Parabolic characteristic, 298, 307
Parameter channel, 182
Parameter channel"; "IND, 184
Parameter index, 184
Parameter number, 184, 928
Parameter value, 189, 928
Parameter write inhibit status r3996[0...1], 683
Parameters
Overview, 373, 374
Partial load operation, 913
Pe energy-saving mode ID r5600, 687
Pe energy-saving mode pause time minimal p5602[0...1], 687
Pe energy-saving mode time of maximum stay p5606[0...1], 687
Pe energy-saving properties general p5611, 688
Pe energy-saving properties mode-dependent p5612[0...1], 688
PID autotuning monitoring time p2354, 649
PID autotuning offset p2355, 649

PID controller, 269
Pipe filling, 244
Pipe filling enable p29610[0...n], 749
Pipe filling mode p29611[0...n], 750
Pipe filling monitoring time p29615[0...n], 750
Pipe filling speed p29612[0...n], 750
Pipe filling threshold p29614[0...n], 750
Pipe filling time p29613[0...n], 750
PKW (parameter, ID value), 175
PM330 digital inputs simulation mode p4095, 684
PM330 digital inputs simulation mode setpoint p4096, 684
PM330 digital outputs status r4047, 684
PN DAP ID r8939, 713
PN Default Gateway p8922[0...3], 710
PN Default Gateway actual r8932[0...3], 712
PN device ID r8909, 709
PN DHCP Mode p8924, 711
PN DHCP Mode actual r8934, 712
PN IP address p8921[0...3], 710
PN IP address actual r8931[0...3], 712
PN MAC address r8935[0...5], 713
PN Name of Station p8920[0...239], 710
PN Name of Station actual r8930[0...239], 712
PN Subnet Mask p8923[0...3], 710
PN Subnet Mask actual r8933[0...3], 712
PollD circle center point p1998[0...n], 579
PollD technique p1980[0...n], 578

Power cable length maximum
r0231[0...1], 407
Power failure, 342
Power limit motoring p1530[0...n], 554
Power limit regenerative p1531[0...n], 554
Power unit application p0205, 403
Power unit code number p0201[0...n], 401
Power unit code number actual r0200[0...n], 401
Power unit EEPROM characteristics r3930[0...4], 681
Power unit hardware properties r0204[0...n], 402
Power unit main contactor holding time after OFF1 p0867, 480
Power unit maximum current r0209[0...4], 405
Power unit monitoring time p0857, 478
Power unit motor reactor p0233, 407
Power unit overload response p0290, 409
Power unit sine-wave filter capacitance p0234, 407
Power unit temperature alarm threshold p0292[0...1], 410
Power unit thyristor rectifier wait time p0868, 480
Pressure control, 269
Procedure, 23
PROFIdrive diagnostics PZD send double word r2063[0...15], 589
PROFIdrive diagnostics send PZD word r2053[0...16], 586
PROFIdrive fault delay p2044, 585
PROFIdrive profile number r0965, 485
PROFIdrive PZD telegram selection p0922, 482
PROFIdrive PZD telegram selection extended p2079, 590
PROFIdrive reference speed reference frequency p60000, 755
PROFIdrive STW/ZSW interface mode p2038, 584

PROFIdrive STW1.10 $=0$ mode p2037, 584
PROFINET identification data r8859[0...7], 709
PROFINET IP of Station r61001[0...3], 756
PROFINET Name of Station r61000[0...239], 756
Protection functions, 148
Pt1000 sensor, 327
PTC sensor, 327
Pulse cancellation, 177
Pulse enable, 177
Pulse frequency, 325, 326
Pulse frequency setpoint p1800[0...n], 564, 565
Pulse suppression delay time p1228, 523
Pump, 134, 141
PZD (process data), 175
PZD maximum interconnected r2067[0...1], 590

Q

Questions, 934

R

Ramp-down scaling 1 p29573[0...n], 746
Ramp-down scaling 2
p29575[0...n], 746
Ramp-down time, 266
Ramp-function gen. tolerance for ramp-up and ramp-
down active
p1148[0...n], 516
Ramp-function generator, 257
Ramp-function generator final rounding-off time p1131[0...n], 511, 512
Ramp-function generator initial rounding-off time p1130[0...n], 511
Ramp-function generator minimum ramp-down time p1127[0...n], 511
Ramp-function generator ramp-down time p1121[0...n], 510
Ramp-function generator ramp-up time p1120[0...n], 509, 510
Ramp-function generator rounding-off type p1134[0...n], 512

Ramp-up scaling 1 p29570[0...n], 745
Ramp-up scaling 2 p29572[0...n], 746
Ramp-up time, 266
Rated motor current p0305[0...n], 414
Rated motor efficiency p0309[0...n], 416
Rated motor frequency p0310[0...n], 416, 417
Rated motor power p0307[0...n], 415 r0394[0...n], 428
Rated motor power factor p0308[0...n], 416 r0332[0...n], 421
Rated motor slip r0330[0...n], 420
Rated motor speed p0311[0...n], 417
Rated motor torque r0333[0...n], 421
Rated motor voltage p0304[0...n], 414
Rated power unit current r0207[0...4], 404
Rated power unit line supply voltage r0208, 404
Rated power unit power r0206[0...4], 403
Ratio between the total and motor moment of inertia p0342[0...n], 424
RDY (Ready), 778
Ready for operation, 150
Ready for switching on, 150
Real-time clock, 292
Reference current p2002, 580
Reference power r2004, 581
Reference speed reference frequency p2000, 579
Reference temperature p2006, 582
Reference torque p2003, 581
Reference voltage p2001, 580
Replace
Control Unit, 894
Gear unit, 894

Hardware, 894
Motor, 894
Power Module, 894
Reset
Parameter, 145
Reset drive parameters p0970, 485
Reset energy consumption display p0040, 384
Reverse the output phase sequence
p1820[0...n], 567
Reversing, 257
Rotating measurement configuration
p1959[0...n], 575
r3928[0...n], 680
Rotating measurement selection p1960, 576
Rounding, 266
Rounding OFF3, 266
RTC (Real-Time Clock), 292, 294
RTC actual daylight saving time difference r8403, 697
RTC date
p8401[0...2], 696
RTC daylight saving time setting p8402[0...8], 697
RTC DTC activation p8409, 698
RTC DTC1 off time p8412[0...1], 700
RTC DTC1 switch-on time p8411[0...1], 699
RTC DTC1 weekday of activation p8410[0...6], 699
RTC DTC2 off time
p8422[0...1], 701
RTC DTC2 switch-on time p8421[0...1], 701
RTC DTC2 weekday of activation p8420[0...6], 701
RTC DTC3 off time p8432[0...1], 703
RTC DTC3 switch-on time p8431[0...1], 703
RTC DTC3 weekday of activation p8430[0...6], 702
RTC time p8400[0...2], 696
RTC weekday r8404, 698

S

Safely remove memory card p9400, 715
Safety function, 147
Saturation characteristic speed to determine p1961, 577
Save parameters p0971, 486
Scaling
Analog input, 168
Analog output, 173
Scaling specific parameters referred to p0514[0] p0515[0...19], 434
Scaling specific parameters referred to p0514[1] p0516[0...19], 434
Scaling specific parameters referred to p0514[2] p0517[0...19], 434
Scaling specific parameters referred to p0514[3] p0518[0...19], 434
Scaling specific parameters referred to p0514[4] p0519[0...19], 435
Scaling specific parameters referred to p0514[5] p0520[0...19], 435
Scaling specific parameters referred to p0514[6] p0521[0...19], 435
Scaling specific parameters referred to p0514[7] p0522[0...19], 436
Scaling specific parameters referred to p0514[8] p0523[0...19], 436
Scaling specific parameters referred to p0514[9] p0524[0...19], 436
Scaling-specific reference values p0514[0...9], 433
SD (memory card), 760 Formatting, 760
Selecting the system of units p0505, 433
Sequence control, 150
Sequence control configuration p0869, 480
Series commissioning, 769
Service parameter p3950, 681
Setpoint channel speed limit p1063[0...n], 501
Setpoint processing, 148, 257
Setpoint source, 147
Selecting, 247, 248, 249
Settling time, 134, 141
Short-circuit monitoring, 327, 328

Signal interconnection, 930
Signal states, 778
Skip frequency band, 257
Skip speed 1 p1091[0...n], 506
Skip speed 2 p1092[0...n], 506
Skip speed 3 p1093[0...n], 507
Skip speed 4 p1094[0...n], 507
Skip speed bandwidth p1101[0...n], 508
Slip compensation, 296
Slip compensation limit value p1336[0...n], 543
Slip compensation scaling p1335[0...n], 542
Slip frequency r0065, 394
Speed
change with BOP-2, 925
Limiting, 257
Speed actual value filter time constant p2153[0...n], 614
Speed at the start of DC braking p1234[0...n], 525
Speed control, 310
Speed control configuration p1400[0...n], 545, 546
Speed controller adaptation speed lower p1464[0...n], 549
Speed controller adaptation speed upper p1465[0...n], 549
Speed controller encoderless operation integral time p1472[0...n], 550
Speed controller encoderless operation P-gain p1470[0...n], 550
Speed controller Kp adaptation speed upper scaling p1461[0...n], 548
Speed controller speed actual value smoothing time
(sensorless) p1452[0...n], 548
Speed controller Tn adaptation speed upper scaling p1463[0...n], 549
Speed setpoint selection p1000[0...n], 487
Speed setpoint smoothed r0020, 378
Speed start of hibernation mode p2390[0...n], 655

Speed threshold 1 p2141[0...n], 611
Speed threshold 2
p2155[0...n], 614
Speed threshold 3
p2161[0...n], 614
Speed threshold 4 p2163[0...n], 615
Speed_ctrl_opt dynamic factor p1967, 578
Speed_ctrI_opt dynamic factor actual r1968, 578
Speed_ctrl_opt speed p1965, 577
Square-law characteristic, 298, 307
Standards
EN 61800-3, 29
Star connection (Y), 93
Starting behavior
Optimization, 308
Starting behavior"; "Optimization, 301
Starting current, 306
Starting current (voltage boost) permanent p1310[0...n], 539
Starting current (voltage boost) when accelerating p1311[0...n], 540
Starting current (voltage boost) when starting p1312[0...n], 540
State overview, 150
Stator resistance reference p0629[0...n], 448
Status word
Status word 1, 177, 178
Status word 3, 180
STO (Safe Torque Off), 219
select, 219
Stop Category 0, 220
Storage medium, 759
STW1 (control word 1), 177
Subindex, 184
Support, 934
Switch off
Motor, 151
OFF1 command, 151
OFF2 command, 151
OFF3 command, 151
Switch on
Motor, 151
ON command, 151
Switching on inhibited, 150, 177
Switching-on a motor with BOP-2, 925

Switch-on delay $\mathrm{n} _$act $=\mathrm{n} _$set
p2167[0...n], 616
Symbols, 23
System runtime, 780
System runtime relative
p0969, 485
System runtime total
r2114[0...1], 603

T

Techn. controller threshold value f. I comp. hold for skip speed p2339, 646
Technological application (Dynamic Drive Control) p0502, 431, 432
Technological application (Standard Drive Control) p0501, 431
Technological unit reference quantity p0596, 439
Technological unit selection p0595, 438
Technology application p0500, 429, 430
Technology controller, 179, 217, 269
Technology controller actual value filter time constant p2265, 637
Technology controller actual value function p2270, 638
Technology controller actual value inversion (sensor type)
p2271, 638
Technology controller configuration p2252, 634
Technology controller differentiation time constant p2274, 639
Technology controller fault response p2345, 647
Technology controller fixed value selection method p2216[0...n], 629
Technology controller gain actual value p2269, 637
Technology controller integral time p2285, 639
Technology controller Kp adaptation lower starting point p2313, 644
Technology controller Kp adaptation lower value p2311, 643
Technology controller Kp adaptation upper starting point p2314, 644

Technology controller Kp adaptation upper value p2312, 644
Technology controller lower limit actual value p2268, 637
Technology controller mode p2251, 633
Technology controller motorized potentiometer
configuration
p2230[0...n], 630
Technology controller motorized potentiometer
maximum value p2237[0...n], 632
Technology controller motorized potentiometer
minimum value p2238[0...n], 632
Technology controller motorized potentiometer rampdown time p2248[0...n], 633
Technology controller motorized potentiometer ramp-
up time p2247[0...n], 633
Technology controller motorized potentiometer setpoint memory r2231, 631
Technology controller motorized potentiometer
starting value
p2240[0...n], 632
Technology controller number actual r2229, 630
Technology controller output signal starting value p2302, 642
Technology controller proportional gain p2280, 639
Technology controller ramp-down time p2258, 635
Technology controller ramp-up time p2257, 635
Technology controller ramp-up/ramp-down time p2293, 641
Technology controller setpoint 1 scaling p2255, 635
Technology controller setpoint 2 scaling p2256, 635
Technology controller setpoint filter time constant p2261, 636
Technology controller system deviation inversion p2306, 643
Technology controller Tn adaptation lower starting point p2320, 646
Technology controller Tn adaptation lower value p2318, 645

Technology controller Tn adaptation upper starting point p2321, 646
Technology controller Tn adaptation upper value p2319, 645
Technology controller type p2263, 636
Technology controller upper limit actual value p2267, 637
Temperature calculation, 329
Temperature monitoring, 326, 329
Temperature sensor, 99
Temperature switch, 327
Terminal block, 153
Terminal strip, 118 Factory setting, 99
Test pulse evaluation configuration p1901, 570, 571
Thermal resistance adaptation reduction factor p0614[0...n], 444
Threshold for zero speed detection p1226[0...n], 522
Threshold speed 2 p29571[0...n], 746
Threshold speed 3 p29574[0...n], 746
Time, 292
Time control, 294
Time switch, 294
Torque accuracy, 134, 141
Torque actual value filter time constant p3233[0...n], 666
Torque setpoint static (sensorless) p1610[0...n], 560

U

U/f control configuration p1302[0...n], 538
U/f control FCC starting frequency p1333[0...n], 541
U/f control slip compensation starting frequency p1334[0...n], 541
U/f mode resonance damping gain p1338[0...n], 543
U/f mode resonance damping maximum frequency p1349[0...n], 545
Unit system, 216
Update
Firmware, 894
Upgrading the firmware, 889

Upload, 760
Download, 766
USB memory access p8991, 715
Use for the intended purpose, 24
User interfaces, 94
UTC (Universal Time Coordinated), 292

V

V/f characteristic, 296
Vdc controller configuration p1281[0...n], 533
Vdc controller configuration (U/f) p1280[0...n], 533
Vdc controller configuration (vector control) p1240[0...n], 525
Vdc controller integral time p1251[0...n], 528
Vdc controller integral time (U/f) p1291[0...n], 536
Vdc controller proportional gain p1250[0...n], 528
Vdc controller proportional gain (U/f) p1290[0...n], 535
Vdc controller rate time p1252[0...n], 528
Vdc controller rate time (U/f) p1292[0...n], 536
Vdc_max controller automatic detection ON signal
level (U/f) p1294, 536
Vdc_max controller automatic ON level detection p1254, 528
Vdc_max controller dynamic factor p1243[0...n], 526
Vdc_max controller dynamic factor (U/f) p1283[0...n], 534
Vdc_max controller speed threshold p1249[0...n], 527
Vdc_max controller switch-in level r1242, 526
Vdc_max controller switch-in level (U/f) r1282, 534
Vdc_max controller time threshold (U/f) p1284[0...n], 534
Vdc_min controller, 345
Vdc_min controller dynamic factor (kinetic buffering) p1247[0...n], 527
Vdc_min controller dynamic factor (kinetic buffering)
(U/f)
p1287[0...n], 535

Vdc_min controller response (kinetic buffering) p1256[0...n], 529
Vdc_min controller response (kinetic buffering) (U/f) p1296[0...n], 536
Vdc_min controller speed threshold p1257[0...n], 529
Vdc_min controller speed threshold (U/f) p1297[0...n], 537
Vdc_min controller switch-in level (kinetic buffering) p1245[0...n], 527
r1246, 527
Vdc_min controller switch-in level (kinetic buffering)
(U/f)
p1285[0...n], 535
r1286, 535
Vdc_min controller time threshold p1255[0...n], 528
Vdc_min controller time threshold (U/f) p1295[0...n], 536
Vector control, 316
Sensorless, 310
Voltage boost, 296, 301, 306, 308
Voltage boost total r1315, 541
Voltage input, 165
Voltage limiting p1331[0...n], 541
Voltage measurement configuring p0247, 408
Voltage reserve dynamic p1574[0...n], 557

W

Wire-break monitoring, 169, 327, 328
Write protection, 770
p7761, 690
Write protection multi-master fieldbus system access behavior
p7762, 691

Z

Zero speed detection monitoring time
p1227, 522
Ziegler Nichols, 282
ZSW 1 (status word 1)", 178
ZSW1 (status word 1), 177
ZWS3 (status word 3), 180

Further information

SINAMICS converters:
www.siemens.com/sinamics
Safety Integrated
www.siemens.com/safety-integrated
PROFINET
www.siemens.com/profinet

Siemens AG
Digital Factory
Motion Control
Postfach 3180
91050 ERLANGEN
Germany

[^0]: * Four holes for mounting the shielding plate

[^1]: Note
 When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload.
 p0205 can only be changed to the settings that are saved in the power unit EEPROM.

[^2]: Note
 For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p1131). This is supported using a dynamic setting of the speed controller.

[^3]: Note
 The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
 The structure of the fault buffer and the assignment of the indices is shown in r0945.
 For bits 20 ... 16:
 Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFIdrive message class 0 : not assigned
 Bits 20, 19, 18, 17, $16=0,0,0,0,1$--> PROFIdrive message class 1 : hardware fault/software error
 Bits 20, 19, 18, 17, $16=0,0,0,1,0$--> PROFIdrive message class 2 : line fault
 Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault
 Bits 20, 19, 18, 17, $16=0,0,1,0,0$--> PROFIdrive message class 4: DC link fault
 Bits $20,19,18,17,16=0,0,1,0,1$--> PROFIdrive message class 5 : power electronics faulted
 Bits 20, 19, 18, 17, $16=0,0,1,1,0-->$ PROFIdrive message class 6 : overtemperature electronic components
 Bits 20, 19, 18, 17, $16=0,0,1,1,1$--> PROFIdrive message class 7 : ground fault/phase fault detected
 Bits 20, 19, 18, 17, $16=0,1,0,0,0$--> PROFIdrive message class 8: motor overload
 Bits 20, 19, 18, 17, $16=0,1,0,0,1$--> PROFIdrive message class 9: communication error to the higher-level control
 Bits 20, 19, 18, 17, $16=0,1,0,1,0$--> PROFIdrive message class 10: safe monitoring channel has identified an error
 Bits 20, 19, 18, 17, $16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
 Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error
 Bits 20, 19, 18, 17, $16=0,1,1,0,1$--> PROFIdrive message class 13 : infeed unit faulted
 Bits 20, 19, 18, 17, $16=0,1,1,1,0$--> PROFIdrive message class 14: braking controller/Braking Module faulted
 Bits $20,19,18,17,16=0,1,1,1,1$--> PROFIdrive message class 15 : line filter faulted
 Bits 20, 19, 18, 17, $16=1,0,0,0,0$--> PROFIdrive message class 16: external measured value/signal state outside the permissible range
 Bits $20,19,18,17,16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted Bits $20,19,18,17,16=1,0,0,1,0-->$ PROFIdrive message class 18 : error in the parameterization/configuration/ commissioning sequence
 Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 20 : auxiliary unit faulted

[^4]: A30042 Power unit: Fan has reached the maximum operating hours
 Reaction: NONE

 Acknowledge: NONE

