~COU $\%$
 M A H E R

SIEMENS

SINAMICS
SINAMICS G130/G150

List Manual
ac.maher.co.ir

SIEMENS

	Preface	
FINAMICS	Fundamental safety instructions	$\mathbf{1}$
SINAMICS G130/G150	Parameters	$\mathbf{2}$
Fist Manual	Function diagrams	$\mathbf{3}$
	Appendix	$\mathbf{4}$
		A

Valid for
Drive Firmware version
SINAMICS 4.7

Legal information

Warning notice system

This Manual contains information which you must observe to ensure your own personal safety as well as to avoid material damage. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to equipment damage have no safety alert symbol. Depending on the hazard level, warnings are indicated in a descending order as follows:

DANGER

indicates that death or serious injury will result if proper precautions are not taken.

WARNING

indicates that death or serious injury could result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified personnel

The product/system described in this documentation may only be operated by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper Use of Siemens Products

Note the following:

WARNING

Siemens products are only permitted to be used for the applications listed in the catalog and in the associated technical documentation. If third-party products and components are used, then they must be recommended or approved by Siemens. These products can only function correctly and safely if they are transported, stored, set up, mounted, installed, commissioned, operated and maintained correctly. The permissible ambient conditions must be adhered to. Notes in the associated documentation must be observed.

Trademarks

All names identified with ® are registered trademarks of Siemens AG. Any other names used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of liability

We have checked the contents of this publication for consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. The information given in this document is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent editions.

Preface

SINAMICS documentation

The SINAMICS documentation is structured according to the following categories:

- General documentation/catalogs
- Manufacturer/service documentation

Additional information

Information on the following topics is available under the link:

- Ordering documentation/overview of documentation
- Additional links to download documents
- Using documentation online (find and search in manuals/information).
http://www.siemens.com/motioncontrol/docu

My Documentation Manager

Information on how to produce individual contents for your own machine documentation based on Siemens contents is available under the link:
http://www.siemens.com/mdm

Training

> Information about SITRAIN (Siemens Training on products, systems and solutions for automation) is available under the following link:
> http://www.siemens.com/sitrain

FAQs

You can find Frequently Asked Questions in the Service\&Support pages under Product Support:
http://support.automation.siemens.com

SINAMICS

You can find information on SINAMICS at: http://www.siemens.com/sinamics

Usage phases and their tools/documents (as an example)

Table V-1 Usage phases and the available tools/documents

Usage phase	Tools/documents				
Orientation	SINAMICS G Sales Documentation				
Planning/configuration	SIZER Engineering Tool Configuration Manuals, Motors				
Deciding/ordering	SINAMICS G Catalogs				
Installation/assembly	- SINAMICS G150 Operating Instructions				
- SINAMICS G130 Operating Instructions		$	$	Commissioning	- STARTER Commissioning Tool - SINAMICS G150 Operating Instructions
:---	:---				
Usage/operation	- SINAMICS G130 Operating Instructions				
- SINAMICS G150 Operating Instructions					
Maintenance/servicing	- SINAMICS G150 Operating Instructions				
- SINAMICS G130 Operating Instructions Instructions					

Target group

This documentation addresses machine manufacturers, commissioning engineers, and service personnel who use SINAMICS.

Benefits

This documentation contains the comprehensive information about parameters, function diagrams and faults and alarms required to commission and service the system.
This manual should be used in addition to the other manuals and tools provided for the product.

Standard scope

The scope of the functionality described in this document can differ from the scope of the functionality of the drive that is actually supplied.

- Other functions not described in this documentation might be able to be executed in the drive system. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.
- Functions that are not available in a particular product version of the drive system may be described in the documentation. The functionalities of the supplied drive system should only be taken from the ordering documentation.
- Supplements or changes made by the machine manufacturer must be documented by the machine manufacturer.

For reasons of clarity, this documentation does not contain all of the detailed information on all of the product types, This documentation cannot take into consideration every conceivable type of installation, operation and service/maintenance.

Search guides

The following guides are provided to help you locate information in this manual:

1. Table of contents

- Table of contents for the complete manual (Page 9)
- Table of contents for function diagrams (Page 1027)

2. List of abbreviations (Page 1813)
3. References (Page 1822)
4. Index (Page 1829)

Technical Support

Country-specific telephone numbers for technical support are provided on the Internet at: http://www.siemens.com/automation/service\&support

Table of contents

1 Fundamental safety instructions 11
1.1 General safety instructions 12
1.2 Industrial security 13
2 Parameters 15
2.1 Overview of parameters 16
2.1.1 Explanation of the parameter list 16
2.1.2 Number ranges of parameters 30
2.2 List of parameters 33
2.3 Parameters for data sets 1002
2.3.1 Parameters for command data sets (CDS) 1002
2.3.2 Parameters for drive data sets (DDS) 1004
2.3.3 Parameters for encoder data sets (EDS) 1012
2.3.4 Parameters for motor data sets (MDS) 1014
2.3.5 Parameters for power unit data sets (PDS) 1017
2.4 Parameters for write protection and know-how protection 1019
2.4.1 Parameters with "WRITE_NO_LOCK" 1019
2.4.2 Parameters with "KHP WRITE NO LOCK" 1021
2.4.3 Parameters with "KHP ACTIVE READ" 1022
3 Function diagrams 1025
3.1 Table of contents 1027
3.2 Explanation of the function diagrams 1034
3.3 CU320-2 input/output terminals 1039
3.4 PROIFlenergy 1047
3.5 PROFIdrive 1050
3.6 Internal control/status words 1095
3.7 Sequence control 1108
3.8 Brake control 1111
3.9 Safety Integrated Basic Functions 1116
3.10 Safety Integrated Extended Functions 1124
3.11 Safety Integrated PROFIsafe 1146
3.12 Setpoint channel 1149
3.13 Encoder evaluation 1159
3.14 Vector contro 1163
3.15 Technology functions 1189
3.16 Technology controller 1196
3.17 Signals and monitoring functions 1202
3.18 Diagnostics 1211
3.19 Data sets 1218
3.20 Basic Infeed 1224
3.21 Terminal Board 30 (TB30) 1232
3.22 Communication Board CAN10 (CBC10) 1238
3.23 Terminal Module 31 (TM31) 1245
3.24 Terminal Module 150 (TM150) 1256
3.25 Voltage Sensing Module (VSM) 1260
3.26 Basic Operator Panel 20 (BOP20) 1263
4 Faults and alarms 1265
4.1 Overview of faults and alarms 1266
4.1.1 General information on faults and alarms 1266
4.1.2 Explanation of the list of faults and alarms 1271
4.1.3 Number ranges of faults and alarms 1277
4.2 List of faults and alarms 1279
A Appendix 1809
A. 1 ASCII table (characters that can be displayed) 1810
A. 2 List of abbreviations 1813
A. 3 References 1822
Index 1829

Fundamental safety instructions

Content

1.1 General safety instructions 12
1.2 Industrial security 13

1.1 General safety instructions

WARNING

Risk of death if the safety instructions and remaining risks are not carefully observed
If the safety instructions and residual risks are not observed in the associated hardware documentation, accidents involving severe injuries or death can occur.

- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

WARNING

Danger to life or malfunctions of the machine as a result of incorrect or changed parameterization

As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY-STOP or EMERGENCY-OFF).

1.2 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, devices, and/or networks. They are important components of a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

To ensure that Siemens products and solutions are operated securely, suitable preventive measures (e.g. cell protection concept) and each component must be integrated into a state-of-the-art holistic industrial security concept. Third-party products that may be in use should also be considered. You will find more information about industrial security at:
http://www.siemens.com/industrialsecurity
To receive information about product updates on a regular basis, register for our product newsletter. You will find more information at:
http://support.automation.siemens.com

WARNING

Danger as a result of unsafe operating states resulting from software manipulation
Software manipulation (e.g. by viruses, Trojan horses, malware, worms) can cause unsafe operating states to develop in your installation which can result in death, severe injuries and/or material damage.

- Keep the software up to date.

Information and newsletters can be found at:
http://support.automation.siemens.com

- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.

For more information, visit:
http://www.siemens.com/industrialsecurity

- Make sure that you include all installed products into the holistic industrial security concept.

Parameters

Content

2.1 Overview of parameters 16
2.2 List of parameters 33
2.3 Parameters for data sets 1002
2.4 Parameters for write protection and know-how protection 1019

2.1 Overview of parameters

2.1.1 Explanation of the parameter list

Basic structure of the parameter descriptions

The data in the following example has been chosen at random. The table below contains all the information that can be included in a parameter description. Some of the information is optional.

The "List of parameters" (Page 33) has the following structure:

Start of example

End of example

The individual pieces of information are described in detail below.

pxxxx[0...n] Parameter number

The parameter number is made up of a "p" or "r", followed by the parameter number and the index (optional).

Examples of the representation in the parameter list:

- p... Adjustable parameters (read and write parameters)
- r... Display parameters (read only)
- p0918 Adjustable parameter 918
- p0099[0...3] Adjustable parameter 99, indices 0 to 3
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944
- r2129.0... 15 Display parameter 2129 with bit field from bit 0 (smallest bit) to bit 15 (largest bit)
Other examples of the notation in the documentation:
- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- r0945[2](3) Display parameter 945, index 2 of drive object 3
- p0795.4 Adjustable parameter 795, bit 4

The following applies to adjustable parameters:
The parameter value as delivered is specified under "Factory setting" with the relevant unit in square brackets. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.
Linked parameterization can occur, for example, as a result of the following actions or parameters:

- Executing macros
p0015, p0700, p1000, p1500
- Setting the PROFIBUS telegram (BICO interconnection)
p0922
- Set component lists
p0230, p0300, p0301, p0400
- Automatic calculation and pre-assignment p0112, p0340, p0578, p3900
- Restoring the factory settings p0970

The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square brackets.

Note

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e.g. parameters for trace functions).

BICO: Full parameter name / abbreviated name

The following abbreviations can appear in front of the parameter name:

- BI: Binector Input This parameter is used for selecting the source of a digital signal.
- BO: Binector output

This parameter is available as a digital signal for interconnection with other parameters.

- CI: Connector Input This parameter is used for selecting the source of an "analog" signal.
- CO: Connector output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note

A connector input (Cl) cannot be just interconnected with any connector output (CO , signal source).
When interconnecting a connector input using the commissioning software, only the corresponding possible signal sources are listed.

Drive object (function module)

A drive object (DO) is an independent, "self-contained" functional unit that has its own parameters and, in some cases, faults and alarms.
When carrying out commissioning using the commissioning software, you can select/deselect additional functions and their parameters by activating/deactivating function modules accordingly.

The parameter list specifies the associated drive object and function module for each individual parameter.

Examples:

- p1070 CI: Main setpoint

VECTOR

The parameter is only available with the VECTOR drive object, regardless of which function modules have been activated.

- p1055 BI: Jog bit 0 VECTOR
The parameter is available with the VECTOR drive object, regardless of which function modules have been activated (i.e. it is available with every activated function module belonging to the drive object).

A parameter can belong to a single, multiple, or all drive objects.
The following information relating to "Drive object" and "Function module" can be displayed under the parameter number:

Table 2-1 Data in the "Drive object (function module)" field

Drive object (function module)	Type	
All objects	-	This parameter is used by all drive objects.
B_INF	30	Basic Infeed closed loop control Unregulated line infeed unit (without regenerative feedback) for rectifying the line voltage of the DC link.
B_INF (parallel)	-	Basic Infeed with "Parallel connection" function module (r0108.15).
B_INF (Brk Mod Ext)	-	Basic Infeed with "Braking Module external" function module (r0108.26).
B_INF (Cooling unit)	-	Basic Infeed with "Cooling unit" function module (r0108.28)
B_INF (PROFINET)	-	Basic Infeed with "PROFINET" function module (r0108.31).
CU_G130_DP	-	Control Unit SINAMICS G130 with PROFIBUS interface.
CU_G130_DP (CAN)	Control Unit SINAMICS G130 with PROFIBUS interface and function module "CAN"	
(p0108.29).		

2 Parameters

2.1 Overview of parameters

Table 2-1 Data in the "Drive object (function module)" field, continued

Drive object (function module)	Type	Meaning
ENC (lin_encoder)	-	Object for a DRIVE-CLiQ encoder with "Linear encoder" function module (r0108.12).
HUB	150	DRIVE-CLiQ Hub Module.
TB30	100	Terminal Board 30.
TM150	208	Terminal Module 150.
TM31	200	Terminal Module 31.
TM54F_MA	205	Terminal Module 54F Master.
TM54F_SL	206	Terminal Module 54F Slave.
VECTOR_G	-	Vector drive for SINAMICS G130/G150 with "Speed/torque control" function module (r0108.2).
VECTOR_G (n/M)	-	Vector drive for SINAMICS G130/G150 with "Safety rotary axis" function module (r0108.13).
VECTOR_G (Safety red)	-	Vector drive for SINAMICS G130/G150 with "Extended brake control" function module (r0108.14).
VECTOR_G (ext. brake)	-	Vector drive for SINAMICS G130/G150 with "Parallel connection" function module (r0108.15).
VECTOR_G (parallel)	-	Vector drive for SINAMICS G130/G150 with "Technology controller" function module (r0108.16).
VECTOR_G (Tech_ctrl)	-	Vector drive for SINAMICS G130/G150 with "Extended messages/monitoring functions" function module (r0108.17).
VECTOR_G (ext. mess.)	Vector drive for SINAMICS G130/G150 with "Cooling unit" function module (r0108.28).	
VECTOR_G (Cooling unit)	Vector_G (CAN)	-
VECTOR_G (PROFINET)	-	Vector drive for SINAMICS G130/G150 with "PROFINET" function module (r0108.31).

Note

The drive object type is used to identify the drive objects in the drive system (e.g. r0107, r0975[1]).

Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.
The information " $\mathrm{C} 1(\mathrm{x}), \mathrm{C} 2(\mathrm{x}), \mathrm{T}, \mathrm{U}$ " ((x) : optional) means that the parameter can be changed only in the specified drive unit state and that the change will not take effect until the unit switches to another state. This can be a single state or multiple states.

The following states are available:

- $\mathrm{C} 1(\mathrm{x})$ Device commissioning C 1 : Commissioning 1

Device is being commissioned (p0009>0).
Pulses cannot be enabled.
The parameter can only be changed for the following device commissioning settings (p0009 > 0):

- C1: Can be changed for all settings p0009 >0.
- $\mathrm{C} 1(\mathrm{x})$: Can be changed only when $\mathrm{p} 0009=\mathrm{x}$.

A modified parameter value does not take effect until the device commissioning mode is exited with p0009 $=0$.

- C2(x) Drive object commissioning

C2: Commissioning 2
Drive commissioning is in progress ($\mathrm{p} 0009=0$ and $\mathrm{p} 0010>0$).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings (p0010 > 0):

- C2: Can be changed for all settings p0010>0.
- $\mathrm{C} 2(\mathrm{x})$: Can only be changed for the settings p0010 $=\mathrm{x}$.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U
Operation
U: Run
Pulses are enabled.
- T Ready
T: Ready to run
The pulses are not enabled and the state " $\mathrm{C} 1(\mathrm{x})$ " or " $\mathrm{C} 2(\mathrm{x})$ " is not active.

Note

Parameter p0009 is CU-specific (belongs to the Control Unit).
Parameter p0010 is drive-specific (belongs to each drive object).
The operating state of individual drive objects is displayed in r0002.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
The calculation attribute defines which activities influence the parameter.
The following attributes apply:

- CALC_MOD_ALL
- p0340 = 1
- Project download with commissioning software and send from p0340 $=3$
- CALC_MOD_CON
- p0340 = 1, 3, 4
- CALC_MOD_EQU
- p0340 = 1, 2
- CALC_MOD_LIM_REF
- $\mathrm{p} 0340=1,3,5$
- p0578 = 1
- CALC_MOD_REG
- p0340 = 1, 3

Note

For p3900 > 0, p0340 = 1 is also called automatically.
After p1910 = 1, p0340 = 3 is also called automatically.

Access level

Specifies the minimum access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.

The system uses the following access levels:

- 1: Standard
- 2: Extended
- 3: Expert
- 4: Service

Parameters with this access level are password protected.

Note

Parameter p0003 is CU-specific (belongs to the Control Unit).
A higher access level will also include the functions of the lower levels.

Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter.

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector/connector output).
Parameters can have the following data types:

- Integer8

I8 8-bit integer number

- Integer16

I16 16-bit integer number

- Integer32

I32 32-bit integer number

- Unsigned8

U8 8 bits without sign

- Unsigned16

U16 16 bits without sign

- Unsigned32

U32
32 bits without sign

- FloatingPoint32

Float 32-bit floating point number
Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source), the following combinations are possible when creating BICO interconnections:

Table 2-2 Possible combinations of BICO interconnections

	BICO input parameter			
		Cl parameter		BI parameter
BICO output parameter	Unsigned32 1 Integer16	Unsigned32 $/$ Integer32	Unsigned32 I FloatingPoint32	Unsigned32 / Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	x	X	-	-
CO: Integer16	x	x	r2050, r8850	-
CO: Unsigned32	x	x	-	-
CO: Integer32	x	x	r2060, r8860	-
CO: FloatingPoint32	x	x	x	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
BO: Integer16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	-
Legend: $\quad$$x$ $:$ BICO interconnection permitted rxxxx: BICO interconnection interconnection is only permitted for the specified CO parameters				

Dynamic index

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ($\mathrm{n}=$ number -1).

The following information can be contained in this field:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] \rightarrow main setpoint [command data set 0] p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)
- "p2615" (traversing blocks count)

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

Example:

Function diagram: 3060.3

3060:	Function diagram number
3:	Signal path (optional)

P-Group (only when accessing via BOP (Basic Operator Panel))

Specifies the functional group to which this parameter belongs. The required parameter group can be set via p0004.

Note

Parameter p0004 is CU-specific (belongs to the Control Unit).

Unit, unit group and unit selection

The standard unit of a parameter is specified in square brackets after the values for "Min", "Max", and "Factory setting".

For parameters where the unit can be switched over, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be changed over.

Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be changed over using p0505.

Note

Detailed information on changing over units can be found in the following references:
References: /FH1/ SINAMICS S120 Function Manual Drive Functions
References: /BA3/ SINAMICS S150 Operating Instructions
All the potential unit groups and possible unit selections are listed below.
Table 2-3 Unit groups (p0100)

Unit group	Unit selection for $\mathrm{p} 0100=$		Reference variable for \%
	0	1	
7_4	Nm	lbf ft	-
8_4	N	Ibf	-
14_2	W	HP	-
14_6	kW	HP	-
14_13	W/A	HP/A	-
14_14	W min/1000	HP min/1000	-
14_15	W/A ${ }^{2}$	HP/A ${ }^{2}$	-
14_16	W $\mathrm{min}^{2} / 1000^{2}$	HP $\mathrm{min}^{2} / 1000^{2}$	-
25_1	kgm^{2}	$\mathrm{lb} \mathrm{ft}{ }^{2}$	-
27_1	kg	lb	-
28_1	Nm/A	lbf ft/A	-
29_1	N/Arms	Ibf/Arms	-
30_1	m	ft	-
47_1	kW s/K	HP s/K	-
48_1	W/K	HP/K	-
48_2	W min/1000 K	HP min/1000 K	-
48_3	$\mathrm{W} \mathrm{min}^{2} / 1000^{2} \mathrm{~K}$	$\mathrm{HP} \mathrm{min}^{2} / 1000^{2} \mathrm{~K}$	-
50_1	K/W	K/HP	-

Table 2-4 Unit groups (p0349)

Unit group	Unit selection for p0349 =		Reference variable for \%
	1	2	
$15 _1$	mH	$\%$	$\frac{1000 \cdot \mathrm{p} 0304}{2 \cdot \pi \cdot \sqrt{3} \cdot \mathrm{p} 0305 \cdot \mathrm{p} 0310}$
$16 _1$	Ohm	$\frac{\mathrm{p} 0304}{\sqrt{3} \cdot \mathrm{p} 0305}$	

Table 2-5 Unit groups (p0505)

Unit group	Unit selection for $\mathbf{p} 0505=$				Reference variable for \%
	1	2	3	4	
2_1	Hz	\%	Hz	\%	p2000
2_2	kHz	\%	kHz	\%	p2000
3_1	1 rpm	\%	1 rpm	\%	p2000
4_1	$\mathrm{m} / \mathrm{min}$	\%	$\mathrm{ft} / \mathrm{min}$	\%	p2000
4_2	$\mathrm{m} / \mathrm{min}$	$\mathrm{m} / \mathrm{min}$	$\mathrm{ft} / \mathrm{min}$	$\mathrm{ft} / \mathrm{min}$	-
5_1	Vrms	\%	Vrms	\%	p2001
5_2	V	\%	V	\%	p2001
5_3	V	\%	V	\%	p2001
6_1	mArms	\%	mArms	\%	p2002
6 _2	Arms	\%	Arms	\%	p2002
6_3	mA	\%	mA	\%	p2002
6_4	A	\%	A	\%	p2002
6 -5	A	\%	A	\%	p2002
7_1	Nm	\%	lbf ft	\%	p2003
7_2	Nm	Nm	lbf ft	lbf ft	-
7_3	Nm	\%	lbf ft	\%	1.0
8_1	N	\%	Ibf	\%	p2003
8_2	N	N	Ibf	Ibf	-
8_3	N	\%	Ibf	\%	1.0
14_1	W	\%	HP	\%	r2004 (drive)
14_3	W	\%	HP	\%	r2004 (infeed)
14_4	W	\%	HP	\%	r2004 (drive)
14_5	kW	\%	HP	\%	r2004 (drive)
14_7	kW	\%	HP	\%	r2004 (infeed)
14_8	kW	\%	HP	\%	r2004 (drive)
14_9	W	W	HP	HP	-
14_10	kW	kW	HP	HP	-
14_11	var	\%	var	\%	r2004
14_12	kvar	\%	kvar	\%	r2004
17_1	Nms/rad	\%	lbf ft s/rad	\%	p2003/p2000
18_1	V/A	\%	V/A	\%	p2001/p2002
19_1	A/V	\%	A/V	\%	p2002/p2001
21_1	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
21_2	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
22_1	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	-

Table 2-5 Unit groups (p0505), continued

Unit group	Unit selection for p0505 =				Reference variable for \%
	1	2	3	4	
22_2	$\mathrm{m} / \mathrm{s}^{2}$	\%	$\mathrm{ft} / \mathrm{s}^{2}$	\%	p2007
23_1	Vrms s/m	Vrms s/m	Vrms s/ft	Vrms s/ft	-
24_1	Ns/m	Ns / m	lbf s/ft	lbf s/ft	-
24_2	Ns/m	\%	lbf s/ft	\%	p2003/p2000
26_1	$\mathrm{m} / \mathrm{s}^{3}$	$\mathrm{m} / \mathrm{s}^{3}$	$\mathrm{ft} / \mathrm{s}^{3}$	$\mathrm{ft} / \mathrm{s}^{3}$	-
39_1	$1 / \mathrm{s}^{2}$	\%	$1 / \mathrm{s}^{2}$	\%	p2007
49_1	Nm/rad	\%	lbf ft/rad	\%	p2003

Table 2-6 Unit group (p0595)

Unit group	Unit selection for p0595 =	
	Value	Reference variable for \%
	Unit	
$9 _1$	The values that can be set and the technological units are shown in p0595.	

Parameter values

Min	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Value when delivered [unit]

In the case of a binector/connector input, the signal source of the default BICO interconnection is specified. A non-indexed connector output is assigned the index [0].
A different value may be displayed for certain parameters (e.g. p1800) at the initial commissioning stage or when establishing the factory settings.
Reason:
The setting of these parameters is determined by the operating environment of the Control Unit (e.g. depending on converter type, macro, power unit).

Note

For SINAMICS G130/G150, the macros and their settings are provided in the following documentation:

References: /BAx/ $x=1,2$
SINAMICS G150/G130 Operating Instructions

Not for motor type

Specifies for which motor type this parameter has no significance.
ASM: Asynchronous Motor
FEM: Separately excited synchronous motor
PEM: Permanent-magnet synchronous motor
REL: Reluctance motor/SIEMOSYN motor

Scaling

Specification of the reference variable with which a signal value is automatically converted for a BICO interconnection.

The following reference variables are available:

- p2000 ... p2007: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- $4000 \mathrm{H}: 4000$ hex $=100 \%$

Expert list

Specifies whether this parameter is available in the expert list of the specified drive objects in the commissioning software.
1: Parameter exists in the expert list.
0 : Parameter does not exist in the expert list.

NOTICE

Users assume full responsibility for using parameters marked "Expert list: 0" (parameter does not exist in the expert list).
These parameters and their functionalities have not been tested and no further user documentation is available for them (e.g. description of functions). Moreover, no support is provided for these parameters by "Technical Support" (hotline).

Description

Explanation of the function of a parameter

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters. The following applies to the values (Min, Max, Factory setting) for indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.

When the indices have different factory settings, they are all listed individually with the unit.

Bit field

For parameters with bit fields, the following information is provided about each bit:

- Bit number and signal name
- Meaning for signal states 0 and 1
- Function diagram (optional)

The signal is shown in this function diagram.

Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

Where necessary, "Refer to:" indicates the following information:

- List of other relevant parameters to be considered.
- List of faults and alarms to be considered.

Safety guidelines

Important information that must be observed to avoid the risk of physical injury or material damage.

Information that must be observed to avoid any problems.
Information that the user may find useful.

Danger	The description of this safety notice can be found at the beginning of this
manual, see "Legal information" (Page 4).	
Warning	The description of this safety notice can be found at the beginning of this
manual, see "Legal information" (Page 4).	

Caution	The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).
Notice	The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).
Note	Information that the user may find useful.

2.1.2 Number ranges of parameters

Note

The following number ranges represent an overview for all the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in "List of parameters" (Page 33).

Parameters are grouped into the following number ranges:
Table 2-7 Number ranges for SINAMICS

Range		Description
From	To	
0000	0099	Display and operation
0100	0199	Commissioning
0200	0299	Power section
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units, motor-specific data, probes
0600	0699	Thermal monitoring, maximum current, operating hours, motor data,
central probe		
0700	0799	Control Unit terminals, measuring sockets
0800	0839	CDS, DDS data sets, motor changeover
0840	0879	Sequence control (e.g. signal source for ON/OFF1)
0880	0899	ESR, parking, control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel (e.g. ramp-function generator)
1200	1299	Functions (e.g. motor holding brake)
1300	1399	U/f control
1400	1799	Closed-loop control

Table 2-7 Number ranges for SINAMICS, continued

Range		Description
From	To	
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2009	Reference values
2010	2099	Communication (fieldbus)
2100	2139	Faults and alarms
2140	2199	Signals and monitoring
2200	2359	Technology controller
2360	2399	Staging, hibernation
2500	2699	Position control (LR) and basic positioning (EPOS)
2700	2719	Reference values, display
2720	2729	Load gearbox
2800	2819	Logic operations
2900	2930	Fixed values (e. g. percentage, torque)
3000	3099	Motor identification results
3100	3109	Real-time clock (RTC)
3110	3199	Faults and alarms
3200	3299	Signals and monitoring
3400	3659	Infeed closed-loop control
3660	3699	Voltage Sensing Module (VSM), Braking Module internal
3700	3779	Advanced Positioning Control (APC)
3780	3819	Synchronization
3820	3849	Friction characteristic
3850	3899	Functions (e. g. long stator)
3900	3999	Management
4000	4599	Terminal Board, Terminal Module (e. g. TB30, TM31)
4600	4699	Sensor Module
4700	4799	Trace
4800	4849	Function generator
4950	4999	OA application
5000	5169	Spindle diagnostics
5200	5230	Current setpoint filter 5 ... 10 (r0108.21)
5400	5499	System droop control (e. g. shaft generator)
5500	5599	Dynamic grid support (solar)
5600	5614	PROFlenergy
5900	6999	SINAMICS GM/SM/GL/SL

Table 2-7 \quad Number ranges for SINAMICS, continued

Range		Description
From	To	
7000	7499	Parallel connection of power units
7500	7599	SINAMICS SM120
7700	7729	External messages
7770	7789	NVRAM, system parameters
7800	7839	EEPROM read/write parameters
7840	8399	Internal system parameters
8400	8449	Real-time clock (RTC)
8500	8599	Data and macro management
8600	8799	CAN bus
8800	8899	Communication Board Ethernet (CBE), PROFIdrive
8900	8999	Industrial Ethernet, PROFINET, CBE20
9000	9299	topology
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	topology
9950	9999	Diagnostics, internal
10000	10199	Safety Integrated
11000	11299	Free technology controller 0, 1, 2
20000	20999	Free function blocks (FBLOCKS)
21000	25999	Drive Control Chart (DCC)
50000	53999	SINAMICS DC MASTER (closed-loop DC current control)
61000	61001	PROFINET

2.2 List of parameters

Product: SINAMICS G130/G150, Version: 4702900, Language: eng
Objects: B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, HUB, TB30, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G

r0002	Infeed operating display / INF op_display			
B_INF	Can	e changed: -	Calculated: -	Access level: 1
	Data	ype: Integer16	Dyn. index: -	Func. diagram: -
	P-Gr	up: -	Units group: -	Unit selection: -
	Not f	motor type: -	Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		250	-
Description:	Operating display for the infeed.			
Value:	0 : Operation - everything enabled			
	31: Rdy for sw on - pre-chrg running (p0857)			
	32: Ready for switching on-set "ON/OFF1" $=$ "0/1" (p08			
	35: Switching on inhibited - carry out first commissioning			
	41: Switching on inhibited - set "ON/OFF1" = "0" (p0840)			
	42: Switching on inhibited - set "OC/OFF2" = "1" (p0844,			
	44: Switching on inhibited - connect 24 V to terminal EP			
	45: Switching on inhibited - remove fault cause, acknowl			
	46: Switching on inhibited - exit comm mode (p0009, p00			
	60: Infeed de-activated/not operational			
	70: Initialization			
	200: Wait for booting/partial booting250: Device signals a topology error			
Dependency: Refer to: r0046			Refer to: r0046	
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.			
Note:	OC: Operating condition			
	COMM: Commissioning			
r0002	Control Unit operating display / CU op_display			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -		Calculated: -	Access level: 1
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: -		Units group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		117	-
Description:	Operating display for the Control Unit (CU).			
Value:	0: Operation			
	10: Ready			
	20: Wait for run-up			
	25: Wait for automatic FW update of DRIVE-CLiQ compo			
	31: Commissioning software download active			
	33343	Remove/ackno		
		Exit commissio		
	35:	Carry out first		
	70:	Initialization		
	80:	Reset active		
	99:101:	Internal softwa		
		Specify topology		
	111:	Insert drive obj		
	112:	Delete drive ob		
	113:	Change drive		
		Change compo		
	115:	Run parameter		
	117: Delete compon			
Notice:	For	veral missing en	sponding value	ber is displayed.

r0002	TM150 operating display / TM150 op_display		
TM150	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description:	Operating display for Terminal Module 150 (TM150)		
Value:	0 : Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module de-activated		
	200: Wait for booting/partial booting250: Device signals a topology error		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
r0002	TM31 operating display / TM31 op_display		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description: Value:	Operating display for Terminal Module 31 (TM31).		
	0 0. Module in cyclic operation		
	40: Module not in cyclic operation50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module de-activated		
	200: Wait for booting/partial booting250: Device signals a topology error		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
r0002	TM54F operating display / TM54F op_display		
TM54F_MA, TM54F_SL	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	250	-
Description: Value:	Operating display for Terminal Module 54F (TM54F).		
	0 : Module in cyclic operation		
	40: Module not in cyclic operation		
	50: Alarm		
	60: Fault		
	70: Initialization		
	120: Module de-activated		
	200: Wait for booting/partial booting250: Device signals a topology error		

Note: | A higher set access level also includes the lower one. |
| :--- |
| Access level 1 (standard): |
| Parameters for simplest possible operations. |
| Access level 2 (extended): |
| Parameters to operate the basic functions of the drive unit. |
| Access level 3 (experts): |
| Expert know-how is required for these parameters (e.g. BICO parameterization). |
| Access level 4 (service): |
| For these parameters, it is necessary that authorized service personnel enter the appropriate password (p3950). |

p0004
CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

Description:
Value:

Dependency:
Notice:

Note:

BOP display filter / BOP disp_filter

Can be changed: C2(1), U, T
Data type: Integer16
P-Group: -
Not for motor type:
Min
0

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
99

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Sets the display filter for parameters with the Basic Operator Panel (BOP).
0: All parameters
: Displays, signals
2: Power unit
Mower
Encoder/pos enc
Technology/units
Digital inputs/outputs, commands, sequence control
Analog inputs/outputs
10: Setpoint channel/ramp-fct generator
12: Functions
13: U/f control
14: Control
15: Data sets
17: Basic positioner
18: Gating unit
19: Motor identification
20: Communication
21: Faults, alarms, monitoring functions
25: Cl-loop pos ctrl
28: Free function blocks
47: Trace and function generator
50: OA parameters
90: Topology
95: Safety Integrated
98: Command Data Sets (CDS)
99: Drive Data Sets (DDS)
Refer to: p0003
The display filter via p0004 provides precise filtering and displays the corresponding parameters only when p0009 and $\mathrm{p} 0010=0$.
The set access level via p0003 is also relevant for the display filter via p0004.
Examples (assumption: p0009 = p0010 = 0):
p0003 = 1, p0004 = 3
--> Only the parameters for the motor with access level 1 are displayed.
p0003 $=2, \mathrm{p} 0004=3$
--> Only the parameters for the motor with access levels 1 and 2 are displayed.

Note:	Mode 0 ... 3 can only be selected if also r0020, r0021 are available on the drive object. Mode 4 is available for all drive objects.
p0007	BOP background lighting / BOP lighting
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3 Data type: Unsigned32 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0[\mathrm{~s}]$ $2000[\mathrm{~s}]$ $0[\mathrm{~s}]$
Description: Note:	Sets the delay time until the background lighting of the Basic Operator Panel (BOP) is switched off. If no keys are actuated, then the background lighting automatically switches itself off after this time has expired. p0007 $=0$: Background lighting is always switched on (factory setting).
p0008	BOP drive object after booting / BOP DO after boot
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 1 65535 1
Description: Note:	Sets the required drive object that is active at the Basic Operator Panel (BOP) after booting. The value from p0008 initializes the display on the Basic Operator Panel (BOP) at the top left after booting. The drive object Control Unit is selected using the value 1.
p0009	Device commissioning parameter filter / Dev comm par_filt
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: C1, T Calculated: - Access level: 1 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 10000 1
Description:	Sets the device and basic drive commissioning. By appropriately setting this parameter, those parameters are filtered that can be written into in the various commissioning steps.
Value:	0: Ready 1: Device configuration 2: Defining the drive type/function module 3: Drive base configuration 4: Data set base configuration 29: Device download 30: Parameter reset 50: OA application configuration 55: OA application installation 101: Topology input 111: Insert drive object 112: Delete drive object 113: Change drive object number 114: Change component number 115: Parameter download 117: Delete component 1000:: Ready (asynchron)
Notice:	For p0009 = 10000 the following applies: After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

Note:
The drives can only be powered up outside the device commissioning (the inverter enabled). In this case, p0009 must be 0 (Ready) and the individual drive objects must have already gone into operation (p0010).
p0009 = 1: Device configuration
At the first commissioning of the device, after booting, the device is in the "device configuration" state. To start the internal automatic first commissioning of the drive unit, p0009 should be set to 0 (Ready) after the ID for the actual topology (r0098) was transferred into the ID for the target topology (p0099). To do this, it is sufficient to set a single index value of $\mathrm{p} 0099[\mathrm{x}]$ the same as r0098[x]. Before the device has been completely commissioned, no other parameter can be changed. After the first commissioning was carried out, in this state, when required, other basic device configuration parameters can be adapted (e.g. the basic sampling time in p0110).
p0009 = 2: Defines the drive type / function module
In this state, the drive object types and/or the function modules can be changed or selected for the individual drive objects. To do this, the drive object type can be set using p0107[0...15] and the function can be set using p0108[0...15] (refer to p0101[0...15]).
p0009 = 3: Drive basic configuration
In this state, after the device has been commissioned for the first time, basic changes can be made for the individual drive objects (e.g. sampling times in p0111, p0112, p0115 and the number of data sets in p0120, p0130, p0140, p0170, p0180).
p0009 = 4: Data set basic configuration
In this state, after the device has been commissioned for the first time, for the individual drive objects changes can be made regarding the assignment of the components (p0121, p0131, p0141, p0151, p0161) to the individual data sets and the assignment of the power unit, motor and encoder to the drive data sets ($\mathrm{p} 0185, \ldots$)
p0009 = 29: Device download
If a download is made using the commissioning software, the device is automatically brought into this state. After the download has been completed, p0009 is automatically set to 0 (ready). It is not possible to manually set p0009 to this value.
p0009 = 30: Parameter reset
In order to bring the complete unit into the "first commissioning" state or to load the parameters saved using p0977, to start, p0009 must be set to this value. p0976 can then be changed to the required value.
p0009 = 50: OA application configuration
In this state, after the device has been commissioned for the first time, changes can be made for the individual drive objects regarding the activity (p4956) of the OA applications.
p0009 = 55: OA application installation
OA applications can be installed and/or uninstalled in this state.
p0009 = 101: Topology input
In this state, the DRIVE-CLiQ target topology can be entered using p9902 and p9903.
p0009 = 111: Insert drive object
This state allows a new drive object to be inserted using p9911.
p0009 = 112: Delete drive object
This state allows existing drive objects to be deleted using p9912 after the device has been commissioned for the first time.
p0009 = 113: Change drive object number
This state allows the drive object number of existing drive objects to be changed using p9913 after the device has been commissioned for the first time.
p0009 = 114: Change component number
This state allows the component number of existing components to be changed using p9914 after the device has been commissioned for the first time.
p0009 = 115: Parameter download
This state allows the complete device and drive commissioning using the parameter services.
p0009 = 117: Delete component
This state allows components to be deleted using p9917 after the device has been commissioned for the first time.

p0010	TM150 commissioning parameter filter / TM150 com par_filt		
TM150	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Only Siemens int 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Only the following values are possible: $\mathrm{p} 0010=0,30$		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM31 commissioning parameter filter / TM31 comm par_filt		
TM31	Can be changed: C 2 (1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the parameter filter for commissioning a Terminal Module 31 (TM31). Setting this parameter filters out the parameters that can be written into in the various commissioning steps. For the BOP, this setting also causes the read access operations to be filtered.		
Value:	0: Ready 29: Only Siemens int 30: Parameter reset		
Dependency:	Refer to: p0970		
Note:	Only the following values are possible: p0010 $=0,30$		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
p0010	TM54F commissioning parameter filter / TM54F com par_filt		
TM54F_MA	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 2847
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	95	0
Description:	Sets the parameter filter for Setting this parameter filters For the BOP, this setting als	Terminal Modul ers that can be w ad access operat	ious commissioning steps.
Value:	0 : Ready 29: Only Siemens int 30: Parameter reset 95: Safety Integrated co		
Dependency:	Refer to: p0970		
Note:	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		

p0010	Drive commissioning parameter filter / Drv comm. par_filt		
VECTOR_G	Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 2800, 2818
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10000	1
Description:	Sets the parameter filter to commission a drive.		
	Setting this parameter filters out the parameters that can be written into in the various commissioning steps.		
Value:	0: Ready		
	1: Quick commissioning		
	2: Power unit commissioning		
	3: Motor commissioning		
	4: Encoder commissioning		
	5: Technological application/unit		
	15: Data sets		
	17: Basic positioner commissioning		
	25: Position control commissioning		
	29: Only Siemens int		
	30: Parameter reset		
	95: Safety Integrated commissioning10000: Ready with immediate feedback signal		
Notice:	For p0010 $=10000$ the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	The drive can only be powered up outside the drive commissioning (inverter enable). To realize this, this parameter must be set to 0 .		
	By setting p3900 to a value other than 0 , the quick commissioning is completed, and this parameter is automatically reset to 0 .		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
	p0010 $=10000$ corresponds to p $0010=0$. Unlike with p $0010=0$, the parameter modification is applied immediately and the calculations are made in the background. Further parameter modifications cannot be made while the calculations are being performed.		
p0011	BOP password entry (p0013) / BOP passw ent p13		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the password for the Basic Operator Panel (BOP).		
	Refer to: p0012, p0013		
p0012	BOP password acknowledgement (p0013) / BOP passw ackn p13		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description: Dependency:	Acknowledges the password for the Basic Operator Panel (BOP). Refer to: p0011, p0013		

r0019.0... 14	CO/BO: Control word BOP / STW BOP			
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func. diagram:	
	P-Group: Displays, signals	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the control word for the Basic Operator Panel (BOP).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON / OFF (OFF1)	ON	OFF (OFF1)	-
	01 No coast-down / coast-down (OFF2)	No coast down	Coast down (OFF2)	-
	02 No Quick Stop / Quick Stop (OFF3)	No Quick Stop	Quick Stop (OFF3)	-
	07 Acknowledge fault (0-> 1)	Yes	No	-
	13 Motorized potentiometer raise	Yes	No	-
	14 Motorized potentiometer lower	Yes	No	-
r0020	Speed setpoint smoothed / n_set smth			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:	6799
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p	
	Not for motor type: -	Scaling: p2000	Expert list: 1	
	Min	Max	Factory setting	
	- [rpm]	- [rpm]	- [rpm]	
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator).			
Dependency:	Refer to: r0060			
Note:	Smoothing time constant $=100 \mathrm{~ms}$			
	The signal is not suitable as a process quantity and may only be used as a display quantity.			
	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).			
r0021	CO: Actual speed smoothed / n_act smooth			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram:	
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p	
	Not for motor type: -	Scaling: p2000	Expert list: 1	
	Min	Max	Factory setting	
	- [rpm]	- [rpm]	- [rpm]	
Description:	Displays the smoothed actual value of the motor speed.			
	For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0021.			
Dependency:	Refer to: r0022, r0063			
Note:	Smoothing time constant $=100 \mathrm{~ms}$			
	The signal is not suitable as a process quantity and may only be used as a display quantity.			
	For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even slip compensation is deactivated.			

r0022	Speed actual value rpm smoothed / n_act rpm smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual value of the motor speed. r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over. For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0022.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
	For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated.		
r0024	Output frequency smoothed / f_outp smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5300, 5730, 6300, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the smoothed converter frequency.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0025	CO: Output voltage smoothed / U_outp smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6300, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the smoothed output voltage of the power unit.		
Dependency:	Refer to: r0072		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity. The output voltage is available smoothed (r0025) and unsmoothed (r0072).		

r0026	CO: DC link voltage smoothed / Vdc smooth		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	A_INF, B_INF, S_INF: smoothing time constant = 300 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0026	CO: DC link voltage smoothed / Vdc smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:		
	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0027	CO: Absolute actual current smoothed / I_act abs val smth		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8750
	P-Group: Displays, signals	Units group: 6_4	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the smoothed abso	nt value.	
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The absolute current actual	smoothed (r0027)	(r0068).

r0027	CO: Absolute actual current smoothed / I_act abs val smth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8850, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	A_INF, S_INF, VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068).		
r0028	Modulation depth smoothed / Mod_depth smth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	Refer to: r0074		
Note:	A_INF: Smoothing time constant $=300 \mathrm{~ms}$		
	SERVO, VECTOR: Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0029	Current actual value field-generating smoothed / Id_act smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed field-generating actual current.		
Dependency:	Refer to: r0076		
Note:	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0030	Current actual value torque-generating smoothed / Iq_act smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	SERVO: Smoothing time constant $=100 \mathrm{~ms}$		
	VECTOR: Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The following applies for SERVO:		
	The torque-generating current actual value is available smoothed (r0030 with 100 ms , r0078[1] with p0045) and unsmoothed (r0078[0]).		
	The following applies for VECTOR:		
	The torque-generating curre	available smooth	ms) and unsmoothed (r0078)

r0031	Actual torque smoothed / M_act smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the smoothed torque actual value.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		
r0032	CO: Active power actual value smoothed / P_actv_act smth		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 14_10	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	Significance for the drive: Power output at the motor shaft		
	Significance for the infeed: Line power drawn		
	For A_INF, B_INF and S_INF the following applies:		
	The active power is available smoothed (r0032 with 300 ms) and unsmoothed (r0082).		
	The following applies for SERVO:		
	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
	For VECTOR and VECTORMV, the following applies:		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		

r0032	CO: Active power actual value smoothed / P_actv_act smth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6799, 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 14_10	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Significance for the drive: Power output at the motor shaft		
	Significance for the infeed: Line power drawn		
	For A_INF, B_INF and S_INF the following applies:		
	The active power is available smoothed (r0032 with 300 ms) and unsmoothed (r0082).		
	The following applies for SERVO:		
	The active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]). For VECTOR and VECTORMV, the following applies:		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		
r0033	Torque utilization smoothed / M_util smooth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8012
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	For M_set total (r0079) > 0 , the following applies:		
	- Required torque = M_set total		
	- Actual torque limit = M_max upper effective (r1538)		
	For M_set total (r0079) < $=0$, the following applies:		
	- Required torque $=-\mathrm{M}$ set total		
	- Actual torque limit = - M_max lower effective (r1539)		
	For the actual torque limit = 0, the following applies: r0033 $=100 \%$		
	For the actual torque limit < 0, the following applies: r0033 = 0 \%		
r0034	CO: Motor utilization thermal / Mot_util therm		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8017
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the motor utilization from motor	perature model 1 (12t) o	

r0036	CO: Power unit overload I2t / PU overload I2t		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8014
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the power unit overload determined using the 12 t calculation.		
	A current reference value is defined for the I 2 t monitoring of the power unit. It represents the current that can be conducted by the power unit without any influence of the switching losses (e.g. the continuously permissible current of the capacitors, inductances, busbars, etc.).		
	If the I 2 t reference current of the power unit is not exceeded, then an overload (0%) is not displayed.		
	In the other case, the degree of thermal overload is calculated, whereby 100% results in a trip.		
Dependency:	Refer to: p0290, p0294		
r0037[0...19]	CO: Power unit temperatures / PU temperatures		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8014
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Display and connector output for the temperature in the power unit.		
Index:	$[0]=$ Inverter maximum value		
	[1] = Depletion layer maximum value		
	[2] = Rectifier maximum value		
	[3] = Air intake		
	[4] = Interior of power unit		
	[5] = Inverter 1		
	[6] = Inverter 2		
	[7] = Inverter 3		
	[8] = Inverter 4		
	[9] = Inverter 5		
	[10] = Inverter 6		
	[11] = Rectifier 1		
	[12] = Rectifier 2		
	[13] = Depletion layer 1		
	[14] $=$ Depletion layer 2$[15]=$ Depletion layer 3		
	[16] - Depletion layer 4		
	[17] = Depletion layer 5		
	[18] $=$ Depletion layer 6		
	[19] = Cooling unit liquid intake		
Notice:	Only for internal Siemens troubleshooting.		
Note:	The value of -200 indicates that there is no measuring signal.		
	r0037[0]: Maximum value of the inverter temperatures (r0037[5..10]).		
	r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).		
	r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).		
	The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier.		
	In the case of a fault, the particular shutdown threshold depends on the power unit, and cannot be read out.		

	$26 \quad$ Infeed inactive or not operational
Dependency:	$29 \quad$ Cooling unit ready signal missing
Note:	Refer to: r0002
	The value r0046 $=0$ indicates that all enable signals for the infeed are present.
	Bit $00=1$ (enable signal missing), if:
	- the signal source in p0840 is a 0 signal.
	- there is a "switching on inhibited".
	Bit $01=1$ (enable signal missing), if:
	- the signal source in p0844 or p0845 is a 0 signal.
	Bit $16=1$ (enable signal missing), if:
	- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the
	"switching on inhibited" withdrawn with OFF1 = 0.
	Bit $17=1$ (enable signal missing), if:
	- the commissioning mode is selected (p0009 >0 or p0010 >0) or there is an OFF2 fault response or the OFF1
signal source (p0840) is changed.	
Bit $26=1$ (enable signal missing), if:	
	- the infeed is inactive (p0105 $=0$) or is not operational (r7850[DO-Index]=0).
	Bit $29=1$ (enable signal missing), if:
- the cooling unit ready signal via binector input p0266[1] missing.	

r0046.0... 31	CO/BO: Missing enable sig / Missing enable sig				
VECTOR_G	Can be changed: -		ulated: -	Access level: 1	
	Data type: Unsigned32		index: -	Func. diagram: 2634	
	P-Group: Displays, signals U		group: -	Unit selection: -	
	Not for motor type: - S		ing: -	Expert list: 1	
	Min			Factory setting	
	- -			-	
Description:	Display and BICO output for missing enable signals that are preventing the closed-loop drive control from being commissioned.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	OFF1 enable missing	Yes	No	7954
	01	OFF2 enable missing	Yes	No	-
	02	OFF3 enable missing	Yes	No	-
	03	Operation enable missing	Yes	No	-
	04	Armature short-circuit / DC braking enable missing	Yes	No	-
	05	STOP2 enable missing	Yes	No	-
	08	Safety enable missing	Yes	No	-
	09	Infeed enable missing	Yes	No	-
	10	Ramp-function generator enable missing	Yes	No	-
	11	Ramp-function generator start missing	Yes	No	-
	12	Setpoint enable missing	Yes	No	-
	15	QuickStop enable missing	Yes	No	-
	16	OFF1 enable internal missing	Yes	No	-
	17	OFF2 enable internal missing	Yes	No	-
	18	OFF3 enable internal missing	Yes	No	-
	19	Pulse enable internal missing	Yes	No	-
	20	Armature short-circuit/DC braking internal enable missing	Yes	No	-
	21	STOP2 enable internal missing	Yes	No	-
	25	Function bypass active	Yes	No	-
	26	Drive inactive or not operational	Yes	No	-
	27	De-magnetizing not completed	Yes	No	-
	28	Brake open missing	Yes	No	-
	29	Cooling unit ready signal missing	Yes	No	-
	30	Speed controller inhibited	Yes	No	-
	31	Jog setpoint active	Yes	No	-
Dependency:	Refer to: r0002				

The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (armature short-circuit active), if:

- the signal source in p1230 has a 1 signal

Bit 05, Bit 06: Being prepared
Bit $08=1$ (enable signal missing), if:

- safety functions have been enabled and STO is active.

STO selected via terminals:

- the pulse enable via terminal EP is missing (booksize: X 21 , chassis: X 41), or the signal source in p9620 is for a 0 signal.
STO selected via PROFIsafe or TM54F:
- A safety-relevant signal is present with a STOP A response.

Bit $09=1$ (enable signal missing), if:

- the signal source in p0864 is a 0 signal.

Bit $10=1$ (enable signal missing), if:

- the signal source in p 1140 is a 0 signal.

Bit $11=1$ (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p 1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.
Bit $12=1$ (enable signal missing), if:
- the signal source in p1142 is a 0 signal.
- When activating the function module "basic positioner" (r0108.4 = 1), the signal source in p1142 is set to a 0 signal. Bit $16=1$ (enable signal missing), if:
- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0009 > 0 or p0010 > 0).
- there is an OFF2 fault response.
- the drive is inactive $(\mathrm{p} 0105=0)$ or is not operational (r7850[DO-Index] $=0$).

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- synchronization is running between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle.

Bit $20=1$ (internal armature short-circuit active), if:

- the drive is not in the state "S4: Operation" or "S5x" (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Bit $21=1$ (enable signal missing), if:
The pulses have been enabled and the speed setpoint has still not been enabled, because:

- the holding brake opening time (p 1216) has still not expired.
- the motor has still not been magnetized (induction motor).
- the encoder has not been calibrated (U/f vector and synchronous motor)

Bit 22: Being prepared
Bit $26=1$ (enable signal missing), if:

- the drive is inactive ($\mathrm{p} 0105=0$) or is not operational (r7850[DO-Index]=0).
- the function "parking axis" is selected (BI: p0897 = 1 signal)..
- all power units of a parallel connection are deactivated (p0125, p0895).

Note:	Value 99 means the following: No encoder assigned (not configured).				
r0050.0... 3	CO/BO: Command Data Set CDS effective / CDS effective				
B_INF, VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned8		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description: Bit field:	Displays the effective Command Data Set (CDS).				
		Signal name	1 signal	0 signal	FP
		CDS eff bit 0	ON	OFF	-
		CDS eff bit 1	ON	OFF	-
		CDS eff bit 2	ON	OFF	-
		CDS eff bit 3	ON	OFF	-
Dependency: Note:	Refer to: p0810, p0811, r0836				
	The Command Data Set selected using a binector input (e.g. p0810) is displayed using r0836.				
r0051.0... 4 ENC, VECTOR_G	CO/BO: Drive Data Set DDS effective / DDS effective				
	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned8		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description: Bit field:	Displays the effective Drive Data Set (DDS).				
		Signal name	1 signal	0 signal	FP
		DDS eff bit 0	ON	OFF	
		DDS eff bit 1	ON	OFF	-
		DDS eff bit 2	ON	OFF	-
		DDS eff bit 3	ON	OFF	-
		DDS eff bit 4	ON	OFF	-
Dependency: Note:	Refer to: p0820, p0821, p0822, p0823, p0824, r0837				
	The drive data set changeover is suppressed when selecting the motor identification, during the rotating measurement, the encoder calibration and the friction characteristic record.				
$\begin{aligned} & \text { r0056.0... } 15 \\ & \text { VECTOR_G } \end{aligned}$	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl				
	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description: Bit field:	Display and BICO output for the status word of the closed-loop control.				
	Bit	Signal name	1 signal	0 signal	FP
	00	Initialization completed	Yes	No	-
		De-magnetizing completed	Yes	No	-
	02	Pulse enable available	Yes	No	-
	03	Soft starting present	Yes	No	-
	04	Magnetizing completed	Yes	No	-
	05	Voltage boost when starting	Active	Inactive	6301
	06	Acceleration voltage	Active	Inactive	6301
	07	Frequency negative	Yes	No	6719
	08	Field weakening active	Yes	No	-
	09	Voltage limit active	Yes	No	6714
	10	Slip limit active	Yes	No	6310

Note:	With a parameterized filter time constant p 1441 , the speed signal from encoder 1 is displayed corrected by the following error. The speeds from encoder 2 and 3 are only displayed in U/f operating modes if the function module (speed/torque control) (r0108.2) has been activated.		
r0062	CO: Speed setpoint	/ n_set after fid	
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6030, 6031
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min		Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint after the setpoint filters.		
r0063[0...2]	CO: Speed actual va		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 4702, 4715, 6799
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual speed of the closed-loop speed control and the U/f control.		
	For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0063[0].		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \\ & {[2]=\text { Calculated from f_set - }} \end{aligned}$		
Dependency:	Refer to: r0021, r0022		
Note:	The speed actual value is calculated in encoderless operation and for U/f control.		
	For operation with encoder, r0063[0] is smoothed with p1441.		
	The speed actual value (r0063[0]) is additionally displayed - smoothed with p0045-in r0063[1].		
	The speed (r0063[2]) calculated from the output frequency and slip can only be compared with the speed actual value (r0063[0]) in the steady-state.		
	The actual speed (r0063[0]) is available as a display quantity with additional smoothing in r0021.		
r0064	CO: Speed controller	iation / n_ctrl s	
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 6040
	P-Group: Displays, signals	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p 2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]		
Description:	Displays the actual system deviation of the speed controller.		
Note:	In servo control mode with active reference model, the system deviation to the P component of the speed controller is displayed.		

r0065	Slip frequency / f_Slip		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6310, 6700, 6727, 6730, 6732
	P-Group: Displays, signals	Units group: 2_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the slip frequency for induction motors (ASM).		
r0066	CO: Output frequency / f_outp		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5300, 5730, 6300, 6310, 6730, 6731, 6799
	P-Group: Displays, signals	Units group: 2_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Display and connector output for the output frequency of the Motor Module.		
Dependency:	Refer to: r0024		
Note:	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0067	CO: Output current maximum / I_outp max		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5722, 6300, $6301,6640$
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	Refer to: p0290, p0640		
r0068	CO: DC current in the DC link / Idc DC link		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8014, 8750
	P-Group: Displays, signals	Units group: 6_4	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the DC current in the DC link.		
Dependency:	Refer to: r0027		
Notice:	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	The DC current in the DC link is available smoothed (r0027) and unsmoothed (r0068).		

r0068[0...1]	CO: Absolute current actual value / I_act abs val		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300, 6714, 6799, 7017, 8014, 8017, 8018
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0027		
Notice:	The value is updated with the current controller sampling time.		
Note:	Absolute current value $=\operatorname{sqrt}\left(\mathrm{Iq}{ }^{\wedge} 2+\mathrm{Id} \wedge 2\right)$		
	The absolute value of the current actual value is available smoothed (r 0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		
r0069[0...6]	CO: Phase current actual value / I_phase act value		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6730, 6731, 6732, 7983, 7987, 8850, 8950
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Display and connector output for the measured actual phase currents as peak value.		
Index:	[0] = Phase U [1] = Phase V [2] = Phase W [3] = Phase U offset [4] = Phase V offset [5] = Phase W offset [6] = Total U, V, W		
Note:	In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed. The sum of the 3 corrected phase currents is displayed in index 6.		
r0070	CO: Actual DC link voltage / Vdc act val		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8750, 8850, 8910, 8940, 8950, 8964
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage. Refer to: r0026		
Dependency:			
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		

r0070	CO: Actual DC link voltage / Vdc act val		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723, 6724, 6730, 6731, 6799
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	For SINAMICS S120 AC Drive (AC/AC) the following applies:		
	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM340) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed.		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / U_output max		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6301, 6640, 6700, 6722, 6723, 6724, 6725, 6727
	P-Group: Displays, signals	Units group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the actual DC link voltage (r0070) and the maximum modulation depth (p1803).		
Note:	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage.		
r0072	CO: Output voltage / U_output		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5730, 6730, 6731, 6799
	P-Group: Displays, signals	Units group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the actual output voltage of the power unit (Motor Module).		
Dependency:	Refer to: r0025		
Note:	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0073	Maximum modulation depth / Modulat_depth max		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	$\begin{aligned} & \text { Func. diagram: 6723, 6724, } \\ & 6725 \end{aligned}$
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the maximum modulation depth.		
Dependency:			

r0074	CO: Modulat_depth / Modulat_depth		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5730, 6730 6731, 6799, 8940, 8950
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual modulation depth.		
Dependency:			
Note:	For space vector modulation, 100\% corresponds to the maximum output voltage without overcontrol.		
	Values above 100% indicate an overcontrol condition - values below 100% have no overcontrol.		
	The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 \times r0070) / (sqrt(2) $\times 100 \%$).		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0075	CO: Current setpoint field-generating / Id_set		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6700, 6714 6725
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current setpoint (Id_set).		
Note:	This value is irrelevant for the U/f control mode.		
r0076	CO: Current actual value field-generating / Id_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714 5730, 6700, 6714, 6799
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current actual voltage (Id_act).		
Dependency:	Refer to: r0029		
Note:	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / Iq_set		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6700, 6710
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque/force-generating current setpoint. This value is irrelevant for the U/f control mode.		
Note:			

r0078	CO: Current actual value torque-generating / Iq_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6310, 6700, 6714, 6799
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current actual voltage (lq_act).		
Dependency:	Refer to: r0030		
Note:	This value is irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		
r0079	CO: Torque setpoint / M_set		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6060, 6710
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		
r0080[0...1]	CO: Torque actual value / M_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714, 6799
	P-Group: Displays, signals	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0031, p0045		
Note:	The value is available smoothed (r0031 with 100 ms , r0080[1] with p0045) and unsmoothed (r0080[0]).		
r0081	CO: Torque utilization / M_Utilization		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8012
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque referred to the torque limit.		
Dependency:	Refer to: r0033		
Note:	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	The torque utilization is obtained from the required torque referred to the torque limit as follows: - Positive torque: r0081 = (r0079 / r1538) * 100%		
	- Negative torque: r0081 = (-r0079 / -r1539) * 100%		

r0082	CO: Active power actual value / P_act		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8750, 8850, 8950
	P-Group: Displays, signals	Units group: 14_7	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Dependency:	Refer to: r0032		
Notice:	For Basic Line Modules of chassis format, the displayed value is invalid as these units do not have any current sensing.		
Note:	The active power is available smoothed (r0032) and unsmoothed (r0082).		
r0082[0...2]	CO: Active power actual value / P_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714, 6799
	P-Group: Displays, signals	Units group: 14_5	Unit selection: p0505
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	[0] = Unsmoothed [1] = Smoothed with p0045 [2] = Electric power		
Dependency:	Refer to: r0032		
Note:	The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
r0083	CO: Flux setpoint / Flex setp		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the flux setpoint.		
r0084[0...1]	CO: Flux actual value / Flux act val		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6726, 6730, 6732
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the flux actual value.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Note:	The flux actual value (index the following cases, the uns - in the range of the current - during the pole position ide	p1585 is only display ual value is also display	ely-excited synchronous motor

- for I/f control.
- for a stalled drive.

r0087	CO: Actual power factor / Cos phi act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714, 6730 6732, 6799
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual active power factor.		
r0088	CO: DC link voltage setpoint / Vdc setpoint		
VECTOR_G (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the setpoint for the DC link voltage.		
r0089[0...2]	Actual phase voltage / U_phase act val		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6719
	P-Group: Displays, signals	Units group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual phase voltage.		
Index:	$\begin{aligned} & {[1]=\text { Phase V }} \\ & {[2]=\text { Phase W }} \end{aligned}$		
Note:	The values are determined from the transistor power-on duration.		
p0092	Clock synchronous operation pre-assignment/check / Cl sync op pre-as		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: C1(1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to pre-assign/check the sampling times for the internal controller clock cycles for clock-synchronous PROFIdrive operation. Re p0092 = 1 :		
	The controller clock cycles are set so that clock synchronous PROFIdrive operation is possible. If it is not possible to change the controller clock cycles of the clock-cycle synchronous PROFIdrive operation, then an appropriate message is output.		
	The pre-setting of the controller clock cycles can result in a derating of the Motor Module (e.g. p0115[0] $=400 \mu \mathrm{~s}$--> $375 \mu \mathrm{~s}$).		
	When calculating the drive unit utilization (r9976), when using the fixed DCC runtime groups "Receive AFTER IF1 PROFIdrive PZD", "Send BEFORE IF1 PROFIdrive PZD", "Receive AFTER IF2 PZD" (from V4.4) and "Send BEFORE IF2 PZD" (from V4.4), then its maximum computing time load has already been calculated during ramp-up for isochronous operation and taken into account in r9976 (from V4.3).		

Re p0092 $=0$:
The controller clock cycles are set without any restrictions by the clock-cycle PROFIdrive operation (same as for up to V2.3).
When calculating the drive unit utilization (r9976), when using the fixed DCC runtime groups "Receive AFTER IF1 PROFIdrive PZD", "Send BEFORE IF1 PROFIdrive PZD", "Receive AFTER IF2 PZD" (from V4.4) and "Send BEFORE IF2 PZD" (from V4.4), then its maximum computing time load has already been calculated during ramp-up for isochronous operation and taken into account in r9976 (from V4.3).
Value:

Dependency:
Caution:

Notice:
0: No isochronous PROFIBUS
1: Isochronous PROFIBUS
Refer to: r0110, p0115
Only current controller sampling times (p0115[0]) which are integers of $125 \mu \mathrm{~s}$ are permitted for isochronous mode.
For SERVO the following current controller sampling times are also possible:
$187.5,150,100,93.75,75,62.5,50,37.5,31.25 \mu \mathrm{~s}$
For VECTOR the following current controller sampling times are also possible:
$312.5,218.75,200,187.5,175,156.25,150,137.5 \mu \mathrm{~s}$
The additional current controller sampling times must be taken into account when parameterizing the bus for Ti , To and Tdp.
p0092 only affects the automatic default for the sampling times (p0115) in the drive.
If the sampling times are modified subsequently in expert mode ($p 0112=0$), p0092 $=0$ should be set so that the new values are not overwritten again by the automatic default when the parameters are downloaded.
The conditions for current controller sampling time for isosynchronous operation must still be carefully ensured (refer under Caution!).

r0094

VECTOR_G

Description:

Dependency:
CO: Transformation angle / Transformat_angle

Note:
Can be changed: - Calculated: -

Data type: FloatingPoint32 Dyn. index: -

P-Group: Displays, signa

Not for motor type: -

Min

- [${ }^{\circ}$]

Units group: -
Scaling: p2005
Max

- [${ }^{\circ}$]

Access level: 3

Func. diagram: 4700, 4702, 4710, 6300, 6714, 6730, 6731, 6732
Unit selection: -
Expert list: 1
Factory setting

- [${ }^{\circ}$]
isplays the transformation angle.
Refer to: p0431, r1778
The transformation angle corresponds to the electrical commutation angle.
If no pole position identification is carried out (p1982), and the encoder is adjusted, the following applies:
The encoder supplies the value and indicates the electrical angle of the flux position (d axis).

p0097

CU_G130_DP,
CU_G130_PN, CU_G150_DP, CU_G150_PN

Description:

Value:

Select drive object type / Select DO type

Can be changed: C1(1) Calculated: -

Data type: Integer16 Dyn. index: -
P-Group: Topology Units group: -
Not for motor type: -
Min
0

Scaling: -

Max
24

Executes an automatic device configuration.
In so doing, p0099, p0107 and p0108 are appropriately set.
No selection
Drive object type SERVO
Drive object type VECTOR SINAMICS GM (DFEMV \& VECTORMV) SINAMICS SM (AFEMV \& VECTORMV) SINAMICS GL (VECTORGL) SINAMICS SL (VECTORSL) Drive object type VECTOR parallel circuit Drive object type VECTORMV - GM parallel circuit Drive object type VECTORMV - SM parallel circuit

Access level: 1

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

	$15:$	Drive object type DC_CTRL
$16:$	Drive object type SERVO HMI	
	$17: \quad$ Drive object type VECTOR HMI	
	$24: \quad$ Drive object type VECTORMV - SM parallel circuit	
Dependency:	Refer to: r0098, p0099	
Note:	For p0097 $=0$, p0099 is automatically set to the factory setting.	
	The possible settings are dependent upon the device type.	

r0098[0...5]	Actual device topology / Device_act topo		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Topology	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting

Description: Displays the automatically detected actual device topology in coded form.
Index: [0] = DRIVE-CLiQ socket X100
[1] = DRIVE-CLiQ socket X101
[2] = DRIVE-CLiQ socket X102
[3] = DRIVE-CLiQ socket X103
[4] = DRIVE-CLiQ socket X104
[5] = DRIVE-CLiQ socket X105
Dependency: Refer to: p0097, p0099
Note:
Topology coding: abcd efgh hex
$\mathrm{a}=$ number of Active Line Modules
b = number of Motor Modules
c = number of motors
$d=$ number of encoders (or the line supply voltage sensing for Active Line Modules)
$\mathrm{e}=$ number of additional encoders (or the line supply voltage sensing for Active Line Modules)
$f=$ number of Terminal Modules
$\mathrm{g}=$ number of Terminal Boards
$\mathrm{h}=$ reserved
if the value 0 is displayed in all indices, then components are not detected via DRIVE-CLiQ.
If a value F hex occurs at a position of the coding (abcd efgh hex), then an overflow has occurred.

Refer to: p0097, r0098

Note:	The parameter can only be set to the values 0 , the value of the actual device topology, the value of the actual device target topology and FFFFFFFF hex. If the value 0 is displayed in all of the indices, then the system has still not been commissioned. The value FFFFFFFF hex indicates that the topology was not generated by the automatic device configuration but was commissioned using the commissioning software (e.g. using parameter download).
p0100	IEC/NEMA mot stds / IEC/NEMA mot stds
VECTOR_G	Can be changed: C2(1) Calculated: - Access level: 1
	Data type: Integer16 Dyn. index: - Func. diagram: -
	P-Group: Converter Units group: - Unit selection: -
	Not for motor type: FEM Scaling: - Expert list: 1
	Min Max Factory setting
	0 1 0
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power, p0307) are expressed in [kW] or [hp].
	Depending on the selection, the rated motor frequency (p 0310) is either set to 50 Hz or 60 Hz .
	For $\mathrm{p} 0100=0$, the following applies: The power factor (p 0308) should be parameterized.
	For $00100=1$, the following applies: The efficiency (p 0309) should be parameterized.
Value:	0 : IEC-Motor (50 Hz , SI units) 1: NEMA motor (60 Hz , US units)
Dependency:	If p0100 is changed, all of the rated motor parameters are reset. Only then are possible unit changeovers made.
	The units of all motor parameters are changed that are involved in the selection of IEC or NEMA (e.g. r0206, p0307, p0316, r0333, r0334, p0341, p0344, r1493, r1969).
	Refer to: r0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0314, p0320, p0322, p0323, p0335, r0336, r0337, p1800
Note:	The parameter can only be changed for vector control (p0107).
	The parameter value is not reset when the factory setting is restored (p0010 = 30, p0970).
p0101[0...n]	Drive object numbers / DO numbers
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: C 1 (1) Calculated: - Access level: 2
	Data type: Unsigned16 Dyn. index: - Func. diagram: -
	P-Group: Topology Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0620
Description:	The parameter contains the object number via which every drive object can be addressed. The number of an existing drive object is entered into each index. Value $=0$: No drive object is defined.
Note:	The numbers are automatically allocated.
	For the commissioning software, this object number cannot be entered using the expert list, but is automatically assigned when inserting an object.

r0102[0...1] Number of drive objects / DO count

CU_G130_DP, Can be changed: -
CU_G130_PN, CU_G150_DP, CU_G150_PN

Description: Displays the number of existing or existing and prepared drive objects.
Index:

Dependency:
[0] = Existing drive objects
[1] = Existing and prepared drive objects
Refer to: p0101

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Note:	Re value $=0,2$: When a drive object is deactivated it no longer outputs any errors. If value $=0$:		
	All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error.		
	If a component has been deactivated, only the component with the correct serial number may be inserted, or none at all.		
	If value = 1:		
	All components of the drive object must be available for error-free operation.		
	If value $=2$:		
	Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line.		
	For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.		
p0105	Activate/de-activate drive object / DO act/deact		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Setting to activate/de-activate a drive object.		
Value:	0: De-activate drive object		
	1: Activate drive object		
Dependency:	Refer to: r0106		
Notice:	The following applies when activating:		
	If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed.		
p0105	Activate/de-activate drive object / DO act/deact		
TM31	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	1
Description:	Setting to activate/de-activate a drive object.		
Value:	0: De-activate drive object		
	1: Activate drive object		
	2: Drive object de-activate and not present		
Recommend.:	After inserting all of the components of a drive object, before activating, first wait for Alarm A01316.		
Dependency:	Refer to: r0106		
Warning:	A drive that is moved by simulating the inputs of a Terminal Module is brought to a standstill while this parameter is being changed over.		
Notice:	The following applies when activating:		
	If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed.		
Note:	Re value = 0, 2:		
	When a drive object is deactivated it no longer outputs any errors.		
	If value = 0:		
	All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error. If a component has been deactivated, only the component with the correct serial number may be inserted, or none at all.		

```
If value \(=1\) :
```

All components of the drive object must be available for error-free operation.
If value $=2$:
Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line. For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.

p0105	Activate/de-activate drive object / DO act/deact		
TM54F_MA,	Can be changed: T	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	1
Description:	Setting to activate/de-activate a drive object.		
Value:	$0:$ De-activate drive object 1: Activate drive object $2:$ Drive object de-activate and not present		
Recommend.:	After inserting all of the components of a drive object, before activating, first wait for Alarm A01316.		
Dependency:	TM54F can only be de-activat assigned drives has not be en When activating drive objects After reactivating, a warm rest Refer to: r0106	drives assigned to functions enable $0, p 0976=2,3)$	been de-activated ies: dd be carried out.
Notice:	If components are inserted for the first time and the appropriate drive object is activated, then the drive system is automatically booted. To do this, the pulses of all of the drive objects must be suppressed.		
Note:	Re value $=0$, 2 :		
	When a drive object is deactivated it no longer outputs any errors. If value $=0$:		
	All components of the drive object were completely commissioned and are deactivated using this value. They can be removed from the DRIVE-CLiQ without any error.		
	If a component has been deactivated, only the component with the correct serial number may be inserted, or none at all.		
	All components of the drive object must be available for error-free operation.		
	Components of a drive object in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the components are marked to be bypassed in the DRIVE-CLiQ line.		

r0106	Drive object active/inactive / DO act/inact		
B_INF, CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 2
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Closed-loop control	Units group: -	Unit selection: -
CU_G150_PN, ENC,	Not for motor type: -	Scaling: -	Expert list: 1
HUB, TB30, TM150,	Max	Factory setting	
TM31, VECTOR_G	Min	-	
	0		
Description:	Displays the "active/inactive" state of a drive object.		
Value:	$0: \quad$ Drive object inactive		
Dependency:	$1: \quad$ Drive object active		

The number (p0101) and the associated drive object type are in the same index.
For SINAMICS S a drive object type can only be changed between SERVO and VECTOR. If you change the parameter and exit drive start-up (p0009 from 2 to 0) the drive parameters are set up again.

20	Bit 20	ON	OFF
21	Bit 21	ON	OFF
22	Bit 22	ON	OFF
23	Bit 23	ON	OFF
24	Bit 24	ON	OFF
25	Bit 25	ON	OFF
26	Bit 26	ON	OFF
27	Bit 27	ON	OFF
28	Bit 28	ON	OFF
29	Bit 29	ON	OFF
30	Bit 30	ON	OFF
31	Bit 31	ON	OFF

Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.			
r0108	Drive objects function module / DO fct_mod			
ENC	Can be changed: -	Calculated: -	Access lev	
	Data type: Unsigned32	Dyn. index: -	Func. diag	
	P-Group: Closed-loop control	Units group: -	Unit selec	
	Not for motor type: -	Scaling: -	Expert list	
	Min	Max	Factory se	
	-	-	-	
Description:	Displays the activated function module for the particular drive object.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	12 Linear encoder / Lin_enc	Activated	Not activated	-
	18 Free function blocks / FBLOCKS	Activated	Not activated	-
	31 PROFINET CBE20 / PROFINET CBE20	Activated	Not activated	-

Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.			
r0108	Drive objects function module / DO fct_mod			
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access lev	
	Data type: Unsigned32	Dyn. index: -	Func. diag	
	P-Group: Closed-loop control	Units group: -	Unit select	
	Not for motor type: -	Scaling: -	Expert lis	
	Min	Max	Factory se	
	-	-	-	
Description:	Displays the activated function module for the particular drive object.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	18 Free function blocks / FBLOCKS	Activated	Not activated	-
	31 PROFINET CBE20 / PROFINET CBE20	0 Activated	Not activated	-

Note:	A "function module" is a functional expansion of a drive object that can be activated when commissioning.			
r0108	Drive objects function module / DO fct_mod			
VECTOR_G	Can be changed: - C	Calculated: -	Access le	
	Data type: Unsigned32 D	Dyn. index: -	Func. diag	
	P-Group: Closed-loop control U	Units group: -	Unit selec	
	Not for motor type: - S	Scaling: -	Expert list	
	Min M	Max	Factory s	
	- -	-	-	
Description:	Displays the activated function module for the particular drive object.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	02 Closed-loop speed/torque control / n/M	Activated	Not activated	-
	05 Recorder / Recorder	Activated	Not activated	-
	08 Extended setpoint channel / Ext setp	Activated	Not activated	-
	10 Moment of inertia estimator / J_estimator	r Activated	Not activated	-
	13 Safety rotary axis / Safety rot 14 Extended brake control / Ext brake	Activated	Not activated	-

Note: \quad "function module" is a functional expansion of a drive object that can be activated when commissioning.
The following bits are only automatically set, if the power units are detected with the appropriate properties.
Bit 16: Parallel connection of the same power units (only automatically set for G130/G150).
Bit 20: Software gating unit (only automatically set when power units are connected in parallel).
Bit 24: Type PM330 power units are presently not supported.
Bit 26: Type PM250 power units with F3E energy recovery are only supported for S120 CRANES.
Bit 28: Power units with liquid cooling.

r0110[0...2]	Basic sampling times / t_basis		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	10000.00 [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:	Displays the basic sampling times.		
	The sampling times are set using p0112 and p0115. The values for the basic sampling times are determined as a result of these settings.		
Index:	$\begin{aligned} & {[0]=\text { Basic sampling time } 0} \\ & {[1]=\text { Basic sampling time } 1} \\ & {[2]=\text { Basic sampling time } 2} \end{aligned}$		

r0111	Basic sampling time selection / t_basis sel		
B_INF, CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_PN, HUB,	P-Group: Closed-loop control	Units group: -	Unit selection: -
VEC̄TOR_G	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	-
Description:	Displays the selected basic sampling time for this drive object.		
Dependency:	Refer to: r0110		
r0111	Basic sampling time selection / t_basis sel		
TB30, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	-
Description:	Displays the selected basic sampling time for this drive object.		
Dependency:	Refer to: r0110		
Note:	For TB30 and the Terminal Module, this parameter has no significance.		
	For TB30 and certain Terminal Modules, the sampling times can be set using p4099 (see description of p4099 for the Module in question).		

Dependency:	It is prohibited to select a parameter value from p0112 if the associated current controller clock cycle cannot set (e.g p0112 = 1 is not possible for a vector drive and PM340 power unit).
	If, for a servo drive, p112 = 5 is set, then the pulse frequency p1800 is preassigned 8 kHz . For D410-2 and vector drive, the current controller sampling time can only be permanently changed for p0112 $=0$. Refer to: p0092
Note:	For p0112 $=0$ (expert) the individual sampling times in p0115 can be adjusted.
	The setting p0112 = 1 cannot be set for a vector drive with power unit type PM340 (refer to r0203).
p0112	Sampling times pre-setting p0115 / t_sample for p0115
VECTOR_G	Can be changed: $\mathrm{C} 1(3)$ Calculated: - Access level: 3
	Data type: Integer16 Dyn. index: - Func. diagram: -
	P-Group: Closed-loop control Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0 3 3
Description:	Pre-assignment of the sampling times in p0115.
	The clock cycles for the current controller / speed controller / flux controller / setpoint channel / position controller / positioning / technology controller are pre-assigned as follows:
	SINAMICS S, servo drive:
	p0112 = 1: $250 / 250 / 250 / 4000 / 2000 / 8000 / 4000 \mu s$ (for chassis units)
	p0112 = 2: $125 / 250 / 250 / 4000 / 2000 / 8000 / 4000 \mu \mathrm{~s}$
	p0112 = 3: $125 / 125 / 125 / 4000 / 1000 / 4000 / 4000 \mu \mathrm{~s}$
	p0112 = 4: $62.5 / 62.5 / 62.5 / 1000 / 1000 / 2000 / 1000 \mu s$
	p0112 = 5: $31.25 / 31.25 / 31.25 / 1000 / 1000 / 2000 / 1000 \mu \mathrm{~s}$
	SINAMICS S, Active Infeed (p0112 = 1 not for p0092 = 1):
	$\mathrm{p} 0112=1: 400 /-/-/ 1600 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=2.5 \mathrm{kHz}$)
	p0112 = 2: $250 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=4.0 \mathrm{kHz}$)
	p0112 = 3: $125 /-/-/ 2000 \mu \mathrm{~s}$
	p0112 = 4: $125 /-/-/ 1000 \mu \mathrm{~s}$
	p0112 = 5: $125 /-/-/ 500 \mu \mathrm{~s}$
	SINAMICS S, Smart Infeed (p0112 = 1 not for p0092 = 1):
	p0112 = 1: $400 /-/-/ 1600 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=2.5 \mathrm{kHz}$)
	p0112 = 2: $250 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting for the rated pulse frequency $=4.0 \mathrm{kHz}$)
	p0112 = 3: $250 /-/-/ 2000 \mu \mathrm{~s}$
	p0112 = 4: $250 /-/-/ 1000 \mu \mathrm{~s}$
	p0112 = 5: Not possible
	SINAMICS S, Basic Infeed, booksize:
	p0112 = 4: $250 /-/-/ 2000 \mu \mathrm{~s}$
	SINAMICS S, Basic Infeed, chassis:
	p0112 = 1: $2000 /-/-/ 2000 \mu \mathrm{~s}$
	p0112 = 2: $2000 /-/-/ 2000 \mu \mathrm{~s}$ (pre-setting)
	p0112 = 3: $2000 /-/-/ 2000 \mu \mathrm{~s}$
	p0112 = 4: Not possible
	p0112 = 5: Not possible
	SINAMICS S/G, vector drive (p0112 = 1 not for p0092 = 1 and not for PM340):
	p0112 = 2: $250 / 1000 / 2000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$
	p0112 = 3: $250 / 1000 / 1000 / 1000 / 2000 / 4000 / 4000 \mu \mathrm{~s}$ (for rated pulse frequency $=2.0,4.0 \mathrm{kHz}$)
	SINAMICS S, vector drive:
	p0112 = 4: $250 / 500 / 1000 / 500 / 1000 / 2000 / 2000 \mu \mathrm{~s}$
	p0112 = 5: $250 / 250 / 1000 / 500 / 1000 / 2000 / 1000 \mu \mathrm{~s}$
Value:	0: Expert
	1: xLow
	2: Low
	3: Standard

Recommend.:	When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning ($\mathrm{p} 0009=0$) the controller settings are re-calculated using $\mathrm{p} 0340=4$.
Dependency:	It is prohibited to select a parameter value from p0112 if the associated current controller clock cycle cannot set (e.g p0112 $=1$ is not possible for a vector drive and PM340 power unit).
	If, for a servo drive, p112 = 5 is set, then the pulse frequency p1800 is preassigned 8 kHz . For D410-2 and vector drive, the current controller sampling time can only be permanently changed for p0112 $=0$.
	Refer to: p0092
Note:	For p0112 $=0$ (expert) the individual sampling times in p0115 can be adjusted.
	The setting p0112 = 1 cannot be set for a vector drive with power unit type PM340 (refer to r0203).

p0113	Minimum pulse frequency, selection / f_puls min sel		
VECTOR_G	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000 [kHz$]$	2.000 [Hzz]	2.000 [kzz]
Description:	The current controller sampling time ($\mathrm{p} 0115[0]$) is pre-assigned by selecting the minimum pulse frequency.		
Dependency:	The parameter can only be changed with p0112 $=0$ (expert). For isochronous operation ($\mathrm{p} 0092=1$) the parameter can only be set so that a current controller sampling time of $125 \mu \mathrm{~s}$ is obtained as an integer number.		
	The required pulse frequency can be set in p1800 after commissioning ($p 0009=\mathrm{p} 0010=0$), assuming that this has not been restricted by other conditions (e.g. as a result of $\mathrm{p} 1082, \mathrm{p} 0310$).		
Note:	The current controller sampling time ($\mathrm{p} 0115[0]$) is set to the inverse value of twice the minimum pulse frequency. For $\mathrm{p} 0113=1.0 \mathrm{kHz}, \mathrm{p} 0115[0]=500 \mu \mathrm{~s}$ is set, for $\mathrm{p} 0113=2.0 \mathrm{kHz}, \mathrm{p} 0115[0]=250 \mu \mathrm{~s}$ is set. The current controller sampling time ($\mathrm{p} 0115[0]$), calculated from the pulse frequency, is set in a grid of $1.25 \mu \mathrm{~s}$.		
	For a power unit type PM340 (refer to r0203), only the values 1.0 and 2.0 kHz can be set. A value of 1.0 kHz can be set in order to achieve a current controller sampling time of $500 \mu \mathrm{~s}$. However, in this case, the minimum pulse frequency p1800 is limited to 2 kHz .		

r0114[0...9]
VECTOR G

Minimum pulse frequency recommended / f_puls min recom

Description:

Index:

Dependency:

Can be changed: -
Calculated: -
Dyn. index: -
Units group: -
Scaling: -

Max

- [kHz]

Displays the recommended values (indices 0 and 1) for the minimum pulse frequency (p 0113).
If the system rejects a change to p 0113 because the value to be used lies outside the permitted value range, then instead the recommended value from r0114 can be used.

Note:
[0] = If only the actual drive is changed
[1] = If all drives connected to the DRIVE-CLiQ line are changed
[2] = 2. possible pulse frequency
[3] = 3. possible pulse frequency
$[4]=4$. possible pulse frequency
[5] = 5. possible pulse frequency
[6] = 6. possible pulse frequency
[7] = 7. possible pulse frequency
$[8]=8$. possible pulse frequency
[9] = 9. possible pulse frequency
Refer to: p0113
After exiting commissioning ($\mathrm{p} 0009=\mathrm{p} 0010=0$), the pulse frequencies calculated from the sampling time p115[0] are displayed in indices 1 to 9 . If additional restrictions do not apply (e.g. due to having selected an output filter), these can be entered into p1800. The maximum pulse frequency of the power units was already taken into account in r0114.
A value of 0 kHz does not define a recommended pulse frequency.

p0115[0...6]	Sampling times for internal control loops / t_sample int ctrl		
B_INF	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [$\mu \mathrm{s}$]	[0] 125.00 [$\mu \mathrm{s}$]
			[1] 125.00 [$\mu \mathrm{s}$]
			[2] 125.00 [$\mu \mathrm{s}$]
			[3] 4000.00 [$\mu \mathrm{s}$]
			[4] 1000.00 [$\mu \mathrm{s}$]
			[5] 4000.00 [$\mu \mathrm{s}$]
			[6] 4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for the control loops.		
	The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert).		
Recommend.:	When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning ($\mathrm{p} 0009=0$) the controller settings are re-calculated using p0340 $=4$.		
Index:	[0] = Current controller [1] = Speed controller [2] = Flux controller [3] = Setpoint channel [4] = Pos controller [5] = Positioning [6] = Techn controller		
Dependency:	The sampling times can only be separately set if 00112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .		
	Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is an integer number). The sampling time of the speed controller ($\mathrm{p} 0115[1]$) can have as a maximum a value of 800% of the current controller sampling time (p0115[0]).		
	For servo drives, the maximum sampling time of the current controller is $250 \mu \mathrm{~s}$ and for vector drives, $500 \mu \mathrm{~s}$.		
	The sampling times for setpoint channel ($\mathrm{p} 0115[3]$), position controller ($\mathrm{p} 0115[4]$), positioning ($\mathrm{p} 0115[5]$) and technology controller ($\mathrm{p} 0115[6]$) must have at least $2 x$ the value of the current controller sampling time ($\mathrm{p} 0115[0]$). Refer to: r0110, r0111, p0112		
Note:	For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned.		
	For the Active Line Module (ALM) and Smart Line Module (SLM), the current and DC link voltage controllers operate with the same sampling time. For ALM/SLM the maximum current controller clock cycle is $400 \mu \mathrm{~s}$.		
	For the Basic Line Module (BLM), the DC link voltage measurement operates in the current controller sampling time.		
	For BLM booksize, only the current controller sampling time of 250μ s is permitted. For BLM chassis, only the current controller sampling time of $2000 \mu \mathrm{~s}$ is permitted.		
	For power unit type PM340 (r0203), only current controller sampling times of $62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ can be set. The maximum current controller clock cycle for servo drives and the minimum current controller clock cycle for vector drives is $250 \mu \mathrm{~s}$.		
	If sampling times in p0115 are individually changed for $\mathrm{p} 0112=0$ (expert) then it must always be observed that the selected sampling times of the setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller (p0115[6]) are always greater than or equal to twice the current controller sampling time (p0115[0]).		

p0115[0]	Sampling time for supplementary functions / t_samp suppl_fct		
CU_G130_DP,	Can be changed: C1(3)	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the basic sampling time for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of $125 \mu \mathrm{~s}$ are permissible. [0] = Basic sampl time		
Index:			

p0115[0]	Sampling time for speed detection / t_sample n_det		
ENC	Can be changed: C1 3 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Max	Factory setting	
	125.00 $[\mu \mathrm{s}]$	$125.00[\mu \mathrm{~s}]$	
	Sets the sampling times for speed detection.		
Description:	$[0]=$ Basic sampl time		
Index:			

p0115[0]	Sampling time for supplementary functions / t_samp suppl_fct		
TB30, TM150, TM31	Can be changed: C1(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	16000.00 [$\mu \mathrm{s}$]	4000.00 [$\mu \mathrm{s}$]
Description:	Sets the sampling times for supplementary functions (DCC, free function blocks) on this object. Only setting values that are an integer multiple of 125μ s are permissible.		
Index:	[0] = Basic sampl time		
Note:	This parameter only applies to set the sampling times of possible supplementary functions. The sampling times for inputs/outputs must be set in p4099.		

p0115[0...6] Sampling times for internal control loops / t_sample int ctrl
VECTOR G Can be changed: C1(3) Calculated: - Access level:
Data type: FloatingPoint32 Dyn. index: - Func. diagram:
P-Group: Closed-loop control Units group: - Unit selection: -
Not for motor type: - Scaling: -
Expert list: 1
Min Max
Factory setting
0.00 [$\mu \mathrm{s}$]
16000.00 [$\mu \mathrm{s}$]
[0] 250.00 [$\mu \mathrm{s}$]
[1] 1000.00 [$\mu \mathrm{s}$]
[2] 1000.00 [$\mu \mathrm{s}$]
[3] 1000.00 [$\mu \mathrm{s}$]
[4] 2000.00 [$\mu \mathrm{s}$]
[5] 4000.00 [$\mu \mathrm{s}$]
[6] 4000.00 [$\mu \mathrm{s}$]

[^0]Recommend.: When changing the sampling times of the current and speed controllers (also refer to p0115), then we recommend that after exiting commissioning $(\mathrm{p} 0009=0)$ the controller settings are re-calculated using p0340 $=4$.
When adjusting the current controller sampling time, it is recommended to use values that are an integer multiple of $6.25 \mu \mathrm{~s}$. The sampling times of analog or digital inputs/outputs (see p0799, p4099) should be set to an integer multiple of the current controller sampling time.
If the current controller sampling time is to be reduced with respect to the default setting (e.g. $<250 \mu \mathrm{~s}$), then it is recommended that the motor data identification (standstill measurement) is executed beforehand, in order to avoid a thermal overload of the power unit as a result of high pulse frequencies (p1800).
Index: [0] = Current controller
[1] = Speed controller
[2] = Flux controller
[3] = Setpoint channel
[4] = Pos controller
[5] = Positioning
[6] = Techn controller
Dependency: Depending on the number and type of vector drives, the sampling times are preset differently.
The sampling times can only be separately set if p0112 is 0 (expert). If a sampling time is modified in the expert mode, then all of the sampling times with higher indices are automatically changed in the same ratio as the sampling time itself was changed. Slower time slices are only taken if the calculated sampling time is also permitted. Upper limit is 8 ms .
Higher-level controls must be calculated in integral ratios to lower-level controls (e.g. p0115[1] = N * p0115[0]; where N is an integer number). The sampling time of the speed controller ($\mathrm{p} 0115[1]$) can have as a maximum a value of 800% of the current controller sampling time (p0115[0]).
The sampling times for setpoint channel (p0115[3]), position controller (p0115[4]), positioning (p0115[5]) and technology controller ($p 0115[6]$) must have at least $2 x$ the value of the current controller sampling time ($p 0115[0]$).
The sampling time of the current controller p0115[0] and pulse frequency p1800 are checked at each parameter download, and when necessary changed, if, for $\mathrm{p} 0092=1$, the current controller sampling time is not an integral multiple of $125 \mu \mathrm{~s}$ or if p 0112 is set >1. For $\mathrm{p} 0092=0$, the check with $\mathrm{p} 0112=0$ ($=$ expert) can be deactivated. Refer to: r0110, r0111, p0112
Note: \quad For function modules that can be activated (e.g. technology controller), the parameters values are pre-assigned.
For power unit type PM340 (r0203), only current controller sampling times of $250 \mu \mathrm{~s}$ or $500 \mu \mathrm{~s}$ can be set. The minimum current controller clock cycle is otherwise $125 \mu \mathrm{~s}$ (SINAMICS G: $250 \mu \mathrm{~s}$), the maximum current controller clock cycle is $500 \mu \mathrm{~s}$. The minimum speed controller clock cycle for SINAMICS G is 1 ms .
Current controller clock cycles less than 250μ s are restricted by the number of drives or by the number of power units connected in parallel (also see F01340).
For chassis power units connected in parallel, it is recommended to connect the DRIVE-CLiQ cables (partially) in parallel between the Control Unit and the individual Motor Modules.
For D410-2, the current controller sampling times can only be permanently changed with p0112 = 0 (e.g. to $250 \mu \mathrm{~s}$).

r0116[0...1]	Drive object clock cycle recommended / DO_clock recom		
B_INF, CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU G150-PN, TB30,	P-Group: Closed-loop control	Units group: -	Unit selection: -
TM $31, \mathrm{VECT}$ OR_G	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:	Displays the recommended sampling time for the drive objects. r00116[0] = recommended sampling time:		
	Recommended value which would then make the complete system operational. r00116[1] = recommended sampling time:		
	Recommended value, which after changing other clock cycles on the DRIVE-CLiQ line, would result in an operational system.		
Index:	[0] = Change only for the actual drive object [1] = Changing all objects on the DRIVE-CLiQ line		
Dependency:	Refer to: p0115		

p0117	Current controller computing dead time mode / I_ctrl t_dead mode
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 4 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Closed-loop control Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 6 6
Description:	Sets the mode for the computing dead time of the current controller. 0 : Offset (shifted) clocking, minimum computing dead time of each drive, automatic setting 1: Clocking at the same time, the dead time aligns itself to the dead time of the latest drive, automatic setting 2. Manual setting of the computing dead time, early transfer 3: Manual setting of the computing dead time, late transfer 4-6: As for 0-2, however, no early transfers are set for vectors
Dependency: Note:	Refer to: p0118 The mode change is not effective until the drive unit is powered up again. Rep0117 = 0: The times when the setpoints become effective for the individual controls is automatically and individually determined. Another computing dead time is set for each control (closed-loop) (p0118). Current is impressed for the individual controls without any offset with respect to time (improved EMC compatibility). Rep0117 = 1: The latest closed-loop control determines when the setpoints for each of the individual controls become active. The same computing dead time is set for each control (p0118). Current is impressed (flows) for the individual controls without any offset with respect to time. Rep0117 = 2: The computing dead time is manually set. The user must optimize the value in p0118. Rep0117 = 3: The computing dead time is manually set. The user must optimize the value in p0118. Re p0117 = 4 ... 6: Behavior as for $\mathrm{p} 0117=0 \ldots 2$, however for vectors, the earliest times are not determined.
p0118 B_INF, VECTOR_G	Current controller computing dead time /I_ctrl t_dead Can be changed: U, T Calculated: - Access level: 4 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Closed-loop control Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.00[\mu \mathrm{~s}]$ $2000.00[\mu \mathrm{~s}]$ $0.00[\mu \mathrm{~s}]$
Description: Dependency: Note:	This parameter is pre-set as a function of the current controller sampling time ($\mathrm{p} 0115[0]$) and normally does not have to be changed. Refer to: p0117 For $\mathrm{p} 0118<=0.005 \mu \mathrm{~s}$, the current controller output is delayed by a complete current controller clock cycle (p0115[0]). After p0118 has been changed, we recommend that the current controller is adapted (p1715).
p0120 B_INF, VECTOR_G	Number of Power unit Data Sets (PDS) / PDS count
Description:	Sets the number of Power unit Data Sets (PDS). The value corresponds to the number of power units connected together for a parallel circuit configuration.

	It is not permissible to de-activate drive objects with safety functions enabled.
Note:	The activation of a component can be rejected if the component was inserted for the first time. In this case, it is only possible to activate the component when the pulses for all of the drive objects are inhibited. For units connected in parallel, when one of the power units is de-activated, then the enable in p7001 is withdrawn. Re value $=0$, 2 : When a component is deactivated it no longer outputs any errors. If value $=0$: The component was completely commissioned and is deactivated using this value. It can be removed from the DRIVE-CLiQ without any error. If value $=1$: The component must be available for error-free operation. If value $=2$: A component in a project generated offline and set to this value must never be inserted in the actual topology from the very start. This means that the component is marked to be bypassed in the DRIVE-CLiQ line. For components that comprise several individual components (e.g. Double Motor Modules), it is not permissible to set just one subset to this value.
r0126[0...n]	Power unit components active/inactive / PU comp act/inact
B_INF, VECTOR_G	Can be changed: - Calculated: - Access level: 2 Data type: Integer16 Dyn. index: PDS, p0120 Func. diagram: - P-Group: Data sets Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 1 -
Description: Value:	Displays the "active/inactive" state of a power unit component. 0: Component inactive 1: Component active
Dependency	Refer to: p0105, p0125, p0897
r0127[0...n]	Power unit EEPROM data version / PU EEPROM version
B_INF, VECTOR_G	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned32 Dyn. index: PDS, p0120 Func. diagram: - P-Group: Converter Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting - - -
Description: Dependency: Note:	Displays the version of the EEPROM data of the power unit. Refer to: r0147, r0157 For parallel circuit configurations, the parameter index is assigned to a power unit.
r0128[0...n]	Power unit firmware version / PU FW version
B_INF, VECTOR_G	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned32 Dyn. index: PDS, p0120 Func. diagram: - P-Group: Converter Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting - - -
Description: Dependency: Note:	Displays the firmware version of the power unit. Refer to: r0018, r0148, r0158, r0197, r0198 Example: The value 1010100 should be interpreted as V01.01.01.00. For parallel circuit configurations, the parameter index is assigned to a power unit.

Note:	Procedure: 1. In Index 0, enter which motor data set should be copied. 2. In Index 1, enter the motor data set data that is to be copied into. 3. Start copying: Set index 2 from 0 to 1. $\mathrm{p} 0139[2]$ is automatically set to 0 when copying is completed. When copying, p0131 is not taken into account.
p0140	Number of Encoder Data Sets (EDS) / EDS count
ENC	Can be changed: $\mathrm{C} 1(3)$ Calculated: - Access level: 2 Data type: Unsigned8 Dyn. index: - Func. diagram: 8570 P-Group: Data sets Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 1 1 1
Description: Note:	Sets the number of Encoder Data Sets (EDS). When parameterizing the drive with "no encoder" there must be at least one encoder data set (p0140 >= 1).
p0140	Number of Encoder Data Sets (EDS) / EDS count
VECTOR_G	Can be changed: $\mathrm{C} 1(3)$ Calculated: - Access level: 2 Data type: Unsigned8 Dyn. index: - Func. diagram: 8570 P-Group: Data sets Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 1 16 1
Description: Note:	Sets the number of Encoder Data Sets (EDS). When parameterizing the drive with "no encoder" there must be at least one encoder data set (p0140 >= 1).
p0141[0...n]	Encoder interface (Sensor Module) component number / Enc
ENC, VECTO	Can be changed: C1(4) Calculated: - Access level: 3 Data type: Unsigned8 Dyn. index: EDS, p0140 Func. diagram: 4704, 8570 P-Group: Data sets Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 199 0
Description: Note:	This parameter is used to assign the encoder data set to an encoder evaluation (e.g. SMC). This unique component number is assigned when parameterizing the topology. Only a component number can be entered that corresponds to an encoder evaluation. If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical. For an SMC, different component numbers are assigned for the SMC (p0141) and the (actual) encoder (p0142). SMC: Sensor Module Cabinet
p0142[0...n]	Encoder component number / Encoder comp_no
ENC, VECTOR_G	Can be changed: $\mathrm{C} 1(4)$ Calculated: - Access level: 3 Data type: Unsigned8 Dyn. index: EDS, p0140 Func. diagram: 4704 P-Group: Data sets Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 199 0
Description:	This parameter is used to assign the encoder data set to an encoder. This assignment is made using the unique component number that was assigned when parameterizing the topology. Only component numbers can be entered into this parameter that correspond to an encoder.

Note:	If the encoder evaluation and encoder are integrated (motor with DRIVE-CLiQ), then their component numbers are identical. For an SMC, different component numbers are assigned for the SMC (p 0141) and the (actual) encoder (p 0142).		
p0144[0...n]	Sensor Module detection via LED / SM detection LED		
ENC, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Detects the Sensor Module assigned to this drive and data set.		
Note:	While p0144 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Sensor Module.		
p0145[0...n]	Activate/de-activate encoder interface / Enc_intf act/deact		
ENC, VECTOR_G	Can be changed: $\mathrm{C} 1(4), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	1
Description:	Setting to activate/de-activate an encoder interface (Sensor Module).		
Value:	$0:$ De-activate component 1: Activate component 2: Component de-activate and not present		
Recommend.:	After inserting a component, before activating, first wait for Alarm A01317. Refer to: r0146		
Dependency:			
Note:	The de-activation of an encoder The activation of a component In this case, it is only possible With the encoder interface for in the "Ready for operation" sta With the encoder interface for Re value $=0$, 2 : When a component is deactiva If value $=0$: The component was completely DRIVE-CLiQ without any error. If value = 1: The component must be availa If value $=2$: A component in a project gene the very start. For components that comprise set just one subset to this value	responds to the"parking en if the component was ins component when the pulse tor encoder), the relevant d d 3, the parameter can also er outputs any errors. ed and is deactivated using ree operation. nd set to this value must ne dual components (e.g. Dou	ction and has the s he first time. the drive objects a for writing the para during operation. It can be removed erted in the actual Modules), it is not p
r0146[0...n]	Encoder interface active/inactive / Enc_intf act/inact		
ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	-
Description:	Displays the "active" or "inactive" state of an encoder interface (Sensor Module).		

p0151	Terminal Module component number / TM comp_no		
TM150, TM31, TM54F_MA, TM54F_SL	Can be changed: C 1 (4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0
Description:	Sets the component number for the Terminal Module. This unique component number is assigned when parameterizing the topology.		
	Only component numbers can be entered into this parameter that correspond to a Terminal Module.		
p0151[0...n]	Voltage Sensing Module component number / VSM comp_no		
VECTOR_G	Can be changed: C1(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: p0150	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0
Description:	The VSM data set is assigned to a VSM evaluation using this parameter.		
Note:	If two VSM are connected at the Motor Module, then the first ($\mathrm{p} 0151[0]$) is assigned to the line voltage measurement (see p3801) and the second, to the motor voltage measurement (see p1200).		
p0154	DRIVE-CLiQ Hub Module detection via LED / Hub detection LED		
HUB	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Detects any DRIVE-CLiQ Hub Module that has been assigned.		
p0154	Terminal Module detection via LED / TM detection LED		
TM150, TM31, TM54F_MA, TM54F_SL	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Detects the Terminal Module assigned to this drive and data set.		
Note:	While p0154 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Terminal Module.		
p0155[0...n]	Voltage Sensing Module activate/de-activate / VSM act/deact		
VECTOR_G	Can be changed: C1(4), T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	1
Description:	Setting to activate/de-activate a Voltage Sensing Module (VSM).		
Value:	0 : De-activate component 1: Activate component 2: Component de-activate and not present		

Recommend.: Dependency:	After inserting a component, before activating, first wait for Alarm A01317. Refer to: r0156		
r0156[0...n]	Voltage Sensing Module active/inactive / VSM act/inact		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	-
Description:	Displays the "active" or "inactive" state of a Voltage Sensing Module (VSM).		
Value:	0 : Component inactive		
Dependency:	Refer to: p0155		
r0157	DRIVE-CLiQ Hub Module EEPROM data version / Hub EEPROM version		
HUB	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the version of the EEPROM data for the DRIVE-CLiQ Hub Module.		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0157	Terminal Module EEPROM data version / TM EEPROM version		
TM150, TM31, TM54F_MA, TM54F_SL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the version of the EEPROM data of the Terminal Module.		
Dependency:	Refer to: r0127, r0147		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0157[0...n]	Voltage Sensing Module EEPROM data version / VSM EEPROM version		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the version of the EEPROM data of the Voltage Sensing Module (VSM).		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0158	DRIVE-CLiQ Hub Module firmware version / Hub FW version		
HUB	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the firmware version of the DRIVE-CLiQ Hub Module.		
r0158	Terminal Module firmware version / TM FW version		
TM150, TM31, TM54F_MA, TM54F_SL	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the firmware version of the Terminal Module.		
Dependency:	Refer to: r0018, r0128, r0148, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V 01.01 .01 .00 .		
r0158[0...n]	Voltage Sensing Module firmware version / VSM FW version		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: p0150	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the firmware version of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: r0018, r0128, r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
p0161	Option board component number / Opt board comp_no		
TB30	Can be changed: C 1 (4)	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	199	0
Description:	Sets the component number for the option board (e.g. Terminal Board 30). This unique component number is assigned when parameterizing the topology.		

Note:	A value of 99 means that no encoder has been as	gned to this drive d	(not config	
p0188[0...n]	Encoder 2 encoder data set number / Enc 2 EDS number			
VECTOR_G	Can be changed: C1(4) Ca	ulated: -	Access level: 3	
	Data type: Unsigned8 Dy	index: DDS, p0180	Func. diagram: 4700, 8570	
	P-Group: Data sets Un	group: -	Unit selection: -	
	Not for motor type: - Sc	ing: -	Expert list: 1	
	Min Max		Factory setting	
	0 99		99	
Description:	Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 2.			
	The value corresponds to the number of the assigned encoder data set.			
	Example:			
	Encoder data set 1 should be assigned to encoder 2 in drive data set 2.			
	--> p0188[2] = 1			
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).			
p0189[0...n]	Encoder 3 encoder data set number / Enc 3 EDS number			
VECTOR_G	Can be changed: $\mathrm{C} 1(4) \quad$ Calcur	ulated: -	Access level: 3	
	Data type: Unsigned8 Dy	index: DDS, p0180	Func. diagram: 4700, 8570	
	P-Group: Data sets Un	group: -	Unit selection: -	
	Not for motor type: - S	ing: -	Expert list: 1	
	Min M		Factory setting	
	0 99		99	
Description:	Assign a drive data set (= index) the corresponding encoder data set (EDS) for encoder 3.			
	The value corresponds to the number of the assigned encoder data set.			
Note:	A value of 99 means that no encoder has been assigned to this drive data set (not configured).			
r0192	Power unit firmware properties 1 / PU FW property 1			
B_INF, VECTOR_G	Can be changed: - Calcula	ulated: -	Access level: 3	
	Data type: Unsigned32 D	index: -	Func. diagram: -	
	P-Group: Converter U	group: -	Unit selection: -	
	Not for motor type: - S	ing: -	Expert list: 1	
	Min M		Factory setting	
	-		-	
Description:	Displays the properties supported by the power unit firmware.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Edge modulation possible	Yes	No	-
	01 Free telegram can be selected	Yes	No	-
	02 Smart mode possible for Active Line Module	Yes	No	-
	03 Safety Integrated possible for VECTOR	Yes	No	-
	05 Thermal model expanded	Yes	No	-
	06 Liquid cooling	Yes	No	-
	07 SERVO pulse frequency changeover DDSdependent	Yes	No	-
	08 Simulation mode possible	Yes	No	-
	09 Internal armature short-circuit possible	Yes	No	-
	10 Autonomous internal armature short-circuit possible	Yes	No	-
	11 Infeed temperature inputs X21.1/2	Yes	No	-
	12 Integral scaled to half the gating unit clock cycle freq.	Yes	No	-
	13 Filtering thermal power unit current limit possible	Yes	No	-
	14 DC link compensation possible in power unit	Yes	No	-
	15 PT100 temperature evaluation possible	Yes	No	-
	16 Gating unit with pulse frequency wobbulation possible	Yes	No	-

Note: \quad The parameter is used to identify when the drive is being commissioned for the first time.
The power unit commissioning can only be exited ($0201=r 0200$), if the actual and acknowledged code numbers are identical (p0010 = 2).
For parallel circuit configurations, the parameter index is assigned to a power unit.

p0201[0...n]	Power unit code number / PU code no		
VECTOR_G	Can be changed: C2(2)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the actual code number from r0200 to acknowledge the power unit being used.		
	When commissioned for the first time, the code number is automatically transferred from r0200 into p0201.		
Notice:	When p0201 $=10000$, the rated power unit data is reloaded and dependent parameters are set (e.g. p0205, p0210, p0230, p0857, p1800). p0201 is then automatically assigned the value of r0200 if the code number of the power unit could be read. A warm start must be performed after this procedure (automatically if necessary).		
Note:	The parameter is used to identify when the drive is being commissioned for the first time.		
	The power unit commissioning can only be exited ($\mathrm{p} 0201=\mathrm{r} 0200$), if the actual and acknowledged code numbers are identical ($\mathrm{p} 0010=2$). However, if the comparator in p9906 or p9908 is at 2 (low) or 3 (minimum), the power unit commissioning is automatically set to $00201=\mathrm{r} 0200$ upon exiting.		
	When the code number is changed, the connection voltage (p0210) is checked and, if necessary, adjusted.For parallel circuit configurations, the parameter index is assigned to a power unit.		

r0203[0...n]	Actual power unit type / PU actu	lype	
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2	400	-
Description:	Displays the type of power unit found.		
Value:	2: MICROMASTER 440		
	3: MICROMASTER 411		
	4: MICROMASTER 410		
	5: MICROMASTER 436		
	6: MICROMASTER 440 PX		
	7: MICROMASTER 430		
	100: SINAMICS S		
	101: SINAMICS S (value)		
	102: SINAMICS S (combi)		
	103: SINAMICS S120M (distributed)		
	112: PM220 (SINAMICS G120)		
	113: PM230 (SINAMICS G120)		
	114: PM240 (SINAMICS G120)		
	115: PM250 (SINAMICS G120 / S120)		
	116: PM260 (SINAMICS G120)		
	118: SINAMICS G120 Px		
	120: PM340 (SINAMICS S120)		
	126: SINAMICS ET200PRO		
	130: PM250D (SINAMICS G120D)		
	133: SINAMICS G120C		
	135: SINAMICS PMV40		
	136: SINAMICS PMV60		
	137: SINAMICS PMV80		
	138: SINAMICS G110M		
	150: SINAMICS G		
	151: PM330 (SINAMICS G120)		
	200: SINAMICS GM		

Dependency:	IECdrives $(p 0100=0)$: Units kW NEMA drives $(\mathrm{p} 0100=1)$: Units hp Refer to: p0100, p0205	
r0207[0...4]	Rated power unit current / PU PI_rated	
B_INF, VECTOR_G	Can be changed: - Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Converter Units group: - Not for motor type: - Scaling: - Min Max $-[A r m s]$ $-[A r m s]$	Access level: 2 Func. diagram: 8014 Unit selection: - Expert list: 1 Factory setting - [Arms]
Description: Index:	Displays the rated power unit power for various load duty cycles. [0] = Rated value [1] = Load duty cycle with low overload [2] = Load duty cycle with high overload [3] = S1 cont duty cyc [4] = S6 load duty cycle	
Dependency:	Refer to: p0205	
r0208	Rated power unit line supply voltage / PU U_rated	
B_INF, VECTOR_G	Can be changed: - Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Converter Units group: - Not for motor type: - Scaling: - Min Max $-[V r m s]$ $-[V r m s]$	Access level: 2 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [Vrms]
Description:	Displays the rated line supply voltage of the power unit. $\begin{aligned} & \text { r0208 }=400: 380-480 \vee+/-10 \% \\ & \text { r0208 }=500: 500-600 \mathrm{~V}+/-10 \% \\ & \text { r0208 }=690: 660-690 \mathrm{~V}+/-10 \% \end{aligned}$ For the Basic Line Module (BLM) the following applies: r0208 = 690 : 500-690 V +/-10 \%	
r0209[0...4]	Power unit maximum current / PU I_max	
B_INF, VECTOR_G	Can be changed: - Calculated: - Data type: FloatingPoint32 Dyn. index: -	Access level: 2 Func. diagram: 8750, 8850, 8950
	P-Group: Converter Units group: - Not for motor type: - Scaling: - Min Max $-[$ Arms $]$ $-[$ Arms $]$	Unit selection: - Expert list: 1 Factory setting - [Arms]
Description: Index:	Displays the maximum output current of the power unit. [0] = Catalog [1] = Load duty cycle with low overload [2] = Load duty cycle with high overload [3] = S1 load duty cycle [4] = S6 load duty cycle	
Dependency:	Refer to: p0205	

p0210	Drive unit line supply voltage / V_connect		
B_INF	Can be changed: C2(1)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8760
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	70 [Vrms]	1000 [Vrms]	400 [Vrms]
Description:	Sets the drive unit supply voltage (3-ph. AC).		
	The value corresponds to the rms value of the phase-to-phase rated line supply voltage.		
Dependency:	The parameter can be reduc	0 V if p0212.0 is	
Notice:	- the undervoltage and overvoltage limits change (r0296, r0297).		
	- when using the internal braking chopper of Basic Line Modules (20 or 40 kW) the threshold when the braking chopper becomes active is reduced to 385 V . When using an external braking chopper, it must be ensured that a suitable activation threshold is used.		
	- all of the components connected to this DC link must also be adapted to the low line supply voltage. It is especially important that the rated DC voltage of all of the drives connected to this DC link is set with p0210 (e.g. p0210(SERVO) $=1.35 \times$ p0210(B_INF) $=310 \mathrm{~V}$).		
	- it is not possible to use a Control Supply Module (CSM) to generate a 24 V supply from the DC link, as the minimum continuous DC link voltage should not be below 430 V .		
Note:	The supply voltage range depends on the voltage class of the power unit.		
	400 V chassis units: $380 \mathrm{~V}<=$ p $0210<=480 \mathrm{~V}$		
	690 V chassis units: $500 \mathrm{~V}<=\mathrm{p} 0210<=690 \mathrm{~V}$		
	400 V booksize units can also be connected to 3-ph. 230 V AC		
	400 V booksize units: $180 \mathrm{~V}<=$ p $0210<=480 \mathrm{~V}$		
	A reduced supply voltage up to 70 V is possible if p0212.0 $=1$ has been set.		
p0210	Drive unit line supply voltage / V_connect		
VECTOR_G	Can be changed: C2(2), T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [V]	63000 [V]	600 [V]
Description:	Sets the drive unit supply voltage.		
	AC/AC unit: The rms value of the phase-to-phase line supply voltage should be entered.		
	DC/AC unit: The rated DC voltage of the connection busbar should be entered.		
Dependency:	Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.		
	The switch-in thresholds of the Vdc_max controller (r1242, r1282) are then directly determined using p0210.		
	Refer to: p0212		
Notice:	If, in the switched-off state (p be automatically de-activate switched on. In this case, an	supply voltage is to prevent the m m A07401 is out	ered value, the Vdc controller may g the next time the system is
Note:	Setting ranges for p0210 as a function of the rated power unit voltage:		
	U_rated $=400 \mathrm{~V}$:		
	- p0210 = $380 \ldots 480 \mathrm{~V}$ (AC/AC), 510 ... 720 V (DC/AC)		
	U_rated = 500 V :		
	- p0210 = $500 \ldots 600 \mathrm{~V}$ (AC/AC), $675 \ldots 900 \mathrm{~V}$ (DC/AC)		
	U_rated $=660 \ldots 690 \mathrm{~V}$:		
	- p0210 = 660 ... 690 V (AC/AC), 890 ... 1035 V (DC/AC)		
	U_rated $=500 \ldots 690 \mathrm{~V}$:$-\mathrm{p} 0210=500 \ldots 690 \mathrm{~V}(\mathrm{AC/AC}), 675 \ldots 1035 \mathrm{~V}$ (DC/AC)		

The pre-charging switch-in threshold for the DC link voltage (Vdc) is calculated from p0210:
Vdc_pre $=$ p0210 * $0.82 * 1.35$ (AC/AC)
Vdc_pre $=$ p0210 * 0.82 (DC/AC)
The undervoltage thresholds for the DC link voltage (Vdc) are calculated from p0210 as a function of the rated power unit voltage:
U_rated $=400 \mathrm{~V}$:

- U_min $=$ p0210 * $0.78(\mathrm{AC} / \mathrm{AC})>330 \mathrm{~V}, \mathrm{p} 0210$ * 0.60 (DC/AC) > 380 V

U_rated $=500 \mathrm{~V}$:

- U_min $=p 0210$ * $0.76(A C / A C)>410 V$

U_rated $=660 \ldots 690 \mathrm{~V}$:

- U_min $=$ p0210 * $0.82(\mathrm{AC} / \mathrm{AC})>565 \mathrm{~V}, \mathrm{p} 0210$ * 0.63 (DC/AC) $>650 \mathrm{~V}$

U_rated $=500 \ldots 690 \mathrm{~V}$:
-U _min $=\mathrm{p} 0210$ * $0.82(\mathrm{AC} / \mathrm{AC})>420 \mathrm{~V}, \mathrm{p} 0210$ * $0.63(\mathrm{DC} / \mathrm{AC})>480 \mathrm{~V}$

p0212

 B_INF
Description:

 Bit field:
Dependency:

Caution:

Note:

Power unit configuration / PU config

Can be changed: C2(2)
Data type: Unsigned16
P-Group: Converter
Not for motor type: -
Min -
Sets the power unit configuration.

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Drive unit line supply voltage reduced	Yes	No	-
02	Supply voltage tolerance range extended	Yes	No	-
05	Contactor display inputs/outputs status	Yes	No	9814

Re bit 00:
Reduced supply voltages are only possible on booksize power units.
Bit $0=1$ can only be set if r0192.22 = 1 .
Refer to: r0192, p0210
Re bit 00:
Working with reduced input voltages de-activates undervoltage detection.
This function may only be used by personnel with expert knowledge!
Re bit 03:
If the automatic setting of the Vdc max limit is deactivated, then all of the components connected to the DC link must be suitable for the maximum DC link voltage of the power unit (e.g. 820 V for 400 V units).
Re bit $00=0$:
It is not possible to reduce the supply voltage in p0210 to below 180 V .
Re bit $00=1$:
With this setting the supply voltage in p0210 can be reduced to 70 V . Bit $0=1$ can only be set for booksize power units with a rated power of up to 40 kW .
The activation of this function is retentively saved in the unit and for incorrect design of the application can result in loss of warranty!
Re bit 05 = 1:
The status of the inputs/outputs for the power unit contactors is displayed in r0256.
This only applies to chassis power units with 3 AC line connection and line contactors.
The status display is only effective after parameter save and POWER ON.

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting 00000000 bin

p0212	Power unit configuration / PU config			
VECTOR_G	Can be changed: $\mathrm{C} 2(2)$	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Converter	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	00000	
Description:	Sets the power unit configuration.			
Bit field:	Bit Signal name 00 Drive unit line supply voltage reduced 01 External pre-charging present 03 Automatically adapt Vdc_max limit 05 Contactor display inputs/outputs status	1 signal	0 signal	FP
		Yes	No	-
		Yes	No	-
		No	Yes	-
		Yes	No	9814
Dependency:	Re bit 00:			
	Reduced supply voltages are only possible for booksize and chassis power units (DC/AC).			
	Bit $0=1$ can only be set if r0192.22 $=1$.			
	Re bit $01=1$:			
	The external pre-charging setting only affects the DC/AC power units.			
	Re bit $03=1$:			
	The automatic adaptation (reduction) of the $V d c$ max limit is deactivated (only for chassis power units). Bit 3 only has an effect, if bit 0 is simultaneously set.			
	Refer to: r0192, p0210			
Caution:	Re bit 00:			
	Working with reduced input voltages de-activates undervoltage detection. \quad Re bit 03 :			
	If the automatic setting of the Vdc max limit is deactivated, then all of the components connected to the DC link must be suitable for the maximum DC link voltage of the power unit (e.g. 820 V for 400 V units).			
Note:	Re bit $00=0$:			
	It is not possible to reduce the supply voltage in p0210.			
	Re bit $00=1$:			
	With this setting the supply voltage in p0210 can be reduced to 100 V .			
	Booksize PU: only for operating mode p1300 $=19$			
	Chassis PU: only for operating mode p1300 > 19 and closed-loop DC voltage control			
	There is no external pre-charging of the DC/AC Motor Modules. The pre-charging monitoring is bypassed. Re bit $01=1$			
	There is external pre-charging of the DC/AC Motor Modules. The pre-charging monitoring is calculated.			
	Re bit $03=0$:			
	The DC link voltage limit is calculated from p0210.			
	Re bit $03=1$:			
	The DC link voltage limit is set to the maximum value of the power unit.			
	Re bit $05=1$:			
	The status of the inputs/outputs for the power unit contactors is displayed in r0256.			
	This only applies to chassis power units with 3 AC line connection and line contactors.			
	The status display is only effective after parameter save and POWER ON.			
p0230	Drive filter type motor side / Drv filt type mot			
VECTOR_G	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Acces	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: Converter	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	0	4	0	
Description:	Sets the type of the filter at the motor side.			

Note:	When exiting the quick commissioning using p3900 = 1, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase $(\mathrm{p} 0010=0)$ and then the controller calculation $(\mathrm{p} 0340=3)$ is carried out.

p0234	Power unit sine-wave filter capacitance / PU sine filter C			
VECTOR_G	Can be changed: C2(2), U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: Converter	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0.000 [$\mu \mathrm{F}$]	1000.000 [$\mu \mathrm{F}$]	0.000	
Description:	Enters the capacitance of a sine-wave filter connected th the power unit output.			
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.			
	Refer to: p0230			
Note:	The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$).			
p0235	Motor reactor in series number / L_mot in SeriesQty			
VECTOR_G	Can be changed: $\mathrm{C} 2(1,2)$	Calculated: -	Acces	
	Data type: Unsigned8	Dyn. index: -	Func.	
	P-Group: Converter	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	1	3	1	
Description:	Sets the number of reactors connected in series at the power unit output.			
Dependency:	Refer to: p0230			
Notice:	If the number of motor reactors connected in series does not correspond to this parameter value, then this can result in an unfavorable control behavior.			
r0238	Internal power unit resistance / PU R internal			
VECTOR_G	Can be changed: - Calculated: -		Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: Converter	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory setting	
	- [ohm]	- [ohm]	- [ohm]	
Description:	Displays the internal resistance of the power unit (IGBT and line resistance).			
Note:	For a parallel circuit, the value corresponds to the resistance of a power unit.			
p0247	Voltage measurement configuration / U_mes config			
VECTOR_G	Can be changed: C2(2), U, T	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Converter	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	0000	
Description:	Sets the configuration for the voltage measurement.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	05 Use voltage measured values for flying restart	Yes	No	-

The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced).

Note:	For liquid-cooled chassis power units, the operating hours of the inner fan are displayed in p0251 and not in p0254.
p0255[0...7]	Power unit contactor monitoring time / PU cont t_monit
B_INF, VECTOR_G	Can be changed: T Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Modulation Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $-1[\mathrm{~ms}]$ $65535[\mathrm{~ms}]$ $[0] 0[\mathrm{~ms}]$ $[1] 0[\mathrm{~ms}]$ $[2]-1[\mathrm{~ms}]$ $[3]-1[\mathrm{~ms}]$ $[4 \ldots 7] 0[\mathrm{~ms}]$
Description:	Sets the monitoring time for internal monitoring of the contactor feedback contacts. For a value 0.0 or negative values, the particular monitoring is deactivated. Re index 0 ... 3 : Is used to monitor the delay time between the control and feedback signals of the particular contactor. Re index 4 ... 7: Is used for simultaneity monitoring for a parallel connection. After a contactor has been opened or closed, this checks whether, after the monitoring time has expired, all contactors of the parallel connection have assumed the same state. Re Index 2, 3 : The value -1.0 means that the particular opening time is taken from Index 0 or 1 .
Index:	[0] = Pre-charging contactor closing time [1] = Bypass contactor closing time [2] = Pre-charging contactor opening time [3] = Bypass contactor opening time [4] = Simultaneity pre-charging contactor closing time [5] = Simultaneity bypass contactor closing time [6] = Simultaneity pre-charging contactor opening time [7] = Simultaneity bypass contactor opening time
Dependency:	Refer to: r0256
Notice:	Re index 4 ... 7: The simultaneity monitoring is only activate after parameter save and POWER ON.
Note:	- This parameter is only effective for chassis power units with 3 AC line connection and line contactors. - The simultaneity monitoring can only be activated for a parallel connection. - The feedback signal input of an open bypass contactor must be displayed in r0256 $=0$. - The feedback signal input of an open pre-charging contactor must be displayed in r0256 $=1$. - Determining practical monitoring times can be supported by a tracing r0256. For power unit firmware version less than 4.6, the following applies: There are no separate monitoring times for the delay time between opening and closing. In this case, the maximum of the opening time and closing time is effective.
r0256.0...31	CO/BO: Power unit contactor inputs/outputs status / PU contact IO stat
B_INF, VECTOR_G	Can be changed: - Calculated: - Access level: 3
	P-Group: Displays, signals Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
Description:	Display and BICO output for the status of the inputs/outputs of the power unit contactors. The display is activated in p0212.5.

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	PDS0 pre-charging/line contactor control output	High	Low	
	01	PDSO pre-charging/line contactor feedback signal input	High	Low	-
	02	PDSO bypass contactor control output	High	Low	
	03	PDSO bypass contactor feedback signal input	High	Low	-
	04	PDS1 pre-charging/line contactor control output	High	Low	-
	05	PDS1 pre-charging/line contactor feedback signal input	High	Low	-
	06	PDS1 bypass contactor control output	High	Low	
	07	PDS1 bypass contactor feedback signal input	High	Low	-
	08	PDS2 pre-charging/line contactor control output	High	Low	-
	09	PDS2 pre-charging/line contactor feedback signal input	High	Low	-
	10	PDS2 bypass contactor control output	High	Low	
	11	PDS2 bypass contactor feedback signal input	High	Low	-
	12	PDS3 pre-charging/line contactor control output	High	Low	-
	13	PDS3 pre-charging/line contactor feedback signal input	High	Low	-
	14	PDS3 bypass contactor control output	High	Low	
	15	PDS3 bypass contactor feedback signal input	High	Low	-
	16	PDS4 pre-charging/line contactor control output	High	Low	-
	17	PDS4 pre-charging/line contactor feedback signal input	High	Low	-
	18	PDS4 bypass contactor control output	High	Low	
	19	PDS4 bypass contactor feedback signal input	High	Low	-
	20	PDS5 pre-charging/line contactor control output	High	Low	-
	21	PDS5 pre-charging/line contactor feedback signal input	High	Low	-
	22	PDS5 bypass contactor control output	High	Low	
	23	PDS5 bypass contactor feedback signal input	High	Low	-
	24	PDS6 pre-charging/line contactor control output	High	Low	-
	25	PDS6 pre-charging/line contactor feedback signal input	High	Low	-
	26	PDS6 bypass contactor control output	High	Low	
	27	PDS6 bypass contactor feedback signal input	High	Low	-
	28	PDS7 pre-charging/line contactor control output	High	Low	-
	29	PDS7 pre-charging/line contactor feedback signal input	High	Low	-
	30	PDS7 bypass contactor control output	High	Low	
	31	PDS7 bypass contactor feedback signal input	High	Low	-
Dependency:	Ref	r to: p0212			
Note:		parameter is only effective for chassis power : Power unit Data Set	units with	on and lin	

r0289	CO: Maximum power unit output current / PU I_outp max		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual maximum output current of the power unit taking into account derating factors.		
p0290	Power unit overload response / PU overld response		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 8014
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	13	0
Description:	Sets the response to a thermal overload condition of the power unit.		
	The following quantities can result in a response to thermal overload:		
	- heat sink temperature (r0037[0]).		
	- chip temperature (r0037[1]).		
	- power unit overload 12 t (r0036).		
	Possible measures to avoid thermal overload:		
	- reduce the output current limit r0289 and r0067 (for closed-loop speed/velocity or torque/force control) or the output frequency (for U/f control) indirectly via the output current limit and the intervention of the current limiting controller).		
	A reduction, if parameterized, is always realized after an appropriate alarm is output.		
Value:	0: Reduce output current or output frequency		
	1: No reduction shutdown when overload threshold is reached		
	2: Reduce I_output or f_output and f_pulse (not using 12t)		
	3: Reduce the pulse frequency (not using I2t)		
	12: I_output or f_output and automatic pulse frequency red		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction ($p 0290=0,1$).		
	For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set.		
	p0290 $=12,13$ are applicable only for blocksize power units.		
	Refer to: r0036, r0037, p0108, r0108, p0230, r2135		
Notice:	If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter.		
Note:	The setting p0290 $=0,2$ is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans).		
	Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through.		
	For p0290 $=2,3,12,13$, the $I 2$ t overload detection of the power unit does not influence the response "Reduce pulse frequency".		
	When the motor data identification routine is selected, p0290 cannot be changed.		

5 = Synchronous motor separately-excited
7 = SIEMOSYN motor
8 = Reluctance motor (for textile applications)
The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p 0308) is neither used nor displayed (in the BOP/AOP).

136 / 136xx, 146xx, 156xx			
166 / 166xx, 176xx, 186xx			
	264 / 264xx, 274xx, 284xx, 294xx		
	283 / 283xx, 293xx		
	For 1PQ8 motors $(\mathrm{p} 0300=18)$ the fan type p0335 should be set to 5 .		
Note:	With $\mathrm{p} 0300=10000$, for a motor with DRIVE-CLiQ, the motor parameters are automatically downloaded, with p0300 $=10001$, the motor parameters of a second data set (if available).		
	If a motor type has not been selected ($\mathrm{p} 300=0$), then the drive commissioning routine cannot be exited.		
	A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.		
	Motor types with a value below p0300<100 correspond to the selection of a third-party motor. When appropriately selected, this means that the motor parameters are pre-assigned the settings for a third-party motor.		
	This also applies for parameters for a motor with DRIVE-CLiQ. In this case p0300 can only be set to p0300 = 10000 or 10001 (read motor parameters) or to the corresponding non-Siemens motor (first digit of the motor code number) in order to be able to cancel the write protection.		
p0301[0...n]	Motor code number selection / Mot code No. sel		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	The parameter is used to select a motor from a motor parameter list.		
	When changing the code number (with the exception to the value 0), all of the motor parameters are pre-assigned from the internally available parameter lists.		
Dependency:	Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. For 1PH2, 1PH4, 1PH7, 1PM4, 1PM6, 1FT6 motors, code numbers are also possible, whose fourth decimal position is greater by a value of 1 or 2 than the matching motor type in p0300. For 1FE1 motors, the third decimal position can be higher by a value of 1 . Refer to: p0300		
Note:	The motor code number can only be changed if the matching catalog motor was first selected in p0300.		
	For a motor with DRIVE-CLiQ, p0301 cannot be changed. In this case, p0301 is automatically written to the code number of the motor parameter read in (r0302) if p0300 is set to 10000.		
	When selecting a catalog motor ($\mathrm{p} 0300>=100$), drive commissioning can only be exited if a code number is selected.		
r0302[0...n]	Motor code number of motor with DRIVE-CLiQ / Mot code mot w/ DQ		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the motor code number from the saved motor data from a motor with DRIVE-CLiQ.		
Note:	Drive commissioning can only be exited if the code number that was downloaded (r0302) matches the stored code number (p0301). If the numbers differ, then the motor data set should be re-loaded using p0300 $=10000$.		
	The motor data are always expected from the first encoder that is assigned to the drive data sets (refer to p0187 = encoder 1) data set number.		
	The value is not updated cyclically but only on specific events (e.g. update DRIVE-CLiQ device).		

r0303[0...n]	Motor with DRIVE-CLiQ status word / Motor w DQ ZSW			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func.	
	P-Group: Motor	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Displays the status word of the automatic motor parameter sensing of a motor with DRIVE-CLiQ.			
	Motor parameter sensing takes place in the following events if the SMI is connected to the Motor Module and the encoder is activated (p0145):			
	- Warm restart			
	- downloading projects.			
	- POWER ON (off/on).			
	- where p0300 $=10000,10001$.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Motor data set selected	MDS1	MDSO	-
	01 Motor connection type	Delta	Star	-
	02 Windings can be changed	Yes	No	-
	03 Windings can be changed number	2	0	-
Dependency:	Refer to: p0145, p0300			
Note:	SMI: SINAMICS Sensor Module Integrated			
p0304[0...n]	Rated motor voltage / Mot U_rated			
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func.	
	P-Group: Motor	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0 [Vrms]	20000 [Vrms]	0 [Vrm	
Description:	Sets the rated motor voltage (rating plate).			
Dependency:	Refer to: p0349			
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.			
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.			
p0305[0...n]	Rated motor current / Mot I_rated			
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func.	
	P-Group: Motor	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0.00 [Arms]	10000.00 [Arms]	0.00	
Description:	Sets the rated motor current (rating plate).			
Dependency:	Refer to: p0349			
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.			
	If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p 0640 is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 $=3$).			
	If the rated motor current exceeds twice the maximum drive converter current (r0209), then the maximum curren reduced due to the current harmonics that increase overproportionally (r0067).			
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.			

p0306[0...n]	Number of motors connected in parallel / Motor qty		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	50	1
Description:	Number of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be carefully observed for motors connected in series:		
	The following rating plate data should only be entered for one motor:		
	- resistances and inductances: p0350 ... p0361		
	- currents: p0305, p0320, p0323, p0325, p0329, p0389, p0390, p0391, p0392		
	- power ratings: p0307		
	- masses/moments of inertia: p0341, p0344		
	All other parameters take into account the replacement/equivalent motor (e.g. r0331, r0333).		
Recommend.:	For motors connected in parallel, external thermal protection should be provided for each individual motor.		
Dependency:	Refer to: r0331		
Caution: \uparrow	The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)).		
	The mounting regulations when connecting motors in parallel must be carefully maintained! Especially for synchronous motors, the pole position of motors that are rigidly coupled with one another (mechanically) must be identical.		
	The number of motors set must correspond to the number of motors that are actually connected in parallel. After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1).		
	For synchronous motors connected in parallel with p1300 >= 20, be following applies:		
	- the individual motors must be mechanically coupled with one another and the EMF must be aligned to one another. For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:		
	- an individual motor must not be loaded beyond its stall point.		
Notice:	If p0306 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p 0640 is appropriately preassigned. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		
Note:	Only operation with U / f characteristic makes sense if more than 10 identical motors are connected in parallel.		
	Synchronous and reluctance motors that are not coupled with one another align themselves when the pulses are switched in. If the motors have different load levels, then equalization currents flow between the motors.		

p0307[0...n]	Rated motor power / Mot P_rated		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 14_6	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-100000.00[\mathrm{~kW}]$	0.00 [kW]	
Description:	Sets the rated motor power (rating plate).		
Dependency:	IECdrives (p0100 = 0): Units kW		
	NEMA drives (p0100 = 1): Units hp		
Notice:	Refer to: p0100		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
Note:	Information in p0300 should be carefully observed when removing write protection.		

p0308[0...n]	Rated motor power factor / Mot cos phi rated		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	1.000	0.000
Description:	Sets the rated motor power factor (cos phi, rating plate).		
	For a parameter value of 0.000, the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only available for IEC motors ($\mathrm{p} 0100=0$).		
	Refer to: p0100, p0309, r0332		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 $=2 \mathrm{xx}$).		
p0309[0...n]	Rated motor efficiency / Mot eta_rated		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	99.9 [\%]	0.0 [\%]
Description:	Sets the rated motor efficiency (rating plate).		
	For a parameter value of 0.0, the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only visible for NEMA motors (p0100 = 1, 2).		
	Refer to: p0100, p0308, r0332		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 $=2 \mathrm{xx}$).		
p0310[0...n]	Rated motor frequency / Mot f_rated		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6301
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p 0311), if p0314 $=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz .		
	Refer to: p0311, r0313, p0314		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0310 is changed during quick commissioning ($p 0010=1$), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 = 3).		

p0316[0...n]	Motor torque constant / Mot kT		
VECTOR_G	Can be changed: C2(1, 3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 28_1	Unit selection: p0100
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Nm / A]	400.00 [Nm / A]	0.00 [Nm / A]
Description:	Sets the torque constant of the synchronous motor.$\mathrm{p} 0316=0$		
	The torque constant is calculated from the motor data. p0316>0:		
	The selected value is used as torque constant.		
Dependency:	Refer to: r0334		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).		
p0318[0...n]	Motor stall current / Mot I_standstill		
VECTOR_G	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the stall current for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is used for the I2t monitoring of the motor (refer to p0611).		
	This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).		
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [Arms]	5000.000 [Arms]	0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		
	Synchronous motors:		
	Sets the rated motor short-circuit current.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The magnetization current p0320 for induction motors (not for catalog motors) is reset when quick commissioning is		
	VECTOR:		
	If, for induction motors, the magnetizing current p0320 is changed outside the commissioning phase ($\mathrm{p} 0010>0$), then the magnetizing inductance p0360 is changed so that the EMF r0337 remains constant.		

p0322[0...n]	Maximum motor speed / Mot n_max		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ 3).		
Note:	The parameter has no significance for a value of p0322 $=0$.		
p0323[0...n]	Maximum motor current / Mot I_max		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly. This is not the case when commissioning the motor (p0010 = 3).		
Note:	The parameter has no effect for induction motors.		
	The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640.		
p0324[0...n]	Winding maximum speed / Winding n_max		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum speed for the winding.		
	The following applies when calculating the maximum speed (p1082):		
	- for p0324 $=0$ or p0532 $=0, \mathrm{p} 0322$ is used.		
	- for p0324>0 and p0532 > 0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0322, p0532, p1082		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0324 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$).		

p0325[0...n]	Motor pole position identification current 1st phase / Mot PolID I 1st ph		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [Arms]	10000.000 [Arms]	0.000 [Arms]
Description:	Sets the current for the 1st phase of the two-stage technique for pole position identification routine. The current of the 2 nd phase is set in 00329 . The two-stage technique is selected with p1980 $=4$.		
Dependency:	Refer to: p0329, p1980, p1982, r1984, r1985, r1987, p1990		
Notice:	When the motor code (p 0301) is changed, it is possible that p0325 is not pre-assigned. p 0325 can be pre-assigned using p0340 $=3$.		
Note:	The value is automatically pre-assigned for the following events: - For p0325 $=0$ and automatic calculation of the closed-loop control parameters ($p 0340=1,2,3$). - for quick commissioning ($\mathrm{p} 3900=1,2,3$).		
p0327[0...n]	Optimum motor load angle / Mot phi_load opt		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722, 6721
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$\left.0.0{ }^{\circ}{ }^{\circ}\right]$	135.0 [${ }^{\text {] }}$	$\left.90.0{ }^{[}\right]$
Description:	Sets the optimum load angle for synchronous motors with reluctance torque (e.g. 1FE motors). SERVO: The load angle is measured at 1.5 x rated motor current. VECTOR: The load angle is measured at the rated motor current.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter has no significance for induction motors.		
	For synchronous motors without reluctance torque, a angle of 90 degrees must be set.		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).		
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-1000.00[\mathrm{mH}]$	1000.00 [mH]	$0.00[\mathrm{mH}]$
Description:	Sets the reluctance torque constant for synchronous motors with reluctance torque (e.g. 1FE ... motors). This parameter has no significance for induction motors.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For synchronous motors without reluctance torque, the value 0 must be set.		

p0329[0...n]	Motor pole position identification current / Mot PollD current		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current for the pole position identification routine (p1980 = 1). For a two-stage technique ($\mathrm{p} 1980=4$) , the current is set for the 2nd phase. The current for the 1st phase is set in p0325.		
Dependency:	If a maximum current (p 0323) was not parameterized, then p 0329 is limited to the rated motor current. Refer to: p0325, p1980, p1982, r1984, r1985, r1987, p1990		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
r0330[0...n]	Rated motor slip / Mot slip_rated		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the rated motor slip.		
Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. Refer to: p0310, p0311, r0313		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5722, 6722, 6724
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For p0320 $=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not entered, then the parameter is calculated from the rating plate parameters.		
Note:	In the case of multi-motor operation r0331 is increased by the factor p0306 compared to p0320.		
r0332[0...n]	Rated motor power factor / Mot cos phi rated		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the rated power factor for induction motors.		

Dependency:	For 1LA5 and 1LA7 motors $(\mathrm{p} 0300)$, the parameter is pre-set as a function of p0307 and p0311.
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.
Information in p0300 should be carefully observed when removing write protection.	
Note:	The parameter influences the thermal 3-mass motor model.
	1LA1 and 1LA8 motors are characterized by the fact that they have an internal rotor fan. This "internal cooling" lies
	within the motor frame and is not visible. Air is not directly exchanged with the motor ambient air.
	For 1PQ8 motors, p0335 should be set to 5 as these motors are force-ventilated motors.
	The setting p0335 = 128 applies for 1LA7 motors, frame size 56 (these are operated without a fan).

r0336[0...n]	Actual rated motor frequency / Mot f_rated act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group:	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	
Description:	Displays the rated frequency of the motor.		
	For p0310 > 0, this value is displayed.		
Dependency:	Refer to: p0311, p0314		
	For p0310 $=0$ or for synchronous motors, the rated motor frequency r0336 is calculated from the rated speed and the		
	pole pair number.		

r0337[0...n]	Rated motor EMF / Mot EMF_rated		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the rated EMF of the motor.		
Note:	EMF: Electromotive force		
r0339[0...n]	Rated motor voltage / Mot U_rated		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the rated motor voltage.		
Note:	For induction motors (p0300 = 1xx) the parameter is set to p0304.		
	For synchronous motors, parameter r0339 = p0304 is displayed. If p0304 = 0, then r0339 is calculated from p0305 and p0316.		

p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par		
VECTOR_G	Can be changed: C2(3), T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	5	0

Description: Setting to automatically calculate motor parameters and U/f open-loop and closed-loop control parameters from the rating plate data.

Note:	The calculation is not performed, if the power unit is deactivated. $\mathrm{p} 0340=1$ contains the calculations of $\mathrm{p} 0340=2,3,4,5$ without overwriting the motor parameters from the Siemens motor lists ($\mathrm{p} 0301>0$). p0340 = 2 calculates the motor parameters (p0350 ... p0360), but only if it does involve a Siemens catalog motor ($\mathrm{p} 0301=0$) . $\mathrm{p} 0340=3$ contains the calculations of p0340 $=4,5$. p0340 $=4$ only calculates the controller parameters. p0340 = 5 only calculates the controller limits. When quick commissioning is exited using p3900 > 0, p0340 is automatically set to 1 . At the end of the calculations, p0340 is automatically set to 0 . If the STARTER commissioning software writes a 3 into p0340 when "downloading to target device", then this corresponds to a "complete calculation of the motor/control parameters without equivalent circuit diagram data". The same calculations are carried out as for $\mathrm{p} 0340=1$, however, without the equivalent circuit diagram parameters of the motor ($\mathrm{p} 0340=2$), the motor moment of inertia (p 0341) and the motor mass (p 0344). For third-party linear synchronous motors $(p 0300=4)$ equivalent circuit diagram data are not calculated $(p 0340=2)$
p0341[0	Motor moment of inertia / Mot M_mom of inert
VECTOR_G	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$ Calculated: CALC_MOD_ALL Access level: 3 Data type: FloatingPoint32 Dyn. index: MDS, p0130 Func. diagram: 5042, 5210, $6020,6030,6031$
	P-Group: Motor Units group: 25_1 Unit selection: p0100 Not for motor type: REL Scaling: - Expert list: 1 Min Max Factory setting $0.000000\left[\mathrm{kgm}^{2}\right]$ $100000.000000\left[\mathrm{kgm}^{2}\right]$ $0.000000\left[\mathrm{kgm}^{2}\right]$
Description: Dependency:	Sets the motor moment of inertia (without load). IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}^{\wedge} 2$ NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2 The parameter value is included, together with p0342, in the rated starting time of the motor. Refer to: p0342, r0345
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note:	SERVO: p0341 * p0342 + p1498 influence the speed/torque pre-control in encoderless operation. VECTOR: The product of p0341 * p0342 is used when the speed controller ($\mathrm{p} 0340=4$) is calculated automatically.

p0342[0...n]	Ratio between the total and motor moment of inertia / Mot Momlnert Ratio		
VECTOR_G	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 5042, 5210, 6020, 6030, 6031
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000	10000.000	1.000
Description:	Sets the ratio between the total moment of inertia/mass (load + motor) and the intrinsic motor moment of inertia/mass (no load).		
Dependency:	This means that together with p0341, the rated starting (accelerating time) of the motor is calculated for a vector drive.		
	Refer to: p0341, r0345, p1498		
Note:	SERVO:		
	p0341 * p0342 + p1498 influence the speed/torque pre-control in encoderless operation.		
	VECTOR:		
	The product of p0341 * p 0342 is used when the speed controller ($\mathrm{p} 0340=4$) is calculated automatically.		

r0343[0...n]	Rated motor current identified / Mot I_rated ident		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	- [Arms]
Description:	Displays the identified rated motor current.		
p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod		
VECTOR_G	Can be changed: C2(3), T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 27_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [kg]	50000.0 [kg]	0.0 [kg]
Description:	Sets the motor weight.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit kg		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3 mass model of the induction motor.		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [s]	- [s]	- [s]
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333).		
Dependency:	Refer to: r0313, r0333, r0336, p0341, p0342		
p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation build-up time of the motor.		
	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
Caution: -	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note). This is especially true for sensorless vector control or U/f control.		
Notice:	If the parameter is set to 0 s for separately-excited synchronous motors ($\mathrm{p} 0300=5$), then an excitation current setpoint is generated even if the drive is powered down. In the base speed range, this is the no-load excitation current (p 0389). In the field-weakening range, the value is reduced with the inverse value of the actual speed. An excitation current setpoint is not generated during de-magnetizing (p0347) and if an encoder fault is detected.		

When starting or executing a flying restart for a separately-excited synchronous motor without encoder or with incremental encoder, then the voltage induced in the stator by the excitation current pulse is used to determine the rotor position. The length of the ramp is pre-assigned from the motor data for $\mathrm{p} 0346=0 \mathrm{~s}$. If it crystallizes out that this time is too short, then it can be extended by entering a negative value in p0346, whereby otherwise, the excitation behavior corresponds with that for p0346 = 0 s . For all other motor types, p0346 is internally limited downwards to 0 s .
Note: \quad The parameter is calculated using p0340 $=1,3$.
For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1^{*} r0384).
For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.
The current to excite the induction motor can be limited in p0644.

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time.		
Note:	The parameter is calculated using p0340 $=1,3$.		
	if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).		

p0349	System of units motor equivalent circuit diagram data / Unit_sys mot ESB		
VECTOR_G	Can be changed: C2(3)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	2	Factory setting
	1		1

Description: Sets the actual system of units for motor equivalent circuit diagram data

Value:

Dependency:

Note: \quad The reference parameter for resistances of the rated motor impedance $Z=p 0304 /(1.732$ * $p 0305)$ is in the \% units system.
Inductances are converted into a resistance using the factor 2 * Pi * p0310.
If a reference parameter ($\mathrm{p} 0304, \mathrm{p} 305, \mathrm{p} 0310$) is zero, then it is not possible to make a changeover to "referred" values (per unit values).

p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[o h m]$	2000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		

Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
p0355[0...n]	Motor damping resistance q axis / Mot R_damp q		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	300.00000 [ohm]	0.00000 [ohm]
Description:	Sets the damping resistance of the separately-excited synchronous motor quadrature to the rotor direction (q axis). This parameter value is automatically calculated using the motor model (p0340=1,2).		

p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$1000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		
	Induction motor, separately-excited synchronous motor: Sets the rotor leakage inductance of the motor.		
	Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	If the stator leakage inductance (p 0356) for induction motors is changed outside the commissioning phase (p 0010 > 0), the magnetizing inductance (p 0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).		
	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is, therefore, ideal for a low current.		

p0357[0...n]	Motor stator inductance d axis / Mot L_stator d		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [mH]	$1000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the stator direct-axis inductance of the synchronous motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		
Note:	The parameter is not used for separately-excited synchronous motors (p0300 $=5$).		
	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is ideal for a		

p0358[0...n]	Motor rotor leakage inductance / damping inductance d axis / Mot L_r leak / LDd		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the rotor/secondary section leakage inductance of the motor.		

Dependency:	The following applies for the flux values:
	p0362 < p0363 < p0364 < p0365
	The following applies for the stator quadrature axis flux values (PESM):
	20 \% < 0362 < p0363 < p0364 < p0365
	Refer to: p0367
Notice:	For permanent-magnet synchronous motors (PESM):
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.
Note:	For induction motors, p0363 = 100% corresponds to the rated motor flux.
	For separately-excited synchronous motors p0363 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).
	With permanent-magnet synchronous motors, p0362 = 100% corresponds to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current (p 0305).
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).
p0364[0...n]	Motor saturation characteristic flux 3 / Mot saturat.flux 3
VECTOR_G	Can be changed: C2(3), U, T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: MDS, p0130 Func. diagram: 6723, 6726
	P-Group: Motor Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	10.0 [\%] 800.0 [\%] 115.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.
	This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic.
	Induction motors (ASM) and separately-excited synchronous motors (SESM):
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.
	The parameter sets the third motor flux as a [\%] referred to the rated motor flux.
	Permanent-magnet synchronous motors (PESM):
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.
	The parameter sets the third stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current.
Dependency:	The following applies for the flux values:
	p0362 < p0363 < p0364 < p0365
	The following applies for the stator quadrature axis flux values (PESM):
	20% < 0362 < 0363 < p0364 < 0365
	Refer to: p0368
Notice:	For permanent-magnet synchronous motors (PESM):
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.
Note:	For induction motors, p0364 = 100% corresponds to the rated motor flux.
	For separately-excited synchronous motors p0364 $=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).
	With permanent-magnet synchronous motors, p0362 $=100 \%$ corresponds to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current (p 0305).
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).

p0365[0...n]	Motor saturation characteristic flux 4 / Mot saturat.flux 4		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	125.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the y coordinate (flux) for the 4th value pair of the characteristic.		
	Induction motors (ASM) and separately-excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the fourth motor flux as a [\%] referred to the rated motor flux.		
	Permanent-magnet synchronous motors (PESM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the fourth stator quadrature axis flux as a [\%] referred to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current.		
Dependency:	The following applies for the flux values:		
	p0362 < p0363 < p 0364 < p 0365		
	The following applies for the stator quadrature axis flux values (PESM):		
	20% p 0362 < 0363 < 0364 < 0365		
	Refer to: p0369		
Notice:	For permanent-magnet synchronous motors (PESM):		
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.		
Note:	For induction motors, p0365 = 100% corresponds to the rated motor flux.		
	For separately-excited synchronous motors p $0365=100 \%$ corresponds to an induced terminal voltage with the magnitude of the rated motor voltage (under no-load conditions at the synchronous speed).		
	With permanent-magnet synchronous motors, p0362 $=100 \%$ corresponds to the product of the unsaturated quadrature inductance (p 0356) and the rated motor current (p 0305).		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		
p0366[0...n]	Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	50.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the x coordinate for the 1st value pair of the characteristic.		
	Induction motors (ASM) and separately-excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux. The parameter sets the first magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM).		
	Permanent-magnet synchronous motors (PESM):		
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.		
	The parameter sets the first stator quadrature axis current as a [\%] referred to the rated motor current (p0305).		

Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369
	The following applies for the stator quadrature axis current values (PESM): $20 \% \text { p } 0366 \text { < p0367 < p0368 < p0369 }$
	Refer to: p0362
Notice:	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.
Note:	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).
p0367[0...n]	Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
VECTOR_G	Can be changed: C2(3), U, T Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: MDS, p0130 Func. diagram: 6723, 6726
	P-Group: Motor Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	5.0 [\%] 800.0 [\%] 75.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.
	This parameter specifies the x coordinate for the 2 nd value pair of the characteristic.
	Induction motors (ASM) and separately-excited synchronous motors (SESM):
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.
	The parameter sets the second magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM).
	Permanent-magnet synchronous motors (PESM):
	The saturation characteristic describes the mapping of the stator quadrature axis current onto the stator quadrature axis flux.
	The parameter sets the second stator quadrature axis current as a [\%] referred to the rated motor current (p0305).
Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369
	The following applies for the stator quadrature axis current values (PESM):
	Refer to: p0363
Notice:	For permanent-magnet synchronous motors (PESM), the following applies:
	If the parameters are not set as specified, i.e. not in ascending order and to more than 20%, the unsaturated quadrature inductance (p 0356) is always used for quadrature axis flux calculation purposes.
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0368[0...n] Motor saturation characteristic I_mag 3/Mot sat. I_mag 3

VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6723, 6726
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	150.0 [\%]
Description:	The saturation characteristic (flux as mapping of current) is defined using 4 points.		
	This parameter specifies the x coordinate for the 3rd value pair of the characteristic.		
	Induction motors (ASM) and separately-excited synchronous motors (SESM):		
	The saturation characteristic describes the mapping of the magnetizing current onto the motor flux.		
	The parameter sets the third magnetizing current as a [\%] referred to the rated magnetizing current r0331 (ASM), which in turn is referred to the no-load excitation current (SESM).		

r0372[0...n]	Cable resistance / Mot R_cable		
VECTOR_G	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: - Min - [ohm]	Calculated: - Dyn. index: MDS, p0130 Units group: 16_1 Scaling: - Max - [ohm]	Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description: Dependency:	Displays the total cable resistance between Motor Module and motor, as well as the internal converter resistance. Refer to: r0238, p0352		
r0373[0...n]	Motor rated stator resistance / Mot R_stator rated		
VECTOR_G	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: PEM, REL, FEM Min - [ohm]	Calculated: - Dyn. index: MDS, p0130 Units group: 16_1 Scaling: - Max - [ohm]	Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description: Dependency: Note:	Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627). Refer to: p0627 The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0374[0...n] VECTOR_G	Motor rotor resistance cold / da Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: PEM, REL Min - [ohm]	ping resistance d axi Calculated: - Dyn. index: MDS, p0130 Units group: 16_1 Scaling: - Max - [ohm]	R_r cold/R_D d Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description: Dependency: Note:	Displays the rotor/secondary section resistance of the motor for the ambient temperature p0625. For separately-excited synchronous motors: Displays the damping resistance in the rotor direction (d-axis).		
r0375[0...n] VECTOR_G	Motor damping resistance q ax Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, PEM, REL Min - [ohm]	Mot R_damp q Calculated: - Dyn. index: MDS, p0130 Units group: 16_1 Scaling: - Max - [ohm]	Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description:	Displays the damping resistance of the separately-excited synchronous motor quadrature to the rotor direction (q axis).		
r0376[0...n]	Rated motor rotor resistance / Mot rated R_rotor		
VECTOR_G	Can be changed: - Data type: FloatingPoint32 P-Group: Motor Not for motor type: PEM, REL, FEM Min - [ohm]	Calculated: - Dyn. index: MDS, p0130 Units group: 16_1 Scaling: - Max - [ohm]	Access level: 4 Func. diagram: - Unit selection: p0349 Expert list: 1 Factory setting - [ohm]
Description:	Displays the nominal rotor / secondary section resistance of the motor at the rated temperature.		

Dependency: Note:	The rated temperature is the sum of p0625 and p0628.		
	Refer to: p0628		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0377[0...n]	Motor leakage inductance total / Mot L_leak total		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6640
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the total stray inductance of the motor.		
	Induction motor, separately-excited synchronous motor:		
	Displays the stator leakage inductance of the motor, including the series inductance (p 0353) and the motor reactor (p0233).		
	Synchronous motor: Displays the stator quadrature inductance, including the series inductance (p 0353) and the motor reactor (p 0233).		
r0378[0...n]	Motor stator inductance d axis / Mot L_stator d		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the stator longitudinal inductance of the synchronous motor including the series inductance (p 0353) and the motor reactor (p0233).		
Note:	The parameter is not used for separately-excited synchronous motors (p0300 = 5).		
r0380[0...n]	Motor damping inductance d axis / Mot L_damp d		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the damping inductance of the separately-excited synchronous motor in the rotor direction (d-axis).		
r0381[0...n]	Motor damping inductance q axis / Mot L_damp q		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 15_1	Unit selection: p0349
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the damping inductance of a separately-excited synchronous motor quadrature to the rotor direction (q axis).		

r0386[0...n]	Motor stator leakage time constant / Mot T_stator leak		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the stator leakage time constant.		
Note:	The value is calculated from the total of all leakage inductances (p0233*, p0353, p0356, p0358) divided by the total of all motor resistances ($\mathrm{p} 0350, \mathrm{p} 0352, \mathrm{p} 0354$). The temperature adaptation of the resistances is not taken into account.		
	* only applies for VECTOR (r0107).		
r0387[0...n]	Motor stator leakage time constant q axis / Mot T_Sleak /T_Sq		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the stator leakage time constant quadrature to the rotor direction (q axis).		
Note:	The value is calculated from the total of all leakage inductances (p0233, p0356, p0359) divided by the total of all motor resistances (p0350, p0352, p0355).		
	The temperature adaptation of the resistances is not taken into account.		
p0389[0...n]	Excitation rated no-load current / Exc I_noload_rated		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [A]	10000.00 [A]	0.00 [A]
Description:	Sets the rated no-load current (I_F0) for the excitation.		
p0390[0...n]	Rated excitation current / Exc I_rated		
VECTOR_G	Can be changed: C2(1, 3)	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [A]	10000.00 [A]	0.00 [A]
Description:	Setting the rated current (I_F) of the controlled excitation rectifier (DC master).		
p0391[0...n]	Current controller adaptation starting point KP / I_adapt pt KP		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6714
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	6000.00 [Arms]	0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1715 is effective.		

r0396[0...n]	Actual rotor resistance / R_rotor act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6730
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual rotor/secondary section resistance (phase value). The parameter is affected by the motor temperature model.		
Dependency:	Refer to: p0354, p0620		
Note:	In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the thermal motor model.		
	This parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
p0397[0...n]	Angle magnetic decoupling maximum angle / Magn decpl max_ang		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [${ }^{\text {] }}$	$\left.90.0{ }^{[1}\right]$	$\left.90.0{ }^{[}\right]$
Description:	Maximum angle when calculating the polynomial function to decouple the magnetic flux axes for permanent-magnet synchronous motors (see p0398, p0399).		
p0398[0...n]	Angle magn decoupling (cross saturation) coeff 1 / Magn decoupl C1		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.000000	10.000000	0.000000
Description:	The magnetic cross coupling of the motor's d and q axes caused by saturation (current-dependent) leads to an angle offset affecting the axis system d'q'; this decouples the magnetic quantities.		
	The angle offset can be described as a 3rd order polynomial function of the load current consumed: phiOffset $=f\left(C 1^{*} i q+C 3^{*} i q^{\wedge} 3\right)$		
	This parameter is the coefficient C 1 ; it describes the linear load impact effect.		
p0399[0...n]	Angle magn decoupling (cross	aturation) coeff 3 / Magn d	oupl C3
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.000000	10.000000	0.000000
Description:	The magnetic cross coupling of the motor's d and q axes caused by saturation (current-dependent) leads to an angle offset affecting the axis system d'q'; this decouples the magnetic quantities.		
	The angle offset can be described as a 3rd order polynomial function of the load current consumed: phiOffset $=f\left(C 1^{*} i q+C 3^{*} i q^{\wedge} 3\right)$ This parameter is the coefficient C3; it describes the cubic load impact effect.		

p0400[0...n]	Encoder type selection / Enc_typ sel	
ENC	Can be changed: C2 $(1,4) \quad$ Calculated: -	Access level: 1
	Data type: Integer16 Dyn. index: EDS, p0140	Func. diagram: 4700, 4704
	P-Group: Encoder Units group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	010100	0
Description:	Selects the encoder from the list of encoder types supported.	
Value:	0: No encoder	
	202: DRIVE-CLiQ encoder AS20, singleturn	
	204: DRIVE-CLiQ encoder AM20, multiturn 4096	
	242: DRIVE-CLiQ encoder AS24, singleturn	
	244: DRIVE-CLiQ encoder AM24, multiturn 4096	
	1001: Resolver 1 speed	
	1002: Resolver 2 speed	
	1003: Resolver 3 speed	
	1004: Resolver 4 speed	
	2001: 2048, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{C} / \mathrm{D} \mathrm{R}$	
	2002: 2048, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2003: $256,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2004: $400,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2005: $512,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2006: $192,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2007: 480, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2008: $800,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2010: 18000, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R distance-coded	
	2012: 420, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{BR}$	
	2013: 675, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$	
	2051: 2048, 1 Vpp, A/B, EnDat, Multiturn 4096	
	2052: 32, 1 Vpp, A/B, EnDat, Multiturn 4096	
	2053: $512,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$, EnDat, Multiturn 4096	
	2054: 16, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$, EnDat, Multiturn 4096	
	2055: 2048, 1 Vpp, A/B, EnDat, Singleturn	
	2081: 2048, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}, \mathrm{SSI}$, Singleturn	
	2082: 2048, 1 Vpp, A/B, SSI, Multiturn 4096	
	2083: 2048, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}, \mathrm{SSI}$, singleturn, error bit	
	2084: 2048, 1 Vpp, A/B, SSI, multiturn 4096, error bit	
	2110: $4000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R distance-coded	
	2111: $20000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$ distance-coded	
	2112: $40000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$ distance-coded	
	2151: $16000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$, EnDat, resolution 100 nm	
	3001: 1024 HTL A/B R	
	3002: 1024 TTL A/B R	
	3003: 2048 HTL A/B R	
	3005: 1024 HTL A/B	
	3006: 1024 TTL A/B	
	3007: 2048 HTL A/B	
	3008: 2048 TTL A/B	
	3009: 1024 HTL A/B unipolar	
	3011: 2048 HTL A/B unipolar	
	3020: 2048 TTL A/B R, with sense	
	3081: SSI, Singleturn, 24 V	
	3082: SSI, Multiturn 4096, 24 V	
	3090: 4096, HTL, A/B, SSI, Singleturn	
	3109: 2000 nm , TTL, A/B R distance-coded	
	9999: User-defined	
	10000: Identify encoder	
	10050: Encoder with EnDat2.x interface identified	
	10051: DRIVE-CLiQ encoder identified	
	10058: Digital encoder (absolute) identified	
	10059: Digital encoder (incremental) identified	
	10100: Identify encoder (waiting)	

Notice:	An encoder type with p0400 < 9999 defines an encoder for which there is an encoder parameter list.
	When selecting a catalog encoder (0400 < 9999) the parameters from the encoder parameter list cannot be changed (write protection). To remove write protection, the encoder type should be set to a third-party encoder (p0400 = 9999).
Note:	The connected encoder can be identified by setting p0400 to 10000 or 10100 . This assumes that the encoder supports this method, which is possible in the following cases: Motor with DRIVE-CLiQ, encoder with EnDat interface, DRIVE-CLiQ encoder, encoder with SSI interface (only 10100)..
	The encoder data (e.g. pulse number p0408) can only be changed when p0400 $=9999$.
	When using an encoder with track A / B and zero pulse, as standard, fine synchronization is not set using a zero mark. If, for a synchronous motor, fine synchronization is to be realized using a zero mark, then the following must be executed:
	- set p0400 to 9999
	- set p0404.15 to 1
	Prerequisite:
	Coarse synchronization must be selected (e.g. pole position identification) and the zero pulse of the encoder must be either mechanically or electronically (p0431) adjusted to the pole position.
	For p0400 = 10000 the following applies:
	If an identification is not possible, then p0400 is set to 0 .
	For p0400 = 10100 the following applies:
	If an identification is not possible, p0400 remains set to 10100 until it becomes possible.
p0400[0...n]	Encoder type selection / Enc_typ sel
VECTOR_G	Can be changed: $\mathrm{C} 2(1,4) \quad$ Calculated: - Access level: 1
	Data type: Integer16 Dyn. index: EDS, p0140 Func. diagram: 4700, 4704
	P-Group: Encoder Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0100000
Description:	Selects the encoder from the list of encoder types supported.
Value:	0: No encoder
	3001: 1024 HTL A/B R
	3002: 1024 TTL A/B R
	3003: 2048 HTL A/B R
	3005: 1024 HTL A/B
	3006: 1024 TTL A/B
	3007: 2048 HTL A/B
	3008: 2048 TTL A/B
	3009: 1024 HTL A/B unipolar
	3011: 2048 HTL A/B unipolar
	3020: 2048 TTL A/B R, with sense
	9999: User-defined
	10000: Identify encoder
Notice:	An encoder type with p0400 < 9999 defines an encoder for which there is an encoder parameter list.
	When selecting a catalog encoder (p 0400 < 9999) the parameters from the encoder parameter list cannot be changed (write protection). To remove write protection, the encoder type should be set to a third-party encoder ($\mathrm{p} 0400=9999$).
Note:	The connected encoder can be identified by setting p0400 to 10000 or 10100 . This assumes that the encoder supports this method, which is possible in the following cases: Motor with DRIVE-CLiQ, encoder with EnDat interface, DRIVE-CLiQ encoder, encoder with SSI interface (only 10100)..
	The encoder data (e.g. pulse number p0408) can only be changed when p0400 $=9999$.
	When using an encoder with track A / B and zero pulse, as standard, fine synchronization is not set using a zero mark. If, for a synchronous motor, fine synchronization is to be realized using a zero mark, then the following must be executed:
	- set p0400 to 9999
	- set p0404.15 to 1
	Prerequisite:
	Coarse synchronization must be selected (e.g. pole position identification) and the zero pulse of the encoder must be either mechanically or electronically (p0431) adjusted to the pole position.

For p0400 = 10000 the following applies:
If an identification is not possible, then p0400 is set to 0 .
For p0400 = 10100 the following applies:
If an identification is not possible, p0400 remains set to 10100 until it becomes possible.

p0401[0...n]	Encoder type OEM selection / Enc type OEM sel		
ENC, VECTOR_G	Can be changed: $\mathrm{C} 2(1,4)$	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: 4700, 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32767	0
Description:	Selects the encoder from the list of encoder types that the OEM supports.		
Note:	The connected encoder can be identified by $p 0400=10000$. This means that the encoder must support this and is possible in the following cases: Motor with DRIVE-CLiQ, encoder with EnDat interface.		
	If an identification is not possible, then p0400 is set to 0 .		
	The encoder data (e.g. pulse number p0408) can only be changed when p0400 $=9999$.		
	Using p0400 = 20000, the encoder type can be selected from the list of OEM encoders using p0401.		

Re bit 15 (commutation with zero mark):
Only applicable for synchronous motors.
The function can be de-selected by priority via p0430.23.
For distance-coded zero marks, the following applies:
The phase sequence of the C / D track (if available) must be the same as the phase sequence of the encoder (A / B track).
The phase sequence of the Hall signal (if available) must be the same as the phase sequence of the motor. Further, the position of the Hall sensor must be mechanically adjusted to the motor EMF.
The fine synchronization is only started after two zero marks have been passed.

p0404[0...n]	Encoder configuration effective / Enc_config eff				
VECTOR_G	Can be changed: C2(4)		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: EDS, p0140	Func. diagram: 4010, 4704	
	P-Group: Encoder		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-			00000000000000000000	
Description:	Settings for the basic encoder properties.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
		Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
		Track A/B sq-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-
	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
		Digital encoder	Yes	No	-
		Equidistant zero mark	Yes	No	-
		Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
		Track A/B analog	Yes	No	-
		Voltage level 5 V	Yes	No	-
	21	Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excit	Yes	No	-
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400).				
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
	If an SSI encoder (bit $9=1$) is used as motor encoder for permanent-magnet synchronous motors, then this is only permissible in conjunction with an additional A / B track (bit $3=1$ or bit $4=1$).				
Note:	ZM: Zero mark				
	SMC: Sensor Module Cabinet				
	If a technique to determine the commutation information/data has not been selected (e.g. track C/D, Hall sensor), and the encoder pulse number is an integer multiple of the pole number, then the following applies:				
	The track A / B is adjusted to match the magnetic position of the motor.				
	Re bit 01, 02 (absolute encoder, multiturn encoder):				
	These bits can only be selected for EnDat encoders, SSI encoders or DRIVE-CLiQ encoders.				
	Re bit 10 (DRIVE-CLiQ encoder):				
	This bit is only used for the large-scale integrated DRIVE-CLiQ encoders that provide their encoder data directly in DRIVE-CLiQ format without converting this data. This bit is not, therefore, set for first-generation DRIVE-CLiQ encoders.				

Re bit 12 (equidistant zero mark):

The zero marks occur at regular intervals (e.g. rotary encoder with 1 zero mark per revolution or linear encoder with constant zero mark distance).
The bit activates monitoring of the zero mark distance (p0424/p0425, linear/rotary) or in the case of the linear encoder with 1 zero mark and p0424 $=0$ zero mark monitoring is activated.
Re bit 13 (irregular zero mark):
The zero marks occur at irregular intervals (e.g. a linear scale with only 1 zero mark in the traversing range). The zero mark distance is not monitored.
Re bit 14 (distance-coded zero mark):
The distance (clearance) between two or several consecutive zero marks allows the absolute position to be calculated.
Re bit 15 (commutation with zero mark):
Only applicable for synchronous motors.
The function can be de-selected by priority via p0430.23.
For distance-coded zero marks, the following applies:
The phase sequence of the C / D track (if available) must be the same as the phase sequence of the encoder (A/B track).
The phase sequence of the Hall signal (if available) must be the same as the phase sequence of the motor. Further, the position of the Hall sensor must be mechanically adjusted to the motor EMF.
The fine synchronization is only started after two zero marks have been passed.

p0405[0...n]	Square-wave encoder track A/B / Sq-wave enc A/B			
ENC, VECTOR_G	Can be changed: C 2 (4)	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: 4704	
	P-Group: Encoder	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	00001111 bin	
Description:	Settings for the track A / B in a square-wave encoder.			
	For square-wave encoders, p0404.3 must also be 1.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Signal	Bipolar	Unipolar	-
	01 Level	TTL	HTL	-
	02 Track monitoring	$A / B<>-A / B$	None	-
	03 Zero pulse	Same as A/B track	24 V unipolar	-
	04 Switching threshold	High	Low	-
	05 Pulse/direction	Active	Inactive	-
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400).			
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.			
Note:	Re bit 02:			
	When the function is activated, track monitoring can be de-activated by setting p0437.26.			
	Re bit 05:			
	When the function is activated, a frequency setpoint and a direction for traveling can be entered via an encoder interface.			
p0407[0...n]	Linear encoder grid division / Enc grid div			
ENC, VECTOR_G	Can be changed: C 2 (4)	Calculated: -	Access le	
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diag	
	P-Group: Encoder	Units group: -	Unit select	
	Not for motor type: -	Scaling: -	Expert list	
	Min	Max	Factory se	
	0 [nm]	250000000 [nm]	16000 [nm]	
Description:	Sets the grid division for a			

p0411[0...n]	Measuring gear configuration / Meas gear config			
ENC, VECTOR_G	Can be changed: C2(4) C	Calculated: -	Access	
	Data type: Unsigned32 Dy	Dyn. index: EDS, p0140	Func. d	
	P-Group: Encoder U	Units group: -	Unit sele	
	Not for motor type: - S	Scaling: -	Expert li	
	Min M	Max	Factory	
	- -	-	0000 bin	
Description:	Sets the configuration for position tracking of a measuring gear.			
Bit field:	Bit Signal name 00 Measuring gear activate position tracking 01 Axis type	1 signal	0 signal	FP
		g Yes	No	-
		Linear axis	Rotary axis	-
	02 Measuring gear reset position	Yes	No	-
	03 Meas. gearbox, activate pos. tracking for incremental encoders	Yes	No	-
Notice:	For p0411.3 $=1$ the following applies:			
	If position tracking is activated for incremental encoders, only the position actual value is stored. Axis or encoder motion is not detected when de-activated! Any tolerance window entered in p0413 has no effect.			
Note:	For the following events, the non-volatile, saved position values are automatically reset: - when an encoder replacement has been identified. - when changing the configuration of the Encoder Data Set (EDS).			
p0412[0...n]	Measuring gear absolute encoder rotary revolutions virtual / Abs rot rev			
ENC, VECTOR_G	Can be changed: C2(4) C	Calculated: -	Access	
	Data type: Unsigned32 D	Dyn. index: EDS, p0140	Func. di	
	P-Group: Encoder U	Units group: -	Unit sele	
	Not for motor type: - S	Scaling: -	Expert li	
	Min Max	Max	Factory	
	0 - 4	4194303	0	
Description:	Sets the number of rotations that can be resolved for a rotary encoder with activated position tracking of the measuring gear.			
Dependency:	This parameter is only of significance for an absolute encoder (p0404.1 = 1) with activated position tracking (p0411.0 $=1$) and for an incremental encoder with activated position tracking (p0411.3 = 1).			
Note:	The resolution that is set must be able to be represented using r0483.			
	For rotary axes/modulo axes, the following applies:			
	p0411.0 = 1:			
	This parameter is pre-set with p0421 and can be changed.			
	The parameter value is pre-set to the highest possible value. The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).			
	For linear axes, the following applies:			
	This parameter is pre-assigned with p0421, expanded by 6 bits for multiturn information (maximum number of overflows) and cannot be changed.			
	p0411.3 = 1:			
	The parameter value is pre-set to the highest possible value. The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).			

p0413[0...n]	Measuring gear position tracking tolerance window / Pos track window		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	4294967300.00	0.00
Description:	Sets a tolerance window for position tracking.		
	After the system is powered up, the difference between the saved position and the actual position is determined, and depending on this, the following is initiated:		
	Difference within the tolerance window --> The position is reproduced as a result of the encoder actual value. Difference outside the tolerance window --> An appropriate message is output.		
Caution: Note:	Rotation, e.g. through a com	nge is not detected.	
	The value is entered in integer (complete) encoder pulses.		
	For p0411.0 = 1, the value is automatically pre-assigned quarter of the encoder range.		
	Example:		
	Quarter of the encoder range $=(\mathrm{p} 0408$ * 00421$) / 4$		
	It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).		
p0414[0...n]	Redundant coarse position value relevant bits (identified) / Relevant bits		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16	16
Description:	Sets the number of relevant bits for the redundant coarse position value.		
p0415[0...n]	Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	31	14
Description:	Sets the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		
Note:	MSB: Most Significant Bit		
p0416[0...n]	Non safety-relevant meas. steps position value POS1 (detected) / nsrPos1		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	22000
Description:	Sets the non safety-relevant measuring steps of POS1. Refer to: r0473, p9513		
Dependency:			

p0417[0...n]	Encoder safety comparison algorithm (detected) / Safety comp_algo		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	255
Description:	Sets the comparison algorithm for the encoder position monitoring functions.		
Value:	0: $\quad \mathrm{SM} \times 20$ safety algorithm 10: DQL binary safety algorithm 11: DQL linear non-binary safety algorithm 12: SMC30 safety algorithm 255: Safety algorithm unknown		
Dependency:	Refer to: p9541		
p0418[0...n]	Fine resolution Gx_XIST1 (in bits) / Enc fine Gx_XIST1		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: 4010, 4704
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2	18	11
Description: Note:	Sets the fine resolution in bits of the incremental position actual values.		
	The parameter applies for the following process data:		
	- Gx_XIST1		
	- Gx_XIST2 for reference mark or flying measurement		
	The fine resolution specifies the fraction between two encoder pulses. Depending on the physical measurement principle, an encoder pulse can be broken down into a different number of fractions (e.g. squarewave encoder: 2 bit = resolution 4, sin/cos encoder: Typical 11 bit = resolution 2048).		
	For a squarewave encoder, with the factory setting, the least significant bits have the value zero, i.e. they do not supply any useful information.		
	For especially high quality measuring systems, the fine resolution must be increased corresponding to the available accuracy.		
p0419[0...n]	Fine resolution absolute value Gx_XIST2 (in bits) / Enc fine Gx_XIST2		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: EDS, p0140	Func. diagram: 4704, 4710
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2	18	9
Description: Dependency: Note:	Sets the fine resolution in bits of the absolute position actual values.		
	This parameter applies to process data Gx_XIST2 when reading the absolute value.		
p0420[0...n]	Encoder connectio	ction	
ENC, VECTOR_G	Can be changed C2(4) Calculated: -		Access level: 4
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Selecting the encoder con		

Bit field:		Signal name SUB-D Terminal	```1 signal Yes Yes```	0 signal No No	F
p0421[0...n]	Absolute encoder rotary multiturn resolution / Enc abs multiturn				
ENC, VECTOR_G	Can be changed: C 2 (4)		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: EDS, p0140	Func	
	P-Group: Encoder		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
			Max	Factor	
	0		4294967295	4096	
Description: Notice:	Sets the number of rotations that can be resolved for a rotary absolute encoder.				
	This parameter is automatically pre-set for encoders from the encoder list (p0400).				
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
p0422[0...n]	Absolute encoder linear measuring step resolution / Enc abs meas step				
ENC, VECTOR_G	Can be changed: C2(4)		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: EDS, p0140	Func.	
	P-Group: Encoder		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	0 [nm]		4294967295 [nm]	100	
Description: Notice:	Sets the resolution of the absolute position for a linear absolute encoder.				
	This parameter is automatically pre-set for encoders from the encoder list (p0400).				
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
Note:	The serial protocol of an absolute encoder provides the position with a certain resolution, e.g. 100 nm . This value must be entered here.				
p0423[0...n]	Absolute encoder rotary singleturn resolution / Enc abs singleturn				
ENC, VECTOR_G	Can be changed: C 2 (4)		Calculated: -	Acce	
	Data type: Unsigned32		Dyn. index: EDS, p0140	Func.	
	P-Group: Encoder		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	0		1073741823	8192	
Description:	Sets the number of measuring steps per revolution for a rotary absolute encoder. The resolution refers to the absolute position.				
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
p0424[0...n]	Encoder linear zero mark distance / Enc lin ZM_dist				
ENC, VECTOR_G	Can be changed: C2(4)		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: EDS, p0140	Func.	
	P-Group: Encoder		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	0 [mm]		65535 [mm]	20 [mm	
Description:	Sets the distance between two zero marks for a linear encoder. This information is used for zero mark monitoring.				

Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400). When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
p0429[0...n]	Encoder SSI configuration / Enc SSI config				
ENC, VECTOR_G	Can	be changed: $\mathrm{C} 2(4)$	ulated: -	Access level	
	Data	type: Unsigned16	index: EDS, p0140	Func. diagra	
	P-G	roup: Encoder	s group: -	Unit selectio	
		for motor type: -	ing: -	Expert list: 1	
	Min			Factory setti	
	-	-		00000000 bin	
Description:	Sets the configuration for an SSI encoder.				
Bit field:		Signal name	1 signal	0 signal	FP
		Transfer code	Binary code	Gray code	-
		Transfer absolute value twice	Yes	No	-
		Data line during the monoflop time	High level	Low level	-
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400).				
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.				
Note:	Re bit 06:				
	The quiescent signal level of the data line corresponds to the inverted, set level.				
p0430[0...n]	Sensor Module configuration / SM config				
ENC, VECTOR_G	Can be changed: C 2 (4)		ulated: -	Access level	
	Data type: Unsigned32		index: EDS, p0140	Func. diagra	
	P-Group: Encoder		s group: -	Unit selectio	
	Not for motor type: -		ing: -	Expert list: 1	
	Min			Factory setti	
	-			$\begin{aligned} & 11100000000010000000 \\ & 000000000000 \text { bin } \end{aligned}$	
Description:	Sets the configuration of the Sensor Module.				
Bit field:		Signal name	1 signal	0 signal	FP
		Burst oversampling	Yes	No	-
		Continuous oversampling (reserved)	Yes	No	-
	19	Safety position actual value sensing	Yes	No	-
		Speed calculation mode (only SMC30)	Incremental diff	Flank time meas	-
	21	Zero mark tolerance	Yes	No	-
	22	Rot pos adapt	Yes	No	-
	23	De-select commutation with zero mark	Yes	No	-
	24	Commutation with selected zero mark	Yes	No	-
	25	Switch off encoder voltage supply during parking	Yes	No	-
		Extrapolate position values	Yes	No	-
		Cubic correction	Yes	No	-
		Phase correction	Yes	No	-
		Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
Notice:	A bit-wise configuration is only possible if the corresponding property is also present in r0458.				
Note:	Re bit 17 (burst oversampling):				
	- if bit = 1, burst oversampling is switched on.				
	Re bit 18 (continuous oversampling):				
	- if bit = 1, continuous oversampling is switched on.				
	Re bit 19 (Safety position actual value sensing):				
	Re bit 20 (speed calculation mode):				
	- if bit = 1, the speed is calculated via incremental difference without extrapolation.				
	- if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mod				

Re bit 21 (zero mark tolerance):

- if bit $=1$, a one-off zero mark distance error is tolerated. In the event of a defect, the fault F3x100/F3x101 does not appear, but alarm A3x400/A3x401 does.
Re bit 22 (rotor position adaptation):
- if bit = 1 , the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.
Re bit 23 (de-select commutation with zero mark):
- The bit should only be set for encoders that have not been adjusted.

Re bit 24 (commutation with selected zero mark):

- if bit $=1$, the commutation position is corrected via a selected zero mark.

Re bit 25 (disconnect the encoder power supply on parking):

- if bit $=1$, the encoder power supply is switched off on parking (0 V).
- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .

Re bit 27 (extrapolate position values):

- if bit = 1, the extrapolation of the position values is activated.

Re bit 28 (cubic correction);

- if bit $=1$, the cubic correction for track A / B sine is activated.

Re bit 29 (phase correction):

- if bit $=1$, the phase correction for track A / B sine is activated.

Re bit 30 (amplitude correction):

- if bit $=1$, the amplitude correction for track A / B sine is activated.

Re bit 31 (offset correction):

- if bit = 1 , the offset correction for track A / B sine is activated.

Re bit 20 (speed calculation mode):

- if bit = 1 , the speed is calculated via incremental difference without extrapolation.
- if bit $=0$, the speed is calculated via edge time measurement with extrapolation. p0453 is effective in this mode. Re bit 21 (zero mark tolerance):
- if bit = 1, a one-off zero mark distance error is tolerated. In the event of a defect, the fault F3x100/F3x101 does not appear, but alarm $\mathrm{A} 3 \times 400 / \mathrm{A} 3 \times 401$ does.
Re bit 22 (rotor position adaptation):
- if bit $=1$, the rotor position is corrected automatically. The correction speed is $+/-1 / 4$ encoder pulse per zero mark distance.
Re bit 23 (de-select commutation with zero mark):
- The bit should only be set for encoders that have not been adjusted.

Re bit 24 (commutation with selected zero mark):

- if bit = 1, the commutation position is corrected via a selected zero mark.

Re bit 25 (disconnect the encoder power supply on parking):

- if bit $=1$, the encoder power supply is switched off on parking (0 V).
- if bit $=0$, the encoder power supply is not switched off on parking, it is reduced from 24 V to 5 V .

Re bit 27 (extrapolate position values):

- if bit = 1, the extrapolation of the position values is activated.

Re bit 28 (cubic correction);

- if bit = 1 , the cubic correction for track A / B sine is activated.

Re bit 29 (phase correction):

- if bit $=1$, the phase correction for track A / B sine is activated.

Re bit 30 (amplitude correction):

- if bit = 1 , the amplitude correction for track A / B sine is activated.

Re bit 31 (offset correction):

- if bit $=1$, the offset correction for track A / B sine is activated.

p0431[0...n]	Angular commutation offset / Ang_com offset		
VECTOR_G	Can be changed: C 2 (4)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180.00 [${ }^{\circ}$]	$\left.180.00{ }^{\circ}{ }^{\circ}\right]$	0.00 [${ }^{\circ}$]
Description:	Sets the angular commutation offset.		
Dependency:	The value is taken into account in r0094.		
	Refer to: r0094, r1778		
Notice:	When the firmware is upgraded from V 2.3 to V 2.4 or higher, the value must be reduced by 60° if all the following conditions are fulfilled:		
	- The motor is a synchronous motor ($\mathrm{p} 0300=2,2 \mathrm{xx}, 4,4 \mathrm{xx}$) .		
	- The encoder is a resolver ($\mathrm{p} 0404.23=1$).		
	- The actual speed value is inverted (p0410.0 = 1).		
	The angular commutation offset cannot be generally taken from other drive systems. As a minimum - the sign of the offset determined for SIMODRIVE 611 digital and SIMODRIVE 611 universal must be reversed for SINAMICS (p0431 (SINAMICS) $=-$ p1016 (SIMODRIVE)).		
Note:	Angular commutation offset, angular difference between electrical position of encoder and flux position.		
	For p0404.5 = 1 (track C/D) the following applies:		
	The angular offset in p0431 acts on track A/B, the zero mark on track C/D.		
	For p0404.6 = 1 (Hall sensor) the following applies:		
	The angular offset in p0431 acts on track A/B and the zero mark.		

p0432[0...n]	Gearbox factor encoder revolutions / Grbx_fact enc_rev		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	10000	1
Description:	Sets the encoder revolutions for the gearbox factor of the encoder evaluation.		
	The gearbox factor specifies the ratio between the encoder shaft and motor shaft (for motor encoders) or between the encoder shaft and the load.		
Dependency:	This parameter can only be set for p0402 $=9999$.		
	Refer to: p0402, p0410, p0433		
Note:	Negative gearbox factors should be implemented with p0410.		
p0433[0...n]	Gearbox factor motor/load revolutions / Grbx_fact mot_rev		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	10000	1
Description:	Sets the motor and load revolutions for the gearbox factor of the encoder evaluation.		
	The gearbox factor specifies the ratio between the encoder shaft and motor shaft (for motor encoders) or between the encoder shaft and the load.		
Dependency:	This parameter can only be set for p0402 $=9999$.		
	Refer to: p0402, p0410, p0432		
Note:	Negative gearbox factors should be implemented with p0410.		
p0434[0...n]	Encoder SSI error bit / Enc SSI error bit		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the position and level of the error bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p0446) or after (p0448) the absolute value in the SSI protocol.		
Note:	Value = dcba		
	ba: Position of the error bit in the protocol (0 ... 63).		
	c: Level (0: Low level, 1: High level).		
	d: Status of the evaluation (0 : Off, 1: On with 1 error bit, 2: On with 2 error bits ... 9: On with 9 error bits).		
	For several error error bits, the following applies:		
	- the position specified under ba and the additional bits are assigned increasing consecutively.		
	- the level set under c applies to all error bits.		
	Example:		
	p0434 $=1013$		
	--> The evaluation is switched in and the error bit is at position 13 with a low level. p0434 = 1113		
	--> The evaluation is switched in and the error bit is at position 13 with a high level.		

p0435[0...n]	Encoder SSI alarm bit / Enc SSI alarm bit		
ENC, VECTOR_G	Can be changed: C 2 (4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the position and level of the alarm bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p 0446) or after (p 0448) the absolute value in the SSI protocol.		
Note:	Value = dcba		
	ba: Position of the alarm bit in protocol (0...63).		
	c: Level (0: Low level, 1: High level).		
	d : State of the evaluation (0: Off, 1: On).		
	Example:		
	p0435 = 1014		
	--> The evaluation is switched in and the alarm bit is at position 14 with a low level.		
	p0435 = 1114		
	--> The evaluation is switched in and the alarm bit is at position 14 with a high level.		

p0436[0...n]	Encoder SSI parity bit / Enc SSI parity bit		
ENC, VECTOR_G	Can be changed: $\mathrm{C} 2(4)$	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the position and parity of the parity bit in the SSI protocol.		
Notice:	The bit may only be positioned before (p0446) or after (p 0448) the absolute value in the SSI protocol.		
Note:	Value = dcba		
	ba: Position of the parity bit in the protocol (0 ... 63).		
	c: Parity (0: even, 1: uneven).		
	d : State of the evaluation (0: Off, 1: On).		
	Example:		
	p0436 = 1015		
	--> The evaluation is switched in and the parity bit is at position 15 with even parity. p0436 $=1115$		
	--> The evaluation is switched in and the parity bit is at position 15 with uneven parity.		

p0437[0...n]	Sensor Module configuration extended / SM config ext		
ENC, VECTOR_G	Can be changed: C 2 (4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00110000000000000000 100000000000 bin
Description:	Sets the extended configuration of the Sensor Module.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Data logger	Yes	No
	01 Zero mark edge detection	Yes	No
	02 Correction position actual value XIST1	Yes	No
	04 Edge evaluation bit 0	Yes	No
	05 Edge evaluation bit 1	Yes	No -

2.2 List of parameters

06	Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors	Yes	No	-
07	Accumulate uncorrected encoder pulses	Yes	No	-
11	Fault handling after PROFIdrive	Yes	No	-
12	Activate additional messages	Yes	No	-
13	Support absolute position for incremental encoder	Yes	No	4750
25	Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
26	Deselect track monitoring	Yes	No	-
28	EnDat linear encoder monitoring incremental/absolute	Yes	No	-
29	EnDat encoder initialization with high accuracy	Yes	No	-
31	Analog unipolar track monitoring	Yes	No	-
Refer to: p0430, r0459				
A value of zero is displayed if an encoder is not present.				
Re bit 00:				

Re bit 01:
If bit $=0$, the zero mark is evaluated by ANDing tracks A and B and the zero mark.
For bit $=1$, the zero mark is evaluated depending on the direction of rotation detected. For a positive direction of rotation, the positive edge of the zero mark is considered and for a negative direction of rotation, the negative edge of the zero mark.
Re bit 02:
If the bit is set, in the event of a deviation less than the tolerance window for the zero mark (p4681, p4682), the pulses per revolution are corrected. If the bit is not set, encoder fault F3x131 is triggered.
Re bits 05, 04:
The actual hardware only supports $1 x$ or $4 x$ signal evaluation.
Bit 5/4 = 0/0: Signal evaluation per period, $4 x$.
Bit $5 / 4=1 / 0$: Illegal setting.
Bit $5 / 4=0 / 1$: Signal evaluation per period, $1 x$.
Bit $5 / 4=1 / 1$: Illegal setting.
Re bit 06:
If the function is active, when $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the speed actual value is internally frozen for a time equivalent to two current controller clock cycles. The rotor position continues to be integrated. The actual value is then re-enabled after this time has expired.
Re bit 07:
If the bit is set, the encoder pulses which have not been corrected are added to p4688 at the zero mark.
Re bit 11:
If the bit is set, the Sensor Module checks within a certain time grid whether the fault cause is still present. This enables the Sensor Module to switch from the fault state to the operating state and provide valid actual values automatically. The faults are displayed until the user acknowledges them.
Re bit 12:
Additional fault messages can be activated for extended fault diagnostics.
Re bit 13:
When the bit is set, for an incremental encoder with zero mark, the absolute value in Gn_XIST2 can be requested via Gn_STW. 13.

Re bit 26:

Track monitoring is de-activated for the square-wave encoders when the bit is set, even if the monitoring function is selected in p0405.2.
Re bit 28:
Monitoring of the difference between incremental and absolute position in the case of linear encoders.
Re bit 29:
When the bit is set, the EnDat encoder is initialized under a certain speed and, therefore, with high accuracy. If initialization at a higher speed is requested, fault F31151, F32151, or F33151 is output.

Re bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

p0437[0...n]	Sensor Module configuration extended / SM config ext				
ENC (Lin_enc)	Can be changed: C2(4) C		ulated: -	Acces	
	Data type: Unsigned32		index: E	Func	
	P-Group: Encoder		group: -	Unit	
	Not for motor type: -		ng: -	Expe	
	Min		Max	Factory setting	
	-		-	00110000000000000000 100000000000 bin	
Description:	Sets the extended configuration of the Sensor Module.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Data logger	Yes	No	-
	01	Zero mark edge detection	Yes	No	-
	02	Correction position actual value XIST1	Yes	No	-
	04	Edge evaluation bit 0	Yes	No	-
	05	Edge evaluation bit 1	Yes	No	-
	06	Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors	Yes	No	-
	07	Accumulate uncorrected encoder pulses	Yes	No	-
	11	Fault handling after PROFIdrive	Yes	No	-
	12	Activate additional messages	Yes	No	-
	13	Support absolute position for incremental encoder	Yes	No	4750
	25	Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
		Deselect track monitoring	Yes	No	-
	28	EnDat linear encoder monitoring incremental/absolute	Yes	No	-
	29	EnDat encoder initialization with high accuracy	Yes	No	-
	31	Analog unipolar track monitoring	Yes	No	-
Dependency:	Refer to: p0430, r0459				
Note:	A value of zero is displayed if an encoder is not present.				
	Re bit 00:				
	When the data logger (trace) is activated, in the case of a fault, data before and after the event are recorded (traced) and saved in files on the non-volatile memory medium. Experts can then evaluate this data.				
	Re bit 01:				
	If bit $=0$, the zero mark is evaluated by ANDing tracks A and B and the zero mark.				
	For bit = 1 , the zero mark is evaluated depending on the direction detected. For a positive direction, the positive edge of the zero mark is considered and for a negative direction, the negative edge of the zero mark.				
	Re bit 02:				
	If the bit is set, in the event of a deviation less than the tolerance window for the zero mark (p4681, p4682), the pulses per revolution are corrected. If the bit is not set, encoder fault F3x131 is triggered.				
	Re bits 05, 04:				
	Bit 5/4 = 0/0: Signal evaluation per period, $4 x$.				
	Bit 5/4 = 1/0: Signal evaluation per period, $4 x$.				
	Bit $5 / 4=0 / 1$: Signal evaluation per period, 1x.				
	Bit 5/4 = 1/1: Illegal setting.				
	Re bit 06:				
	If the function is active, when $\mathrm{dn} / \mathrm{dt}$ monitoring responds, the velocity actual value is internally frozen for a time equivalent to two current controller clock cycles. The rotor position continues to be integrated. The actual value is then re-enabled after this time has expired.				
	Re bit 07:				
	If the bit is set, the encoder pulses detected as faulty between two zero marks are accumulated (p4688).				

Re bit 29:
When the bit is set, the EnDat encoder is initialized under a certain velocity and, therefore, with high accuracy. If initialization at a higher velocity is requested, fault F31151, F32151, or F33151 is output.
Re bit 31:
When monitoring is active, the levels of the individual track signals and the corresponding inverted track signals are monitored separately.

p0439[0...n]	Encoder ramp-up time / Enc ramp-up time		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	65535 [ms]	0 [ms]
Description:	Sets the ramp-up time for the encoder. The encoder supplies stable track signals once this time has elapsed.		
Note:	This parameter is automatically pre-set for encoders from the encoder list (p0400).		
p0440[0...n]	Copy encoder serial number / Copy enc ser_no		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Copies the actual serial number of the encoder belonging to this Encoder Data Set (EDS) to p0441 ... p0445. Example:		
	For $\mathrm{p} 0440[0]=1$, the serial number of the encoder belonging EDS0 is copied to p0441[0] ... p $0445[0]$.		
Value:	0 : No action 1: Transfer serial nu		
Dependency:	Refer to: p0441, p0442, p	5, r0460, r0461, r0462, r0463	p1990

Note:	For encoders with serial number, encoder replacement is monitored in order to request angular commutation calibration (adjustment) for motor encoders and absolute calibration for direct measuring systems with absolute value data. The serial number, which from then onwards is used for monitoring purposes, can be transferred using p0440. In the following cases, copying is automatically started in the following cases: 1.) When commissioning 1FT6, 1FK6, 1FK7 motors. 2.) When writing into p0431. 3.) For $\mathrm{p} 1990=1$. p0440 is automatically set to 0 when the copying has been completed. In order to permanently accept the copied values, it is necessary to save in a non-volatile fashion (p0977).		
p0441[0...n]	Encoder commission	mber part 1 / Enc comm	no 1
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 1 of the encoder for the commissioning. Refer to: p0440, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464 A value of zero is displayed if an encoder is not present.		
Dependency:			
Note:			
p0442[0...n]	Encoder commissioning serial number part 2 / Enc comm ser_no 2		
ENC, VECTOR_G	Can be changed: $\mathrm{C} 2(4)$	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 2 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0443, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		
p0443[0...n]	Encoder commissioning serial number part 3 / Enc comm ser_no 3		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 3 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0444, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		
p0444[0...n]	Encoder commissioning serial number part 4 / Enc comm ser_no 4		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 4 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0443, p0445, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		

p0445[0...n]	Encoder commissioning serial number part 5 / Enc comm ser_no 5		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Serial number part 5 of the encoder for the commissioning.		
Dependency:	Refer to: p0440, p0441, p0442, p0443, p0444, r0460, r0461, r0462, r0463, r0464		
Note:	A value of zero is displayed if an encoder is not present.		
p0446[0...n]	Encoder SSI number of bits before the absolute value / Enc SSI bit before		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the number of bits before the absolute value in the SSI protocol.		
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	This parameter is automatically pre-set for encoders from the encoder list (p0400). For example, error bit, alarm bit or parity bit can be positioned at these bits.		
p0447[0...n]	Encoder SSI number of bits absolute value / Enc SSI bit val		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	25
Description:	Sets the number of bits for the absolute value in the SSI protocol.		
Notice:	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	This parameter is automatically pre-set for encoders from the encoder list (p0400).		
p0448[0...n]	Encoder SSI number of bits after the absolute value / Enc SSI bit after		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the number of bits after the absolute value in the SSI protocol.		
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	For example, error bit, alarm bit or parity bit can be positioned at these bits.		

p0449[0...n]	Encoder SSI number of bits filler bits / Enc SSI fill bits		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	1
Description:	Sets the number of filler bits for double absolute value transfer in the SSI protocol.		
Dependency:			
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p 0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	This parameter is only of significance for p0429.2 $=1$.		
r0451[0...2]	Commutation angle factor / Enc commut_factor		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 4710
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the relationship between the electrical and mechanical pole positions.		
Index:	$[0]=$ Encoder 1		
	[1] = Encoder 2		
	[2] = Encoder 3		
Note:	A value of zero is displayed if an encoder is not present.		
r0452	Squarewave encoder filter time display / Enc t_filt displ		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:	Displays the effective filter time for a squarewave encoder. The filter time is set using p0438.		
Dependency:	Refer to: p0438		
Note:	A value of zero is displayed if an encoder is not present.		
r0452[0...2]	Squarewave encoder filter time display / Enc t_filt displ		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:	Displays the effective filter time for a squarewave encoder.		
	The filter time is set using p0438.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0438		
Note:	A value of zero is displayed if an encoder is not present.		

p0453[0...n]	Pulse encoder evaluation zero speed measuring time / Enc_ev n_0 t_meas			
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func.	
	P-Group: Encoder	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	0.10 [ms]	10000.00 [ms]	1000	
Description:	Sets the measuring time for evaluating zero speed.			
Dependency:	Refer to: r0452			
Note:	This function is required for slow-running motors so that actual speeds close to zero can be output correctly.			
r0455	Encoder configuration recognized / Enc config act			
ENC	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Encoder	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the detected encoder configuration.			
	In this case, the encoder must automatically support the function (e.g. encoder with EnDat interface).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Linear encoder	Yes	No	-
	01 Absolute encoder	Yes	No	-
	02 Multiturn encoder	Yes	No	-
	03 Track A/B sq-wave	Yes	No	-
	04 Track A/B sine	Yes	No	-
	05 Track C/D	Yes	No	-
	06 Hall sensor	Yes	No	-
	08 EnDat encoder	Yes	No	-
	09 SSI encoder	Yes	No	-
	10 DRIVE-CLiQ encoder	Yes	No	-
	11 Digital encoder	Yes	No	-
	12 Equidistant zero mark	Yes	No	-
	13 Irregular zero mark	Yes	No	-
	14 Distance-coded zero mark	Yes	No	-
	15 Commutation with zero mark (not ASM)	Yes	No	-
	16 Acceleration	Yes	No	-
	17 Track A/B analog	Yes	No	-
	20 Voltage level 5V	Yes	No	-
	21 Voltage level 24 V	Yes	No	-
	22 Remote sense (only SMC30)	Yes	No	-
	23 Resolver excit	Yes	No	-
Dependency:	Refer to: p0404			
Note:	ZM: Zero mark			
	This parameter is only used for diagnostics.			
	A value of zero is displayed if an encoder is not present.			
	Re bit 20,21 (voltage level 5 V , voltage level 24 V):			
	The voltage level cannot be detected. Therefore, these bits are always set to 0 .			

r0455[0...2]	Encoder configuration recognized / Enc config act				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Encoder		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expe	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the detected encoder configuration.				
	In this case, the encoder must automatically support the function (e.g. encoder with EnDat interface).				
Index:	$\begin{aligned} {[0] } & =\text { Encoder } 1 \\ {[1] } & =\text { Encoder } 2 \\ {[2] } & =\text { Encoder } 3 \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
	01	Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
	03	Track A/B sq-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-
	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
		Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
		Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
		Track A/B analog	Yes	No	-
	20	Voltage level 5 V	Yes	No	-
	21	Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excit	Yes	No	-
Dependency: Note:	Refer to: p0404				
	ZM: Zero mark				
	This parameter is only used for diagnostics.				
	A value of zero is displayed if an encoder is not present.				
	Re bit 20,21 (voltage level 5 V , voltage level 24 V):				
	The voltage level cannot be detected. Therefore, these bits are always set to 0 .				
r0456		oder configuration supported	/ Enc_config		
ENC	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Encoder		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the encoder configuration supported by the Sensor Module.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Linear encoder	Yes	No	-
	01	Absolute encoder	Yes	No	-
	02	Multiturn encoder	Yes	No	-
	03	Track A/B sq-wave	Yes	No	-
	04	Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-

	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
	12	Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
	17	Track A/B analog	Yes	No	-
		Voltage level 5 V	Yes	No	-
		Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excit	Yes	No	-
Dependency:	Refer to: p0404				
Note:	ZM: Zero mark				
	This parameter is only used for diagnostics.				
	A value of zero is displayed if an encoder is not present.				
r0456[0...2]	Encoder configuration supported / Enc_config supp				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Encoder		Units group: -	Unit	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Facto	
	-		-	-	
Description:	Displays the encoder configuration supported by the Sensor Module.				
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$				
Bit field:		Signal name	1 signal	0 signal	FP
		Linear encoder	Yes	No	-
		Absolute encoder	Yes	No	-
		Multiturn encoder	Yes	No	-
		Track A/B sq-wave	Yes	No	-
		Track A/B sine	Yes	No	-
	05	Track C/D	Yes	No	-
	06	Hall sensor	Yes	No	-
	08	EnDat encoder	Yes	No	-
	09	SSI encoder	Yes	No	-
	10	DRIVE-CLiQ encoder	Yes	No	-
	11	Digital encoder	Yes	No	-
	12	Equidistant zero mark	Yes	No	-
	13	Irregular zero mark	Yes	No	-
	14	Distance-coded zero mark	Yes	No	-
	15	Commutation with zero mark (not ASM)	Yes	No	-
	16	Acceleration	Yes	No	-
	17	Track A/B analog	Yes	No	-
		Voltage level 5 V	Yes	No	-
	21	Voltage level 24 V	Yes	No	-
		Remote sense (only SMC30)	Yes	No	-
	23	Resolver excit	Yes	No	-
Dependency:	Refer to: p0404				
Note:	ZM: Zero mark				
	This parameter is only used for diagnostics.				
	A value of zero is displayed if an encoder is not present.				

r0458
ENC
Description:
Bit field:

Sensor Module properties / SM properties

Can be changed: -
Data type: Unsigned32
P-Group: Encoder
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
-

Sets the Sensor Module configuration.

Bit	Signal name	1 signal
00	Encoder data available	Yes
01	Motor data available	Yes
02	Temperature sensor connection available	Yes
03	Connection for PTC for motor with DRIVE-	Yes
	CLiQ also available	
04	Module temperature available	Yes

Access level: 3

Func. diagram: 4704
Unit selection: -
Expert list: 1
Factory setting

Bit field:

Refer to: p0437, p0600, p0601
A value of zero is displayed if an encoder is not present.
Re bit 11:
When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"):
p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445
Re bit 12:
The extended functions can be configured using p0437.
Re bit 13:
Encoder faults can be acknowledged via Gn_STW.15.

Re bit 14:
Only for internal Siemens use.
Re bit 23
When the property is set, commutation with zero mark can be de-selected using p0430.23.
Re bit 24:
If the property is set, commutation to the selected zero mark can be carried out.

r0458	Sensor Module properties / SM properties				
ENC (Lin_enc)	Can be changed: - Cal		Calculated: Dyn. index: -	Access level: 3	
	Data type: Unsigned32 Dyn			Func.	
	P-Group: Encoder Unis		Units group: -	Unit selection: -	
	Not for motor type: - Scalil		Scaling: -	Expert list: 1	
	Min Max		Max	Factory setting	
	- -			-	
Description:	Sets the Sensor Module configuration.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Encoder data available	Yes	No	-
	01	Motor data available	Yes	No	-
	02	Temperature sensor connection available	Yes	No	-
		Connection for PTC for motor with DRIVECLiQ also available	Yes	No	-
	04	Module temperature available	Yes	No	-
		Absolute encoder p0408/p0421 no power of 2	Yes	No	-
	06	Sensor Module permits parking/unparking	Yes	No	-
	07	Hall sensor can be combined with actual value inversion	Yes	No	-
	08	Evaluation through several temperature channels possible	Yes	No	-
	09	Encoder fault and its associated information available	Yes	No	-
	10	Velocity diagnostics in the Sensor Module	Yes	No	-
	11	Configuring without park state possible	Yes	No	-
	12	Extended functions available	Yes	No	-
	13	Extended encoder fault handling	Yes	No	-
	14	Extended singleturn/multiturn information available	Yes	No	-
	15	Evaluation function reserve	Yes	No	-
	16	Pole position identification	Yes	No	-
	17	Burst oversampling	Yes	No	-
	18	Continuous oversampling	Yes	No	-
	19	Safety position actual value sensing	Yes	No	-
	20	Extended velocity calculation available (only SMC30)	Yes	No	-
	21	Zero mark tolerance	Yes	No	-
	22	Rot pos adapt	Yes	No	-
	23	Commutation with zero mark can be deselected	Yes	No	-
	24	Commutation with selected zero mark	Yes	No	-
	25	Disconnection of encoder power supply on parking supported	Yes	No	-
	26	Parking with temperature evaluation	Yes	No	-
	27	SSI position value extrapolation	Yes	No	-
	28	Cubic correction	Yes	No	-
	29	Phase correction	Yes	No	-
	30	Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
Dependency:	Refe	to: p0437, p0600, p0601			

Note: | A value of zero is displayed if an encoder is not present. |
| :--- |
| Re bit 11: |
| When the property is set, the following parameters can be changed without the actual value in the encoder interface |
| becoming invalid (state r0481.14 = 1 "parking encoder active"): |
| p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445 |
| Re bit 12: |
| The extended functions can be configured using p0437. |
| Re bit 13: |
| |
| Encoder faults can be acknowledged via Gn_STW.15. |
| |
| Re bit 14: |
| |
| Only for internal Siemens use. |
| |
| Re bit 23: |
| |
| When the property is set, commutation with zero mark can be de-selected using p0430.23. |
| |
| Re bit 24: |
| |
| If the property is set, commutation to the selected zero mark can be carried out. |

	24	Commutation with selected zero mark	Yes	No	-
	25	Disconnection of encoder power supply on parking supported	Yes	No	-
	26	Parking with temperature evaluation	Yes	No	-
	27	SSI position value extrapolation	Yes	No	-
	28	Cubic correction	Yes	No	-
	29	Phase correction	Yes	No	-
	30	Amplitude correction	Yes	No	-
	31	Offset correction	Yes	No	-
Dependency:	Refer to: p0437, p0600, p0601				
Note:	A value of zero is displayed if an encoder is not present.				
	Re bit 11:				
	When the property is set, the following parameters can be changed without the actual value in the encoder interface becoming invalid (state r0481.14 = 1 "parking encoder active"):				
	p0314, p0315, p0430, p0431, p0441, p0442, p0443, p0444, p0445				
	Re bit 12:				
	The extended functions can be configured using p0437.				
	Re bit 13:				
	Encoder faults can be acknowledged via Gn_STW.15.				
	Re bit 14:				
	Only for internal Siemens use.				
	Re bit 23:				
	When the property is set, commutation with zero mark can be de-selected using p0430.23.				
	Re bit 24:				
	If the property is set, commutation to the selected zero mark can be carried out.				

r0459

Description: Bit field:

Sensor Module properties extended / SM prop ext
Can be changed: -
Data type: Unsigned32
P-Group: Encoder
Not for motor type: Min

Displays the extended properties supported by the Sensor Module.

Bit	Signal name	1 signal	0 signal	FP
00	Data logger	Yes	No	-
01	Zero mark edge detection	Yes	No	-
02	Correction position actual value XIST1	Yes	No	-
04	Edge evaluation bit 0	Yes	No	-
05	Edge evaluation bit 1	Yes	No	-
06	Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors	Yes	No	-
07	Accumulate uncorrected encoder pulses	Yes	No	-
09	Function p0426, p0439 supported	Yes	No	-
10	Pulse/direction interface	Yes	No	-
11	Fault handling after PROFIdrive	Yes	No	-
12	Activate additional messages	Yes	No	-
13	Absolute position for incremental encoder supported	Yes	No	-
14	Spindle functionality	Yes	No	-
15	Additional temperature sensor available	Yes	No	-
16	Internal encoder temperature available	Yes	No	-
17	Extended multiturn resolution	Yes	No	-
24	Multiturn via battery	Yes	No	-
25	Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
26	Track monitoring de-selection	Yes	No	-
28	EnDat linear encoder monitoring incremental/absolute	Yes	No	-

	$29 \quad$ EnDat encoder initialization with high	Yes	No
Dependency:	$31 \quad$ Analog unipolar track monitoring	Refer to: p0437	
Note:	A value of zero is displayed if an encoder is not present.		
	Re bit 09:		
	Parameter p0426 or p0439 has been modified. These functions are not supported by the connected Sensor Module.		

$\mathbf{r 0 4 5 9}$
ENC (Lin_enc)
Description:

Refer to: p0437
A value of zero is displayed if an encoder is not present.
Re bit 09:
Parameter p0426 or p0439 has been modified. These functions are not supported by the connected Sensor Module.

r0459[0...2]	Sensor Module properties extended / SM prop ext		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the extended properties supported by the Sensor Module.		
Index:	$[0]=$ Encoder 1		
	$[1]=$ Encoder 2		
	$[2]=$ Encoder 3		

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Data logger	Yes	No	-
	01	Zero mark edge detection	Yes	No	-
	02	Correction position actual value XIST1	Yes	No	-
	04	Edge evaluation bit 0	Yes	No	-
	05	Edge evaluation bit 1	Yes	No	-
	06	Freeze the speed actual value for $\mathrm{dn} / \mathrm{dt}$ errors	Yes	No	-
	07	Accumulate uncorrected encoder pulses	Yes	No	-
	09	Function p0426, p0439 supported	Yes	No	-
	10	Pulse/direction interface	Yes	No	-
	11	Fault handling after PROFIdrive	Yes	No	-
	12	Activate additional messages	Yes	No	-
	13	Absolute position for incremental encoder supported	Yes	No	-
	14	Spindle functionality	Yes	No	-
	15	Additional temperature sensor available	Yes	No	-
	16	Internal encoder temperature available	Yes	No	-
	17	Extended multiturn resolution	Yes	No	-
	24	Multiturn via battery	Yes	No	-
	25	Deselect monitoring multiturn representation in Gx_XIST2	Yes	No	-
	26	Track monitoring de-selection	Yes	No	-
	28	EnDat linear encoder monitoring incremental/absolute	Yes	No	-
		EnDat encoder initialization with high accuracy	Yes	No	-
	31	Analog unipolar track monitoring	Yes	No	-
Dependency:	Ref	r to: p0437			
Note:		ue of zero is displayed if an encoder is not	esent.		
		it 09:			
		meter p0426 or p0439 has been modified.	ese function	ted by the	Mo
r0460		oder serial number part 1 / Enc	r_no 1		
ENC		be changed: -	ulated: -		
		type: Unsigned32	index: -	Func	
		oup: Encoder	s group: -	Unit	
		for motor type: -	ing: -	Exper	
	Min			Facto	
	-	- -		-	
Description:		lays the actual serial number part 1 of the appres	ropriate enc		
Dependency:	Ref	r to: p0441, p0442, p0443, p0444, p0445, r04	61, r0462, r		
r0460[0...2]		oder serial number part 1 / Enc	__no 1		
VECTOR_G		be changed: -	ulated: -	Acces	
	Dat	type: Unsigned32	index: -	Func.	
	P-G	oup: Encoder	s group: -	Unit	
		for motor type: -	ing: -	Exper	
	Min	M		Facto	
	-	-		-	
Description:		ays the actual serial number part 1 of the a	ropriate enc		
Index:	[0] [1] [2]	Encoder 1 Encoder 2 Encoder 3			
Dependency:	Ref	r to: p0441, p0442, p0443, p0444, p0445, rour	61, r0462, ro4		

r0461	Encoder serial number part 2 / Enc ser_no 2		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 2 of the appropriate encoder.		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464		
r0461[0...2]	Encoder serial number part 2 / Enc ser_no 2		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 2 of the appropriate encoder.		
Index:	[0] = Encoder 1		
	$\begin{aligned} & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0462, r0463, r0464		
r0462	Encoder serial number part 3 / Enc ser_no 3		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 3 of the appropriate encoder.		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464		
r0462[0...2]	Encoder serial number part 3 / Enc ser_no 3		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 3 of the appropriate encoder.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0463, r0464		

r0463	Encoder serial number part 4 / Enc ser_no 4		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 4 of the appropriate encoder. Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464		
Dependency:			
r0463[0...2]	Encoder serial number part 4 / Enc ser_no 4		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 4 of the appropriate encoder.		
Index:	$\text { [0] = Encoder } 1$		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0464		
r0464	Encoder serial number part 5 / Enc ser_no 5		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 5 of the appropriate encoder.		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463		
r0464[0...2]	Encoder serial number part 5 / Enc ser_no 5		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number part 5 of the appropriate encoder.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0441, p0442, p0443, p0444, p0445, r0460, r0461, r0462, r0463		

r0465[0...27]	Encoder 1 identification number/serial number / Enc1 ID_no/Ser_no		
ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification/serial number of encoder 1. Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $\mathrm{x}+1=2 \mathrm{~F}$ hex (slash) --> separation between the identification number of serial number		
	Index $\mathrm{x}+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $\mathrm{x}+3$ = first character of the serial number		
	\cdots		
	Index y with contents = last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		
r0466[0...27]	Encoder 2 identification number/serial number / Enc2 ID_no/Ser_no		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification/serial number of encoder 2.		
	Index $0=$ first character of the identification number		
	...		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2 F$ hex (slash) --> separation between the identification number of serial number		
	Index $\mathrm{x}+2=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+3=$ first character of the serial number		
	Index y with contents $=$ last character of the serial number		
Dependency:	Refer to: r0460, r0461, r0462, r0463, r0464		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	The individual characters of the identification number/serial number are available coded as ASCII characters.		
	Encoder 3 identification number/serial number / Enc3 ID_no/Ser_no		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identification/serial number of encoder 3.		
	Index $0=$ first character of the identification number		
	Index $\mathrm{x}=20$ hex (blank) --> separation between the identification number of serial number		
	Index $x+1=2$ hex (slash) -> separaion between the identication number of serial number		erial number

r0471	Redundant coarse position value fine resolution bits / Fine bit		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of valid bits for the fine resolution of the redundant coarse position value. Refer to: p9324, p9524		
Dependency:			
r0471[0...2]	Redundant coarse position value fine resolution bits / Fine bit		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of valid bits for the fine resolution of the redundant coarse position value.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \end{aligned}$		
Dependency:	Refer to: p9324, p9524		
r0472	Redundant coarse position value relevant bits / Relevant bits		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of relevant bits for the redundant coarse position value.		
r0472[0...2]	Redundant coarse position value relevant bits / Relevant bits		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the number of relevant bits for the redundant coarse position value. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3		
r0473	Non safety-relevant measuring steps position value pos1/nsrPos1		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the non safety-relevant measuring steps of POS1.		

Dependency:	Refer to: p0416, p9513			
r0473[0...2]	Non safety-relevant measuring steps position value pos1 / nsrPos1			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Encoder	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Displays the non safety-relevant measuring steps of POS1.			
Index:	[0] = Encoder 1			
	[1] = Encoder 2			
	[2] = Encoder 3			
Dependency:	Refer to: p0416, p9513			
r0474	Redundant coarse position value configuration / Red pos config			
ENC	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Encoder	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Displays the encoder configuration for the redundant coarse position value.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Incrementer	Yes	No	-
	01 Encoder CRC least significant byte first	Yes	No	-
	02 Redundant coarse position val. most significant bit left-aligned	Yes	No	-
	04 Binary comparison not possible	Yes	No	-
Dependency:	Refer to: p9315, p9515			
r0474[0...2]	Redundant coarse position value configuration / Red pos config			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Encoder	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
		Max	Facto	
	-	-	-	
Description:	Displays the encoder configuration for the redundant coarse position value.			
Index:	$\begin{aligned} & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Incrementer	Yes	No	-
	01 Encoder CRC least significant byte first	Yes	No	-
	02 Redundant coarse position val. most significant bit left-aligned	Yes	No	-
	04 Binary comparison not possible	Yes	No	-
Dependency:	Refer to: p9315, p9515			

r0475	Gx_XIST1 coarse position safe most significant bit / Gx_XIST1 safe MSB		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position. MSB: Most Significant Bit		
Note:			
r0475[0...2]	Gx_XIST1 coarse position safe most significant bit / Gx_XIST1 safe MSB		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the bit number for the safe most significant bit (MSB) of the Gx_XIST1 coarse position.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \end{aligned}$		
Note:	MSB: Most Significant Bit		
r0477	CO: Measuring gear position difference / Meas gear pos diff		
ENC	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the position difference before the measuring gear between powering down and powering up		
Note:	The increments are displayed in the format the same as r0483. The position difference should be read in encoder increments.		
r0477[0...2]	CO: Measuring gear position difference / Meas gear pos diff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the position difference before the measuring gear between powering down and powering up		
Index:	$\begin{aligned} & \text { [1] = Encoder } 2 \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Note:	The increments are displayed in the format the same as r0483. The position difference should be read in encoder increments.		

p0480[0...2]	CI: Encoder control word Gn_STW signal source / Enc Gn_STW S_src					
VECTOR_G	Can be changed: T Data type: Unsigned32 / Integer16		Calculated: -Dyn. index: -	Access level: 3		
			Func. diagram: 4700, 4720, 4750			
		oup: Encoder		Units group: -	Unit sele	
		for motor type: -	Scaling: -	Expert		
	Min		Max	Factory		
	-		-	0		
Description:	Sets the signal source for the encoder control word Gn_STW according to PROFIdrive.					
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$					
Note:	When the function module "basic positioner" (r0108.4 = 1) is activated, the following BICO interconnection is established:					
	CI: p0480[0] = r2520[0], CI: $\mathrm{p} 0480[1]=\mathrm{r} 2520[1]$ and CI: $00480[2]=$ r2520[2]					
r0481	CO: Encoder status word Gn_ZSW / Enc Gn_ZSW					
ENC	Can be changed: -		Calculated: -	Access level: 3		
		type: Unsigned16	Dyn. index: -	Func. diagram: 4704, 4730, 4750		
		oup: Encoder	Units group: -	Unit selection: -		
		for motor type: -	Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	-		
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	Function 1 active	Yes	No	-	
	01	Function 2 active	Yes	No	-	
	02	Function 3 active	Yes	No	-	
	03	Function 4 active	Yes	No	-	
	04	Value 1	Displayed in r0483	Not present	-	
	05	Value 2	Displayed in r0483	Not present	-	
	06	Value 3	Displayed in r0483	Not present	-	
	07	Value 4	Displayed in r0483	Not present	-	
	08	Measuring probe 1 deflected	Yes	No	-	
	09	Measuring probe 2 deflected	Yes	No	-	
		Encoder fault acknowledge active	Yes	No	9676	
	13	Absolute value cyclically	Displayed in r0483	No	-	
	14	Parking encoder active	Yes	No	-	
	15	Encoder fault	Displayed in r0483	None	-	
Notice:	Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions					
Note:	Re bit 14:					
	Displays the acknowledgement for "activate parking encoder" (Gn_STW. 14 = 1) or encoder position actual value (Gn_XIST1) invalid.					
	Re bit 14, 15:					
	$\mathrm{r} 0481.14=1$ and r0481.15 $=0$ can have one of the following causes:					
	- the encoder is parked.					
	- the encoder is de-activated.					
	- the encoder is being commissioned.					
	- no parameterized encoder available.					
	- encoder data set is being changed over.					
	$\mathrm{r} 0481.14=1$ and r0481.15 $=1$ has the following significance:					
	An encoder error has occurred and the encoder position actual value (Gn_XIST1) is invalid.					

r0481[0...2]	CO: Encoder status word Gn_ZSW / Enc Gn_ZSW				
VECTOR_G		be changed: -	Calculated: -	Access	
		type: Unsigned16	Dyn. index: -	Func. dia 4730, 475	
		oup: Encoder	Units group: -	Unit sele	
	Not	for motor type: -	Scaling: -	Expert lis	
	Min		Max	Factory	
	-		-	-	
Description:	Displays the encoder status word Gn_ZSW according to PROFIdrive.				
Index:	[1] = Encoder 2 [2] = Encoder 3				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Function 1 active	Yes	No	-
		Function 2 active	Yes	No	-
		Function 3 active	Yes	No	-
	03	Function 4 active	Yes	No	-
		Value 1	Displayed in r0483	Not present	-
		Value 2	Displayed in r0483	Not present	-
		Value 3	Displayed in r0483	Not present	-
		Value 4	Displayed in r0483	Not present	-
		Measuring probe 1 deflected	Yes	No	-
		Measuring probe 2 deflected	Yes	No	-
		Encoder fault acknowledge active	Yes	No	9676
		Absolute value cyclically	Displayed in r0483	No	-
		Parking encoder active	Yes	No	-
		Encoder fault	Displayed in r0483	None	-
Notice:	Information on Gn_STW/Gn_ZSW can, e.g. be found in the following literature: SINAMICS S120 Function Manual Drive Functions				
Note:	Re bit 14:				
	Displays the acknowledgement for "activate parking encoder" (Gn_STW. $14=1$) or encoder position actual value (Gn_XIST1) invalid.				
	Re bit 14, 15:				
	$\mathrm{r} 0481.14=1$ and r0481.15 = 0 can have one of the following causes:				
	- the encoder is parked.				
	- the encoder is de-activated.				
	- the encoder is being commissioned.				
	- no parameterized encoder available.				
	- encoder data set is being changed over.				
	$\mathrm{r} 0481.14=1$ and r0481.15 $=1$ has the following significance:				
	An encoder error has occurred and the encoder position actual value (Gn_XIST1) is invalid.				
r0482	CO	Encoder actual position v	e Gn_XIST1 / Enc Gn		
ENC	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 4704, 4735, 4740, 4750	
	P-Group: Encoder		Units group: -	Unit sele	
	Not for motor type: -		Scaling: -	Expert lis	
	Min		Max	Factory setting	
			- -		
Description:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive.				
Note:	- this value is reset if necessary when the "parking encoder" (r0481.14) function is de-selected.				
	- in this value, the measuring gear (p0432, p0433) is only taken into account when the position tracking is activat ($\mathrm{p} 0411.0=1$).				
	- The update time for the position control (EPOS) corresponds to the position controller clock cycle p0115[4].				
	- The update time in isochronous operation corresponds to the bus cycle time r2064[1].				

- The update time in isochronous operation and with position control (EPOS) corresponds to the position controller clock cycle p0115[4].
- The update time in non-isochronous operation or without position control (EPOS) comprises the following:

Update time $=4$ * least common multiple (LCM) of all current controller clock cycles ($\mathrm{p} 0115[0]$) in the drive group (infeed + drives). The minimum update time is 1 ms .
Example 1: infeed, servo
Update time $=4$ * $\operatorname{LCM}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s})=4 * 250 \mu \mathrm{~s}=1 \mathrm{~ms}$
Example 2: infeed, servo, vector
Update time $=4$ * LCM $(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 500 \mu \mathrm{~s})=4{ }^{*} 500 \mu \mathrm{~s}=2 \mathrm{~ms}$

r0482[0...2]	CO: Encoder actual position value Gn_XIST1 / Enc Gn_XIST1		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4700, 4702, 4704, 4735, 4740, 4750
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Display and connector output for the encoder actual position value Gn_XIST1 according to PROFIdrive. [0] = Encoder 1 [1] = Encoder 2 [2] = Encoder 3		
Note:	- this value is reset if necessary when the "parking encoder" (r0481.14) function is de-selected.		
	- in this value, the measuring gear ($\mathrm{p} 0432, \mathrm{p} 0433$) is only taken into account when the position tracking is activated ($\mathrm{p} 0411.0=1$).		
	- The update time for the position control (EPOS) corresponds to the position controller clock cycle p0115[4].		
	- The update time in isochronous operation and with position control (EPOS) corresponds to the position controller clock cycle p0115[4].		
	- The update time in non-isochronous operation or without position control (EPOS) comprises the following:		
	Update time $=4$ * least common multiple (LCM) of all current controller clock cycles ($\mathrm{p} 0115[0]$) in the drive group (infeed + drives). The minimum update time is 1 ms .		
	Example 1: infeed, servo		
	Update time $=4$ * LCM $(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s})=4 * 250 \mu \mathrm{~s}=1 \mathrm{~ms}$		
	Example 2: infeed, servo, vector		
	Update time $=4 * \operatorname{LCM}(250 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 500 \mu \mathrm{~s})=4$ * $500 \mu \mathrm{~s}=2 \mathrm{~ms}$		

r0483

ENC

Description: Displays the encoder actual position value Gn_XIST2 according to PROFIdrive.
Recommend.: Possible causes:
Re Error code $=4097$, 4098: Defective Control Unit hardware.
Re Error codes = 4099, 4100: Too many measuring pulses have occurred.
Notice: The encoder position actual value must be requested using the encoder control word Gn_STW. 13.
Note: $\quad-$ in this value, the measuring gear ($\mathrm{p} 0432, \mathrm{p} 0433$) is only taken into account when the position tracking is activated (p0411.0 = 1).

- if GxZSW. 15 = 1 (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483):

1: Encoder fault.
2: Possible position shift in Gx_XIST1.
3: Encoder parking not possible.

4: Cancellation, reference block search (e.g. reference mark not available or input terminal for external zero mark not set). Zero mark is requested, however according to p0404.12/13/14 there is no zero mark (alarm A07565).
5: Cancellation, fetch reference value (e.g. illegal change from reference mark search to flying measurement).
6: Cancellation, flying measurement (e.g. input terminal for probe not set).
7: Cancellation, fetch measured value (e.g. illegal change from flying measurement to reference mark search).
8: Abort, absolute value transfer.
3841: Function not supported.
4097: Abort, reference mark search due to an initialization error.
4098: Abort, flying measurement due to an initialization error.
4099: Abort, reference mark search due to a measuring error.
4100: Abort, flying measurement due to a measuring error.

r0483[0...2]	CO: Encoder actual position value Gn_XIST2 / Enc Gn_XIST2		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 4704, 4750
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the encoder actual position value Gn_XIST2 according to PROFIdrive.		
Recommend.:	Possible causes:		
	Re Error code $=4097$, 4098: Defective Control Unit hardware.		
	Re Error codes = 4099, 4100: Too many measuring pulses have occurred.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW.13.		
Note:	- in this value, the measuring gear ($\mathrm{p} 0432, \mathrm{p} 0433$) is only taken into account when the position tracking is activated ($\mathrm{p} 0411.0=1$).		
	- if GxZSW. 15 = 1 (r0481), then an error code with the following significance is located in Gx_XIST2 (r0483):		
	2: Possible position shift in Gx_XIST1.		
	3: Encoder parking not possible.		
	4: Cancellation, reference block search (e.g. reference mark not available or input terminal for external zero mark not set). Zero mark is requested, however according to p0404.12/13/14 there is no zero mark (alarm A07565).		
	5: Cancellation, fetch reference value (e.g. illegal change from reference mark search to flying measurement).		
	6: Cancellation, flying measurement (e.g. input terminal for probe not set).		
	7: Cancellation, fetch measured value (e.g. illegal change from flying measurement to reference mark search).		
	8: Abort, absolute value transfer.		
	3841: Function not supported.		
	4097: Abort, reference mark search due to an initialization error.		
	4098: Abort, flying measurement due to an initialization error.		
	4099: Abort, reference mark search due to a measuring error.		
	4100: Abort, flying measurement due to a measuring error.		
r0484	CO: Redundant coarse encoder position + CRC / Enc red pos+CRC		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the redundant Upper 16 bits: CRC over the redundan	ion including CRC ition.	cy Check).

Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Request function 1	Yes	No	-
		Request function 2	Yes	No	-
		Request function 3	Yes	No	-
		Request function 4	Yes	No	-
		Request command bit 0	Yes	No	-
		Request command bit 1	Yes	No	-
		Request command bit 2	Yes	No	-
		Flying measurement mode/search for reference mark	Flying measurement	Reference marks	-
		Request absolute value cyclic	Yes	No	-
		Request parking encoder	Yes	No	-
	15	Request acknowledge encoder fault	Yes	No	-
Notice:	Information on Gn_STW/Gn_ZSW should be taken from the corresponding product documentation.				
Note:	The signal source for the encoder control word is set with p0480.				
p0488	Measuring probe 1 input terminal / Meas probe 1 inp				
ENC	Can be changed: U, T		Calculated: -	Access level:	
	Data type: Integer16		Dyn. index: -	Func. diagram	
	P-Group: Encoder		Units group: -	Unit selection	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory settin	
	0		8	0	
Description:	Sets the input terminal to connect probe 1.				
Value:	0 :	No meas probe			
		DI/DO 9 (X122.10/X121.8)			
		DI/DO 10 (X122.12/X121.10)			
		DI/DO 11 (X122.13/X121.11)			
		DI/DO 13 (X132.10/X131.2)			
		DI/DO 14 (X132.12/X131.4)			
		DI/DO 15 (X132.13/X131.5)			
		DI/DO 8 (X122.9/X121.7)			
		DI/DO 12 (X132.9/X131.1)			
Dependency:	Refer to: p0489, p0728				
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
	To select the values:				
	For CX32, NX10 and NX15, only DI/DO 8, 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual).				
Note:	DI/DO: Bidirectional Digital Input/Output				
	The terminal must be set as input (p0728).				
	Refer to the encoder interface for PROFIdrive.				
	If parameterization is rejected, check whether the terminal is already being used in p0580, p0680, p2517 or p2518.				
p0488[0...2]		asuring probe 1 input termina	/ Meas probe 1 inp		
VECTOR_G	Can be changed: U, T		Calculated: -	Access level:	
	Data type: Integer16		Dyn. index: -	Func. diagram	
	P-Group: Encoder		Units group: -	Unit selection	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory settin	
	0		8	0	
Description:	Sets the input terminal to connect probe 1.				
Value:	0 :	No meas probe			
	1:	DI/DO 9 (X122.10/X121.8)			
	2 :	DI/DO 10 (X122.12/X121.10)			
	3:	DI/DO 11 (X122.13/X121.11)			

P0489[0...2]	Measuring probe 2 input terminal / Meas probe 2 inp		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 4740
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	8	Factory setting
	0		0
Description:	Sets the input terminal to connect probe 2.		
Value:	$0: \quad$ No meas probe		
	$1: \quad$ DI/DO 9 (X122.10/X121.8)		
	$2: \quad$ DI/DO 10 (X122.12/X121.10)		
	$3: \quad$ DI/DO 11 (X122.13/X121.11)		

p0493	Zero mark selection input terminal / ZM_sel inp_term		
ENC	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the input terminal for selecting the reference mark via BERO/switching signal when performing referencing with several zero marks.		
	The encoder interface supplies the position of the reference mark, which was detected immediately after the positive edge of the BERO signal.		
Value:	0: No selection via BERO 1: \quad DI/DO 9 (X122.10/X121.8)		
	2: DI/DO 10 (X122.12/X121.10)		
	3: DI/DO 11 (X122.13/X121.11)		
	4: DI/DO 13 (X132.10/X131.2)		
	5: DI/DO 14 (X132.12/X131.4)		
	6: DI/DO 15 (X132.13/X131.5)		
	7: DI/DO 8 (X122.9/X121.7)		
Notice:	For CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Note:	Refer to the encoder interface for PROFIdrive.		
	The terminal must be set as input (p 0728).		
	For p0493 $=0$ (factory setting) the following applies:		
	For p0493 > 0, the following applies:		
	- the positive edge of the input signal is evaluated. If the negative edge is to be evaluated, signal inversion must be parameterized via p0490.		
	- if a parameter change is rejected, a check should be performed as to whether the input terminal is already being used in p0580, p0680, p2517, or p2518.		
p0493[0...n]	Zero mark selection input terminal / ZM_sel inp_term		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	8	0
Description:	Sets the input terminal for selecting the reference mark via BERO/switching signal when performing referencing with several zero marks.		
	The encoder interface supplies the position of the reference mark, which was detected immediately after the positive edge of the BERO signal.		
Value:	0: No selection via BERO		
	1: DI/DO 9 (X122.10/X121.8)		
	2: DI/DO 10 (X122.12/X121.10)		
	3: DI/DO 11 (X122.13/X121.11)		
	4: DI/DO 13 (X132.10/X131.2)		
	5: DI/DO 14 (X132.12/X131.4)		
	6: DI/DO 15 (X132.13/X131.5)		
	7: DI/DO 8 (X122.9/X121.7)		
	8: \quad DI/DO 12 (X132.9/X131.1)		
Notice:	For CX32, NX10 and NX15, only DI/DO 9, 10, 11 can be selected as fast inputs (refer to the Equipment Manual). To the terminal designation: The first designation is valid for CU320, the second for CU310.		

Refer to the encoder interface for PROFIdrive.
The terminal must be set as input.
For p0495 = 0 (factory setting), the encoder zero mark is evaluated as zero mark.
For p0495>0, the following applies:
Depending on the direction of motion, the positive or negative edge at the appropriate input is evaluated.

- increasing position actual values (r0482) --> the $0 / 1$ edge is evaluated.
- decreasing position actual values (r0482) --> the 1/0 edge is evaluated.

Only one zero mark is supported. If function 2,3 or 4 is selected, this results in a fault message in Gn_ZSW.
The inversion of the inputs via p0490 affects the function "referencing with equivalent zero mark". This is the reason that the edge evaluation is interchanged as a function of the direction of motion.
An input can only be assigned to one encoder as measuring probe 1, 2 or equivalent zero mark. Exception: The same encoder can be simultaneously used as measuring probe and equivalent zero mark as both functions cannot be simultaneously requested.

p0496	Encoder diagnostic signal selection / Enc diag select		
ENC	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	86	0
Description:	Selects the trace signal to be output in r0497, r0498 and r0499 for encoder diagnostics.		
Value:	0 : Inactive		
	1: r0497: Mechani		
	10: r0498: Raw valu	v value track B	
	11: r0498: Fine pos	Fine position $\mathrm{Y}(-\mathrm{B} / 2)$	
	12: r0498: Fine pos		
	13: r0498: Offset co	fset correction Y	
	14: r0498: Phase co	mplitude correction Y	
	15: r0498: Cubic co	e position X	
	16: r0498: oversam	9 oversampling channel B	
	17: r0498: fan-out	t number	
	18: r0498: Oversam	versampling amount	
	19: r0498: Fault cou	value track A	
	20: r0498: Raw valu	w value track D	
	21: r0498: CD posit	D position Y (C/2)	
	22: r0498: CD positio	pos. Phi - mech. revolution	
	23: r0497: Zero mark		
	24: r0498: Raw valu	o mark status	
	25: r0498: Raw valu	value track R	
	30: r0497: Absolute		
	31: r0497: Absolute		
	32: r0497: Zero mark		
	33: r0497: Correctio	difference	
	40: r0498: Raw tem	merature in $0.1^{\circ} \mathrm{C}$	
	41: r0498: Resistan	: Temperature in $0.1{ }^{\circ} \mathrm{C}$	
	42: r0497: Resistan		
	51: r0497: Absolute		
	52: r0497: Xact1 co		
	60: Analog sensor:	A, r0499: raw val chann. B	
	61: Analog sensor:	. A, r0499: fine pos chann. B	
	62: Analog sensor:	re characteristic, r0499: -	
	70: Resolver: 04988	, r0499: phase	
	80: Spindle: r0498:	99: Sensor S4 (raw)	
	81: Spindle: r0498:	99: -	
	85: Spindle: r0498:	99: Sensor S4 (cal)	
	86: Spindle: r0498:		
Dependency:	Refer to: r0497, r0498, r0499		
Notice:	The setting option depends on the following properties:		
	Sensor Module type, hardware version, firmware version (Sensor Module and Control Units), order number (last digit).		
	Not all combinations are supported.		
Note:	Re p0496 = 1:360 ${ }^{\circ}$---> $2^{\wedge} 32$		
	Re p0496 $=10$ (resolver): 2900 mV <--> 26214 dec		
	Re p0496 = 10, 20 (sin/cos 1 Vpp, EnDat): 500 mV <--> 21299 dec		
	Re p0496 = 11 (resolver): 2900 mV <--> 13107 dec, internal processor offset is corrected		
	Re p0496 $=11,21$ (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec, internal processor offset is corrected		
	Re p0496 $=12$: 180° fine position $\langle->32768 \mathrm{dec}$		
	Re p0496 = 13 (resolver): 2900 mV <--> 13107 dec		
	Re p0496 = 13 (sin/cos 1 Vpp, EnDat): 500 mV <--> 10650 dec		
	Re p0496 = 14:1 ${ }^{\circ}$ <--> $286 \mathrm{dec}, 100 \%$ <--> 16384 dec		
	Re p0496 $=15: 100 \%$ <--> 16384 dec		
	Re p0496 = 16: (resolver): channel A: 2900 mV <--> 26214 dec, channel B: 2900 mV <--> 26214 dec		

Re p0496 = 16: (sin/cos 1 Vpp , EnDat) channel A: 500 mV <--> 21299 dec , channel B: 500 mV <--> 21299 dec
Re p0496 = 17 (resolver): absolute value: 2900 mV <--> 13107 dec, number: 1 ... 8
Re p0496 = 17 ($\sin / \cos 1 \mathrm{Vpp}$, EnDat): absolute value 500 mV <--> 10650 dec , number: 1 ... 8
Re p0496 = 18 (resolver): angle: signal period <--> 2^16, absolute value: 2900 mV <--> 13107 dec
Re p0496 = 18 (sin/cos 1 Vpp, EnDat): angle: signal period <--> 2^16, absolute value: 500 mV <--> 10650 dec
Re p0496 = 19 (resolver): counter: dec, channel A: 2900 mV <--> 26214 dec
Re p0496 = 19 (sin/cos 1 Vpp, EnDat): counter: dec, channel A: 500 mV <--> 21299 dec
Re p0496 = 22: 180° <--> 32768 dec
Rep0496 $=23$, 24: r0497.31 (r0499.15) set for at least 1 current controller cycle when encoder zero mark detected
Re p0496 $=24$, 25: 500 mV <--> 21299 dec
Re p0496 = 30: Rotary: 1 singleturn measuring step <--> 1 dec, linear: 1 measuring step <--> 1 dec
Re p0496 = 31: Absolute position, incremental in $1 / 4$ encoder pulses
Re p0496 = 32: Zero mark position in $1 / 4$ encoder pulses
Re p0496 = 33: counter offset absolute value in $1 / 4$ encoder pulses
Re p0496 = 40: r0498 <--> (R_KTY/1 kOhm - 0.9) * 32768
Re p0496 = 42: 2500 Ohm <--> 2^32
Re p0496 = 51: 1 rpm <--> 1000 dec
Re p0496 = 52: In 1/4 encoder pulses
Re p0496 $=60$: voltage, channel A in $m V$, voltage, channel B in $m V$
Re p0496 = 61: Channel A: encoder periods <--> $2^{\wedge} 16$, channel B: encoder periods <--> $2^{\wedge} 16$
Re p0496 = 62: encoder periods <--> 2^16
Re p0496 = 70: r: 100% <--> 10000 dec, phase: 180° <--> 18000 dec
Re p0496 = 80, 81, 85, 86: 1V <--> 1000 inc

	60: Analog sensor: r0498: raw val chann. A, r0499: raw val chann. B
	61: Analog sensor: r0498: fine pos chann. A,r0499: fine pos chann. B
	62: Analog sensor: r0498: Fine pos before characteristic, r0499: -
	70: Resolver: r0498: Transformation ratio, r0499: phase
	80: Spindle: r0498: Sensor S1 (raw), r0499: Sensor S4 (raw)
	81: Spindle: r0498: Sensor S5 (raw), r0499: -
	85: Spindle: r0498: Sensor S1 (cal), r0499: Sensor S4 (cal)
	86: Spindle: r0498: Sensor S5 (cal), r0499: -
Index:	[0] = Encoder 1
	[1] = Encoder 2
	[2] = Encoder 3
Dependency:	Refer to: r0497, r0498, r0499
Notice:	The setting option depends on the following properties:
	Sensor Module type, hardware version, firmware version (Sensor Module and Control Units), order number (last digit).
	Not all combinations are supported.
Note:	Re p0496 = 1:360 ${ }^{\circ}$---> $2^{\wedge} 32$
	Re p0496 = 10 (resolver): 2900 mV <--> 26214 dec
	Rep $0496=10,20$ (sin/cos 1 Vpp , EnDat): 500 mV <--> 21299 dec
	Re p0496 = 11 (resolver): 2900 mV <--> 13107 dec, internal processor offset is corrected
	Re p $0496=11,21$ (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec , internal processor offset is corrected
	Rep0496 = 12: $180{ }^{\circ}$ fine position <--> 32768 dec
	Re p0496 = 13 (resolver): 2900 mV <--> 13107 dec
	Re p0496 = 13 (sin/cos 1 Vpp , EnDat): 500 mV <--> 10650 dec
	Rep0496 = 14: 1° <--> $286 \mathrm{dec}, 100 \%$ <--> 16384 dec
	Re p0496 = 15: 100% <--> 16384 dec
	Re p0496 = 16: (resolver): channel A: 2900 mV <--> 26214 dec, channel B: 2900 mV <--> 26214 dec
	Re p0496 = 16: (sin/cos 1 Vpp , EnDat) channel A: 500 mV <--> 21299 dec, channel B: 500 mV <--> 21299 dec
	Re p0496 = 17 (resolver): absolute value: 2900 mV <--> 13107 dec , number: 1 ... 8
	Re p0496 = 17 (sin/cos 1 Vpp, EnDat): absolute value 500 mV <--> 10650 dec, number: 1 ... 8
	Re p0496 = 18 (resolver): angle: signal period <--> 2^16, absolute value: 2900 mV <--> 13107 dec
	Re p0496 = 18 (sin/cos 1 Vpp, EnDat): angle: signal period <--> 2^16, absolute value: 500 mV <--> 10650 dec
	Re p0496 = 19 (resolver): counter: dec, channel A: 2900 mV <--> 26214 dec
	Re p0496 = 19 (sin/cos 1 Vpp, EnDat): counter: dec, channel A: 500 mV <--> 21299 dec
	Rep0496 = 22: 180° <--> 32768 dec
	Re p0496 = 23, 24: r0497.31 (r0499.15) set for at least 1 current controller cycle when encoder zero mark detected
	Re p0496 = 24, 25: 500 mV <--> 21299 dec
	Rep0496 = 30: Rotary: 1 singleturn measuring step <--> 1 dec, linear: 1 measuring step <--> 1 dec
	Re p0496 = 31: Absolute position, incremental in $1 / 4$ encoder pulses
	Re p0496 = 32: Zero mark position in 1/4 encoder pulses
	Re p0496 = 33: counter offset absolute value in 1/4 encoder pulses
	Re p0496 = 40: r0498 <--> (R_KTY/1 kOhm - 0.9) * 32768
	Rep0496 = 42: 2500 Ohm <--> 2^32
	Rep0496 = 51: 1 rpm <--> 1000 dec
	Re p0496 = 52: In 1/4 encoder pulses
	Re p0496 = 60: voltage, channel A in mV, voltage, channel B in mV
	Re p0496 = 61: Channel A: encoder periods <--> 2^16, channel B: encoder periods <--> 2^16
	Re p0496 = 62: encoder periods <--> 2^16
	Rep0496 = 70: r: 100% <--> 10000 dec, phase: 180° <--> 18000 dec
	Re p0496 = 80, 81, 85, 86: 1V <--> 1000 inc

r0497	Encoder diagnostic signal double word / Enc diag DW		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace signal for encoder diagnostics (double word). The signal to be output is selected in p0496.		
Dependency:	Refer to: p0496, r0498, r0499		
r0497[0...2]	CO: Encoder diagnostic signal double word / Enc diag DW		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace signal for encoder diagnostics (double word).		
	The signal to be output is selected in p0496.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0496, r0498, r0499		
r0498	Encoder diagnostic signal low word / Enc diag low word		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the trace signal for encoder diagnostics (low component). The signal to be output is selected in p0496.		
Dependency:	Refer to: p0496, r0497, r0499		
r0498[0...2]	CO: Encoder diagnostic signal low word / Enc diag low word		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace signal for encoder diagnostics (low component). The signal to be output is selected in p0496.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p0496, r0497, r0499		

r0499	Encoder diagnostic signal high word / Enc diag high word		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: Encoder	Units group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace signal for encoder diagnostics (high component). The signal to be output is selected in p0496.		
Dependency:	Refer to: p0496, r0497, r0498		
r0499[0...2]	CO: Encoder diagnostic signal high word / Enc diag high word		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace signal for encoder diagnostics (high component).		
	The signal to be output is selected in p0496.		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \end{aligned}$		
Dependency:	Refer to: p0496, r0497, r0498		
p0500	Technology application / Tec application		
VECTOR_G	Can be changed: C2(1, 5), T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: Applications	Units group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4	1
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0578.		
Value:	0: Standard drive (VECTOR)		
	1: Pumps and fans		
	2: Sensorless closed-loop control down to $\mathrm{f}=0$ (passive		
Dependency:	Refer to: p2175, p2177		
Note:	The calculation of parameters dependent on the technology application can be called up as follows:		
	- when exiting quick commissioning using p3900 > 0		
	- when writing p0340 $=1,3,5$		
	- when writing p0578 $=1$		
	For p $0500=0,5$ and when the calculation is initiated, the following parameters are set:		
	p1574 $=10 \mathrm{~V}$ (separately-excited synchronous motor: 20 V)		
	p1611 $=80 \%$ (only p0500 $=5$)		
	p1750.2 $=0$		
	p1802 $=4$ (SVM/FLB without overcontrol)		
	p1803 $=106 \%$		

For p0500 $=1$ and when the calculation is initiated, the following parameters are set:
p1574 $=2 \mathrm{~V}$ (separately-excited synchronous motor: 4 V)
p1750.2 $=0$
p1802 = 9 (edge modulation), if r0192.0 = 1
p1802 $=4$, if r0192.0 $=0$
p1803 = 106 \%
For p0500 = 2 and when the calculation is initiated, the following parameters are set:
p1574 = 2 V (separately-excited synchronous motor: 4 V)
p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
p1802 $=4$ (SVM/FLB without overcontrol)
p1803 = 106%
The setting of p1750 is only relevant for induction motors.
p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.
For p0500 $=4$: (presetting for VECTOR with PM250 power unit)
p1574 = 30 V
$\mathrm{p} 1750.2=0$
p1802 $=2$ (SVM with overcontrol)
p1803 = 106%

p0505	Selecting the system of units / Unit sys select		
B_INF, ENC,	Can be changed: $\mathrm{C} 2(5)$	Calculated: -	Access level: 1
VECTOR_G	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	4	1
Description:	Sets the actual system of units.		
Value:	1: Sl system of units		
	2: System of units referred/SI		
	3: US system of units		
	4: System of units referred/US		
Dependency:	The parameter can only be changed in an offline project using the commissioning software.		
Caution:	If a per unit representation is selected and if the reference parameters (e.g. p2000) are subsequently changed, then the physical significance of several control parameters is also adapted at the same time. As a consequence, the control behavior can change (see p1576, p1621, p1744, p1752, p1755 and p1609, p1612, p1619, p1620).		
Note:	Reference parameter for the unit system \% are, for example, p2000 ... p2004. Depending on what has been selected, these are displayed using either SI or US units.		
p0514[0...9]	User-specific reference quantities / Usrdef_ref		
B_INF, VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000001	10000000.000000	1.000000
Description:	Sets the reference quantities for the user-specific scaling.		
	By indexing reference parameter p514[0..9], a total of 10 reference quantities are available:		
	p514[0]reference quantity 01		
	p514[1]reference quantity 02		
	..		
	p514[8]reference quantity 09		

p514[9]reference quantity 10

Up to 20 BiCos can be scaled to each of these 10 reference quantities.
Assignment parameters $\mathrm{p} 515[0.19]$ up to $p 524[0 . .19]$ have been introduced for this purpose.

p0515[0...19]	Assignment parameter 1 in reference to p514[0]/BiCoList1_ref1		
B_INF, VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	0
Description:	Assignment parameter for user-specific scaling.		

	By indexing the assignment parameter p515[0..19], a total of 20 BiCos are available, which should be scaled corresponding to the user-specific scaling.
	The significance of the assignment parameters is as follows: $\mathrm{p} 515[0]$ BiCo number assigned p514[0] (reference quantity 01)
	..
	p 515 [19] BiCo number assigned p514[0] (reference quantity 01)
Dependency:	Refer to: p0514
p0516[0...19]	Assignment parameter 2 in reference to p514[1] / BiCoList2_ref2
B_INF, VECTOR_G	Can be changed: T Calculated: CALC_MOD_ALL Access level: 3
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: Communications Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0 4294967295 0
Description:	Assignment parameter for user-specific scaling.
	By indexing the assignment parameter p516[0..19], a total of 20 BiCos are available, which should be scaled corresponding to the user-specific scaling.
	The significance of the assignment parameters is as follows: p516[0] BiCo number assigned p514[1] (reference quantity 02)
	p516[19] BiCo number assigned p514[1] (reference quantity 02)
Dependency:	Refer to: p0514
p0517[0...19]	Assignment parameter 3 in reference to p514[2] / BiCoList3_ref3
B_INF, VECTOR_G	Can be changed: T Calculated: CALC_MOD_ALL Access level: 3
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: Communications Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	042949672950
Description:	Assignment parameter for user-specific scaling.
	By indexing the assignment parameter p517[0..19], a total of 20 BiCos are available, which should be scaled corresponding to the user-specific scaling.

Dependency:	The significance of the assignment parameters is as follows: p517[0] BiCo number assigned p514[2] (reference quantity 03)		
	p517[19] BiCo number assigned p514[2] (reference quantity 03)		
	Refer to: p0514		
p0518[0...19]	Assignment parameter 4 in reference to p514[3] / BiCoList4_ref4		
B_INF, VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	0
Description:	Assignment parameter for user-specific scaling.		
	By indexing the assignment parameter p518[0..19], a total of 20 BiCos are available, which should be scaled corresponding to the user-specific scaling.		
	The significance of the assignment parameters is as follows:		
	p518[19] BiCo number assigned p514[3] (reference quantity 04)		
Dependency:	Refer to: p0514		
p0519[0...19]	Assignment parameter 5 in reference to p514[4] / BiCoList5_ref5		
B_INF, VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	0
Description:	Assignment parameter for user-specific scaling.		
	By indexing the assignment parameter p519[0..19], a total of 20 BiCos are available, which should be scaled corresponding to the user-specific scaling.		
	The significance of the assignment parameters is as follows:		
	.. 519 [19] BiCo number assigned p514[4] (reference quantity 05)		
	p519[19] BiCo number assigned p514[4] (reference quantity 05)		
Dependency:	Refer to: p0514		
p0520[0...19]	Assignment parameter 6 in reference to p514[5] / BiCoList6_ref6		
B_INF, VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	0
Description:	Assignment parameter for user-specific scaling.		
	By indexing the assignment corresponding to the user-s	[0..19], a total of 20 BiCos are av	le, which should be

Dependency:	The significance of the assignment parameters is as follows: p523[0] BiCo number assigned p514[8] (reference quantity 09)		
	p523[19] BiCo number assigned p514[8] (reference quantity 09)		
	Refer to: p0514		
p0524[0...19]	Assignment parameter 10 in reference to p514[9] / BiCoList10_ref10		
B_INF, VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	0
Description:	Assignment parameter for user-specific scaling.		
	By indexing the assignment parameter p524[0..19], a total of 20 BiCos are available, which should be scaled corresponding to the user-specific scaling.		
	The significance of the assignment parameters is as follows: p524[0] BiCo number assigned p514[9] (reference quantity 10)		
	p524[19] BiCo number assigned p514[9] (reference quantity 10)		
Dependency:	Refer to: p0514		
p0528	Controller gain system of units / Ctrl_gain unit_sys		
ENC	Can be changed: $\mathrm{C} 2(5)$	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the system of units for the controller gains.		
Value:	0: Representation physical/\% (p0505) 1: Representation no dimensions (referred)		
Note:	For p0528 = 0 (physical/\%), the following applies:		
	Using p0505, the dependent parameters can be changed over between physical and $\%$ representation. For SERVO (r0107) the following applies:		
	The parameter is pre-assigned a value of 0 and cannot be changed.		
p0528	Controller gain system of units / Ctrl_gain unit_sys		
VECTOR_G	Can be changed: $\mathrm{C} 2(5)$	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Sets the system of units for the controller gains.		
Value:	0: Representation physical/\% (p0505) 1: Representation no dimensions (referred)		
Note:	For VECTOR (r0107) the following applies: The parameter is pre-assigned a value of 1 and cannot be changed.		

p0530[0...n]	Bearing version selection / Bearing vers sel		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	104	0
Description:	Sets the bearing version.		
	Corresponding to the bearing version entered, its code number (p0531) is automatically set.		
	0 = No selection		
	1 = Manual entry		
	101 = STANDARD		
	$102=$ PERFORMANCE		
	103 = HIGH PERFORMANCE		
	104 = ADVANCED LIFETIME		
Dependency:	Refer to: p0301, p0531, p05		
Notice:	For $\mathrm{p} 0530=101,102,103,104$, the maximum bearing speed (p 0532) is write protected. Write protection is withdrawn with p0530 $=1$.		
	If p0530 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$). The maximum speed of the bearing is factored into the limit for the maximum speed p 1082 .		
Note:	For a motor with DRIVE-CLiQ, p0530 can only be set to 1 .		
p0531[0...n]	Bearing code number selection / Bearing codeNo sel		
VECTOR_G	Can be changed: C2(3)	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Display and setting the code number of the bearing.		
	When setting p0301 and p0530 the code number is automatically preassigned and is write protected. The information in p0530 should be observed when removing write protection.		
Dependency:	Refer to: p0301, p0530, p0532, p1082		
Notice:	If p0531 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$). The maximum speed of the bearing is factored into the limit for the maximum speed p1082.		
Note:	p0531 cannot be changed on a motor with DRIVE-CLiQ.		
p0532[0...n]	Bearing maximum speed / Bearing n_max		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3)$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum speed of the bearing.		
	The following applies when calculating the maximum speed (p 1082):		
	- for p0324 $=0$ or p0532 $=0, \mathrm{p} 0322$ is used.		
	- for p0324>0 and p0532 > 0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0301, p0322, p0324, p0530, p1082		

Notice:
This parameter is pre-assigned in the case of motors from the motor list (p 0301) if a bearing version (p 0530) is
selected.
When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530
should be observed when removing write protection.
If p0532 is changed during quick commissioning (p0010 = 1), then the maximum speed p1082, which is also
associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the
motor ($\mathrm{p} 0010=3$).

r0565[0...15]	CO: Probe time stamp / Probe t_stamp		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Displays, signals	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
	Display and connector output for the time stamp MT_ZS_1 up to MT_ZS_16.		
	Displays the measuring time for an edge at the digital input for the "central measuring probe evaluation stage 3"		
	function.		
	The measuring time is specified as 16-bit value with a resolution of $0.25 \mu \mathrm{si}$.		
	Priority:		

r0566[0..3]	CO: Probe time stamp reference / Probe t_stamp name		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Displays, signals	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the time stamp reference MT_ZSB1 up to MT_ZSB4.		

r0567	CO: Probe diagnostics word / Probe diag_word		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU G150 PN	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for diagnostics word MT_DIAG.		
p0570	Inhibit list values effective number / Inhib list no		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	50	0
Description:	This number of parameters can be automatically excluded from the calculation of the motor and control parameters (see p0340, p0578), starting from index 0.		
Note:	Defines the number of en The inhibit list is deactiva	hould be taken	

p0572[0...n]	Activate/de-activate inhibit list / Inh_list act/deact		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting for activating/de-activating the inhibit list.		
	Depending on the setting, the parameters of the inhibit list (p0571) should be overwritten when calculating the motor and closed-loop control parameters for the particular drive data set (DDS).		
Value:	$\begin{array}{ll} 0: & \text { No } \\ \text { 1: } & \text { Yes } \end{array}$		
Note:	If value $=0$:		
	The automatic calculation (p0340, p0578) also overwrites the parameters of the inhibit list (p0571). If value $=1$:		
	The automatic calculation (p0340, p0578) does not overwrite the parameters of the inhibit list (p0571).		
p0573	Inhibit automatic reference value calculation / Inhibit calc		
B_INF, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Applications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters (p0340, p3900).		

	$27: \mathrm{inch}^{3} / \mathrm{h}$
$28: \mathrm{lb} / \mathrm{s}$	
$29: \mathrm{lb} / \mathrm{min}$	
$30: \mathrm{lb} / \mathrm{h}$	
$31: \mathrm{lbf}$	
$32: \mathrm{lbf} \mathrm{ft}$	
Dependency:	Only the unit of the technology controller parameters are switched over (unit group 9_1).
	Refer to: p 0596
Note:	When switching over from \% into another unit, the following sequence applies:
	- set p0596
	- set p0595 to the required unit

p0596	Technological unit reference quantity / Tech unit ref qty		
VECTOR_G (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01	340.28235E36	1.00
Description:	Sets the reference quantity for the technological units.		
	When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the reference quantity.		
Dependency:	Refer to: p0595		
Notice:	When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.		
p0600[0...n]	Motor temperature sensor for monitoring / Mot temp_sensor		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	21	0
Description:	Sets the sensor to monitor the motor temperature.		
	The sensor type used is set in p0601.		
Value:	0 : No sensor		
	1: Temperature sensor via		
	2: Temperature sensor via		
	3: Temperature sensor via		
	10: Temperature sensor via	connection	
	11: Temperature sensor via	/ CU terminals	
	20: Temperature sensor via	connection p0608	
	21: Temperature sensor vi	connection p0609	
Dependency:	Refer to: r0458, p0601, p0603		
Caution:	If, for a selected temperature sensor ($0600>0$), the motor temperature sensor is not connected but another sensor, then the temperature adaptation of the motor resistances must be switched out. Otherwise, in controlled-loop operation, torque errors will occur that will mean that the drive will not be able to be stopped.		
Notice:	The parameter is calculated in the drive using p0340 and is inhibited for p0340 >0.		
	For operation with a braking resistor ($\mathrm{p} 1300=15$), p0600 $=11$ is automatically set when commissioning.		
Note:	Re p0600 = 0:		
	With induction motors, the motor temperature is calculated using the motor temperature model (see also p0612.1). Re p0600 = 1, 2, 3:		
	Bimetallic switch (p0601 $=4$) and PT100 temperature sensor ($\mathrm{p} 0601=5$) are not supported.		
	Re p0600 = 10:		
	The BICO interconnection should be executed via connector input p0603.		

 Data Set number (PDS) of the power unit. The number of power unit data sets is defined in p0120.

p0603	CI: Motor temperature signal source / Mot temp S_src		
VECTOR_G	Can be changed: C2(3), T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to evaluate the motor temperature via a BICO interconnection.		
Dependency:	Refer to: p0600		
Note:	Temperature sensor KTY: Valid temperature range $-48{ }^{\circ} \mathrm{C} . . .248{ }^{\circ} \mathrm{C}$.		
	PTC temperature sensor:		
	For a value $=-50^{\circ} \mathrm{C}$, the following applies: Motor temperature $<$ nominal response temperature of the PTC		
	For a value $=250^{\circ} \mathrm{C}$, the following applies: Motor temperature $>=$ nominal response temperature of the PTC.		

Note:
When using a Terminal Module 31 (TM31), the following applies:

- the sensor type used is set using p4100.
- the temperature signal is interconnected using CO: r4105.

p0604[0...n]	Mot_temp_mod 2/KTY alarm threshold / Mod 2/KTY A thresh		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	200.0 [${ }^{\circ} \mathrm{C}$]	130.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for m After the alarm threshold is ex If the delay time has expired a is output.	motor temperature for motor A07910 is output and timer reshold has, in the meantim	ure model 2 or KTY. is started. en fallen below, then fault F07011
Dependency:	Refer to: p0606, p0612		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0606[0...n] Mot_temp_mod 2/KTY timer / Mod 2/KTY t_timer
VECTOR G Can be changed: C2(3), U, T Calculated: -

Data type: FloatingPoint32 Dyn. index: MDS, p0130
P-Group: Motor
Not for motor type: -
Min
0.000 [s]

Description: Sets the timer for monitoring the motor temperature for motor temperature model 2 or KTY.

Access level: 2

Func. diagram: 8016
Unit selection: -
Expert list: 1
Factory setting
0.000 [s]

This timer is started when the temperature alarm threshold (p0604) is exceeded.
If the timer has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output.
If the temperature fault threshold (p 0605) is prematurely exceeded before the timer has expired, then fault F07011 is immediately output.

Dependency:
Note:

Refer to: p0604, p0605
With p0606 $=0 \mathrm{~s}$, the timer is de-activated and only the fault threshold is effective.
KTY sensor: When setting the minimum value, the timer is disabled and a fault is not output until p0605 is exceeded. PTC sensor, bimetallic NC contact: The timer minimum value has no special significance.

p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T			
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	ulated: -	Access level: 3	
	Data type: FloatingPoint32 D	index: MDS, p0130	Func. diagram: 8017	
	P-Group: Motor U	s group: -	Unit selection: -	
	Not for motor type: ASM, REL, FEM Scals	ing: -	Expert list: 1	
	Min M		Factory setting	
	0 [s] 20	[s]	0 [s]	
Description:	Sets the winding time constant.			
	The time constant specifies the warm-up time of the cold stator winding when loaded with the motor standstill current (rated motor current, if the motor standstill current is not parameterized) up until a temperature rise of 63% of the continuously permissible winding temperature has been reached.			
Dependency:	This parameter is only used for synchronous motors (p0300 $=2 \mathrm{xx}, 4$).			
	Refer to: r0034, p0612, p0615			
Notice:	This parameter is automatically pre-set from the motor database for motors from the motor list (p0301).			
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.			
	When exiting commissioning, p0612 is checked, and where relevant, is preassigned to a value that matches the motor power, if a temperature sensor was not parameterized (see p0601).			
Note:	When parameter p0611 is reset to 0, then this switches out the thermal I2t motor model (refer to p0612).			
	If no temperature sensor is parameterized, then the ambient temperature for the thermal motor model is referred to p0625.			
p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act			
VECTOR_G	Can be changed: U, T	ulated: -	Access level: 2	
	Data type: Unsigned16 Dy	index: MDS, p0130	Func. diagram: 8017	
	P-Group: -	s group: -	Unit selection: -	
	Not for motor type: REL, FEM S	ing: -	Expert list: 1	
	Min Ma		Factory setting	
	- -		0000001000000010 bin	
Description:	Setting to activate the motor temperature model.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Activating motor temperature model 1 (I2t)	Yes	No	-
	01 Activate motor temperature model 2	Yes	No	-
	02 Activate motor temperature model 3	Yes	No	-
	09 Activate motor temperature model 2 expansions	Yes	No	-
Dependency:	For synchronous motors, when exiting commissioning, temperature model 1 is automatically activated if a time constant has been entered in p0611.			
Note:	Mot_temp_mod: motor temperature model			
	Re bit 00:			
	This bit is used to activate/deactivate the motor temperature model for permanent-magnet synchronous motors.			
	This bit is used to activate/deactivate the motor temperature model for induction motors.			
	Re bit 02:			
	This bit is used to activate/deactivate the motor temperature model for 1FK7 motors without encoder.			

p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [\%]	100 [\%]	30 [\%]
Description:	Sets the reduction factor for the overtemperature of the thermal adaptation of the stator/rotor resistance. The value is a starting value when switching on. Internally, after switch-on, the reduction factor has no effect corresponding to the thermal time constant.		
Dependency:	Refer to: p0610		
Note:	The reduction factor is only effective for $\mathrm{p} 0610=12$, and refers to the overtemperature.		
p0615[0...n]	Mot_temp_mod 1 (12t) fault threshold / I2t F thresh		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	220.0 [${ }^{\circ} \mathrm{C}$]	180.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model 1 (I2t). - Fault F07011 is output after the fault threshold is exceeded. - fault threshold for r0034 $=100 \%$ * (p0615-40) / (p0605-40).		
Dependency:	The parameter is only used for permanent-magnet synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$). Refer to: r0034, p0611, p0612		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		
p0616[0...n]	Motor overtemperature alarm threshold 1 / Mot temp alarm 1		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	200.0 [${ }^{\circ} \mathrm{C}$]	130.0 [${ }^{\circ} \mathrm{C}$]
Description: Note:	Sets the alarm threshold 1 for monitoring the motor temperature.		
	The alarm threshold is not, as for p0604, coupled to the timer p0606. The hysteresis for canceling the fault is 2 K .		
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	1
Description:	Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.		
Value:	$\begin{array}{ll}0: & \text { No thermal adaptation of stator and rotor resistances } \\ \text { 1: } & \text { Resistances adapted to the temperatures of the thermal model } \\ \text { 2: } & \text { Resistances adapted to the measured stator winding temperature }\end{array}$		

Note:	For p0620 = 1, the following applies:
	The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.
	For p0620 = 2, the following applies:
	The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r0035) as follows: theta_R = (r0628 + r0625) / (r0627 + r0625) * r0035
	For separately-excited synchronous motors and p0620 = 1, p0620 $=2$ is internally and automatically used for calculating. There is no thermal model to adapt the damping resistances.
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart
VECTOR_G (n/M)	Can be changed: C2(3), T Calculated: - Access level: 2
	Data type: Integer16 Dyn. index: MDS, p0130 Func. diagram: -
	P-Group: Motor Units group: - Unit selection: -
	Not for motor type: PEM, REL, FEM Scaling: - Expert list: 1
	Min Max Factory setting
	020
Description:	Selects the identification of the stator resistance after booting the Control Unit (only for vector control).
	The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p 0350) to the matching ambient temperature (p 0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model. p0621 = 1:
	Identification of the stator resistance only when the drive is powered up for the first time (pulse enable) after booting the Control Unit.
	p0621 = 2:
	Identification of the stator resistance every time the drive is powered up (pulse enable).
Value:	0 : No Rs identification
	1: Rs identification after switching-on again
	2: Rs identification after switching-on each time
Dependency:	- perform motor data identification (see p1910) with cold motor.
	- enter ambient temperature at time of motor data identification in p0625.
	Refer to: p0622, r0623
Notice:	The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding.
	Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor.
Note:	The measurement is carried out:
	- For induction motors
	- When vector control is active (see p1300)
	- If a temperature sensor (KTY) has not been connected
	- When the motor is at a standstill when switched on
	When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure).
	If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing (p1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.

p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: C2(3), U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$20.000[\mathrm{~s}]$	0.000 [s]
Description:	Sets the excitation time of the motor for the stator resistance identification after powering up again (restart).		

p0626[0...n]	Motor overtemperature, stator core / Mot T_Over core		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: 21_2	Unit selection: p0505

p0629[0...n]	Stator resistance reference / R_stator ref		
VECTOR_G (n/M)	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: 16_1	Unit selection: p0349
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Reference value for the identification of the stator resistance every time the drive is powered up.		
Dependency:	The measurement of the reference value is activated by the automatic calculation ($p 0340=1,2$), if the following conditions apply:		
	- the motor temperature is at this instant in time less than $30^{\circ} \mathrm{C}$ (r0035).		
	- a KTY temperature sensor is not being used (p0601).		
	Refer to: p0621, r0623		
Note:	The reference value to identify the stator resistance should be manually entered after the first identification (p0629 = r0623). The identification must be realized when the motor is in a cold state, as the value refers to the ambient temperature p0625. The feeder cable resistance should be entered into p0352 before the measurement.		
	The result must be saved after the first measurement so that the reference is available after the CU has a powered up. When changing p0350 or p0352, the reference value p0629 should be re-determined.		

r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$\left.-{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the ambient temperature of the motor temperature model (models 2 and 3).		
r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator iron temperature of the motor temperature model (models 2 and 3).		
r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature of the motor temperature model (models 2 and 3).		

r0633[0...n]	Mot_temp_mod rotor temperature / Mod rotor temp		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Motor	Units group: 21_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the rotor temperature of the motor temperature model (model 2). For motor temperature model 3 (p0612.2 = 1), this parameter is not valid:		
Note:			
p0634[0...n]	Q flux flux constant unsaturated / PSIQ KPSI UNSAT		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [Vsrms]	100.000 [Vsrms]	0.000 [Vsrms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. The parameter weights the unsaturated component of the quadrature axis flux function.		
p0635[0...n]	Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. This parameter describes the interdependency of the unsaturated component of the quadrature axis current.		
Dependency:	Refer to: p0634		
p0636[0...n]	Q flux direct axis current constant unsaturated / PSIQ KID UNSAT		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. This parameter describes the interdependency of the unsaturated component of the direct axis current.		
Dependency:	Refer to: p0634		
p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mH]	10000.00 [mH]	0.00 [mH]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. This parameter describes the gradients of the saturated component over the quadrature axis current.		

Dependency:	Refer to: p0634, p0635, p0636		
p0640[0...n]	Current limit / Current limit		
VECTOR_G	Can be changed: $\mathrm{C} 2(1,3), \mathrm{U}, \mathrm{T}$	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5722, 6640
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit.		
Dependency:	Refer to: r0209, p0323		
Note:	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0305, p0323 and p0338.		
	The current limit p0640 is limited to r0209 and p0323. The limit to p0323 is not realized if a value of zero is entered there.		
	The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the Motor Module.		
	The torque and power limits (p1520, p1521, p1530, p1531) matching the current limit are automatically calculated when exiting the quick commissioning using p3900 >0 or using the automatic parameterization with p0340 $=3,5$.		
	For VECTOR the following applies (p0107):		
	p0640 is pre-assigned for the automatic self commissioning routine (e.g. to $1.5 \times \mathrm{p} 0305$, with p0305 $=$ r0207[1]).		
	p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the automatic parameterization when exiting the quick commissioning (p3900 > 0).		
	For SERVO the following applies (p0107):		
	p0640 is pre-assigned as follows using the automatic parameterization (p0340 $=1$, p3900 > 0) taking into account the limits r0209 and r0323:		
	- for induction motors: p0640 = 1.5 x 0305		
	- for synchronous motors: p0640 $=$ p0338		
p0641[0...n]	CI: Current limit variable / Curr lim var		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the variable current limit.		
	The value is referred to p0640.		
p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect		
VECTOR_G (n/M)	Can be changed: C 2 (3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the overvoltage protection for synchronous motors in the field-weakening range.		
Value:	0 : No measure		
	1: Voltage Protection Module (VPM)		
Dependency:	Refer to: p0316, p1082, p1231, p9601, p9801		
Notice:	When the speed limiting is removed, the user is responsible for implementing a suitable overvoltage protection.		

Note: | In the field-weakening range, synchronous motors can, when a fault condition exists, generate high DC link voltages. |
| :--- |
| The following possibilities exist to protect the drive system from being destroyed due to overvoltage: |
| - limit the maximum speed (p1082) without any additional protection. |
| The maximum speed without protection is calculated as follows: |
| Rotary motors: $\mathrm{p} 1082[\mathrm{rpm}]<=11.695$ * $\mathrm{r} 0297 / \mathrm{p} 0316[\mathrm{Nm} / \mathrm{A}]$ |
| |
| Linear motors: $\mathrm{p} 1082[\mathrm{~m} / \mathrm{min}]<=73.484 * \mathrm{rO297} / 0316[\mathrm{~N} / \mathrm{A}]$ |
| |
| - use a Voltage Protection Module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801). |
| |
| When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be |
| |
| suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM. |
| |
| - activating the internal voltage protection (IVP) with p1231 =3. |

p0644[0...n]	Current limit excitation induction motor / Imax excitat ASM		
VECTOR_G (n/M)	Can be changed: C2, U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$50.0[\%]$	$300.0[\%]$	$300.0[\%]$

Description:	Maximum excitation current of the induction motor referred to the permissible rated current of the power unit $($ rO207[0]).
Dependency:	Only effective for vector control.
	Refer to: p1401, p1573
Note:	The parameter is preassigned in the automatic calculation for chassis power units.

p0650[0...n]	Actual motor operating hours / Mot t_oper act		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	The following prerequisites must be fulfilled in order to be able to save the operating hours counter in a non-volatile fashion:		

- firmware with V2.2 or higher.
- Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM).

Refer to: p0651
Note: \quad The operating hours counter in p0650 can only be reset to 0 .
The operating hours counter only runs with motor data set 0 and 1 (MDS).

p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$150000[\mathrm{~h}]$	Factory setting
	$0[\mathrm{~h}]$	$0[\mathrm{~h}]$	
Description:	Sets the service/maintenance intervals in hours for the appropriate motor. 1		
	An appropriate fault is output when the operating hours set here are reached.		
Dependency:	Refer to: p0650		

Note:	For $p 0651=0$, the operating hours counter is disabled.
When setting p0651 to 0 , then p0650 is automatically set to 0 .	
	The operating hours counter only runs with motor data set 0 and 1 (MDS).

p0652[0...n]	Motor stator resistance scaling / Mot R_stator scal		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$10.0[\%]$	$300.0[\%]$	$100.0[\%]$
Description:	Sets the factor to evaluate the stator resistance.		
Dependency:	Refer to: p0350, r0370		

p0653[0...n]	Motor stator leakage inductance scaling / Mot L_S_leak scal		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description:	Sets the factor to evaluate the stator leakage induction.		
Dependency:	Refer to: p0356, r0377		
p0655[0...n]	Motor magnetizing inductance d axis saturated scaling / Mot L_m d sat scal		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description:	Factor to evaluate the magnetizing inductance in the direction of the rotor axis (d axis).		
Dependency:	Refer to: p0360, r0382		
p0656[0...n]	Motor magnetizing inductance q axis saturated scaling / Mot L_m q sat scal		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	100.0 [\%]
Description: Dependency:	Factor to evaluate the magnetizing inductance quadrature to the rotor axis (q axis).Refer to: $\mathrm{p} 0361, \mathrm{r} 0383$		

p0657[0...n] Motor damping inductance d axis scaling/Mot L_damp d scal

VECTOR_G	Can be changed: C2(3), U, T	Calculated: CALC_MOD_EQU	Access level: 4
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 6727
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$10.0[\%]$	$300.0[\%]$	$100.0[\%]$

Dependency:	Refer to: $\mathrm{p} 0358, \mathrm{r} 0380$		
p0658[0...n]	Motor damping inductance q axis scaling / Mot L_damp q scal		
VECTOR_G	Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, PEM, REL Min 10.0 [\%]	Calculated: CALC_MOD_EQU Dyn. index: MDS, p0130 Units group: - Scaling: - Max 300.0 [\%]	Access level: 4 Func. diagram: 6727 Unit selection: - Expert list: 1 Factory setting $100.0 \text { [\%] }$
Description: Dependency:	Factor to evaluate the damping indu Refer to: p0359, r0381	quadrature to the rotor axis (q axis)	
$\begin{aligned} & \text { p0659[0...n] } \\ & \text { VECTOR_G } \end{aligned}$	Motor damping resistance \mathbf{d} Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, PEM, REL Min 10.0 [\%]	scaling / Mot R_damp d s Calculated: CALC_MOD_EQU Dyn. index: MDS, p0130 Units group: - Scaling: - Max 300.0 [\%]	Access level: 4 Func. diagram: 6727 Unit selection: - Expert list: 1 Factory setting $100.0 \text { [\%] }$
Description: Dependency:	Factor to evaluate the damping resist Refer to: p0354, r0374	the direction of the rotor axis (d	
$\begin{aligned} & \text { p0660[0...n] } \\ & \text { VECTOR_G } \end{aligned}$	Motor damping resistance q Can be changed: C2(3), U, T Data type: FloatingPoint32 P-Group: Motor Not for motor type: ASM, PEM, REL Min 10.0 [\%]	scaling / Mot R_damp q s Calculated: CALC_MOD_EQU Dyn. index: MDS, p0130 Units group: - Scaling: - Max 300.0 [\%]	Access level: 4 Func. diagram: 6727 Unit selection: - Expert list: 1 Factory setting $100.0 \text { [\%] }$
Description: Dependency:	Factor to evaluate the damping resist Refer to: p0355, r0375	uadrature to the rotor axis (q axis).	
p0680[0...7]	Central measuring probe inp	rminal / Cen meas inp	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Data type: Integer16 P-Group: Encoder Not for motor type: - Min 0	Calculated: - Dyn. index: - Units group: - Scaling: - Max 8	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting 0
Description:	Sets the digital input used for the function "central measuring probe evaluation". p0680[0]: Digital input, measuring probe 1 p0680[1]: Digital input, measuring probe 2 p0680[7]: Digital input, measuring probe 8		
Value:	0: No meas probe 1: DI/DO 9 (X122.10/X121.8) 2: DI/DO 10 (X122.12/X121.10) 3: DI/DO 11 (X122.13/X121.11) 4: DI/DO 13 (X132.10/X131.2) 5: DI/DO 14 (X132.12/X131.4) 6: DI/DO 15 (X132.13/X131.5) 7: DI/DO 8 (X122.9/X121.7) 8: DI/DO 12 (X132.9/X131.1)		
Dependency:	Refer to: p0728		

Description: Sets the signal source for the control word of the function "central measuring probe evaluation".

p0684	Central measuring probe evaluation technique / Cen meas eval_tech		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16	0
Description:	Sets the evaluation technique for the "central measuring probe evaluation" function.		
Value:	0: Measurement with handshake 1: Measurement without handshake 2 edges 16: Measurement without handshake more than 2 edges		
Notice:	Re p0684 = 16:		
	This evaluation procedure is only activated after parameter save and POWER ON.		
Note:	During measurement without a handshake, the probe may have a higher evaluation frequency.		
	The setting "Measurement without handshake" must be supported by the higher-level control. This setting cannot be used for SIMOTION D with integrated SINAMICS or with CX32.		
	Changing this evaluation procedure to p0684 = 1 is possible in the RUN state.		
	Changing this evaluation procedure to p0684 = 16 is only activated after parameter save and POWER ON.		
	Permissible combinations in p0922 are:		
	p0922 = 391, 392, 393, 394		
	Re p0684 = 1:		
	Changing this evaluation procedure to p0684 $=0$ is possible in the RUN state.		
	Changing this evaluation procedure to p0684 = 16 is only activated after parameter save and POWER ON.		

	Permissible combinations in p0922 are: $\text { p0922 = 391, 392, 393, } 394$ Re p0684 = 16: Changing this evaluation procedure to p0684 $=0$ or to $\mathrm{p} 0684=1$ is only activated after parameter save and POWER ON. Permissible combinations in p0922 are: $\text { p0922 }=395$			
r0685	Central measuring probe control word display / Cen meas STW disp			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Data type: Unsigned16 P-Group: Commands Not for motor type: - Min	Calculated: - Dyn. index: - Units group: Scaling: - Max	Acces Func. Unit Exper Facto	
Description: Bit field:	Displays the control word for the function Bit Signal name 00 Falling edge measuring probe 1 01 Falling edge measuring probe 2 02 Falling edge measuring probe 3 03 Falling edge measuring probe 4 04 Falling edge measuring probe 5 05 Falling edge measuring probe 6 06 Falling edge measuring probe 7 07 Falling edge measuring probe 8 08 Rising edge measuring probe 1 09 Rising edge measuring probe 2 10 Rising edge measuring probe 3 11 Rising edge measuring probe 4 12 Rising edge measuring probe 5 13 Rising edge measuring probe 6 14 Rising edge measuring probe 7 15 Rising edge measuring probe 8	ral measuring 1 signal Yes	0 signal No	FP
$\begin{aligned} & \hline \mathbf{r 0 6 8 6 [0 . . . 7] ~} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	CO: Central measuring probe Can be changed: - Data type: Unsigned16 P-Group: Displays, signals Not for motor type: - Min	asuring time Calculated: Dyn. index: - Units group: Scaling: - Max	CenMe Acce Func. Unit s Exper Facto	
Description:	Displays the measuring time for a rising edge at the digital input for the "central measuring probe evaluation" function. The measuring time is specified as 16 -bit value with a resolution of $0.25 \mu \mathrm{~s}$. r0686[0]: Measuring time, rising edge measuring probe 1 r0686[1]: Measuring time, rising edge measuring probe 2 r0686[2]: Measuring time, rising edge measuring probe 3 r0686[3]: Measuring time, rising edge measuring probe 4 r0686[4]: Measuring time, rising edge measuring probe 5 r0686[5]: Measuring time, rising edge measuring probe 6 r0686[6]: Measuring time, rising edge measuring probe 7 r0686[7]: Measuring time, rising edge measuring probe 8			
Note:	The parameter is only active for the ev For p0684 $=16, r 0686[0 . . .7]=0$ is disp	n procedure p0		

	The binector inputs of the corresponding command data set are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p0700 = 6 --> macro file PM000006.ACX is run.		
Dependency:	Refer to: p0015, p1000, p1500, r8571		
Notice:	No errors were issued during quick commissioning ($\mathrm{p} 3900=1$) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified directory are displayed in r8571. r8571 is not in the expert list of the commissioning software.		
	Macros available as standard are described in the technical documentation of the particular product.		
	BI: Binector Input		
	CDS: Command Data Set		
p0700	Macro Binector Input (BI) for TMs / Macro BI TM		
TB30, TM31	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p0700 = 6 --> macro file PM000006.ACX is run.		
Dependency:	Refer to: r8571		
Notice:	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group!		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified directory are displayed in r8571. r8571 is not in the expert list of the commissioning software.		
	Macros available as standard are described in the technical documentation of the particular product.		
	BI: Binector Input		
	CDS: Command Data Set		

r0721
CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

Description: Displays the actual value at the digital inputs.
This means that the actual input signal can be checked at terminal DI \times or DI/DO \times prior to switching from the simulation mode ($p 0795 \cdot x=1$) to terminal mode ($p 0795 \cdot x=0$).

Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	DI 0 (X122.1/X121.1)	High	Low	-
01	DI 1 (X122.2/X121.2)	High	Low	-
02	DI 2 (X122.3/X121.3)	High	Low	-
03	DI 3 (X122.4/X121.4)	High	Low	-
04	DI 4 (X132.1 / -)	High	Low	-
05	DI 5 (X132.2 / -)	High	Low	-
06	DI 6 (X132.3 / -)	High	Low	-
07	DI 7 (X132.4 / -)	High	Low	-
08	DI/DO 8 (X122.9/X121.7)	High	Low	-
09	DI/DO 9 (X122.10/X121.8)	High	Low	-

	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
	11	DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
	21	DI 21 (X132.6/X120.10)	High	Low	-
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	If a DI/DO is parameterized as output ($p 0728 . x=1$), then r0721. $x=0$ is displayed.				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
r0722.0... 21	CO/BO: CU digital inputs status / CU DI status				
CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 1	
CU G130 PN, CU_G150_DP, CU_G150_PN	Data type: Unsigned32		Dyn. index: -	$\begin{aligned} & \text { Func. diagram: 2020, 2030, } \\ & 2031,2100,2119,2120,2130, \\ & 2131,2132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of the digital inputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
		DI 2 (X122.3/X121.3)	High	Low	-
		DI 3 (X122.4/X121.4)	High	Low	-
		DI 4 (X132.1/-)	High	Low	-
		DI 5 (X132.2 / -)	High	Low	-
		DI 6 (X132.3 / -)	High	Low	-
		DI 7 (X132.4 /-)	High	Low	-
		DI/DO 8 (X122.9/X121.7)	High	Low	-
		DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
		DI/DO 11 (X122.13/X121.11)	High	Low	-
		DI/DO 12 (X132.9/X131.1)	High	Low	-
		DI/DO 13 (X132.10/X131.2)	High	Low	-
		DI/DO 14 (X132.12/X131.4)	High	Low	-
		DI/DO 15 (X132.13/X131.5)	High	Low	-
		DI 16 (X122.5/X120.3)	High	Low	-
		DI 17 (X122.6/X120.4)	High	Low	-
		DI 20 (X132.5/X120.9)	High	Low	-
		DI 21 (X132.6/X120.10)	High	Low	-
Dependency:	Refer to: r0723				
Notice:	To the terminal designation:				
	The first designation is valid for CU320, the second for CU310.				
Note:	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				

r0723.0... 21	CO/BO: CU digital inputs status inverted / CU DI status inv					
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Data type: Unsigned32		Calculated: - Dyn. index: -	Access level: 1		
			Func. diagram: 2020, 2030, 2031, 2100, 2119, 2120, 2130 2131, 2132, 2133			
	P-Gr	oup: Commands		Units group: -	Unit	
	Not	for motor type: -	Scaling: -	Exper		
	Min		Max	Facto		
	-		-	-		
Description:	Displays the inverted status of the digital inputs.					
Bit field:		Signal name	1 signal	0 signal	FP	
		DI 0 (X122.1/X121.1)	High	Low	-	
		DI 1 (X122.2/X121.2)	High	Low	-	
		DI 2 (X122.3/X121.3)	High	Low	-	
		DI 3 (X122.4/X121.4)	High	Low	-	
		DI 4 (X132.1/-)	High	Low	-	
		DI 5 (X132.2/-)	High	Low	-	
		DI 6 (X132.3/-)	High	Low	-	
		DI 7 (X132.4 /-)	High	Low	-	
		DI/DO 8 (X122.9/X121.7)	High	Low	-	
		DI/DO 9 (X122.10/X121.8)	High	Low	-	
		DI/DO 10 (X122.12/X121.10)	High	Low	-	
		DI/DO 11 (X122.13/X121.11)	High	Low	-	
		DI/DO 12 (X132.9/X131.1)	High	Low	-	
		DI/DO 13 (X132.10/X131.2)	High	Low	-	
		DI/DO 14 (X132.12/X131.4)	High	Low	-	
		DI/DO 15 (X132.13/X131.5)	High	Low	-	
		DI 16 (X122.5/X120.3)	High	Low	-	
		DI 17 (X122.6/X120.4)	High	Low	-	
		DI 20 (X132.5/X120.9)	High	Low	-	
		DI 21 (X132.6/X120.10)	High	Low	-	
Dependency:	Refer to: r0722					
Notice:	To the terminal designation:					
	The first designation is valid for CU320, the second for CU310.					
Note:	DI: Digital Input					
	DI/DO: Bidirectional Digital Input/Output					
p0728	CU set input or output / CU DI or DO					
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: T		Calculated: -	Access level: 1		
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2119, 2030, 2031, 2130, 2131, 2132, 2133		
	P-Group: Commands		Units group: -	Unit selection: -		
	Not for motor type: -		Scaling: -	Expert list: 1		
	Min		Max	Factory setting		
	-		-	0000000000000000 bin		
Description:	Sets the bidirectional digital inputs/outputs as an input or output.					
Bit field:		Signal name	1 signal	0 signal	FP	
		DI/DO 8 (X122.9/X121.7)	Output	Input	-	
		DI/DO 9 (X122.10/X121.8)	Output	Input	-	
		DI/DO 10 (X122.12/X121.10)	Output	Input	-	
		DI/DO 11 (X122.13/X121.11)	Output	Input	-	
		DI/DO 12 (X132.9/X131.1)	Output	Input	-	
		DI/DO 13 (X132.10/X131.2)	Output	Input	-	
		DI/DO 14 (X132.12/X131.4)	Output	Input	-	
		DI/DO 15 (X132.13/X131.5)	Output	Input	-	
Notice:	To the terminal designation:					
	The first designation is valid for CU320, the second for CU310.					
Note:	DI/DO: Bidirectional Digital Input/Output					

r0729
CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

Description:	Dis Bit The Bit The ava	ays the access authority at the 1 : control has access authority to 0 : drive has access authority to the able.	ut via PRO or the dig	ccess. not set as	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
	11	DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
	15	DI/DO 15 (X132.13/X131.5)	High	Low	-

Dependency:	Refer to: p0728, p0738, p0739, p0740, p0741, p0742, p0743, p0744, p0745, r0747, p0748
Notice:	To the terminal designation:
	The first designation is valid for CU320, the second for CU310.
Note:	The DI/DO must be connected as output (p0728).
	DI/DO: Bidirectional Digital Input/Output

p0738	BI: CU signal source for terminal DI/DO 8 / CU S_src DI/DO 8		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2119, 2130
CU_G150_DP, CU G150 PN	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 8 (X122.9 / X121.7). To the terminal designation: The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.8 = 1).		
	DI/DO: Bidirectional Digital Input/Output		

p0739	BI: CU signal source for terminal DI/DO 9 / CU S_src DI/DO 9		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2130
CU G150 PN	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for terminal DI/DO 9 (X122.10 / X121.8).		
	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note:	Prerequisite: The DI/DO must be set as an output (p0728.9 = 1). DI/DO: Bidirectional Digital Input/Output		
p0740	BI: CU signal source for terminal DI/DO 10 / CU S_src DI/DO 10		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2131
CU_G150_DP,	P-Group: Commands	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for terminal DI/DO 10 (X122.12 / X121.10).
To the terminal designation:
The first designation is valid for CU320, the second for CU310.
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.10 = 1). DI/DO: Bidirectional Digital Input/Output

p0741	BI: CU signal source for terminal DI/DO 11 / CU S_src DI/DO 11		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2119, 2131
CU_G150_DP,	P-Group: Commands	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for terminal DI/DO 11 (X122.13 / X121.11).
To the terminal designation:
The first designation is valid for CU320, the second for CU310.
Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output ($\mathrm{p} 0728.11=1$). DI/DO: Bidirectional Digital Input/Output

$\mathbf{p 0 7 4 2}$
CU_G130_DP,
CU_G13O_PN,
CU_G150_DP,
CU_G150_PN

Description: \quad Sets the signal source for terminal DI/DO 12 (X132.9 / X131.1).
To the terminal designation:
The first designation is valid for CU320, the second for CU310.
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.12 = 1).
DI/DO: Bidirectional Digital Input/Output

[^1]Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

Note: \quad Prerequisite: The DI/DO must be set as an output (p0728.13 = 1).
DI/DO: Bidirectional Digital Input/Output

p0744	BI: CU signal source for terminal DI/DO 14 / CU S_src DI/DO 14		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2133
CU_G150_DP,	P-Group: Commands	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Faxpert list: 1
	Min	-	0
	-	Factory setting	
Description:	Sets the signal source for terminal DI/DO 14 (X132.12 / X131.4).		
	To the terminal designation:		
	The first designation is valid for CU320, the second for CU310.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	Prerequisite: The DI/DO must be set as an output (p0728.14 = 1).		
	DI/DO: Bidirectional Digital Input/Output		

p0745	Bl: CU signal source for terminal DI/DO 15 / CU S_src DI/DO 15		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 1
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2119,2133
CU_G150_DP,	P-Group: Commands	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Mcaling: -	Expert list: 1
	Min	Fax	Factory setting
	-	0	
Description:	Sets the signal source for terminal DI/DO 15 (X132.13 / X131.5you).		
	To the terminal designation:		
Notice:	The first designation is valid for CU320, the second for CU310.		
Note:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Prerequisite: The DI/DO must be set as an output (p0728.15 = 1).		
	DI/DO: Bidirectional Digital Input/Output		

r0747	CU digital outputs status / CU DO status					
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: - Data type: Unsigned32		Calculated: Dyn. index:	Acces		
			Func. 2132,			
	P-Group: Commands			Units group: -	Unit	
	Not for motor type: -		Scaling: -	Exper		
	Min		Max	Facto		
	-		-	-		
Description:	Displays the status of digital outputs.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
		DI/DO 8 (X122.9/X121.7)	High	Low	-	
		DI/DO 9 (X122.10/X121.8)	High	Low	-	
		DI/DO 10 (X122.12/X121.10)	High	Low	-	
		DI/DO 11 (X122.13/X121.11)	High	Low	-	
		DI/DO 12 (X132.9/X131.1)	High	Low	-	
		DI/DO 13 (X132.10/X131.2)	High	Low	-	
		DI/DO 14 (X132.12/X131.4)	High	Low	-	
		DI/DO 15 (X132.13/X131.5)	High	Low	-	
Notice:	To the terminal designation:					
	The first designation is valid for CU320, the second for CU310.					

Note:	Inversion using p0748 has been taken into account. DI/DO: Bidirectional Digital Input/Output			
p0748	CU invert digital outputs / CU DO inv			
CU_G130_DP, CU_G130_PN, CU_G150_DP,	Can be changed: U, T Data type: Unsigned32	Calculated: Dyn. index:	Access le Func. dia 2130, 213	
	P-Group: Commands	Units group: -	Unit selec	
	Not for motor type: -	Scaling: -	Expert lis	
	Min	Max	Factory s	
	-	-	00000000	
Description:	Setting to invert the signals at the digital outputs.			
Bit field:	Bit Signal name 08 DI/DO 8 (X122.9/X121.7) 09 DI/DO 9 (X122.10/X121.8) 10 DI/DO 10 (X122.12/X121.10) 11 DI/DO 11 (X122.13/X121.11) 12 DI/DO 12 (X132.9/X131.1) 13 DI/DO 13 (X132.10/X131.2) 14 DI/DO 14 (X132.12/X131.4) 15 DI/DO 15 (X132.13/X131.5)	1 signal Inverted Inverted Inverted Inverted Inverted Inverted Inverted Inverted	0 signal Not inverted	FP
Notice:	To the terminal designation: The first designation is valid for CU320, the second for CU310.			
Note:	DI/DO: Bidirectional Digital Input/Output			
p0771[0...2]	Cl: Test sockets signal source / Test skt S_src			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Data type: Unsigned32 / Integer16 P-Group: Terminals Not for motor type: - Min	Calculated: - Dyn. index: - Units group: - Scaling: PERCENT Max	Access le Func. diag Unit selec Expert lis Factory s 0	
Description: Index:	$\begin{aligned} & {[0]=\mathrm{TO}} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$			
Dependency:	Can only be set when p0776 $=99$.			
r0772[0...2]	Test sockets output signal / TestSktsSignalVal			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Data type: FloatingPoint32 P-Group: Terminals Not for motor type: - Min - [\%]	Calculated: - Dyn. index: Units group: - Scaling: - Max - [\%]	Access le Func. diag Unit selec Expert lis Factory s - [\%]	
Description: Index:	Displays the actual value of the sign $\begin{aligned} & {[0]=\mathrm{TO}} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$	output.		
Dependency:	Refer to: p0771, r0774, p0776, p0777, p0778, p0779, p0780, p0783, p0784, r0786			

p0783[0...2]	Test sockets offset / Test skt offset		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8134
CU_G150_DP,	P-Group: Terminals	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	$-4.98[V]$	$0.00[\mathrm{~V}]$	
	Sets an additional offset for the test sockets.		
Description:	$[0]=$ T0		
Index:	$[1]=$ T1		
	$[2]=$ T2		

p0784[0...2]	Test socket limit on/off / TestSktLim on/off		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: 8134
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the limit for a signal to be output via test sockets.		
Value:	0 : Limiting off 1: Limiting on		
Index:	$\begin{aligned} & {[0]=\mathrm{TO}} \\ & {[1]=\mathrm{T} 1} \\ & {[2]=\mathrm{T} 2} \end{aligned}$		
Note:	Limiting on: If signals are output outs Limiting off: If signals are output out overflow, the signal jum	measuring range, measuring range or from 4.98 V to	to 4.98 V or to 0 V . verflow. In the case of

r0786[0...2]	Test socket scaling per volt / TestSktScale/Volt		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 2
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8134
CU_G150_DP,	P-Group: Terminals	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-

Description: Displays the scaling of the signal to be output.
A change in the output voltage by 1 volt corresponds to the value in this parameter. The units are determined by the interconnected test signal.

Index: \quad| $[0]=\mathrm{TO}$ | |
| :--- | :--- |
| | $[1]=\mathrm{T} 1$ |
| | $[2]=\mathrm{T} 2$ |

Dependency: Refer to: p0771, r0772, r0774, p0777, p0778, p0779, p0780, p0783, p0784
Note:
Example:
$\mathrm{r} 0786[0]=1500.0$ and the measuring signal is r0063 (CO: Actual speed smoothed [rpm]).
A change of 1 V at the output of test socket T0 corresponds to 1500.0 [rpm].

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 0 (X122.1/X121.1)	Simulation	Terminal eval	-
	01	DI 1 (X122.2/X121.2)	Simulation	Terminal eval	-
	02	DI 2 (X122.3/X121.3)	Simulation	Terminal eval	-
	03	DI 3 (X122.4/X121.4)	Simulation	Terminal eval	-
	04	DI 4 (X132.1 /-)	Simulation	Terminal eval	-
	05	DI 5 (X132.2 / -)	Simulation	Terminal eval	-
	06	DI 6 (X132.3 / -)	Simulation	Terminal eval	-
	07	DI 7 (X132.4 /-)	Simulation	Terminal eval	-
	08	DI/DO 8 (X122.9/X121.7)	Simulation	Terminal eval	-
	09	DI/DO 9 (X122.10/X121.8)	Simulation	Terminal eval	-
	10	DI/DO 10 (X122.12/X121.10)	Simulation	Terminal eval	-
	11	DI/DO 11 (X122.13/X121.11)	Simulation	Terminal eval	-
	12	DI/DO 12 (X132.9/X131.1)	Simulation	Terminal eval	-
	13	DI/DO 13 (X132.10/X131.2)	Simulation	Terminal eval	-
		DI/DO 14 (X132.12/X131.4)	Simulation	Terminal eval	-
		DI/DO 15 (X132.13/X131.5)	Simulation	Terminal eval	-
		DI 16 (X122.5/X120.3)	Simulation	Terminal eval	-
		DI 17 (X122.6/X120.4)	Simulation	Terminal eval	-
		DI 20 (X132.5/X120.9)	Simulation	Terminal eval	-
	21	DI 21 (X132.6/X120.10)	Simulation	Terminal eval	-
Dependency:	The setpoint for the input signals is specified using p0796. Refer to: p0796, p9620				
Notice:	If a digital input is used as signal source for the function "STO" (BI: p9620) then it is not permissible to select the simulation mode and this is rejected.				
	To the terminal designation: The first designation stands for CU320, the second for CU310.				
Note:	This parameter is not saved when data is backed-up (p0971, p0977).				
	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
p0796	CU digital inputs simulation mode setpoint / CU DI simul setp				
CU_G130_DP,	Can be changed: U, T		Calculated: -	Access level: 2	
CU_G130_PN, CU_G150_DP, CU_G150_PN	Data type: Unsigned32		Dyn. index: -	$\begin{aligned} & \text { Func. diagram: 2020, 2030, } \\ & \text { 2031, } 2100,2119,2120,2130, \\ & 2131,2132,2133 \end{aligned}$	
	P-Group: Commands		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000000000000000 000000000000 bin	
Description:	Sets the setpoint for the input signals in the digital input simulation mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (X122.1/X121.1)	High	Low	-
		DI 1 (X122.2/X121.2)	High	Low	-
	02	DI 2 (X122.3/X121.3)	High	Low	-
	03	DI 3 (X122.4/X121.4)	High	Low	-
	04	DI 4 (X132.1 / -)	High	Low	-
	05	DI 5 (X132.2 / -)	High	Low	-
	06	DI 6 (X132.3 / -)	High	Low	-
	07	DI 7 (X132.4 /-)	High	Low	-
	08	DI/DO 8 (X122.9/X121.7)	High	Low	-
	09	DI/DO 9 (X122.10/X121.8)	High	Low	-
	10	DI/DO 10 (X122.12/X121.10)	High	Low	-
	11	DI/DO 11 (X122.13/X121.11)	High	Low	-
	12	DI/DO 12 (X132.9/X131.1)	High	Low	-
	13	DI/DO 13 (X132.10/X131.2)	High	Low	-
	14	DI/DO 14 (X132.12/X131.4)	High	Low	-
	15	DI/DO 15 (X132.13/X131.5)	High	Low	-
	16	DI 16 (X122.5/X120.3)	High	Low	-
	17	DI 17 (X122.6/X120.4)	High	Low	-

	$20 \quad$ DI $20($ (X132.5/X120.9)	High
Dependency:	$21 \quad$ DI $21(\mathrm{X} 132.6 / \mathrm{X} 120.10)$	Low
	The simulation of a digital input is selected using p0795.	
Retice:	Refer to: p0795	
	To the terminal designation:	
Note:	The first designation is valid for CU320, the second for CU310.	
	This parameter is not saved when data is backed-up (p0971, p0977).	
	DI: Digital Input	
	DI/DO: Bidirectional Digital Input/Output	

p0799[0...2]	CU inputs/outputs sampling time / CU I/O t_sampl			
CU_G130_DP,	Can be changed: C 1 (3)	Calculated: -	Acces	
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \end{aligned}$	Data type: FloatingPoint32	Dyn. index: -	$\begin{aligned} & \text { Func. } \\ & 2031 \end{aligned}$	2030,
	P-Group: Commands	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	0.00 [$\mu \mathrm{s}$]	5000.00 [$\mu \mathrm{s}$]	4000	
Description: Index:	Sets the sampling time for the inputs and outputs of the Control Unit. [0] = Digital inputs/outputs (DI/DO) [1] = Not available - analog inputs (AI) [2] = Not available - analog outputs (AO)			
Dependency:	The parameter can only be modified for p0009 = 3, 29.			
	Refer to: p0009			
Note:	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).			
p0806	BI: Inhibit master control / PcCtrl inhibit			
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	-	-	0	
Description:	Sets the signal source to block the master control.			
Dependency:	Refer to: r0807			
Note:	The commissioning software (drive control panel) uses the master control, for example.			
r0807.0	BO: Master control active / PcCtrl active			
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Acce	
	Data type: Unsigned8	Dyn. index: -	Func	
	P-Group: Displays, signals	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
		-	-	
Description:	Displays what has the master control.			
Bit field:	Bit Signal name 00 Master control active	1 signal Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 5030, \\ & 6031 \end{aligned}$
Dependency:	Refer to: p0806			
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.			

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS		
VECTOR_G	Can be changed: C2(15)	Calculated: -	Access level: 2
	Data type: Unsigned8	Dyn. index: -	Func. diagram: 8565
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	31	0
Description:	Copies one Drive Data Set (DDS) into another. [0] = Source Drive Data Set [1] = Target Drive Data Set [2] = Start copying procedure		
Index:			
Note:	Procedure:		
	1. In Index 0 , enter which drive data set is to be copied.		
	2. In Index 1, enter the drive data set data that is to be copied into.		
	3. Start copying: Set index 2 from 0 to 1 .		
	p0819[2] is automatically set to 0 when copying is completed.		
p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
VECTOR_G	Can be changed: C2(15), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565, 8575
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
VECTOR_G	Can be changed: C2(15), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565, 8570
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0822[0...n]	BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2		
VECTOR_G	Can be changed: C2(15), T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8565
	P-Group: Data sets	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 2 (DDS, bit 2).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note: \quad| A motor is only changed over (a new motor selected) after the pulses have been suppressed. |
| :--- |
| When the motor data sets are changed over, the following applies: |
| Bit numbers that are not identical, signify that the motor must be changed over. | ll

p0828[0...n]	BI: Motor changeover feedback signal / Mot_chng fdbk sig			
VECTOR_G	Can be changed: C2(3), T	Calculated: -	Access level: 3	
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8575	
	P-Group: Motor	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source for the feedback signal when changing over the motor.			
	For p0833.0 = 1 the following applies:			
	This feedback signal (0/1 edge) is required after a motor changeover to enable the pulses.			
Dependency:	Refer to: p0833			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
r0830.0... 15	CO/BO: Motor changeover status word / Mot_chngov ZSW			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8575	
	P-Group: Displays, signals	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status word of the motor changeover.			
	These signals can be connected to digital outputs to change over the motor.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Motor selection bit 0	High	Low	-
	01 Motor selection bit 1	High	Low	-
	02 Motor selection bit 2	High	Low	-
	03 Motor selection bit 3	High	Low	-
	04 Motor selection bit 4	High	Low	-
	05 Motor selection bit 5	High	Low	-
	06 Motor selection bit 6	High	Low	-
	07 Motor selection bit 7	High	Low	-
	08 Motor selection bit 8	High	Low	-
	09 Motor selection bit 9	High	Low	-
	10 Motor selection bit 10	High	Low	-
	11 Motor selection bit 11	High	Low	-
	12 Motor selection bit 12	High	Low	-
	13 Motor selection bit 13	High	Low	-
	14 Motor selection bit 14	High	Low	-
	15 Motor selection bit 15	High	Low	-
Dependency:	Refer to: p0827			

p0831[0...15] BI: Motor changeover contactor feedback / Mot_chg cont fdbk
VECTOR
Can be changed: U, T
Data type: Unsigned32 / Binary
Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Not for motor type: -
Max
Access level: 3
Func. diagram: 8575
Unit selection: -
Expert list: 1
Factory setting
0
Description: Sets the signal source for the feedback signal of the contactors when changing over motors.
There is a fixed inter-relationship between energizing the contactor and the feedback signal.

	Example:				
	A changeover is to be made between MDS0 (motor 0) and MDS1 (motor 1). The contactors should be switched using bit 4 (contactor 0) and 5 (contactor 1). The changeover should be made with an interconnection of the feedback signal.				
	Implementation:				
	MDS0: p0827[0] = 4, interconnect output to switch contactor 0 to r0830.4, p0831[4] = "input, feedback signal, contactor 0"				
	MDS1: p0827[1] = 5, interconnect output to switch contactor 1 to r0830.5, p0831[5] = "input, feedback signal, contactor 1"				
	The following sequence applies when changing over from MDS0 to MDS1:				
	1. The status bit r0830.4 is deleted. When the feedback signal (p 0831 [4]) is connected, the system waits until the feedback signal "contactor open" is displayed. If the feedback signal is not connected, then the system waits for the switch-off interlocking time of 320 ms .				
	2. The status bit r0830.5 is set. If the feedback signal (p0831[5]) is connected, the system waits until the feedback signal "contactor closed" is displayed. If the feedback signal is not connected, then the system waits for the switch-on interlocking time of 160 ms .				
Index:	[0] = Feedback signal contactor 0				
	[1] = Feedback signal contactor 1				
	[2] = Feedback signal contactor 2				
	[3] = Feedback signal contactor 3				
	[4] = Feedback signal contactor 4				
	[5] = Feedback signal contactor 5				
	[6] = Feedback signal contactor 6				
	[7] = Feedback signal contactor 7				
	[8] = Feedback signal contactor 8				
	[9] = Feedback signal contactor 9				
	[10] = Feedback signal contactor 10				
	[11] = Feedback signal contactor 11				
	[12] = Feedback signal contactor 12				
	[13] = Feedback signal contactor 13				
	[14] = Feedback signal contactor 14				
	[15] = Feedback signal contactor 15				
r0832.0... 15	CO/BO: Mot. changeover contactor feedback sig. status word / Mot_chng fdbk ZSW				
VECTOR_G	Can be changed: -		Calculated: -	Acce	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit	
	Not for motor type: -		Scaling: -	Expe	
	Min		Max	Facto	
	-		-	-	
Description:	Displays the status word of the contactor feedback signals when changing over a motor.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Feedback signal contactor 0	Closed	Opened	-
	01	Feedback signal contactor 1	Closed	Opened	-
	02	Feedback signal contactor 2	Closed	Opened	-
	03	Feedback signal contactor 3	Closed	Opened	-
	04	Feedback signal contactor 4	Closed	Opened	-
	05	Feedback signal contactor 5	Closed	Opened	-
	06	Feedback signal contactor 6	Closed	Opened	-
	07	Feedback signal contactor 7	Closed	Opened	-
	08	Feedback signal contactor 8	Closed	Opened	-
	09	Feedback signal contactor 9	Closed	Opened	-
	10	Feedback signal contactor 10	Closed	Opened	-
	11	Feedback signal contactor 11	Closed	Opened	-
	12	Feedback signal contactor 12	Closed	Opened	-
	13	Feedback signal contactor 13	Closed	Opened	-
	14	Feedback signal contactor 14	Closed	Opened	-
	15	Feedback signal contactor 15	Closed	Opened	-
Dependency:	Refer to: p0831				

Note:
Re bit 02:
A data set changeover is delayed by the time required for the internal parameter calculation.

r0835.0... 11	CO/BO: Data set changeover status word / DDS_ZSW				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit	
	Not for motor type: -		Scaling: -	Expe	
	Min		Max	Facto	
	-		-	-	
Description:	Displays the status word for the drive data set changeover.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Motor changeover active	Yes	No	8575
		Encoder changeover active	Yes	No	-
		Internal parameter calculation active	Yes	No	-
	04	Armature short circuit active	Yes	No	-
		Identification running	Yes	No	-
	06	Friction characteristic record running	Yes	No	-
	07	Rotating measurement running	Yes	No	-
	08	Motor data identification running	Yes	No	-
		Wait for pulse suppression	Yes	No	-
	11	Wait for motor changeover feedback	gnal Yes	No	-

Note:	This parameter is only supplied with up-to-date values if data set changeover has been selected or is running. Re bit 00: The signal is only influenced when a motor changeover is set via p0827 (unequal bit numbers). Re bit 01: The signal is only influenced when an encoder changeover is set via p0187, p0188, or p0189. Re bit 02: A data set changeover is delayed by the time required for the internal parameter calculation. Re bit 04: A data set changeover is only carried out when the armature short circuit is not activated. Re bit 05: The following applies for SERVO: A data set changeover is only carried out when pole position identification, encoder adjustment, motor data identification, and rotating measurement are not running. The following applies for VECTOR: A data set changeover is only carried out when pole position identification is not running. Re bit 06: A data set changeover is only carried out when the friction characteristic record is not running. Re bit 07 (VECTOR only): A data set changeover is only carried out when rotating measurement is not running. Re bit 08 (VECTOR only): A data set changeover is only carried out when motor data identification is not running. Re bit 10: A motor changeover is set with p0833.1 = 1. It can only be carried out when the application performs pulse suppression. Re bit 11: A motor changeover is set with p0833.0 = 1. The pulses are only enabled when the "Motor changeover feedback" signal is detected.
r0836.0... 3 B_INF, VECTOR_G	CO/BO: Command Data Set CDS selected / CDS selected
Description: Bit field:	Displays the command data set (CDS) selected via the binector input.
Dependency: Note:	Refer to: r0050, p0810, p0811 Command data sets are selected via binector input p0810 and following. The currently effective command data set is displayed in r0050.
r0837.0... 4 ENC, VECTOR_G	CO/BO: Drive Data Set DDS selected / DDS selected
Description:	Displays the drive data set (DDS) selected via the binector input.

Bit field:		Signal name	1 signal	0 signal	FP
	00	DDS select. bit 0	ON	OFF	-
	01	DDS select. bit 1	ON	OFF	-
	02	DDS select. bit 2	ON	OFF	-
	03	DDS select. bit 3	ON	OFF	-
	04	DDS select. bit 4	ON	OFF	-
Dependency:	Refer to: r0051, p0820, p0821, p0822, p0823, p0824				
Note:	Drive data sets are selected via binector input p0820 and following.				
	The currently effective drive data set is displayed in r0051.				
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector inputs.				
r0838[0...3]	Motor/Encoder Data Set selected / MDS/EDS selected				
VECTOR_G		be changed: -	Calculated: -	Acces	
		type: Unsigned8	Dyn. index: -	Func.	
		roup: Displays, signals	Units group: -	Unit s	
		for motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the selected Motor Data Set (MDS) and the selected Encoder Data Sets (EDS).				
Index:	[0] [1] [2] [3]	Motor Data Set MDS se Encoder 1 Encoder Dat Encoder 2 Encoder Da Encoder 3 Encoder Da	cted		
Dependency:	Refer to: r0049, p0186, p0187, p0188, p0189				
Note:	Value 99 means the following: No encoder assigned (not configured).				
p0839	Motor changeover contactor control delay time / Mot_chg ctrl t_del				
VECTOR_G	Can be changed: C2(3)		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: Motor		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0 [ms]		500 [ms]	0 [ms]	
Description:	Sets the delay time for the contactor control for the motor changeover.				
Note:	The delay time is taken into account in the following cases:				
	- for feedback signal, previous contactor "Open". The new motor contactor is controlled (energized) after the delay time has expired.				

p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2610, 8720, 8820, 8920
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p1055, p1056		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2). BI: p0848 $=0$ signal or BI: p0849 $=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit)		
	BI: p0848 = 1 signal and BI: p0849 = 1 signal		
	- No OFF3 (enable is possible)		
Caution: Note:	When "master control from PC" is activated, this binector input is effective.		
	For drives with closed-loop torque control (activated using p1501), the following applies:		
	BI: p0849 $=0$ signal:		
	- No dedicated braking response, but pulse suppression when standstill is detected (p1226, p1227).		
p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 8820, 8920
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: p0852 = 1 signal		
	Enable operation (pulses can be enabled).		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
\bigwedge			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 8720, 8820, 8920
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		

For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).
BI: p0854 $=0$ signal
No control by PLC
BI: p0854 = 1 signal
Master control by PLC.

Caution:

Notice:
Note:

When "master control from PC" is activated, this binector input is ineffective.

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1.
If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ($\mathrm{p} 0922=999$).

BI: Control by PLC/no control by PLC / Master ctrl by PLC
Can be changed: T
Data type: Unsigned32 / Binary Dyn. index: -

P-Group: Commands Units group: -
Not for motor type: -
Min
Scaling: -
Max
-

Access level: 3

Func. diagram: 2501, 8720, 8820, 8920
Unit selection: -
Expert list: 1
Factory setting

1

Description: Sets the signal source for the command "control by PLC/no control by PLC".
For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).
BI: p0854 $=0$ signal
No control by PLC
BI: p0854 = 1 signal
Master control by PLC.
Caution: When "master control from PC" is activated, this binector input is ineffective.

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1.
If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration (p0922 = 999).

p0855[O...n]	BI: Unconditionally release holding brake / Uncond open brake		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2701,
			2707
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1

p0856[0...n]	BI: Speed controller enable / n_ctrl enable		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 2701, 2707
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.		
Dependency:	Refer to: r0898		
Note:	If "enable speed controller" is withdrawn, then an existing brake will be closed.		
p0857	Power unit monitoring time / PU t_monit		
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8760, 8864, 8964
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100.0 [ms]	60000.0 [ms]	6000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The following applies for infeeds and drives:		
	The monitoring time is started after an 0/1 edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, then fault F06000 (infeeds) or F07802 (drives) is output.		
	For drives, the following also applies:		
	After the pulse enable (operation enabled, p0852), the monitoring time is re-started. If the infeed does not signal ready to the drive within the monitoring time (using BI: p0864 of the drive), fault F07840 is initiated.		
Notice:	The maximum time to pre-charge the DC link is monitored in the power unit and cannot be changed. The maximum duration of the pre-charging depends on the power class and the power unit design.		
	The monitoring time for the pre-charging is started after the ON command (BI: p0840 $=0 / 1$ signal). Fault F30027 is output when the maximum pre-charging duration is exceeded.		
Note:	The factory setting for p0857 depends on the power class and the design of the power unit. The monitoring time for the ready signal of the power unit includes the time to pre-charge the DC link and, if relevant, the de-bounce time of the contactors.		
	If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.		
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	```Func. diagram: 2501, 2701, 2707```
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the command "unconditionally close holding brake".		
Dependency:	Refer to: p0855		
Note:	The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).		
	For a 1 signal via BI: p0858, the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.		

p0860	BI: Line contactor feedback signal / Line contact feedb		
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2634, 8734, 8834, 8934
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommend.:	When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	Refer to: p0861, r0863		
Notice:	The line contactor monitoring is de-activated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI : $\mathrm{p} 0860=\mathrm{r} 0863.1$).		
Note:	The state of the line contactor is monitored depending on signal BO: r0863.1. When the monitoring is activated (BI : p 0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		
p0861	Line contactor monitoring time / LineContact t_mon		
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2634, 8734, 8834, 8934
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	5000 [ms]	100 [ms]
Description:	Sets the monitoring time of the line contactor.		
	This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.		
Dependency:	Refer to: p0860, r0863		
Note:	The monitoring function is disabled for the factory setting of p0860.		
p0862	Power unit ON delay / PU t_on		
B_INF, VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2610, 8732, 8832, 8932
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	65000 [ms]	0 [ms]
Description:	Sets the delay time for the control command of the power unit and a line contactor, if used. This means that it is possible to realize a shifted (delayed) pre-charging or power-on using a single ON command. When the infeed units are active, before the line contactor is closed, an offset adjustment of the current measurement is carried out for a duration of $120 \mathrm{~ms}(\mathrm{p} 3491)$.		
Note:			
r0863.0... 2	CO/BO: Drive coupling status word/control word / CoupleZSW/STW		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the status word and control word of the drive coupling.		

When operating a drive connected to SINUMERIK, which only closes the main contactor with the OFF1 command (blocksize, chassis), p0867 should be set as a minimum to 50 ms .

p0868	Power unit DC switch debounce time / PU DC sw t_deboun			
VECTOR_G	Can be changed: T	Calculated: -	Acce	
	Data type: FloatingPoint32	Dyn. index: -	Func	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	0 [ms]	65000 [ms]	65000	
Description:	Sets the debounce time for the DC circuit breaker for Motor Modules in "chassis" format.			
Note:				
	The following applies if p0868 $=65000 \mathrm{~ms}$: The debounce time defined internally in the power unit's EEPROM is implemented.			
p0869	Sequence control configuration / Seq_ctrl config			
VECTOR_G	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned16	Dyn. index: -	Func	
	P-Group: Commands	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	-	-	0000	
Description:	Sets the configuration for the sequence control.			
Bit field:	Bit Signal name 00 Keep main contactor closed for STO	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal No	FP
Dependency:	Refer to: p0867			
Note:	Re bit 00:			
	After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.			
	For p0869.0 $=1$, after withdrawing STO, the switch-on inhibit must be acknowledged via the source of p0840 $=0$ (OFF1) - and before the main contactor holding time expires (p 0867), should go back to 1 , otherwise the main contactor will open.			

r0873

Description: Displays the operational readiness of the infeeds when using Smart Line Module (SLM) and Basic Line Module (BLM) together (mixed operation).
In order that signal BO: r0873 is available at one of the infeeds, then BI : p0874 of the one infeed must be interconnected to BO: r0863.0 of the other infeed.
Dependency: Refer to: r0863, p0874
Note: \quad Mixed operation is not possible with the Active Line Module (ALM)!

		Sw on inhibit	Yes	No	-
	09	Control request	Yes	No	-
		Pre-charging compl	Yes	No	-
	12	Line contactor closed	Yes	No	-
Note:	Re bits 00, 01, 02, 04, 06, 09:				
	For PROFIdrive, these signals are used for status word 1.				
r0899.0... 15	CO/BO: Status word drive object 1 / ZSW DO1				
CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 2	
CU_G130_PN,	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
CU_G150_PN	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min			Factory setting	
	-		-		
Description:	Display and BICO output for the status word of the sequence control of the infeed unit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Reserved	Yes	No	-
	03	Fault present	Yes	No	-
	07	Alarm present	Yes	No	-
	08	System time synchronized	Yes	No	-
		Slave sign-of-life bit 0	Yes	No	-
		Slave sign-of-life bit 1	Yes	No	-
		Slave sign-of-life bit 2	Yes	No	-
	15	Slave sign-of-life bit 3	Yes	No	-
r0899.7... 9	CO/BO: Status word sequence control encoder DO / ZSW seq_ctrl encDO				
ENC	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status word for sequence control on the encoder drive object.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Drive ready	Yes	No	-
		Control request	Yes	No	-
Note:	For PROFIdrive, this signal is used for status word ZSW2_ENC.				
r0899.0... 15	CO/BO: Status word sequence control / ZSW seq_ctrl				
VECTOR_G	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2503	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling:	Expert list: 1	
	Min			Factory setting	
	-		-	-	
Description:	Display and BICO output for the status word of the sequence control.				
	Bit	Signal name	1 signal	0 signal	FP
	00	Rdy for switch on	Yes	No	-
	01	Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Jog active	Yes	No	-
	04	No coasting active	OFF2 inactive	OFF2 active	-
	05	No Quick Stop active	OFF3 inactive	OFF3 active	-
	06	Switching on inhibited active	Yes	No	-
	07	Drive ready	Yes	No	-
	08	Controller enable	Yes	No	-

09	Control request	Yes	No
11	Pulses enabled	Yes	No
12	Open holding brake	Yes	No
13	Command close holding brake	Yes	No
14	Pulse enable from the brake control	Yes	No
15	Setpoint enable from the brake control	Yes	No

Note:
Re bits $00,01,02,04,05,06,09$:
For PROFIdrive, these signals are used for status word 1.
Re bit 13:
When the "Safe Brake Control" (SBC) is activated and selected, the brake is no longer controlled using this signal.
Re bit 14, 15:
These signals are only of significance when the "extended brake control" function module is activated (r0108.14 = 1).

p0918	PROFIBUS address / PB address		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	126	126
Description:	Displays or sets the PROFIBUS address for PROFIBUS interface on the Control Unit.		
	The address can be set as follows:		
	1) Using the address switch on the Control Unit.		
	--> p0918 can then only be read and displays the selected address.		
	--> A change only becomes effective after a POWER ON.		
	2) Using p0918		
	--> Only if the address 00 hex, 7F hex, 80 hex, or FF hex has been set using the address switch.		
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM". --> A change only becomes effective after a POWER ON.		
Note:	Permissible PROFIBUS addresses: $1 . . .126$ (01 hex ... 7E hex)		
	Address 126 is used for commissioning.		
	Every PROFIBUS address change only becomes effective after a POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p0922	IF1 PROFldrive PZD telegram selection / IF1 PZD telegr		
B_INF	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2401, 2420, 2423, 2447, 2457, 2481, 2483
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	370	999	999
Description:	Sets the send and receive te		
Value:	370: SIEMENS telegram 370, PZD-1/1		
	371: SIEMENS telegram 371, PZD-5/8		
	999: Free telegram configuration with BICO		
Note:	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		
	The inhibited interconnections can only be changed again after setting value 999.		

r0930	PROFIdrive operating mode / PD operating mode		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the operating mode.		
	1: Closed-loop speed controlled operation with ramp-function generator		
	2: Closed-loop position controlled operation		
	3: Closed-loop speed controlled operation without ramp-function generator		
r0944	CO: Counter for fault buffer changes / Fault buff change		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays fault buffer changes. This counter is incremented every time the fault buffer changes.		
Recommend.:	Used to check whether the fault buffer has been read out consistently.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109		
r0945[0...63]	Fault code / Fault code		
All objects	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the numbers of faults that have occurred.		
Dependency:	Refer to: r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122		
Notice:	The properties of the fault buffer should be taken from the corresponding product documentation.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Fault buffer structure (general principle):		
	r0945[0], r0949[0], r0948[0], r2109[0], r3115[0] --> actual fault case, fault 1		
	\cdots		
	r0945[7], r0949[7], r0948[7], r2109[7], r3115[7] --> actual fault case, fault 8		
	r0945[8], r0949[8], r0948[8], r2109[8], r3115[8] --> 1st acknowledged fault case, fault 1		
	r0945[15], r0949[15], r0948[15], r2109[15], r3115[15] --> 1st acknowledged fault case, fault 8		
	. .		
	r0945[56], r0949[56], r0948[56], r2109[56], r3115[56] --> 7th acknowledged fault case, fault 1		
	r0945[63], r0949[63], r0948[63], r2109[63], r3115[63] --> 7th acknowledged fault case, fault 8		

r0946[0...65534]	Fault code list / Fault code list		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Lists the fault codes stored in the drive unit.		
	The indices can only be accessed with a valid fault code.		
Dependency:	The parameter assigned to the fault code is entered in r0951 under the same index.		
r0947[0...63]	Fault number / Fault number		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is identic		
r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		
r0949[0...63]	Fault value / Fault		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	Refer to: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3115, r3120, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

p0952	Fault cases counter / Fault cases qty		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 6700, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0 .		
	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0963	PROFIBUS baud rate / PB baud rate		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description: Value:	Displays the corresponding value for the PROFIBUS baud rate.		
	0: $\quad 9.6 \mathrm{kbit} / \mathrm{s}$		
	1: $\quad 19.2 \mathrm{kbit} / \mathrm{s}$		
	2: $\quad 93.75 \mathrm{kbit} / \mathrm{s}$		
	3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$		
	4: $\quad 500 \mathrm{kbit} / \mathrm{s}$		
	6: $\quad 1.5 \mathrm{Mbit} / \mathrm{s}$		
	7: $3 \mathrm{Mbit} / \mathrm{s}$		
	8: $6 \mathrm{Mbit} / \mathrm{s}$		
	9: $12 \mathrm{Mbit} / \mathrm{s}$		
	10: $\quad 31.25 \mathrm{kbit} / \mathrm{s}$		
	11: $45.45 \mathrm{kbit} / \mathrm{s}$		
	255: Unknown		
r0964[0...6]	Device identification / Device ident		
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- -		-
Description: Index:	Displays the device identification.		
	[0] = Company (Siemens $=42$)		
	[1] = Device type		
	[2] = Firmware version [3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		
Note:	Example:		
	r0964[0] = 42 --> SIEMENS		
	r0964[1] = device type, see below		
	r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)		
	r0964[3] = 2010 --> year 2010		
	r0964[4] = 1705 --> 17th of May		
	r0964[5] = 2 --> 2 drive objects		
	r0964[6] = 200 --> second part, firmware version (complete version. V04.03.02.00)		

```
Device type:
r0964[1] = 5200 --> SINAMICS G150 CU320-2 DP
r0964[1] = 5201 --> SINAMICS G150 CU320-2 PN
r0964[1] = 5210 --> SINAMICS G130 CU320-2 DP
r0964[1] = 5211 --> SINAMICS G130 CU320-2 PN
```


p0970	ENCODER reset parameters / ENC par reset		
ENC	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Factory settings	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	100	0
Description:	The parameter is used to initiate the reset of the parameters on the ENCODER drive object. Parameter p0141 is not reset. It is only reset if the entire drive unit is reset to the factory settings (p0976).		
Value:	$0:$ Inactive 1: Start a parameter reset 100: Start a BICO interconnection reset		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	A factory setting run can only be started if p 0010 was first set to 30 (parameter reset). At the end of the calculations, p0970 is automatically set to 0 . Parameter reset has been completed if p0970 and p0010 have been set to 0 .		
p0970	TB30 reset parameters / TB30 par reset		
TB30	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Factory settings	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	100	0
Description:	The parameter is used to in The sampling time p4099 is Parameter p0161 is not res	do parameters on ding a conflict if entire drive	(TB30). clock cycle. factory settings (p09
Value:	$\begin{array}{ll} \text { 0: } & \text { Inactive } \\ \text { 1: } & \text { Start a parameter reset } \\ \text { 100: } & \text { Start a BICO interconnection reset } \end{array}$		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	A factory setting run can only be started if p 0010 was first set to 30 (parameter reset). At the end of the calculations, p0970 is automatically set to 0 . Parameter reset has been completed if p0970 and p0010 have been set to 0 .		
p0970	TM150 reset parameters / TM150 par reset		
TM150	Can be changed: C2(30)	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Factory settings	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	100	0
Description:	The parameter is used to initiate a reset of the parameters on Terminal Module 150 (TM150).		
Value:	0: Inactive 1: Start a parameter re 100: Start a BICO interco		
Dependency:	Refer to: p0010		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).		

Parameters p0100, p0205 (only for VECTOR) and the parameters of the basic drive commissioning (p0009) are not reset (p0107, p0108, p0111, p0112, p0115, p0121, p0130, p0131, p0140, p0141, p0142, p0170, p0186 ... p0189). These can only be reset using the factory setting of the complete drive unit (p 0976).

Value:

Notice:

Note: \quad A factory setting run can only be started if p0010 was first set to 30 (parameter reset).
At the end of the calculations, p0970 is automatically set to 0 .
Parameter reset has been completed if p0970 and p0010 have been set to 0 .
For p0970 = 5 the following applies:
The password for Safety Integrated must be set.
When Safety Integrated is enabled, this can result in error messages, which then require an acceptance test to be performed.
Then save the parameters and carry out a POWER ON.
For p0970 = 1 the following applies:
If a Safety Integrated function is parameterized (p9601), then the safety parameters are not reset. In this case, a fault F01659 is output with fault value 2 .

p0971

All objects

Save drive object parameters / Drv_obj par save		
Can be changed: U, T	Calculated: -	Access level: 1
Data type: Unsigned16	Dyn. index: -	Func. diagram: -
P-Group: Factory settings	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	1	0

Description: Setting to save the parameter of the particular drive object in the non-volatile memory.
When saving, only the adjustable parameters intended to be saved are taken into account.

Value:

Dependency:
Inactive
1: \quad Save drive object

Notice: \quad The Control Unit power supply may only be powered down after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0)
Writing to parameters is inhibited while saving.
The progress while saving is displayed in r3996.
Note:
Starting from the particular drive object, the following parameters are saved:
CU3xx: Device-specific parameters and PROFIBUS device parameters.
Other objects: Parameters of the actual object and PROFIBUS device parameters.
Prerequisite:
In order that the parameter of a drive object, saved with p0971 = 1, is read the next time that the Control Unit is booted, then all parameters must, as a minimum, have first been saved once with p0977 $=1$.

p0972

CU_G130_DP,
Drive unit reset / Drv_unit reset

Can be changed: U, T
Data type: Unsigned16
P-Group: -
Not for motor type: -
Min
0

Calculated: Dyn. index: Units group: -
Scaling: Max 3

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the required procedure to execute a hardware reset for the drive unit.
Value:
0: Inactive
1: Hardware-Reset immediate

p0976
CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

Description:
Value:

Notice:

Note: \quad After all of the parameters have been reset to their factory setting, the system must be commissioned for the first time again.
Resetting or loading is realized in the non-volatile memory.
Procedure:

1. Set p0009 = 30 (parameter reset).
2. Set p0976 to "required value". The system is rebooted.
p0976 is automatically set to 0 and p0009 is automatically set to 1 after this has been carried out.

p0977

Description:

Value:

Save all parameters / Save all par
Can be changed: U, T
Data type: Unsigned16
P-Group: Factory settings
Not for motor type: -
Min
0

Calculated: Dyn. index: Units group: Scaling: Max 1013

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Saves all parameters of the drive system to the non-volatile memory.
When saving, only the adjustable parameters intended to be saved are taken into account.
0 : Inactive
1: Save in non-volatile memory - downloaded at POWER ON
10: Save as opt. in non-vol. memory - downloaded w/ p0976=10
11: Save as opt. in non-vol. memory - downloaded w/ p0976=11
12: Save as opt. in non-vol. memory - downloaded w/ p0976=12
20: Save in non-volatile memory as setting 20 (reserved)
21: Save in non-volatile memory as setting 21 (reserved)
22: Save in non-volatile memory as setting 22 (reserved)
23: \quad Save in non-volatile memory as setting 23 (reserved)
24: Save in non-volatile memory as setting 24 (reserved)
25: \quad Save in non-volatile memory as setting 25 (reserved)
26: Save in non-volatile memory as setting 26 (reserved)
80: \quad Save in non-volatile memory time-optimized (reserved)

Access level: 1
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Resets or downloads all parameters of the drive system.
0 : Inactive
1: Start reset of all parameters to factory setting
2: \quad Start dnload of param. saved in non-volatile mem w/ p0977=1
3: Start download of volatile parameters from RAM
10: Start dnload of param. saved in non-volatile mem w/ p0977=10
11: \quad Start dnload of param. saved in non-volatile mem w/ p0977=11
12: \quad Start dnload of param. saved in non-volatile mem w/p0977=12
20: \quad Start download Siemens internal setting 20
21: Start download Siemens internal setting 21
22: Start download Siemens internal setting 22
23: Start download Siemens internal setting 23
24: Start download Siemens internal setting 24
25: Start download Siemens internal setting 25
26: Start download Siemens internal setting 26
100: Start resetting of all BICO interconnections
1011: Start dnload of param. saved in volatile mem w/ p0977=1011
1012: Start dnload of param. saved in volatile mem w/p0977=1012
1013: Start dnload of param. saved in volatile mem w/ p0977=1013

	1011: Save in volatile memory, downloaded with p0976=1011 1012: Save in volatile memory, downloaded with p0976=1012 1013: Save in volatile memory, downloaded with p0976=1013		
Dependency:	Refer to: p0976, p1960, p3845, r3996		
Notice:	The Control Unit power supply may only be powered down after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0).		
Note:	Parameters saved with p0977 = 10, 11 or 12 can be downloaded again with p0976 = 10, 11 or 12.		
p0978[0...n]	List of drive objects / List of the DO		
CU_G130_DP,	Can be changed: $\mathrm{C} 1(1)$	Calculated: -	Access level: 2
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	[0] 1
			[1...24] 0
Description:	This parameter is an image of p0101 in conformance with PROFIdrive.		
	Parameters p0101 and p0978 contain the following information:		
	1) The same number of drive objects		
	2) The same drive objects		
	In this sense, they are consistent.		
	Difference between p0101 and p0978:		
	p0978 can be re-sorted and a zero inserted in order to identify those drive objects that participate in the process data exchange and to define their sequence in the process data exchange. Drive objects that are listed after the first zero, are excluded from the process data exchange.		
	For p 0978 , in addition, the value 255 can be inserted a multiple number of times.		
	$\mathrm{p} 0978[\mathrm{n}]=255$ means: The drive object is visible for the PROFIBUS master and is empty (without any actual process data exchange). This allows cyclic communications of a PROFIBUS master with unchanged configuring to the drive units with a lower number of drive objects.		
Dependency:	Refer to: p0101, p0971, p0977		
Note:	p0978 cannot be changed when the drive system is first commissioned. The reason for this is that at this time the actual topology has still not been acknowledged (p0099 is still not equal to r0098 and p0009 is set to 0).		

Dependency:	Refer to: r0981, r0989
Note:	The existing parameters are displayed in indices 0 to 298. If an index contains the value 0, then the list ends here. In
	a long list, index 299 contains the parameter number at which position the list continues.
	This list consists solely of the following parameters:
	r0980[0...299], r0981[0...299] ... r0989[0...299]
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be
	read from a higher-level control system (e.g. PROFIBUS master).

r0989[0...299]	List of existing parameters 10 / List avail par 10		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0981		
Note:	The existing parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang par 1		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0991[0...99]	List of modified parameters 2 / List chang par 2		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive. Refer to: r0990, r0999		
Dependency:			
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		
r0999[0...99]	List of modified parameters 10 / List chang par 10		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0990, r0991		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		
p1000[0...n]	Macro Connector Inputs (Cl) for speed setpoints / Macro Cl n_set		
VECTOR_G	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The Connector Inputs (CI) for the speed setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1000 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	Refer to: p0015, p0700, p1500, r8572		
Notice:	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	The macros in the specified directory are displayed in r8572. r8572 is not in the expert list of the commissioning software.		
	Macros available as standard are described in the technical documentation of the particular product.CI: Connector Input		

p1001[0...n]	CO: Fixed speed setpoint $1 / \mathrm{n}$ _set_fixed 1		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint $10 / \mathrm{n}$ _set_fixed 10		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type:-	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3010
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed Displays the number of the actua Sets the values for the fixed speed Refer to: p1021, p1022, p1023,	ing p1020 ... p1023. d setpoint in r1197. 1 ... 15 using p1001 ... p10	
Note:	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).		

p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0($ setpoint $=0)$.		
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0($ setpoint $=0)$.		
p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3010, 3011
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1022, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p1023 $=0, \mathrm{r} 1197=0)$, then r1024 $=0($ setpoint $=0)$.		

Re bit 03:

0 : Non-volatile data save de-activated.
1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).
Re bit 04:
When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r1050.

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	The setpoint change (CO: r1050) depends on the set ramp-up time (p 1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	Refer to: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	0
Description:	The setpoint change (CO: r1050) depends on the set ramp-down time (p1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value.		
p1038[0...n]	Motorized potentiometer	m speed / MotP n_m	
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		

Note:	This parameter is automatically pre-assigned in the commissioning phase. The setpoint output from the motorized potentiometer is limited to this value.		
p1039[0...n]	BI: Motorized potentiometer inv	ion / MotP inv	
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer.		
Dependency:	Refer to: p1037, p1038		
Note:	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		
p1040[0...n]	Motorized potentiometer starting value / Mop start value		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up.		
Dependency:	Only effective if p1030.0 $=0$.		
	Refer to: p1030		
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer. In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input.		
Dependency:	Refer to: p1030, p1035, p1036, p1042		
Note:	The effectiveness of the internal ramp-function generator can be set in automatic mode.		
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode. Refer to: p1041		
Dependency:			

p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer		
Dependency:			
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p 1043).		
p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1043		
Note:	The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p1043).		
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from zero up to the speed/velocity limit (p1082) within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1048, p1082		
Note:	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3020
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer.		

	The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1047, p1082		
Note:	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3020
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator. This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommend.:	Interconnect the signal with main setpoint (p1070).		
Dependency:	Refer to: p1070		
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0)		
p1051[0...n]	CI: Speed limit RFG positive direction of rotation / n_limit RFG pos		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction on the ramp-function generator input.		
Note:			
p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input. The OFF3 ramp-down time (p1135) is effective when the limit is reduced.		
Note:			
p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 1.		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1058		

Notice:

The drive is enabled for jogging using BI : p 1055 or $\mathrm{BI}: \mathrm{p} 1056$.
The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.
Only the signal source that was used to power up can also be used to power down again.

p1056[0...n]	Bl: Jog bit 1 / Jog bit 1		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 2.		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1059		
Notice:	The drive is enabled for jogging using Bl : p 1055 or BI : p 1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3001, 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the speed for jog 1.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3001, 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the speed for jog 2.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		
p1063[0...n]	Speed limit setpoint channel / n_limit setp		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3040
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	40000.000 [rpm]
Description:	Sets the speed limit/velocity limit effective in the setpoint channel.		
Dependency:	Refer to: p1082, p1083, p1085, p1086, p1088		

p1070[0...n]	CI: Main setpoint / Main setpoint		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1024[0]
Description:			
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	Refer to: p1071, r1073, r1078		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the main setpoint.		
r1073	CO: Main setpoint effective / Main setpoint eff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective main setpoint.		
p1075[0...n]	CI: Supplementary setpoint / Suppl setp		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
		-	
Description:	Sets the signal source for the supplementary setpoint.		
Dependency:	Refer to: p1076, r1077, r1078		
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3030
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the supplementary setpoint.		

$\overline{\mathbf{1 0 7 7}}$	CO: Supplementary setpoint effective / Suppl setpoint eff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1078	CO: Total setpoint effective / Total setpoint eff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3030
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the total effective setpoint. The value indicates the sum of the effective main setpoint and supplementary setpoint.		
p1080[0...n]	Minimum speed / n_min		
VECTOR_G	Can be changed: C2(1), T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	19500.000 [rpm]	0.000 [rpm]
Description:	Sets the lowest possible motor speed. This value is not undershot in operation.		
Dependency:	Refer to: p1106		
Notice:	The effective minimum speed is formed from p1080 and p1106.		
Note:	The parameter value applies for both motor directions. In exceptional cases, the motor can operate below this value (e.g. when reversing).		
$\overline{\mathrm{p} 1081}$	Maximum speed scaling / n_max scal		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	100.00 [\%]	105.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the maximum speed (p 1082). For a higher-level speed control, this scaling allows the maximum speed to be briefly exceeded.		
Dependency:	Refer to: p1082		
Notice:	Continuous operation above a scaling of 100% is not permitted.		

p1082[0...n]	Maximum speed / n_max		
VECTOR_G	Can be changed: C2(1), T	Calculated: CALC_MOD_ALL	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2820, 3020 3050, 3060, 3070, 3095
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
Dependency:	For vector control ($\mathrm{p} 1300=20 \ldots 23$) the maximum speed is limited to $60.0 /(8.333 \times \mathrm{p} 0115[0] \times \mathrm{r} 0313)$. This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters ($\mathrm{p} 0230=$ 3,4), the maximum speed r1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.		
	For reactors and dU/dt filters, it is limited to 150 Hz * 60 / r0313 (for chassis power units) or $120 \mathrm{~Hz} \times 60$ / r0313 (for booksize power units).		
	Refer to: p0115, p0230, r0313, p0322, p0324, r0336, p0532		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	The parameter applies for both motor directions.		
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	Since the parameter is part of quick commissioning (p0010 = 1), it is defined appropriately when p0310, p0311, p0322, p0324, p0530, p0531, and p0532 are changed.		
	The following limits are always effective for p1082:		
	p1082 < = min(p0324, p0532) if p0324>0 and p0532 > 0		
	$\mathrm{p} 1082<=\mathrm{p} 0322$ if p0324 $=0$ or p0532 $=0$ and p0322>0		
	p1082 <= $60 \times$ minimum ($15 \times \mathrm{r0336}, 650 \mathrm{~Hz}$) / r0313		
	p1082 <= $60 \times$ Maximum power unit pulse frequency / ($\mathrm{x} \times \mathrm{r} 0313$)		
	$\mathrm{k}=12$ for vector control (r0108.2 = 1), $\mathrm{k}=6.5$ for U/f control (r0108.2 $=0$)		
	For the automatic calculation ($\mathrm{p} 0340=1$) the value of the parameter is pre-assigned the maximum motor speed (p 0322). If $\mathrm{p} 0322=0$, the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors that are not catalog motors ($\mathrm{p} 0301=0$), the synchronous no-load speed is used as default (pre-assignment) value ($\mathrm{p} 0310 \times 60 / \mathrm{r} 0313$).		
	For synchronous motors, the following additionally applies:		
	The maximum speed p1082 is restricted to speeds (r1084) where the EMF does not exceed the DC link voltage. The effective assignment of the motor data set parameter (e.g. p0311) to the drive data set parameter p1082 when pre-assigning should be taken from p0186.		
	p 1082 is also available in the quick commissioning ($\mathrm{p} 0010=1$); this means that when exiting via $\mathrm{p} 3900>0$, the value is not changed.		

p1083[0...n]
VECTOR_G

CO: Speed limit in positive direction of rotation / n_limit pos		
Can be changed: U, T	Calculated: -	Access level: 2
Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050,6732
P-Group: Setpoints	Units group: $3 _1$	Unit selection: p0505
Not for motor type: -	Scaling: p2000	Expert list: 1
Min	Max	Factory setting
$0.000[r p m]$	$210000.000[r p m]$	$40000.000[r p m]$
Sets the maximum speed for the positive direction.		
A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

r1084	CO: Speed limit positive effective / n_limit pos eff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active positive speed limit. Refer to: p1082, p1083, p1085		
Dependency:			
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction.		
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-210000.000 [rpm]	0.000 [rpm]	-40000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
r1087	CO: Speed limit negative effective / n_limit neg eff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050, 3095
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active negative speed limit.		
Dependency:	Refer to: p1082, p1086, p1088		
p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		

p1098[0...n]	CI: Skip speed scaling / n_skip scal			
VECTOR_G	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func.	
	P-Group: Setpoints	Units group: -	Unit	
	Not for motor type: -	Scaling: PERCENT	Exper	
	Min	Max	Facto	
	-	-	1	
Description:	Sets the signal source for scaling the skip speeds.			
Dependency:	Refer to: p1091, p1092, p1093, p1094			
r1099.0	CO/BO: Skip band status word / Skip band ZSW			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Setpoints	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Bit field:	Display and BICO output for the skip bands.			
	Bit Signal name 00 r1170 within the skip band	1 signal Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 3050 \end{aligned}$
Dependency:	Refer to: r1170			
Note:	Re bit 00:			
	With the bit set, the setpoint speed is within the skip band after the ramp-function generator (r1170).			
	The signal can be used to switch over the drive data set (DDS).			
p1101[0...n]	Skip speed bandwidth / n_skip bandwidth			
VECTOR_G	Can be changed: U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func.	
	P-Group: Setpoints	Units group: 3_1	Unit s	
	Not for motor type: -	Scaling: p2000	Exper	
	Min	Max	Facto	
	0.000 [rpm]	210000.000 [rpm]	0.000	
Description: Dependency: Note:	Sets the bandwidth for the skip speeds/velocities 1 to 4 .			
	Refer to: p1091, p1092, p1093, p1094			
	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.			
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppression) range is skipped.			
	Example:			
	p1091 = 600 and p1101 $=20$			
	--> setpoint speeds between 580 and 620 [rpm] are skipped.			
	For the skip bandwidths, the following hysteresis behavior applies:			
	For a setpoint speed coming from below, the following applies:			
	$\mathrm{r} 1170<580$ [rpm] and 580 [rpm] <= r1114 <= 620 [rpm] --> r1119 = 580 [rpm]			
	For a setpoint speed coming from above, the following applies:			
	r1170 > $620[\mathrm{rpm}]$ and $580[\mathrm{rpm}]<=\mathrm{r1114}$ <= $620[\mathrm{rpm}]-->\mathrm{r1119}=620[\mathrm{rpm}]$			

p1106[0...n]	CI: Minimum speed signal source / n_min s_src		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3050
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for lowest possible motor speed.		
Dependency:	Refer to: p1080		
Notice:	The effective minimum speed is formed from p1080 and p1106.		
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3040
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the negative direction.		
Dependency:	Refer to: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505, 3040
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the positive direction.		
Dependency:	Refer to: p1110		
$\mathbf{r 1 1 1 2}$	CO: Speed setpoint after minimum limiting / n_set aft min_lim		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:	Refer to: p1091, p1092, p1093, p1094, p1101		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2441, 2442, $2505,3040$
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

r1114	CO: Setpoint after the direction limiting / Setp after limit		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3040, 3050
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		
p1115	Ramp-function generator selection / RFG selection		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 3001, 3080
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the ramp-function generator type.		
Value:	0 : Basic ramp-function generator 1: Extended ramp-function generator		
Note:	Another ramp-function generator type can only be selected when the motor is at a standstill.		
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 3050, 3060, 3070, 6300
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
VECTOR_G	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p 1082) in this time.		
Dependency:	Refer to: p1082, p1138		
Note:	The ramp-up time can be scaled via connector input p1138.		
	The parameter is adapted during the rotating measurement ($\mathrm{p} 1960>0$). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.		
	For U/f control and sensorless vector control (see p1300), a ramp-up time of 0 s is not expedient. The setting should be based on the startup times (r0345) of the motor.		

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
VECTOR_G	Can be changed: C2(1), U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	Refer to: p1082, p1139		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s is not expedient. The setting should be based on the startup times (r0345) of the motor.		
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2505
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bypassing the ramp generator (ramp-up and ramp-down times $=0$).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For VECTOR in encoderless operation, it is not permissible that the ramp-function generator is bypassed.		
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description: Note:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down. Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		

p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the smoothed response to the OFF1 command or the reduced setpoint for the extended ramp-function generator.		
Value:	0 : Cont smoothing 1: Discont smoothing		
Dependency:	No effect up to initial rounding-off time (p1130) >0 s.		
Note:	p1134 = 0 (continuous smoothing)		
	If the setpoint is reduced while ramping-up, initially a final rounding-off is carried out and then the ramp-up completed. During the final rounding-off, the output of the ramp-function generator continues to go in the direction of the previous setpoint (overshoot). After the final rounding-off has been completed, the output goes toward the new setpoint.		
	p1134 = 1 (discontinuous smoothing)		
	If the setpoint is reduced while ramping-up, then the output goes immediately in the direction of the new setpoint. For the setpoint change there is no rounding-off.		
p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
VECTOR_G	Can be changed: C2(1), U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	600.000 [s]	3.000 [s]
Description:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
Note:	This time can be exceeded if the DC link voltage reaches its maximum value.		
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for OFF3 for the extended ramp generator.		

p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator.		
Dependency:	Refer to: p1120		
Note:	The ramp-up time is set in p1120.		
p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the ramp-down time of the ramp-function generator.		
Dependency:	Refer to: p1121		
Note:	The ramp-down time is set in p1121.		
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4).		
	BI: p1140 $=0$ signal:		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 = 1 signal:		
	Ramp-function generator enable.		
Dependency:	Refer to: p1141, p1142		
Caution: A	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1141[0...n]	BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2501
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "continue ramp-function generator/freeze ramp-function generator". For the PROFIdrive profile, this command corresponds to control word 1 bit 5 (STW1.5). BI: p1141 $=0$ signal: Freezes the ramp-function generator.		

p1144[0...n]	CI: Ramp-function generator setting value / RFG setting value		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the ramp-function generator setting value.		
Dependency:	The signal source for accepting the setting value is set using parameters.		
	Refer to: p1143		
p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3080
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	50.0	1.3
Description:	Sets the ramp-function generator tracking.		
	The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration.		
	The reference value is the deviation at the speed/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.		
Recommend.:	If at least one speed setpoint filter/velocity setpoint filter is activated (p1414), then the ramp-function generator tracking should be deactivated (p1145 $=0.0$). When the speed setpoint filter is activated, the output value of the ramp-function generator can no longer be tracked (corrected) corresponding to the maximum possible drive acceleration.		
	Rep1145 = 0.0:		
	This value de-activates the ramp-function generator tracking.		
	Re p1145 = 0.0 ... 1.0:		
	Generally, these values are not practical. They cause the motor to accelerate below its torque limit. The lower the selected value, the greater the margin between the controller and torque limit when accelerating.		
	Rep1145 > 1.0:		
	The greater the value, the higher the permissible deviation between the speed setpoint and speed actual value.		
Notice:	If ramp-function generator tracking is activated and the ramp time is set too short, this can cause unsteady acceleration.		
	Remedy:		
	- switch off ramp-function generator tracking (p1145 = 0).		
	- increase the ramp-up/ramp-down time (p1120, p1121).		
Note:	In the U/f mode, ramp-function generator tracking is not active.		
	For SERVO with U/f operation, the following applies:		
	The complete ramp-function generator is not active, i.e. ramp-up and ramp-down time $=0$.		
p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 3060, 3070
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [rpm]	1000.000 [rpm]	19.800 [rpm]
Description:	Sets the tolerance value for the status of the If the input of the ramp-function generator tolerance time, then the status bits "ramp-up	ramp-function generator (rampes not change in comparison to active" and "ramp-down active"	ctive, ramp-down active). utput by more than the entered ot influenced.
Dependency:	Refer to: r1199		

p1152	BI: Setpoint 2 enable / Setp 2 enab		
VECTOR_G (Ext brake)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2711, 4015
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	899.15
Description:	Sets the signal source for "setpoint 2 enable".		
p1155[0...n]			
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3080, 5030, 6031 $5030,6031$
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed setpoint 1 of the speed controller.		
Dependency:	The effectiveness of this setpoint depends on, e.g. STW1.4 and STW1.6.		
	Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170, p1189		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1160[0...n]	CI: Speed controller speed setpoint 2 / n_ctrl n_set 2		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 3001, 3080
	P-Group: Setpoints	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed setpoint 2 of the speed controller.		
Dependency:	Refer to: p1155, r1170		
Note:	For OFF1/OFF3, the ramp-function generator ramp is effective.		
	The ramp-function generator is set (SERVO: to the actual value, VECTOR: To the setpoint (r1170)) and stops the drive corresponding to the ramp-downtime (p1121 or p1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator).		
	When the function module "position control" (r0108.3 = 1) is activated, this connector input is interconnected as follows as standard:		
	CI: p1160 = r2562		
r1169	CO: Speed controller speed setpoints 1 and 2 / n_ctrl n_set 1/2		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3080
	P-Group: Setpoints	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the addition of the speed setpoint 1 (p 1155) and speed setpoint 2 (p 1160). Refer to: p1155, p1160		
Dependency:			
Note:	The value is only correctly displayed at r0899.2 $=1$ (operation enabled).		

$\mathbf{r 1 1 7 0}$	CO: Speed controller setpoint sum / n_ctrl setp sum					
VECTOR_G	Can be changed: - Data type: FloatingPoint32			ulated: -	Access level: 3	
			Dyn	index: -	Func. diagram: 3001, 3080,6300	
		oup: Setpoints		group: 3_1	Unit selection: p0505	
	Not	for motor type:-	Scal	ing: p2000	Expert list: 1	
	Min		Max		Factory setting	
	- [rpm		- [rpm		- [rpm]	
Description:	Display and connector output for the speed setpoint after selecting the ramp-function generator. The value is the sum of speed setpoint 1 (p 1155) and speed setpoint 2 (p 1160).					
Dependency:	Refer to: r1150, p1155, p1160					
p1189[0...n]	Speed setpoint configuration / n_ctrl config					
VECTOR_G	Can	be changed: U, T	Calc	ulated: -	Access level: 2	
	Data	type: Unsigned16	Dyn	index: DDS, p0180	Func. diagram: 3080	
	P-Gr	oup: Setpoints	Unit	group: -	Unit selection: -	
	Not	for motor type: -	Scal	ing: -	Expert list: 1	
	Min		Max		Factory setting	
	-		-		0011 bin	
Description:	Sets the configuration for the speed setpoint.					
Bit field:		Signal name Interpolation ramp-fct active		1 signal Yes	No	$\begin{aligned} & \text { FP } \\ & 3080 \end{aligned}$
	01 Interpol. op-loop ctrl /speed controller active			Yes	No	3080
Note:	Reb The - iso	it 01: interpolator is only effe chronous PROFIBUS o	cases	-life received from the	(STW2.1	
r1197	Fixed speed setpoint number actual / n_set_fixed No act					
VECTOR_G	Can be changed: -		Calc	ulated: -	Access level: 3	
	Data type: Unsigned32		Dyn	index: -	Func. diagram: 3010	
	P-Group: Setpoints		Unit	group: -	Unit selection: -	
	Not for motor type: -			ing: -	Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the number of the selected fixed speed/velocity setpoint.					
Dependency:	Refer to: p1020, p1021, p1022, p1023					
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p $1023=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).					
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan					
VECTOR_G	Can be changed: -		Calc	ulated: -	Access level: 3	
	Data type: Unsigned16			index: -	Func. diagram: 2505	
	P-Group: Setpoints			group: -	Unit selection: -	
	Not for motor type: -		Scal	ing: -	Expert list: 1	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and BICO output for the control word of the setpoint channel.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Fixed setp bit 0		Yes	No	3010
	01	Fixed setp bit 1		Yes	No	3010
	02	Fixed setp bit 2		Yes	No	3010
	03	Fixed setp bit 3		Yes	No	3010
	05	Inhibit negative direction		Yes	No	3040

	If only one VSM is connected, then this can be used for the flying restart (p1200) (for induction motors, also see p0247 bit 5). When activating flying restart, line synchronization must be deactivated ($\mathrm{p} 3800=0$).
	Refer to: p1201
Notice:	The "flying restart" function must be used in cases where the motor may still be running (e.g. after a brief line supply interruption) or is being driven by the load. The system might otherwise shut down as a result of overcurrent. It does not make sense to use "flying restart" together with the "motor holding brake function" (p1215 > 0) because then the flying restart will always be realized with the motor stationary.
Note:	For p1200 = 1, 4, the following applies:
	Flying restart is active after faults, OFF1, OFF2, OFF3.
	For p1200 = 2, 5, the following applies:
	The "power-on" is the first power-on operation after the drive system has been booted. This is practical for motors with a high-inertia load.
	For p1200 = 1, 2, 3, the following applies: The search is made in both directions.
	For p1200 $=4,5,6$, the following applies: The search is only made in the setpoint direction. For a setpoint of zero, a search is not made in the negative direction of rotation.
	For operation with encoder, the following applies:
	$\mathrm{p} 1200=1,4$ as well as p1200 $=2,5$ and $\mathrm{p} 1200=3,6$ have the same meaning.
	For U/f control ($\mathrm{p} 1300<20$), the following applies:
	The speed can only be sensed for values above approx. 5% of the rated motor speed. For lower speeds, it is assumed that the motor is at a standstill.
	If p1200 is changed while commissioning ($\mathrm{p} 0009, \mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1

Description:	Sets the signal source to enable the "flying restart" function.
Dependency:	Refer to: p1200
Note:	Withdrawing the enable signal has the same effect as setting p1200 $=0$.

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact			
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: Functions	Units group: -	Unit selection: -	
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	10 [\%]	4000 [\%]	100 [\%]	
Description:	Sets the factor for the search speed for flying restart.			
	The value influences the rate at which the output frequency is changed during a flying restart. A higher value results in a longer search time.			
Recommend.:	For encoderless vector control and motor cables longer than 200 m , set the factor p1203 >= 300\%.			
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.			
	For vector control, a value that is too low or too high can cause flying restart to become unstable.			
Note:	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart). With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203). This parameter is not relevant for a fast flying restart with voltage model (see r1780.11).			
r1204.0... 15	CO/BO: Flying restart U/f control status / FlyRest Uf st			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: Functions	Units group: -	Unit selection: -	
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status for checking and monitoring flying restart states in the U/f control mode.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Current impressed	Yes	No	-
	01 No current flow	Yes	No	-
	02 Voltage input	Yes	No	-
	03 Voltage reduced	Yes	No	-
	04 Start ramp-function generator	Yes	No	-
	05 Wait for execution	Yes	No	-
	06 Slope filter act	Yes	No	-
	07 Positive gradient	Yes	No	-
	08 Current < thresh	Yes	No	-
	09 Current minimum	Yes	No	-
	10 Search in the positive direction	Yes	No	-
	11 Stop after positive direction	Yes	No	-
	12 Stop after negative direction	Yes	No	-
	13 No result	Yes	No	-
	14 Fast flying restart w/ voltage model for induction motor activ.	Yes	No	-
	15 Flying restart with VSM active	Yes	No	-

r1205.0...20	CO/BO: Flying restart vector control status / FlyRest vector st		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output for the status for checking and monitoring flying restart states in the vector control		
	mode.		

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Speed adaptation circuit record angle	Yes	No	-
	01	Speed adaptation circuit set gain to 0	Yes	No	-
	02	Isd channel enable	Yes	No	-
	03	Speed control switched out	Yes	No	-
	04	Quadrature arm switched in	Yes	No	-
	05	Special transformation active	Yes	No	-
	06	Speed adaptation circuit set I comp to 0	Yes	No	-
	07	Current control on	Yes	No	-
	08	Isd_set $=0 \mathrm{~A}$	Yes	No	-
	09	Frequency held	Yes	No	-
	10	Search in the positive direction	Yes	No	-
	11	Search Started	Yes	No	-
	12	Current impressed	Yes	No	-
	13	Search interrupted	Yes	No	-
	14	Speed adaptation circuit deviation $=0$	Yes	No	-
	15	Speed control activated	Yes	No	-
	16	Fast flying restart w/ voltage model for induction motor activ.	Yes	No	-
	17	Fast flying restart w/ voltage model for induction motor exited	Yes	No	-
	18	Apply VSM voltage to the monitor	Yes	No	-
	19	Preassign flux ramp	Yes	No	-
	20	Adaptation current controller and speed adapt. controller gain	Yes	No	-
Note:	Re bit $00 . .09$:				
	Used to control internal sequences during the flying restart.				
	Depending on the motor type (p 0300), the number of active bits differs.				
	Re bits $10 \ldots 17$:				
	Are used to monitor the flying restart sequence.				
$\begin{aligned} & \hline \mathbf{p 1 2 0 6 [0 . . . 9]} \\ & \text { B_INF, VECTOR_G } \end{aligned}$	Faults without automatic restart / F w/out auto AR				
	Can be changed: U, T		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Functions		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory	
			65535	0	
Description: Dependency:	Sets faults for which automatic restart should not be effective.				
	The setting is only effective for $\mathrm{p} 1210=6,16$.				
	Refer to: p1210				
p1207		AR connection following drive	object / AR		
B_INF	Can be changed: U, T		Calculated: -	Acces	
	Data type: Unsigned32 / Binary		Dyn. index: -	Func.	
	P-Group: Functions		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
			-	0	
Description:	Modifies the pre-charging monitoring of the infeed.				
	The active automatic restart (AR) of the following drive object can be interconnected using this binector input (B $\mathrm{p} 1207=\mathrm{r} 1214.2$).				
	This means that when the automatic restart is operational, the pre-charging monitoring of the infeed is de-activated and is only re-activated under the following conditions:				
	- the absolute current in the DC link is greater than 2% of the maximum current (r0209) of the infeed to provide protection against short-circuit in the DC link.				
	- if a Voltage Sensing Module (VSM) is being used, the line supply voltage amplitude is greater than 3% of the parameterized unit supply voltage (p 0210) to protect the pre-charging resistors against continuous filter current when the line supply partially returns.				

p1210	Automatic restart mode / AR mode		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16	0
Description:	Sets the automatic restart mode (AR).		
Value:	0 : Inhibit automatic restart		
	1: Acknowledge all faults without restarting		
	4: Restart after line supply failure w/o additional start atte		
	6: Restart after fault with additional start attempts		
	14: Restart after line supply failure following man. acknow		
	16: Restart after fault following manual acknowledgment		
Recommend.:	For brief line supply failures, the motor shaft may still be rotating when restarting. The "flying restart" function (p 1200) might need to be activated to restart while the motor shaft is still rotating.		
Dependency:	The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210>1, there is no active ON command, then the automatic restart is interrupted.		
	When using an Operator Panel in the LOCAL mode, then there is no automatic start.		
	For p1210 $=14,16$, a manual acknowledgement is required for an automatic restart.		
	Refer to: p0840, p0857, p1267		
Danger: !	If the automatic restart is activated ($\mathrm{p} 1210>1$) if there is an ON command (refer to p 0840), the drive is powered up as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is again present or the feedback of the line supply infeed (refer to p0864) is again available. This automatic power-up sequence can only be interrupted by withdrawing the ON command.		
Notice:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). When faults are present, therefore, the parameter cannot be changed.		
	For p1210>1, the motor is automatically started.		
Note:	When automatic restart mode is activated, the supply voltage must remain connected (e.g. backed up by UPS).		
	Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.		
	Rep1210 $=4$:		
	An automatic restart is only carried out if fault F30003 occurred at the Motor Module or a 1 signal is present at binector input p1208[1]. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If the 24 V Control Unit power supply fails, then this is interpreted as a line supply failure.		
	Rep1210 = 6:		
	An automatic restart is carried out if any fault has occurred or there is a 1 signal at binector input p1208[0].		
	Re p1210 = 14:		
	As for p1210 = 4. However, faults that are present must be manually acknowledged.		
	Re p1210 = 16:		
	As for p1210 = 6. However, faults that are present must be manually acknowledged.		
p1211	Automatic restart start attempts / AR start attempts		
B_INF	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10	3
Description:	Sets the start attempts of	art function for p1	

Dependency:	This parameter setting is active for $p 1210=6$.
For p1210 $=4$, the parameter only has an influence if, when attempting to start, an additional line phase failure	
(F06200) occurs.	
A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).	
Refer to: p1210, r1214	
Notice:	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the
automatic restart function is re-activated.	
After a complete power failure the start counter always starts with the counter value that applied before the power	
failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart	
function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2 , the	
fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value	
2.	
A start attempt starts immediately when a fault occurs. The restart attempt is considered to have been completed if	
the infeed is powered up and an additional delay time of 1 s has expired.	
As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2 . When	
successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been	
completed, then acknowledgement starts again from the beginning.	
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached.	
After a successful start attempt (i.e. a fault/error has no longer occurred up to the end of the power-up operation) the	
start counter is again reset to the parameter value after 1 s . If faults re-occur, the parameterized number of start	

p1211

VECTOR_G

Description:
Dependency:

Notice:

Note:

Automatic restart start attempts / AR start attempts

Can be changed: U, T
Data type: Unsigned16
P-Group: Functions
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
10

Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
3

Sets the start attempts of the automatic restart function for $\mathrm{p} 1210=4,6$.
A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Refer to: p1210, r1214
After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2 , the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2.

A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired.
As long as a fault is present, an acknowledge command is generated in the time intervals of p1212/2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgement starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached.
After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
At least one start attempt is always carried out.
After a line supply failure, acknowledgement is immediate and when the line supply returns, the system is powered up. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgement also causes the start counter to be decremented.

The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).

Re index 1
The start counter (refer to r1214) is only set back to the starting value p1211 if, after successful restart, the time in $p 1213[1]$ has expired. The delay time is not effective for fault acknowledgement without automatic restart ($p 1210=$ 1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the power-on command is withdrawn and the fault is acknowledged.
The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.

p1213[0...1]	Automatic restart monitoring time / AR t_monit			
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: Functions	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.0 [s]	10000.0 [s]	0.0 [s]	
Description: Index:	Sets the monitoring time of the automatic restart (AR).			
	$\begin{aligned} & {[0]=\text { Restart }} \\ & {[1]=\text { Reset start counter }} \end{aligned}$			
Dependency: Notice:	Refer to: p1210, r1214			
	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.			
Note:	Re index 0 :			
	The monitoring time starts when the faults are detected. If the automatic acknowledgements are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 $=1$), then fault F07320 is output.			
	The monitoring is de-activated with $p 1213=0$. If $p 1213$ is set lower than the sum of $p 1212$, the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for $\mathrm{p} 1210=1$, the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.			
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).			
	In the case of $p 1210=14,16$, the faults which are present must be acknowledged manually within the time in p1213[0]. Otherwise, fault F07320 is generated after the set time.			
	Re index 1:			
	The start counter (refer to r1214) is only set back to the starting value p1211 if, after successful restart, the time in p1213[1] has expired. The delay time is not effective for fault acknowledgement without automatic restart (p1210 = 1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the power-on command is withdrawn and the fault is acknowledged.			
	The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.			
$\text { r1214.0... } 15$ B_INF	CO/BO: Automatic restart status / AR status			
	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the status of the automatic restart (AR).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Initialization	Yes	No	-
	01 Wait for alarm	Yes	No	-
	02 Auto restart act	Yes	No	-
	03 Setting the acknowledgement command	d Yes	No	-
	04 Acknowledge alarms	Yes	No	-
	05 Restart	Yes	No	-

	06	Delay time running after automatic powerup	Yes	No	-
	07	Fault	Yes	No	-
	10	Effective fault	Yes	No	-
	12	Start count. bit 0	ON	OFF	-
	13	Start count. bit 1	ON	OFF	-
	14	Start count. bit 2	ON	OFF	-
	15	Start count. bit 3	ON	OFF	-
Note:	Re bit 00:				
	State to display the single initialization after POWER ON.				
	Re bit 01:				
	State in which the automatic restart function waits for faults (initial state).				
	Re bit 02:				
	General display that a fault has been identified and that the restart or acknowledgement has been initiated. Re bit 03:				
	Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.				
	Re bit 04:				
	State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$).				
	Re bit 05:				
	State in which the drive is automatically powered up (only for p1210 $=4,6$).				
	Re bit 06:				
	State in which the system waits after having been powered up, to the end of the start attempt.				
	For $\mathrm{p} 1210=1$, this signal is directly set after the faults have been successfully acknowledged.				
	Re bit 07:				
	State which is assumed after a fault occurs within the automatic restart function.				
	Re bits $12 \ldots 15$:				
	Actual state of the start counter (binary coded).				
r1214.0... 15	CO/BO: Automatic restart status / AR status				
VECTOR_G	Can be changed: -		ulated: -	Acces	
	Data type: Unsigned16		index: -	Func	
	P-Group: Functions		group: -	Unit s	
	Not for motor type: -		ing: -	Expe	
	Min M			Facto	
				-	
Description:	Displays the status of the automatic restart (AR).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Initialization	Yes	No	-
	01	Wait for alarm	Yes	No	-
	02	Auto restart act	Yes	No	-
	03	Setting the acknowledgement command	Yes	No	-
	04	Acknowledge alarms	Yes	No	-
	05	Restart	Yes	No	-
	06	Delay time running after automatic powerup	Yes	No	-
	07	Fault	Yes	No	-
	10	Effective fault	Yes	No	-
	12	Start count. bit 0	ON	OFF	-
	13	Start count. bit 1	ON	OFF	-
	14	Start count. bit 2	ON	OFF	-
		Start count. bit 3	ON	OFF	-
Note:	Re bit 00:				
	State to display the single initialization after POWER ON.				
	Re bit 01:				
	State in which the automatic restart function waits for faults (initial state).				

Re bit 02:
General display that a fault has been identified and that the restart or acknowledgement has been initiated. Re bit 03:
Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.
Re bit 04:
State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$).
Re bit 05
State in which the drive is automatically powered up (only for p1210 = 4, 6).
Re bit 06:
State in which the system waits after having been powered up, to the end of the start attempt (to the end of the magnetizing process).
For $\mathrm{p} 1210=1$, this signal is directly set after the faults have been successfully acknowledged.
Re bit 07:
State which is assumed after a fault occurs within the automatic restart function. This is only reset after acknowledging the fault and withdrawing the power-on command
Re bit 10:
When the automatic restart function is active, r1214.7 is displayed, otherwise the active fault r2139.3.
Re bits $12 \ldots 15$:
Actual state of the start counter (binary coded).

Description: Value:

Dependency:
Caution:

Notice:

Note:

Motor holding brake configuration / Brake config
Can be changed: T Calculated: -

Data type: Integer16 Dyn. index: -
P-Group: Functions Units group:-
Not for motor type: -
Min
0

Calculated: -

Scaling: -

Max
3

Access level: 2
Func. diagram: 2701, 2707 2711
Unit selection: -
Expert list: 1
Factory setting
0

Sets the holding brake configuration.
0 : \quad No motor holding brake available
1: Motor holding brake acc. to sequence control
2: Motor holding brake always open
3: Motor holding brake like sequence control connection via BICO
Refer to: p1216, p1217, p1226, p1227, p1228, p1278
For the setting p1215 = 0, if a brake is used, it remains closed. If the motor moves, this will destroy the brake.

If p1215 was set to 1 or if p 1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.
If the configuration is set to "no holding brake present" when booting, then the motor holding brake will be automatically identified. If a motor holding brake is detected, the configuration is set to "motor holding brake as for sequence control".
If a motor holding brake is used via the brake connection of the Motor Module integrated in the drive, then it is not permissible that p1215 is set to 3 .
if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal.
When the function module "extended brake control" is activated (r0108.14 = 1), r1229.1 should be interconnected as control signal.
The parameter can only be set to zero when the pulses are inhibited.
The parameterization "no motor holding brake available" and "Safe Brake Control" enabled (p1215 = 0, p9602 $=1$, p9802 = 1) is not practical if there is no motor holding brake.
The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ($\mathrm{p} 1215=3, \mathrm{p} 9602=1, \mathrm{p} 9802=1$) is not practical.

Note:	1 signal: Brake closed.		
	When braking with 1 feedback signal, the inverted feedback signal is connected to the BICO input for the second feedback signal (p 1223).		
	For r1229.5 = 1, OFF1/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor whereby OFF2 remains effective.		
p1223	BI: Motor holding brake feedback signal brake open / Brake feedb open		
VECTOR_G (Ext brake)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2711
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the feedback signal "brake open".		
	For motor holding brakes with feedback signal, the signal "brake open" can be activated using p1275.5 $=1$.		
Dependency:	Refer to: p1222, p1275		
Note:	1 signal: Brake open.		
	When braking with 1 feedback signal, the inverted feedback signal is connected to the BICO input for the second feedback signal (p1222).		
p1224[0...3]	BI: Close motor holding brake at standstill / Brk close standst		
VECTOR_G (Ext brake)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2704
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for close brake at standstill.		
Dependency:	Refer to: p1275		
Note:	[0]: Signal, close brake at standstill, inversion via p1275.2		
	[1]: Signal, close brake at standstill, inversion via p1275.3		
	[2]: Signal, close brake at standstill		
	[3]: Signal, close brake at standstill		
	These four signals form an OR logic operation.		
p1225	Cl : Standstill detection threshol	value / Standstill th	
VECTOR_G (Ext brake)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 2704
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	63[0]
Description:	Sets the signal source "threshold value" for the standstill identification.		
Dependency:	Refer to: p1226, p1228, r1229		
p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 2701, 2704
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the standstill identification.		

p1228

Description:

Dependency:

Notice:

Pulse suppression delay time / Pulse suppr t_del

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Functions
Not for motor type: Min
0.000 [s]

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
299.000 [s]

Access level: 2
Func. diagram: 2701, 2704
Unit selection: -
Expert list: 1
Factory setting
0.000 [s]

Sets the delay time for pulse suppression.
After OFF1 or OFF3, the pulses are canceled, if at least one of the following conditions is fulfilled:

- the speed actual value falls below the threshold in p1226 and the time started after this in p1228 has expired.
- the speed setpoint falls below the threshold in p1226 and the time started after this in p1227 has expired.

Refer to: p1226, p1227
When the motor holding brake is activated, pulse cancellation is additionally delayed by the brake closing time (p1217).

Danger:

Note:

Rep1231 = 1, 2 :

- only short-circuit-proof motors may be used, or suitable resistors must be used to short-circuit the motor Re p1231 = 3 :
- when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)!
- it is only permissible to use motors that are short-circuit proof ($\mathrm{p} 0320<\mathrm{p} 0323$).
- The Motor Module must be able to conduct 180% short-circuit current (r0320) of the motor (r0209).
- the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor.
- if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 = 0), in order to ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for the components.
- if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module.
- if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor).
Re p1231 = 4 and synchronous motor:
- when armature short-circuit is active, all of the motor terminals are at half of the DC link potential.
- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
- The Motor Module must be able to conduct 180% short-circuit current (r0320) of the motor (r0209).

Re p1231 = 1, 2 :
The external armature short circuit can only be selected for synchronous motors (p0300). In this case, control bit BO: r1239.0 must be interconnected (e.g. to a digital input) to control the external contactor.
The external armature short circuit cannot be set as a fault response. It can be triggered via binector input p1230. It is also always activated in the case of pulse suppression.
Re p1231 = 3 :
Internal voltage protection (using an internal armature short circuit) can only be selected for synchronous motors (p0300) and Motor Modules in booksize or chassis format. Further, it is not permissible for Safety Integrated to be active on blocksize Motor Modules (i.e. p9501 = 0 and p9601 = 0). The internal voltage protection prevents the DC link capacitance from being charged if there is no possibility of regenerating the EMF of a motor operated in the fieldweakening mode. The Motor Module must support this function (r0192.9 = 1).
a) If the Motor Module does not support the autonomous, internal armature short-circuit ($\mathrm{r} 0192.10=0$), the armature short-circuit is activated as soon as the activation criterion is fulfilled (refer below):
b) If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module itself decides - using the DC link voltage - as to whether the short-circuit should be activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn. This therefore ensures that the required input voltage for the Control Supply Module is maintained.
For chassis units, the following applies:
The value for the voltage limits is calculated, depending on the voltage class, from EEPROM data of the particular power unit and a factor.
Re p1231 = 4 :
The function is activated as soon as the activation criterion is fulfilled.

- the function can be superseded by OFF2
a) For synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}, 4 \mathrm{xx}$), the internal armature short-circuit is initiated.
- the Motor Module must support this function (r0192.9 = 1).
b) For induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$), the DC braking is initiated.

Activation criterion (one of the following criteria is fulfilled):

- binector input p1230 $=1$ signal (DC braking activation).
- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19 = 0).

Re p1231 = 5:
DC braking can only be set for induction motors.
DC braking is activated if the OFF1 or OFF3 command is present. Binector input p1230 is ineffective. If the drive speed still lies above the speed threshold p1234, then initially, the drive is ramped-down to this threshold, demagnetized (see p0347) and is then switched into DC braking for the time set in p1233. After this, the drive is switched-off. If, at OFF1/OFF3, the drive speed is below p1234, then it is immediately demagnetized and switched into DC braking. A change is made into normal operation if the OFF1 command is withdrawn prematurely.
DC braking by means of fault response continues to be possible.
Re p1231 = 14:
DC braking can only be set for induction motors.
DC braking is initiated if binector input p1230 = 1 during operation and the actual speed is below the starting speed p1234 (before this, the drive must have operated above p1234 plus the hysteresis). Then, following upstream demagnetization (see p0347), the braking current p1232 is injected for the time set in p1233. The drive then changes into normal operation. During braking the command for DC braking can be withdrawn. If the time p1233 is exceeded, then $D C$ braking is inhibited and the drive changes into normal operation.
For OFF1 and OFF3, DC braking is only executed, if binector input p1230 = 1 signal.
DC braking by means of fault response continues to be possible.
For operation with an encoder, the encoder signal may not exceed a ripple of 15 rpm in the range of p 1234 .
Re p1231 = 3, 4, 5, 14:
The value can only be changed to values not equal to $3,4,5$ or 14 if p0491 is not equal to 4 and p2101 is not equal to 6 (armature short-circuit/DC braking not set).
Note:
ASC: Armature Short Circuit
CSM: Control Supply Module
DCBRK: DC Braking
IVP: Internal Voltage Protection
UPS: Uninterruptible Power Supply

p1232[0...n]	DC braking braking current / DCBRK I_brake		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the braking current for DC braking.		
Dependency:	Refer to: p1230, p1231, p1233, p1234, r1239, p1345, p1346		
Note:	A change to the braking current becomes effective the next time that DC braking is switched on.		
	The value for p1232 is specified as an rms value in the 3 -phase system. The magnitude of the braking current is the same as that of an identical output current at frequency zero (see r0067, r0068, p0640). The braking current is internally limited to r0067.		
	For the current controller, the settings of parameters p1345 and p1346 (I_max limiting controller) are used.		

p1233[0...n] DC braking time / DCBRK time

VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Max
	Min	$3600.0[\mathrm{~s}]$	Factory setting
	$0.0[\mathrm{~s}]$	1.0 [s]	
Description:	Sets the DC braking time (as fault response).		
Dependency:	Refer to: p1230, p1231, p1232, p1234, r1239		
Note:	The time set is also effective when parameterizing DC braking as fault response.		
	If a speed encoder is being used, DC braking is ended as soon as the drive falls below the standstill threshold		
	(p1226).		

p1234[0...n]	Speed at the start of DC braking / DCBRK n_start		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 7017
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	40000.00 [rpm]
Description:	Sets the starting speed for DC braking. If the actual speed falls below this threshold, then DC braking is activated.		
Dependency:	Refer to: p1230, p1231, p1232, p1233, r1239		
Notice:	If an encoder fault occurs during closed-loop operation with an encoder, controlled deceleration of the drive down to the start speed p1234 is no longer possible. In this case, DC braking is activated immediately and injects the braking current p1232 for the braking time p1233 after de-magnetizing. The braking current and braking duration must, therefore, be dimensioned accordingly for this situation so that the drive can be decelerated to standstill.		
	In the case of operation with an encoder, this speed may not be set too low so as ensure that the oscillation movement induced by the residual flux/remanence of the motor does not cause DC braking to be de-activated again.		
Note:	Function p1231 = 14 is activated at 15 DC braking from being deactivated for	higher than the value set in encoder signals with ripple.	is hysteresis is required to prevent

p1235[0...n]	BI: External armature short-circuit contactor feedback signal / ASC ext feedback		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 1
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for the contactor feedback signal for external armature short-circuit.
Dependency: Refer to: p1230, p1231, p1236, p1237, r1239
Notice: In order that the pulses are not enabled when the contactor is closed, the contactor feedback signal must lag by a sufficiently long time when opening the contactor.
Note: 1 signal: The contactor is closed.
0 signal: The contactor is open.

p1236[0...n]	Ext. armature short-cct. contactor feedback signal monit. time / ASC ext t_monit		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	200 [ms]
Description:	Sets the monitoring time of the contactor feedback signal for the external armature short-circuit configuration. If the contactor feedback signal (p 1235) is parameterized, then the appropriate feedback signal (r1239.1) is expected within this monitoring time after either opening or closing the contactor.		
Dependency:	Refer to: p1230, p1231, p12		

p1237[0...n] External armature short-circuit delay time when opening / ASC ext t_wait
VECTOR g
Can be changed: U, T

Data type: FloatingPoint32
Calculated: -
Dyn. index: MDS, p0130 Func. diagram: -
P-Group: Functions
Not for motor type: -
Min
Units group: -
Scaling: -
Max
Access level: 1

Unit selection: -
Expert list: 1
Factory setting
0 [ms]
1000 [ms]
200 [ms]
Description: Sets the delay time when opening the contactor of the external armature short-circuit.

r1239.0... 13 VECTOR_G

Description: Bit field:

Dependency: Note:

CO/BO: Armature short-circuit / DC braking status word / ASC/DCBRK ZSW		
Can be changed: -	Calculated: -	Access level: 1
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Functions	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	-

Displays the status word for armature short-circuit.

Bit	Signal name	1 signal	0 signal	FP
00	External armature short-circuit	Active	Inactive	-
01	External armature short-circuit contactor feedback signal	Closed	Open	-
02	External armature short-circuit ready	Yes	No	-
03	External armature short-circuit with contactor feedback signal	Yes	No	-
04	Internal armature short-circuit	Active	Inactive	-
05	Internal armature short circuit feedback signal from power unit	Active	Inactive	-
06	Internal armature short-circuit ready	Yes	No	-
08	DC braking active	Yes	No	7017
09	DC current injection active	Yes	No	-
10	DC braking ready	Yes	No	7017
11	Armature short circuit/DC braking selected	Yes	No	-
12	DC braking selection internally inhibited	Yes	No	-
13	DC braking for OFF1/OFF3	Yes	No	-

Refer to: p1230, p1231, p1232, p1233, p1234, p1235, p1236, p1237
External armature short-circuit (bits 0 ... 3):
Re bit 00:
Using this signal, the motor is short-circuited through an external contactor circuit. This means that this BO: p1239.0 must be interconnected e.g. to a digital output.
Re bit 01:
This signal indicates the state of the contactor to establish the armature short-circuit. To do this, BI: p1235 must be interconnected to a digital input.
Re bit 02:
The external armature short-circuit configuration is ready and is activated as soon as the activation criterion is fulfilled.
Re bit 03:
1: A feedback signal from an external contactor was parameterized in BI: p1235.
Internal voltage protection / internal armature short-circuit (bits 4 ... 6):
Re bit 04:
a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module does not support the autonomous internal voltage protection (r0192.10 = 0).
The Control Unit issues the command to the Motor Module to short-circuit the motor through the power semiconductors.
a) Internal voltage protection (p1231=3) was selected and the Motor Module supports the autonomous internal voltage protection ($\mathrm{r} 0192.10=1$).
The Motor Module decides autonomously whether the armature short-circuit is activated. In this case, the following applies: $\mathrm{r} 1239.4=\mathrm{r} 1239.5$.
c) Internal armature short-circuit (p1231 = 4) was selected.

The Control Unit issues the command to the Motor Module to short-circuit the motor through the power semiconductors.
Re bit 05:
The Motor Module signals that the motor is short-circuited in the Motor Module through the power semiconductors.

Re bit 06:
a) Internal voltage protection $(\mathrm{p} 1231=3)$ was selected and the Motor Module does not support the autonomous internal voltage protection (r0192.10=0).
The internal voltage protection is ready and is activated as soon as the activation criterion is fulfilled.
a) Internal voltage protection (p1231 = 3) was selected and the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1) .
The internal voltage protection is ready and the Motor Module decides autonomously - using the DC link voltage whether the short-circuit is activated. In this case, protection is also provided even if the DRIVE-CLiQ connection between the Control Unit and Motor Module was interrupted. The short-circuit is activated if the DC link voltage exceeds 800 V . If the DC link voltage falls below 450 V , then the short-circuit is withdrawn.
c) Internal armature short-circuit (p1231 = 4) was selected.

The internal armature short-circuit is ready and is activated as soon as the activation criterion is fulfilled.
Activation criterion (one of the following criteria is fulfilled):

- the signal at $\mathrm{BI}: \mathrm{p} 1230$ (armature short-circuit activation) is 1 .
- the drive is not in the state "S4: Operation" or in S5x (refer to function diagram 2610).
- the internal pulse enable is missing (r0046.19=0).

Re bit 12, 13:
Only effective for p1231 = 14

p1240[0...n] VECTOR_G (n/M)

Vdc controller or Vdc monitoring configuration / Vdc ctrl config
Can be changed: U, T
Data type: Integer16
P-Group: Functions
Not for motor type: REL Min
0

Calculated: -
Dyn. index: DDS, p0180
Units group: -
Scaling: -
Max
6

Access level: 3
Func. diagram: 6220
Unit selection: -
Expert list: 1
Factory setting
1

Description: Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode.
0: Inhib Vdc ctrl
1: Enable Vdc_max controller
2: Enable Vdc_min controller (kinetic buffering)
3: Enable Vdc_min controller and Vdc_max controller
4: \quad Activate Vdc_max monitoring
5: Activate Vdc_min monitoring
6: Activate Vdc_min monitoring and Vdc_max monitoring
Dependency:
Warning:

Caution:
Refer to: p1245
When the Vdc_max controller is active, the motor can be accelerated (e.g. by driving loads or as a result of high DC link voltages). This can be caused by other drives that are operating on a common DC link busbar.

If several drives are operated from the same DC link busbar, then it is recommended that the Udc control is only activated for the drives with high moments of inertia. If the Udc controls for various drives are simultaneously active, then they can mutually influence one another. In this case, the controller dynamic performance should be reduced or the Udc control of individual drives should be deactivated.
Drives with Udc control must be able to brake and accelerate independently of one another.
Notice: An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Note:
p1240 = 1, 3 :
When the DC link voltage limit specified for the Motor Module is reached the following applies:

- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
- the ramp-down times are automatically increased.
p1240 = 2, 3:
When the switch-in threshold of the Vdc_min controller is reached (p1245), the following applies:
- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
- the motor is braked in order to use its kinetic energy to buffer the DC link.
$\mathrm{p} 1240=4,5,6$:
When the threshold in r1242 or r1246 is reached, the DC link voltage monitoring initiates a fault (F07403 or F07404) with a response and therefore reduces additional negative effects on the DC link voltage.
If a braking resistor is connected to the DC link, then the Vdc_max control should be disabled (also see p1531).

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1254 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:		
	AC/AC device: $\mathrm{r} 1242=1.15$ * $\operatorname{sqrt}(2)$ * p0210		
	DC/AC device: $\mathrm{r} 1242=1.15$ * p0210		
	If p1254 $=1$ (automatic sensing of the switch-in level = on), then the following applies:		
	$\mathrm{r} 1242=\mathrm{Vdc}$ _max -50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1242 = Vdc_max - 25.0 V (for 230 V power units)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is not switched back off until the DC-link voltage falls below the threshold 0.95 * r1242 and the controller output is zero.		
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243.		
	If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved.		
Note:	The pre-setting of the dynamic factor is based on the power units connected to DRIVE-CLiQ. It is assumed that the power units connected via DRIVE-CLiQ are also electrically connected to the DC link. If this is not the case, then the dynamic factor must be optimized manually.		
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
	AC/AC device: $\mathrm{r} 1246[\mathrm{~V}]=\mathrm{p} 1245[\%]$ * sqrt(2) * p0210		
	DC/AC device: $\mathrm{r} 1246[\mathrm{~V}]=\mathrm{p} 1245\left[\%{ }^{\text {] }}\right.$ * 0210		
Dependency:	Refer to: p0210		
Warning:	An excessively high value may adversely affect normal drive operation.		
	The values up to 150% are intended for operating modes p1240 $=5,6$.		

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	10.00 [rpm]
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.		
Note:	For fast braking where the ra the opposite direction by inc generator (p 1131). This is supp	erator tracking was active, it is d threshold and setting a final ro dynamic setting of the speed co	ble to prevent the drive rotating in g-off time in the ramp-function er.

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor).		

Note: \quad The gain factor is proportional to the capacitance of the DC link. The parameter is pre-set to a value that is optimally adapted to the capacitance of the individual Motor Module. The capacitances of the other power units, which are connected to the DC link, can be taken into account using the dynamic factor (p1247 or p1243).

p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the integral time for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Note:	An integral time is normally not required for single axis drives. For multi-axis drives on the other hand, it may be possible to compensate for interference from other axes using the integral time (integral component).		

$\begin{aligned} & \hline \mathbf{p 1 2 5 2 [0 . . . n] ~} \\ & \text { VECTOR_G (n/M) } \end{aligned}$	Vdc controller rate time / Vdc_ctrl t_rate		
	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6220
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the rate time constant for the DC-link voltage controller (Vdc_min controller, Vdc_max controller). The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Dependency:			
p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0 : Automatic detection inhibited		
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	0.000 [s]
Description:	Sets the time threshold for the If this value is exceeded a fa Prerequisite: p1256 = 1	roller (kinetic buffering). required response can be	rized.
Notice:	If a time threshold has been drive does not shut down with of fault response OFF3. It is	the Vdc_max controller should hen Vdc_min control is exited increase the OFF3 ramp-do	e activated $(p 1240=3)$ the time violation) and p1135.

p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, $\mathrm{n}<\mathrm{p} 1257$-> F 07405 1: Buff. Vdc until undervolt., n<p1257 -> F07405, t>p1255 -> F07406		
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized Kinetic buffering is not started below the speed threshold.		
Note:	Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.		
$\overline{\mathbf{r 1 2 5 8}}$	CO: Vdc controller output / Vdc_ctrl output		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220
	P-Group: Functions	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Note:	The regenerative power limit p1531 is used for vector control to pre-control the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		
p1260	Bypass configuration / Bypass config		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Sets the configuration for the bypass function.		
Value:	0: Bypass de-activated 1: Bypass with synchronization and overlap 2: Bypass with synchronization without overlap 3: Bypass without synchronization		
Note:	If the bypass function is selected ($(\mathrm{p} 1260>0)$, then when the power unit restarts after POWER OFF, the state of the bypass switch is evaluated. This means that after the ramp-up, it is possible to directly change into the standby mode. This is only possible for p1267 = 1 (bypass using the control signal) and if the control command after the system has been booted is still available (p 1266). This function has a higher priority than the automatic restart function (p1210).		

The "bypass" function can only be switched off again $(\mathrm{p} 1260=0)$ if the bypass is not active or the bypass function has a fault.
The corresponding function should be activated in p3800 for bypass with synchronization.

p1264	Bypass delay time / Bypass t_del			
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: -	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0.000 [s]	300.000 [s]	1.000	
Description:	Sets the delay time for switching to line operation for a non-synchronized bypass.			
p1265	Bypass speed threshold / Bypass n_thresh			
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: -	Units group: 3_1	Unit	
	Not for motor type: REL	Scaling: p2000	Exper	
	Min	Max	Facto	
	0.00 [rpm]	210000.00 [rpm]	1480.0	
Description:	Sets the speed threshold to activate the bypass.			
Note:	When selecting p1260 $=3$ and p1267.1 $=1$, the bypass is automatically activated when this speed is reached.			
p1266	BI: Bypass control command / Bypass command			
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func.	
	P-Group: -	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	- -		0	
Description:	Sets the signal source for the control command to the bypass.			
p1267	Bypass changeover source configuration / Chngov_src config			
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Acces	
	Data type: Unsigned8	Dyn. index: -	Func.	
	P-Group: -	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	- -		0000	
Description:	Sets the cause that should initiate the bypass.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bypass via signal (BI: p1266)	Yes	No	-
	01 Bypass via reaching the speed threshold	d Yes	No	-
Note:	The parameter only has an effect for a non-synchronized bypass. p1267.0 = 1:			
	The bypass is initiated by setting a binary signal. When the command is reset, after the debypass delay time (p 1263) has expired, operation at the power unit is re-selected. p1267.1 = 1: When the speed threshold entered in p1265 is reached, the bypass is switched in. The system only switches back when the speed setpoint again falls below the threshold value.			

p1268	BI: Bypass feedback synchronization completed / FS sync compl
$\begin{aligned} & \text { VECTOR_G } \\ & \text { (Tech_ctrl) } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3 Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting - - 3819.2
Description: Dependency:	Sets the signal source for the feedback signal "synchronization completed" for the bypass function. Refer to: r3819
p1269[0...1]	BI: Bypass switch feedback signal / Bypass FS
VECTOR_G (Tech_ctrl)	Can be changed: U, T Calculated: - Access level: 3 Data type: Unsigned32 / Binary Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting - - 0
Description: Index: Note:	Sets the signal source for the feedback signal of the bypass switch. [0] = Switch motor/drive [1] = Switch motor/line supply In the case of switches without a feedback signal, interconnect the corresponding control bit as the signal source: BI: p1269[0] = r1261.0 BI: p1269[1] = r1261.1
$\begin{aligned} & \hline \mathbf{p 1 2 7 1 [0 . . . n] ~} \\ & \text { VECTOR_G } \end{aligned}$	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir
Description: Note:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111). The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).
p1272	Simulation mode / Simulation mode
VECTOR_G	Can be changed: T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: Functions Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 1 0
Description:	In the simulation mode, the closed-loop control or U/f control can be operated without motor. The simulation mode is used to test the power unit. Even though the DC link voltage is missing, the pulses are enabled when powering up. The DC link pre-charging is bypassed and the undervoltage detection is disabled. Closed-loop speed control with an encoder is possible if the torque setpoint (r0079) is used in order to operate a second drive in the closed-loop torque controlled mode.
Value:	$\begin{array}{ll} 0: & \text { OFF } \\ \text { 1: } & \text { ON } \end{array}$
Dependency:	The following functions are de-activated in the simulation mode: - motor data identification routine - motor data identification routine, rotating without encoder - pole position identification

For U/f control and sensorless vector control, flying restart is not carried out (refer to p1200).
Refer to: r0192, p1900, p1910, p1960, p1990

Notice:	In simulation mode, binector output r0863.1 = 1 is set. This is why you need to check whether other devices are
powered up via this signal before activating simulation mode. You might need to disconnect the corresponding BICO	
interconnection temporarily.	
Note:	Simulation mode is only possible for DC link voltages below 40 V . In order that the closed-loop control can be calculated, the displayed DC link voltage (r0026, r0070) is set to the rated DC link voltage (refer to p0210). Closed- loop current control and motor model are switched out (disabled) - the same is true for the speed controller for encoderless closed-loop speed control. When fault messages occur, the parameter is not automatically reset. This function is not implemented for SINAMICS GM.

$\mathbf{p 1 2 7 4 [0 . . 1] ~}$	Bypass switch monitoring time / Switch t_monit		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group:	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$5000[\mathrm{~ms}]$	Factory setting
	$0[\mathrm{~ms}]$	$1000[\mathrm{~ms}]$	
Description:	Sets the monitoring time for the bypass switch.		
Index:	$[0]=$ Switch motor/drive		
	$[1]=$ Switch motor/line supply		
Note:	The monitoring is de-activated with $\mathrm{p} 1274=0 \mathrm{~ms}$.		
	The changeover time for the bypass $(\mathrm{p} 1262)$ is extended by the value in this parameter.		

p1275

VECTOR_G (Ext brake)

Description: Sets the control word for the motor holding brake.
Bit field:

Note:
Motor holding brake control word / Brake STW
Can be changed: U, T Calculated: -
Data type: Unsigned32 Dyn. index: -
P-Group: Functions Units group: -
Not for motor type: - Scaling: -
Min Max

Bit	Signal name	1 signal	0 signal	FP
00	Inversion BI: 1219[0]	Yes	No	2707
01	Inversion BI: 1219[1]	Yes	No	2707
02	Inversion BI: 1224[0]	Yes	No	2704
03	Inversion BI: $1224[1]$	Yes	No	2704
05	Brake with feedback	Yes	No	2711
06	Enable with feedback signal	Yes	No	2711

For p1275.6 = 1 and p1275.5 = 1, the following applies:
The pulse enable (BO: r1229.3) and the setpoint enable (BO: r0899.15) are independent of the timer that has been set ($\mathrm{p} 1217, \mathrm{p} 1216$). The particular enable is only defined by the feedback signal ($\mathrm{BI}: \mathrm{p} 1222, \mathrm{BI}$: p 1223). The timers ($\mathrm{p} 1216, \mathrm{p} 1217$) only influence the alarm A07931 "Brake does not open" and A07932 "Brake does not close".

p1276	Motor holding brake standstill detection bypass / Brk standst bypass		
VECTOR_G (Ext	Can be changed: U, T	Calculated: -	Access level: 2
brake)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2704
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	300.000 [s]	300.000 [s]
Description:	Sets the delay time for closing the brake at standstill.		
	After this time has expired, if the "close brake at standstill" or OFF1/OFF3 is present, the brake is closed and the pulses are suppressed.		
	For $\mathrm{p} 1276=300.000 \mathrm{~s}$, the timer is de-activated - this means that the timer output is always zero.		

p1280[0...n]	Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6300, 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.		
Value:	0: Inhib Vdc ctrl		
	1: Enable Vdc_max controller		
	2: Enable Vdc_min controller (kinetic buffering)		
	3: Enable Vdc_min controller and Vdc_max controller		
	4: Activate Vdc_max monitorin		
	5: Activate Vdc_min monitoring		
	6: Activate Vdc_min monitoring and Vdc_max monitoring		
Warning:	When the Vdc_max controller is active, the motor can be accelerated (e.g. by driving loads or as a result of high DC link voltages). This can be caused by other drives that are operating on a common DC link busbar.		
Caution:	If several drives are operated from the same DC link busbar, then it is recommended that the Udc control is only activated for the drives with relatively high moments of inertia.		
	If the Udc controls for various drives are simultaneously active, then they can mutually influence one another. In this case, the controller dynamic performance should be reduced or the Udc control of individual drives should be deactivated.		
	Drives with Udc control must be able to brake and accelerate independently of one another.		
Note:	Rep1280 = 4, 5, 6:		
	When the threshold in r1282 or r1286 is reached, the DC link voltage monitoring initiates a fault (F07403 or F07404) with a response and therefore reduces additional negative effects on the DC link voltage.		
	If a braking resistor is connected to the DC link, then the Vdc_max control should be disabled.		
	Rep $1280=1,3$:		
	Only U/f control: When the Vdc max controller is active, fault F07404 is initiated if the speed setpoint ramp is stopped (held) longer than the time set in p1284.		
r1282	Vdc_max controller switch-in level (U/f) / Vdc_max on_level		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1294 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:		
	AC/AC device: r1282 = 1.15 * sqrt(2) * p0210		
	DC/AC device: r1282 = 1.15 * 02210		
	If p1294 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:		
	r1282 = Vdc_max -50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1282 = Vdc_max -25.0 V (for 230 V power units)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is n the controller output is zero.	off until the DC-link voltage	w the threshold 0.95 * r1282 and

p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1283.		
	If several modules are connected to the DC link, then the dynamic factor must be increased corresponding to the ratio of the additional capacitances to the capacitance of the module involved.		
Note:	The pre-setting of the dynam power units connected via D dynamic factor must be optim	d on the power units connected to also electrically connected to the D	RIVE-CLiQ. It is assumed that the link. If this is not the case, then the

p1284[0...n]	Vdc_max controller time threshold (U/f) / Vdc_max t_thresh		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$300.000[s]$	Factory setting
	$0.000[s]$	$4.000[s]$	
Description:	Sets the monitoring time for the Vdc_max controller.		
	If the down ramp of the speed setpoint is held for longer than the time set in p1284, then fault F07404 is output.		

p1285[0...n]	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
	AC/AC unit: p1286[V] = p1285[\%] * sqrt(2) * p0210		
	DC/AC unit: p1286[V] = p1285[\%] * p0210		
Warning:	An excessively high value may adversely affect normal drive operation. The values up to 150% are intended for operating modes p1240 $=5,6$.		
r1286	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
Note:	The Vdc_min controller is not switched back off until the DC-link voltage rises above the threshold 1.05 * p1286 and the controller output is zero.		

| p1287[O...n] | Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor | |
| :--- | :--- | :--- | :--- |
| VECTOR_G | Calculated: CALC_MOD_CON | Access level: 3 |

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
p1293[0...n]	Vdc min controller output limit (U/f) / Vdc_min outp_lim		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6320
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	600.00 [Hz$]$	10.00 [Hz]
Description:	Sets the output limit for the Vdc min controller (DC link undervoltage controller).		
p1294	Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is de-activated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p0210.		
Value:	0 : Automatic detection inhibited 1: Automatic detection enabled		
p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1296 = 1		

Notice: If a time threshold has been parameterized, the Vdc_max controller should also be activated $(\mathrm{p} 1280=3)$ so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.

p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f / Vdc_min response		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, n<p1297 -> F07405 1: Buff. Vdc until undervolt., n<p1297 -> F07405, t>p1295 -> F07406		
Note:	Rep1296 = 1:		
	The quick stop ramp entered in p1135 must not be equal to zero, to prevent overcurrent shutdown if F07406 is triggered.		
p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		
	If this value is exceeded a fault is output; the required response can be parameterized		
Note:	Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.		
r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6320
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
VECTOR_G	Can be changed: C2(1), T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301, 8012
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	19	0
Description: Value:	Sets the U/f control mode of the drive.		
	0: U/f control with linear char		
	1: U/f control with linear cha	nd FCC	
	2: U/f control with parabolic		
	3: U/f control with paramete	acteristic	
	4: U/f control with linear cha	nd ECO	
	$\begin{array}{ll}\text { 5: } & \text { U/f control for drives requ } \\ \text { 6: } & \text { U/f control for drives requi }\end{array}$	ise freq. (e.g. textiles)	
		se frequency and FCC	

Note:

Re bit 00:

If the bit is set the device will always start up with setpoint angle zero on pulse enable. This also affects the setpoint angle for DC braking (p 1231).
Re bit 01:
If the bit is set, in the case of U/f control with independent voltage setpoint ($\mathrm{p} 1300=19$) and negative setpoint voltages at the input of p 1330 , the setpoint angle is rotated through 180 degrees, thereby achieving a negative output voltage. The voltage boost is in this case not active (p1310, p1311).
Re bit 02:
Only for internal Siemens use.
Re bit 06:
Only for p1300 = 19 .
When the bit is set, the setpoints from p1330 for pulse inhibit are transferred without any delay.

p1310[0...n]	Starting current (voltage boost) permanent / I_start (Ua) perm		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).		
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100 \%		

r1315	Voltage boost total / U_boost total		
VECTOR_G	Can be changed: - Data type: FloatingPoint32 P-Group: U/f open-loop control Not for motor type: - Min - [Vrms]	Calculated: - Dyn. index: - Units group: - Scaling: p2001 Max - [Vrms]	Access level: 3 Func. diagram: 6301 Unit selection: - Expert list: 1 Factory setting - [Vrms]
Description: Dependency:	Displays the total resulting voltage boost in volt.$\mathrm{r} 1315 \text { = p1310 + p1311 + p1312 }$		
p1320[0...n] VECTOR_G	U/f control programmable Can be changed: U, T Data type: FloatingPoint32 P-Group: U/f open-loop control Not for motor type: - Min 0.00 [Hz]	teristic frequency 1 / Uf Calculated: CALC_MOD_ALL Dyn. index: DDS, p0180 Units group: - Scaling: - Max $3000.00[\mathrm{~Hz}]$	f1 Access level: 3 Func. diagram: 6301 Unit selection: - Expert list: 1 Factory setting $0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310$, p1320/p1321 ... p1326/p1327. The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		
p1321[0...n]	U/f control programmable characteristic voltage 1 / Uf char U1		
VECTOR_G	Can be changed: U, T Data type: FloatingPoint32 P-Group: U/f open-loop control Not for motor type: - Min 0.0 [Vrms]	Calculated: CALC_MOD_ALL Dyn. index: DDS, p0180 Units group: - Scaling: - Max 10000.0 [Vrms]	Access level: 3 Func. diagram: 6301 Unit selection: - Expert list: 1 Factory setting 0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$. Refer to: p1310, p1311, p1320, p1322, p1323, p1324, p1325, p1326, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310$, p1320/p1321 ... p1326/p1327. The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		
p1322[0...n]	U/f control programmable characteristic frequency 2 / Uf char f2		
VECTOR_G	Can be changed: U, T Data type: FloatingPoint32 P-Group: U/f open-loop control Not for motor type: - Min $0.00[\mathrm{~Hz}]$	Calculated: CALC_MOD_ALL Dyn. index: DDS, p0180 Units group: - Scaling: - Max $3000.00[\mathrm{~Hz}]$	Access level: 3 Func. diagram: 6301 Unit selection: - Expert list: 1 Factory setting $0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		

Dependency:	The following applies to the frequency values: $p 1320<=p 1322<=p 1324<=p 1326$. Otherwise, a standard characteristic is used that contains the rated motor operating point. Refer to: $p 1310, p 1311, p 1320, p 1321, p 1323, p 1324, p 1325, p 1326, p 1327$

p1323[0...n]	U/f control programmable characteristic voltage 2 / Uf char U2		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1324, p1325, p1326, p1327		
p1324[0...n]	U/f control programmable characteristic frequency 3 / Uf char f3		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1325, p1326, p1327		

p1325[0...n]	U/f control programmable characteristic voltage 3/Uf char U3		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{Vrms}]$	$10000.0[\mathrm{Vrms}]$	0.0 [Vrms]

Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.
	This parameter specifies the voltage of the third point along the characteristic.
Dependency:	Refer to: $\mathrm{p} 1310, \mathrm{p} 1311, \mathrm{p} 1320, \mathrm{p} 1321, \mathrm{p} 1322, \mathrm{p} 1323, \mathrm{p} 1324, \mathrm{p} 1326, \mathrm{p} 1327$

p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	$10000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the frequency of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	The following applies for the frequency values:		
	p1320 <= p1322 <= p1324 <= p1326		
	Otherwise, a standard characteristic is used that contains the rated motor operating point.		

Note: | Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$. For output |
| :--- |
| frequencies above p1326, the characteristic is extrapolated with the gradient between the characteristic points |
| $\mathrm{p} 1324 / \mathrm{p} 1325$ and p1326/p1327. |
| The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic. |

p1327[0...n]	U/f control programmable characteristic voltage 4 / Uf char U4		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300=3.		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1325, p1326		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$.		
	The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		

p1330[0...n]	Cl: U/f control independent voltage setpoint / Uf U_set independ.		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the voltage setpoint for U/f control with an independent voltage setpoint (p1300 = 19).		
Dependency:	Selects the U/f control with independent voltage setpoint via p1300 = 19.		
	Refer to: p1300		

p1331[0...n]	Voltage limiting / U_lim		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300
	P-Group: -	Units group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.00 [Vrms]	2000.00 [Vrms]	1000.00 [Vrms]
Description:	Limiting the voltage setpoint.		
	This means that the output voltage can be reduced with respect to the calculated maximum voltage r0071 and the start of field weakening.		
Note:	The output voltage is only limited if, as a result of p1331, the maximum output voltage (r0071) is fallen below.		
p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the starting frequency at which FCC (Flux Current Control) is activated.		
Dependency:	The correct operating mode must be set (p1300 = 1, 6).		
Warning:	An excessively low value can result in instability.		

Note: \quad For $\mathrm{p} 1333=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency

p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Max
	Min	$3000.00[\mathrm{~Hz}]$	Factory setting
	$0.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$	
Description:	Sets the starting frequency of the slip compensation. 1		
Note:	For p1334 $=0$, the starting frequency of the slip compensation is automatically set to 6% of the rated motor		
	frequency.		

p1335[0...n]	Slip compensation scaling / Slip comp scal		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	600.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 = 0.0% : Slip compensation de-activated. p1335 = 100.0 \%: The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for p1335 = 100% are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335. For U/f control types with Eco optimization (4 and 7), the slip compensation must be activated in order to guarantee correct operation.		
Note:	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.		
	For synchronous motors, this effect does not occur and the parameter has no effect in this case.		
	For the open-loop control modes p1300 = 5 and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.		
	If p 1335 is changed during commissioning ($\mathrm{p} 0009, \mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

p1336[0...n]	Slip compensation limit value / Slip comp lim val		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	600.00 [\%]	250.00 [\%]
Description:	Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).		
$\mathbf{r 1 3 3 7}$	CO: Actual slip compensation / Slip comp act val		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip).		

Dependency:	p1335 > 0 \%: Slip compensation active.		
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	Refer to: p1300, p1339, p1349		
Note:	The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.		
	The resonance damping is active in a range from approximately 6% of the rated motor frequency (p 0310). The shutoff frequency is determined by p1349.		
	For the open-loop control modes p1300 $=5$ and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.		
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ms]	1000.00 [ms]	20.00 [ms]
Description:	Sets the filter time constant for resonance damping for U/f control.		
Dependency:	Refer to: p1300, p1338, p1349		
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	0.500	0.000
Description:	Sets the proportional gain of the I_max frequency controller.		
	In the U/f operating modes (p 1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).		
Dependency:	In the U/f modes (p 1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.		
Notice:	When de-activating the I_max controller, the following must be carefully observed:		
	When the maximum current (r0067) is exceeded, the output current is no longer reduced. The drive is switched off when the overcurrent limits are exceeded.		
Note:	The I_max limiting controller becomes ineffective if the ramp-function generator is de-activated with p1122 $=1$. p1341 = 0: I_max frequency controller de-activated and I_max voltage controller activated over the complete speed range.		

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.300 [s]
Description:	Sets the integral time for the I_max frequency controller. Refer to: p1340		
Dependency:			
Note:	When p1341 $=0$, the current limiting controller influencing the frequency is de-activated and only the current limiting controller influencing the output voltage remains active ($\mathrm{p} 1345, \mathrm{p} 1346$).		
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300
	P-Group: U/f open-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective frequency limit.		
Dependency:	Refer to: p1340		
$\mathbf{r 1 3 4 4}$	I_max controller voltage output / I_max_ctrl U_outp		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300
	P-Group: U/f open-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the amount by which the converter output voltage is reduced.		
Dependency:	Refer to: p1340		
p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 7017
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the I_max voltage controller. Refer to: p1340		
Dependency:			
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).		
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6300, 7017
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.030 [s]
Description:	Sets the integral time for the I_max voltage controller.		
Dependency:	Refer to: p1340		

Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232). For p1346 = 0, the following applies: The integral time of the I_max voltage controller is de-activated.		
$\mathbf{r 1 3 4 8}$	CO: U/f control Eco fact	value / U/f Eco fac act v	
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300, 6301
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the economic factor determined for optimizing motor consumption. Refer to: p1335		
Dependency:			
Note:	The value is only determined for operating modes with Economic (p1300 = 4, 7).		
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the maximum output frequency for resonance damping for U/f control. Resonance damping is inactive above this output frequency.		
Dependency:	Refer to: p1338, p1339		
Note:	For p1349 = 0, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of 45 Hz .		
p1350[0...n]	U/f control soft start / U/f soft start		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6300
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets whether the voltage is continuously increased during the magnetizing phase ($\mathrm{p} 1350=1$, On) or whether it jumps directly to the voltage boost (p1350 = 0, Off).		
Value:	$\begin{array}{ll} 0: & \text { OFF } \\ 1: & \text { ON } \end{array}$		
Dependency:	The function is not effective for $\mathrm{p} 1300=15$.		
Note:	The settings for this parameter have the following advantages and disadvantages:		
	$0=$ off (jump directly to voltage boost)		
	Advantage: Flux is established quickly -> torque is quickly available		
	Disadvantage: The motor can move while it is being magnetized		
	1 = on (voltage is continually established)		
	Advantage: The motor is unlikely to rotate		
	Disadvantage: The flux is established slower -> torque is available later		

p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6310
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-300.00 [\%]	300.00 [\%]	0.00 [\%]
Description:	Sets the frequency setting value at the slip compensation output for starting up with motor holding brake.		
Dependency:	When setting p1351>0, then slip compensation is automatically activated (p1335 $=100 \%$).		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	A value of 100\% corresponds to the motor rated slip (r0330).		
p1356[0...n]	CI: U/f control angular setpoint / Uf ang setpoint		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the differential angular generation for U/f control.		
p1358[0...n]	Angular difference symmetrizing actual angle / Sym act angle		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the dead time for the symmetrizing of the actual angle value for the differential angular generation. The selected multiplier refers to the current controller clock cycle (dead time= p1358 * p0115[0]).		
r1359	CO: Angular difference / Angular difference		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [$\left.{ }^{\circ}\right]$	- [${ }^{\circ}$]	- [$\left.{ }^{\circ}\right]$
Description:	Displays the output of the differential angular generation.		
Note:	The difference between the setpoint angle, read-in in p1356 and the actual value of the U/f control delayed with p1358 is displayed.		
p1360	Braking chopper braking resistor cold / Br_chop R cold		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: U/f open-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [ohm]	10.000 [ohm]	0.000 [ohm]
Description:	Sets the braking resistor for the braking chopper. Select operation with braking resistor: p1300 $=15$ Refer to: p1362, r1363, p1364		
Dependency:			

p1362[0...1]	Braking chopper activation threshold / Br_chop thresh			
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: U/f open-loop control	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0 [V]	1158 [V]	[0] 0 [V]	
			[1] 60 [V]	
Description:	Sets the activation threshold for the brake chopper.			
	The hysteresis defines the range of the output voltage from zero up to the maximum voltage.			
Index:	[0] = Braking chopper threshold value [1] = Braking chopper hysteresis			
Dependency:	Select operation with braking resistor: p1300 $=15$			
	Refer to: p1360, r1363, p1364			
$\overline{\mathrm{r} 1363}$ VECTOR_G	CO: Braking chopper output voltage / Br_chop U_output			
	Can be changed: -	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: Displays, signals	Units group: 5_1	Unit selection: p0505	
	Not for motor type: -	Scaling: p2001	Expert list: 1	
	Min	Max	Factory setting	
	- [Vrms]	- [Vrms]	- [Vrms]	
Description: Dependency:	Displays the actual power unit output voltage (Motor Module) in braking chopper operation.			
	Select operation with braking resistor: p1300 $=15$			
	Refer to: p1360, p1362, p1364			
p1364	Braking chopper resistor asymmetry / Br_chop R asym			
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: U/f open-loop control	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: PERCENT	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [\%]	100.00 [\%]	25.00 [\%]	
Description:	Sets the percentage value for the asymmetry detection for the braking chopper.			
	The ripple of the absolute current r0068 is monitored.			
	The reference value is the average value of the absolute current.			
	The minimum monitoring value is 10% of the power unit rated current.			
Dependency:	Select operation with braking resistor: p1300 $=15$			
	Refer to: p1360, p1362, r1363			
Note:	For p1364 =0, dissymmetry identification is deactivated.			
	Asymmetry can also be displayed if the absolute current manifests ripple, caused by load-related ripple of the DC link voltage. In this particular case, p1364 must be increased.			
r1369[0]	CO: Phase current actual value filtered / I_ph act val filt			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6300	
	P-Group: U/f open-loop control	Units group: 6_5	Unit selection: p0505	
	Not for motor type: -	Scaling: p2002	Expert list: 1	
	Min	Max	Factory setting	
	- [A]	- [A]	- [A]	
Description:	Displays the measured actual phase currents as peak value. This value is averaged for the display in the speed controller sampling time ($\mathrm{p} 0115[1]$).			

Index:	[0] = Phase U				
Dependency:	The signal is only displayed in operating mode $\mathrm{p} 1300=19$ (U/f control with independent voltage setpoint) and is used to control DC currents (e.g. for excitation (field) controllers).				
p1400[0...n]	Speed control configuration / n_ctrl config				
VECTOR_G (n/M)	Can be changed: U, T Cal		ulated: -	Access leve	
	Data type: Unsigned32 Dy		index: DDS, p0180	Func. diagr	
	P-Group: Closed-loop control U		group: -	Unit selecti	
	Not for motor type: REL S		ing: -	Expert list:	
				Factory set	
	-	-		$\begin{aligned} & 00000000 \\ & 00000010 \end{aligned}$	
Description:	Sets the configuration for the closed-loop speed control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Automatic Kp/Tn adaptation active	Yes	No	6040
	01	Sensorless vector control freeze I comp	Yes	No	6040
	02	Acceleration pre-control source	External (p1495)	Internal (n_set)	6031
	03	Reference model speed setpoint I component	ON	OFF	6031
	05	$\mathrm{Kp} / \mathrm{Tn}$ adaptation active	Yes	No	6040
	06	Free Tn adaptation active	Yes	No	6050
	14	Torque pre-control	Always active	For n_ctrl enab	6060
	15	Sensorless vector control speed pre-control	Yes	No	6030
	16	I component for limiting	Enable	Hold	6030
	18	Moment of inertia estimator active	Yes	No	6030
	19	Anti-windup for integral component	Yes	No	6030
	20	Acceleration model	ON	OFF	6031
	22	Obtain moment of inertia estimator value for pulse inhibit	Yes	No	6030
	23	Acceleration model (with speed encoder)	Yes	No	6030

Note:

Re bit 01:
When the bit is set, the I component of the speed controller is kept when changing into the open-loop controlled mode.
Re bit 16:
When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit.
Re bit 19:
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced. If the setpoint torque reaches the torque limit, then the integral component is set to the difference between the torque limit and P component.
Re bit 20:
The acceleration model for the speed setpoint is only active for encoderless vector control if p1496 is not zero.

p1401[0...n]	Flux control configuration / Flux ctrl config		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 6491
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000000000001110 bin
Description:	Sets the configuration for flux setpoint control		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Flux setpoint soft starting active	Yes	No $\begin{array}{ll}\text { 6722, } \\ 6725\end{array}$
	01 Flux setpoint differentiation active	Yes	No $\begin{aligned} & 6723, \\ & 6726\end{aligned}$

Note:

02	Flux build-up control active	Yes	No	6722,
			6723,	
			6725,	
03	Flux characteristic load-dependent	Yes	No	6726
04	Flux controller (ASM with encoder)	Yes	No	-
05	Flux impression (ASM with encoder)	with model chngov	From 30% n_rated	-
06	Quick magnetizing	Yes	No	6722
07	Pre-control speed limitation	Yes	No	6640
08	Speed limiting controller	With M_limits	With I_limits	6640
09	Flux boost when establishing torque	Yes	No	-
10	Flux boost at low speed	Yes	No	-

Re bit 00 (only for induction motors):
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p 1570 is reached again at the end of the magnetizing time p0346.
Re bit 01 (only for induction motors and separately excited synchronous motors):
The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.
Re bit 02 (only for induction motors):
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant. When quick magnetizing ($p 1401.6=1$) is selected and when flux build-up control is de-energized alarm A07416 is displayed.
Re bit 03:
The load-dependent calculation of the flux characteristic is available for separately-excited synchronous motors.
Re bit 04 (only for induction motors with encoder):
The flux controller does not operate in the range of the current model and not in the range of the flux impression (refer to p1750.4).
Re bit 05 (only for induction motors with encoder):
Extremely rugged control operation is possible by directly toggling between the current model and flux impression.
We therefore recommend that, in addition, the time-controlled model change is switched in (p1750.4 =1) or the model changeover limits are significantly increased (p1752 > 0.35 * p0311; p1753 = 5%).
Re bit 06 (not for induction motors):
Magnetizing is carried out with the maximum current (0.9 * r0067 <= p1603 * r0209). Magnetization has been completed if the flux threshold value p1573 or the magnetizing time p0346 has been reached. With active identification of the stator resistance (see p0621) quick magnetizing is internally de-activated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
Re bit 07:
if the speed of the drive exceeds the effective speed limit of the speed limiting controller, the torque limit is reduced linearly to zero as the deviation becomes greater. This reduces the integral component of the speed controller and, in turn, the overshoot during load shedding (see also F07901 and p2162).
Re bit 08:
The speed limiting controller sets the speed to maximum by opening the torque limits as far as the current limits (bit 8 $=0$) or taking the torque limits into account (bit $8=1$).

p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000000000000001 bin
Description:	Sets the configuration for the closed-loop control and the motor model.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 Speed-following error correction active	Yes	No
	02 Current controller adaptation active	Yes	No
	07 Taking into account slip for speed and frequency calculation	Yes	No

		Changeover current model/voltage model with speed setpoint	Yes	No	-
		d-current controller adaptation model-based	Yes	No	-
	15	Current controller precontrol active for Vdc controller oper.	Yes	No	-
Note:	Re bit 00:				
	When the bit is set, the speed following error is compensated that is obtained as a result of the smoothing time constant in p1441.				
	Re bit 02:				
	The current controller adaptation (p0391 ... p0393) is only calculated when the bit is set.				
	Re bit 07:				
	Only with encoderless control of separately excited synchronous motors.				
	Re bit 08:				
	Only with encoderless control of separately excited synchronous motors.				
	Re bit 15:				
	For DC link voltage control (see FP7960) the dynamic current controller pre-control is activated (scalable using p1702, p1703).				
r1406.4... 15	CO/BO: Control word speed controller / STW n_ctrl				
VECTOR_G (n/M)	Can be changed: - Calcula		ulated: -	Acces	
	Data type: Unsigned16 Dyn.		index: -	Func.	
	P-Group: Closed-loop control Units		group: -	Unit s	
	Not for motor type: REL Scali		ing: -	Exper	
	Min	Max	Max	Facto	
	-			-	
Description:	Display and BICO output for the control word of the speed controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Hold speed controller I component	Yes	No	6040
	05	Set speed controller I component	Yes	No	6040
	08	Travel to fixed stop	Yes	No	8012
	11	Droop enable	Yes	No	6030
	12	Torque control active	Yes	No	6060
	15	Set speed adaptation controller I component	Yes	No	-

r1407.0... 26

CO/BO: Status word speed controller / ZSW n_ctrl		
Can be changed: -	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: 2522
P-Group: Closed-loop control	Units group: -	Unit selection: -
Not for motor type: REL	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	-

Description: Display and BICO output for the status word of the speed controller.
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	U/f control active	Yes	No	-
01	Encoderless operation active	Yes	No	-
02	Torque control active	Yes	No	6030,
				6060
03	Speed control active	Yes	No	8010
05	Speed controller I component frozen	Yes	No	6040
06	Speed controller I component set	Yes	No	6040
07	Torque limit reached	Yes	No	6040
08	Upper torque limit active	Yes	No	6060
09	Lower torque limit active	Yes	No	6060
10	Droop enabled	Yes	No	6060
11	Speed setpoint limited	Yes	No	6030
12	Ramp-function generator set	Yes		6030

p1429[0...n]	Speed pre-control balancing time constant / n_prectr bal T		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 5042, 5210, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant (PT1) for symmetrizing the speed setpoint for active torque pre-control.		
Dependency:	In conjunction with p1428, this parameter can emulate the characteristics of how torque is established (dynamic response of the closed current control loop).		
	For VECTOR (r0107) the following applies:		
	The parameter is only effective if the acceleration model is supplied using external acceleration signals (p1400.2 = 1). For p1400.2 = 0, time constant p1442 (or p1452 for sensorless vector control) is used.		
	Refer to: p1428, p1511		
$\mathbf{r 1 4 3 1}$	CO: Speed pre-control to motor model / n_prectrl mot_mod		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint for pre-controlling the motor model with sensorless vector control.		
Note:	With p1400.15 $=0$ or encoderless torque control, the pre-control signal is kept continuously in the range of the voltage model.		
p1433[0...n]	Speed controller reference model natural frequency / n_ctrl RefMod fn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Hz]	$8000.0[\mathrm{~Hz}]$	0.0 [Hz]
Description:	Sets the natural frequency of a PT2 element for the reference model of the speed controller.		
Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.		
Dependency:	Together with p1434 and p1435, the characteristics (in the time domain) of the closed-loop speed control (P) can be emulated.		
	For VECTOR (r0107) the following applies:		
	The reference model is activated with $\mathrm{p} 1400.3=1$. For sensorless vector control ($\mathrm{p} 1300=20$) the reference model is disabled in open-loop speed controlled operation (refer to p1755).		
	Refer to: p1434, p1435		
p1434[0...n]	Speed controller reference model damping / n_ctrl RefMod D		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	5.000	1.000
Description:	Sets the damping of a PT2 elem	ference model of the speed	

Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.
Dependency:	In conjunction with p1433 and p1435, the characteristics (in time) of the P-controlled speed control loop can be emulated. For VECTOR (r0107) the following applies: The reference model is activated with p1400.3 $=1$. Refer to: p1433, p1435
p1435[0...n]	Speed controller reference model dead time / n_ctrRefMod t_dead
VECTOR_G (n / M)	Can be changed: U, T Calculated: - Access level: 2 Data type: FloatingPoint32 Dyn. index: DDS, p0180 Func. diagram: 5030, 6031 P-Group: Closed-loop control Units group: - Unit selection: - Not for motor type: REL Scaling: - Expert list: 1 Min Max Factory setting 0.00 3.00 0.00
Description:	Sets the "fractional" dead time for the reference model of the speed controller. This parameter emulates the computing dead time of the proportionally controlled speed control loop. The selected multiplier refers to the speed controller clock cycle (dead time $=\mathrm{p} 1435$ * $00115[1]$).
Recommend.:	The reference model is correctly set when the characteristics of p1439 (reference model output) and p1445 (actual speed value) are virtually identical when the I component of the speed controller is disabled.
Dependency:	In conjunction with p1433 and p1434, the characteristics (in time) of the P-controlled speed control loop can be emulated. For VECTOR (r0107) the following applies: The reference model is activated with p1400.3 $=1$. Refer to: p0115, p1433, p1434
r1436	CO: Speed controller reference model speed setpoint output / RefMod n_set outp
VECTOR_G (n/M)	Can be changed: - Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: 5030,6031 P-Group: Closed-loop control Units group: 3_1 Unit selection: p0505 Not for motor type: REL Scaling: p2000 Expert list: 1 Min Max Factory setting $-[r p m]$ $-[r \mathrm{rpm}]$ $-[\mathrm{rpm}]$
Description: Dependency:	Display and connector output for the speed setpoint at the output of the reference model. For VECTOR (r0107) the following applies: The reference model is activated with p1400.3 $=1$.
p1437[0...n]	CI: Speed controller reference model I component input / n_ctrRefMod I_comp
VECTOR_G (n / M)	Can be changed: T Calculated: - Access level: 3 Data type: Unsigned32 / FloatingPoint32 Dyn. index: CDS, p0170 Func. diagram: 6031 P-Group: Closed-loop control Units group: - Unit selection: - Not for motor type: REL Scaling: p2000 Expert list: 1 Min Max Factory setting - - $1436[0]$
Description: Dependency:	Sets the signal source for speed setpoint for the integral component of the speed controller. The reference model is activated with p1400.3 $=1$. Refer to: p1400
Notice:	In should be ensured that a speed setpoint is selected as signal source that corresponds to the setpoint for the P component of the speed controller.

r1438	CO: Speed controller speed setpoint / n_ctrl n_set		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3001, 5019, 5030, 5042, 5210, 6020, 6031
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output of the speed setpoint after setpoint limiting for the P component of the speed controller. For U/f operation, the value that is displayed is of no relevance.		
Dependency:	Refer to: r1439		
Note:	In the standard state (the reference model is de-activated), r1438 $=\mathrm{r} 1439$.		
r1439	Speed setpoint I component / n_set I_comp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030, 5040, 6031
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: 00505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint for the I component of the speed controller (output of the reference model after the setpoint limiting).		
Dependency:	Refer to: r1438		
Note:	In the standard state (the reference model is de-activated), r1438 = r1439.		
p1440[0...n]	CI: Speed controller speed actual value / n_ctrl n_act		
VECTOR_G (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	-	-	63[0]
Description:	Sets the signal source for the speed actual value of the speed controller.		
Dependency:	Refer to: r1443		
Danger:	When using external speed actual values for the speed controller, for a direction of rotation change via p1821 $=1$, then its polarity must also be changed (e.g. for an encoder DO via p0410). Otherwise, a positive coupling can occur in the speed control loop and the drive would then be accelerated up to the speed limit.		
Caution:\qquad	Speed control with encoder (p1300 = 21):		
	For the speed or position signal of the motor model there must always be a motor encoder available (evaluation via SMC/SMI, see p0400). The actual speed of the motor (r0061) and the position data for synchronous motors continue to come from this motor encoder and are not affected by the setting of p 1440 .		
	Interconnection of p1440:		
	If connector input p1440 is interconnected with an external speed actual value, the identical scaling of the speed should be observed (p2000).		
Notice:	Speed control without encoder (p1300 = 20):		
	Dependent upon the transmission path of the external speed signal there will be dead times which have to be taken into account when setting the speed controller parameters (p1470, p1472) and can lead to dynamic losses accordingly. It is for this reason that signal transmission times have to be kept as low as possible.		
	So that the speed controller can also work at standstill, set p1750.2 $=1$ (closed-loop operation from zero speed for passive loads). If you do not make this setting, operation will switch to open-loop speed control in the low speed range, switching the closed-loop speed controller off and rendering the measured actual speed ineffective.		
Note:	Speed control with encoder (p1300 = 21):		
	An external speed signal should, on the average, correspond to the speed of the motor encoder (r0061).		

p1441[0...n]	Actual speed smoothing time / n_act T_smooth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4710, 4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	0.00 [ms]
Description:	Sets the smoothing time constant (PT1) for the speed actual value.		
Dependency:	Refer to: r0063		
Notice:	Smoothing times above 20 ms are only possible if the drive is accelerated or braked with the appropriately long ramp-up/ramp-down times. Otherwise, significant torque errors can occur and there is the danger that the drive is powered down (tripped) with F07902 (motor stalled).		
Note:	The speed actual value should be smoothed for encoders with a low pulse number or for resolvers.		
	After this parameter has been changed, we recommend that the speed controller is adapted and/or the speed controller settings checked Kp (p1460) and Tn (p1462).		
p1442[0...n]	Speed controller speed actual value smoothing time / n_ctr n_act T_smth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	32000.00 [ms]	4.00 [ms]
Description:	Sets the smoothing time for the actual speed value of the speed controller for closed-loop control with encoder.		
Note:	The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 = 4).		
r1443	CO: Speed controller speed actual value at actual value input / n_ctrl n_act inp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed actual value at the speed controller's free-wiring actual value input p1440.		
Dependency:	Refer to: p1440		
Note:	This speed signal is only used by the speed controller and not by the motor model.		
r1444	Speed controller speed setpoint steady-state (static) / n_ctrl n_set stat		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5030
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the sum of all speed setpoints that are present.		
	The following sources are available for the displayed setpoint:		
	- setpoint at the ramp-function generator input (r1119).		
	- speed setpoint 1 (p1155).		
	- speed setpoint 2 (p1160).		
	- speed setpoint for the speed pre-control (p1430).		
	- setpoint from DSC (for DSC active).		
	- setpoint via PC (for master control active).		

Dependency:	Refer to: r1119, p1155, p1160		
r1445	CO: Actual speed smoothed / n_act smooth		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the actual smoothed speed actual value of the speed control.		
p1451[0...n]	Motor model speed actual value smoothing time sensorless / Mot_mod n_act t_sm		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	4 [ms]
Description:	Sets the smoothing time for the speed actual value calculated by the motor model in sensorless operation.		
p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	32000.00 [ms]	10.00 [ms]
Description:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control. The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$).		
Note:			
r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the system deviation of the I component of the speed controller. When the reference model is inactive ($\mathrm{p} 1433=0 \mathrm{~Hz}$), this parameter corresponds to the system deviation of the complete PI controller (r1454 = r0064).		
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller. Refer to: p1456, p1457, p1458, p1459		
Dependency:			

p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the speed controller. The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1457, p1458, p1459		
Note:	If the upper transition point $p 1457$ of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the upper starting point of the adaptation range for the additional adaptation of the P gain of the speed controller.		
	The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1456, p1458, p1459		
Note:	If the upper transition point $p 1457$ of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1458[0...n]	Adaptation factor lower / Adapt_factor lower		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the adaptation factor before the adaptation range ($0 \% \ldots \mathrm{p} 1456$) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1459		
Note:	If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		
p1459[0...n]	Adaptation factor upper / Adapt_factor upper		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the adaptation factor after the adaptation range ($>\mathrm{p} 1457$) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1458		
Note:	If the upper transition point $p 1457$ of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1460[0...n]	Speed controller P gain adaptation speed lower / n_ctrl Kp n lower		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	999999.000	0.300
Description:	Sets the P gain of the speed controller before the adaptation speed range (0 .. p1464).		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions.		
p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group:	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (> p 1465).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1460).		
Dependency:	Refer to: p1460, p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1462[0...n]	Speed controller integral time adaptation speed lower / n_ctrl Tn n lower		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5040, 5042, 6020, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100000.00 [ms]	20.00 [ms]
Description:	This value corresponds to the basic setting of the integral time of the speed controller without adaptation (p1461 = 100 \%).		
Dependency:	Refer to: p1463, p1464, p1465		
Note:	The integral component is stop control reach the torque limit.	plete controller output or the sum	controller output and torque pre-

p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n_ctr Tn \mathbf{n} up scal		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$200000.0[\%]$	$100.0[\%]$
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\%		
	referred to p1462).		

Note: If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p 1464 , then the controller integral time below p 1465 is adapted with p 1463 . This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the speed controller.		
	No adaptation is effective below this speed.		
Dependency:	The parameter is set by the speed controller optimization. Adaptation to the application should then be subsequently made.		
	Refer to: p1460, p1461, p1462, p1463, p1465		
Note:	If the upper transition point $p 1$ point p1464, then the controlle implemented for low speeds w	ed controller adaptation is set to low is adapted with p1461 or p1463. change the controller parameter	r values than the lower transition means that an adaptation can be

p1465[0...n]	Speed controller adaptation speed upper / n_ctrl n upper		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6050
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the upper adaptation speed of the speed controller.		
	No adaptation is effective above this speed.		
	For the proportional gain, p1460 $\times \mathrm{p} 1461$ is effective.		
	For the integral time, p1462 $\times \mathrm{p} 1463$ is effective.		
Dependency:	The parameter is set by the speed controller optimization. Adaptation to the application should then be subsequently made.		
	Refer to: p1460, p1461, p1462, p1463, p1464		
Note:	If the upper transition point $p 14$ point p1464, then the controller implemented for low speeds wi	ed controller adaptation is set to lo is adapted with p1461 or p1463. o change the controller parameter	r values than the lower transition means that an adaptation can be

p1466[0...n] Cl: Speed controller P-gain scaling / n_ctrl Kp scal
VECTOR_G (n/M)

Can be changed: T
Data type: Unsigned32 / FloatingPoint32
Calculated: -
Dyn. index: CDS, p0170
P-Group: Closed-loop control
Not for motor type: REL Min

Scaling: PERCENT Max
-
Description: Sets the signal source for the scaling of the P gain of the speed controller. This also makes the effective P gain (including adaptations) scalable.

Access level: 3
Func. diagram: 6050
Unit selection: -
Expert list: 1
Factory setting
1

$\overline{\mathbf{r 1 4 6 8}}$	CO: Speed controller P-gain effective / n_ctr Kp eff		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective P gain of the speed controller.		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions. In this case, connector output signal r1468 is increased by a factor of 100 in order to improve the resolution.		
r1469	Speed controller integral time effective / n_ctr Tn eff		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the effective integral time of the speed controller.		
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6040, 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	999999.000	0.300
Description:	Sets the P gain for encoderless operation for the speed controller.		
Dependency:	For p0528 = 1, the speed controller gain is represented without any dimensions.		
Note:	The product $\mathrm{p} 0341 \times \mathrm{p} 0342$ is taken into account when automatically calculating the speed controller ($\mathrm{p} 0340=1,3$, 4).		
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6040, 6050
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	100000.0 [ms]	20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
Note:	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		
p1475[0...n]	CI: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the torque setting value when starting up with motor holding brake.		

Recommend::	To hold the actual torque when stopping the motor, you are advised to set p1400 bit $1=1$. As a result, the integral
component of the speed controller is frozen when changing to the open-loop controlled operating range.	
Dependency:	The switching in of the torque setting value for the motor holding brake has a higher priority than the setting of the integrator value using p1477 and p1478.
Note:	The setting of the integral output of the speed controller begins after magnetizing (see p0346, r0056 bit 4) and ends at the end of the brake control opening time p1216. A setting value of zero means that no setting procedure will take place.

p1476[0..n]	BI: Speed controller hold integrator / n_ctrl integ stop		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to hold the integrator for the speed controller.		
p1477[0...n]	BI: Speed controller set integrator value / n_ctrl integ set		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For the interface mode "SIMODRIVE 611 universal" (p2038 = 1), p1477 and p1478 are used for the signal STW2.6 (integrator inhibit, speed controller).		
p1478[0...n]	CI: Speed controller integrator setting value / n_ctr integ_setVal		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via 1477.		
Dependency:	The setting value of the speed controller integrator is weighted with the scaling factor of the signal source in p1479. If p1478 is interconnected to the integral output of the speed controller (r1482), then after the magnetizing time (r0346) and if the speed controller is enabled, the integral component of the controller is set to the last value before the pulse inhibit. This value is set if no setting command (p1477) is interconnected or, at the instant that the pulses were inhibited, a setting command is available, which is not de-activated up to the next time that the pulses are inhibited. For sensorless vector control, in addition p1400.1 should be set to 1 so that when the drive is stopped, the integral component of the speed controller is not controlled down to zero.		
	In order that when setting the integrator output, only the static torque is detected, we recommend that the accelerating torque is completely pre-controlled (e.g. p1496).		
	If p 1478 is interconnected to another output other than r 1482 , then after magnetizing and speed controller enable, the integral output is set once if the setting command is not interconnected ($p 1477=0$).		
	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1479[0...n]	Cl : Speed controller integrator setting value scaling / n_ctrl I_val scal		
VECTOR_G (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6040
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the integrator setting value ($\mathfrak{p} 1478$) of the speed controller. Refer to: p1477, p1478		
Dependency:			
r1480	CO: Speed controller PI torque output / n_ctrl PI-M_outp		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5019, 5040 5042, 5060, 5210, 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the PI speed controller.		
$\mathbf{r 1 4 8 1}$	CO: Speed controller P torque output / n_ctrl P-M_outp		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, 5210, 6040
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the P speed controller.		
$\mathbf{r 1 4 8 2}$	CO: Speed controller I torque output / n_ctrl I-M_outp		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5040, 5042, $5210,6030,6040$
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the I speed controller.		
p1486[0...n]	CI: Droop compensation torque / Droop M_comp		
VECTOR_G (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the compensation torque to be output within the droop calculation.		
	This parameter should be interconnected with the torque setpoint of the drive (corresponding to the selection p1488), with which load equalization should be performed.		

p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the compensation torque within the droop calculation.		
p1488[0...n]	Droop input source / Droop input source		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Sets the source for droop feedback.		
	With increasing torque, the speed setpoint is reduced (enabled using p1492), so that for mechanically coupled drives a load equalization (load compensation) is obtained.		
	A load difference compensation is also possible, if p1486 is interconnected with the torque setpoint of the other drive.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Droop feedback not connected } \\ \text { 1: } & \text { Droop from torque setpoint } \\ \text { 2: } & \text { Droop from speed controller output } \\ \text { 3: } & \text { Droop from integral output speed controller }\end{array}$		
Dependency:	Refer to: p1486, p1487, p1489, r1490, p1492		
Caution: \uparrow	For active acceleration precontrol of the speed controller (refer to p1496), it is not recommended that p1488 is set to 1 , as this could result in positive coupling effects. Instead of this, as source of the droop feedback, the output signal of the speed controller should be used, which generally sets the load torque.		
p1489[0...n]	Droop feedback scaling / Droop scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	0.500	0.050
Description: Dependency: Note:	Sets the scaling for the droop feedback		
	Refer to: p1486, p1487, p1488, r1490, p1492		
	Example:		
	A value of 0.05 means that for a torque equal to the rated motor torque, the rated motor speed is reduced by 5%.		
r1490	CO: Droop feedback sp	tion / Droop n_reduc	
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the output signal of the droop calculation. The droop feedback result is subtracted from the speed setpoint when activated (p1492).		
Dependency:	Refer to: p1486, p1487, p1488		

Warning:	The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application,		
	it may therefore be necessary to disable the ramp-function generator tracking ($\mathrm{p} 1145=0$) or the acceleration precontrol (p1496 = 0).		
	The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).		
Note:	The parameter is set to 100% by the rotating measurement (refer to p1960).		
	The acceleration pre-control may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.		
	We also recommend that the pre-control mode is not used if there is gearbox backlash.		
p1497[0...n]	CI: Moment of inertia scaling signal source / M_inert scal s_src		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5042, 5210, 6030, 6031
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the motor moment of inertia.		
p1498[0...n]	Load moment of inertia / Load M_inertia		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5042, 5210
	P-Group: Closed-loop control	Units group: 25_1	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [kgm^{2}]	$100000.00000\left[\mathrm{kgm}^{2}\right]$	0.00000 [kgm^{2}]
Description:	Sets the load moment of inertia. (p 0341 * p 0342) +p 1498 influence the speed/torque pre-control in encoderless operation.		
Note:			
p1499[0...n]	Accelerating for torque control scaling / a for M_ctrl scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6030
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	400.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the acceleration integrator at low speeds (only for encoderless torque control). Refer to: p0341, p0342		
Dependency:			
p1500[0...n]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set		
VECTOR_G	Can be changed: $\mathrm{C} 2(1)$, T	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	999999	0
Description:	Runs the corresponding macro files.		
	The Connector Inputs (CI) for the torque setpoints of the appropriate Command Data Set (CDS) are appropriately interconnected.		
	The selected macro file must be available on the memory card/device memory.		
	Example:		
	p1500 = 6 --> the macro file PM000006.ACX is run.		
Dependency:	Refer to: p0015, p0700, p1000, r8573		

Notice: Note:	No errors were issued during quick commissioning (p3900 = 1) when writing to parameters of the QUICK_IBN group! When executing a specific macro, the corresponding programmed settings are made and become active.		
	The macros in the specified directory are displayed in r8573. r8573 is not in the expert list of the commissioning software. Macros available as standard are described in the technical documentation of the particular product. CI: Connector Input		
p1501[0...n]	BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for toggling between speed and torque control. 0 signal: Closed-loop speed control 1 signal: Closed-loop torque control		
Dependency:	The input connectors to enter the torque are provided using p1511, p1512 and p1513. Refer to: p1300		
Notice:	If the closed-loop torque control is not activated (p 1300) and a change is made to closed-loop torque control (p 1501), OFF1 (p0840) does not have its own braking response but pulse suppression when standstill is detected (p 1226 , p1227).		
Note:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1502[0...n]	BI: Freeze moment of inertia estimator / J_estim freeze		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to freeze the estimated moment of inertia. 0 signal: Moment of inertia estimator active 1 signal: Determined moment of inertia frozen.		
Dependency:	Refer to: p1300		
Note:	Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1) and p1400.18 =1. For operation with encoder, in addition, p1402.4 must be set to 1 .		

p1503[0...n]

VECTOR_G (n/M)

Description: Sets the signal source for the torque setpoint for torque control.

Note: A change is made to closed-loop torque control if, in p1300, closed-loop torque control was selected or if the selection was made using the changeover source in p1501.
it is also possible to change over in operation using p1501.

r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6030, 6060 6722
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controller output; for closed-loop torque control, r1508 corresponds to the torque setpoint of the signal source assigned in p1503.		
p1511[0...n]	CI: Supplementary torque 1 / M_suppl 1		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for supplementary torque 1.		
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 5060, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for scaling the supplementary torque 1.		
p1513[0...n]	CI: Supplementary torque 2 / M_suppl 2		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for supplementary torque 2.		
p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for supplementary torque 2.		

r1515	Supplementary torque total / M_suppl total		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque.		
$\overline{\mathbf{r 1 5 1 6}}$	CO: Supplementary torque and acceleration torque / M_suppl + M_accel		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	The displayed value is the total of the smoothed supplementary torque and the accelerating torque (p1516 = p1518[1] + r1515).		
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5042, 5210, 6060 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	4.00 [ms]
Description: Note:	Sets the smoothing time constant of the accelerating torque. For servo drives, the following applies:		
	- For p1402.4 = 1, the highest dynamic performance is achieved with p1517 $=0 \mathrm{~ms}$.		
	- In encoderless operation, p1517 should be set >= 0.5 ms ; for an induction motor with current displacement rotor p1517 >= 20 ms is recommended.		
	For vector drives, the following applies:		- The acceleration pre-control is inhibited if the smoothing is set to the maximum value.
r1518[0...1]	CO: Accelerating torqu		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the accelerating torque for pre-control of the speed controller.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Dependency:	Refer to: p0341, p0342, p1496		

p1520[0...n]	CO: Torque limit upper / M_max upper		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the fixed, upper torque limit.		
Dependency:	Refer to: p1521, p1522, p1523, r1538, r1539		
Danger:	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p0340), the torque limit is set to match the current limit (p0640).		
p1521[0...n]	CO: Torque limit lower / M_max lower		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6020, 6630
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-20000000.00 [Nm]	$1000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	Refer to: p1520, p1522, p1523		
Danger:	Positive values when setting the lower torque limit (p1521>0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		

p1522[0...n]	CI: Torque limit upper / M_max upper		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	1520[0]	
Description:	Sets the signal source for the upper torque limit.		
Dependency:	Refer to: p1520, p1521, p1523		
Danger:	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled		
manner.			

p1523[0...n]	CI: Torque limit lower / M_max		
VECTOR_G (n/M)	Can be changed: T Data type: Unsigned32 / FloatingPoint32 P-Group: Closed-loop control Not for motor type: REL Min	Calculated: - Dyn. index: CDS, p0170 Units group: - Scaling: p2003 Max	Access level: 3 Func. diagram: 6020, 6630 Unit selection: - Expert list: 1 Factory setting 1521[0]
Description: Dependency: Danger:	Sets the signal source for the lower torque limit. Refer to: p1520, p1521, p1522 Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
$\begin{aligned} & \hline \text { p1524[0...n] } \\ & \text { VECTOR_G (n/M) } \end{aligned}$	CO: Torque limit upper scaling Can be changed: U, T Data type: FloatingPoint32 P-Group: Closed-loop control Not for motor type: REL Min -2000.0 [\%]	__max upper scal Calculated: - Dyn. index: DDS, p0180 Units group: - Scaling: PERCENT Max 2000.0 [\%]	Access level: 3 Func. diagram: 6630 Unit selection: - Expert list: 1 Factory setting $100.0 \text { [\%] }$
Description: Notice: Note:	Sets the scaling for the upper torque limit. A BICO interconnection to a parameter that This parameter can be freely interconnecte The value has the meaning stated above if	belongs to a drive data set is interconnected from con	on the effective data set. p1528.
$\begin{aligned} & \hline \text { p1525[0...n] } \\ & \text { VECTOR_G (n/M) } \end{aligned}$	CO: Torque limit lower scaling Can be changed: U, T Data type: FloatingPoint32 P-Group: Closed-loop control Not for motor type: REL Min -2000.0 [\%]	_max lower scal Calculated: - Dyn. index: DDS, p0180 Units group: - Scaling: PERCENT Max 2000.0 [\%]	Access level: 3 Func. diagram: 6630 Unit selection: - Expert list: 1 Factory setting 100.0 [\%]
Description: Notice: Note:	Sets the scaling for the lower torque limit. A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. This parameter can be freely interconnected. The value has the meaning stated above if it is interconnected from connector input p1528.		
$\begin{aligned} & \hline \mathbf{r 1 5 2 6} \\ & \text { VECTOR_G (n/M) } \end{aligned}$	CO: Torque limit upper without Can be changed: - Data type: FloatingPoint32 P-Group: Closed-loop control Not for motor type: REL Min - [Nm]	ffset / M_max up w Calculated: - Dyn. index: - Units group: 7_1 Scaling: p2003 Max - [Nm]	Access level: 3 Func. diagram: 6060, 6630, 6640 Unit selection: p0505 Expert list: 1 Factory setting - [Nm]
Description: Dependency:	Display and connector output for the upper torque limit of all torque limits without offset. Refer to: p1520, p1521, p1522, p1523, p1528, p1529		

r1527	CO: Torque limit lower without offset / M_max low w/o offs		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060, 6630, 6640
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the lower torque limit of all torque limits without offset.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
p1528[0...n]	CI: Torque limit upper scaling / M_max upper scal		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1524[0]
Description:	Sets the signal source for the scaling of the upper torque limit in p1522.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
$\widehat{\bigwedge}$	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower scaling / M_max lower scal		
VECTOR_G (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit in p1523.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
\bigwedge	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1530[0...n]	Power limit motoring / P_max mot		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: 14_5	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [kW]	100000.00 [kW]	0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		
Note:	The power limit is limited to 300% of the rated motor power.		

p1531[0...n]	Power limit regenerative / P_max gen		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: 14_5	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100000.00 [kW]	-0.01 [kW]	-0.01 [kW]
Description:	Sets the regenerative power limit.		
Dependency:	Refer to: p0500, p1530		
Note:	The power limit is limited to 300% of the rated motor power.		
	For power units without regenerative feedback into the line supply, the regenerative power limit is pre-set to 30% of the motoring power limit p1530 and in the ratio rated drive converter power to rated motor power. If a braking resistor is connected to the DC link, then the power limit can be correspondingly increased.		

r1533

VECTOR_G (n/M)
Current limit torque-generating total / Iq_max total

	Data type: FloatingPoint32	Dyn. index: -
	P-Group: Displays, signals	Units group: $6 _2$
	Not for motor type: -	Scaling: p2002
	Min	Max
Description:	- [Arms]	- [Arms]
	Displays the maximum torque/force generating current as a result if all current limi	

Access level: 3
Func. diagram: 6640
Unit selection: p0505
Expert list: 1
Factory setting

- [Arms]

Description: Displays the maximum torque/force generating current as a result if all current limits

r1536[0...1]	Current limit maximum torque-generating current/Isq_max		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6640,6710
	P-Group: Closed-loop control	Units group: $6 _2$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	$-[$ Arms $]$
Description:	Displays the maximum limit for the torque-generating current component.		
	Index 0 indicates the signal limited by the Vdc controller.		
Index:	$[0]=$ Limited		
	$[1]=$ Unlimited		

r1537[0...1] Current limit minimum torque-generating current / Isq_min

VECTOR G (M)
Can be changed: -
Data type: FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL Min

- [Arms]

Description: Displays the minimum limit for the torque-generating current component. Index 0 indicates the signal limited by the Vdc controller.
[0] = Limited
[1] = Unlimited

Index:

Access level: 4
Func. diagram: 6640, 6710
Unit selection: p0505
Expert list: 1
Factory setting

- [Arms]

Calculated: -
Dyn. index: -
Units group: 6_2
Scaling: p2002
Max

- [Arms]

r1538	CO: Upper effective torque limit / M_max upper eff		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6020,6640
	P-Group: Closed-loop control	Units group: $7 _1$	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	$-[\mathrm{Nm}]$	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	
Description:	Display and connector output for the actual effective upper torque limit.		
Note:	The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit		
	p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	The following applies in the case of VECTOR: This may be the case for rotating measurements (see p1960).		
	The following applies in the case of VECTOR: Further variable torque limiting is possible (e.g. binector input p1540).		
	The torque limit p1520 can be re-calculated using p0340 $=1,3$ or 5.		

r1539

VECTOR_G (n/M)

Description:

Note:

CO: Lower effective torque limit / M_max lower eff

Can be changed: -
Calculated: -
Data type: FloatingPoint32
Dyn. index: -
P-Group: Closed-loop control
Not for motor type: REL
Min

- [Nm]

Units group: 7_1
Scaling: p2003
Max

- [Nm]

Access level: 2

Func. diagram: 6020, 6640
Unit selection: p0505
Expert list: 1
Factory setting

- [Nm]

Display and connector output for the actual effective lower torque limit.
The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.
The following applies in the case of VECTOR: This may be the case for rotating measurements (see p1960). The following applies in the case of VECTOR: Further variable torque limiting is possible (e.g. binector input p1541). The torque limit p1520 can be re-calculated using p $0340=1,3$ or 5 .
p1540[0...n] CI: Torque limit speed controller upper scaling / M_max n-ctr upScal
VECTOR_G (n/M)

Can be changed: T
Data type: Unsigned32 / FloatingPoint32
P-Group: Closed-loop control
Not for motor type: REL
Min
-
Description: Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output.

p1541[0...n]	CI: Torque limit. speed controller lower scaling / M_max nctr lowScal		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6020, 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output.		

p1545[0...n]	BI: Activates travel to a fixed stop / TfS activation		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2520, 3617, 8012
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate/de-activate the "travel to fixed stop" function 1: Travel to fixed stop is active 0 : Travel to fixed stop is inactive		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	EPOS uses the parameter (refer to p2686).		
	When traveling to fixed stop, the fault F07900 "motor blocked" is suppressed.		
r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque limit to limit the speed controller output.		
Index:	[1] = Lower limit		
r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limit for the torque-generating current component using the stall calculation, the current limit of the Motor Module as well as the parameterization in p0640.		
Index:	$\begin{aligned} & {[0]=\text { Upper limit }} \\ & {[1]=\text { Lower limit }} \end{aligned}$		
p1551[0...n]	BI: Torque limit variable/fixed signal source / M_lim var/fixS_src		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 5620, 5630, 6060, 6630
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to change BI: p1551 = 1 signal: The variable torque limit applies BI: p1551 = 0 signal: The fixed torque limit applies.	que limits between variable limit + scaling).	d torque limit.

Example:
In order that for a Quick Stop (OFF3) the fixed torque limit is effective, binector input: p1551 must be interconnected to r0899.5.

p1552[0...n]	CI: Torque limit upper scaling without offset / M_max up w/o offs		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1553[0...n]	Stall limit scaling / Stall limit scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	80.0 [\%]	130.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the stall limit for the start of field weakening.		
Danger: \qquad介	If the stall current limit is increased, then the q current setpoint can exceed the stall limit; as a consequence, a hysteresis effect can occur when loading and unloading.		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
VECTOR_G (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6060
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1555[0...n]	CI: Power limit / P_max		
VECTOR_G (n / M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the motoring and negative regenerative power limit.		
Dependency:	Refer to: p1530, p1531		
Note:	The resulting motoring power limit is the minimum from p1530 and the signal which is read in.		
	The resulting regenerative power limit is the maximum from p1531 and the negative signal which is read in.		

p1556[0...n]	Power limit scaling / P_max scal		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6640
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	340.28235 E36	0.00
Description:	Sets the scaling of the signal source for the motoring and negative regenerative power limit. 0 signifies no power limiting.		
p1560[0...n]	Moment of inertia estimator accelerating torque threshold value / J_est M thresh		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [\%]	100.00 [\%]	10.00 [\%]
Description:	Sets the threshold for the accelerating torque for the moment of inertia estimator. The moment of inertia estimator is active above this threshold. The value is referred to the rated torque (r0333).		
Dependency:	Refer to: p1400, p1561, p1562		
Note:	The moment of inertia estimation is inaccurate at very low accelerating torques/accelerating forces. As a consequence, below this threshold, the estimator does not provide any new values.		
p1561[0...n]	Moment of inertia estimator change time moment of inertia / J_est t J		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
(J_estimator)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.00 [ms]	5000.00 [ms]	500.00 [ms]
Description:	Sets the change time for the moment of inertia for the moment of inertia estimator. Lower values mean that faster changes are possible. For a higher value, this estimated value is smoothed more significantly.		
Dependency:	Refer to: p1400, p1560, p1562		
p1562[0...n]	Moment of inertia estimator change time load / J_est t load		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
(J_estimator)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.00 [ms]	5000.00 [ms]	10.00 [ms]
Description:	Sets the change time for the load torque/load force for the moment of inertia estimator. Lower values mean that faster changes are possible. For a higher value, this estimated value is smoothed more significantly. Refer to: p1400, p1560, p1561		
Dependency:			

p1569[0...n]	CI: Supplementary torque 3 / M_suppl 3		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7010
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: p2003	Expert list: 1
	Min	Max	Factory setting
	-	-	3841[0]
Description:	Sets the signal source for supplementary torque 3.		
Dependency:	Refer to: p3842		
Notice:	The signal input is after the torque limit (r1538, r1539). For vector drives, the signals that are entered are only limited by the current and power limits.		
Note:	The signal input is preferably used to enter speed controller output reaches its torque vector drives).	e friction characteristic. Th its, but the current limits ha	ompensation is also effe been reached (this only

p1570[0...n]	CO: Flux setpoint / Flex setp		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	$50.0[\%]$	200.0 [\%]	$100.0[\%]$
Description:	Sets the flux setpoint referred to rated motor flux.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	For p1570 > 100\%, the flux setpoint increases as a function of the load from 100\% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.		

p1571[0...n]	CI: Supplementary flux setpoint / Suppl flux setp		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6725
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary flux setpoint.		
Notice:	Low flux setpoints can cause the drive to stall at higher loads. This is the reason that the flux setpoint should only be adapted for slow load changes.		
Note:	The supplementary flux setpoint is limited to $+/-50 \%$.		
p1572[0...n]	Supplementary flux setpoint / Suppl flux setp		
VECTOR_G (n/M)	Can be changed: $\cup, ~ T$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	0.0 [\%]
Description:	Sets the supplementary flux setpoint for the flux controller. The value is referred to the rated motor flux.		
Notice:	The parameter should be set back to 0\% again for normal closed-loop control operation.		
Note:	The parameter is used to optimize the flux controller. The current model is not influenced by the setting.		
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the flux threshold value for enabling the speed setpoint and the end of magnetizing (r0056.4).		
Note:	The parameter only has an influence if the flux actual value reaches the threshold value p1573 more quickly during magnetizing than the time set in p 0346 . This is generally the case when selecting fast magnetization (p 1401 bit 6).		

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723, 6724
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [Vrms]	150.0 [Vrms]	10.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Note:	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		
p1575[0...n]	Voltage target value limit / U_tgt val lim		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6725
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	50.00 [\%]	200.00 [\%]	200.00 [\%]
Description:	Sets the limit of the voltage target value In steady-state field weakening operati The value of 100% refers to 00304 .	corresponds to the required out	voltage.
Note:	The output voltage is only limited if the maximum output voltage (r0071) minus the voltage reserve (p 1574) corresponds to a value higher than p1575.		
	Limiting via p1575 allows the influence of the voltage ripple of the line supply voltage to be eliminated at the operating point.		
p1576[0...n] VECTOR_G (n/M)	Flux boost adaptation speed, lower / Flux boost n lower		
	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6725
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the flux boost.		
	Below this speed, p1570 is set as reference (setpoint) flux.		
p1577[0...n]	Flux boost adaptation speed upper / Flux boost n upper		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6725
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.0 [\%]	10000.0 [\%]	200.0 [\%]
Description:	Sets the upper adaptation speed of the flux boost.		
	Above this speed, the rated motor flux (100\%) is set as reference (setpoint) flux.		
Dependency:	The parameter value refers to the lower adaptation speed of the flux boost.		
	Refer to: p1576		

p1580[0...n]	Efficiency optimization / Efficiency opt.		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min		Factory setting
	0 [\%]	100 [\%]	0 [\%]
Description:	Sets the efficiency optimization.		
	When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load. For p1580 $=100 \%$, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
Note:	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp).		
	Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722, 6724, 6725
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		
r1583	Flux setpoint smoothed / Flux setp smooth		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6722, 6723, 6724
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed flux setpoint. The value is referred to the rated motor flux.		
p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6722
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux setpoint in the field-weakening range		
Recommend.:	Smoothing should be especially used if there is no regenerative feedback into the line supply. This means that the DC link voltage can quickly increase in regenerative operation		
Note:	Only the flux setpoint rise is smoothed		

p1585[0...n]	Flux actual value smoothing time / Flux actVal T_smth		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux actual value.		
p1586[0...n]	Field weakening characteristic scaling / Field weak scal		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	80.0 [\%]	120.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the pre-control characteristic for the start of field weakening.		
	For values above 100% and for partial load situations, the field weakening starts at higher speeds.		
Note:	If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations. If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.		
$\mathbf{r 1 5 8 9}$	Field-weakening current pre-control value / I_FieldWeak prectr		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6724
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, REL, FEM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the pre-control value for the field weakening current.		
p1590[0...n]	Flux controller P gain / Flux controller Kp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0	999999.0	10.0
Description:	Sets the proportional gain for the flux controller.		
Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameters ($\mathrm{p} 0340=4$), this value is re-calculated.		
p1592[0...n]	Flux controller integral time / Flux controller Tn		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	30 [ms]
Description:	Sets the integral time for the flux controller.		

Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameters (p0340 = 4), this value is re-calculated.		
r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723, 6724, 6726
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min		Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the output of the field weakening controller (synchronous motor) or the output of the flux controller (separately-excited synchronous motor, induction motor).		
Index:	[0] = PI output [1] = I output		
p1594[0...n]	Field-weakening controller P gain / Field_ctrl Kp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6724
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	1000.00	0.00
Description:	Sets the P gain of the field-weakening controller.		
p1595[0...n]	Field weakening controller additional setpoint / Field_ctr add_setp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6726
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	50.00 [\%]	0.00 [\%]
Description:	Sets an additional setpoint for the field weakening controller. The value refers to the dynamic voltage reserve (p1574).		
Note:	With a value equal to zero, when the target voltage limited with p1575 is reached, the field weakening controller is activated.		
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6723, 6724
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [ms]	10000 [ms]	50 [ms]
Description:	Sets the integral-action time of the field-weakening controller.		

r1597	CO: Field weakening controller output / Field_ctrl outp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the output of the field weakening controller. The value is referred to the rated motor flux.		
r1598	CO: Total flux setpoint / Flux setp total		
VECTOR_G (n/M)	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: 6714, 6723, 6724, 6725, 6726, 8018
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint. The value is referred to the rated motor flux.		
p1599[0...n]	Flux controller excitation current difference / Flux ctr I_exc_dif		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	3.0 [\%]
Description:	Sets the permissible difference between the actual excitation current and the excitation current setpoint. The excitation current flux controller is active within this difference.		
	If the difference lies outside the specified limit value, then the I component of the excitation current flux controller is kept. Instead of this, for the flux controller of the field-generating current, an additional I controller is switched in (integral time according to p1592).		
	If the difference again lies within the bandwidth, the I component of the excitation current flux controller is re-activated and the I component of the flux controller of the field-generating current is reduced as an exponential function with respect to time. The reduction of the I component over time depends on the rotor time constant (r0384).		
$\overline{\mathrm{p} 1600[0 \ldots \mathrm{n}]}$	P flux controller P gain / P flux ctrl Kp		
VECTOR_G (n/M)	Can be changed: U, T Data type: FloatingPoint32 P-Group: Closed-loop control Not for motor type: ASM, PEM, REL Min	Calculated: CALC_MOD_CON	Access level: 3
		Dyn. index: DDS, p0180	Func. diagram: -
		Units group: -	Unit selection: -
		Scaling: -	Expert list: 1
		Max	Factory setting
	0.0	999999.0	10.0
Description: Note:	Sets the proportional gain of the P flux controller for separately-excited synchronous motors (FEM).		
	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameters ($\mathrm{p} 0340=4$), this value is re-calculated.		

r1602	CO: P flux controller output / P flux ctrl outp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6726, 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the output of the P flux controller for separately-excited synchronous motors (FEM).		
p1604[0...n]	Pulse technique current limit / Pulse current lim		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the effective current limit within the pulse technique.		
Note:	The saturation characteristic of the motor defines the available operating range for the pulse technique.		
	This operating range can be adjusted using the current limit.		
	When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.		
	Otherwise, the rated motor current is used as pre-assigned value.		
p1605[0...n]	Pulse technique pattern configuration / Puls pattrn config		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the applied pulse patterns for estimating the continuous rotor position. Remark:		
	See p1750 for the activation of the pulse-pattern technique.		
Value:	$\begin{array}{ll}\text { 1: } & \mathrm{pm} \\ \text { 2: } & \mathrm{ppmm}\end{array}$		
Dependency:	Refer to: p1750		
Note:	When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.		
r1606	CO: Pulse technique pattern actual / Puls pattern act		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	-
Description:	Displays the currently applied pulse patterns for estimating the continuous rotor position.		
Value:	0: None 1: pm 2: ppmm		
Dependency:	Refer to: p1605, p1750		

p1607[0...n]	Pulse technique stimulus / Puls stimulus		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [mVs]	20000.000 [mVs]	32.000 [mVs]
Description: Dependency:	Sets the excitation amplitude (voltage-time pulse) for the pulse technique for estimating the continuous rotor position Refer to: p1605, p1750		
r1608[0...6]	CO: Pulse technique response / Puls response		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: ASM, REL, FEM	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the signal responses to the excitation of the pulse technique.		
Index:	$\begin{aligned} & {[0]=\text { Phase } R} \\ & {[1]=\text { Phase S }} \\ & {[2]=\text { D estimated }} \\ & {[3]=\text { Q estimated }} \\ & {[4]=\text { D estimated AC }} \\ & {[5]=\text { Q estimated AC }} \\ & {[6]=\text { Pointer length AC }} \end{aligned}$		
Dependency:	Refer to: p1605, p1607, p1750		
p1609[0...n]	I/f operation current setpoint / I/f op I_setp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the stator current setpoint for operation of a separately-excited synchronous motor (FEM) in operating mode I/f (p1300 = 18).		
p1610[0...n]	Torque setpoint static (sensorless) / M_set static		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6700, 6721, 6722, 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-200.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control.		
	This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Notice:	p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.		
Note:	For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current).		
	For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor torque.		

Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors.

p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6700, 6721, 6722, 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	30.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control. This parameter is entered as a percentage referred to the rated motor torque (r0333).		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled.		
	For pure accelerating torques, it is always favorable to use the torque pre-control of the speed controller (p 1496)		

p1612[0...n]	Current setpoint magnetizing open-loop controlled / Id_set ctrl		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: $6 _2$	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: -	Max
	Min	10000.00 [Arms]	Fxpert list: 1
	$0.00[A r m s]$	0.00 [Arms]	
Description:	Sets the magnetizing current setpoint in the open-loop controlled encoderless operation.		
	The value is only valid during the current model orientation.		
Dependency:	Refer to: p1610, p1611		
Note:	The value is effective at speeds less than p1755 and represents a reserve for a possibly existing load torque or		
	torque error in the moment of inertia.		

r1614	EMF maximum / EMF max		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6725
	P-Group: Displays, signals	Units group: 5_1	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual maximum possible electromotive force (EMF) of the separately-excited synchronous motor.		
Dependency:	The value is the basis for the flux setpoint.		
	The maximum possible EMF depends on the following factors:		
	- Actual DC link voltage (r0070).		
	- Maximum modulation depth (p1803).		
	- Field-generating and torque-generating current setpoint.		

p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6721,6722,
			6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$4[m s]$	40 [ms]	
Description:	Sets the smoothing time for the current/torque setpoint in the open-loop-controlled operating range in the case of		

Note:	This parameter is only effective in the range where current is injected for sensorless vector control.
For permanent magnet synchronous motors, the parameter is effective over the complete speed range.	
For induction motors, the current setpoint is calculated from p1610 and p1611 and for separately excited	
synchronous motors the torque setpoint is calculated from p1610 and p1611.	

r1617	CO: Torque setpoint (controlled) / M_set op-loop ctrl		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Torque setpoint for sensorless control of the separately excited synchronous motor in the open-loop-controlled		
	operating range (under p1755*p1756).		

r1618 Current model controller pre-control / I_mod_ctrl prectrl

VECTOR_G (n/M)

Can be changed: -
Calculated: -
Dyn. index: -
Units group: 6_2
Scaling: p2002
Max

- [Arms]

Displays the pre-control value of the current model controller. It involves a magnetizing current in the d-direction.

p1619[0...n]	Setpoint/actual value tracking threshold / SetAct track thrsh		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: $6 _2$	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	$0.00[$ Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Threshold for setpoint/actual value tracking of the stator current in the q axis of the current model.		

p1620[0...n]	Stator current minimum / I_stator min		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: 00505
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10000.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the minimum stator current for se A negative value means that the fieldinternally limited to 50% of the rated m	ly-excited synchronous motors (ting stator current (d-axis) has a urrent (p0305).	ative sign. The valid value

p1621[0...n]	Changeover speed inner cos phi = 1/n_chngov cos phi=1		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the speed where a change is made from the inner to the outer cos phi $=1$.		

If the value that is entered exceeds the rated speed, then a change is made to the inner cos phi $=1$ over the complete speed range.

p1622[0...n]	Field-generating current setpoint smoothing time constant / Id_setp T_smth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [ms]	200.0 [ms]	20.0 [ms]
Description:	Sets the smoothing time constant for the setpoint of the field-generating current components. The current filtered in this way is included in the calculation of the cos phi.		
r1623[0...1]	Field-generating current setpoint (steady-state) / Id_set stationary		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6723, 6726, 6727
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description: Note:	Displays the steady-state field generating current setpoint (ld_set).		
	Re index 1:		
	Displays the stationary field-generating current on the stator side in the case of separately excited synchronous motors without the excitation current monitoring component (r1644).		
$\overline{\mathbf{r 1 6 2 4}}$	Field-generating current setpoint total / Id_setp total		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6640, 6721, 6723, 6727
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	
Description:	Displays the limited field-generating current setpoint (Id_set).		
	This value comprises the steady-state field-generating current setpoint r1623 and a dynamic component that is only set when changes are made to the flux setpoint.		
p1625[0...n]	Excitation current setpoint calibration / I_exc_setp cal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the gain factor to weight the excitation current setpoint.		

r1626	CO: Excitation current setpoint / I_exc_setp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated excitation current setpoint.		
Dependency:	Refer to: p0390		
r1627	CO: Current model load angle / I_mod load angle		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [$\left.{ }^{\circ}\right]$	- [${ }^{\circ}$]	- [${ }^{\circ}$
Description:	Displays the load angle of the current model.		
p1628[0...n]	Current model controller dynamic factor / I_mod_ctr dyn_fact		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [\%]	400 [\%]	50 [\%]
Description:	Sets the dynamic response factor for the current model controller.		
p1629[0...n]	Current model controller P gain / I_mod_ctrl Kp		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, RELMin	Scaling: -	Expert list: 1
		Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the current model controller.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
p1630[0...n]	Current model controller integral time / I_mod_ctrl Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the integral time for the current model controller.		
	This value is automatically pre-set usin	00 or p0340 when commissioning	been completed.

r1631	Current model controller P gain effective / I_mod ctrl Kp eff		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective P gain of the current model controller.		
r1632	Current model controller integral time effective / I_mod_ctrl Tn eff		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the effective integral time of the current model controller.		
r1633	Current model flux setpoint / I_mod flux setp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint of the current model. The value is referred to the rated motor flux.		
r1634	Current model flux actual value / I_mod flux act val		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux actual value of the current model. The value is referred to the rated motor flux.		
r1635	Current model controller I component / I_mod_ctrl I comp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the I component of the current model controller.		

r1636	Current model controller output / I_mod_ctrl outp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: 00505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the output of the current model controller.		
$\overline{\mathbf{r 1 6 3 7}}$	Current model magnetizing current d axis / I_mod I_mag d-ax		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: 00505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the magnetizing current of the current model in the d-axis.		
r1638	Current model magnetizing current q axis / I_mod I_mag q-ax		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: 00505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the magnetizing current of the current model in the q-axis.		
r1639	CO: Current model Isq after actual value tracking / __mod Isq track		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the stator current in the q axis after the current actual value tracking.		
p1640[0...n]	CI: Excitation current actual value signal source / I_exc_ActVal S_src		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 6727
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the excitation current actual value		

	The denominator damping can f_3dB bandwidth = 2 * D_denon	from the equation for the 3 dB ndstop frequency	width:
p1658[0...n]	Current setpoint filter 1 denominator natural frequency / I_set_filt 1 fn_d		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 1 (PT2, general filter).		
Dependency:	The current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
p1659[0...n]	Current setpoint filter 1 denominator damping / I_set_filt 1 D_d		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for current setpoint filter 1.		
Dependency:	The current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
p1660[0...n]	Current setpoint filter 1 numerator natural frequency / I_set_filt 1 fn_n		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 1 (general filter).		
Dependency:	The current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
p1661[0...n]	Current setpoint filter 1 numerator damping / I_set_filt 1 D_n		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 1.		
Dependency:	The current setpoint filter 1 is activated via p1656.0 and parameterized via p1657 ... p1661.		
p1662[0...n]	Current setpoint filter 2 type / I_set_filt 2 type		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Sets the current setpoint filter 2 as low pass (PT2) or general 2nd-order filter.		
Value:	1: PT2 low pass 2: General 2nd order filter		

Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
Note:	For a general 2nd-order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed. The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth = 2 * D_denominator * f_bandstop frequency		
p1663[0...n]	Current setpoint filter 2 denominator natural frequency / I_set_filt $\mathbf{2}$ fn_d		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the denominator natural frequency for current setpoint filter 2 (PT2, general filter).		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1664[0...n]	Current setpoint filter 2 denominator damping / I_set_filt 2 D_d		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for current setpoint filter 2.		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1665[0...n]	Current setpoint filter 2 numerator natural frequency / I_set_filt 2 fn_n		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for current setpoint filter 2 (general filter).		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		
p1666[0...n]	Current setpoint filter 2 numerator damping / I_set_filt 2 D_n		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5710, 6710
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for current setpoint filter 2.		
Dependency:	Current setpoint filter 2 is activated via p1656.1 and parameterized via p1662 ... p1666.		

p1677[0...n]	Speed actual value filter 5 type / n_act_filt 5 type		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the speed actual value filter 5 as low pass (PT2) or general 2nd-order filter.		
Value:	1: PT2 low pass		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		
Note:	For a general 2nd-order filter, by inserting the same natural frequency in both the numerator and in the denominator, i.e. bandstop frequency, a bandstop filter is implemented. If the numerator damping of zero is selected, the bandstop frequency is completely suppressed.		
	The denominator damping can be determined from the equation for the 3 dB bandwidth: f_3dB bandwidth $=2$ * D_denominator * f_bandstop frequency		

p1678[0...n]	Speed actual value filter 5 denominator natural frequency / n_act_filt $\mathbf{5}$ fn_d		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.5[\mathrm{~Hz}]$	$16000.0[\mathrm{~Hz}]$	$1999.0[\mathrm{~Hz}]$

Description: Sets the denominator natural frequency for speed actual value filter 5 (PT2, general filter).
Dependency: The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.

p1679[0...n]	Speed actual value filter 5 denominator damping / n_act_filt 5 D_d		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001	10.000	0.700
Description:	Sets the denominator damping for speed actual value filter 5.		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		
p1680[0...n]	Speed actual value filter 5 numerator natural frequency / n_act_filt 5 fn_n		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.5 [Hz]	16000.0 [Hz]	1999.0 [Hz]
Description:	Sets the numerator natural frequency for speed actual value filter 5 (general filter).		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		

p1681[0...n]	Speed actual value filter 5 numerator damping / n_act_filt 5 D_n		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 4715
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.700
Description:	Sets the numerator damping for speed actual value filter 5 .		
Dependency:	The speed actual value filter is activated via p1656.4 and parameterized via p1677 ... p1681.		
p1699	Filter data acceptance / Filt data accept		
VECTOR_G (n/M)	Can be changed: \cup, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates data acceptance for parameter changes for the filter. p1699 $=0$:		
	The new filter data are immediately accepted. p1699 = 1:		
	The new filter data are only accepted when this parameter is reset.		
Dependency:	Speed setpoint filter 1, 2 (p1414 and following)		
	Current setpoint filter $1 . . .4$ (p1656 and following)		
	Current setpoint filter $5 \ldots 10$ (function module, p5200 and following)		
	Refer to: p1656		
p1702[0...n]	Isd current controller pre-control scaling / Isd_ctr_prectrScal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	70.0 [\%]
Description: Note:	Sets the scaling of the dynamic current controller pre-control for the flux-generating current component Isd.		
	The parameter is effective for permanent and separately-excited synchronous motors.		
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	70.0 [\%]
Description:	Sets the scaling of the dynamic current controller pre-control for the torque/force-generating current component Isq.		

p1704[0...n]	Isq current controller pre-control EMF scaling / Isq_ctrl EMF scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714, 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the EMF pre-control for the Isq current controller.		
p1705[0...n]	Flux setpoint/actual value tracking threshold / Flux track thresh		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714, 6726
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	100.0 [\%]
Description:	Threshold for the setpoint - actual value tracking of the EMF pre-control of the Isq current controller.		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	$\begin{aligned} & \text { Func. diagram: 6700, 6714, } \\ & 7017 \end{aligned}$
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the current controller for the lower adaptation current range. This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
Dependency:	Refer to: p0391, p0392, p0393		
Note:	For p0393 $=100 \%$, the current controller adaptation is disabled and p1715 is effective over the entire range.		
p1717[0...n]	Current controller integral-action time / I_ctrl Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 5714, 6700, 6714, 7017
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral-action time of the current controller. Refer to: p1715		
Dependency:			
r1718	CO: Isq controller output / Isq_ctrl outp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the Isq current controller (torque/force generating current, PI controller). The value contains the proportional and integral components of the PI controller.		

r1719 VECTOR_G (n/M)	Isq controller integral component / Isq_ctrl I_comp		
	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: 00505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the integral component of the Isq current controller (torque/force-generating current, PI controller)		
r1723	CO: Isd controller output / Isd_ctrl outp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: 00505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the Isd current controller (flux-generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
r1724	Isd controller integral component / Isd_ctrl I_comp		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: 00505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the integral component of the Isd current controller (flux-generating current, PI controller).		
r1725	Isd controller integral component limit / Isd_ctrl I_limit		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: 00505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the limit value for the integral component of the Isd current controller.		
p1726[0...n]	Quadrature arm decoupling scaling / Transv_decpl scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	75.0 [\%]
Description:	Sets the scaling of the quadrature arm decoupling		
Note:	This parameter is ineffective for sensorless vector control. In this case, p1727 is always used. If p1726 is set to 0 , then the quadrature de-coupling is de-activated. The integral component of the Isd current controller remains effective in the complete speed control range.		
	For the closed-loop control of synchronous motors, this parameter is used to scale the current controller de-coupling		

p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecplVmaxScal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the scaling of quadrature arm decoupling when the voltage limit is reached.		
r1728	De-coupling voltage in-line axis / U_dir-axis_decoupl		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the d axis.		
r1729	De-coupling voltage quadrature axis / U_quad_decoupl		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6714
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the q axis.		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	30 [\%]	150 [\%]	30 [\%]
Description:	Sets the speed threshold for deactivating the integral component of the Isd controller.		
	The d current controller is only effective as P controller for speeds greater than the threshold value. Instead of the integral component, the quadrature arm decoupling is effective.		
Warning:	For settings above 80%, the d current controller is active up to the field weakening limit. When operated at the voltage limit, this can result in an unstable behavior. In order to avoid this, the dynamic voltage reserve p1574 should be increased.		
Note:	The parameter value is referred to the synchronous rated motor speed.		
p1731[0...n]	Isd controller combination current time component / Isd ctr I_combi T1		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant to calculate the d current DC component difference (combination current) to add to the d current controller actual value. It is not added for p1731 $=0$.		
Note:			

r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, 6714, 5718
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description: Index:	[0] = Unsmoothed [1] = Smoothed with p0045		
r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 5700, 5714, 5718, 6714, 6719
	P-Group: Closed-loop control	Units group: 5_1	Unit selection: p0505
	Not for motor type: REL	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description: Index:	Display and connector output for the quadrature axis voltage setpoint Uq. [0] = Unsmoothed		
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.025
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.		
p1744[0...n]	Motor model speed threshold stall detection / MotMod n_thr stall		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	100.00 [rpm]
Description:	Sets the speed threshold value to detect a stalled motor. If the adaptation controller output exceeds the parameterized speed difference, then in status word r1408.11 is set $=$ 1.		
Dependency:	If a stalled drive is detected (r1408.11 = 1), fault F07902 is output after the delay time set in p2178. Refer to: p2178		
Note:	Speed monitoring is only effective in operation with a speed encoder (refer to p1300). Stalling is also identified if steps/jumps occur in the speed signal, which exceed the value in p0492.		

p1750[0...n] VECTOR_G (n/M)

Motor model configuration / MotMod config

Can be changed: U, T
Data type: Unsigned8
P-Group: Closed-loop control
Not for motor type: REL, FEM
Min
-
Sets the configuration for the motor model.
Bit $0=1$: Forces open-loop speed-controlled starting (ASM).
Bit $1=1$: Forces the system to pass through frequency zero, open-loop-controlled (ASM).
Bit $2=1$: Drive remains in full closed-loop control mode, even at zero frequency (ASM).
Bit $3=1$: Motor model evaluates the saturation characteristic (ASM).
Bit $4=1$: Time-controlled change between current and observer models (ASM).
Bit $5=1$: HF signal injection to estimate the continuous rotor position (PESM).
Bit $6=1$: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).
For a stalled (blocked) synchronous motor (PEM), the encoderless vector control remains open-loop speed controlled.
Bit 7 = 1: Use rugged switchover limits to switchover the model between open-loop and closed-loop controlled operation (ASM).

Bit field:

Caution:

Note:

Bit	Signal name	1 signal	0 signal	FP
00	Controlled start	Yes	No	-
01	Controlled through 0 Hz	Yes	No	-
02	Closed-loop ctrl oper. down to zero freq. for passive loads	Yes	No	-
03	Motor model Lh_pre = f(PsiEst)	Yes	No	-
04	Model changeover	Time controlled	Freq. controlled	-
05	CI.-loop control mode PESM up to $\mathrm{f}=\mathrm{OHz}$ with HF signal injection	Yes	No	-
06	Closed-loop/open-loop controlled (PEM) for blocked motor	Yes	No	-
07	Use rugged changeover limits	Yes	No	-

Do not use bit $6=1$ if the motor can be slowly reversed by the load at the torque limit. Long delay times due to blocking (p2177 > p1758) can cause the motor to stall. In this case you should de-activate the function or use closedloop control throughout the speed range (note the information re bit $2=1$).
Bit 0 ... 3 only have influence for sensorless vector control, bit 4 only for vector control with encoder. Bit 2 is pre- assigned depending on p0500.
Re bit $2=1$:
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
Re bit $2=0$:
If the model feedback is deactivated ($\mathrm{p} 1784=0$), with bit $2=0$, then bit 3 is also automatically set to 0 .
Re bit $5=1$:
The selection of HF signal injection is only relevant for permanent-magnet synchronous motors (PESM). Therefore, activation of bit 5 is only possible outside of motor commissioning ($\mathrm{p} 0010=0$).
In order to achieve user-friendly configuration of the power unit components in the oversampling mode, when activated for the first time, initially p1810.3 is set, and then an automatic system boot is initiated. This is only possible if all of the axes connected to the Control Unit are switched off (refer to the setting conditions for p0009); otherwise, it is not possible to set the bit.

When deactivating p1750.5, p1810.3 remains unchanged and the system does not boot again.
Therefore, to reverse configure the power unit components from the oversampling mode (after manually deselecting p1750 bit 5) then initially p1810 bit 3 must be manually deleted and then a manual warm restart initiated.

As an alternative to a warm restart: save the parameters and carry out a POWER ON (switch-off/switch-on).
When the function "safety without encoder" (p9306/p9506) is activated, this setting is not permissible and results in monitoring errors.
Re bit $6=1$:
The following applies for encoderless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p 1758 is bypassed and a change is not made into open-loop controlled operation.
The following applies for encoderless vector control of synchronous motors:
For a blocked motor (see p2175, p2177), the speed ramp-function generator is held in open-loop speed controlled operation, and a change is not made into closed-loop controlled operation.
Re bit $7=1$:
The following applies for encoderless vector control of induction motors:
If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
The effective time condition for changing over into open-controlled operation is obtained from the minimum of p1758 and 0.5 * r 0384.
Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.
Adequate parameterization must be ensured (p1610, p1611).

$\mathbf{r 1 7 5 1}$
VECTOR_G (n/M)

Description:

 Bit field:Motor model status / MotMod status
Can be changed: - Calculated: -

Data type: Unsigned32
P-Group: Closed-loop control
Not for motor type: REL, FEM
Min

- -

Displays the status of the motor model.

Bit	Signal name	1 signal	0 signal	FP
00	Controlled operation	Active	Inactive	6721
01	Set ramp-function generator	Active	Inactive	-
02	Stop RsLh adaptation	Yes	No	-
03	Feedback	Active	Inactive	-
04	Encoder operation	Active	Inactive	-
05	Holding angle	Yes	No	-
06	Acceleration criterion	Active	Inactive	-
07	Set angular integrator PEM	Yes	No	-
08	Stop Kt adaptation PEM	Yes	No	-
09	PollD active PEM sensorless	Yes	No	-
10	1 injection PEM	Yes	No	-
11	Speed controller output cannot be set to zero	Yes	No	-
12	Rs adapt waits	Yes	No	-
13	Motor operation	Yes	No	-
14	Stator frequency sign	Positive	Negative	-
15	Torque sign	Motor mode	Regenerative mode	-
16	Pulse injection active PEM	Yes	No	-
17	Operation with rugged model feedback	Enabled	Inhibited	-
18	Operation of the current model with current feedback	Enabled	Inhibited	-
19	Current feedback in the current model	Active	Inactive	-
20	Rugged increase of the changeover limits	Active	Inactive	-
21	Motor blocked (RFG stop) PEM	No	Yes	-

Re bit 17:

Displays the status when enabling the rugged model feedback (p1784) for operation with and without encoder. The feedback is used to increase the parameter ruggedness of the motor model and is effective in the operating range of the two-component closed loop current control.

Re bit 18:
Displays the status when enabling the differential current feedback in the current model for operation with encoder.
The function is automatically enabled with p1784>0 or p1731>0. The feedback is used for a rugged change between the current model and complete machine model with active rugged model feedback and combination current.
Re bit 19:
Displays the currently active stator circuit feedback in current model operation.
Re bit 20:
Displays the currently effective increase of the changeover limits by the value p1749 * p1755.
Re bit 21:
For a blocked synchronous motor, the speed ramp-function generator is held in the open-loop speed controlled operating range if the torque setpoint reaches the torque limit and the speed is less than the threshold value in p2175.

p1752[0...n]	Motor model changeover speed operation with encoder / MotMod n_chgov enc		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the speed to change over the motor model for operation with encoder.		
Dependency:	In U/f characteristic mode the parameter is of no significance.		
	Using the friction characteristic for operation with encoder:		
	When changing the motor model changeover speed p1752, the points along the friction characteristic should be recalculated ($\mathrm{p} 0340=5$) and the friction characteristic recorded again (p 3845). For slight changes, only the associated friction characteristic points must be recorded (see p3844).		
	Refer to: p1756		
p1753[0...n]	Motor model changeover speed hysteresis operation with encoder / MotMod n_chgovHysE		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	90.0 [\%]	0.0 [\%]
Description:	Sets the hysteresis for the changeover speed of the motor model for operation with speed encoder.		
Dependency:	Refer to: p1752		
Note:	The value refers to p 1752 . In the case of separately excited synchronous motors, the lower hysteresis value is calculated with p1752 * p1753; in the case of all other types of motor, p1752 * (1-p1753) is used.		
p1754[0...n]	Flux angle difference smoothing time / Angle diff T_smth		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6733
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [ms]	10000.0 [ms]	5.0 [ms]
Description:	Sets the smoothing time constant to filter the main flux angle difference from the voltage and current models. The filtered value is included in the calculation of the total flux angle.		
Note:	In the case of a separately excite the minimum value to improve m	ous motor and sensorless vector changeover.	rol, the parameter must be set to

p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the speed to change over the motor model to encoderless operation.		
Dependency:	In U/f characteristic mode the parameter is of no significance.		
	Refer to: p1749, p1756		
Notice:	The changeover speed represents the steady-state minimum speed up to which the motor model can be used in sensorless steady-state operation.		
	If the stability is not adequate close to the changeover speed, it may make sense to increase the parameter value.		
Note:	The changeover speed applies for the changeover between open-loop and closed-loop control mode.		
p1756	Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys		
VECTOR_G	Can be changed: $\cup, ~ T$	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6730, 6731, 6732, 6733
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	95.0 [\%]	50.0 [\%]
Description:	Sets the hysteresis for the changeover speed of the motor model for encoderless operation. In the case of separately excited synchronous motors, the lower hysteresis value is calculated with p1756 * p1755; in the case of all other types of motor, p1755 * ($1-\mathrm{p} 1756$) is used.		
Dependency:	In U/f characteristic mode the parameter is of no significance.		
Note:	In the case of separately excited synchronous motors, the lower hysteresis value is calculated with p1755 * p1756; in the case of all other types of motor, p1755 * (1-p1756) is used.		
p1757[0...n]	Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling:-	Expert list: 1
	Min	Max	Factory setting
	0.01	10.00	0.70
Description:	Sets the gain of the transient response controller when the motor model changes over from open-loop controlled operation to closed-loop controlled operation.		
Note:	Only for ASM and PSM in encoderless operation:		
	The settling range starts at 0.5 * p1755 * p1756.		
	For ASM it ends at p1755 * p1756 or at p1755, if p1759 is at the maximum value.		
	For PSM it always ends at p1755 * p1756.		

p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	100 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the minimum time for falling below the changeover speed when changing from closed-loop controlled operation to open-loop controlled operation.		
Dependency:	The wait time has no significance if the setpoint speed before the ramp-function generator lies in the open-loop speed controlled operating range. In this case, the change is made without any delay. Refer to: p1755, p1756		
Note:	If p1758 is changed, commissioning must be selected in order to validate the value for the blocking monitoring.		
p1759[0...n]	Motor model changeover delay time open/closed-loop control / MotMod t op_cl		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	2000 [ms]	0 [ms]
Description:	Sets the minimum time for a transition from open-loop controlled to closed-loop controlled operation after the lower changeover speed p1755 * (1 - p1756 / 100 \%) has been exceeded.		
Dependency:	Refer to: p1755, p1756		
Note:	With p1759 = 2000 ms , the delay time becomes ineffective and the model changeover is determined by the output frequency only (changeover for p1755).		
p1760[0...n]	Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	1000.000
Description:	Sets the proportional gain of the controller for speed adaptation with encoder		
p1761[0...n]	Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	4 [ms]
Description:	Sets the integral-action time of the controller for speed adaptation with encoder		

r1762[0...1]	Motor model deviation component 1 / MotMod dev comp 1		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6721, 6730, 6731
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Induction motor (ASM):		
	Displays the referred imaginary system deviation for the adaptation circuit of the motor model.		
	Permanent magnet synchronous motor (PEM):		
	Displays the system deviation for speed adaptation.		
	r1762[0]: Angular deviation [rad-el] of the estimated EMF.		
	r1762[1]: Angular deviation [rad-el] of the low-level signal response for pulse technique.		
Index:	[1] = Deviation model 2		
r1763	Motor model deviation component 2 / MotMod dev comp 2		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Induction motor (ASM):		
	Displays the referred real system deviation for the adaptation circuit of the motor model.		
	Permanent magnet synchronous motor (PEM):		
	Not used.		
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CA	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DD	Func. diagram: 6730
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	100000.000	1000.000
Description:	Sets the proportional gain of the controller for speed adaptation without encoder.		
r1765	Motor model speed adaptation Kp effective / MotM n_ada Kp act		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective proportional gain of the controller for the speed adaptation.		

p1766[0...n]	Motor model voltage model calculation enable / U_mod calc enab		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	90.0 [\%]	50.0 [\%]
Description:	Sets the speed to enable the voltage model to calculate the speed actual value. This value is entered as a percentage referred to p1752.		
	For separately-excited synchronous motors without encoder, the parameter is referred to p1748.		
Dependency:	Refer to: p1748, p1752		
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6730
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1 [ms]	200 [ms]	4 [ms]
Description:	Sets the integral time of the controller for speed adaptation without encoder		
r1768	Motor model speed adaptation Vi effective / MotM n_ada Vi act		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL, FEM	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective gain of the integral component of the controller for speed adaptation.		
$\mathbf{r 1 7 7 0}$	CO: Motor model speed adaptation proportional component / MotMod n_adapt K		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6730
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the P component of the controller for speed adaptation.		
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6730
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the I component of the controller for speed adaptation.		

r1773[0...1]	Motor model slip speed / MotMod slip		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays estimated (speed) signals of the motor model. r1773[0]: Displays the estimated (mechanical) slip of the motor model. r1773[1]: Displays the estimated input speed of the motor model.		
Index:	$\begin{aligned} & {[0]=\text { Slip speed estimated }} \\ & {[1]=\text { Speed estimated }} \end{aligned}$		
p1774[0...n]	Motor model offset voltage compensation alpha / MotMod offs comp A		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-5.000 [V]	5.000 [V]	0.000 [V]
Description:	Sets the offset voltage in the alpha direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		
Note:	The value is pre-set during the rotating measurement.		
p1775[0...n]	Motor model offset voltage compensation beta / MotMod offs comp B		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-5.000 [V]	5.000 [V]	0.000 [V]
Description:	Sets the offset voltage in the beta direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		
Note:	The value is pre-set during the rotating measurement.		
r1776[0...6]	Motor model status signals / MotMod status sig		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the internal status signals of the motor model:		
	Index 0: Changeover ramp between current and voltage models		
	Index 1: Changeover ramp for model tracking (encoderless induction motors only)		
	Index 2: Changeover ramp for zero frequency range (encoderless induction motors only)		
	Index 3: Transition ramp actual speed from speed setpoint to model value (encoderless FEM)		
	Index 4: Speed controller enable (encoderless FEM)		
	Index 5: Transition ramp between current and voltage models (encoderless FEM)		
	Index 6: Transition ramp for EMF deviation at PLL input (encoderless PESM)		

	13	Fast pulsed pole position identification	Yes	No	
	14	Delay of the precontrol speed to the motor model	Yes	No	
	15	RESM: Linear Q flux model	active	not active	
Dependency:	In U/f characteristic operating mode, only bit 7 and bit 11 are relevant.				
	For active motor model feedback (see p1784), the Lh adaptation is internally deactivated automatically.				
	When the power units are connected in parallel with separate, offset motor winding systems (p7003 = 2), then the compensation of the valve interlocking times should be implemented as Rs adaptation (bit $7=1$).				
Caution:	Bit 11: The selection has not been enabled for output filters, with the exception of motor reactors (see p0230)				
A					
Notice:	It is only permissible to change bit 11 if the drive is switched off.				
	When selecting bit 11, also for U/f characteristic operation, a standstill measurement must have been performed to set the necessary current controller for a fast flying restart.				
Note:	ASM: Induction motor				
	PEM: Permanent magnet synchronous motor				
	When selecting the compensation of the valve interlocking via Rs (bit 7), the compensation in the gating unit is deactivated and is instead taken into account in the motor model.				
	In order that the correction values of the Rs, Lh and kT adaptation (selected using Bit 0 ... Bit 2) are correctly accepted when changing over the drive data set, a dedicated motor number must be entered into p0826 for each different motor.				
	Bit 11 has no influence on flying restart with speed encoder. Depending on the motor, the fast flying restart is suitable for speeds of maximum $1.5 x$ to $4 x$ the rated motor speed.				
	Re bit 12 (only for synchronous motors and bit $6=1$):				
	The pole position identification is only carried out after power on and after the motor has coasted down. The switchoff speed p1226 should be as low as possible. If the power unit is switched off when the motor is stationary, then the next time that the power unit is switched on, the old angle is used. The precondition applies that while the power unit is switched off the motor does not rotate.				
	The duration of the pole position identification is shortened using bit 13 . As a consequence, the pole wheel angle error can be slightly greater.				

p1784[0...n]	Motor model feedback scaling / MotMod fdbk scal		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\%]$	$1000.0[\%]$	$0.0[\%]$

Description: Sets the scaling for model fault feedback.

Note: \quad Feeding back the measured model fault to the model states increases the control stability and makes the motor model rugged against parameter errors.
When feedback is selected ($\mathrm{p} 1784>0$), Lh adaptation is not effective.

p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	10.000	0.100
Description:	Sets the proportional gain for the Lh adaptation of the motor model for an induction motor (ASM).		

p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [ms]	10000 [ms]	100 [ms]
Description:	Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM).		
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM).		
Dependency:			
Note:	The adaptation result is reset if the magnetizing inductance of the induction motor is changed ($\mathrm{p} 0360, \mathrm{rO382}$). This also happens when changing over the data set if a different motor is not being used (p0826).		
	The display of the inactive data sets is only updated when changing over the data set.		
r1791	Motor model Lh adaptation power-on frequency / MotMod Lh f_on		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the power-on stator frequency/ primary section frequency for the Lh adaptation for the induction motor (ASM).		
r1792	Motor model Lh adaptation power-on slip / MotMod Lh fslip		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the power-on slip frequency for the Lh adaptation for the induction motor (ASM).		
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6731
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [ms]	10000 [ms]	100 [ms]
Description:	Sets the integral time of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		

r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 6731
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Nm / A]	- [Nm / A]	- [Nm / A]
Description:	Displays the corrective value of the kT adaptation of the motor model for a permanent-magnet synchronous motor (PEM).		
Dependency:	Refer to: p0826, p1780		
Note:	The display of the inactive data sets is only updated when changing over the data set.		
p1798[0...n]	Motor model pulse technique speed adaptation Kp / MotMod PulsTech Kp		
VECTOR_G (n / M)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain Kp for speed adaptation with active pulse technique for the estimation of the continuous rotor position.		
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8014
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.000 [kHz$]$	16.000 [kHz]	4.000 [Hzz]
Description:	Sets the pulse frequency for the converter.		
	This parameter is pre-set to the rated converter value when the drive is first commissioned.		
Dependency:	The pulse frequency can, depending on the current controller sampling time ($\mathrm{p} 0115[0]$) assume the following values: $p 1800=1000 /(p 0115[0] * 2)$ or		
	$\mathrm{p} 1800=\mathrm{n} * 1000 / \mathrm{p} 0115[0]$ with $\mathrm{n}=1,2,3, \ldots$		
	Example:		
	p0115[0] $=250 \mu \mathrm{~s}$--> p1800 $=2,4,8,12,16 \mathrm{kHz}$		
	Possible setting values can be taken from r0114 (if p0009 = p0010 = 0).		
	If p0092 $=1$ the sampling times p0115 and the pulse frequency p1800 are checked every time the parameters are downloaded, and reset to the initial values if necessary. This check can be de-activated by setting p0092 $=0$ (making this setting does not affect isochronous PROFIBUS operation).		
	If the pulse frequency is set asynchronously to the current controller clock cycle (p1810.12),		
	p1800 < = 1000 * $2 /$ p0115[0]		
	If wobbulation is selected (p 1810.2), the pulse frequency can only be changed as part of pulse enabling to values with the following ratio:		
	a) p1800<= $1000 / \mathrm{p} 0115[0]$ for p1811>0\%		
	b) p1800 < $=1000$ * $2 / \mathrm{p} 0115[0]$ for p $1811=0 \%$		
	Under pulse inhibit		
	p1800 > $1000 / p 0115[0]->p 1811=0$		
	$\mathrm{p} 1800>1000$ * $2 / \mathrm{p} 0115[0]->1810.2=0$ and p1811 $=0$		
	(applicable for all indices)		
	Refer to: r0110, r0111, p0112, p0113, r0114, p0115, p0230, p1817		

Notice:	The pulse frequency p1800 can also be asynchronously set to the current controller clock cycle (0.05 kHz increment). To do this, p1810.12 must be set to 1 (secondary condition, see p1810).
	Effects:
	- switching over the gating unit (p1810.2).
	- activating the current actual value correction (p1840.0).
	- minimum pulse frequency 1000 * 0.5 / p0115[0].
	- maximum pulse frequency 1000 * 2 / p0115[0].
	- fluctuating deadtimes and dynamic performance in the current control loop.
	- increased level of current ripple in the current display.
Note:	The maximum possible pulse frequency is also determined by the power unit being used.
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).
	The maximum pulse frequency for operation with output reactors (see p0230) is 4 kHz for booksize and blocksize power units, for chassis power units it is twice the rated pulse frequency (2.5 kHz or 4 kHz).
	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter. If an external sine-wave filter is parameterized, $(\mathrm{p} 0230=4)$, then the minimum pulse frequency is calculated as follows:
	f_puls_min $=1.6 /\left(2{ }^{*} \mathrm{Pi}\right.$ * $\operatorname{root}(\mathrm{p} 0233$ * p0234 * 0235$)$), with p0233 in H and p0234 in F
	In this case, the pulse frequency must be a multiple of the inverse value of the current controller sampling time (p0115[0]).
	If a sine-wave filter is parameterized as output filter $(\mathrm{p} 0230=3)$, then the pulse frequency cannot be changed below the minimum value required for the filter.
	If p 1800 is changed while commissioning ($\mathrm{p} 0009, \mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).

p1802[0...n] Modulator mode / Modulator mode

VECTOR_G	Can be changed: T	Calculated:	Access level: 3
	Cata type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting	
	0	19	0

Description: Sets the modulator mode.

p1804[0...n]	Filter time constant smoothed modulation index / T_filt mod_idxSmth		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[m s]$	$10000.0[m s]$	10.0 [ms]
	Filter time constant for the smoothed modulation index to change over the modulator mode.		

p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$10000.0[\mathrm{~ms}]$	$0.0[\mathrm{~ms}]$

[^2]| r1807 | Actual DC link voltage to calculate the modulation depth / VdcActValMod_depth | | | |
| :---: | :---: | :---: | :---: | :---: |
| VECTOR_G | Can be changed: - Cal | ulated: - | Acces | |
| | Data type: FloatingPoint32 Dy | index: - | Func. | |
| | P-Group: Displays, signals Un | group: 5_2 | Unit | |
| | Not for motor type: - Sc | ing: p2001 | Exper | |
| | Min Max | | Facto | |
| | - [V] - [V] | | - [V] | |
| Description: | DC link voltage that is used to convert the setpoint voltage into an equivalent modulation depth. | | | |
| r1808 | DC link voltage actual value for U_max calculation / Vdc act val U_max | | | |
| VECTOR_G | Can be changed: - C | Calculated: - | Acces | |
| | Data type: FloatingPoint32 D | Dyn. index: - | Func. | |
| | P-Group: Displays, signals U | Units group: 5_2 | Unit | |
| | Not for motor type: - S | Scaling: p2001 | Exper | |
| | Min | Max | Facto | |
| | -[V] - | - [V] | - [V] | |
| Description: | DC link voltage used to determine the maximum possible output voltage. | | | |
| r1809 | CO: Modulator mode actual / Modulator mode act | | | |
| VECTOR_G | Can be changed: - C | Calculated: - | Access level: 4 | |
| | Data type: Integer16 D | Dyn. index: - | Func. diagram: - | |
| | P-Group: Modulation U | Units group: - | Unit selection: - | |
| | Not for motor type: - S | Scaling: - | Expert list: 1 | |
| | Min | Max | Factory setting | |
| | 19 | 9 | - | |
| Description: | Displays the effective modulator mode. | | | |
| Value: | 1: Flat top modulation (FLB) | | | |
| | 2: Space vector modulation (SVM) | | | |
| | 3: Edge modulation from $28 \mathrm{~Hz} ; 23: 3$ | | | |
| | 4: Edge modulation from 28 Hz ; 19:1 | | | |
| | 5: Edge modulation from 60 Hz ; 17:3 | | | |
| | 6: Edge modulation from 60 Hz ; 17:1 | | | |
| | 7: Edge modulation from $100 \mathrm{~Hz} ; 9: 2$ | | | |
| | 8: Edge modulation from $100 \mathrm{~Hz} ; 9: 1$ | | | |
| | 9: Optimized pulse pattern | | | |
| p1810 | Modulator configuration / Modulator config | | | |
| VECTOR_G | Can be changed: U, T | ulated: - | Access level: 3 | |
| | Data type: Unsigned16 | index: - | Func. diagram: - | |
| | P-Group: Modulation | group: - | Unit selection: - | |
| | Not for motor type: - S | Scaling: - | Expert list: 1 | |
| | Min | Max | Factory setting | |
| | - - | | 0000000000000010 bin | |
| Description: | Sets the configuration for the modulator.Bit Signal name | | | |
| Bit field: | | 1 signal | 0 signal | FP |
| | 00 Avg value filter for U_lim (only for Vdc_comp. in modulator) | Yes | No | - |
| | 01 DC link voltage compensation in the curren control | Yes | No | - |
| | 02 Wobbulation activated | Yes | No | - |
| | 03 Current measurement oversampling selected | Yes | No | - |
| | 08 Pulse frequency reduction (speed dependent) stage 1 | Yes | No | - |

2.2 List of parameters

[^3]Re bit $10=1$:
Pulse-dropping function activated.
Re bit $12=0$:
The pulse frequency p1800 can also be synchronously set to the current controller clock cycle (see r0114).
Bit 12 can only be set from 1 to 0 if the pulse frequency p1800 is set synchronously to the current controller clock cycle. In this case, the gating unit is not switched over.
Re bit $12=1$:
The pulse frequency p1800 can also be asynchronously set to the current controller clock cycle. In this case, the effects should be observed (see p1800).
If bit 12 is set to 1 , then the gating unit is automatically switched over ($\mathrm{p} 1810.2=1$). If this is not possible (see above), then bit 12 cannot be set to 1 .
Bit 12 cannot be set to 1 , if $\mathrm{p} 1810.3=1$ is set.
Re bit $15=1$
For p1802 = 0, 2 and p1803 > 106%, dynamically, a modulation depth of more than 106% is permitted. When p1803 is increased, the dynamic modulation depth reserve p1574 should be increased so that the maximum output voltage r0071 approximately remains the same.
p1811[0...n]
VECTOR G

Description:

Note:

Pulse frequency wobbulation amplitude / Puls wobb ampl
Can be changed: $U, T \quad$ Calculated: -

Data type: FloatingPoint32
P-Group: Modulation
Not for motor type: Min
0 [\%]

Calculated: -
Dyn. index: DDS, p0180
Units group: -
Scaling: -
Max
20 [\%]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0 [\%]

Sets the amplitude of the statistical wobbulation signal.
This signal is used to vary the pulse frequency to create a more pleasant sound.
p1811 > 0 is possible, if the following applies:

- configuration: p1810.2 = 1 (wobbulation activated)
- pulse frequency: p1800 <= $1000 / p 115[0]$
- output filter, filter type: p0230 < 3 (no sine-wave filter)

p1812	BI: Offset calibration output current measurement / Off_calibr I_outp			
VECTOR_G	Can be changed: T	Calculated: -	Acce	
	Data type: Unsigned32 / Binary D	Dyn. index: -	Func	
	P-Group: Modulation U	Units group: -	Unit	
	Not for motor type: - S	Scaling: -	Expe	
	Min	Max	Facto	
	-	-	1	
Description:	Sets the signal source to activate/de-activate offset calibration for output current measurement.			
Caution:	The absence of offset calibration can have a negative effect on control properties. Offset calibration must be performed before switching on the power unit for the first time after POWER ON.			
Note:	Offset calibration is only performed with pulses suppressed and can take up to one second.			
p1815	Phase for PWM generation subgroup / Ph for PWM subgr			
VECTOR_G	Can be changed: U, T C	Calculated: -	Acce	
	Data type: Unsigned16 D	Dyn. index: -	Func	
	P-Group: Modulation U	Units group: -	Unit	
	Not for motor type: - S	Scaling: -	Expe	
	Min M	Max	Facto	
	- -		0001	
Description:	Sets bit 0 for recording the power unit in the subgroup for the "offset clocking".			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Recording in subgroup for offset clocking	g Yes		-
Dependency:	Refer to: p1818, p1819			

Note: | A change only becomes effective after booting. |
| :--- |
| If one of the following secondary conditions is not fulfilled, then none of the power units from the subgroup are |
| clocked with an offset. |
| Secondary conditions for clocking with an offset: |
| - the PWM frequency (p1800[D]) of all power units in the subgroup must be the same. |
| - the PWM frequency (p1800[D]) must be the same in all drive data sets in the subgroup. |
| - the following must apply for the ratio between the PWM cycle $(1 / \mathrm{p} 1800[\mathrm{D}])$ and the current controller cycle |
| (p0115[0]): |
| The ratio $(1 / \mathrm{p} 1800[\mathrm{D}]) /(\mathrm{p} 0115[0])$ must be an even integer number $(2,4,6, \ldots)$ for all power units in the subgroup. |
| or |
| The ratio $(\mathrm{p} 0115[0]) /(1 / \mathrm{p} 1800[\mathrm{D}])$ must be an integer number $(1,2,3, \ldots)$ for all power units in the subgroup. |

p1816

VECTOR g
Can be changed: U, T

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
16

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
-1

Description: Sets manual setting and overwriting of automatically determined phase shift for "offset clocking".
For p1816 = -1, the following applies:
Automatic mode. The phase shift value is automatically determined.
For p1816 = $0 \ldots 16$, the following applies:
Manual mode. The user should define the phase shift value as follows:

1. PWM cycle (1/p1800) > current controller clock cycle (p0115[0])

The power unit executes a phase shift from Tshift = current controller cycle (p0115[0]) *p1816.
2. PWM cycle (1/p1800) <= current controller clock cycle (p0115[0])

For p1816 >= 1, the power unit executes a phase shift from Tshift = PWM cycle/2.
Dependency: Refer to: r0116, p1800, p1819

p1817	Minimum ratio, pulse frequency to the output frequency / Min f_puls /f_max		
VECTOR_G	Can be changed: C2(2)	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Max	Factory setting
	Min	15.0	12.0
	8.3		
Description:	Sets the minimum ratio between the pulse frequency and the output frequency.		
Notice:	If the ratio between the pulse frequency and the output frequency is reduced, then oscillations can occur in the output		
	current that can result in significant levels of current ripple with the appropriate negative effects.		
Note:	When the maximum speed is changed, the pulse frequency p1800 is automatically limited to this minimum ratio. It is not permissible to reduce the pulse frequency if this would result in this ratio being undershot.		

p1818

CU_G130_DP,
CU_G130_PN, CU_G150_DP, CU_G150_PN

Description:

Dependency:

Phase for PWM generation configuration / Ph for PWM config

```
Can be changed: \(T\)
```

Data type: Integer16
P-Group: Modulation
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
1

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
1

Sets the phase shift for offset clocking.
For the first active power unit, it is specified whether clocking is to start at 0° (value $=0$) or 180° (value $=1$). All other active power units are clocked alternately according to the setting made here.
Refer to: p1819

Note:	A change only becomes effective after a POWER ON.		
p1819	Phase for PWM gen	PWM	
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	16	-1
Description:	Display for "offset clocking".		
	Depending on the particular case, the value is interpreted differently:		
	The PWM clock cycle ($1 / \mathrm{p} 1800[\mathrm{D}]$) is greater than the current controller clock cycle ($\mathrm{p} 115[0]$) and the ratio between the PWM clock cycle and the current controller clock cycle and is an integer and even multiple of it (e.g. p0115[0] = $125 \mu \mathrm{~s}, \mathrm{p} 1800[\mathrm{D}]=4 \mathrm{kHz}, 2 \mathrm{kHz}, 1 \mathrm{kHz}$).		
	The value displayed refers to:		
	Case 2:		
	The PWM clock cycle ($1 / \mathrm{p} 1800[\mathrm{D}]$) is less than or equal to the current controller clock cycle ($\mathrm{p} 0115[0]$) and the ratio between the current controller clock cycle and the PWM clock cycle is an integer and even multiple of it (e.g. $\mathrm{p} 0115[0]=125 \mu \mathrm{~s}, \mathrm{p} 1800[\mathrm{D}]=8 \mathrm{kHz}, 16 \mathrm{kHz}$).		
	The value 1 displayed means that:		
	- the power unit is to apply a phase shift of 180° (from the PWM cycle).		
	A value of 0 displayed on all power units of the drive line-up means the following:		
	- the general conditions of the "offset clocking" (see p1815) are not fulfilled, i.e. no power unit is clocked with an offset.		
Dependency:	Refer to: p0108, r0108, p0115, p1800, p1815, p1816, p1818		
Note:	For reasons of compatibility, the parameter is an adjustable parameter. However, it functions solely as a display parameter. This means that factory setting -1 no longer has any significance and is only available for reasons of compatibility.		
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev		
VECTOR_G	Can be changed: C2(3)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 6732
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the phase sequence reversal for the motor.		
	If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this parameter. This means that with the same setpoint, the motor direction is reversed without reversing the encoder actual value.		
	When a speed encoder is being used, it may be necessary to also invert the encoder actual value (p0410).		
Value:	0: OFF		
	1: ON		
Dependency:	Refer to: p1821		
Caution:	For 12-pulse converters with 30° offset angle for system 2 , for a direction of rotation reversal, the phase offset changes by 60° as the sign of the angle offset changes. This can be adapted in p1810.15.		
	Changing the direction using p1820 or p1821 is not recognized by the "Safe Direction without encoder". As a consequence, the limit provided by SDI (Safe Direction) from r9733 no longer functions.		
Note:	This setting can only be changed when the pulses are inhibited.		

p1821[0...n]	Dir of rot / Dir of rot		
VECTOR_G	Can be changed: C2(3)		
	Data type: Integer16	Calculated: -	Access level: 3

	11	Short-circuit test active	No	Yes	-
	12	FL modulation prohibited	Yes	No	-
	13	F3E present	Yes	No	-
	14	Angle prerotation (advance) active in SW	Yes	No	-
	15	Power unit with PS interface	Yes	No	-
	16	Current measurement oversampling active	Yes	No	-
	17	Actual value averaging temporarily suppressed	Yes	No	-
	18	Modulation depth limiting	Yes	No	-
	19	Reduced DC link capacitance (without F3E)	Yes	No	-
	20	The setpoint is not reset	Yes	No	-
	21	Voltage calibration active	Yes	No	-
p1840[0...n]	Actual value correction configuration / ActVal_corr conf				
VECTOR_G	Can be changed: T Calc		ulated: -	Access level: 3	
	Data type: Unsigned16 Dy		index: DDS, p0180	Func. diagram: -	
	P-Group: Modulation Un		s group: -	Unit selection: -	
	Not for motor type: - Scalis		ing: -	Expert list: 1	
	Min M			Factory setting	
	-			0000 bin	
Description:	Sets the configuration of the actual value correction.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Actual value correction de-activated	Yes	No	-
		Compares the integrals from modulator and setpoint	Yes	No	-
Dependency:	Refer to: p 1802				
Note:	During operation (pulses enabled) the configuration cannot be changed by changing over drive data sets.				
$\overline{\mathbf{1 8 4 1}}$	Actual value correction status word / ActVal_corr status				
VECTOR_G	Can be changed: - Calc		ulated: -	Access level: 4	
	Data type: Unsigned16		index: -	Func. diagram: -	
	P-Group: Modulation Un		s group: -	Unit selection: -	
	Not for motor type: - Scali		ing: -	Expert list: 1	
	Min			Factory setting	
	-			-	
Description:	Displays the status of actual value correction.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Hardware for the actual value correction detected	Yes	No	-
		Automatic shutdown (too many switching instants)	Yes	No	-
		Integral scaled to half the gating unit clock cycle freq.	Yes	No	-
		Actual value correction temporarily suppressed	Yes	No	-
	14	Reserved	Yes	No	-
	15	Actual value correction active	Yes	No	-
p1845[0...n]	Actual value correction evaluation factor Lsig / ActVal_cor ev Lsig				
VECTOR_G	Can be changed: U, T Calcula		ulated: -	Access level: 4	
	Data type: FloatingPoint32		Dyn. index: DDS, p0180	Func. diagram: -	
	P-Group: Modulation		Units group: -	Unit selection: -	
	Not for motor type: - Scaling: -			Expert list: 1	
	Min Max			Factory setting	
	0.0010 .00			1.00	
Description:	Sets the weighting factor for the leakage inductance of the L-R element of the actual value correction. Refer to: p0391, p0392, p0393				
Dependency:					

p1900 $=2$:
Induction motors --> set p1910 = 1 and p1960 $=0$
Permanent-magnet or separately-excited synchronous motors $-->$ set p1910 $=1$, p1990 $=1$ and p1960 $=0$
When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.
For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.
Value:
Dependency: In the simulation mode, the parameter cannot be written into.
When selecting the motor data identification routine, the drive data set changeover is suppressed.
Refer to: p1272, p1300, p1910
Notice: \quad If there is a motor holding brake, it must be open ($\mathrm{p} 1215=2$).
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
It is not permissible to activate write protection during the motor identification (p7761).
During the rotating measurement it is not possible to save the parameters (p0971, p0977).
Note: The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for $\mathrm{p} 1300<20$ (U/f controls).
An appropriate alarm is output when the parameter is set.
The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p 1900 is automatically set to 0 after the motor data identification routine has been completed.

p1900
 VECTOR_G (n/M)

Motor data identification and rotating measurement / MotID and rot meas		
Can be changed: $\mathrm{C} 2(1), \mathrm{T}$	Calculated: -	Access level: 1
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: Motor identification	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	3	2

Description:

Sets the motor data identification and speed controller optimization.
The motor identification should first be performed with the motor stationary (p1900 $=1,2$; also refer to p 1910). Based on this, additional motor and control parameters can be determined using the motor data identification with the motor rotating (p1900 = 1, 3; also refer to p1960); not for p1300<20.
p1900 = 0:
Function inhibited.
p1900 = 1 :
Induction motors --> set p1910 = 1 and p1960 = 0, 1, 2 depending on p1300
Permanent-magnet or separately-excited synchronous motors $-->$ set p1910 $=1, \mathrm{p} 1990=1$ and p1960 $=0,1,2$ depending on p1300
When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.
For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.
With the following power-on command, a rotating motor data identification routine is carried out - and in addition, a speed controller optimization by making measurements at different motor speeds.
p1900 = 2:
Induction motors --> set p1910 $=1$ and p1960 $=0$
Permanent-magnet or separately-excited synchronous motors $-->$ set p1910 $=1, \mathrm{p} 1990=1$ and p1960 $=0$
When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.

For permanent-magnet or separately-excited synchronous motors, the encoder is adjusted with the next power-on command. The motor must be free to rotate and rotates through 1.5 revolutions of the motor encoder.
p1900 = 3:
Sets p1960 = 0, 1, 2 depending on p1300
This setting should only be selected if the motor data identification was already carried out at standstill.
When the drive enable signals are present, with the next power-on command, a rotating motor data identification routine is carried out - and in addition, speed controller optimization by taking measurements at different motor speeds.

Notice: If there is a motor holding brake, it must be open ($\mathrm{p} 1215=2$).

Value:

0: Inhibited
1: Identifying motor data and optimizing speed control
2: Identifying motor data (at standstill)
3: Optimizing speed control (in the rotating mode)
In the simulation mode, the parameter cannot be written into.
When selecting the motor data identification routine, the drive data set changeover is suppressed.
Refer to: p1272, p1300, p1910, p1960, p1990

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).
It is not permissible to activate write protection during the motor identification (p7761).
During the rotating measurement it is not possible to save the parameters (p0971, p0977).
p1900 = 3:
This setting should only be selected if the motor data identification was already carried out at standstill.
The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300 < 20 (U/f controls).
An appropriate alarm is output when the parameter is set.
The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p1900 is automatically set to 0 after the motor data identification routine has been completed.

p1901	Test pulse evaluation configuration / Test puls config			
VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Acce	
	Data type: Unsigned32	Dyn. index: -	Func	
	P-Group: Motor identification	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	-	-	0000	
Description:	Sets the configuration for the test pulse evaluation.			
	Bit 00: Check for conductor-to-conductor short circuit once/always when the pulses are enabled.			
	Bit 01: Check for ground fault once/always when the pulses are enabled.			
	Bit 02: Activation of the tests selected using bit 00 and/or bit 01 each time the pulses are enabled			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Phase short-circuit test pulse active	Yes	No	-
	01 Ground fault detection test pulse active	Yes	No	-
	02 Test pulse at each pulse enable	Yes	No	-
Dependency:	Refer to: p0287			
Note:	If a conductor-to-conductor short-circuit is detected during the test, this is displayed in r1902.1.			
	If a ground fault is detected during the test, this is displayed in r1902.2.			
	Re bit $02=0$:			
	If the test was successful once after POWER ON (see r1902.0), it is not repeated.			
	Re bit $02=1$:			
	The test is not only performed after POWER ON, but also each time the pulses are enabled.			

r1902	Test pulse evaluation status / Test puls ev stat				
VECTOR_G	Can be changed: - Data type: Unsigned32 P-Group: - Not for motor type: - Min -		ulated: -	Access level: 2	
			Dyn. index: -	Func. diagram: -	
			Units group: -	Unit selection: -	
			Scaling: -	Expert list: 1	
			Max	Factory setting	
				-	
Description:	Displays the status of the test pulse evaluation.				
Bit field:	Bit Signal name		1 signal	0 signal	FP
		Short-circuit test successfully performed	Yes	No	-
		01 Phase short-circuit detected	Yes	No	-
	02 Ground fault test successfully performed		Yes	No	-
	03 Ground fault detected		Yes	No	-
		Identification pulse width greater than the minimum pulse width	Yes	No	-
Note:	If the ground fault test was selected, but not successfully performed, then sufficient current will not be able to be established during the test pulses.				
	Re bit 04:				
	A test pulse longer than one sampling time has occurred				
p1905	Parameter tuning selection / Par tuning select				
VECTOR_G (n / M)	Can be changed: C2(1), T		Calculated: -	Access level: 1	
	Data type: Integer16 D		Dyn. index: -	Func. diagram: -	
	P-Group: Motor identification U		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0		90	0	
Description:	The fine encoder calibration should be started during the first commissioning or after the encoder is replaced. The fine calibration starts when the pulses are enabled and performs a rotating measurement (approximately 1 minute). In this case, a setpoint speed of at least 40% of the motor rated speed must be entered, and the torque must be less than half of the motor rated torque.				
	The phases of the fine calibration of displayed using alarm A07976.				
	The fine calibration ends with the calculation of p0431 for the following pulse inhibit. p 1905 is automatically set to 0 at the end of the fine calibration.				
Value:	0: Inactive 90: Fine encoder calibration				
Dependency:	If the motor encoder adjustment has not been performed ($\mathrm{p} 3925.4=0$) or the encoder calibration is activated (p 1990 $!=0$), then encoder fine calibration is prevented.				
	Refer to: p1272, p1910, p1960, p1990				
Notice:	During encoder fine calibration, the motor must be operated without a load - and if a motor holding brake is being used, this must be opened.				
Note:	For $\mathrm{p} 1905=90$ and with the pulses not enabled, the function is only executed the next time that the pulses are enabled.				
	When selecting the encoder fine calibration, the changeover of the motor data sets is suppressed.				
p1909[0...n]	Motor data identification control word / MotID STW				
VECTOR_G	Can	be changed: T	ulated: CA	Acces	
		type: Unsigned32	index: MD	Func.	
	P-G	oup: Motor identification	group: -	Unit	
	Not	for motor type: -	ng: -	Exper	
	Min			Facto	
	-			$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	
Description:	Sets	the configuration for the motor data identifi			

Bit	Signal name	1 signal
00	Stator inductance estimate no measurement	Yes
01	Cl.-loop current control w/ dead-beat controller	Yes
02	Rotor time constant estimate no measurement	Yes
03	Leakage inductance estimate no measurement	Yes
04	Activates the identification dynamic leakage inductance	Yes
05	Determine Tr and Lsig evaluation in the time range	Yes
06	Activate vibration damping	Yes
07	De-activate vibration detection	Yes
11	De-activate pulse measurement Lq Ld	Yes
12	De-activate rotor resistance Rr measurement	Yes
14	De-activate valve interlocking time measurement	Yes
15	Determine only stator resistance, valve voltage fault, dead time	Yes
16	Short motor identification (lower quality)	Yes
17	Measurement without control parameter calculation	Yes
20	Estimate cable resistance	Yes

0 signal	FP
No	-

The following applies to permanent-magnet synchronous motors:
Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.
When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current.
If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.

p1910	Motor data identification selection / MotlD selection		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	28	1
Description:	Sets the motor data identification routine.		
	The motor data identification routine is carried out after the next power-on command. p1910 = 1 :		
	All motor data and the drive converter characteristics are identified and then transferred to the following parameters p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830		
	After this, the control parameter $\mathrm{p} 0340=3$ is automatically calculated.		
Value:	0: Inhibited		
	1: Complete identification (ID) and acceptance of motor		
	2: Complete identification	data without acce	
	3: ID of the saturation cha	acceptance	
	4: ID of the saturation cha	out acceptance	
	5: ID of dynamic leakage	(r1920) withou	
	6: ID of lockout time (r1926)	eptance	
	7: ID of stator resistance	hout acceptance	
	8: ID of stator inductance	(r1927) without a	
	9: ID of rotor time constan	ithout acceptance	
	10: ID of static leakage ind	1914) without ac	
	20: Voltage vector input		
	21: Voltage vector input wi		
	22: Rectangular voltage ve	out filter	
	23: Triangular voltage vect	f filter	

r1913[0...2]	Identified rotor time constant $/$ T_rotor ident		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$
	Displays the identified rotor time constant.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1914[0...2]	Identified total leakage inductance / L_total_leak ident		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$-[\mathrm{mH}]$	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
	Displays the identified total leakage inductance.		
Description:	$[0]=$ Phase U		
Index:	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1915[0...2]	Identified nominal stator inductance / L_stator ident		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the nominal stator inductance identified.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1916[0...2]	Identified stator inductance 1 / L_stator 1 ident		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the nominal stator inductance identified for the 1st point of the saturation characteristic.		
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$		

	Identified dynamic leakage inductance 1 / L_leak 1 dyn id	
VECTOR_G	Can be changed: - Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Motor identification Units group: - Not for motor type: - Scaling: - Min Max $-[\mathrm{mH}]$ $-[\mathrm{mH}]$	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [mH]
Description: Index:	Displays the identified dynamic leakage inductance 1. $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase W }} \end{aligned}$	
$\begin{aligned} & \text { r1922[0...2] } \\ & \text { VECTOR_G } \end{aligned}$	Identified dynamic leakage inductance 2 / L_leak 2 dyn id	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [mH]
Description: Index:	Displays the identified dynamic leakage inductance 2. [0] = Phase U [1] = Phase V [2] = Phase W	
$\begin{aligned} & \text { r1923[0...2] } \\ & \text { VECTOR_G } \end{aligned}$	Identified dynamic leakage inductance 3 / L_Ieak 3 dyn id	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [mH]
Description: Index:	Displays the identified dynamic leakage inductance 3. $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase W }} \end{aligned}$	
$\begin{aligned} & \text { r1924[0...2] } \\ & \text { VECTOR_G } \end{aligned}$	Identified dynamic leakage inductance 4 / L_leak 4 dyn id	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [mH]
Description: Index:	Displays the identified dynamic leakage inductance 4. $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase W }} \end{aligned}$	

r1925[0...2]	Identified threshold voltage / U	eshold ide	
VECTOR_G	Can be changed: - Data type: FloatingPoint32 P-Group: Motor identification Not for motor type: - Min - [Vrms]	Calculated: Dyn. index: - Units group: - Scaling: - Max - [Vrms]	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [Vrms]
Description: Index:	Displays the identified IGBT threshold vo [0] = Phase U [1] = Phase V [2] = Phase W		
r1926[0...2] VECTOR_G	Identified effective valve locko Can be changed: - Data type: FloatingPoint32 P-Group: Motor identification Not for motor type: - Min - [$\mu \mathrm{s}$]	time / t_lock Calculated: Dyn. index: - Units group: - Scaling: - Max - [$\mu \mathrm{s}$]	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [$\mu \mathrm{s}$]
Description: Index:	Displays the identified effective valve lock $\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$		
r1927[0...2] VECTOR_G	Identified rotor resistance / R_ Can be changed: - Data type: FloatingPoint32 P-Group: Motor identification Not for motor type: - Min - [ohm]	or ident Calculated: - Dyn. index: - Units group: - Scaling: - Max - [ohm]	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [ohm]
Description: Index:	Displays identified rotor resistance (on se $\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$	ately excited syn	mping resistance).
r1929[0...2]	Identified cable resistance / R_	ble ident	
VECTOR_G	Can be changed: - Data type: FloatingPoint32 P-Group: Motor identification Not for motor type: - Min - [ohm]	Calculated: - Dyn. index: - Units group: Scaling: - Max - [ohm]	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [ohm]
Description: Index:	Displays the identified cable resistance. $\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } W} \end{aligned}$		

Bit 05: p0391, p0392, p0393, p1402.2 only for induction motors
p1960 = 1, 3: p1458, p1459, p1470, p1472, p1496, p1400.0
p1960 = 2, 4: p1458, p1459, p1460, p1462, p1496, p1461, p1463
The identification of the q leakage inductance can only be carried out for unloaded motors or motors with a low load (load approx. 30\% below the rated motor torque). Only then is a current controller adaptation (p0391 ... p0393) parameterized if the q-leakage inductance under no-load conditions is at least 30% higher than the total leakage inductance (p0356, p0358).
Re bit 11 = 1:
Bits $02,03,04$ no longer have any effect. It makes sense to set bit 11 if the speed controller and it's adaptation were already set before the measurement.
Re bit 12 = 1 :
The selection only has an effect on the measurement p1960 = 1, 2. For the shortened measurement, the magnetizing current and moment of inertia are determined with a somewhat lower accuracy, the oscillation test is completely eliminated.
Re bit 13 = 1 :
After the measurement has been completed, the system immediately goes into closed-loop speed controlled operation.

p1960	Rotating measurement selection / Rot meas sel		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4	0
Description:	Sets the rotating measurement.		
	The rotating measurement is carried out after the next power-on command.		
	The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300). p1300 < 20 (U/f open-loop control):		
	It is not possible to select rotating measurement or speed controller optimization.		
	Only rotating measurement or speed controller optimization can be selected in the encoderless mode. p1300 = 21, 23 (operation with encoder):		
	Both versions (encoderless and with encoder) of the rotating measurement and speed controller optimization can be selected.		
Value:	0: Inhibited		
	1: Rotating measurement in encoderless operatio		
	2: Rotating measurement		
	3: Speed controller optimization in encoderless operation		
	4: Speed controller optimization with encoder		
Dependency:	Before the rotating measurement is carried out, the motor data identification routine ($p 1900, \mathrm{p} 1910, \mathrm{r} 3925$) should have already been done.		
	In the simulation mode, a value of 1 cannot be written into the parameter.		
	When selecting the rotating measurement, the drive data set changeover is suppressed.		
	When selecting rotating measurement (with the exception for p1959.13 = 1) the following BICO parameters are set to standard values, and after the measurement has been completed, are reset back to the original parameter assignments:		
	p1020 ... p1023, p1070, p1075, p1138, p1139, p1140 ... p1143, p1155, p1160, p1437, p1476, p1477		
	Refer to: p1272, p1300, p1900, p1959, p1967, r1968		
Danger:	For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.		
Notice:	If there is a motor holding brake, it must be open (p1215 = 2).		
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).		
	During the rotating measurement it is not possible to save the parameters (p0971, p0977).		

r1964[0...4]	Saturation characteristic rotor flux / Sat_char rot flux		
VECTOR_G $(\mathrm{n} / \mathrm{M})$	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: PEM, REL	Scaling: -	Expert list: 1
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the rotor flux values of the identified saturation characteristic.		
	After they have been determined, the values are transferred to p0362 ... p0365.		
Index:	$[0]=$ Value 1		
	$[1]=$ Value 2		
	$[2]=$ Value 3		
	$[3]=$ Value 4		
	$[4]=$ Value 5		

p1965	Speed_ctrl_opt speed / n_opt speed		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed for the identification of the moment of inertia and the vibration test.		
	Induction motor:		
	The percentage value is referred to p0310 (rated motor frequency).		
	Synchronous motor:		
	The percentage value is referred to the minimum from p0310 (rated motor frequency) and p1082 (maximum speed)		
Dependency:	Refer to: p0310, p1959		
Note:	In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds to the lower speed setpoint. This value is increased by 20% for the upper speed value.		
	The q leakage inductance (refer to p1959.5) is determined at zero speed and at 50% of p1965-however, with a maximum output frequency of 15 Hz and at a minimum of 10% of the rated motor speed.		

p1967
VECTOR_G (n/M)

Speed_ctrl_opt dynamic factor / n_opt dyn_factor		
Can be changed: U, T	Calculated: CALC_MOD_ALL	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Motor identification	Units group: -	Unit selection: -
Not for motor type: REL	Scaling: -	Expert list: 1
Min	Max	Factory setting
1 [\%]	400 [\%]	100 [\%]
Sets the dynamic response factor for speed controller optimization.		
After optimization, the dynamic response achieved is displayed in r1968.		
Refer to: p1959, r1968		
For a rotating measurement, this parameter can be used to optimize the speed controller.		
p1967 $=100 \%$--> speed controller optimization according to a symmetric optimum.		
p1967 > 100 \% --> optimization with a higher dynamic response (Kp higher, Tn lower).		
If the actual dynamic response (see r1968) is significantly reduced with respect to the required dynamic response (p 1967), then this can be as a result of mechanical load oscillations. If, in spite of this load behavior, a higher dynamic response is required, then the oscillation test $(\mathrm{p} 1959.4=0)$ should be deactivated and the measurement repeated.		

$\mathbf{r 1 9 6 8}$	Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the dynamic factor which is actually achieved for the vibration test Refer to: p1959, p1967		
Dependency:			
Note:	This dynamic factor only refers to the control mode of the speed controller set in p1960.		
r1969	Speed_ctrl_opt moment of inertia determined / n_opt M_inert det		
VECTOR_G (n / M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: 25_1	Unit selection: 00100
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kgm^{2}]	- [kgm^{2}]	- [kgm^{2}]
Description:			
	After it has been determined, the value is transferred to $\mathrm{p} 0341, \mathrm{p} 0342$.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	Refer to: p0341, p0342, p1959		
r1970[0...1]	Speed_ctrl_opt vibrati	ration frequency	/ n_opt f_vib det
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the vibration frequencies determined by the vibration test.		
Index:	[0] = Frequency low [1] = Frequency high		
Dependency:	Refer to: p1959		
r1971[0...1]	Speed_ctrl_opt vibration test standard deviation determined / n_opt std_dev de		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the standard deviations of the vibration frequencies determined by the vibration test		
Index:	[0] = Standard deviation of low frequency [1] = Standard deviation of high frequency		
Dependency:	Refer to: p1959		

p1980[0...n]	PollD technique / PollD technique		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	12	4
Description:	Sets the pole position identification technique.		
	p1980 $=1,8$: The current magnitude is set using p0329.		
	$\mathrm{p} 1980=4,6$: The current magnitude of the first measurement section is set using p0325, the second using p0329. p1980 $=10$: The rated motor current is impressed to align.		
	The current magnitudes are limited to the rated power unit values.		
	p1980 $=12$: The induced stator voltage is sensed using a VSM and evaluated. This rotor position identification technique can only be used for separately-excited synchronous motors with incremental encoder.		
Value:	1: Voltage pulsing 1st harmonics		
	4: Voltage pulsing 2-stage		
	6: Voltage pulsing 2-stage inverse		
	8: Voltage pulsing 2nd harmonic, invers		
	10: DC current injection		
	12: Rotor position sensing with VSM for FEM with incremental encoder		
Dependency:	When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.		
	In the simulation mode, the parameter cannot be written into.		
	Refer to: p0325, p0329, p1272, p1780		
Note:	Voltage pulse technique ($\mathrm{p} 1980=1,4,6,8$) cannot be applied to separately-excited synchronous motors ($\mathrm{p} 0300=5$) and for for operation with sine-wave output filters (p 0230).		
	The rotor position identification technique (p1980 = 12) cannot be used for permanent-magnet synchronous motors.		
p1982[0...n]	PoIID selection / PolID selection		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Activates the pole position identification routine to determine the commutation angle and to carry out a plausibility check.		
Value:	0: Pole position identification off		
	1: Pole position identifica	tation	
	2: Pole position identifica	ility check	
Recommend.:	Rep1982 = 1:		
	This is used for synchronous motors with motor encoder without absolute data.		
	The information/data regarding the absolute commutation angle is supplied via a track C/D, Hall sensors, an absolute encoder or from the pole position identification routine.		
	Rep1982 = 2:		
	This is used for synchronous motor with motor encoder with absolute data to check this data.		
	For VECTOR, the following applies:		
	With p1982 $=2$, each time the pulses are enabled it is checked whether the absolute position supplied from the encoder does not exceed a deviation of 45 degrees to the identified pole wheel position.		
	With separately-excited synchronous motors ($\mathrm{p} 0300=5$), pole position identification cannot be selected if an encoder with position data is used (e.g. SSI encoder).		
Dependency:	Refer to: p0325, p0329, p1980, r1984, r1985, r1987, p1990		
Note:	For encoderless operation, the pole position identification routine is selected with p1780.6		

r1984	PolID angular difference / PollD ang diff		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [$\left.{ }^{\circ}\right]$	- [${ }^{\circ}$]	- [$\left.{ }^{\circ}\right]$
Description:	Displays the angular difference between the actual electrical commutation angle and the angle determined by the pole position identification.		
Dependency:	Refer to: p0325, p0329, p1980, p1982, r1985, r1987, p1990		
Note:	PolID: Pole position identification		
	When the pole position identification routine is executed several times using p1983, the spread of the measured values can be determined using this value. At the same position, the spread should be less than 2 degrees electrical		
r1985	PoIID saturation curve / PoIID sat_char		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the saturation characteristic of the pole position identification routine (saturation technique). Displays the current characteristic of the pole position identification routine (elasticity technique).		
Dependency:Note:	Refer to: p0325, p0329, p1980, p1982, r1984, r1987, p1990		
	Polld: Pole position identification		
	Regarding the saturation technique:		
	The values for the characteristic of the last saturation-based pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
r1987	PolID trigger characteristic / PollD trig_char		
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the trigger characteristic of the pole position identification routine.		
	The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
	The values for trigger characteristic and saturation characteristic are always output in synchronism from a time perspective.		
Dependency:	Refer to: p0325, p0329, p1980, p1982, r1984, r1985, p1990		
Note:	PolID: Pole position identification		
	The following information and data can be taken from the trigger characteristic.		- the value -100% marks the angle at the start of the measurement.

p1990	Encoder adjustment determine angular commutation offset / Enc_adj det ang		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Motor identification	Units group: -	Unit selection: -
	Not for motor type: ASM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	This function is only required for synchronous motors and can be started when commissioning for the first time or after replacing an encoder. The function acts on the active motor data set.		
	Alarm A07971 is output while the angular commutation offset is being determined. p1990 is automatically set to 0 after the angular commutation offset has been determined.		
	For p1990 $=1$ (encoder adjustment with transfer), the following applies:		
	The angular commutation offset is determined and transferred into p0431.		
	For p1990 $=2$ (encoder adjustment for checking), the following applies:		
	The angular commutation offset is determined and is not transferred into p0431. For a deviation of more than 6° electrical, fault F07413 is output.		
	For p1990 $=3$ (encoder adjustment in operation), the following applies:		
	PollD procedure runs before the zero mark detection. The angular commutation offset is determined and transferred into p0431. A fine adjustment (p1905) is then optionally possible.		
Value:	0 : Deactivated 1: Activated with transfer 2: Activated for checking 3: Activates encoder adjustment in operation		
Dependency:	Encoder adjustment is only carried out if the function module for "speed/torque control" is activated (r0108.2 = 1). Refer to: p0325, p0329, p0431, p1272, p1900		
Caution:	When the encoder is being adjusted, the motor must be operated without a load - and if a motor holding brake is being used, this must be opened.		
p1991[0...n]	Motor changeover angular commutation correction / Ang_com corr		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180 [${ }^{\circ}$]	180 [${ }^{\circ}$]	0 [${ }^{\circ}$]
Description:	Sets the angle that is added to the commutating angle.		
Caution: \uparrow	If the angular correction is not correctly set, when changing over and with closed-loop torque control, the motor can accelerate to high speeds in spite of the fact that a setpoint of zero has been entered.		
p1999[0...n]	Ang. commutation offset calibr. and PolID scaling / Com_ang_offs scal		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	10 [\%]	5000 [\%]	100 [\%]
Description:	Sets the scaling for the runtime of the automatic encoder calibration and of the pole position identification technique in which the current is injected.		
Dependency:	Refer to: p0341, p0342		

Caution: Note:	For $\mathrm{p} 1999>100 \%$ (setting large moments of inertia) the following applies:There is no locked rotor monitoring (F07970 fault value 2).		
	The plausibility check of the encoder signal (F07970 fault value 4) only checks the sign.		
	For high moments of inertia, it is practical to scale the runtime of the calibration higher.		
p2000	Reference frequency / f_ref		
B_INF	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [Hz]	$1000.00[\mathrm{~Hz}]$	50.00 [Hz]
Description:	Sets the reference quantity for the frequency.		
	All frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz)		
p2000	Reference speed reference frequency / n_ref f_ref		
ENC	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
p2000	Reference velocity reference frequency / v_ref f_ref		
ENC (Lin_enc)	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
		Max	Factory setting
	0.60 [m/min]	600.00 [$\mathrm{m} / \mathrm{min}$]	120.00 [$\mathrm{m} / \mathrm{min}$]
Description:	Sets the reference quantity for velocity and frequency.		
	All velocities or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz) = reference velocity (in ($\mathrm{m} / \mathrm{min}$) / 60)		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
p2000	Reference speed reference frequency / n_ref f_ref		
VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		

Dependency:

 Note:The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
The following applies: Reference frequency (in Hz) = reference speed (in ((rpm)/60) x pole pair number) Refer to: p2001, p2002, p2003, r2004
For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
Example 1:
The signal of an analog input (e.g. r4055[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000).
Example 2:
The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).

p2001

Reference voltage / Reference voltage B_INF, VECTOR G

Can be changed: T
Data type: FloatingPoint32
P-Group: Communications
Not for motor type:
Min
10 [Vrms]

Calculated: CALC_MOD_ALL
Dyn. index: -
Units group: -
Scaling: -
Max
100000 [Vrms]

Access level: 3
Func. diagram:
Unit selection: -
Expert list: 1
Factory setting
1000 [Vrms]

Description: Sets the reference quantity for voltages.
All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values (= rms value) like the DC-link voltage.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
Note:
This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value.
Note: \quad For the automatic calculation ($p 0340=1, p 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.
If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
For infeed units, the parameterized device supply voltage (p0210) is pre-assigned as the reference quantity.
Example:
The actual value of the DC link voltage (r0070) is connected to a test socket (e.g. p0771[0]). The actual voltage value is cyclically converted into a percentage of the reference voltage (p2001) and output according to the parameterized scaling.

p2002

B_INF, VECTOR_G Can be changed: T
Data type: FloatingPoint32
P-Group: Communications
Not for motor type: -
Min
0.10 [Arms]

Description

Notice:
Sets the reference quantity for currents.
All currents specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor should be taken into account (e.g. for trace records).
Example:
p2002 = 100 A
Reference quantity 100 A corresponds to 100 \%
p0305[0] = 100 A
Rated motor current 100 A for MDS0 in DDS0 --> 100% corresponds to 100% of the rated motor current

Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$. SERVO: Preassigned value for $\mathrm{p} 0338>0.001$ is p 0338 , otherwise 2 * p 0305 . VECTOR: Preassigned value is p0640. If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage $(\mathrm{p} 2002=\mathrm{r} 0206 / \mathrm{p} 0210 / 1.73)$ is pre-assigned as the reference quantity. Example: The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p 2002) and output according to the parameterized scaling.
p2003	Reference torque / M_ref
VECTOR_G	Can be changed: T Calculated: CALC_MOD_ALL Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Communications Units group: 7_2 Unit selection: p0505 Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.01[\mathrm{Nm}]$ $20000000.00[\mathrm{Nm}]$ $1.00[\mathrm{Nm}]$
Description:	Sets the reference quantity for torque. All torques specified as relative value are referred to this reference quantity. The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$. SERVO: Preassigned value for p0338 and p0334 > 0.001 is p0338 * p0334, otherwise 2 * p0333. VECTOR: Preassigned value is 2 * p0333. If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. Example: The actual value of the total torque (r0079) is connected to a test socket (e.g. p0771[0]). The actual torque is cyclically converted into a percentage of the reference torque (p2003) and output according to the parameterized scaling.

r2004 Reference power / P_ref

Can be changed: -
Data type: FloatingPoint32
P-Group: Communications
Not for motor type: -
Min

- [kW]

Calculated: -

Dyn. index: -
Units group: 14_10
Scaling: -
Max

- [kW]

Access level: 3

Func. diagram: -
Unit selection: p0505
Expert list: 1
Factory setting

- [kW]

Description: Displays the reference quantity for power.
All power ratings specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
Dependency: This value is calculated as follows:
Infeed: Calculated from voltage times current.
Closed-loop control: Calculated from torque times speed.
Refer to: p2000, p2001, p2002, p2003

Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. The reference power is calculated as follows: -2 * Pi * reference speed / 60 * reference torque (motor) - reference voltage * reference current * root(3) (infeed)
p2005	Reference angle / Reference angle
VECTOR_G	Can be changed: T Calculated: CALC_MOD_ALL Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Communications Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	$\left.\left.90.00\left[^{\circ}\right] \quad 180.00{ }^{\circ}{ }^{\circ}\right] \quad 90.00{ }^{\circ}{ }^{\circ}\right]$
Description:	Sets the reference quantity for angle.
	All angles specified as relative value are referred to this reference quantity.
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 $=1$.
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.

p2006 Reference temp / Ref temp

B_INF, TM150, TM31, Can be changed: T Calculated: CALC_MOD_ALL
VECTOR_G Data type: FloatingPoint32
P-Group: Communications
Not for motor type: -
Min
$50.00\left[{ }^{\circ} \mathrm{C}\right]$
Sets the reference quantity for temperature.
All temperatures specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).

p2007	Reference acceleration / a_ref		
VECTOR_G	Can be changed: T	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [rev/s ${ }^{2}$]	$500000.00\left[\mathrm{rev} / \mathrm{s}^{2}\right]$	0.01 [rev/s ${ }^{2}$]
Description:	Sets the reference quantity for acceleration rates.		
	All acceleration rates specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Note:	For the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) an appropriate pre-assignment is only made if the parameter is not inhibited from being overwritten using p0573 = 1. If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	The reference acceleration is calculated as follows:		
	Reference speed (p2000) converted from $1 / \mathrm{min}$ to $1 / \mathrm{s}$ divided by 1 s		

r2019[0...7]	Comm IF error statistics / Comm err	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Data type: Unsigned32 Dyn. index: - P-Group: Communications Units group: Not for motor type: - Scaling: - Min Max - -	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Index:	Displays the receive errors at the commissioning interface (RS232). [0] = Number of error-free telegrams [1] = Number of rejected telegrams [2] = Number of framing errors [3] = Number of overrun errors [4] = Number of parity errors [5] = Number of starting character errors [6] = Number of checksum errors [7] = Number of length errors	
p2020	Field bus interface baud rate / Field bus baud	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: T Calculated: - Data type: Integer16 Dyn. index: - P-Group: Communications Units group: - Not for motor type: - Scaling: - Min Max 4 13	Access level: 2 Func. diagram: 9310 Unit selection: - Expert list: 1 Factory setting 8
Description: Value:	Sets the baud rate for the fieldbus interface USS.	
Note:	Fieldbus IF: Fieldbus interface Changes only become effective after POWER ON. The parameter is not influenced by setting the factory setting. The parameter is set to the factory setting when the protocol is reselected.	
p2021	Field bus interface address / Field bus address	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: T Calculated: - Data type: Unsigned16 Dyn. index: - P-Group: Communications Units group: - Not for motor type: - Scaling: - Min Max 0 31	Access level: 2 Func. diagram: 9310 Unit selection: - Expert list: 1 Factory setting 0
Description:	Displays or sets the address for the fieldbus interface USS. The address can be set as follows: 1) Using the address switch on the Control Unit. --> p2021 displays the address setting. --> A change only becomes effective after a POWER ON.	

	2) Using p2021		
	--> Only if an address of 0 or an address that is invalid for the fieldbus selected in p2030 has been set using the address switch.		
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".		
	--> A change only becomes effective after a POWER ON.		
Dependency:	Refer to: p2030		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
p2022	Field bus int USS PZD no. / Field bus USS PZD		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 9310
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16	2
Description:	Sets the number of 16-bit words in the PZD part of the USS telegram for the field bus interface.		
Dependency:	Refer to: p2030		
Note:	The parameter is not influenced by setting the factory setting.		
p2023	Field bus int USS PKW no. / Field bus USS PKW		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: 9310
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	127	127
Description:	Sets the number of 16-bit words in the PKW part of the USS telegram for the field bus interface.		
Value:	0: PKW 0 words		
	3: PKW 3 words		
	4: PKW 4 words		
	127: PKW variable		
Dependency:	Refer to: p2030		
Note:	The parameter is not influenced by setting the factory setting.		
r2029[0...7]	Field bus int error statistics / Field bus error		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9310
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the receive errors on the field bus interface (USS).		
Index:	[0] = Number of error-free telegrams		
	[1] = Number of rejected telegrams		
	[2] = Number of framing errors		
	[3] = Number of overrun errors		
	[4] = Number of parity errors		
	[5] = Number of starting character errors		
	[6] = Number of checksum errors		
	[7] = Number of length errors		

p2030	Field bus int protocol selection / Field bus protocol				
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can	be changed: T	Calculated: -	Acces	
		type: Integer16	Dyn. index: -	Func.	
		oup: Communications	Units group: -	Unit s	
	Not	for motor type: -	Scaling: -	Expert	
	Min		Max	Factor	
	3		6	3	
Description:	Sets the communication protocol for the field bus interface.				
Value:	3: PROFIBUS 6: USS(RS232)				
Note:	Changes only become effective after POWER ON.				
	The parameter is not influenced by setting the factory setting.				
r2032	Master control control word effective / PcCtrl STW eff				
B_INF	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:		Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		Operation enable	Yes	No	-
		Acknowledge fault	Yes	No	-
		Master ctrl by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				
r2032	Master control control word effective / PcCtrl STW eff				
VECTOR_G	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
		OC / OFF2	Yes	No	-
		OC / OFF3	Yes	No	-
	03	Operation enable	Yes	No	-
	04	Ramp-function generator enable	Yes	No	-
		Start ramp-function generator	Yes	No	-
		Speed setpoint enable	Yes	No	-
	07	Acknowledge fault	Yes	No	-
	08	Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
		Master ctrl by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				

p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	62	2
Description:	Sets the drive object number for communication via the field bus interface (USS).		
Dependency:	Refer to: p0978		
Note:	p2035 defines the destination for USS parameter requests (PIV).		
	p0978[0] defines the destination for USS process data (PZD).		
	The parameter is available globally on all drive objects.		
	The parameter is not influenced by setting the factory setting.		
p2037	IF1 PROFIdrive STW1.10 = 0 mode / IF1 PD STW1.10=0		
B_INF, ENC, VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".		
	Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFldrive profile). The behavior of STW1.10 $=0$ corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.		
Value:	0: Freeze setpoints and continue to process sign-of-life Freeze setpoints and sign-of-life Do not freeze setpoints		
Recommend.:	Do not change the setting p2037 $=0$.		
Note:	If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .		
p2038	IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the interface mode of the PROFIdrive control words and status words.		
	When selecting a telegram via p0922 (p2079), this parameter influences the device-specific assignment of the bits in the control and status words.		
Value:	0 : SINAMICS 1: SIMODRIVE 611 uni 2: VIK-NAMUR		
Dependency:	Refer to: p0922, p2079		
Notice:	The parameter may be prote	of p0922 or p207	anged.
Note:	For p0922 (p2079) = 100 ... that for these telegrams, the	utomatically set to 11 universal" inte	o longer be chang and cannot be chang

Note: \quad When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered
when the setpoint fails.

p2044	IF1 PROFIdrive fault delay / IF1 PD fault delay		
B_INF, ENC,	Can be changed: U, T	Calculated: -	Access level: 3
VECTOR_G	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [s]	100 [s]	0 [s]
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	Refer to: r2043		

p2045	CI: PB/PN clock synchronous controller sign-of-life signal source / PB/PN ctrSoL S_src		
ENC, VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
(n / M)	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Connector input for the sign-of-life of the clock synchronous PROFIBUS/PROFINET controller. The sign-of-life is expected at bits 12 to 15 . Bits 0 to 11 are not evaluated. The sign-of-life signal is normally received in PZD4 (control word 2) from the controller.		
Dependency:	Refer to: p0925, r2065		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G150_DP	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the additional monitoring time to monitor the process data received via PROFIBUS. Enables short bus faults to be compensated. If no process data is received within this time, then an appropriate message is output.		
Recommend.:	In the isochronous mode, the additional monitoring time should not be set.		
Note:	For controller STOP, the additional monitoring time is not effective.		
p2048	IF1 PROFIdrive PZD sampling time / IF1 PZD t_sample		
CU_G130_DP,	Can be changed: C1(3)	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU G150 PN	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ms]	16.00 [ms]	4.00 [ms]
Description:	Sets the sampling time for the cyclic interface 1 (IF1).		
Note:	The system only permits certain sampling times and after writing to this parameter, displays the value that has actually been set.		

r2050[0...9]	CO: IF1 PROFIdrive PZD receive word / IF1 PZD recv word		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Connector output to intercon $\text { [0] = PZD } 1$ [1] = PZD 2 [2] = PZD 3 [3] = PZD 4 [4] = PZD 5 [5] = PZD 6 [6] = PZD 7 [7] = PZD 8 [8] = PZD 9 [9] = PZD 10	ints) with word for	the fieldbus controller.
Note:	IF1: Interface 1		
r2050[0...19]	CO: IF1 PROFIdrive P	word / IF1 PZD	
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: - Data type: Integer16 P-Group: Communications Not for motor type: - Min	Calculated: - Dyn. index: - Units group: - Scaling: 4000 H Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description: Index:	Connector output to intercon $\text { [0] = PZD } 1$ [1] = PZD 2 [2] = PZD 3 [3] = PZD 4 [4] = PZD 5 [5] = PZD 6 [6] = PZD 7 [7] = PZD 8 [8] = PZD 9 [9] = PZD 10 [10] = PZD 11 [11] = PZD 12 [12] = PZD 13 [13] = PZD 14 [14] = PZD 15 [15] = PZD 16 [16] = PZD 17 [17] = PZD 18 [18] = PZD 19 [19] = PZD 20	ints) with word for	the fieldbus controller.
Note:	IF1: Interface 1		

	[7] $=$ PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
	[16] = PZD 17
	[17] = PZD 18
	[18] = PZD 19
	[19] = PZD 20
	[20] = PZD 21
	[21] = PZD 22
	[22] = PZD 23
	[23] = PZD 24
	[24] = PZD 25
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	IF1: Interface 1

p2051[0...11] CI: IF1 PROFIdrive PZD send word / IF1 PZD send word
ENC

Can be changed: U, T	Calculated: -	Access level: 3
Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2470
P-Group: Communications	Units group: -	Unit selection: -
Not for motor type: -	Scaling: 4000H	Expert list: 1
Min	Max	Factory setting
-	-	0

Description: Selects the PZD (actual values) with word format to be sent to the fieldbus controller.

Index:	$[0]=$ PZD 1
	$[1]=$ PZD 2
	$[2]=$ PZD 3
	$[3]=$ PZD 4
	$[4]=$ PZD 5
	$[5]=$ PZD 6
	$[6]=$ PZD 7
	$[7]=$ PZD 8
	$[8]=$ PZD 9
	$[9]=$ PZD 10
	$[10]=$ PZD 11
	$[11]=$ PZD 12
	Refer to: p2061
Dependency:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Notice:	IF1: Interface 1
Note:	

p2051[0...4]
 CI: IF1 PROFIdrive PZD send word / IF1 PZD send word

TB30, TM150

Can be changed: U, T	Calculated: -	Access level: 3
Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
P-Group: Communications	Units group: -	Unit selection: -
Not for motor type: -	Scaling: 4000H	Expert list: 1
Min	Max	Factory setting
-		0
Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
$[0]=$ PZD 1		
$[1]=$ PZD 2		
$[2]=$ PZD 3		
$[3]=$ PZD 4		
The pZD 5		

Note:	IF1: Interface 1		
p2051[0...31]	CI: IF1 PROFIdrive PZD send word / IF1 PZD send word		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	$[0]=$ PZD 1		
	$[2]=\text { PZD } 3$		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] P PZD 7		
	[7] $=$ PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] $=$ PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28$[28]=$ PZD 29		
	[28] $=$ PZD 29[29] $=$ PZD 30		
	$[30]=$ PZD 31$[31]=$ PZD 32		
Dependency:	Refer to: p2061		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
r2053[0...9]	IF1 PROFIdrive diagnostics PZD send word / IF1 diag send word		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- -		-
Description: Index:	Displays the PZD (actual values) with word format sent to the fieldbus controller.		
	$[0]=$ PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	$\begin{aligned} & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \end{aligned}$		

	[19] = PZD 20				
		$\text { [20] = PZD } 21$			
		$\text { = PZD } 22$			
	[22] = PZD 23				
	[23] = PZD 24				
	[24] = PZD 25				
	[25] = PZD 26				
	[26] = PZD 27				
	[27] = PZD 28				
	[28] = PZD 29				
	[29] = PZD 30				
	[30] = PZD 31				
	[31] = PZD 32				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p2051, p2061				
Note:	IF1: Interface 1				
r2054	PROFIBUS status / PB status				
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G150_DP } \end{aligned}$	Can be changed: -		Calculated: -	Acces	
	Data type: Integer16		Dyn. index: -	Func.	
	P-Group: Communications		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	0		4	-	
Description: Value:	Status display for the PROFIBUS interface.				
	0:	OFF			
		No connection (searc			
		Connection OK (baud			
		Cyclic connection with	xchange)		
		Cyclic data OK			
Note:	Re r2054 = 3:				
	In state 3 (the LED flashes green), a cyclic connection has been established to the PROFIBUS master; however, one of the following prerequisites is missing for cyclic operation:				
	- No setpoints are being received as the PROFIBUS master is in the STOP condition.				
	Only for clock-cycle synchronous operation, the following applies:				
	- The drive is not in synchronism as the global control (GC) has an error.				
	Re r2054 = 4:				
	In the status 4 (LED green), the cyclic connection to the PROFIBUS master has been established and setpoints are being received. The clock cycle synchronization is OK, the global control (GC) is error-free.				
	This state does not provide any statement regarding the quality of the clock cycle synchronous sign-of-life characters on the drive objects.				

p2061[0...30]	CI: IF1 PROFIdrive PZD send double word / IF1 PZD send DW		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.		
Index:			
	[1] = PZD $2+3$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5] = PZD $6+7$		
	[6] $=$ PZD $7+8$		
	[7] $=$ PZD $8+9$		
	[8] = PZD $9+10$		
	[9] P PZD $10+11$		
	[10] = PZD 11 + 12		
	[11] $=$ PZD 12 + 13		
	[12] = PZD 13 + 14		
	[13] = PZD 14 + 15		
	[14] = PZD 15 + 16		
	[15] = PZD 16 + 17		
	[16] $=$ PZD 17 + 18		
	[17] = PZD $18+19$		
	[18] = PZD 19 + 20		
	[19] = PZD $20+21$		
	[20] $=$ PZD $21+22$		
	[21] = PZD $22+23$		
	[22] = PZD $23+24$		
	[23] = PZD $24+25$		
	[24] $=$ PZD $25+26$		
	[25] = PZD $26+27$		
	[26] = PZD $27+28$		
	[27] = PZD $28+29$		
	[28] = PZD $29+30$		
	$[29]=$ PZD $30+31$$[30]=$ PZD $31+32$		
Dependency:			
Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	IF1: Interface 1		
r2063[0...10]	IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2450, 2470
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.		
	$[0]=\text { PZD } 1+2$		
	[1] $=$ PZD $2+3$		
	[2] $=$ PZD $3+4$		
	$[3]=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	$\text { [5] = PZD } 6+7$		
	$[6]=$ PZD $7+8$		

Bit field:	$\begin{aligned} & {[7]=\text { PZD } 8+9} \\ & {[8]=\text { PZD } 9+10} \\ & {[9]=\text { PZD } 10+11} \\ & {[10]=\text { PZD } 11+12} \end{aligned}$				
	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-
	27	Bit 27	ON	OFF	-
	28	Bit 28	ON	OFF	-
	29	Bit 29	ON	OFF	-
	30	Bit 30	ON	OFF	-
	31	Bit 31	ON	OFF	-
Notice:	A maximum of 4 indices of the "trace" function can be used. IF1: Interface 1				
Note:					
r2063[0...30]	IF1 PROFIdrive diagnostics PZD send double word / IF1 diag send DW				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func	
	P-Group: Communications		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description: Index:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.				
	$[0]=\text { PZD } 1+2$				
	[1] $=$ PZD $2+3$				
	[2] $=$ PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] = PZD $6+7$				
	[6$]=$ PZD $7+8$				
	[7] $=$ PZD $8+9$				
	[8] $=$ PZD $9+10$				
	[9] = PZD $10+11$				
	[10] = PZD 11 + 12				
	[11] = PZD 12 + 13				
	[12] = PZD 13 + 14				
	[13] = PZD $14+15$				

	[14] $=$ PZD $15+16$			
	[15] = PZD 16 + 17			
	[16] = PZD $17+18$			
	[17] = PZD 18 + 19			
	[18] = PZD 19 + 20			
	[19] $=$ PZD $20+21$			
	[20] = PZD $21+22$			
	[21] = PZD $22+23$			
	[22] $=$ PZD $23+24$			
	[23] P PZD $24+25$			
	[24] = PZD $25+26$			
	[25] = PZD $26+27$			
	[26] = PZD $27+28$			
	[27] $=$ PZD $28+29$			
	[28] $=$ PZD $29+30$			
	[29] = PZD $30+31$			
	[30] = PZD $31+32$			
Bit field:	Bit	Signal name	1 signal	0 signal
	00	Bit 0	ON	OFF
	01	Bit 1	ON	OFF
	02	Bit 2	ON	OFF
	03	Bit 3	ON	OFF
	04	Bit 4	ON	OFF
	05	Bit 5	ON	OFF
	06	Bit 6	ON	OFF
	07	Bit 7	ON	OFF
	08	Bit 8	ON	OFF
	09	Bit 9	ON	OFF
	10	Bit 10	ON	OFF
	11	Bit 11	ON	OFF
	12	Bit 12	ON	OFF
	13	Bit 13	ON	OFF
	14	Bit 14	ON	OFF
	15	Bit 15	ON	OFF
	16	Bit 16	ON	OFF
	17	Bit 17	ON	OFF
	18	Bit 18	ON	OFF
	19	Bit 19	ON	OFF
	20	Bit 20	ON	OFF
	21	Bit 21	ON	OFF
	22	Bit 22	ON	OFF
	23	Bit 23	ON	OFF
	24	Bit 24	ON	OFF
	25	Bit 25	ON	OFF
		Bit 26	ON	OFF
	27	Bit 27	ON	OFF
	28	Bit 28	ON	OFF
		Bit 29	ON	OFF
		Bit 30	ON	OFF
		Bit 31	ON	OFF
Notice:	A maximum of 4 indices of the "trace" function can be used.			
Note:	IF1: Interface 1			
r2064[0...7]	PB/PN diagnostics clock cycle synchronism / PB/PN diag clock			
CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer32		Dyn. index: -	Func. diagram: 2410
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: Communications		Units group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	-			-
Description:	Displays the last parameter received from the PROFIBUS/PROFINET controller for clock synchronism.			

The parameters for clock synchronism are created when configuring the bus and are transferred at the start of cyclic operation from the controller to the device.
Index: [0] = Clock synchronous mode activated
[1] = Bus cycle time (Tdp) [$\mu \mathrm{s}$]
[2] = Master cycle time (Tmapc) [$\mu \mathrm{s}$]
[3] = Instant of actual value acquisition (Ti) [$\mu \mathrm{s}$]
[4] = Instant of setpoint acquisition (To) [$\mu \mathrm{s}$]
[5] = Data exchange interval (Tdx) [$\mu \mathrm{s}$]
[6] = PLL window (Tpll-w) [1/12 $\mu \mathrm{s}$]
[7] = PLL delay time (Tpll-d) [1/12 $\mu \mathrm{s}$]

r2065	PB/PN controller sign of life diagnostics / PB/PN ctr SoL diag		
ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
$(\mathrm{n} / \mathrm{M})$	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays how often the sign-of-life from the clock synchronous PROFIBUS/PROFINET controller last failed.		
	An appropriate fault is output when the tolerance, specified in p0925, is exceeded.		

r2067[0...1]	IF1 PZD maximum interconnected / IF1 PZDmaxintercon		
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display for the maximum interconnected PZD in the receive/send direction Index 0: receive (r2050, r2060) Index 1: send (p2051, p2061)		
p2070	IF1 PROFIdrive SIC/SCC start receive / SIC/SCC start recv		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2423
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	29	0
Description:	Sets the start for the SIC/SCC telegram (p60122) in the receive words (r2050, r2060).		
Dependency:	Refer to: p0922, p2071, p2079, p60122		
Note:	For setting p0922/p2079, the value is preset to the end of the PZD telegram.		
	For p0922 equal to 999 and p2079 not equal to 999, the preset value can be increased.		
	The value must be set again after changing p0922/p2079.		
p2071	IF1 PROFIdrive SIC/SCC start send / SIC/SCC start send		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2423
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	30	0
Description:	Sets the start for the SIC/SCC telegram (p60122) in the send words (p2051, p2061). Refer to: p0922, p2079, p60122		
Dependency:			

	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		
r2074[0...3]	IF1 PROFldrive diagnostics bus address PZD receive / IF1diag addr recv		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		
r2074[0..4] IF1 PROFldrive diagnostics bus address PZD receive / IF1diag addr recv			
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		

r2074[0...31]	IF1 PROFIdrive diagnostics bus address PZD receive / IF1diag addr recv		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received.		
Index:	$[0]=$ PZD 1$[1]=$ PZD 2		
	$[1]=$ PZD 2$[2]=$ PZD 3		
	$[4]=\text { PZD } 5$		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] $=$ PZD 29$[29]$P PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF1: Interface 1		
	Value range:		
	0-125: Bus address of the sender		
	65535: Not assigned		
r2075[0...9] IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv			
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
	$\text { [0] = PZD } 1$		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	$[4]=$ PZD 5		

r2075[0...4]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		
r2075[0...31]	IF1 PROFIdrive diagnostics telegram offset PZD receive / IF1 diag offs recv		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output).		
Index:	$[0]=$ PZD 1 -		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	$\text { [30] = PZD } 31$		

Note:	$\begin{aligned} & {[23]=\text { PZD } 24} \\ & {[24]=\text { PZD } 25} \end{aligned}$		
	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		
r2076[0...11]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		
r2076[0...4]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		

r2076[0...31]	IF1 PROFIdrive diagnostics telegram offset PZD send / IF1 diag offs send		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2410
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input).		
Index:	$[0]=$ PZD 1		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] $=$ PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] $=$ PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF1: Interface 1		
	Value range:		
	0-242: Byte offset		
	65535: Not assigned		
r2077[0...15]	PROFIBUS diagnostics peer-to-peer data transfer addresses / PB diag peer addr		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the addresses of the	where peer-to-p	been configured via PRO

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
B_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	370	999	999
Description:	Sets the send and receive telegram. Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.		
Value:	370: SIEMENS telegram 370, PZD-1/1 371: SIEMENS telegram 371, PZD-5/8 999: Free telegram configuration with BICO		
Dependency:	Refer to: p0922		
Note:	For p0922 < 999 the following applies:		
	p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.		
	For p0922 = 999 the following applies:		
	p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.		
	For p0922 = 999 and p2079 < 999 the following applies:		
	The interconnections contained in the telegram are inhibited. However, the telegram can be extended		
p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	390	999	999
Description:	Sets the send and receive telegram.		
	Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.		
Value:	390: SIEMENS telegram 390, PZD-2/2 391: SIEMENS telegram 391, PZD-3/7		
	392: SIEMENS telegram 392, PZD-3/15		
	393: SIEMENS telegram 393, PZD-4/21		
	394: SIEMENS telegram 394, PZD-3/3		
	395: SIEMENS telegram 395, PZD-4/25		
	396: SIEMENS telegram 396, PZD-20/21999: Free telegram configuration with BICO		
Note:	For p0922 < 999 the following applies:		
	p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.		
	For p0922 = 999 the following applies:		
	p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.		
	For p0922-999 and p2079 < 999 the following applies:		
	The interconnections contained in the telegram are inhibited. However, the telegram can be extended		
p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext		
ENC	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	81	999	999
Description:	Sets the send and receive telegram.		

Note: \quad For p0922 < 999 the following applies: \quad p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are

p2080[0...15] BI: Binector-connector converter status word 1 / Bin/con ZSW1

B_INF, CU_G130_DP, Can be changed: U, T	Calculated: -	Access level: 3	
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2472
CU_G150_DP,	P-Group: Communications	Units group: -	Unit selection: -
CU_G150_PN, ENC,	Not for motor type: -	Scaling: -	Expert list: 1
TB30, TM150, TM31,	Min	Max	Factory setting
VECTOR_G	-	-	0

Description:	Selects bits to be sent to the PROFIdrive controller.
	The individual bits are combined to form status word 1.
Index:	[0] = Bit 0
	[1] = Bit 1
	[2] = Bit 2
	[3] = Bit 3
	[4] = Bit 4
	[5] = Bit 5
	[6] = Bit 6
	[7] $=$ Bit 7
	[8] $=$ Bit 8
	[9] = Bit 9
	[10] = Bit 10
	[11] = Bit 11
	[12] = Bit 12
	[13] = Bit 13
	[14] = Bit 14
	[15] = Bit 15
Dependency:	Refer to: p2088, r2089
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p2081[0..15]	Bl: Binector-connector converter status word 2 / Bin/con ZSW2		
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2472
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form status word 2.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		

Dependency:	$\begin{aligned} & {[14]=\text { Bit } 14} \\ & {[15]=\text { Bit } 15} \end{aligned}$		
	Refer to: p2088, r2089		
p2084[0...15]	BI: Binector-connector converter status word 5 / Bin/con ZSW5		
B_INF, CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2472
CU_G150_DP, CU G150 PN ENC	P-Group: Communications	Units group: -	Unit selection: -
TB30, TM150, TM31,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_G	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 5.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] $=$ Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		

p2088[0...4] Invert binector-connector converter status word/Bin/con ZSW inv

B_INF, CU_G130_D
CU G130 PN,
CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G

Description:
Index:

Bit field:

Can be changed: U, T
Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min

Access level: 3
Func. diagram: 2472
Unit selection: -
Expert list: 1
Factory setting
0000000000000000 bin

Setting to invert the individual binector inputs of the binector connector converter.
[0] = Status word 1
[1] = Status word 2
[2] = Free status word 3
[3] = Free status word 4
[4] = Free status word 5

Bit	Signal name	1 signal	0 signal	FP
00	Bit 0	Inverted	Not inverted	-
01	Bit 1	Inverted	Not inverted	-
02	Bit 2	Inverted	Not inverted	-
03	Bit 3	Inverted	Not inverted	-
04	Bit 4	Inverted	Not inverted	-
05	Bit 5	Inverted	Not inverted	-
06	Bit 6	Inverted	Not inverted	-
07	Bit 7	Inverted	Not inverted	-
08	Bit 8	Inverted	Not inverted	-
09	Bit 9	Inverted	Not inverted	-
10	Bit 10	Inverted	Not inverted	-
11	Bit 11	Inverted	Not inverted	-
12	Bit 12	Inverted	Not inverted	-
13	Bit 13	Inverted	Not inverted	-

		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2091.0.. 15	BO: IF1 PROFIdrive PZD2 receive bit-serial / IF1 PZD2 recv bitw				
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2468	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller.				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
		Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2092.0... 15	B0: IF1 PROFIdrive PZD3 receive bit-serial / IF1 PZD3 recv bitw				
CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 3	
CU_G130_PN, CU G150 DP	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2468	
CU G150 PN, ENC,	P-Group: Communications		Units group: -	Unit selection: -	
VECTTOR_G	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF1: Interface 1				

r2093.0... 15	BO: IF1 PROFIdrive PZD4 receive bit-serial / IF1 PZD4 recv bitw				
```CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, VECTOR_G```	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2468	
	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
		Bit 4	ON	OFF	-
		Bit 5	ON	OFF	-
		Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Note:	IF1: Interface 1				
r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
B_INF, CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 3	
CU_G130_PN,	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2468	
CU G150 PN, ENC,	P-Group: Communications		Units group: -	Unit selection: -	
TB30, TM150, TM31,	Not for motor type: -		Scaling: -	Expert list: 1	
VECTOR_G	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Dependency:	Refer to: p2099				


r2095.0..15	BO: Connector-binector converter binector output / Con/bin outp			
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: -   Data type: Unsigned16   P-Group: Communications   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max   -	Access   Func. dia   Unit sele   Expert lis   Factory	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[1].			
Bit field:	Bit Signal name   00 Bit 0   01 Bit 1   02 Bit 2   03 Bit 3   04 Bit 4   05 Bit 5   06 Bit 6   07 Bit 7   08 Bit 8   09 Bit 9   10 Bit 10   11 Bit 11   12 Bit 12   13 Bit 13   14 Bit 14   15 Bit 15	1 signal   ON	0 signal   OFF	FP
Dependency:	Refer to: p2099			
p2098[0...1]   B_INF,CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Inverter connector-bin   Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned16   P-Group: Communications   Not for motor type: -   Min   -	erter binecto   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max   -	n/bin outp   Access   Func. dia   Unit sele   Expert lis:   Factory s   00000000	
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p2098[0], the signals of connector input p2099[0] are influenced. Using p2098[1], the signals of connector input p2099[1] are influenced.			
Bit field:	Bit Signal name   00 Bit 0   01 Bit 1   02 Bit 2   03 Bit 3   04 Bit 4   05 Bit 5   06 Bit 6   07 Bit 7   08 Bit 8   09 Bit 9   10 Bit 10   11 Bit 11   12 Bit 12   13 Bit 13   14 Bit 14   15 Bit 15	1 signal   Inverted	0 signal   Not inverted	FP
Dependency:	Refer to: r2094, r2095, p2099			


p2099[0...1]	verter signal source / Con/bin S_src
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned32 / Integer16 Dyn. index: - Func. diagram: 2468   P-Group: Communications Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - 0
Description:   Dependency: Note:	Sets the signal source for the connector-binector converter.   A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).   Refer to: r2094, r2095   From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters:   Connector input p2099[0] to binector output in r2094.0... 15   Connector input p2099[1] to binector output in r2095.0... 15
$\overline{p 2100[0 . .19]}$   All objects	Change fault response fault number / Chng resp F_no     Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: 8050, 8075   P-Group: Messages Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 65535 0
Description:   Dependency:   Note:	Selects the faults for which the fault response should be changed   The fault is selected and the required response is set under the same index.   Refer to: p2101   Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.
$\begin{aligned} & \text { p2101[0...19] } \\ & \text { B_INF } \end{aligned}$	Change fault response response / Chng resp resp     Can be changed: U, T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: 8050,8075   P-Group: Messages Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 2 0
Description: Value:	Sets the fault response for the selected fault.   0: NONE   1: OFF1   2: OFF2
Dependency:   Notice:	The fault is selected and the required response is set under the same index.   For the following cases, it is not possible to re-parameterize the fault response to a fault:   - Fault number does not exist (exception value $=0$ ).   - Message type is not "fault" (F).   - Fault response is not permissible for the set fault number.
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.



Re value $=6$ (armature short-circuit, internal/DC braking):
The value can only be set for all motor data sets when $\mathrm{p} 1231=3,4$.
a) For synchronous motors ( $\mathrm{p} 0300=2 \mathrm{xx}, 4 \mathrm{xx}$ ), an internal armature short-circuit is executed.
b) For induction motors ( $\mathrm{p} 0300=1 \mathrm{xx}$ ), a DC braking is initiated.

Re value $=7$ (ENCODER (p0491)):
The fault response set in p0491 is executed if applicable.
Note:
IASC: Internal Armature Short Circuit
DCBRK: DC braking

p2102	BI: Acknowledge all faults / Ackn all faults		
CU_G130_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2546, 8060
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to acknowledge all faults at all drive objects of the drive system. A fault acknowledgement is triggered with a $0 / 1$ signal.		
Note:			
p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
B_INF, VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2103	BI: 1. Acknowledge faults / 1. Acknowledge		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \end{aligned}$	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
CU_G150_PN, ENC,	P-Group: Messages	Units group: -	Unit selection: -
HUB, TB30, TM150,	Not for motor type: -	Scaling: -	Expert list: 1
TM31, TM54F_MA, TM54F SL	Min	Max	Factory setting
TM54F_SL	-	-	0

Description: Sets the first signal source to acknowledge faults.
Notice: The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:
A fault acknowledgement is triggered with a $0 / 1$ signal.

p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
B_INF, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 2546, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		




An external fault is triggered with a $1 / 0$ signal.
If this fault is output at the Control Unit, then it is transferred to all existing drive objects.

r2109[0...63]	Fault time removed in milliseconds /t_flt resolved ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050,8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: ro945, r0947, r0948, r0949, r2114, r2130, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		





r2120	CO: Sum of fault and alarm buffer changes / Sum buffer change
All objects	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned16 Dyn. index: - Func. diagram: 8065   P-Group: Messages Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:	Displays the sum of all of the fault and alarm buffer changes in the drive unit.   Refer to: r0944, r2121
$\overline{\text { r2121 }}$   All objects	CO: Counter alarm buffer changes / Alrm buff changed     Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: 8065   P-Group: Messages Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:	This counter is incremented every time the alarm buffer changes. Refer to: r2110, r2122, r2123, r2124, r2125
r2122[0...63]   All objects	Alarm code / Alarm code
Description:   Dependency:   Notice:   Note:	Displays the number of alarms that have occurred.   Refer to: r2110, r2123, r2124, r2125, r2134, r2145, r2146, r3121, r3123   The properties of the alarm buffer should be taken from the corresponding product documentation.   The buffer parameters are cyclically updated in the background (refer to status signal in r2139).   Alarm buffer structure (general principle): $\begin{aligned} & \text { r2122[0], r2124[0], r2123[0], r2125[0] --> alarm } 1 \text { (the oldest) } \\ & \text {. . } \\ & \text { r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm } 8 \text { (the latest) } \end{aligned}$   When the alarm buffer is full, the alarms that have gone are entered into the alarm history:   r2122[8], r2124[8], r2123[8], r2125[8] --> Alarm 1 (the latest)   r2122[63], r2124[63], r2123[63], r2125[63] --> alarm 56 (the oldest)
r2123[0...63]   All objects	Alarm time received in milliseconds / t_alarm recv ms
Description:   Dependency:   Notice:   Note:	Displays the system runtime in milliseconds when the alarm occurred.   Refer to: r2110, r2114, r2122, r2124, r2125, r2134, r2145, r2146, r3121, r3123   The time comprises r 2145 (days) and r 2123 (milliseconds).   The buffer parameters are cyclically updated in the background (refer to status signal in r2139).   The structure of the alarm buffer and the assignment of the indices is shown in r2122.


r2124[0...63]	Alarm value / Alarm value		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Unit selection: -
	P-Group: Messages	Units group: -	Expert list: 1
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays additional information about the active alarm (as integer number).		
Dependency:	Refer to: r2110, r2122, r2123, r2125, r2134, r2145, r2146, r3121, r3123		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r 2122.		


r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8050, 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2134, r2145, r2146, r3121, r3123		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		
p2126[0...19]	Change acknowledge mode fault number / Chng ackn F_no		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050, 8075
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same indexRefer to: p 2127		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		


p2127[0...19]	Change acknowledge mode mode / Chng ackn mode		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 8050, 8075
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	3	1
Description:	Sets the acknowledge mode for selected fault.		
Value:	1: Acknowledgment only using POWER ON		
	2: Ack IMMEDIATELY after the fault cause has been removed		
	3: Acknowledgement only for PULSE INHIBIT		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index		
	Refer to: p2126		


Notice:	It is not possible to re-parameterize the acknowledge mode for a fault in the following cases:
- Fault number does not exist (exception value $=0$ ).	
	- Message type is not "fault" (F).
Note:	- Acknowledge mode is not permissible for the set fault number.
	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been
resolved.	
	The acknowledge mode can only be changed for faults with the appropriate identification.
	Example:
	F12345 and acknowledge mode = IMMEDIATELY (POWER ON)
	--> The acknowledge mode can be changed from IMMEDIATELY to POWER ON.


p2128[0...15]	Faults/alarms trigger selection / F/A trigger sel		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8050,8070
	P-Group: Messages	Units group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the faults/alarms for which a trigger signal should be generated in r2129.0...15.		
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0...15 is set.		


r2129.0... 15	CO/BO: Faults/alarms trigger signal / F/A trigger signal			
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Messages	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Display and BICO output for the trigger signals of the faults/alarms set in p2128[0...15].			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Trigger signal p2128[0]	ON	OFF	-
	01 Trigger signal p2128[1]	ON	OFF	-
	02 Trigger signal p2128[2]	ON	OFF	-
	03 Trigger signal p2128[3]	ON	OFF	-
	04 Trigger signal p2128[4]	ON	OFF	-
	05 Trigger signal p2128[5]	ON	OFF	-
	06 Trigger signal p2128[6]	ON	OFF	-
	07 Trigger signal p2128[7]	ON	OFF	-
	08 Trigger signal p2128[8]	ON	OFF	-
	09 Trigger signal p2128[9]	ON	OFF	-
	10 Trigger signal p2128[10]	ON	OFF	-
	11 Trigger signal p2128[11]	ON	OFF	-
	12 Trigger signal p2128[12]	ON	OFF	-
	13 Trigger signal p2128[13]	ON	OFF	-
	14 Trigger signal p2128[14]	ON	OFF	-
	15 Trigger signal p2128[15]	ON	OFF	-
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0... 15 is set.			
Note:	CO: r2129 = 0 --> None of the selected messages has occurred.			
	CO: r2129 > 0 --> At least one of the selected messages has occurred.			


r2130[0...63]	Fault time received in days / t_fault recv days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2133, r2136, r3115, r3120, r3122		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2131	CO: Actual fault code / Act fault code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the oldest active fault.		
Dependency:	Refer to: r3131, r3132		
Note:	0 : No fault present.		
r2132	CO: Actual alarm code / Actual alarm code		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the last alarm that occurred.		
Note:	0 : No alarm present.		
r2133[0...63]	Fault value for float values / Fault val float		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred for float values.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2136, r3115		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		


r2134[0...63]	Alarm value for float values / Alarm value float				
All objects	Can be changed: -		Calculated: -	Acces	
	Data type: FloatingPoint32		Dyn. index: -	Func.	
	P-Group: Messages		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays additional information about the active alarm for float values.				
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2145, r2146, r3121, r3123				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
r2135.0... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2				
All objects	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:   Bit field:	Display and BICO output for the second status word of faults and alarms.				
		Signal name	1 signal	0 signal	FP
		Fault encoder 1	Yes	No	-
		Fault encoder 2	Yes	No	-
		Fault encoder 3	Yes	No	-
		Fault motor overtemperature	Yes	No	8016
		Fault power unit thermal overload	Yes	No	8014
		Alarm motor overtemperature	Yes	No	8016
		Alarm power unit thermal overload	Yes	No	8014
r2136[0...63]	Fau	It time removed in days / t_	resolv days		
All objects	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Messages		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the system runtime in days when the fault was removed.				
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2114, r2130, r2133, r3115, r3120, r3122				
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
r2138.7... 15	CO	BO: Control word faults/ala	s / STW fault		
All objects	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Displays, signals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Display and BICO output for the control word of faults and alarms.				
Bit field:	Bit	Signal name	1 signal	0 signal	
		Acknowledge fault	Yes	No	8060
		External alarm 1 (A07850) effective	Yes	No	8065
		External alarm 2 (A07851) effective	Yes	No	8065
	12	External alarm 3 (A07852) effective	Yes	No	8065


		External fault 1 (F07860) effective	Yes	No	8060
		External fault 2 (F07861) effective	Yes	No	8060
	15	External fault 3 (F07862) effective	Yes	No	8060
Dependency:	Refer to: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112				
r2139.0... 15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1				
All objects	Can be changed: -		Calculated: -	Access level: 2	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2548	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for status word 1 of faults and alarms.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Being acknowledged	Yes	No	-
		Acknowledgment required	Yes	No	-
		Fault present	Yes	No	8060
		Safety message present	Yes	No	-
		Internal message 1 present	Yes	No	-
		Alarm present	Yes	No	8065
		Internal message 2 present	Yes	No	-
		Alarm class bit 0	High	Low	-
		Alarm class bit 1	High	Low	-
		Maintenance required	Yes	No	-
		Maintenance urgently required	Yes	No	-
		Fault gone/can be acknowledged	Yes	No	-
Note:	Re bit 03, 05, 07:				
	These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. This is the reason that the fault/alarm buffer should only be read if, after "fault present" or "alarm present" has occurred, a change in the buffer was also detected (r0944, r9744, r2121).				
	Re bit 06, 08:				
	These status bits are used for internal diagnostic purposes only.				
	Re bit 12, 11:				
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.				


p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2		
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
		Data type: FloatingPoint32	Cnits group: 3_1


p2141[0...n]	Speed threshold 1 / n_thresh val 1		
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]
Description:   Dependency:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1).		
p2142[0...n]	Hysteresis speed $1 / \mathrm{n}$ _hysteresis 1		
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	300.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or $\mathrm{n} / \mathrm{v}$ comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8012
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the negated enable ( $0=$ enable) of the motor stall monitoring.		
Dependency:	Refer to: p2163, p2164, p2166, r2197, r2198		
Note:	When interconnecting the enable signal with r2197.7 then the stall signal is suppressed if there is no speed setpoint actual value deviation.		
r2145[0..63]	Alarm time received in days / t_alarm recv days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the alarm occurred.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2146, r3121, r3123		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		


r2146[0...63]	Alarm time removed in days / t_alarm res days		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 8065
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	Refer to: r2110, r2114, r2122, r2123, r2124, r2125, r2134, r2145, r3121, r3123		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
p2147	Delete fault buffer of all drive objects / Del fault buffer		
CU_G130_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: 8060
CU_G150_PN	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to delete the fault buffer of all existing drive objects.		
Value:	0 : Inactive   1: Start to delete the fault buffer of all drive objects		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
Note:	p2147 is automatically set to 0 after execution.		
p2148[0...n]	BI: RFG active / RFG active		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 8011
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the signal "ramp-function generator active" for the following signals/messages:   "Speed setpoint - actual value deviation within tolerance t_on" (BO: r2199.4)   "Ramp-up/ramp-down completed" (BO: r2199.5)		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The binector input is automatically pre-assigned to r1199.2.		
	The following applies for SERVO:		
	The pre-assignment using the automatic calculation of the motor/control parameters in the drive ( $\mathrm{p} 0340=1,3,5$ ) is only realized if, at the instant of the calculation, the "setpoint channel" function module is active (r0108.8 = 1). If the calculation in p 0340 is not selected when downloading parameters, then the parameter is not preassigned.		
p2149[0...n]	Monitoring configuration / Monit config		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000000000000001 bin
Description:	Sets the configuration for messages and monitoring functions.		


Bit field:		Signal name	1 signal	0 signal	FP	
	00	Enable alarm A07903	Yes	No	8011	
		Load monitoring only in the 1st quadrant	Yes	No	8013	
	03	Reserved			-	
	15	Automatic parameterization carried out (p0340 = 1, p3900 > 0 )	Yes	No	-	
Dependency:	Refer to: 2197					
Note:	Re bit 00:					
	Alarm A07903 is output when the bit is set with r2197.7 = 0 (n_set <> n_act).					
	Re bit 01:					
	When the bit is set, load monitoring is only carried out in the 1st quadrant as a result of the positive characteristic parameters (p2182 ... p2190).					
	Re bit 03:					
	When the bit is set, r2197.1 and r2197.2 are determined using separate hysteresis functions.					
	Re bit 15:					
	The bit indicates whether the automatic parameterization ( $\mathrm{p} 0340=1, \mathrm{p} 3900>0$ ) for the parameters of the extended monitoring functions was carried out.					
	If the bit is not set (e.g. when the configuration is activated (p0108.15)), the parameterization is automatically carried out during booting even if r3925.0 is already 1 .					
p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3					
VECTOR_G	Can be changed: $U, T$		Calculated:   CALC_MOD_LIM_REF	Access level: 3		
	Data type: FloatingPoint32 D		Dyn. index: DDS, p0180	Func.	011	
	P-Group: Messages U		Units group: 3_1	Unit		
	Not for motor type: - S		Scaling: -	Exper		
	Min		Max	Facto		
	0.00 [rpm] 3		300.00 [rpm]	2.00 [		
Description:	Sets the hysteresis speed (bandwidth) for the following signals:					
	"\|n_act	< speed threshold value 3" (BO: r2199.0)				
	"n_set >= 0" (BO: r2198.5)					
	"n_act >= 0" (BO: r2197.3)					
Dependency:	Refer to: p2161, r2197, r2199					
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg					
VECTOR_G	Can be changed: T C		Calculated: -	Acces		
	Data type: Unsigned32 / FloatingPoint32 D		Dyn. index: CDS, p0170	Func.		
	P-Group: Messages		Units group: -	Unit		
	Not for motor type: - S		Scaling: p2000	Exper		
	Min		Max	Facto		
				1170[		
Description:	Sets the signal source for the speed setpoint for the following messages:					
	"Speed setpoint - actual value deviation within tolerance t_off" (BO: r2197.7)					
	"Ramp-up/ramp-down completed" (BO: r2199.5)					
	"\|n_set	< p2161" (BO: r2198.4)				
	"n_set > 0" (BO: r2198.5)					
Dependency:	Refer to: r2197, r2198, r2199					


p2153[0...n]	Speed actual value filter time constant / n_act_filt T				
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3		
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010		
	P-Group: Messages	Units group: -	Unit selection: -		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	0 [ms]	1000000 [ms]	0 [ms]		
Description:	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.				
Dependency:	Refer to: r2169				
p2154[0...n]	CI: Speed setpoint 2 / n_set 2				
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3		
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 8010		
	P-Group: Messages	Units group: -	Unit selection: -		
	Not for motor type: -	Scaling: p2000	Expert list: 1		
	Min	Max	Factory setting		
	-	-	0		
Description:	Sets the signal source for speed setpoint 2.				
	The sum of p2151 and p2154 is used for the following messages/signals:				
	"Speed setpoint - actual value deviation within tolerance t_off" (r2197.7)				
	"Speed setpoint - actual value deviation within tolerance t_on" (r2199.4)				
	"Ramp-up/ramp-down completed" (r2199.5)				
Dependency:	Refer to: p2151, r2197, r2199				
p2155[0...n]	Speed threshold 2 / n_thresh val 2				
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3		
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010		
	P-Group: Messages	Units group: 3_1	Unit selection: p0505		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]		
Description:	Sets the speed threshold value for the follo "\|n_act < = speed threshold value 2" (BO: "	n_act	> speed threshold value 2" (BO: r2	ing messages: (197.1)   97.2)	
Dependency:	Refer to: p2140, r2197				

p2156[0...n] On delay comparison value reached/t_on cmpr val rchd

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Messages
Not for motor type: -
Min
0.0 [ms]

Calculated: -
Dyn. index: DDS, p0180
Units group: -
Scaling: -
Max
10000.0 [ms]

Access level: 2
Func. diagram: 8010
Unit selection: -
Expert list: 1
Factory setting
0.0 [ms]

Description: Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1).
Dependency:

p2161[0...n]	Speed threshold 3 / n_thresh val 3			
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010, 8011	
	P-Group: Messages	Units group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]	
Description:   Dependency:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0).		
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max			
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8010	
	P-Group: Messages	Units group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	60000.00 [rpm]	0.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).			
Dependency:	Refer to: r1084, r1087, r2197			
Notice:	For p0322 = 0, the following applies: p2162 <= 0.1 * p0311			
	If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissionin mode.			
Note:	For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r1084) above the limit value.			
	If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can only be increased by more than $10 \%$ of the rated speed when the maximum speed ( p 0322 ) of the motor is sufficiently greater than the speed limit p1082.			
p2163[0...n]	Speed threshold 4 / n_thresh val 4			
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011	
	P-Group: Messages	Units group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	90.00 [rpm]	
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance $t$ _off" signal/message (BO: r2197.7).			
Dependency:	Refer to: p2164, p2166, r2197			
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4			
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 2	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011	
	P-Group: Messages	Units group: 3_1	Unit selection: p0505	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [rpm]	200.00 [rpm]	2.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).			


Dependency:	Refer to: p2163, p2166, r2197		
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so		
VECTOR_G	Can be changed: $U$, $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance $t$ _off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		
p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8011
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		
$\mathbf{r 2 1 6 9}$	CO: Actual speed smoothed signals / n_act smth message		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8010
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output of the smoothed speed actual value for messages.		
Dependency:	Refer to: p2153		
p2174[0...n]	Torque threshold value $1 / \mathrm{M}$ _thresh val 1		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	20000000.00 [ Nm ]	5.13 [ Nm ]
Description:	Sets the torque threshold value for the messages:		
	"Torque setpoint < torque threshold value 1 and n _set reached" (BO: r2198.9)		
	"Torque setpoint < torque threshold value 1" (BO: r2198.10)		
	"Torque setpoint > torque threshold value 1" (BO: r2198.13)		
Dependency:	Refer to: $\mathrm{p} 2195, \mathrm{r} 2198$		


p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:			
Dependency:			
Note:	The following applies for encoderless vector control for induction motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected.		
	The following applies for encoderless vector control for permanent magnet synchronous motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor can only be detected if $\mathrm{p} 2175=\mathrm{p} 1755$, and p 1750.6 is set to 1 .		
p2177[0...n]	Motor blocked delay time / Mot lock t_del		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	65.000 [s]	1.000 [s]
Description:	Sets the delay time for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2175, r2198		
Note:	The following applies for sensorless vector control:		
	At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly (p2177 < p1758) before time p2177 has elapsed in order to detect the locked state reliably.		
	As countermeasure, it is generally also possible to set p1750.6. This is only not permitted if the drive is slowly reversed by the load at the torque limit (speed below p1755 for longer than p1758).		
p2178[0...n]	Motor stalled delay time / Mot stall t_del		
VECTOR_G	Can be changed: U, T	Calculated: CALC_MOD_REG	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	10.000 [s]	0.010 [s]
Description:	Sets the delay time for the message "Motor stalled" (BO: r2198.7).		
Dependency:	Refer to: r2198		
p2181[0...n]	Load monitoring response / Load monit resp		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	0
Description:	Sets the response when evaluating the load monitoring.		


Value:	$0: \quad$ Load monitoring disabled	
	$1: \quad$ A07920 for torque/speed too low	
	$2: \quad$ A07921 for torque/speed too high	
	$3:$	A07922 for torque/speed out of tolerance
	$4:$	F07923 for torque/speed too low
	$5: \quad$ F07924 for torque/speed too high	
	$6: \quad$ F07925 for torque/speed out of tolerance	
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198	
Note:	The response to the faults F07923 ... F07925 can be set.	
	This parameter setting has no effect on the production of fault F07936.	


p2182[0...n]	Load monitoring speed threshold value 1 / n_thresh 1		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:		
	p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2183, p2184, p2185, p2186		
Note:	In order that the load monitoring can reliably respond, the speed threshold p2182 should always be set lower than the minimum motor speed to be monitored.		


p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2184, p2187, p2188		

p2184[0...n] Load monitoring speed threshold value 3 / n_thresh 3

VECTOR_G (Ext msg) Can be changed: U, T
Data type: FloatingPoint32
P-Group: Messages
Not for motor type: -
Min
0.00 [rpm]

Calculated: -
Dyn. index: DDS, p0180
Units group: 3_1
Scaling: -
Max
210000.00 [rpm]

Access level: 3
Func. diagram: 8013
Unit selection: p0505
Expert list: 1
Factory setting
1500.00 [rpm]

Description: Sets the speed/torque envelope curve for load monitoring.
The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)
p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)
p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)

Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
Note:	In order that the load monitoring can reliably respond, the speed threshold p 2184 should always be set higher than the maximum motor speed to be monitored.		
p2185[0...n]	Load monitoring torque threshold 1 upper / M_thresh 1 upper		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	20000000.00 [ Nm ]	10000000.00 [ Nm ]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2185 > p2186		
	Refer to: p2182, p2186		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2186[0...n]	Load monitoring torque threshold 1 lower / M_thresh 1 lower		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	20000000.00 [ Nm]	0.00 [ Nm ]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2187[0...n]	Load monitoring torque threshold 2 upper / M_thresh 2 upper		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	20000000.00 [ Nm ]	10000000.00 [ Nm ]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2187 > p2188		
	Refer to: p2183, p2188		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2188[0...n]	Load monitoring torque threshold 2 lower / M_thresh 2 lower		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	20000000.00 [ Nm ]	0.00 [ Nm ]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	Refer to: p2183, p2187		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		


p2189[0...n]	Load monitoring torque threshold 3 upper / M_thresh 3 upper		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	$20000000.00[\mathrm{Nm}]$	$10000000.00[\mathrm{Nm}]$
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.   The following applies: p2189 > p2190		
Dependency:			
	Refer to: p2184, p2190		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower		
VECTOR_G (Ext msg)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: 7_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Nm ]	$20000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	Sets the speed/torque / velocity/force envelope curve for the load monitoring.		
Dependency:	The following applies: p2190 < p2189		
	Refer to: p2184, p2189		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2192[0...n]	Load monitoring delay time / Load monit t_del		
VECTOR_G (Ext msg)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	65.00 [s]	10.00 [s]
Description:	Sets the delay time to evaluate the load monitoring.		
p2194[0...n]	Torque threshold value 2 / M_thresh val 2		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	90.00 [\%]
Description:	Sets the torque threshold value for the message "Torque utilization < torque threshold value 2" (BO: r2199.11). The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: r0033, p2195, r2199		


p2195[0...n]	Torque utilization switch-off delay / M_util t_off				
VECTOR_G	Can be changed: U, T C	Calculated: -	Access level: 2		
	Data type: FloatingPoint32 Dy	Dyn. index: DDS, p0180	Func. diagram: 8012		
	P-Group: Messages U	Units group: -	Unit selection: -		
	Not for motor type: - S	Scaling: -	Expert list: 1		
	Min M	Max	Factory setting		
	0.0 [ms] 1000	1000.0 [ms]	800.0 [ms]		
Description:	Sets the switch-off delay time for the negated signal "run-up completed".				
	The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.				
Dependency:	Refer to: p2174, p2194				
p2196[0...n]	Torque utilization scaling / M_util scal				
VECTOR_G	Can be changed: C2(1, 3), U, T C	Calculated: -	Access level: 1		
	Data type: FloatingPoint32 Dy	Dyn. index: DDS, p0180	Func. diagram: -		
	P-Group: Motor U	Units group: -	Unit selection: -		
	Not for motor type: - S	Scaling: -	Expert list: 1		
	Min M	Max	Factory setting		
	0.00 [\%] 1000	1000.00 [\%]	100.00 [\%]		
Description:	Sets the scaling factor for torque utilization (r0033).				
r2197.1.. 13	CO/BO: Status word monitoring 1 / ZSW monitor 1				
VECTOR_G	Can be changed: - C	Calculated: -	Access level: 2		
	Data type: Unsigned16 Dym	Dyn. index: -	Func. diagram: 2534		
	P-Group: Messages U	Units group: -	Unit selection: -		
	Not for motor type: - S	Scaling: -	Expert list: 1		
	Min M	Max	Factory setting		
	- -	-	-		
Description:	Display and BICO output for the first status word of the monitoring functions.				
Bit field:	Bit Signal name	1 signal	0 signal	FP	
	01 \|n_act	<= speed threshold value 2 p2155	Yes	No	8010
	02 \|n_act	> speed threshold value 2 p2155	Yes	No	8010
	03 n_act >= 0	Yes	No	8011	
	06 \|n_act	> n_max	Yes	No	8010
	07 Speed setp - act val deviation in tolerance t_off		No	8011	
	13 \|n_act	> n_max (F07901)	Yes	No	-
Note:	Re bit 01, 02:				
	The threshold value is set in p2155 and the hysteresis in p2140.				
	Re bit 03:				
	The hysteresis is set in p 2150 .				
	Re bit 06:				
	The hysteresis is set in p2162.				
	Re bit 07:				
	The threshold value is set in p2163 and the hysteresis is set in p2164.				
	Re bit 13:				
	Only for internal Siemens use.				


r2198.4...12	CO/BO: Status word monitoring 2 / ZSW monitor 2					
VECTOR_G	Can be changed: -		ulated: -	Access level: 2		
	Data type: Unsigned16		index: -	Func. diagram: 2536		
	P-Group: Messages Un		group: -	Unit selection: -		
	Not for motor type: - Scalis		ng: -	Expert list: 1		
	Min M			Factory setting		
	-	-		-		
Description:	Display and BICO output for the second status word of the monitoring functions.					
Bit field:		Signal name	1 signal	0 signal	FP	
		\|n_set	< p2161	Yes	No	8011
		n_set > 0	Yes	No	8011	
		Motor blocked	Yes	No	8012	
		Motor stalled	Yes	No	8012	
		\|M_set	< torque threshold value 1	Yes	No	8012
		Load monitoring signals an alarm	Yes	No	8013	
		Load monitoring signals a fault condition	Yes	No	8013	
Note:	Re bit 10:					
	The torque threshold value 1 is set in p2174.					
	Re bit 12:					
	This bit is reset after the fault cause disappears, even if the fault itself is still present.					
r2199.0... 12	CO/BO: Status word monitoring 3 / ZSW monitor 3					
VECTOR_G	Can be changed: - C		ulated: -	Acces		
	Data type: Unsigned16 Dy		index: -	Func.		
	P-Group: Messages U		group: -	Unit s		
	Not for motor type: - S		ng: -	Exper		
	Min Max			Factor		
	-	-		-		
Description:	Display and BICO output for the third status word of the monitoring functions.					
Bit field:		it Signal name	1 signal	0 signal	FP	
		\|n_act	< speed threshold value 3	Yes	No	8010
		f or n comparison value reached or exceeded	Yes	No	8010	
		Speed setp - act val deviation in tolerance t on	Yes	No	8011	
		05 Ramp-up/ramp-down completed	Yes	No	8011	
	06 Current below the zero current threshold		Yes	No	8018	
	07 Speed deviation model/external in tolerance		Yes	No	8012	
	11 Torque utilization < torque threshold value 2		Yes	No	8012	
		Excitation current outside the tolerance range	Yes	No	8018	
Note:	Re bit 00:					
	The speed threshold value 3 is set in p2161.					
	Re bit 01:					
	The comparison value is set in p2141. We recommend setting the hysteresis (p2142) for canceling the bit to a valu lower than that in p2141. Otherwise, the bit is not reset.		end setting eset.	p2142) for c		


p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable		
VECTOR_G   (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to switch in/switch out the technology controller. The technology controller is switched in with a 1 signal.		
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1		
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3		
$\begin{aligned} & \text { VECTOR_G } \\ & \text { (Tech_ctrl) } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	30.00 [\%]
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4		
VECTOR_G   (Tech_ctrl)	Can be changed: $U$, $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller.		


Dependency:   Notice:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	50.00 [\%]
Description:	Sets the value for fixed value 5 of the technology controller.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2206[0...n]	CO: Technology controller fixed value 6 / Tec_ctr fix val 6		
VECTOR_G	Can be changed: $U, T$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	60.00 [\%]
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		


p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	90.00 [\%]
Description:	Sets the value for fixed value 9 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10		
VECTOR_G	Can be changed: $U$, $T$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the value for fixed value 10 of the technology controller.   Refer to p 2220 , 2221 p 2222 p 2223 , 2224 , r2229		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	110.00 [\%]
Description:	Sets the value for fixed value 11 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2212[0...n]	CO: Technology controller fixed value 12 / Tec_ctr fix val 12		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	120.00 [\%]
Description:	Sets the value for fixed value 12 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		


p2213[0...n]	CO: Technology controller fixed value 13 / Tec_ctr fix val 13		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	130.00 [\%]
Description:	Sets the value for fixed value 13 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	140.00 [\%]
Description:	Sets the value for fixed value 14 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7950
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	150.00 [\%]
Description:	Sets the value for fixed value 15 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 7950, 7951
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	2
Description:	Sets the method to select the fixed setpoints.		
Value:	1: Direct selection   2: Binary selection		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
VECTOR_G   (Tech_ctrl)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7950, 7951
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a	of the technology controlle	




r2231	Technology controller motorized potentiometer setpoint memory / Tec_ctrl mop mem		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the setpoint memory for the motorized potentiometer of the technology controller. For p2230.0 = 1, the last setpoint that was saved is entered after ON.		
Dependency:	Refer to: p2230		
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise		
VECTOR_G (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7954
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer of the technology controller.   The setpoint change (CO: r2250) depends on the set ramp-up time (p2247) and the duration of the signal that is present (BI: p2235).		
Dependency:	Refer to: p2236		
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower		
VECTOR_G   (Tech_ctrl)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7954
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continually reduce the setpoint for the motorized potentiometer of the technology controller. The setpoint change (CO: r 2250 ) depends on the set ramp-down time ( p 2248 ) and the duration of the signal that is present (BI: p2236).		
Dependency:	Refer to: p2235		
p2237[0...n]	Technology controller motorized potentiometer maximum value / Tec_ctrl mop max		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7954
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum value for the motorized potentiometer of the technology controller. Refer to: p2238		
Dependency:			



p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown			
VECTOR_G   (Tech_ctrl)	Can be changed: $U$, $T$	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func	
	P-Group: Technology	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Fact	
	0.0 [s]	1000.0 [s]	10.0	
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.			
Dependency:	Refer to: p2247			
Note:	The time is referred to $100 \%$.			
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-down is correspondingly extended.			
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG			
VECTOR_G   (Tech_ctrl)	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func	
	P-Group: Technology	Units group: 9_1	Unit	
	Not for motor type: -	Scaling: PERCENT	Exper	
	Min	Max	Facto	
	- [\%]	- [\%]	- [\%]	
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.			
Dependency:	Refer to: r2245			
p2252	Technology controller configuration / Tec_ctrl config			
VECTOR_G   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -	
	P-Group: Modulation	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	0111 bin	
Description:	Sets the configuration of the technology controller.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Ramp-up/down time independent of setpoint sign	Yes	No	-
	01 Integrator independent of Kp	Yes	No	-
	02 Output signal without ramp active	Yes	No	-
	03 Actual value limiting Yes   Refer to: p2257, p2258, p2267, p2268, p2280, p2285			
Dependency:   Note:				
	Refer to: p2257, p2258, p2267, p2268, p2280, p2285   Re bit $00=0$ :			
	The ramp-down time ( p 2258 ) switches to the ramp-up time ( p 2257 ) when the sign for the output signal r2260 changes. When the sign changes, the output signal is kept at zero for one arithmetic cycle.			
	When r2260 exhibits a positive gradient, the ramp-up time (p2257) is active; when it exhibits a negative gradient, the ramp-down time (p2258) is active. The sign for r2260 does not have any effect on the ramp time.			
	Re bit $01=0$ :			
	The integration time of the PID controller is evaluated with the gain factor $\mathrm{Kp}(\mathrm{p} 2280)(\mathrm{p} 2285=$ integral time). Re bit $01=1$ :			
	The integration time of the PID controller is independent of the gain factor (p2285 = integration time) if p2280 > 0 Re bit $02=0$ :			

```
Re bit \(02=1\) :
When the PID controller is de-activated via p2200, the output signal r2294 is set directly to zero.
Re bit \(03=0\)
The actual values are not limited by p2267 and p2268.
Re bit \(03=1\) :
The actual values are limited by p2267 and p2268.
```

p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1		
VECTOR_G	Can be changed: U, T	Calculated: -	
(Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Access level: 2
	P-Group: Technology	Units group: -	Func. diagram: 7958
	Not for motor type: -	Scaling: PERCENT	Unit selection: -
	Min	Max	Expert list: 1
	-	-	Factory setting
Description:	Sets the signal source for the setpoint 1 of the technology controller.	0	
Dependency:	Refer to: p2254, p2255		


p2254[0... n ]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
(Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint 2 of the technology controller.   Refer to: p2253, p2256		
Dependency:			
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller. Refer to: p2253		
Dependency:			
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 2 of the technology controller.   Refer to: p2254		
Dependency:			


p2257	Technology controller ramp-up time / Tec_ctrl t_ramp-up		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time of the technology controller.		
Dependency:	Refer to: p2252, p2258		
Note:	The ramp-up time is referred to $100 \%$.		
p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
VECTOR_G (Tech ctrl)   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time of the technology controller.		
Dependency:	Refer to: p2252, p2257		
Note:	The ramp-down time is referred to $100 \%$.		
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
VECTOR_G(Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
VECTOR_G   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
VECTOR_G   (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		


p2263	Technology controller type / Tec_ctrl type		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
(Tech_ctrl)	Data type: Integer16	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the type of technology controller.		
Value:	0 : D component in the actual value signal   1: D component in the fault signal		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the technology controller.		
p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
VECTOR_G (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed actual value after the filter (PT1) of the technology controller.		
p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-10000.00 [\%]	10000.00 [\%]	200.00 [\%]
Description:	Sets the upper limit for the actual value signal of the technology controller.		
Dependency:	Refer to: p2252, p2264, p2265, p2271		
Notice:	If the actual value exceeds this upper limit, this results in fault F07426.		
Note:	Limiting only active for p2252.3 $=1$.		


p2268	Technology controller lower limit actual value / Tec_ctrl I_lim act		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: 9_1	Unit selection: p0595
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-10000.00 [\%]	10000.00 [\%]	-200.00 [\%]
Description:	Sets the lower limit for the actual value signal of the technology controller.		
Dependency:			
Notice:	If the actual value falls below this lower limit, this results in fault F07426.		
Note:	Limiting only active for p2252.3 $=1$.		
p2269	Technology controller gain actual value / Tech_ctrl gain act		
VECTOR_G (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	Sets the scaling factor for the actual value of the technology controller.		
Dependency:	Refer to: p2264, p2265, p2267, p2268, p2271		
Note:	For $100 \%$, the actual value is not changed.		
p2270	Technology controller actual value function / Tec_ctr ActVal fct		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Setting to use an arithmetic function for the actual value signal of the technology controller.		
Value:	0 : No function		
	1: Root function (root from x )		
	2: Square function ( $\mathrm{x}^{*} \mathrm{x}$ )		
	3: Cube function ( $\mathrm{x}^{*} \mathrm{x}^{*} \mathrm{x}$ )		
Dependency:	Refer to: p2264, p2265, p2267, p2268, p2269, p2271		
p2271	Technology controller actual value inversion (sensor type) / Tech_ctrl act inv		
VECTOR_G (Tech_ctrl)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the actual value signal of the technology controller.		
	The inversion depends on the sensor type for the actual value signal.		
Value:	0 : $\quad$ No inversion   1: Inversion actual valu		
Caution: $\xlongequal{4}$	If the actual value inversion become unstable and can os	ected, then the closed-	th the technology contro



p2285	Technology controller integral time / Tec_ctrl Tn		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the technology controller.   Refer to: p2252		
Dependency:			
Note:	p2285 = 0: The integral time is disabled.		
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold		
VECTOR_G   (Tech_ctrl)	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to hold the integrator for the technology controller.		
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctr prectr_sig		
VECTOR_G (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the pre-control signal of the technology controller.		
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
VECTOR_G (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.   Refer to: p2292		
Dependency:			
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
VECTOR_G (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the technology controller. Refer to: p2291		
Dependency:			


Caution:	The maximum limit must always be greater than the minimum limit ( $\mathrm{p} 2291>\mathrm{p} 2292$ )		
p2293	Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller.		
Dependency:			
Note:	The time refers to the set maximum and minimum limits (p2291, p2292).		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
VECTOR_G   (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the technology controller.		
Dependency:	Refer to: p2295		
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-100.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		
p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
VECTOR_G   (Tech_ctrl)	Can be changed: $U$, $T$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	2295[0]
Description:	Sets the signal source for the scaling value of the technology controller.   Refer to: p2295		
Dependency:			


p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	2291[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:	Refer to: p2291		


p2298[0...n] Cl: Technology controller minimum limit signal source / Tec_ctrl min_I s_s			
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	2292[0]
Description:   Dependency:	Sets the signal source for the minimum limiting of the technology controller. Refer to: p2292		
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs		
VECTOR_G   (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: CDS, p0170	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the offset of the output limiting of the technology controller.		
p2306	Technology controller fault signal inversion / Tec_ctrl fault inv		
$\begin{aligned} & \text { VECTOR_G } \\ & \text { (Tech_ctrl) } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the fault signal of the technology controller. The setting depends on the type of control loop.		
Value:	0 : No inversion   1: Inversion		
Caution:	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
Note:	The correct setting can be determined as follows:   - inhibit the technology controller ( $\mathrm{p} 2200=0$ ).   - increase the motor speed and in so doing, measure the actual value signal (of the technology controller).   - if the actual value increases with increasing motor speed, then the inversion should be switched out.   - if the actual value decreases with increasing motor speed, then the inversion should be set.   If value $=0$ :   The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).   If value = 1:   The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).		
r2349.0... 11	CO/BO: Technology controller status word / Tec_ctrl status		
VECTOR_G   (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 7958
	P-Group: Technology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status word of the technology controller.		


Bit field:	Bit	Signal name	F signal	0 signal
00	Technology controller de-activated	Yes		
01	Technology controller limited			
02	Technology controller motorized   potentiometer limited max	Yes	No	No
	03	Technology controller motorized   potentiometer limited min	Yes	No
	08	Technology controller actual value at the   minimum	Yes	No
	09	Technology controller actual value at the   maximum	Yes	No
	10	Technology controller output at the   minimum	Yes	No
	11	Technology controller output at the   maximum	Yes	No


p2369	Bl: Closed-loop cascade control, control word / Csc_ctrl STW		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
(Tech_ctrl)	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	Not for motor type: -	Units group: -	Unit selection: -
	Min	Scaling: -	Expert list: 1
Description:	-	Max	Factory setting
	Sets the signal source for the selection of the "Switch-in motor" function.		
	When the function is selected, monitoring of the switches is de-activated with the "bypass" function. This means that		
	the power unit can be connected to other motors via an external control without switch monitoring responding.		

p2600 EPOS search for reference reference point offset / Ref_pt offset

Description: Sets the reference point offset for search for reference.

Access level: 1
Func. diagram: 3612
Unit selection: -
Expert list: 1
Factory setting
0 [LU]

r2700	CO: Reference frequency / f_ref		
B_INF	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output of the actual reference quantity for the frequency (p2000).		
	All frequencies specified as relative value are referred to this reference quantity. The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit Hz .		
Dependency:	Refer to: p2000		
Note:	This BICO parameter provides the numerical value of the reference quantity p2000 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication.		




r2705	CO: Reference angle / Reference angle		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output of the reference quantity for angles p2005.		
	All angles specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to $100 \%$ or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit degree.		
Dependency:	Refer to: p2005		
Note:	This BICO parameter provides the numerical value of the reference quantity p2005 as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connecto output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication.		
r2706	CO: Reference temp / Reference temp		
B_INF, TM150, TM31, VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output of the reference quantity for temperatures.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	This parameter has the unit degree Celsius.		
Note:	This BICO parameter provides the numerical value of the reference quantity for the temperature as a connector output for interconnection with Drive Control Chart (DCC). The numerical value can be adopted unchanged from this connector output in DCC. This BICO parameter is not suitable for interconnecting for cyclic communication.		
r2707	CO: Reference acceleration / Ref accel		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output of the reference quantity for accelerations p2007.		
	All acceleration rates specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	r0108.12, p0505		
	Refer to: p2007		
Note:	This BICO parameter provid interconnection with Drive C unchanged from this connec communication.	value of the refe   C). The numeric   C. This BICO par	7 as a connector out tly selected unit can e for interconnectin



	Example:   Quarter of the encoder range $=(p 0408 * p 0421) / 4$   It is possible that the tolerance window may not be able to be precisely set due to the data type (floating point number with 23 bit mantissa).			
r2723[0...n]	CO: Load gear absolute value / Load gear abs_val			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func.	704
	P-Group: Encoder	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Displays the absolute value after the load gear.			
Notice:	The encoder position actual value must be requested using the encoder control word Gn_STW.13.			
Note:	The increments are displayed in the format the same as r0483.			
r2724[0...n]	CO: Load gear position difference / Load gear pos diff			
VECTOR_G	Can be changed: -	Calculated: -	Acce	
	Data type: Integer32	Dyn. index: DDS, p0180	Func.	
	P-Group: Encoder	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Displays the position difference before the load gear between powering down and powering up.			
Note:	The increments are displayed in the same format as for r0483/r2723.			
	If the measuring gear of the motor encoder is not activated, the position difference should be read in encoder increments.			
	If the measuring gear of the motor encoder is activated, the position difference is converted using the measuring gear factor.			
p2810[0...1]	BI: AND logic operation inputs / AND inputs			
VECTOR_G	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	0	
Description:	Sets the signal sources for the inputs of the AND logic operation.			
Dependency:	Refer to: r2811			
Note:	[0]: AND logic operation, input 1 --> the result is displayed in r2811.0.			
	[1]: AND logic operation, input 2 --> the result is displayed in r2811.0.			
r2811.0	CO/BO: AND logic operation result / AND result			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Displays the result of the AND logic operation			
Bit field:	Bit Signal name $00$	1 signal	0 signal	FP
Dependency:	Refer to: p2810			


p2816[0..1]	BI: OR logic operation inputs / OR inputs			
VECTOR_G	Can be changed: $T$	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0	
Description:	Sets the signal sources for the inputs of the OR logic operation.			
Dependency:	Refer to: r2817			
Note:	[0]: OR logic operation, input 1 --> the result is displayed in r2817.0.			
	[1]: OR logic operation, input 2 --> the result is displayed in r2817.0.			
r2817.0	CO/BO: OR logic operation result / OR result			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type:-	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the result of the OR logic operation.			
Bit field:	Bit Signal name   00 OR logic operation result	1 signal Yes	0 signal   No	FP
Dependency:	Refer to: p2816			
p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]			
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func.	
	P-Group: Free function blocks	Units group: -	Unit s	
	Not for motor type: -	Scaling: PERCENT	Expert	
	Min	Max	Factor	
	-10000.00 [\%]	10000.00 [\%]	0.00 [\%	
Description:	Setting and connector output for a fixed percentage value.			
Dependency:	Refer to: p2901, r2902, p2930			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.			
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the main setpoint)			
p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]			
VECTOR_G	Can be changed: U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func.	
	P-Group: Free function blocks	Units group: -	Unit se	
	Not for motor type: -	Scaling: PERCENT	Expert	
	Min	Max	Factor	
	-10000.00 [\%]	10000.00 [\%]	0.00 [\%	
Description:	Setting and connector output for a fixed percentage value.			
Dependency:	Refer to: p2900, p2930			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.			
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)			



	Displays the relative error of the current inversion(id(psid, iq) - id) / p2950: idx4: error with respect to direct axis current for iq $=0$   idx5: error with respect to direct axis current for $i q=0.5^{*}$ p2950   idx6: error with respect to direct axis current for iq $=$ p2950
Index:	$\begin{aligned} & {[0]=\text { d-current }} \\ & {[1]=\text { d-flux iq0 }} \\ & {[2]=\text { d-flux iq1 }} \\ & {[3]=\text { d-flux iq2 }} \\ & {[4]=\text { d-current error iq0 }} \\ & {[5]=\text { d-current error iq1 }} \\ & {[6]=\text { d-current error q2 }} \end{aligned}$
Note:	The display is only generated when the pulses are inhibited.
p3100	RTC time stamp mode / RTC t_stamp mode
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 2 2
Description:	Sets the mode for the time stamp p3100 $=0$ : Time stamp, operating hours   p3100 = 1: Time stamp, UTC format   p3100 = 2: Time stamp, operating hours + 01.01.2000
Notice:	The realtime format ( $\mathrm{p} 3100=1$ ), once selected, remains until the next time that the system is switched off. Switching back to operating hours $(\mathrm{p} 3100=0)$ or operating hours $+01.01 .2000(\mathrm{p} 3100=2)$ is prevented.
Note:	RTC: Real-time clock   UTC: Universal Time Coordinates   The UTC time started, according to the definition on 01.01.1970 at 00:00:00 and is output in days and milliseconds.
p3101[0..1]	RTC set UTC time / RTC set UTC
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 4294967295 0
Description:	Setting the UTC time.   This means that the drive system is synchronized to the time specified by the time master.   To start p3101[1] must be written to followed by p3101[0]. After writing to p3101[0], the UTC time is accepted.   p3101[0]: Milliseconds   p3101[1]: Days
r3102[0..1]	RTC read UTC time / RTC read UTC
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list:   Min Max Factory setting   - - -
Description:	Displays the actual UTC time in the drive system.   p3102[0]: Milliseconds   p3102[1]: Days





## Note:

Re bit 00:
Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occurs again, contact the hotline.
Re bit 01:
A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply voltage. Check the wiring.
Re bit 02:
The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.
Re bit 03:
An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure
...). Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).
Re bit 04:
The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet cooling.
Re bit 05:
A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cable (connection). Check the motor.
Re bit 06:
The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and limits that have been set. Check the ambient temperature / motor cooling.
Re bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is faulted or interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the bus configuration / clock cycles.
Re bit 08:
A safety operation monitoring function (Safety) has detected an error
Re bit 09
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
Re bit 10 :
The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles.
Re bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check the closed-loop infeed control.
Re bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.
r3114.9... 11
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN

## Description:

## CO/BO: Messages status word global / Msg ZSW global

Can be changed: -
Data type: Unsigned16
P-Group: Displays, signals
Not for motor type: -
Min
-
Displays the global status word for messages.
The appropriate bit is set if at least one message is present at the drive objects.

Calculated: -
Dyn. index: -
Units group: -
Scaling: -

## Max

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$
09	Group alarm present	Yes	No
10	Group fault present	Yes	No
11	Safety group message present	Yes	No
The status bits are displayed with delay.			

Access level: 2
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

## Note:

Bit field:

The status bits are displayed with delay.

r3115[0...63]	Fault drive object initiating / F DO initiating		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 8050, 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the drive object number of the initiating drive object for this fault as integer number. Value $=63$ :   The fault was initiated by the drive object itself.		
Dependency: Note:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120, r3122		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
p3116	BI: Acknowledgement automatically suppressed / Ackn suppress		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: $U, T$   Data type: Unsigned32 / Binary   P-Group: Messages	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: 8060
		Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- - -		0
Description:	Sets the signal source for the automatic acknowledgement on the device drive object. BI: p3116 = 0 signal		
	Faults present are automatically acknowledged on the device drive object. Local device faults are forwarded to the first active drive object.		
	BI: p3116 = 1 signal		
	Faults present are not automatically acknowledged on the device drive object. Local device faults are not forwarded.		
Dependency: Note:	Refer to: p2102, p2103, p2104, p2105, p3981		
	When selecting a standard telegram, the BICO interconnection for control signal STW1.10 (master control by PLC) is automatically established.		
p3117   CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	Change safety message type / Ch. SI mess type		
	Can be changed: C1(1)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:			
	The relevant message type during changeover is selected by the firmware.		
	0 : Safety messages are not re-parameterized		
	1: Safety messages are re-parameterized		
Note:	A change only becomes effective after a POWER ON.		
r3120[0...63]	Component fault / Comp fault		
All objects	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8060
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the component of the fault which has occurred.		


Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122
Note:	Value $=0$ : Assignment to a component not possible.
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	The structure of the fault buffer and the assignment of the indices is shown in r0945.

r3121[0...63] Component alarm / Comp alarm

All objects	Can be changed: -	Calculated:	Access level:
	Data type: Unsigned32	Dyn. index:	Func. diagram
	P-Group: Messages	Units group:	Unit selectio
	Not for motor type: -	Scaling: -	Max
Min	-	Factory setting list: 1	
Description:	-	Displays the component of the alarm which has occurred.	
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3123		
Note:	Value $=0:$ Assignment to a component not possible.		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		


r3122[0...63]	Diagnostic attribute fault / Diag_	tr fault		
All objects	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Messages	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the diagnostic attribute of the fault which has occurred.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Hardware replacement recommended	Yes	No	-
	15 Message has gone	Yes	No	-
	16 PROFIdrive fault class bit 0	High	Low	-
	17 PROFIdrive fault class bit 1	High	Low	-
	18 PROFIdrive fault class bit 2	High	Low	-
	19 PROFIdrive fault class bit 3	High	Low	-
	20 PROFIdrive fault class bit 4	High	Low	-
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3120			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
	The structure of the fault buffer and the assignment of the indices is shown in r0945.			
	Re bits $20 \ldots 16$ :			
	Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFldrive message class 0 : not assigned			
	Bits 20, 19, 18, 17, $16=0,0,0,0,1-->$ PROFIdrive message class 1 : hardware fault/software error			
	Bits 20, 19, 18, 17, $16=0,0,0,1,0-->$ PROFldrive message class 2: line fault			
	Bits $20,19,18,17,16=0,0,0,1,1-->$ PROFldrive message class 3 : supply voltage fault			
	Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFldrive message class 4: DC link fault			
	Bits 20, 19, 18, 17, $16=0,0,1,0,1-\gg$ PROFldrive message class 5: power electronics faulted			
	Bits 20, 19, 18, 17, $16=0,0,1,1,0$--> PROFldrive message class 6 : overtemperature electronic components			
	Bits 20, 19, 18, 17, $16=0,0,1,1,1->$ PROFldrive message class 7: ground fault/phase fault detected			
	Bits 20, 19, 18, 17, $16=0,1,0,0,0-->$ PROFldrive message class 8: motor overload			
	Bits 20, 19, 18, 17, $16=0,1,0,0,1-->$ PROFldrive message class 9: communication error to the higher-level control			
	Bits $20,19,18,17,16=0,1,0,1,0$--> PROFIdrive message class 10 : safe monitoring channel has identified an error			
	Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available			
	Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error			
	Bits 20, 19, 18, 17, $16=0,1,1,0,1$--> PROFldrive message class 13: infeed unit faulted			
	Bits 20, 19, 18, 17, $16=0,1,1,1,0-->$ PROFIdrive message class 14: braking controller/Braking Module faulted			

Bits $20,19,18,17,16=0,1,1,1,1-->$ PROFIdrive message class 15 : line filter faulted
Bits 20, 19, 18, 17, $16=1,0,0,0,0 \rightarrow$ PROFIdrive message class 16: external measured value/signal state outside the permissible range
Bits 20, 19, 18, 17, $16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted
Bits 20, 19, 18, 17, $16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault

r3123[0...63]	Diagnostic attribute alarm / Diag_attr alarm				
All objects		be changed: -	Calculated: -	Acces	
		type: Unsigned32	Dyn. index: -	Func.	
		oup: Messages	Units group: -	Unit s	
		for motor type:-	Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the diagnostic attribute of the alarm which has occurred.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Hardware replacement recommended	Yes	No	-
	11	Alarm class bit 0	High	Low	-
	12	Alarm class bit 1	High	Low	-
	13	Maintenance required	Yes	No	-
	14	Maintenance urgently required	Yes	No	-
	15	Message has gone	Yes	No	-
	16	PROFIdrive fault class bit 0	High	Low	-
	17	PROFIdrive fault class bit 1	High	Low	-
	18	PROFIdrive fault class bit 2	High	Low	-
	19	PROFIdrive fault class bit 3	High	Low	-
	20	PROFIdrive fault class bit 4	High	Low	-
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3121				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.				
	Re bit 12, 11:				
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.				
	Re bits $20 . . .16$ :				
	Bits 20, 19, 18, 17, 16 = 0, 0, 0, 0, 0--> PROFIdrive message class 0: not assigned				
	Bits $20,19,18,17,16=0,0,0,0,1-->$ PROFIdrive message class 1 : hardware fault/software error				
	Bits 20, 19, 18, 17, $16=0,0,0,1,0-->$ PROFIdrive message class 2: line fault				
	Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault				
	Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFldrive message class 4: DC link fault				
	Bits $20,19,18,17,16=0,0,1,0,1-->$ PROFIdrive message class 5 : power electronics faulted				
	Bits $20,19,18,17,16=0,0,1,1,0$--> PROFIdrive message class 6: overtemperature electronic components				
	Bits 20, 19, 18, 17, $16=0,0,1,1,1$--> PROFIdrive message class 7: ground faul/phase fault detected				
	Bits 20, 19, 18, 17, $16=0,1,0,0,0$--> PROFldrive message class 8: motor overload				
	Bits 20, 19, 18, 17, $16=0,1,0,0,1-->$ PROFIdrive message class 9: communication error to the higher-level control				
	Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFIdrive message class 10 : safe monitoring channel has identified an error				
	Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available				
	Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error				
	Bits 20, 19, 18, 17, $16=0,1,1,0,1$--> PROFIdrive message class 13: infeed unit faulted				
	Bits 20, 19, 18, 17, $16=0,1,1,1,0$--> PROFldrive message class 14: braking controller/Braking Module faulted				
	Bits 20, 19, 18, 17, $16=0,1,1,1,1-->$ PROFIdrive message class 15: line filter faulted				
	Bits 20, 19, 18, 17, $16=1,0,0,0,0-->$ PROFIdrive message class 16: external measured value/signal state outside the permissible range				
	, 18, 17, $16=1,0,0,0,1$--> PROFIdrive message class 17: application/tech				

Bits 20, 19, 18, 17, $16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault


p3202[0...n]	Excitation current outside the tolerance hysteresis / I_exc n Tol hyst		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	100.0 [\%]	10.0 [\%]
Description: Dependency:	Sets the hysteresis for the "excitation current outside tolerance" message for the excitation current monitoring.		
Note:	The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).		
p3203[0...n]	Excitation current outside the tolerance delay time / I_exc n Tol t_del		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	10.0 [s]	1.0 [s]
Description:	Sets the delay time for the "excitation current outside tolerance" message for the excitation current monitoring.		
Dependency:	Refer to: p3201, p3202		
Note:	The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).		
p3204[0...n]	Flux outside the tolerance threshold value / Flux $\mathbf{n}$ tol thresh		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	100.0 [\%]	10.0 [\%]
Description:	Sets the threshold value for the "flux outside the tolerance" message for the flux monitoring.   If the absolute value of the difference between the flux setpoint and actual value (r0083-r0084) falls below the threshold value with hysteresis longer than the selected delay time, then fault F07914 is output.   This fault is withdrawn when the threshold voltage is undershot.		
Dependency:	Refer to: r0083, r0084, p3205, p3206		
Note:	The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).		
	The flux monitoring is only active after magnetizing (r0056.4 = 1).		
p3205[0...n]	Flux outside the tolerance hy	esis / Flux n tol hyst	
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1 [\%]	50.0 [\%]	10.0 [\%]
Description:	Sets the hysteresis for the "flux outside tolerance" message for the flux monitoring.		
Dependency:	Refer to: p3204, p3206		
Note:	The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).		
	The flux monitoring is only active after magnetizing (r0056.4 = 1).		


p3206[0...n]	Flux outside tolerance delay time / Flux n tol t_del		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	10.0 [s]	5.0 [s]
Description:	Sets the delay time for the "flux outside tolerance" message for the flux monitoring.		
Dependency:	Refer to: p3204, p3205		
Note:	The monitoring function is only carried out for separately-excited synchronized motors ( $\mathrm{p} 0300=5$ ).		
	The flux monitoring is only active after	tizing (r0056.4 $=1$ ).	


p3207[0...n]	Zero current signal threshold value / I_0_sig thresh		
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: 6_2	Unit selection: p0505
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [Arms]	10000.00 [Arms]	1.00 [Arms]
Description:	If the absolute current falls below the threshold value then r2199.6 is set to 1 after the delay time has expired. The bit is reset if the threshold value and the hysteresis are exceeded again.		
Dependency:	Refer to: r2199, p3208, p3209		
Note:	The monitoring function is only carried out for separately-excited synchronized motors ( $\mathrm{p} 0300=5$ ).		
	The monitoring is only carried out for speeds less than the speed threshold value in $\mathrm{p} 2161(\mathrm{r} 2199.0=1)$.		

p3208[0...n]
VECTOR G
Zero current signal hysteresis / I_0_sig hyst
VECTOR_G

Description: Sets the hysteresis for the zero current signal for the zero current monitoring
Dependency:
Note: The monitoring function is only carried out for separately-excited synchronized motors (p0300 = 5).
The monitoring is only carried out for speeds less than the speed threshold value in p2161 (r2199.0 = 1).

p3209[0...n]	Zero current signal delay time / I_0_sig t_del		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [s]	10.00 [s]	0.02 [s]
Description:	Sets the delay time for the zero current signal for the zero current monitoring.		
Dependency:	Refer to: p3207, p3208		
Note:	The monitoring function is only carried out for separately-excited synchronized motors ( $\mathrm{p} 0300=5$ ).		
	The monitoring is only carried out for speeds less than the speed threshold in p2161 (r2199.0 = 1).		


p3233[0...n]	Torque actual value filter time constant / M_act_filt T		
VECTOR_G (Ext msg)	Can be changed: $\cup, T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8013
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000000 [ms]	0 [ms]
Description:	Sets the time constant for the PT1 element to smooth the torque actual value.		
	The smoothed torque actual value is compared with the threshold values and is only used for messages and signals.		
p3235	Phase failure signal motor monitoring time / Ph_fail t_monit		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	2000 [ms]	320 [ms]
Description:	Sets the monitoring time for phase failure detection of the motor.		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Monitoring is only effective for blocksize and booksize power units.		
	For p3235 $=0$ the function is deactivated.		
	For VECTOR, the following applies:		
	The monitoring is automatically de-activated during the flying restart operation for a motor that is still rotating.		
p3236[0...n]	Speed threshold 7 / n_thresh val 7		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	3000.00 [rpm]	100.00 [rpm]
Description:	Sets the speed threshold value for the signal "speed deviation model/external" (BO: r2199.7).		
Dependency:	Refer to: r1443, r2169, r2199, p3237		
p3237[0...n]	Hysteresis speed 7 / n_hysteresis 7		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated:   CALC_MOD_LIM_REF	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: 3_1	Unit selection: p0505
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	200.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed for the signal "speed deviation model/external" (BO: r2199.7). Refer to: r2199, p3236		
Dependency:			


p3238[0...n]	OFF delay $\mathrm{n}_{\text {a }}$ act_motor model = n_act external / t_del n_a = n_ext		
VECTOR_G	Can be changed: $U$, $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 8012
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [s]	100.0 [s]	3.0 [s]
Description:	Sets the OFF delay for the signal "speed deviation model/external in tolerance" (BO: r2199.7). The smoothed actual speed of the motor model r2169 is compared with the speed measured externally r1443 (threshold value p3236).		
Dependency:	Refer to: p3236, p3237		
p3320[0...n]	Fluid flow machine power point 1 / Fluid_mach P1		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P) / speed ( n )		
	p3320 / p3321 --> point 1 (P1/n1)		
	p3322 / p3323 --> point 2 (P2/n2)		
	p3324 / p3325 --> point 3 (P3 / n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		
Dependency:Note:	Refer to: r0041, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3321[0...n]	Fluid flow machine speed point 1 / Fluid_mach n1		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P) / speed ( n )		
	p3320 / p3321 --> point 1 (P1/n1)		
	p3322 / p3323 --> point 2 (P2 / n2)		
	p3324 / p3325 --> point 3 (P3/n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		
Dependency:	Refer to: r0041, p3320, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is display		


p3322[0...n]	Fluid flow machine power point 2 / Fluid_mach P2		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 2 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3323[0...n]	Fluid flow machine speed point 2 / Fluid_mach n2		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 2 as a [\%].		
Dependency:Note:	Refer to: r0041, p3320, p3321, p3322, p3324, p3325, p3326, p3327, p3328, p3329		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	77.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329		


Note:	The reference value for power and speed is the rated power/rated speed. The energy saved is displayed in r0041.		
p3326[0...n]	Fluid flow machine p	/ Fluid_mach P4	
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power ( P ) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed ( n ) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power ( P ) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		


	This parameter specifies the speed ( n ) of point 5 as a [\%].			
Dependency: Note:	Refer to: r0041, p3320, p3321, p3322, p3323,   The reference value for power and speed is The energy saved is displayed in r0041.	p3324, p3325   he rated power/r	328	
r3402	Infeed status internal BIC / INF state int			
B_INF	Can be changed: -   Data type: Integer16   P-Group: Closed-loop control   Not for motor type: -   Min   0	Calculated: -   Dyn. index: -   Units group:   Scaling: -   Max   6	Acce   Func   Unit   Expe   Fact	
Description: Value:	Displays the internal status of the infeed modur   0: Initialization   1: Fault   2: $\quad$ No ON command   3: Offset measurement running   4: ON delay active   5: Precharg. running   6: Operation	ule.		
r3405.7	CO/BO: Infeed status word / Inf ZSW			
B_INF	Can be changed: -   Data type: Unsigned16   P-Group: Closed-loop control   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Acce   Func   Unit   Expe   Fact	
Description: Bit field:	Display and connector output for the status   Bit Signal name   07 DC link undervoltage alarm threshold undershot	ord of the infeed   1 signal   Yes	0 signal No	FP
r3405.1... 8	CO/BO: Status word DC link control / ZSW Vdc_ctrl			
$\begin{aligned} & \text { VECTOR_G } \\ & \text { (Tech_ctrl) } \end{aligned}$	Can be changed: -   Data type: Unsigned16   P-Group: Closed-loop control   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Acce Func Unit Expe Fact	
Description: Bit field:	Display and connector output for the status   Bit Signal name   01 Vdc-ctrl active   08 Vdc controller selected	ord of the DC lin   1 signal   Yes   Yes	0 signal   No   No	FP
Note:	Re bit 01:   DC-link voltage control is disabled and enab   Re bit $08=1$ :   DC-link voltage control is selected using p3	ed with p3513.   13.		


p3422	DC link capacitance total / C_DC tot		
VECTOR_G   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.20 [mF]	2000.00 [mF]	2.00 [mF]
Description:	Sets the total DC link capacitance for closed-loop voltage control.   The capacitance of one power unit is pre-assigned to this value. The value should be adapted according to the number of power units.		
Note:	The controller setting for the DC-link voltage controller is derived from this value.		
p3490	Infeed delay time OFF1 command / INF t_del OFF1		
B_INF	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 8732, 8832, 8932
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000000.0 [ms]	0.0 [ms]
Description:	Sets the delay time for the ON/OFF1 command of the infeed. After ON/OFF1 = 0 the infeed remains in operation for the specified time		
Dependency:	Refer to: p0840		
Notice:	The ON/OFF1 command of the infeed can be interrupted.		
Note:	This parameter is only relevant if a Motor Module and the infeed are controlled by the same OFF command. In this case, the delay time and the stop ramp time of the motor can be coordinated with one another.		
p3510	DC link voltage setpoint / Vdc setp		
VECTOR_G   (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	100.00 [V]	1600.00 [V]	600.00 [V]
Description:	Sets the setpoint for the DC-link voltage on the motor side.		
p3511	CI: DC link voltage supplementary setpoint / Vdc Z_set		
VECTOR_G   (Tech_ctrl)	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:   Dependency:	Sets the signal source for the supplementary setpoint for the DC-link voltage on the motor side. Refer to: p3510		


p3513	BI: Voltage-controlled operation inhibit / U_ctrl op inhib		
VECTOR_G (Tech_ctrl)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 7960
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for disabling DC-link voltage control on the motor side.		
r3517	CO: DC link controller active current setpoint / Vdc I_act set		
VECTOR_G (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 6220, 7960
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the unlimited setpoint of the active current controller of the DC link voltage control on the motor side.		
p3519[0...3]	CI: DC link pre-control power (scaled) / Vdc prectrl P scal		
VECTOR_G (Tech_ctrl)	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: r2004	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for power pre-control.   Refer to: p3521		
Dependency:			
Note:			
	A scaled quantity is expected so that the various power reference values (r2004) of the drive objects must be taken into account. The scaling factors are used to adapt the scaling (p3521).		
p3520[0...3]	CI: DC link pre-control power (not scaled) / Vdc pre-ctrl P		
VECTOR_G   (Tech_ctrl)	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for power pre-control.		
Dependency:	Refer to: p3521		
Note:	Closed-loop control of the DC link voltage is improved by pre-controlling the power required for the other modules. A non-scaled quantity is expected so that the various power reference values (r2004) of the drive objects do not have to be taken into account. The scaling factors are used to adapt the scaling (p3521).		


p3521[0...3]	DC link pre-control power scaling / Vdc prectrl P scal		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-100000.00000 [\%]	100000.00000 [\%]	100.00000 [\%]
Description:	Sets the scaling factor for the power pre-control.		
Dependency:			
Note:	The scaling factor acts on the sum of the associated indices of p3519 and p3520. As one BICO input is scaled ( p 3519 ) and the other is not scaled ( p 3520 ), for each index, only one of the two inputs should be assigned.		
r3522[0...4]	CO: DC link voltage control pre-control display / DC_ctr prectr disp		
VECTOR_G   (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the resulting smoothed linearized torque-generating pre-control current.		
Dependency:	Refer to: p3520, p3521, p3523		
Note:	These displays are used to set the correct scaling for the pre-control. [0]:(p3519[0] + p3520[0]) * p3521[0] / r0070		
	[1]:(p3519[1] + p3520[1]) * p3521[1] / r0070		
	[2]:(p3519[2] + p3520[2]) * p3521[2] / r0070		
	[3]:(p3519[3] + p3520[3] * p3521[3] / r0070		
	[4]: Total [0] ... [3]		
p3523[0...3]	DC link pre-control power smoothing / Vdc pre-ctrl P sm		
VECTOR_G   (Tech_ctrl)	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the filter time for power pre-control.		
Dependency:	Refer to: p3520		
r3554[0...1]	Vdc controller output / INF Vdc_ctrl outp		
VECTOR_G (Tech_ctrl)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description: Index:	Display of the DC link voltage controller output (Vdc controller).   [0] = I output   [1] = PI output		


p3560	Vdc controller proportional gain / Vdc_ctrl Kp		
VECTOR_G (Tech_ctrl)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.01 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaled proportional gain for the DC link voltage controller (Vdc controller).		
Note:	A value of $100 \%$ corresponds to the basic setting derived from the loop control parameter (p3422).		
p3562	Vdc controller integral time / Vdc_ctrl Tn		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
(Tech_ctrl)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7960
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.10 [\%]	100000.00 [\%]	100.00 [\%]
Description:	Sets the scaled integral time for the DC link voltage controller (Vdc).		
Note:	A value of 100\% corresponds to the basic setting derived from the loop control parameter (p3422).		
p3660[0...n]	VSM input line supply voltage voltage scaler / VSM inp U_scaler		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	100000.00 [\%]	0.00 [\%]
Description:	Sets the voltage scaler for the Voltage Sensing Module (VSM).		
Note:	When the 690 V input is used ( X 522 ) without voltage scaler, $0 \%$ should be entered.		
	When the 100 V input (X521) is used with voltage scaler to measure medium voltages, the dividing (scaling) factor multiplied by $100 \%$ should be entered.		
	Example:		
	1000 V line supply voltage, voltage scaling, 10:1		
	--> voltage at the VSM input is 100 V		


r3661[0...n]	CO: VSM input line supply voltage u1-u2 / VSM inp u1-u2		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Units group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$

Description: Displays the input voltage between phases L1 and L2 for the Voltage Sensing Module (VSM).
Dependency: Refer to: p3660
Note: $\quad$ X521.1 or X522.1: Connection of L1
X521.2 or X522.2: Connection of L2
X521.3 or X522.3: Connection of L3

r3662[0...n]	CO: VSM input line supply voltage u2-u3 / VSM inp u2-u3			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: p0150	Func.	
	P-Group: Closed-loop control	Units group: 5_3	Unit s	
	Not for motor type: -	Scaling: p2001	Expert	
	Min	Max	Factor	
	- [V]	- [V]	- [V]	
Description:	Displays the input voltage between phases L2 and L3 for the Voltage Sensing Module (VSM).			
Dependency:	Refer to: p3660			
Note:	X521.1 or X522.1: Connection of L1			
	X521.2 or X522.2: Connection of L2			
	X521.3 or X522.3: Connection of L3			
r3664[0...n]	CO: VSM temperature evaluation status / VSM temp status			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: p0150	Func. diagram: 9886	
	P-Group: Terminals	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status of the temperature evaluation of the Voltage Sensing Module (VSM). This displays whether the temperature actual value has exceeded the fault/alarm threshold.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Alarm is present	Yes		-
	01 Fault is present	Yes	No	-
Dependency:	Refer to: p3665, r3666, p3667, p3668			
p3665[0...n]	VSM temperature evaluation sensor type / VSM TempSensorType			
VECTOR_G	Can be changed: T	Calculated: -	Access level: 3	
	Data type: Integer16	Dyn. index: p0150	Func. diagram: 9886	
	P-Group: Closed-loop control	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	2	0	
Description:	Setting of the temperature sensor for the Voltage Sensing Module (VSM).			
	The temperature sensor is connected to terminals X520.5 and X520.6 of the VSM.			
Value:	0: No sensor			
	1: PTC			
	2: KTY84			
Note:	The pre-assignment of the parameter depends on the device type.			
	For chassis power units, the temperature monitoring of the line filter is active (p3665 = 2).			
r3666[0...n]	CO: VSM temperature KTY / VSM temp KTY			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9886	
	P-Group: Closed-loop control	Units group: 21_1	Unit selection: p0505	
	Not for motor type: -	Scaling: p2006	Expert list: 1	
	Min	Max	Factory setting	
	- $\left.{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$		
Description:	Displays the temperature actual value of a KTY84 temperature sensor connected to the Voltage Sensing Module (VSM).			


Dependency:	Refer to: p3665		
Note:	For sensor type PTC (p3665 = 1), the following applies:		
	- below the nominal response temperature, $\mathrm{r} 3666=-50^{\circ} \mathrm{C}$.		
	- above the nominal response temperature, $\mathrm{r} 3666=199.9{ }^{\circ} \mathrm{C}$.		
p3667[0...n]	VSM line filter overtemperature alarm threshold / VSMfilt_T A_thresh		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9886
	P-Group: -	Units group: 21_1	Unit selection: p0505
	Not for motor type:-	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	-100.00 [ ${ }^{\text {C }}$ ]	$\left.301.00{ }^{\circ} \mathrm{C}\right]$	150.00 [ ${ }^{\circ} \mathrm{C}$ ]
Description:	Sets the alarm threshold for the KTY temperature sensor of the Voltage Sensing Module (VSM) to monitor the line filter temperature.		
	Prerequisite:		
	A KTY84 sensor is connected and p3665 is set to 2 .		
Dependency:	Refer to: p3665		
p3668[0...n]	VSM line filter overtemperature shutdown threshold / VSM filt_T F_thres		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9886
	P-Group: -	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	-100.00 [ ${ }^{\text {C }}$ ]	$\left.301.00{ }^{\circ} \mathrm{C}\right]$	180.00 [ ${ }^{\circ} \mathrm{C}$ ]
Description:   Dependency:	Sets the shutdown threshold for the KTY temperature sensor of the VSM to monitor the line filter temperature.		
p3669[0...n]	VSM line filter overtemperature hysteresis / VSM filt_T hyst		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9886
	P-Group: -	Units group: 21_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	1.00 [K]	50.00 [K]	3.00 [K]
Description:	Sets the hysteresis for the alarm threshold of the VSM to monitor the line filter temperature.		
Dependency:	Refer to: p3667		
p3670[0...n]	VSM 10 V input CT gain / VSM CT_gain		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	0.000 [A]	1000.000 [A]	1.000 [A]
Description:	Sets CT gain of the CT connected at the 10 V input of the Voltage Sensing Module (VSM).   The parameter specifies the current magnitude in [A] referred to the input voltage at the VSM in [V].   Example:   CT with 1 V per 200 A .		
	--> p3670 = 200		
Dependency:	Refer to: r3671, r3672		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM. The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		


r3671[0...n]	CO: VSM 10 V input CT 1 actual value / VSM CT 1 I_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 1 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 1 is connected at terminals X520.1 and X520.2 of the VSM.		
r3672[0...n]	CO: VSM 10 V input CT 2 actual value / VSM CT 2 I_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the current actual value from current transducer (CT) 2 at the 10 V input of the Voltage Sensing Module (VSM).		
Dependency:	Refer to: p3670		
Note:	The CT for phase 2 is connected at terminals X520.3 and X520.4 of the VSM.		
r3673[0...n]	CO: VSM 10 V input 1 actual value / VSM inp 1 U_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:   Dependency:	Displays the actual value of the voltage measured at the 10 V input 1 of the Voltage Sensing Modules (VSM).   Refer to: p3670		
Note:	10 V input 1: Terminals X520.1 and X520.2		
r3674[0...n]	CO: VSM 10 V input 2 actual value / VSM inp 2 U_act		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: 9880
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual value of the voltage measured at the 10 V input 2 of the Voltage Sensing Modules (VSM).		
Dependency:	Refer to: p3670		
Note:	10 V input 2: Terminals X520.3 and X520.4		


p3680	BI: Braking Module internal inhibit / BM int inhib		
B_INF	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to inhibit the internal Braking Module. BI: p3680 = 1 signal:		
	The Braking Module is inhibited.		
	BI: p3680 $=0$ signal:		
	The Braking Module is enabled.		
Caution: §	When the Braking Module is inhibited, no energy can be dissipated in the braking resistor.		
p3681	BI: Activating Braking Module internal DC link fast discharge / BM intDCdischg act		
B_INF	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate the DC link fast discharge for an internal braking module.		
	When the following conditions apply, the DC link fast discharge is started later with delay time (p3682):		
	- BI: p3681 = 1 signal.		
	- an external line contactor is opened via r0863.1 "energize contactor".		
	The DC link fast discharge is interrupted when the following conditions apply:		
	- BI: p3681 = 0 signal.		
	- ON command for the infeed.		
Recommend.:	The DC link fast discharge should be activated if there is an external line contactor and is correctly interconnected (r0863.1, p0860). If the DC link fast discharge is not activated together with an external line contactor, then faults could occur when pre-charging (e.g. F30027).		
Dependency:	Refer to: p3682		
Notice:	The parameter is only effective for Basic Line Modules with the internal Braking Module (this is valid for Basic Line Modules with a power rating of less than 100 kW ).		
p3682	Braking Module internal DC link fast discharge delay time / BM int DC dischg t		
B_INF	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	500 [ms]	4294967295 [ms]	1000 [ms]
Description:	Sets the delay time for switching in the DC link fast discharge for an internal Braking Module.		
Dependency:	Refer to: p3681		
Notice:	The parameter is only effective for Basic Line Modules with the internal Braking Module (this is valid for Basic Line Modules with a power rating of less than 100 kW ).		


p3683	Braking Module internal activation threshold brake chopper / BM int act thresh		
B_INF	Can be changed: C 2 (1)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	110.00 [V]	780.00 [V]	760.00 [V]
Description:	Sets the activation threshold for the braking chopper.		
Note:	The activation threshold is only effective if the "Device supply voltage reduced" function ( $\mathrm{p} 0212.0=1$ ) has been activated!		
r3685	BO: Digital Braking Module: Pre-alarm I2t shutdown / Dig BM A I2t shutd		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	The binector output uses a 1 signal to indicate that $80 \%$ of the highest permissible $I 2 t$ value has been reached in the Braking Module.		
r3686	BO: Digital Braking Module Fault / Dig BM Fault		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	The binector output uses a 1 signal to indicate an overcurrent fault or an 12 t shutdown in the Braking Module.		
r3687	BO: Digital Braking Module pre-alarm overtemperature / Dig BM A overtemp		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays a fault due to the excessively high temperature. 1 signal:		
	The connected temperature sensor (X21.1, X21.2) signals an overtemperature.		
Recommend.:	Measure the braking resistor temperature using the temperature sensor.		
r3688	BO: Braking Module internal overtemperature shutdown / BM int temp shutd		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the shutdown due to the excessively high temperature.		

1 signal:
The connected temperature sensor (X21.1, X21.2) signals an overtemperature. The highest permissible temperature at the connected temperature sensor has been exceeded and results in a shutdown.

r3689	BO: Digital Braking Module Uce fault / Dig BM Uce fault		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays an Uce fault in the internal Braking Module. 1 signal:		
	An Uce fault is present in the internal Braking Module.		
p3800[0...n]	Sync-line-drive activation / Sync act		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling:-	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the activation for the line-drive synchronization.		
Value:	0 : $\quad$ Sync-line-drive de-activated   1: $\quad$ Sync-line-drive activated VSM-INT		
Dependency:	Refer to: p3801, p3802		
Caution:	If there is only one VSM being used, this can either be used for line synchronization or for a flying restart. If the VSM was connected to the line supply, then flying restart should be deselected in p1200. If the VSM was connected at the output (motor side), then line synchronization should be deactivated using p3800.		
	Line synchronization (first VSM connected with the line supply) and also flying restart (second VSM connected to the motor terminals) can only be used if two VSMs are assigned to the Motor Module.		
Note:	When the ground fault monitoring initiates a fault for overlapping synchronizing the threshold value $\mathbf{p 0 2 8 7 [ 1 ] ~ f o r ~ t h e ~}$ Motor Module and the associated infeed must be appropriately increased (e.g. p0287[1] = $100 \%$ ).		
	For p3800 $=1$, the following applies:		
	The INTERNAL voltage actual values are used for synchronization. The effects that a (sine-wave) filter - that is connected between the Motor Module and motor - has on the voltage actual values are taken into account (theoretically) by appropriately selecting p0230.		
	VSM: Voltage Sensing Module		
p3801[0...n]	Sync-line-drive drive object number / Sync DO_no		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: Unsigned16	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	62	1
Description:	Sets the drive object num	d for the line-drive synchro	
Dependency:	Refer to: p3800, p3802		
Notice:	The current controller sa identical to the current	] of the drive object with th ne of the drive of the drive	for synchronization must be rform line synchronization.
Note:	VSM: Voltage Sensing Module		
	The setting p3801 = 1 is always possible (no VSM selected).		
	If the VSM is assigned subsequently to a Motor Module, its drive object number must be entered in p3801.		


p3802[0...n]	BI: Sync-line-drive enable / Sync enable			
VECTOR_G	Can be changed: T	Calculated: -	Acces	
	Data type: Unsigned32 / Binary	Dyn. index: CDS, p0170	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type:-	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0	
Description:	Sets the signal source to switch in/switch out for the line-drive synchronization. BI: p3802 = 1 signal:			
Dependency:	Refer to: p3800, p3801			
r3803.0	CO/BO: Sync-line-drive control word / Sync STW			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the control word for the line-drive synchronization.			
Bit field:	Bit Signal name 00 Sync-line-drive selected	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	$0 \text { signal }$ No	FP
Note:	Re bit 00:			
	For a 1 signal, p3800 $>0$ is set.			
r3804	CO: Sync-line-drive target frequency / Sync f_target			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: -	Scaling: p2000	Expert	
	Min	Max	Factor	
	- [Hz]	- [Hz]	- [Hz]	
Description:	Displays the target frequency for the line-drive synchronization.			
r3805	CO: Sync-line-drive frequency difference / Sync f_diff			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: -	Scaling: p2000	Expert	
	Min	Max	Factor	
	- [Hz]	- [Hz]	- [Hz]	
Description:	Displays the frequency difference between the measured target frequency and output frequency of the gating unit the closed-loop control for line-drive synchronization.			


p3806[0...n]	Sync-line-drive frequency difference threshold value / Sync f_diff thresh		
VECTOR_G	Can be changed: U, T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Hz ]	1.00 [ Hz$]$	$0.10[\mathrm{~Hz}]$
Description:	Sets the threshold value of the frequency difference to activate the closed-loop phase control for line-drive synchronization.   The closed-loop phase control is activated (r3819.6 = 1) , if the frequency difference is less that the threshold value.		
r3808	CO: Sync-line-drive phase difference / Sync phase diff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2005	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ}$	- [ ${ }^{\circ}$	- $\left.{ }^{\circ}\right]$
Description:	Displays the phase difference between the measured target phase and phase of the gating unit of the closed-loop control for line-drive synchronization.		
p3809[0...n]	Sync-line-drive phase setpoint / Sync phase setp		
VECTOR_G	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-180.00 [ ${ }^{\circ}$ ]	179.90 [ $\left.{ }^{\circ}\right]$	$0.00{ }^{\circ}{ }^{\circ}$
Description:	Sets the phase setpoint for the line-drive synchronization.		
p3811[0...n]	Sync-line-drive frequency limiting / Sync f_lim		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ Hz ]	1.00 [ Hz$]$	$0.20[\mathrm{~Hz}]$
Description:	Sets the frequency limiting of the phase controller output for the line-drive synchronization.		
r3812	CO: Sync-line-drive correction frequency / Sync f_corr		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 3080, 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the correction frequency for the line-drive synchronization.		


p3813[0...n]	Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh		
VECTOR_G	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ ${ }^{\circ}$ ]	20.00 [ ${ }^{\text {] }}$	$\left.2.00{ }^{[0}\right]$
Description:	Sets the threshold value of the phase synchronism for the line-drive synchronization.		
Note:	Synchronism is reached (r3819.2 = 1), if the AND logic operation of the results from the phase measurement ( p 3813 ) and voltage measurement ( p 3815 ) is fulfilled.		
r3814	CO: Sync-line-drive voltage difference / Sync U_diff		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the voltage difference between the measured target voltage and output voltage of the gating unit of the closed-loop control for line-drive synchronization.		
p3815[0...n]	Sync-line-drive voltage difference threshold value / Sync U_diff thresh		
VECTOR_G	Can be changed: $U$, $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7020
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	20.00 [\%]	10.00 [\%]
Description:	Sets the threshold value of the voltage difference for the line-drive synchronization.		
	A prerequisite for synchronism is reached if the voltage difference is less than the threshold value.		
Note:	Synchronism is reached (r3819.2 = 1), if the AND logic operation of the results from the phase measurement ( p 3813 ) and voltage measurement ( p 3815 ) is fulfilled.		
	For voltage manipulated quantity margin (reserve) of the drive converter, the amplitude difference (r3814) between the setpoint and actual value is controlled (corrected) to zero.		

r3819.0... 7
VECTOR_G

Description: Bit field:

## CO/BO: Sync-line-drive status word / Sync ZSW

Can be changed: -	Calculated: -
Data type: Unsigned32	Dyn. index: -
P-Group: Functions	Units group: -
Not for motor type: -	Scaling: -
Min	Max
-	-
Displays the status word for the line-drive synchronization.	

[^4]-
都

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Sync-line-drive enabled	Yes	No	-
02	Sync-line-drive synchronism reached	Yes	No	-
03	Sync-line-drive synchronizing error	Yes	No	-
05	Sync-line-drive frequency measurement	Yes	No	-
	active		No	-
06	Sync-line-drive phase control active	Yes	Yes	No


p3820[0...n]	Friction characteristic value n0 / Friction n0		
VECTOR_G (n/M)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	15.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3830, p3845		
p3821[0...n]	Friction characteristic value n1/ Friction n1		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated: CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	30.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 2 nd value pair of the friction characteristic.		
Dependency:	Refer to: p3831, p3845		
p3822[0...n]	Friction characteristic value n2 / Friction n2		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	60.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3832, p3845		
p3823[0...n]	Friction characteristic value n3 / Friction n3		
VECTOR_G (n/M)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3833, p3845		


p3824[0...n]	Friction characteristic value n4 / Friction n4		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 5 th value pair of the friction characteristic.		
Dependency:	Refer to: p3834, p3845		
p3825[0...n]	Friction characteristic value n5 / Friction n5		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	300.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3835, p3845		
p3826[0...n]	Friction characteristic value n6/ Friction n6		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	600.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 7th value pair of the friction characteristic.		
Dependency:	Refer to: p3836, p3845		
p3827[0...n]	Friction characteristic value n7 / Friction n7		
VECTOR_G (n/M)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: 00505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1200.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3837, p3845		


p3828[0...n]	Friction characteristic value n8 / Friction n8		
VECTOR_G (n/M)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 9th value pair of the friction characteristic.		
Dependency:	Refer to: p3838, p3845		
p3829[0...n]	Friction characteristic value n9 / Friction n9		
VECTOR_G (n/M)	Can be changed: $T$	Calculated:   CALC_MOD_LIM_REF	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 3_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 10th value pair of the friction characteristic.		
Dependency:	Refer to: p3839, p3845		
p3830[0...n]	Friction characteristic value M0 / Friction M0		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: 00505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3820, p3845		
p3831[0...n]	Friction characteristic value M1 / Friction M1		
VECTOR_G (n/M)	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the $M$ coordinate of the 2 nd value pair of the friction characteristic.		
Dependency:	Refer to: p3821, p3845		


p3832[0...n]	Friction characteristic value M2 / Friction M2		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3822, p3845		
p3833[0...n]	Friction characteristic value M3 / Friction M3		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3823, p3845		
p3834[0...n]	Friction characteristic value M4 / Friction M4		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 5th value pair of the friction characteristic.		
Dependency:	Refer to: p3824, p3845		
p3835[0...n]	Friction characteristic value M5 / Friction M5		
VECTOR_G (n/M)	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3825, p3845		


p3836[0...n]	Friction characteristic value M6 / Friction M6		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 7 th value pair of the friction characteristic.		
Dependency:	Refer to: p3826, p3845		
p3837[0...n]	Friction characteristic value M7 / Friction M7		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3827, p3845		
p3838[0...n]	Friction characteristic value M8 / Friction M8		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: $T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	0.00 [ Nm ]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 9th value pair of the friction characteristic.		
Dependency:	Refer to: p3828, p3845		
p3839[0...n]	Friction characteristic value M9 / Friction M9		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: 7010
	P-Group: Functions	Units group: 7_1	Unit selection: p0505
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ Nm ]	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 10th value pair of the friction characteristic.		
Dependency:	Refer to: p3829, p3845		


r3840.0... 9	CO/BO: Friction characteristic status word / Friction ZSW			
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: REL	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	-	
Description:	Display and BICO output for the status word of the friction characteristic.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Friction characteristic OK	Yes	No	-
	01 Friction characteristic record activated	Yes	No	-
	02 Friction characteristic record completed	Yes	No	-
	03 Friction characteristic record aborted	Yes	No	-
	08 Friction characteristic positive direction	Yes	No	-
	09 Friction torque model controlled status	Upper	Lower	-
Note:	Re bit 09:			
	For closed-control of an induction motors with encoder, the switchover between the current and observer model is displayed (see also r1751.19), if p3844 is $>0$.			
	The following applies for bit $9=0$ (observer model active):			
	The frictional torque is calculated from the characteristic values from the characteristic point entered into p3844. The following applies for bit $9=1$ (current model active):			
	The frictional torque is calculated from the characteristic values below the characteristic point entered into p3844.			
r3841	CO: Friction characteristic output / Frict outp			
VECTOR_G (n/M)	Can be changed: -	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: 7_1	Unit s	
	Not for motor type: REL S	Scaling: p2003	Expert	
	Min	Max	Factor	
	- [ Nm ]	- [ Nm ]	- [ Nm ]	
Description:   Dependency:	Display and connector output for the torque of the friction characteristic dependent on the speed.			
	Refer to: p1569, p3842			
p3842	Friction characteristic activation / Frict act			
VECTOR_G (n/M)	Can be changed: $T$	Calculated: -	Acces	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: REL	Scaling: -	Expert	
	Min	Max	Factor	
	0	1	0	
Description: Setting to activate and de-activate the friction		Setting to activate and de-activate the friction characteristic.		
Value:	0 : Friction characteristic de-activated   1: Friction characteristic activated			
Dependency:	Refer to: p1569, r3841, p3845			
p3843[0...n]	Friction characteristic frictional torque diff. smoothing time / Frict M_diff t_sm			
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func.	
	P-Group: Closed-loop control	Units group: -	Unit s	
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert	
	Min	Max	Factor	
	0.00 [ms]	10000.00 [ms]	0.00 [	
Description:	Sets the smoothing time constant (PT1) for the friction torque difference.			

Smoothing is activated when switching over from status bit r3840.9

Dependency:	Refer to: p3844		
p3844[0...n]	Friction characteristic number changeover point upper / FricNo chng_pt up		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: PEM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4	0
Description:	Selects the upper changeover point of the friction characteristic for the frictional torque input controlled by the motor model of the induction motor.		
	The speed of this changeover point is preassigned when automatically calculating with the changeover speed p1752. The changeover point located below is preassigned with the changeover speed p1752 * ( 1 - p1753).		
	Example: p3844 = 3 means that the speed value for the change to the monitor model (p3823 $=\mathrm{p} 1752$ ) is entered into p3823 (friction characteristic value n3).		
	Depending on the display of r3840.9, the frictional torque is calculated from the friction characteristic values, which are associated with these changeover points. For the changeover of the motor model, with hysteresis, the frictional torque smoothed with p3843 changes between these two states.		
Dependency:	As part of the automatic calculation ( $p 0340$ ), p3844 is only activated for closed loop control ( $p 1300=21,23$ ) of induction motors with encoder.		
	Refer to: p3843		
Notice:	If the changeover point defined using p3844 does not match the changeover speed p1752, then internally, the modelcontrolled friction torque input is automatically deactivated (same as for p3844 = 0).		
Note:	For p3844 $=0$, the model-controlled frictional torque changeover is deactivated. The frictional torque is then calculated the same as for the encoderless control by interpolating between the points along the friction characteristic.		
p3845	Friction characteristic record activation / Frict rec act		
VECTOR_G	Can be changed: T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: -	Func. diagram: 7010
	P-Group: Functions	Units group: -	Unit selection: -
	Not for motor type: REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	0
Description:	Setting for the friction characteristic record.		
	After the next power-on command, the friction characteristic is automatically recorded.		
Value:	0: $\quad$ Friction characteristic record de-activated   1: Friction char record activated for all directions   2: Friction char record activated for positive direction   3: Friction char record activated for negative direction		
Dependency:	When selecting the friction characteristic measurement, the drive data set changeover is suppressed. For linear drives (refer to r0108 bit 12) it is not permissible to carry out the friction characteristic measurement for mechanical systems that limit travel.		
Danger:	For drives with a mechanical system that limit the distance moved, it must be ensured that during recording, the friction characteristic is not reached. If this is not the case, then it is not permissible that the measurement is carried out.		
Notice:	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).		
Note:	When the friction characteristic record is active, it is not possible to save the parameters (p0971, p0977).		
	When the friction characteristic record is active (p3845 > 0), it is not possible to change p3820 ... p3829, p3830 ... p3839 and p3842.		
	When recording the friction characteristic, in addition to the friction, the motor losses are also determined (e.g. iron losses, eddy current losses and re-magnetizing losses). A differentiation is not made between these individual loss components. We recommend that a motor temperature sensor is used because torque deviations can also be emulated/mapped on the characteristic due to the thermal influence.		



Warning:	Check that binector outputs BO: r3861. correctly.   If the interconnection/wiring is incorrect, outputs BO: r3861.n if the Braking Mod	connected correct   software could exe evelops a fault.	ppropriate   (incorrect)	
p3862	Braking Module DC link fast d	arge delay t	ischg	
B_INF (Brk Mod ext)	Can be changed: C1(3), T   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min   500 [ms]	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max   4294967295 [ms]	Acces   Func.   Unit   Expert   Facto   1000	
Description:   Dependency:   Note:	Sets the delay time for switching in the   Refer to: p3863, r3864   The DC link fast discharge is only possi formats.	nk fast discharge.   "booksize" format	is not s	
p3863   B_INF (Brk Mod ext)	BI: Activating Braking Module   Can be changed: T   Data type: Unsigned32 / Binary   P-Group: -   Not for motor type: -   Min	link fast disc   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	C-disc   Acces   Func.   Unit s   Exper   Facto   0	
Description:	Sets the signal source to activate the D   The DC link fast discharge is started lat   - BI: p3863 = 1 signal.   - an external line contactor is opened via   The DC link fast discharge is interrupted   - BI: p3863 = 0 signal.   - ON command for the infeed.	fast discharge.   th delay time (p3862)   63.1 "energize cont n the following con	owing con	
Recommend.:	The DC link fast discharge should be act (r0863.1, p0860). If the DC link fast disc could occur when pre-charging (e.g. F3	ed if there is an ext e is not activated to ).	ctor and is external lin	
Dependency:   Note:	Refer to: r3864   The DC link fast discharge is only possi formats.	"booksize" form	is not sup	
r3864.0... 7	BO: Braking Module DC link f	discharge / B	schg	
B_INF (Brk Mod ext)	Can be changed: -   Data type: Unsigned32   P-Group: Commands   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Acces   Func.   Unit s   Exper   Facto	
Description:	Signal to control (energize) terminal X2   This binector output is used as signal sourd to terminal X21.2 of the particular Braki	DC link fast discharg to interconnect to a odule.	ing Modul The digita	
Bit field:	Bit Signal name   00 Fast discharge Braking Module 1   01 Fast discharge Braking Module 2   02 Fast discharge Braking Module 3   03 Fast discharge Braking Module 4   04 Fast discharge Braking Module 5   05 Fast discharge Braking Module 6	1 signal High High High High High High	0 signal   Low   Low   Low   Low   Low   Low	FP



Warning:	When activating the essential service mode (BI: p3880 = 1 signal), the motor immediately runs according to the selected setpoint source. When the essential service mode is activated, the motor cannot be stopped using the OFF commands.
Note:	ESM: Essential Service Mode   Permissible signal sources:   - BO: r0722.x (high active)   - BO: r0723.x (low active), x = 0 ... 17, 20, 21
p3881	ESM setpoint source / ESM setp_src
VECTOR_G	Can be changed: $\top$ Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: 7033   P-Group: Functions Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 7 0
Description: Value:	Sets the setpoint source for essential service mode (ESM).   0: Last known setpoint (r1078 smoothed)   1: $\quad$ Fixed speed setpoint 15 (p1015)   3: Fieldbus   5: TB30/TM31 analog input   6: Enable the response OFF1   7: Enable the response OFF2
Note:	ESM: Essential Service Mode   When the essential service mode is activated, the effective speed setpoint is displayed in r 1114 .   Re p3881 = 0:   The last known setpoint value is only transmitted safely if it was present consistently for at least 30 s prior to activating the essential service mode. If this condition is not met, fixed speed setpoint 15 ( p 1015 ) is used.   Rep3881 = 5:   The signal source for the setpoint via analog input for TB30/TM31 is set via p3886.   Rep3881 = 6:   n_act $=0$ : pulse cancellation and switching-on inhibited.   n _active > 0 : braking along the ramp-function generator down ramp ( p 1121 ), pulse cancellation and switching-on inhibited.   Re p3881 = 7:   n_act = 0: pulse cancellation and switching-on inhibited.   $\mathrm{n} _$act $>0$ : immediate pulse cancellation and switching-on inhibited.
p3882	ESM setpoint source alternative / ESM setp_src alt
VECTOR_G	Can be changed: T Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: 7033   P-Group: Functions Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 2 0
Description:	Sets the alternative setpoint source for essential service mode (ESM). This setpoint is used when the setpoint source set in p3881 is lost.
Value:	```Last known setpoint (r1078 smoothed) Fixed speed setpoint 15 (p1015) Maximum speed (p1082)```
Dependency:	Refer to: p3881
Note:	ESM: Essential Service Mode   The alternative setpoint source is only active for p3881 $=3,5$.



r3889.0... 10	CO/BO: ESM status word / ESM ZSW			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Functions	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Display and BICO output for the status word of the essential service mode (ESM).			
Bit field:	Bit Signal name   00 Essential service mode (ESM) activated	1 signal	0 signal	FP
		Yes	No	-
	01 Direction of rotation inverted	Yes	No	-
	02 Setpoint signal lost	Yes	No	-
	07 Setpoint TB30/TM31 analog input parameterized (p3886)	Yes	No	-
	08 Power unit not permissible (permissible p0201 >= 14000)	Yes	No	-
		Yes	No	
	10 Automatic restart interrupted (F07320)	Yes	No	-
Note:	ESM: Essential Service Mode			
p3900	Completion of quick commissioning / Compl quick_comm			
B_INF	Can be changed: C2(1)	Calculated: -	Acces	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: -	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0	3	0	
Description:	Exits the quick commissioning ( $\mathrm{p} 0010=1$ ) with automatic calculation of all of the parameters that depend on the entries made during the quick commissioning.			
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 $=1$ ) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning. The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700 are re-established and all of the dependent filter and closed-loop control parameters are calculated (corresponding to p0340 $=1$ ).			
	p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700 and the calculations corresponding to p0340 $=1$.			
Value:	0: No quick parameterization   1: Quick parameterization after paramete   2: Quick param. (only) for controller par.   3: Completion of quick commissioning	er reset and reset for B		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.			
Note:	When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero.			
p3900	Completion of quick commissionin	ing / Compl		
VECTOR_G	Can be changed: C2(1)	Calculated: -	Acces	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: Displays, signals	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0	3	0	
Description:	Exits quick commissioning ( $\mathrm{p} 0010=1$ ) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning.			
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 $=1$ ) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning.			

The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 = 1).
p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p0700, p1000 and p1500 and the calculations corresponding to p0340 $=1$.
p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to p0340 $=1$.

## Value:

Notice: $\quad$ After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

## Note:

0: $\quad$ No quick parameterization
1: Quick parameterization after parameter reset
2: Quick parameterization (only) for BICO and motor parameters
3: $\quad$ Quick parameterization for motor parameters (only)

When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero.

When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters associated with a selected Siemens catalog motor are not overwritten.

If a catalog motor has not been selected (p0300), then the following parameters are reset with p3900>0 in order to restore the situation that applied when commissioning the drive for the first time:
induction motors p0320, p0352, p0353, p0362 ... p0369, p0391 ... p0393, p0604, p0605, p0626 ... p0628
synchronous motor p0326, p0327, p0352, p0353, p0391 ... p0393, p0604, p0605.

p3901[0...n]	Power unit EEPROM Vdc offset calibration / PU EEPROM Vdc offs		
B_INF, VECTOR_G	Can be changed: $\mathrm{C} 1, \mathrm{C} 2(1)$, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-40.0 [V]	40.0 [V]	0.0 [V]
Description:	Differential voltage for calibrating the offset for DC-link voltage measurement.		
Dependency:	Refer to: r0192, p0212		
Caution:	Incorrect use of the calibration can have a negative impact on the closed-loop control.		
$\triangle$	The parameter influences the upper and lower voltage detection.		
Note:	Parameter entries are directly saved in the DRIVE-CLiQ component involved.		
	The parameter is only effective in the case of booksize power units, if r0192.22 $=1$ and p0212.0 $=1$.		


r3925[0...n]	Identification final display / Ident final_disp		
VECTOR_G	Can be changed: -	Calculated: CALC_MOD_ALL	Access level: 3
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-

Description: Displays the commissioning steps that have been carried out.
Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	Motor/control parameters calculated (p0340 $=1$, p3900 $>0$ )	Yes	No	-
02	Motor data identification carried out at standstill (p1910 = 1)	Yes	No	-
03	Rotating measurement carried out (p1960 = 1, 2)	Yes	No	-
04	Motor encoder adjustment carried out (p1960 = 1, p1990 = 1, 3)	Yes	No	-
08	Motor identification data have been automatically backed up	Yes	No	-


10	Automatic parameterization only for U/f   control (r0108.2 = 0)	Yes	No
15	Motor equivalent circuit diagram parameters   changed	Yes	No

Note: The individual bits are only set if the appropriate action has been initiated and successfully completed. When motor rating plate parameters are changed, the final display is reset.

r3928[0...n] Rotating measurement configuration / Rot meas config

VECTOR $G(n / M) \quad$ Can be changed: - Calculated: CALC MOD ALL
Data type: Unsigned16
P-Group: Motor identification
Not for motor type: REL
Min

Description: Successfully completed component of the last rotating measurement carried out.

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Encoder test active	Yes	No	-
	01	Saturation characteristic identification	Yes	No	-
	02	Moment of inertia identification	Yes	No	-
	03	Re-calculates the speed controller parameters	Yes	No	-
	04	Speed controller optimization (vibration test)	Yes	No	-
		q leakage inductance ident. (for current controller adaptation)	Yes	No	-
	11	Do not change the controller parameters during the measurement	Yes	No	-
		Measurement shortened	Yes	No	-
	13	After measurement direct transition into operation	Yes	No	-
Dependency:	Refer to: r3925				
Note:	The parameter is a copy of p 1959.				
p3950	Service parameter / Serv par				
CU_G130_DP,	Can be changed: C1, U, T Calculated: -			Access level: 3	
CU_G130_PN,	Data type: Unsigned16 Dyn. index: -			Func. diagram: -	
CU G150 PN	P-Group: - Units group: -			Unit selection: -	
	Not for motor type: - Scaling: -			Expert list: 1	
	Min Max			Factory setting	
	-			-	
Description:	For service personnel only.				
r3974	Drive unit status word / Drv_unit ZSW				
CU_G130_DP,	Can be changed: - Cal		ulated: -	Access level: 1	
CU_G130_PN,	Data type: Unsigned32 Dy		index: -	Func. diagram: -	
CU G150 PN	P-Group: - Un		group: -	Unit selection: -	
	Not for motor type: - Scaling:			Expert list: 1	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the status word for the drive unit.				
Bit field:		Signal name	1 signal	0 signal	FP
		Software reset active	Yes	No	-
		Writing of parameters disabled as parameter save in progress	Yes	No	-
		Writing of parameters disabled as macro is running	Yes	No	-
r3977	BICO counter topology / BICO counter topo				
CU_G130_DP,	Can be changed: - Calc		ulated: -	Access level: 4	
CU_G130_PN, CU G150 DP	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
CU_G150_PN	P-Group: Commands Units group: -			Unit selection: -	
	Not for motor type: - Scaling: -			Expert list: 1	
	Min Max			Factory setting	
	-			-	
Description:	Displays the BICO interconnections that have been parameterized in the complete (overall) topology. The counter is incremented by one for each modified BICO interconnection.				
Dependency:	Refer to: r3978, r3979				




	725: Wait until DRIVE-CLiQ cyclic		
	740: Check the ability		
	745: Start of the time		
	750: Interrupt enable		
	800: Initialization finished		
	10050: Wait for synchronization		
	10100: Wait for CU LINK slaves		
	10150: Wait until actual topology determined		
	10200: Evaluation component status		
	10250: Call conversion functions for parameter		
	10300: Preparation cyclic operation		
	10350: Autom. FW update DRIVE-CLiQ components		
	10400: Wait for slave properties		
	10450: Check CX/NX status		
	10500: Wait until DRIVE-CLiQ cyclic		
	10550: Carry out warm start		
	10600: Evaluate, encoder status		
	10800: Partial boot completed		
Index:	[0] = System		
	[1] = Partial boot		
r3996[0...1]	Parameter write inhibit status / Par_write inhib st		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays whether writing to parameters is inhibited.		
	r3996[0] = 0:		
	Parameter write not inhibited.		
	$0<r 3996[0]<100$ :		
	Parameter write inhibited. The value shows how the calculations are progressing.		
Index:	[0] = Progress calculations		
	[1] = Cause		
Note:	Re index 1:		
	Only for internal Siemens troubleshooting.		
r3998	First infeed commissioning / First inf_comm		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	-
Description:	Displays whether the infeed must be commissioned for the first time.		
	$0=$ Yes		
	$2=\mathrm{No}$		




Dependency:   Note:	Refer to: r4022				
r4023.0... 11	CO/BO: TM31 digital inputs status inverted / TM31 DI status inv				
TM31	Can be changed: -	Calculated: -	Acces		
	Data type: Unsigned32	Dyn. index: -	Func. 9552,	$9550,$	
	P-Group: Commands	Units group: -	Unit s		
	Not for motor type: -	Scaling: -	Exper		
	Min	Max	Facto		
	-	-	-		
Description:	Displays the inverted status of the digital inputs of Terminal Module 31 (TM31).				
Bit field:	Bit Signal name	1 signal	0 signal	FP	
	00 DI 0 (X520.1)	High	Low	-	
	01 DI 1 (X520.2)	High	Low	-	
	02 DI 2 (X520.3)	High	Low	-	
	03 DI 3 (X520.4)	High	Low	-	
	04 DI 4 (X530.1)	High	Low	-	
	05 DI 5 (X530.2)	High	Low	-	
	06 DI 6 (X530.3)	High	Low	-	
	07 DI 7 (X530.4)	High	Low	-	
	08 DI/DO 8 (X541.2)	High	Low	-	
	09 DI/DO 9 (X541.3)	High	Low	-	
	10 DI/DO 10 (X541.4)	High	Low	-	
	11 DI/DO 11 (X541.5)	High	Low	-	
Dependency:	Refer to: r4022				
Note:	DI: Digital Input				
	DI/DO: Bidirectional Digital Input/Output				
p4028	TM31 set input or output / TM31 DI or DO				
TM31	Can be changed: $T$	Calculated: -	Access level: 1		
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9549, 9560, 9562		
	P-Group: Commands	Units group: -	Unit selection: -		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	-	-	0000000000000000 bin		
Description:	Sets the bidirectional digital inputs/outputs as input or output on the Terminal Module 31 (TM31).				
Bit field:	Bit Signal name   08 DI/DO 8 (X541.2)   09 DI/DO 9 (X541.3)   10 DI/DO 10 (X541.4)   11 DI/DO 11 (X541.5)	1 signal	0 signal Input Input Input Input	FP	
		Output		-	
Note:	DI/DO: Bidirectional Digital Input/				
p4030	BI: TB30 signal source for	al DO 0 / TB3			
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1		
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9099, 9102		
	P-Group: Commands	Units group: -	Unit selection: -		
	Not for motor type: -	Scaling: -	Expert list: 1		
	Min	Max	Factory setting		
	-	-	0		
Description:	Sets the signal source for digital output DO 0 (X481.5) of the Terminal Board 30 (TB30). DO: Digital Output				
Note:					





p4048	TB30 invert digital outputs / TB30 DO inv			
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access le	
	Data type: Unsigned32	Dyn. index: -	Func. diag	
	P-Group: Commands	Units group: -	Unit selec	
	Not for motor type: -	Scaling: -	Expert list	
	Min	Max	Factory s	
	-	-	0000 bin	
Description:	Setting to invert the signals at the digital outputs of the Terminal Board 30 (TB30).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DO 0 (X481.5)	Inverted	Not inverted	-
	01 DO 1 (X481.6)	Inverted	Not inverted	-
	02 DO 2 (X481.7)	Inverted	Not inverted	-
	03 DO 3 (X481.8)	Inverted	Not inverted	-
Note:	DO: Digital Output			
p4048	TM31 invert digital outputs / TM31 DO inv			
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9556, 9560, 9562	
	P-Group: Commands	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000000000000000 bin	
Description:	Setting to invert the signals at the digital outputs of Terminal Module 31 (TM31).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DO 0 (X542.1-3)	Inverted	Not inverted	-
	01 DO 1 (X542.4-6)	Inverted	Not inverted	-
	08 DI/DO 8 (X541.2)	Inverted	Not inverted	-
	09 DI/DO 9 (X541.3)	Inverted	Not inverted	-
	10 DI/DO 10 (X541.4)	Inverted	Not inverted	-
	11 DI/DO 11 (X541.5)	Inverted	Not inverted	-
Note:	DO: Digital Output			
	DI/DO: Bidirectional Digital Input/Output			
r4052[0...1]	CO: TB30 analog inputs actual input voltage / TB30 AI U_inp act			
TB30	Can be changed: -	Calculated: -	Access level: 1	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104	
	P-Group: Terminals	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	- [V]	- [V]	- [V]	
Description:	Displays the actual input voltage at the analog inputs for Terminal Board 30 (TB30).			
	Note:			
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$ ) ) the following applies:			
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.			
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / \mathrm{X} 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$			
Note:	AI: Analog Input			


r4052[0...1]	CO: TM31 analog inputs current input voltage/current / TM31 AI U/I_inp		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual input voltage in V when set as voltage input.		
	Displays the actual input current in mA when set as current input and with the load resistor switched in.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(\text { X521.1/X521.2, S5.0) }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Dependency:	The type of analog input Al x (voltage or current input) is set using p4056.		
	Refer to: r4056, p4056		
Note:	Al: Analog Input		
p4053[0...1]	TB30 analog inputs smoothing time constant / TB30 AI T_smooth		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog inputs of the Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(\text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	AI: Analog Input		
p4053[0...1]	TM31 analog inputs smoothing time constant / TM31 AI T_smooth		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description: Index:	Sets the smoothing time constant of the 1st-order low pass filter for the analog inputs of Terminal Module 31 (TM31).		
Note:	Al: Analog Input		
r4055[0...1]	CO: TB30 analog inputs actual value in percent / TB30 Al value in \%		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9099, 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs of Terminal Board 30 (TB30).		
	When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(\text { (X482.1/X482.2) }} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	AI: Analog Input		




p4058[0...1]	TM31 analog inputs characteristic value y1 / TM31 Al char y1
TM31	Can be changed: U, T Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9566,9568   P-Group: Terminals Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-1000.00[\%]$ $1000.00[\%]$ $0.00[\%]$
Description: Index:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the $y$ coordinate (percentage) of the 1st value pair of the characteristic. $\begin{aligned} & {[0]=\text { AI } 0(\text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$
Notice:   Note:	This parameter is automatically overwritten when the analog input type ( p 4056 ) is modified. The parameters for the characteristic do not have a limiting effect.
p4059[0...1]	TB30 analog inputs characteristic value $\times 2$ / TB30 Al char $\times 2$
TB30	Can be changed: U, T Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9104   P-Group: Terminals Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-11.000[\mathrm{~V}]$ $11.000[\mathrm{~V}]$ $10.000[\mathrm{~V}]$
Description: Index:	Sets the scaling characteristic for the analog inputs of Terminal Board 30 (TB30).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the x coordinate (input voltage in V ) of the 2 nd value pair of the characteristic. $\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { AI } 1 \text { (X482.3/X482.4) }} \end{aligned}$
Note:	The parameters for the characteristic do not have a limiting effect.
p4059[0...1]	TM31 analog inputs characteristic value $\times 2$ / TM31 Al char $\times 2$
TM31	Can be changed: U, T Calculated: - Access level: 2   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9566,9568   P-Group: Terminals Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   -20.000 20.000 10.000
Description:	Sets the scaling characteristic for the analog inputs of Terminal Module 31 (TM31).   The scaling characteristic for the analog inputs is defined using 2 points.   This parameter specifies the $x$ coordinate (input voltage in $V$ or input current in mA ) of the 2 nd value pair of the characteristic.
Index:	$\begin{aligned} & {[0]=\text { AI } 0 \text { (X521.1/X521.2, S5.0) }} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$
Dependency:	The unit of this parameter ( V or mA ) depends on the analog input type.   Refer to: r4056, p4056
Notice:   Note:	This parameter is automatically overwritten when the analog input type ( p 4056 ) is modified. The parameters for the characteristic do not have a limiting effect.



Index: $\quad$| $[0]=$ AI $0($ (X521.1/X521.2, S5.0 $)$ |  |
| :--- | :--- |
|  | $[1]=$ AI $1($ (X521.3/X521.4, S5.1 $)$ |

p4063[0...1]	TB30 analog inputs offset / TB30 Al offset		
TB30	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-20.000[\mathrm{~V}]$	$0.000[\mathrm{~V}]$	
Description:	Sets the offset for the analog inputs of Terminal Board 30 (TB30).		
	The offset is added to the input signal before the scaling characteristic.		
Index:	$[0]=$ Al $0($ X482.1/X482.2)		
	$[1]=$ Al 1 (X482.3/X482.4)		


p4063[0...1]	TM31 analog inputs offset / TM31 AI offset		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the offset for the analog inputs of Terminal Module 31 (TM31).		
	The offset is added to the input signal before the scaling characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S }} \\ & {[1]=\text { Al } 1 \text { (X521.3/X521.4, S }} \end{aligned}$		


p4066[0...1]	TB30 analog inputs activate absolute value generation / TB30 AI absVal act		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	0	

Description: Activates the absolute value generation for the analog input signals of the Terminal Board 30 (TB30).
Value: $\quad 0: \quad$ No absolute value generation
1: Absolute value generation switched in
Index: $\quad[0]=$ AI $0($ X482.1/X482.2 $)$
[1] = AI 1 (X482.3/X482.4)

p4066[0...1]	TM31 analog inputs activate absolute value generation / TM31 AI absVal act		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9566,9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0

Description: Activates the absolute value generation for the analog input signals of Terminal Module 31 (TM31).
Value: $\quad 0: \quad$ No absolute value generation
1: Absolute value generation switched in
Index: $\quad[0]=\mathrm{Al} 0(X 521.1 / \mathrm{X} 521.2$, S5.0 $)$
[1] = AI 1 (X521.3/X521.4, S5.1)

p4067[0...1]	BI: TB30 analog inputs invert signal source / TB30 Al inv s s		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	-	-	0
Description: Index:	Sets the signal source to invert the analog input signals of the Terminal Board 30 (TB30).$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
p4067[0...1]	BI: TM31 analog inputs invert signal source / TM31 AI inv s s		
TM31	Can be changed: $U, T$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source to invert the analog inputs signals of Terminal Module 31 (TM31).$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0 })} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
p4068[0...1]	TB30 analog inputs noise suppression window / TB30 Al window		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]		
Description:	Sets the noise suppression window of the analog inputs for Terminal Board 30 (TB30). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 482.1 / X 482.2)} \\ & {[1]=\text { Al } 1 \text { (X482.3/X482.4) }} \end{aligned}$		
Note:	Al: Analog Input		
p4068[0...1]	TM31 analog inputs window to suppress noise / TM31 Al window		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	20.00 [\%]	0.00 [\%]
Description:	Sets the noise suppression window of the analog inputs for Terminal Module31 (TM31). Changes less than the window are suppressed.		
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / X 521.2, \text { S5.0) }} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$		
Note:	AI: Analog Input		


p4069[0...1]	BI: TB30 analog inputs signal source for enable / TB30 AI enable		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Factory setting
	Min	Max	1
	-	-	
Description:	Sets the signal source for enabling the analog inputs of the Terminal Board 30 (TB30).		
Index:	$[0]=$ Al 0 (X482.1/X482.2)		
	$[1]=$ Al 1 (X482.3/X482.4)		


p4069[0..1]	BI: TM31 analog inputs signal source for enable / TM31 AI enable		
TM31	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9566,9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the enable signal of the analog inputs of Terminal Module 31 (TM31).		
Index:	$[0]=$ Al $0($ X521.1/X521.2, S5.0)		
	$[1]=$ Al 1 (X521.3/X521.4, S5.1)		


p4071[0...1]	CI: TB30 analog outputs signal source / TB30 AO s s		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 9099, 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source for the analog outputs of the Terminal Board 30 (TB30). [0] = AO O (X482 5/X482 6)		
Note:	AO: Analog Output		
p4071[0...1]	CI: TM31 analog outputs signal source / TM31 AO s s		
TM31	Can be changed: $U, T$	Calculated: -	Access level: 1
	Data type: Unsigned32 / FloatingPoint32	Dyn. index: -	Func. diagram: 9549, 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the analog outputs of Terminal Module 31 (TM31).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, \text { X522.2, X522.3) }} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Note:	AO: Analog Output		


r4072[0...1]	TB30 analog outputs output value currently referred / TB30 AO outp_val		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:   Index:	Displays the actual referred output value of the analog outputs of the Terminal Board 30 (TB30).$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=A O 1(X 482.7 / X 482.8)} \end{aligned}$		
r4072[0...1]	TM31 analog outputs output value currently referred / TM31 AO outp_val		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual referred output value of the analog outputs of Terminal Module 31 (TM31).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=A O 1(X 522.4, X 522.5, X 522.6)} \end{aligned}$		
p4073[0...1]	TB30 analog outputs smoothing time constant / TB30 AO T_smooth		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1 st order low pass filter for the analog outputs of the Terminal Board 30 (TB30).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=A O 1 \text { (X482.7/X482.8) }} \end{aligned}$		
p4073[0...1]	TM31 analog outputs smoothing time constant / TM31 AO T_smooth		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog outputs of Terminal Module 31 (TM31).		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, ~ X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		


r4074[0...1]	TB30 analog outputs actual output voltage / TB30 AO U_outp		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual output voltage at the analog outputs of the Terminal Board 30 (TB30).$\text { [0] = AO } 0 \text { (X482.5/X482.6) }$		
Index:			
	[1] = AO 1 (X482.7/X482.8)		
r4074[0...1]	TM31 analog outputs current output voltage/current / TM31 AO U/I_outp		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual output voltage in V when set as voltage output. Displays the actual output voltage in mA when set as current output.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	The type of the analog output AO $\times$ (voltage or current output) is set using p4076. Refer to: r4076, p4076		
Note:	AO: Analog Output		
p4075[0...1]	TB30 analog outputs activate absolute value generation / TB30 AO absVal act		
TB30	Can be changed: T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation for the analog outputs of the Terminal Board 30 (TB30).		
Value:	0 : No absolute value generation   1: Absolute value generation switched in		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 482.5 / X 482.6)} \\ & {[1]=\text { AO } 1 \text { (X482.7/X482.8) }} \end{aligned}$		
p4075[0...1]	TM31 analog outputs activate absolute value generation / TM31 AO absVal act		
TM31	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation for the analog outputs of Terminal Module 31 (TM31).		
Value:	0 : No absolute value generation   1: Absolute value generation switched in		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		


r4076[0...1]	TB30 analog outputs type / TB30 AO type		
TB30	Can be changed: -	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	4	4	-
Description:	Displays the type of analog outputs of the Terminal Board 30 (TB30).		
Value:	4: Voltage output (-10 V ... +10 V)		
Index:	$[0]=A O O(X 482.5 / X 482.6)$		
	[1] = AO 1 (X482.7/X482.8)		
p4076[0...1]	TM31 analog outputs type / TM31 AO type		
TM31	Can be changed: $\cup, T$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4	4
Description:	Sets the type of analog outputs of Terminal Module 31 (TM31).   $\mathrm{p} 4076[\mathrm{x}]=1,4$ correspond to a voltage output ( p 4074 , $\mathrm{p} 4078, \mathrm{p} 4080$, p 4083 are displayed in V ).   $p 4076[x]=0,2,3$ correspond to a current output ( $p 4074, p 4078, p 4080, p 4083$ are displayed in mA).		
Value:	0: Current output $(0 \mathrm{~mA} \ldots+20 \mathrm{~mA})$   1: Voltage output $(0 \mathrm{~V} \ldots+10 \mathrm{~V})$   2: Current output $(+4 \mathrm{~mA} \ldots+20 \mathrm{~mA})$   3: Current output $(-20 \mathrm{~mA} \ldots+20 \mathrm{~mA})$   4: Voltage output $(-10 \mathrm{~V} \ldots+10 \mathrm{~V})$		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, \text { X522.2, X522.3) }} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	Refer to: p4077, p4078, p4079, p4080		
Note:	When changing p4076, the parameters of the scaling characteristic (p4077, p4078, p4079, p4080) are overwritten with the following default values:		
	For p4076 $=0,3$, p4077 is set to $0.0 \%$, p4078 to $0.0 \mathrm{~mA}, \mathrm{p} 4079$ to $100.0 \%$ and p 4080 to 20.0 mA .		
	For p4076 $=1,4, \mathrm{p} 4077$ is set to $0.0 \%$, p4078 to 0.0 V , p4079 to $100.0 \%$ and p4080 to 10.0 V .		
	For p4076 $=2$, p4077 is set to $0.0 \%$, p4078 to $4.0 \mathrm{~mA}, \mathrm{p} 4079$ to $100.0 \%$ and p4080 to 20.0 mA .		
p4077[0...1]	TB30 analog outputs characteristic value x1 / TB30 AO char x1		
TB30	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling:-	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	The scaling characteristic for the analog outputs is defined using 2 points. This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=A O O(X 482.5 / X 482.6)} \\ & {[1]=A O 1 \text { (X482.7/X482.8) }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		


p4077[0...1]	TM31 analog outputs characteristic value x1 / TM31 AO char x1		
TM31	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31). The scaling characteristic for the analog outputs is defined using 2 points.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, X 522.2, X 522.3)} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	Refer to: r4076, p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4078[0...1]	TB30 analog outputs characteristic value y1 / TB30 AO char y1		
TB30	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-11.000 [V]	11.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Board 30 (TB30).   The scaling characteristic for the analog outputs is defined using 2 points		
Index:	$\begin{aligned} & {[0]=A O} \\ & {[1]=A O} \\ & \text { (X482.5/X482.6) } \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4078[0...1]	TM31 analog outputs characteristic value y1 / TM31 AO char y1		
TM31	Can be changed: $U, T$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog outputs of Terminal Module 31 (TM31).		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA ) of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0(X 522.1, \text { X522.2, X522.3) }} \\ & {[1]=\text { AO } 1 \text { (X522.4, X522.5, X522.6) }} \end{aligned}$		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		



	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the $y$ coordinate (output voltage in $V$ or output current in $m A$ ) of the $2 n d$ value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AO } 0 \text { (X522.1, X522.2, X52 }} \\ & {[1] \text { = AO } 1 \text { (X522.4, X522.5, X52 }} \end{aligned}$		
Dependency:	The unit of this parameter ( V or mA ) depends on the analog output type.		
	Refer to: r4076, p4076		
Notice:	This parameter is automatically overwritten when changing p4076 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p4082[0...1]	BI: TB30 analog outputs invert signal source / TB30 AO inv s s		
TB30	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for inverting the analog output signals of the Terminal Board 30 (TB30).		
Index:	$[0]=$ AO $0($ X482.5/X482.6)		
	[1] = AO 1 (X482.7/X482.8)		
p4082[0...1]	BI: TM31 analog outputs invert signal source / TM31 AO inv s s		
TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to invert the analog output signals of Terminal Module 31 (TM31).		
Index:	[0] = AO 0 (X522.1, X522.2, X522.3)		
	[1] = AO 1 (X522.4, X522.5, X522.6)		
p4083[0...1]	TB30 analog outputs offset / TB30 AO offset		
TB30	Can be changed: $U$, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9106
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.000	10.000	0.000
Description:	Sets the offset for the analog outputs of Terminal Board 30 (TB30).		
	The offset is added to the output signal after the scaling characteristic.		
Index:	$[0]=\mathrm{AO} 0(X 482.5 / \mathrm{X} 482.6)$		
	$[1]=\mathrm{AO} 1 \text { (X482.7/X482.8) }$		
p4083[0...1]	TM31 analog outputs offset / TM31 AO offset		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9572
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the offset for the analog outputs of Terminal Module 31 (TM31).		
	The offset is added to the output signal after the scaling characteristic.		



p4096	TB30 digital inputs simulation mode setpoint / TB30 DI sim setpt			
TB30	Can be changed: $U$, $T$	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	9100
	P-Group: Commands	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	0000	
Description:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of the Terminal Board 30 (TB30)			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X481.1)	High	Low	-
	01 DI 1 (X481.2)	High	Low	-
	02 DI 2 (X481.3)	High	Low	-
	03 DI 3 (X481.4)	High	Low	-
Dependency:	The simulation of a digital input is selected using p4095.			
	Refer to: p4095			
Note:	This parameter is not saved when data is backed-up (p0971, p0977).			
	DI: Digital Input			
p4096	TM31 digital inputs	de setpoint	m setp	
TM31	Can be changed: $U, T$	Calculated: -	Access level: 2	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9549, 9550, 9552, 9560, 9562	
	P-Group: Terminals	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	0000000000000000 bin	
Description:   Bit field:	Sets the setpoint for the input signals in the simulation mode of the digital inputs of Terminal Module 31 (TM31).			
	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (X520.1)	High	Low	-
	01 DI 1 (X520.2)	High	Low	-
	02 DI 2 (X520.3)	High	Low	-
	03 DI 3 (X520.4)	High	Low	-
	04 DI 4 (X530.1)	High	Low	-
	05 DI 5 (X530.2)	High	Low	-
	06 DI 6 (X530.3)	High	Low	-
	07 DI 7 (X530.4)	High	Low	-
	08 DI/DO 8 (X541.2)	High	Low	-
	09 DI/DO 9 (X541.3)	High	Low	-
	10 DI/DO 10 (X541.4)	High	Low	-
	11 DI/DO 11 (X541.5)	High	Low	-
Dependency:	The simulation of a digital input is selected using p4095.			
	Refer to: p4095			
Note:				
	DI: Digital Input			
	DI/DO: Bidirectional Digital Input/Output			
p4097[0...1]	TB30 analog input	ode / TB30 A		
TB30	Can be changed: $U, T$	Calculated: -	Access level: 2	
	Data type: Integer16	Dyn. index: -	Func. diagram: 9104	
	P-Group: Terminals	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	1	0	
Description:	Sets the simulation mode	uts of the Termina		

\(\left.\begin{array}{lll}Value: \& 0: \quad Terminal evaluation for analog input x <br>

\& 1: \quad Simulation for analog input x\end{array}\right]\)|  | $[0]=$ AI $0(X 482.1 / X 482.2)$ |
| :--- | :--- |
| Index: | $[1]=$ AI $1(X 482.3 / X 482.4)$ |
| Dependency: | The setpoint for the input voltage is specified via p4098. |
|  | Refer to: p4098 |
| Note: | This parameter is not saved when data is backed-up (p0971, p0977). |
|  | AI: Analog Input |

p4097[0...1]	TM31 analog inputs simulation mode / TM31 Al sim_mode	
TM31	Can be changed: U, T Calculated: -	Access level: 2
	Data type: Integer16 Dyn. index: -	Func. diagram: 9566, 9568
	P-Group: Terminals Units group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	0 ( 1	0
Description:	Sets the simulation mode for the analog inputs of Terminal Module 31 (TM31).	
Value:	0 : Terminal evaluation for analog input x   1: Simulation for analog input $x$	
Index:	$\begin{aligned} & {[0]=\text { AI } 0(X 521.1 / \mathrm{X} 521.2, \mathrm{~S} 5.0)} \\ & {[1]=\text { AI } 1 \text { (X521.3/X521.4, S5.1) }} \end{aligned}$	
Dependency:	The setpoint for the input voltage is specified via p4098. Refer to: p4098	
Note:	This parameter is not saved when data is backed-up (p0971, p0977).   AI: Analog Input	


p4098[0...1]	TB30 analog inputs simulation mode setpoint / TB30 Al sim setp		
TB30	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9104
	P-Group: Terminals	Units group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-11.000[\mathrm{~V}]$	$11.000[\mathrm{~V}]$	$0.000[\mathrm{~V}]$

Description: Sets the setpoint for the input voltage in the simulation mode of the analog inputs of Terminal Board 30 (TB30).
Index: $\quad[0]=$ AI 0 (X482.1/X482.2)
[1] = AI 1 (X482.3/X482.4)
Dependency: The simulation of an analog input is selected using p4097.
Refer to: p4097
Note: $\quad$ This parameter is not saved when data is backed-up (p0971, p0977).
AI: Analog Input

p4098[0...1]	TM31 analog inputs simulation mode setpoint / TM31 Al sim setp		
TM31	Can be changed: U, T	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9566,9568
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-20.000	20.000	0.000
Description:	Sets the setpoint for the input value in simulation mode of the analog inputs of Terminal Module 31 (TM31).		
Index:	$[0]=$ AI $0(X 521.1 / X 521.2, S 5.0)$		



p4099[0..2]	TM31 inputs/outputs sampling time / TM31 I/O t_sample		
TM31	Can be changed: C 1 (3)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9549, 9550
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ $\mu \mathrm{s}$ ]	5000.00 [ $\mu \mathrm{s}$ ]	4000.00 [ $\mu \mathrm{s}$ ]
Description:	Sets the sampling time for the inputs and outputs of Terminal Module 31 (TM31).		
Index:	$\begin{aligned} & {[0]=\text { Digital inputs/outputs }(\mathrm{D}} \\ & {[1]=\text { Analog inputs (AI) }} \\ & {[2]=\text { Analog outputs (AO) }} \end{aligned}$		
Dependency:	The parameter can only be modified for $\mathrm{p} 0009=3,29$.		
	The following applies for the sampling time:		
	The sampling times at a DRIVE-CLiQ line must be integral multiples of one another.		
	The sampling times of this TM must be an integral multiple of a servo or vector drive that exists in the system.		
	The minimum permissible sampling time is $125 \mu \mathrm{~s}$.   The sampling times entered in index 0 (digital inputs/outputs) and index 2 (analog outputs) must always be greater than or equal to the sampling time in index 1 (analog inputs).		
	Refer to: p0009, r0110, r0111		
Notice:	The sampling times entered in index 0 (digital inputs/outputs) and index 2 (analog outputs) must always be greater than or equal to the sampling time in index 1 (analog inputs).		
Note:	The changed sampling time is immediately effective after a completed sub-boot (p0009 -> 0).		
	Parameter $\mathrm{p} 4099[0]$ must never be equal to zero.		


p4100[0...11]	TM150 sensor type / TM150 sensor type		
TM150	Can be changed: $T$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9626, 9627
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	5
Description:	Sets the sensor type for Terminal Module 150 (TM150)		
	This means that the temperature sensor type is selected and the evaluation is switched in.		
Value:	0: Evaluation disabled		
	2: KTY84		
	4: Bimetallic NC contact		
	5: PT100		
	6: PT1000		
Index:	[ 0 ] Temperature channel 0		
	[1] = Temperature channel 1		
	[2] $=$ Temperature channel 2		
	[3] = Temperature channel 3		
	[4] = Temperature channel 4		
	[5] = Temperature channel 5		
	[6] = Temperature channel 6		
	[7] = Temperature channel 7		
	[8] = Temperature channel 8		
	[9] = Temperature channel 9 [10] = Temperature channel 10		
	[11] = Temperature channel 11		
Notice:	For p4102[0...23] $=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.		
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[0...11] = 1, 4), the following applies:		
	To activate the corresponding alarm or fault, p4102[0...23] must be set <= $250^{\circ} \mathrm{C}$.		
Note:	The temperature sensors are connected to the following terminals:		
	X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6)		
	X532 $=$ channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)		
	X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)		
	X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9)		
	X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)		
	X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)		
	Details on the wiring are included in the parameter description for p4108.		
	TM31 sensor type / TM31 sensor type		
TM31	Can be changed: $T$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9576
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description:	Sets the sensor type for Terminal Module 31 (TM31)		
	This means that the temperature sensor type is selected and the evaluation is switched in.		
Value:	0 : Evaluation disabled   1: PTC thermistor   2: KTY84		
Notice:	For $\mathrm{p} 4102[0 \ldots 1]=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.		
	For sensor type "PTC thermistor" ( $\mathrm{p} 4100=1$ ), the following applies:		
	To activate the corresponding alarm or fault, p4102[0...1] must be set <= $250^{\circ} \mathrm{C}$.		
Note:	The temperature senso	inals X522.7(+)	


r4101[0...11]	TM150 sensor resistance / TM150 R_sensor
TM150	Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9626,9627   P-Group: Terminals Units group: - Unit selection: -   Not for motor type: - Scaling: PERCENT Expert list: 1   Min Max Factory setting   $-[o h m]$ $-[o h m]$ $-[$ ohm $]$
Description: Index:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module.   [ 0 ] = Temperature channel 0   [1] = Temperature channel 1   [2] = Temperature channel 2   [3] = Temperature channel 3   [4] = Temperature channel 4   [5] = Temperature channel 5   [6] = Temperature channel 6   [7] = Temperature channel 7   [8] = Temperature channel 8   [9] = Temperature channel 9   [10] = Temperature channel 10   [11] = Temperature channel 11
Note:	The maximum measurable resistance value is approx. 2500 Ohm.   For $1 \times 2$ and $2 \times 2$ wire evaluation:   The actual sensor resistance is displayed in this parameter(i.e. the wire resistance ( p 4110 ) is taken into account).   The temperature sensors are connected to the following terminals:   X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6)   X532 $=$ channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)   X533 $=$ channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8 )   X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9)   X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)   X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)   Details on the wiring are included in the parameter description for p4108.
$\begin{aligned} & \hline \mathbf{r 4 1 0 1} \\ & \text { тм31 } \end{aligned}$	TM31 sensor resistance / TM31 R_sensor     Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: 9576   P-Group: Terminals Units group: - Unit selection: -   Not for motor type: - Scaling: PERCENT Expert list: 1   Min Max Factory setting   $-[o h m]$ $-[o h m]$ $-[o h m]$
Description:   Note:	Displays the actual resistance value of the temperature sensor connected at the Terminal Module. The maximum measurable resistance value is approx. 2170 Ohm.   The temperature sensor is connected at terminals X522.7(+) and X522.8(-).
p4102[0...23]	TM150 fault threshold/alarm threshold / TM150 F/A_thresh
TM150	Can be changed: U, T Calculated: - Access level: 1   Data type: Integer16 Dyn. index: Func. diagram: 9626,9627   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $-99\left[{ }^{\circ} \mathrm{C}\right]$ $251\left[{ }^{\circ} \mathrm{C}\right]$ $251\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold/alarm threshold for Terminal Module 150 (TM150).   For alarms (even indices [ $0,2,4 \ldots 22$ ]), the following applies:   - The corresponding alarm is initiated, if the temperature actual value associated with a temperature channel exceeds the associated alarm threshold ( $\mathrm{r} 4105[\mathrm{x}]>\mathrm{p} 4102[2 \mathrm{x}]$. In addition, the timer is started ( $\mathrm{p} 4103[\mathrm{x}]$ ).

- The alarm remains until the temperature actual value ( $\mathrm{r} 4105[\mathrm{x}]$ ) reaches or falls below the threshold value ( $\mathrm{p} 4102[2 \mathrm{x}]$ - hysteresis ( $\mathrm{p} 4118[\mathrm{x}]$ ).
For faults (uneven indices [1, 3, $5 \ldots 23$ ]), the following applies:
- The corresponding fault is initiated, if the temperature actual value associated with a temperature channel exceeds the associated fault threshold $(r 4105[x]>p 4102[2 x+1]$ or the associated timer ( $p 4103[x]$ has expired.
- The fault remains until the temperature actual value ( $\mathrm{r} 4105[\mathrm{x}]$ ) reaches or falls below the threshold value ( $\mathrm{p} 4102[2 \mathrm{x}+1]$ ) - hysteresis ( $\mathrm{p} 4118[\mathrm{x}]$ ) and the fault has been acknowledged.

Index: $\quad$| $[0]$ | $=$ Channel 0 alarm threshold (A35211) |
| :--- | :--- |
| $[1]$ | $=$ Channel 0 fault threshold (F35207) |
| $[2]$ | $=$ Channel 1 alarm threshold (A35212) |
| $[3]$ | $=$ Channel 1 fault threshold (F35208) |
| $[4]$ | $=$ Channel 2 alarm threshold (A35213) |
| $[5]$ | $=$ Channel 2 fault threshold (F35209) |
| $[6]$ | $=$ Channel 3 alarm threshold (A35214) |
| $[7]=$ Channel 3 fault threshold (F35210) |  |
| $[8]=$ Channel 4 alarm threshold (A35410) |  |
| $[9]$ | $=$ Channel 4 fault threshold (F35400) |
| $[10]$ | $=$ Channel 5 alarm threshold (A35411) |
| $[11]$ | $=$ Channel 5 fault threshold (F35401) |
| $[12]$ | $=$ Channel 6 alarm threshold (A35412) |
| $[13]$ | $=$ Channel 6 fault threshold (F35402) |
| $[14]$ | $=$ Channel 7 alarm threshold (A35413) |
| $[15]$ | $=$ Channel 7 fault threshold (F35403) |
| $[16]$ | $=$ Channel 8 alarm threshold (A35414) |
| $[17]$ | $=$ Channel 8 fault threshold (F35404) |
| $[18]$ | $=$ Channel 9 alarm threshold (A35415) |
| $[19$ | $=$ Channel 9 fault threshold (F35405) |
| $[20$ | $=$ Channel 10 alarm threshold (A35416) |
| $[21]$ | $=$ Channel 10 fault threshold (F35406) |
| $[22]$ | $=$ Channel 11 alarm threshold (A35417) |
| $[23]$ | $=$ Channel 11 fault threshold (F35407) |
|  | Refer to: p4103, r4104, r4105, p4118 |

Faults F35207 ... F35210 and F35400 ... F35407 only result in the drive being shut down if at least one BICO interconnection exists between the drive and the TM150.
For $\mathrm{p} 4102[0 \ldots 23]=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.
For sensor type "PTC thermistor" (p4100[0...11] = 1), the following applies:
To activate the corresponding alarm or fault, p4102[0...23] must be set $<=250^{\circ} \mathrm{C}$.
Note: The hysteresis can be set in $\mathrm{p} 4118[0 \ldots 11]$.


Notice:	Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.   For $\mathrm{p} 4102[0 \ldots 1]=251^{\circ} \mathrm{C}$, evaluation of the corresponding threshold is deactivated.   For sensor type "PTC thermistor" (p4100 = 1), the following applies:   To activate the alarm or fault, p4102[0...1] must be set $<=250^{\circ} \mathrm{C}$.
p4103[0...11]	TM150 delay time / TM150 t_delay
TM150	Can be changed: U, T Calculated: - Access level: 1   Data type: FloatingPoint32 Dyn. index: - Func. diagram: 9626, 9627   P-Group: Motor Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   $0.0[s]$ $600.0[\mathrm{~s}]$ 0.0 [s]
Description:	Sets the delay time for the output of the fault for the Terminal Module 150 (TM150).   The timer is started when the alarm threshold (e.g. p4102[0]) is exceeded.   If the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then the corresponding fault is output.   The fault can be acknowledged, if, after the delay time has expired, the alarm threshold is again fallen below.   For sensor type "KTY84", "PT100", "PT1000" (p4100[0...11] = 2, 5, 6) the following applies:   - If the fault threshold (e.g. p4102[1]) is exceeded before the delay time has expired, then the corresponding fault is immediately output.

For sensor type "PTC thermistor", "Bimetallic NC contact" (p4100[0...11] = 1, 4), the following applies:

- Alarm and fault threshold simultaneously respond. The fault is only issued after the delay time has expired.

Index: [0] = Temperature channel 0
[1] = Temperature channel 1
[2] = Temperature channel 2
[3] = Temperature channel 3
[4] = Temperature channel 4
[5] = Temperature channel 5
[6] = Temperature channel 6
[7] = Temperature channel 7
[8] = Temperature channel 8
[9] = Temperature channel 9
[10] = Temperature channel 10
[11] = Temperature channel 11
Dependency: Refer to: p4102, r4104, r4105, p4118
Warning: The fault F35207 ... F35210 and F35400 ... 35407 only results in the drive being shut down if at least one BICO interconnection exists between the drive and the TM150.

For p4103 = 0 s and sensor type "KTY84", "PT100", "PT1000" (p4100[0..11] = 2, 5, 6) the following applies:

- The corresponding fault can only be initiated via the fault threshold (output of the timer is always a logical 0).

For p4103 = 0 s and sensor type "PTC thermistor", "Bimetallic NC contact" (p4100[0...11] = 1, 4), the following applies:

- The corresponding alarm and fault are simultaneously output (delay time $=0 \mathrm{~s}$ ).

p4103	TM31 temperature evaluation delay time / TM31 temp t_delay		
TM31	Can be changed: U, T	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9576
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.000 [ms]	600000.000 [ms]	0.000 [ms]
Description:	Sets the delay time for the ou The timer is started when the If the delay time has expired is output.	for the Terminal M ( $\mathrm{p} 4102[0]$ ) is exc reshold has, in the	en fallen below, then fa
	The fault can be acknowledged, if, after the delay time has expired, the alarm threshold is again fallen below.		


	For sensor type "KTY84" (p4100 = 2), the following applies:				
	If the fault threshold ( $\mathrm{p} 4102[1]$ ) is exceeded before the delay time has expired, then fault F35207 is immediately output.				
	For sensor type "PTC thermistor" (p4100 = 1), the following applies:				
	- Alarm and fault threshold simultaneously respond. The fault is only issued after the delay time has expired.				
Dependency:	Refer to: r4104				
Warning:	Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.				
Note:	With p4103 $=0 \mathrm{~ms}$, the timer is de-activated and only the fault threshold is effective.				
r4104.0... 23	BO: TM150 temperature evaluation status / TM150 temp status				
TM150		be changed: -	Calculated: -	Acce	
		type: Unsigned32	Dyn. index: -	Func	
		oup: Terminals	Units group: -	Unit s	
		for motor type: -	Scaling: -	Expe	
	Min		Max	Facto	
	-		-	-	
Description:	Display and binector output for the status for the Terminal Module 150 (TM150).				
Bit field:		Signal name	1 signal	0 signal	FP
		Channel 0 alarm present	Yes	No	9626
		Channel 0 fault present	Yes	No	9626
		Channel 1 alarm present	Yes	No	9626
		Channel 1 fault present	Yes	No	9626
		Channel 2 alarm present	Yes	No	9626
		Channel 2 fault present	Yes	No	9626
		Channel 3 alarm present	Yes	No	9626
		Channel 3 fault present	Yes	No	9626
		Channel 4 alarm present	Yes	No	9626
		Channel 4 fault present	Yes	No	9626
		Channel 5 alarm present	Yes	No	9626
		Channel 5 fault present	Yes	No	9626
		Channel 6 alarm present	Yes	No	962
		Channel 6 fault present	Yes	No	9627
		Channel 7 alarm present	Yes	No	9627
		Channel 7 fault present	Yes	No	9627
		Channel 8 alarm present	Yes	No	9627
		Channel 8 fault present	Yes	No	9627
		Channel 9 alarm present	Yes	No	9627
		Channel 9 fault present	Yes	No	962
		Channel 10 alarm present	Yes	No	9627
		Channel 10 fault present	Yes	No	9627
		Channel 11 alarm present	Yes	No	9627
	23	Channel 11 fault present	Yes	No	962
Dependency:	Refer to: p4102, p4103, r4105, p4118				
r4104.0..1	BO: TM31 temperature evaluation status / TM31 temp status				
TM31	Can be changed: -		Calculated: -	Access level: 1	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 9549, 9576	
	P-Group: Terminals		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Display and binector output for the status for the Terminal Module 31 (TM31).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Alarm is present	Yes	No	-
	01	Fault is present	Yes	No	-
Dependency:	Refer to: p4102				


r4105[0...11]	CO: TM150 temperature actual value / TM150 temp_act val		
TM150	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9626, 962
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$	- $\left[^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature actual value for the Terminal Module 150 (TM150)		
Index:	[0] = Temperature channel 0		
	[1] = Temperature channel 1		
	[2] = Temperature channel 2		
	[3] = Temperature channel 3		
	[4] = Temperature channel 4		
	[5] = Temperature channel 5		
	[6] = Temperature channel 6		
	[7] = Temperature channel 7		
	[8] = Temperature channel 8		
	[9] = Temperature channel 9		
	[10] = Temperature channel 10		
	[11] = Temperature channel 11		
Dependency:	For sensor type "PTC thermistor" and "Bimetallic NC contact" ( $p 4100[0 \ldots 11]=1,4$ ), the following applies:		
	- below the nominal response temperature, $\mathrm{r} 4105[0 . . .11]=-50^{\circ} \mathrm{C}$.		
	- above the nominal response temperature, r4105[0...11] $=250^{\circ} \mathrm{C}$.		
	For sensor type "KTY84", "PT100", "PT1000" (p4100[0...11] = 2, 5, 6) the following applies:		
	- the displayed value corresponds to the temperature actual value.		
	Refer to: p4100, p4111, r4112, r4113, r4114		
Note:	$r 4105[0 . . .11]=-300{ }^{\circ} \mathrm{C}$ is displayed in the following cases:		
	- temperature actual value invalid (F35920 ... F35931 output).		
	- no sensor selected (p4100[0...11] = 0).		
	The temperature actual values can be grouped using p4111[0...2] and the maximum value, minimum value as we the average value for each group evaluated (r4112[0...2], r4113[0...2], r4114[0...2]).		
r4105	CO: TM31 temperature actual value / TM31 temp_act val		
TM31	Can be changed: -	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9549, 957
	P-Group: Terminals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the temperature actua	Terminal Module	
Dependency:	For sensor type "PTC thermistor" (p4100 = 1), the following applies:		
	- below the nominal response temperature, $\mathrm{r} 4105=-50^{\circ} \mathrm{C}$.		
	- above the nominal response temperature, $\mathrm{r} 4105=250^{\circ} \mathrm{C}$.		
	For sensor type "KTY84" (p4100 = 2), the following applies:		
	- the displayed value corresponds to the temperature actual value.		
	Refer to: p4100		
Note:	$\mathrm{r} 4105=-300^{\circ} \mathrm{C}$ is displayed in the following cases:		
	- temperature actual value invalid (F35920 output).		
	- no sensor selected (p4100 = 0).		
	The temperature sensor is conn	inals X522.7(+) a	


p4108[0...5]	TM150 terminal block measuring method / TM150 meas method		
TM150	Can be changed: $T$	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9625, 962 9627
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	1
Description:	Sets the measuring method for the terminal block X531 ... X536 for the Terminal Module 150 (TM150).		
	Rep4108[0...5] = 0 ( $1 \times 2$ wire evaluation):		
	- the temperature sensor is connected at terminals $1(+)$ and $2(-)$.		
	Re p4108[0...5] = 1 ( $2 \times 2$ wire evaluation):		
	- The first temperature sensor is connected at terminals $1(+)$ and $2(-)$.		
	- The second temperature sensor is connected at terminals $3(+)$ and $4(-)$.		
	Rep4108[0...5] = 2 ( 3 wire evaluation):		
	- the temperature sensor is connected at terminals $3(+)$ and $4(-)$.		
	- the measuring conductor is connected at terminal $1(+)$.		
	- terminals $2(-)$ and $4(-)$ must be jumpered.		
	Re p4108[0...5] = 3 (4 wire evaluation):		
	- the temperature sensor is connected at terminals $3(+)$ and $4(-)$.		
	- the measuring conductor is connected at terminals $1(+)$ and $2(-)$.		
Value:	0 : $1 \times 2$ wire evaluation		
	1: $2 \times 2$ wire evaluation		
	2:3: $3 \begin{aligned} & \text { wire evaluation } \\ & 4 \text { wire evaluation }\end{aligned}$		
Index:	[ 0 ] $=\times 531$		
	$[1]=\times 532$		
	$[2]=X 533$		
	[3] $=$ X534		
	$[4]=\times 535$		
	[5] = X536		
Note:	The temperature sensors are connected to the following terminals:		
	X531 = channel 0 (for $2 \times 2$ wire evaluation, additionally channel 6)		
	X532 $=$ channel 1 (for $2 \times 2$ wire evaluation, additionally channel 7)		
	X533 = channel 2 (for $2 \times 2$ wire evaluation, additionally channel 8)		
	X534 = channel 3 (for $2 \times 2$ wire evaluation, additionally channel 9)		
	X535 = channel 4 (for $2 \times 2$ wire evaluation, additionally channel 10)		
	X536 = channel 5 (for $2 \times 2$ wire evaluation, additionally channel 11)		
	Rep4108[0...5] $=0,2,3$ ( $1 \times 2,3,4$ wire evaluation):		
	The temperature channel belonging to the terminal block with the higher number is automatically deactivated (e.g. fo X 531 with 3 -wire evaluation, channel 6 is deactivated).		
p4109[0...11]	TM150 wire resistance measurement / TM150 R_wire meas		
TM150	Can be changed: T	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: 9626, 962
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	For a 2 wire evaluation, the total wire resistance is measured and saved. During the temperature evaluation, the temperature actual value is automatically calibrated using the measured wire resistance.		

Value:

Index: $\quad[0]=$ Temperature channel 0
[1] = Temperature channel 1
[2] = Temperature channel 2
[3] = Temperature channel 3
[4] = Temperature channel 4
[5] = Temperature channel 5
[6] = Temperature channel 6
[7] = Temperature channel 7
[8] = Temperature channel 8
[9] = Temperature channel 9
[10] = Temperature channel 10
[11] = Temperature channel 11
Dependency:
Notice:
Note:

## p4110[0...11]

TM150

Description:

Index:

Dependency:
Notice:
Note:
Refer to: p4100, p4108, p4110 p4110[0...11].

Procedure:

1. Select the measuring method $(1 \times 2 / 2 x 2)$ for the corresponding terminal block ( $p 4108[0 \ldots 5]=0,1$ ).
2. Set the required sensor type for the corresponding channel ( $p 4100[x]=1 \ldots 6, x=0 \ldots 5$ or $0 \ldots 11$ ).
3. Jumper the sensor to be connected (short-circuit the sensor conductor close to the sensor).
4. Connect the sensor conductors to the appropriate terminals 1(+), 2(-) or 3(+), 4(-).
5. For the corresponding channel, start the measurement of the wire resistance $(p 4109[x]=1)$.

6 . After $\mathrm{p} 4109[\mathrm{x}]=0$, check the measured resistance value in $\mathrm{p} 4110[\mathrm{x}]$.
7. Remove the jumper across the temperature sensor.

Wire resistance measurement is only possible for $1 \times 2$ or $2 \times 2$ wire evaluation ( $p 4108[0 \ldots 5]=0,1$ ).
The wire resistance value can be also directly entered into p4110[0...11].
The automatic conductor calibration for $1 \times 2$ and $2 \times 2$ wire evaluation is always performed with the value in

p4110[0...11]	TM150 wire resistance value / TM150 R_wire value		
TM150	Can be changed: $T$	Calculated: -	Access level: 1
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 9626, 9627
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ohm]	3000.00 [ohm]	0.00 [ohm]
Description:	Sets and displays the wire resistance for Terminal Module 150 (TM150).		
	The value is used for the automatic conductor calibration.		
	The value is automatically set by starting the wire resistance measurement (p4109[0...11]) of the corresponding channel.		
Index:	[0] = Temperature channel 0		
	[1] = Temperature channel 1		
	[2] = Temperature channel 2		
	[3] = Temperature channel 3		
	[4] = Temperature channel 4		
	[5] = Temperature channel 5		
	[6] = Temperature channel 6		
	[7] = Temperature channel 7		
	[8] = Temperature channel 8		
	[9] = Temperature channel 9		
	[10] = Temperature channel 10		
	[11] = Temperature channel 11		
Dependency:	Refer to: p4109		
Notice:	Wire resistance measurement is only possible for $1 \times 2$ or $2 \times 2$ wire evaluation ( $\mathrm{p} 4108[0 \ldots 5]=0,1)$.		
Note:	Automatic conductor calibration is deactivated using p4110[0...11] $=0$.		


p4111[0...2]	TM150 group channel assignment / TM150 grp channel				
TM150	Can	be changed: $T$	Calculated: -	Acces	
	Dat	type: Unsigned16	Dyn. index: -	Func.	
	P-G	oup: -	Units group: -	Unit s	
	Not	for motor type: -	Scaling: -	Exper	
	Min		Max	Facto	
	-		-	0000	
Description:	Assigns the temperature channels to groups for the Terminal Module 150 (TM150)				
	For each group, the following calculated values are provided from the temperature actual values (r4105[0...11]): - Maximum value (r4112[0...2])				
Index:	$\begin{aligned} & {[1]=\text { Group } 1} \\ & {[2]=\text { Group } 2} \end{aligned}$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Temperature channel 0	Yes	No	-
		Temperature channel 1	Yes	No	-
		Temperature channel 2	Yes	No	-
		Temperature channel 3	Yes	No	-
		Temperature channel 4	Yes	No	-
		Temperature channel 5	Yes	No	-
		Temperature channel 6	Yes	No	-
		Temperature channel 7	Yes	No	-
		Temperature channel 8	Yes	No	-
		Temperature channel 9	Yes	No	-
		Temperature channel 10	Yes	No	-
		Temperature channel 11	Yes	No	-
Dependency:	Refer to: r4105, r4112, r4113, r4114				
Notice:	When forming groups, it must be ensured that in one particular group, only temperature channels with the following sensor types are included:				
	- "KTY84", "PT100", "PT1000" (p4100[0...11] = 2, 5, 6), real temperature actual value or alternatively				
	If these sensor types are combined within one group, then the calculated values for maximum, minimum and average value will be falsified.				
Note:	Active and inactive temperature channels can be included in one group. However, when calculating the values ( $\mathrm{r} 4112, \mathrm{r} 4113, \mathrm{r} 4114$ ) only the active temperature channels with valid actual value are taken into account (r4105[0...11] not equal to $-300^{\circ} \mathrm{C}$ ).				
r4112[0...2]	CO: TM150 group temperature actual value maximum value / TM150 grp temp max				
TM150	Can be changed: -		Calculated: -	Acces	
	Data type: FloatingPoint32		Dyn. index: -	Func.	
	P-Group: Terminals		Units group: -	Unit s	
	Not for motor type: -		Scaling: p2006	Exper	
	Min		Max	Facto	
	$-\left[{ }^{\circ} \mathrm{C}\right]$		$-\left[{ }^{\circ} \mathrm{C}\right]$	- ${ }^{\circ} \mathrm{C}$ ]	
Description:	Display and connector output for the maximum value of each group for the Terminal Module 150 (TM150). This value is calculated from the actual temperature values (r4105[0...11]) of each group.				
Recommend.:	The following connector inputs can use these connector outputs for interconnection:				- CI: p0603
	- CI: p0608[0...3]				
	- CI: p0609[0...3]				
	- Cl: p2051				



For p4117 = 1, the following applies:
For a sensor error, for the maximum value, minimum value and average value of the corresponding group, a value of $-300{ }^{\circ} \mathrm{C}$ is output.



p4601[0...n]	Motor temperature sensor 2 sensor type / Temp_sens 2 type		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	0
Description:	Sets the sensor type of the second temperature sensor for the motor temperature monitoring.		
Value:	0: No sensor		
	10: PTC fault		
	11: PTC alarm		
	12: PTC alarm \& timer		
	20: KTY84		
	30: Bimetallic NC contact fault		
	31: Bimetallic NC contact alarm		
Dependency: Note:	Refer to: r0458, p0600, p0601		
	This parameter is effective only when p0601 $=10$.		
	Terminals for KTY84: X200.1, X200.2		
	PTC thermistor: Tripping resistance $=1650$ Ohm		
	Information on using temperature sensors is provided in the following literature:		
	- hardware description of the appropriate components		
	- SINAMICS S120 Commissioning Manual		
p4602[0...n]	Motor temperature sensor 3 sensor type / Temp_sens 3 type		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	0
Description: Value:	Sets the sensor type of the third temperature sensor for the motor temperature monitoring.		
	No sensor		
	PTC fault		
	PTC alarm		
	PTC alarm \& timer		
	KTY84		
	Bimetallic NC contact fault		
	Bimetallic NC contact alarm		
	Bimetallic NC contact alarm \& timer		
Dependency:	Refer to: r0458, p0600, p0601		
Note:	This parameter is effective only when p0601 $=10$.		
	Terminals for PTC triplet and bimetallic: X200.3, X200.4		
	PTC thermistor: Tripping resistance $=1650$ Ohm		
	Information on using temperature sensors is provided in the following literature:		
	- hardware description of the appropriate components		
	- SINAMICS S120 Commissioning Manual		


p4603[0...n]	Motor temperature sensor 4 sensor type / Temp_sens 4 type		
VECTOR_G	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: EDS, p0140	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	0
Description:	Sets the sensor type of the fourth temperature sensor for the motor temperature monitoring.		
Value:	0: No sensor		
	10: PTC fault		
	11: PTC alarm		
	12: PTC alarm \& timer		
	20: KTY84		
	30: Bimetallic NC contact faur		
	31: Bimetallic NC contact		
	32: Bimetallic NC contact		
Dependency:	Refer to: r0458, p0600, p0601		
Note:	This parameter is effective only when p0601 $=10$.		
	Terminals for PTC triplet: X200.5, X200.6		
	PTC thermistor: Tripping resistance $=1650$ Ohm		
	Information on using temperature sensors is provided in the following literature:		
	- hardware description of the appropriate components		
	- SINAMICS S120 Commissioning Manual		


p4610[0...n]	Motor temperature sensor 1 sensor type MDS / Temp sens1 typ MDS		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	10

Description: Sets the sensor type of the first temperature sensor for the motor temperature monitoring.

| Value: | $0: \quad$ No sensor |
| :--- | :--- | :--- |
|  | $10: \quad$ PTC fault |
|  | $11: \quad$ PTC alarm |
|  | $12: \quad$ PTC alarm \& timer |
|  | $20: \quad$ KTY84, PT100, PT1000 |
|  | $30: \quad$ Bimetallic NC contact fault |
|  | $31: \quad$ Bimetallic NC contact alarm |
|  | $32: \quad$ Bimetallic NC contact alarm \& timer |
| Dependency: | Refer to: r0458, p0600, p0601 |
| Note: | This parameter is effective only when p0601 = 11. |
|  | PTC thermistor: Tripping resistance $=1650$ Ohm |
|  | Information on using temperature sensors is provided in the following literature: |
|  | - hardware description of the appropriate components |
|  | - SINAMICS S120 Commissioning Manual |


p4611[0...n]	Motor temperature sensor 2 sensor type MDS / Temp sens2 typ MDS		
VECTOR_G	Can be changed: C2(3), U, T	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	10

Description: Sets the sensor type of the second temperature sensor for the motor temperature monitoring.

Value:	$0: \quad$ No sensor
	$10: \quad$ PTC fault
	$11: \quad$ PTC alarm
$12: \quad$ PTC alarm \& timer	
	$20: \quad$ KTY84, PT100, PT1000
	$30: \quad$ Bimetallic NC contact fault
	$31: \quad$ Bimetallic NC contact alarm
	$32: \quad$ Bimetallic NC contact alarm \& timer
Dependency:	Refer to: r0458, p0600, p0601
Note:	This parameter is effective only when p0601 = 11.
	PTC thermistor: Tripping resistance = 1650 Ohm
	Information on using temperature sensors is provided in the following literature:
	- hardware description of the appropriate components
	- SINAMICS S120 Commissioning Manual


p4612[0...n]	Motor temperature sensor 3 sensor type MDS / Temp sens3 typ MDS		
VECTOR_G	Can be changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
	Data type: Integer16	Dyn. index: MDS, p0130	Func. diagram: 8016
	P-Group: Motor	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	32	10

Description: Sets the sensor type of the third temperature sensor for the motor temperature monitoring.

Value:	$\begin{aligned} & 0: \\ & 10: \\ & 11: \\ & 12: \\ & 20: \\ & 30: \\ & 31: \\ & 32: \end{aligned}$	No sensor PTC fault PTC alarm PTC alarm \& timer KTY84, PT100, PT100 Bimetallic NC contact f Bimetallic NC contact Bimetallic NC contact		
Dependency: Note:	Refe   This   PTC   Infor   - har   - SIN	o: r0458, p0600, p0601 arameter is effective only ermistor: Tripping resis ation on using temperatur vare description of the a MICS S120 Commissio	$=11$.   Ohm   provided in the following l ponents	
p4613[0...n]		temperature sen	r type MDS / Temp	p MDS
VECTOR_G	Can	changed: $\mathrm{C} 2(3), \mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 2
			Dyn. index: MDS, p0130	
		up: Motor	Units group: -	Unit selection: -
	Not	motor type: -	Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		32	10

Description: Sets the sensor type of the fourth temperature sensor for the motor temperature monitoring.

Value:	$0:$	No sensor
	$10:$	PTC fault
	$11:$	PTC alarm
	$12:$	PTC alarm \& timer
	$20:$	KTY84, PT100, PT1000
	$30:$	Bimetallic NC contact fault
	$31:$	Bimetallic NC contact alarm
	$32: \quad$ Bimetallic NC contact alarm \& timer	
	Dependency:	Refer to: r0458, p0600, p0601


Note:	This parameter is effective only when p0601 $=11$.   PTC thermistor: Tripping resistance $=1650$ Ohm   Information on using temperature sensors is provided in the following literature:   - hardware description of the appropriate components   - SINAMICS S120 Commissioning Manual		
r4620[0...3]	Motor temperature m	_temp meas	
VECTOR_G	Can be changed: -   Data type: FloatingPoint32   P-Group: Displays, signals   Not for motor type: -   Min   $-\left[{ }^{\circ} \mathrm{C}\right]$	Calculated: -   Dyn. index: -   Units group: 21_1   Scaling: p2006   Max   $-\left[{ }^{\circ} \mathrm{C}\right]$	Access level: 3   Func. diagram: -   Unit selection: p0505   Expert list: 1   Factory setting $-\left[{ }^{\circ} \mathrm{C}\right]$
Description: Index:	Displays the actual temperature in the motor measured through temperature char   [0] = Temperature channel 1   [1] = Temperature channel 2   [2] = Temperature channel 3   [3] = Temperature channel 4   For a value not equal to $-200.0^{\circ} \mathrm{C}$, the following applies:   - this temperature display is valid.   - a KTY sensor is connected.   For a value equal to $-200.0^{\circ} \mathrm{C}$, the following applies:   - this temperature display is not valid (temperature sensor error).   - A PTC sensor or bimetallic NC contact is connected.   - the temperature sensor evaluation is de-activated ( $p 0600=0$ or p0601 $=0$ ).   - the sensor channel is de-activated ( $\mathrm{p} 460 \mathrm{x}=0$ or $\mathrm{p} 461 \mathrm{x}=0$ ).		
Note:			
r4640[0...95]	Encoder diagnostics state machine / Enc diag stat_ma		
ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the encoder diagnostics for the PROFIdrive interface.		
p4641[0...2]	OEM encoder diagnostic signal selection / OEM enc diag sel		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description: Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		




r4654.0	CO/BO: XIST1_ERW status / XIST1_ERW stat						
ENC	Can be changed: -	Calculated: -	Acces				
	Data type: Unsigned32	Dyn. index: -	Func.				
	P-Group: Encoder	Units group: -	Unit s				
	Not for motor type: -	Scaling: -	Exper				
	Min	Max	Facto				
	-	-	-				
Description:	Display and binector output to reset XIST1_ERW.						
Bit field:	Bit Signal name   00 XIST1_ERW reset	1 signal High	0 signal Low	FP			
Dependency: Note:	Refer to: p4652, r4653, p4655						
	The reset of XIST1_ERW is initiated via binector input p4655.						
	Binector output r4654 is reset with a 0 signal from binector input p4655.						
$\text { r4654.0... } 16$	CO/BO: XIST1_ERW status / XIST1_ERW stat						
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3				
	Data type: Unsigned32	Dyn. index: -	Func.				
	P-Group: Encoder	Units group: -	Unit s				
	Not for motor type: -	Scaling: -	Exper				
	Min	Max	Factor				
	-	-	-				
Description:   Bit field:	Display and binector output to reset XIST1_ERW.						
	Bit Signal name   00 Encoder 1 XIST1_ERW reset   08 Encoder 2 XIST1_ERW reset   16 Encoder 3 XIST1_ERW reset	1 signal	0 signal	FP			
		High	Low				
		High	Low				
		High	Low				
Dependency:   Note:	Refer to: p4652, r4653, p4655						
	The reset of XIST1_ERW is initiated via binector input p4655.						
	Binector output r4654 is reset with a 0 signal from binector input p4655.						
p4655	BI: XIST1_ERW reset signal source / XIST1_ERW resS_src						
ENC	Can be changed: $T$   Data type: Unsigned32 / Binary   P-Group: Encoder	Calculated: -	Access level: 3				
		Dyn. index: -	Func.				
		Units group: -	Unit s				
	Not for motor type: -	Scaling: -	Exper				
	Min	Max	Facto				
			0				
Description:   Dependency:   Note:			Sets the signal source to reset XIST1_ERW (CO: r4653).				
	The reset of XIST1_ERW depends on the selected mode (p4652).						
p4655[0...2]	BI: XIST1_ERW reset signal source / XIST1_ERW resS_src						
VECTOR_G	Can be changed: $T$   Data type: Unsigned32 / Binary	Calculated: -	Access level: 3				
		Dyn. index: -	Func.				
	Data type: Unsigned32 / Binary P-Group: Encoder	Units group: -	Unit s				
	Not for motor type: -	Scaling: -	Exper				
	Min	Max	Factor				
	-	-	0				
Description:	Sets the signal source to reset XIST1_ERW (CO: r4653).						
Index:	$\begin{aligned} & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$						




p4665[0...n]	Encoder characteristic K2 / Enc char K2			
ENC, VECTOR_G	Can be changed: U, T	Calculated: -	Access level:	
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagra	
	P-Group: -	Units group: -	Unit selectio	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setti	
	-	-	-	
Description:	Setting for coefficient K2 to calculate the characteristic (p4662).   Refer to: p4662, p4663, p4664, p4666			
Dependency:				
p4666[0...n]	Encoder characteristic K3 / Enc char K3			
ENC, VECTOR_G	Can be changed: U, T	Calculated: -	Access level:	
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagra	
	P-Group: -	Units group: -	Unit selectio	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setti	
	-	-	-	
Description:	Setting for coefficient K3 to calculate the characteristic (p4662).			
Dependency:	Refer to: p4662, p4663, p4664, p4665			
p4670[0...n]	Analog sensor configuration / Ana_sens config			
ENC, VECTOR_G	Can be changed: U, T	Calculated: -	Access level:	
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagra	
	P-Group: -	Units group: -	Unit selectio	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setti	
	-	-	$\begin{aligned} & 0000000000 \\ & 0000000000 \end{aligned}$	
Description:	Sets the configuration for evaluation on the analog sensor.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	06 Set velocity to 0	Yes	No	-
	08 Pos val range	0.0 / 1.0 pulse	$-0.5 /+0.5$ pulse	-
	09 Fault/alarm messages	Alarm	Fault	-
	10 Channel B act	Yes	No	-
	11 Channel A act	Yes	No	-
	13 Commutation angle constant	Yes	No	-
	14 Suppress faults	Yes	No	-
	31 Extrapolation	ON	OFF	-
Notice:	Re bit 06:			
	Setting the bit sets the velocity actu	r0061) permanently to 0 .		
	Re bit 13:			
	Setting the bit sets the commutation	rmanently to the commuta	gle offset (p0431)	
Note:	Re bit 09:			
	A setting of bit $=0$ will trigger a fault for the relevant channel if the actual value is invalid.			
	A setting of bit $=1$ will trigger an alarm for the relevant channel if the actual value is invalid. Re bit 10, 11:			
	If both channels are activated, the actual value is generated from the mean value of both channels. If a channel fa (actual value invalid), it is not included when the mean value is generated.			
	Re bit 14:			
	The bit is only evaluated for encoder 1. Otherwise no effect.			



p4672[0...n]	Analog sensor channel A voltage at actual value zero / Ana_sens A U at 0		
ENC, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-10.0000[\mathrm{~V}]$	$0.0000[\mathrm{~V}]$	
Description:	Sets the voltage when the connected sensor is at actual value zero.		
	At this voltage channel A supplies an actual value of zero.		


p4673[0...n]	Analog sensor channel A voltage per encoder period / Ana_sens A U/per		
ENC, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-10.0000 [V]	10.0000 [V]	6.0000 [V]
Description:	Sets the output voltage range to be mapped for the connected analog sensor.		
	The voltage range is determined by the following parameters:		
	- p4672 (voltage at actual value 0)		
	- p4673 (voltage per encoder period)		
Note:	The minimum actual value which can be mapped is equal to p4672-p4673/2.		
	The maximum actual value which can be mapped is equal to $\mathrm{p} 4672+\mathrm{p} 4673 / 2$.		


p4674[0...n]	Analog sensor channel B voltage at actual value zero / Ana_sens B U at 0		
ENC, VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: -   Not for motor type: -   Min $-10.0000[\mathrm{~V}]$	Calculated: -   Dyn. index: EDS, p0140   Units group: -   Scaling: -   Max   10.0000 [V]	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   0.0000 [V]
Description:	Sets the voltage when the connected sensor is at actual value zero. At this voltage channel $B$ supplies an actual value of zero.		
p4675[0...n]	Analog sensor channel B voltage per encoder period / Ana_sens B U/per		
ENC, VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: FloatingPoint32   P-Group: -   Not for motor type: -   Min $-10.0000[\mathrm{~V}]$	Calculated: -   Dyn. index: EDS, p0140   Units group: -   Scaling: -   Max $10.0000 \text { [V] }$	Access level: 4   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting   6.0000 [V]
Description:	Sets the output voltage range to be mapped for the connected analog sensor. The voltage range is determined by the following parameters:   - p4674 (voltage at actual value 0)   - p4675 (voltage per encoder period)   The minimum actual value which can be mapped is equal to p4674-p4675/2.   The maximum actual value which can be mapped is equal to $\mathrm{p} 4674+\mathrm{p} 4675 / 2$.		
Note:			
p4676[0...n]	Analog sensor range limit threshold / Ana_sens lim thr		
ENC, VECTOR_G	Can be changed: $U, T$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	100.0 [\%]
Description:	Sets the threshold for limit monitoring of the absolute actual value on the analog sensor. If this threshold is overshot by the actual value of a channel, a corresponding fault/alarm (p4670.9) is		
Dependency:	Refer to: p4673, p4675		

p4677[0...n] Analog sensor LVDT configuration / Ana_sens LVDT conf

ENC, VECTOR_G Can be changed: C2(4)
Data type: Unsigned32
P-Group: Encoder
Not for motor type: -
Min

Description: Sets the configuration for LVDT mode on the analog sensor.
Bit field:

Calculated: -
Dyn. index: EDS, p0140
Units group: -
Scaling: -
Max

1 signal
Yes
Yes
Yes
Yes

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting 0000 bin

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	LVDT ON	Yes	No	-
01	Track B excitation	Yes	No	-
02	Fixed value amplitude	Yes	No	-
03	Fixed value amplitude and phase	Yes	No	-




p4686[0...n]	Zero mark minimum length / ZM min length		
ENC, VECTOR_G	Can be changed: C2(4)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: EDS, p0140	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	10	1
Description:	Sets the minimum length for the zero mark in $1 / 4$ encoder pulses.   Refer to: p0425, p0437		
Dependency:			
Note:	The value for the minimum length of the zero mark must be set less than p0425.		
	The parameter is activated using p0437.1 $=1$ (zero mark edge detection).		
p4688	CO: Zero mark monitoring differential pulse count / ZM diff_pulse qty		
ENC	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147483648	2147483647	0
Description:	Displays the number of differential pulses for the zero mark monitoring that have accumulated. If fault $\mathrm{F} 3 \times 131$ is re-parameterized to alarm (A) or no message ( N ), the encoder pulses which have not been corrected are added to the accumulator ( p 4688 ).		
Dependency:	Refer to: p4681, p4682, p4683, p4684		
Note:	The display can only be reset to zero.		
p4688[0...2]	CO: Zero mark monitoring differential pulse count / ZM diff_pulse qty		
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147483648	2147483647	0
Description:	Displays the number of differential pulses for the zero mark monitoring that have accumulated. If fault $\mathrm{F} 3 \times 131$ is re-parameterized to alarm (A) or no message $(\mathrm{N})$, the encoder pulses which have not been corrected are added to the accumulator ( p 4688 ).		
Index:	$\begin{aligned} & {[0]=\text { Encoder } 1} \\ & {[1]=\text { Encoder } 2} \\ & {[2]=\text { Encoder } 3} \end{aligned}$		
Dependency:	Refer to: p4681, p4682, p4683, p4684		
Note:	The display can only be reset to zero.		
r4689	CO: Squarewave encoder diagnostics / Sq-wave enc diag		
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Encoder	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the encoder status according to PROFIdrive for a squarewave encoder. After alarm A3×422 is output, this parameter is set for 100 ms .		
Note:			




p4692	SMI spare part save data of all SMIs / Save SMI data
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: T Calculated: - Access level: 1   Data type: Integer16 Dyn. index: - Func. diagram: -   P-Group: Displays, signals Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 29 0
Description: Value:	Setting to back up the data of all SMIs and DQIs featured in the target topology.   0: Inactive   1: Save data of all SMIs and DQls   10: Save all data successful   13: Insufficient memory space for backup   16: Transfer fault during data backup   20: Component does not contain any data   29: Not all components from target topology saved
Note:	SMI: SINAMICS Sensor Module Integrated   p4692 = 10: Automatic on successful completion of backup procedure.   $p 4692=13,16,20,29$ : Error values if the procedure could not be executed successfully.   The procedure must be repeated if the data save operation was interrupted (e.g. if the power supply voltage failed).   Help for error value $=13$ :   - Use a memory card with more memory space.   Help for error value = 16:   - check the DRIVE-CLiQ wiring.   Help for error value $=20$ :   - Use an SMI that is not blank.   Help for error value $=29$ :   - Check and correct the target and actual topologies for the SMIs.   - Repeat the save procedure.
p4693[0...1]	SMI spare part data backup directory / SMI dat_bkup dir
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: T Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: Displays, signals Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 399 0
Description:	Sets the directory for downloading and saving data.   Example:   The SMI has the component number 5 and the SMI data (motor/encoder data) is to be stored in subdirectory C205. $-->p 4690=5, p 4693[0]=205, p 4691=1$
Index:	$\begin{aligned} & {[0]=\text { Subdirectory selection }} \\ & {[1]=\text { Reserved }} \end{aligned}$
Dependency:	Refer to: p4691, r4694
Notice:	If $p 4693[0]$ is not equal to 0 and $p 4693[0]$ is not equal to p 4690 , the following applies:   - Only a number >= 200 may be selected for the subdirectory when saving.   - In the case of downloads, a selection for the subdirectory may only be made for an SMI/DQI with a component number >= 200 (preliminary component number) (p4690 >= 200).
Note:	DQI: DRIVE-CLiQ Sensor Integrated   SMI: SINAMICS Sensor Module Integrated   Re index 0 :   This index is used to select the subdirectory for saving and downloading data. The motor order number (MLFB) of the corresponding data backup is displayed in r 4694 .   For $\mathrm{p} 4693[0]=0$, the following applies:   The directory is determined by the setting of p 4690 .



Bit field:		Signal name	1 signal	0 signal	FP
	00	Automatically start trace with time slices	Yes	No	-
Dependency:	Refer to: p4700				
Note:	Re bit 00:				
	0: The trace starts with p4700 as before.				
	1: When powering up, the trace starts immediately with the saved parameter settings with the start of the time slices.				


r4705[0...1]	Trace status / Trace status		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Max
	Min	4	Factory setting
	0		
	Displays the actual status of the trace.		
Description:	$0: \quad$ Trace inactive		
Value:	$1: \quad$ Trace is recording presamples		
	$2: \quad$ Trace is waiting for trigger event		
	$3: \quad$ Trace is recording		
	$4: \quad$ Recording (trace) ended		
	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4706	Measuring function status / Meas fct status		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP, CU G150 PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0	5	-
Description:	Displays the actual status of the measuring function.		
Value:	0: Measurement function inactive		
	1: Measuring function parameterization checked		
	2: Measuring function waits for stabilizing time		
	3: Measuring function recording (tracing)		
	4: Measuring function trace ended with error		
	5: Measuring function trace successfully com		
p4707	Measurement function configuration / Meas fct config		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0	1	0
Description:	Setting to configure the measurement function.		
Value:	0 : Standard		
Dependency:	The parameter cannot be changed when the measurement function has been started (r4706 = 2, 3).		
Note:	This parameter involves the free measuring functions and is only active for p4810=6.		
	For value = 0:		
	The free measuring function is parameterized with master control.		
	For value = 1:		
	The free measuring function is parameterized without master control.		



Index:	$[0]=$ Trace 0 parameter in BICO format
$[1]=$ Trace 1 parameter in BICO format	
$[2]=$ Trace 0 PINx with DO Id and chart Id	
$[3]=$ Trace 0 PINx with block Id and PIN Id	
$[4]=$ Trace 1 PINy with DO Id and chart Id	
$[5]=$ Trace 1 PINy with block Id and PIN Id	
Only effective when p4710 does not equal 1.	
Dependency:	It only makes sense to trace the PINs using the commissioning software.
Note:	For index $2(4)$ and $3(5)$ equal to zero, index $0(1)$ can only be written and vice versa.
	Re index $0 \ldots 1$ :
	Here, the trigger signal for trace 0 or 1 is entered as parameter in the BICO format.
	For trace with a physical address (p4789), the data type of the trigger signal is set here.
	Re index $2 \ldots 3:$
	The triggering PIN for trace 0 is entered here.
	Index 2 bit $31 \ldots 16:$ Number of the Drive Object (DO), bit $15 \ldots 0:$ Number of the chart
	Index 3 bit $31 \ldots 16:$ Number of the block, bit $15 \ldots 0:$ Number of the PIN
	Re index $4 \ldots 5:$
	The triggering PIN for trace 1 is entered here.
	Index 4 bit $31 \ldots 16:$ Number of the Drive Object (DO), bit $15 \ldots 0:$ Number of the chart
	Index 5 bit $31 \ldots 16:$ Number of the block, bit $15 \ldots 0:$ Number of the PIN


p4712[0...1]	Trace trigger threshold / Trace trig_thresh		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Max
	Min	$340.28235 E 36$	Factory setting
	$-340.28235 E 36$		0.00
Description:	Sets the trigger threshold for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only effective when $\mathrm{p} 4710=2,3$.		


p4713[0...1]	Trace tolerance band trigger threshold 1/Trace trig thr 1		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	$-340.28235 E 36$	340.28235 E 36	0.00

Description: Sets the first trigger threshold for trigger via tolerance band.

Index:
Dependency: $\quad$ Only effective when $\mathrm{p} 4710=4,5$.

p4714[0...1]	Trace tolerance band trigger threshold 2 / Trace trig thr $\mathbf{2}$		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	$-340.28235 E 36$	$340.28235 E 36$	0.00

[^5]Dependency: $\quad$ Only effective when $\mathrm{p} 4710=4,5$.

p4715[0..1]	Trace bit mask trigger, bit mask / Trace trig mask		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Sot for motor type: -	Max	Expert list: 0
	Min	Factory setting	
	0	4294967295	0
Description:	Sets the bit mask for the bit mask trigger.		
Index:	$[0]=$ Trace 0		
	[1] = Trace 1		
Dependency:	Only effective when $p 4710=6$.		


p4716[0...1]	Trace bit mask trigger trigger condition / Trace Trig_cond		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Factory setting	
	0	4294967295	0
Description:	Sets the trigger condition for bit mask trigger.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only effective when $p 4710=6$.		


p4717	Measuring function number of averaging operations / Meas fct avg qty		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	255	0

Description: Sets the number of averaging operations for the measuring function.

p4718	Measuring function number of stabilizing periods / MeasFct StabPerQty		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	255	0

Description: Sets the number of stabilizing periods for the measuring function.

r4719[0...1]	Trace trigger index / Trace Trig_index		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G13O_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G15O_DP,	P-Group: Trace and function generator	Units group:	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	-	Factory setting
	-	-	
Description:	Displays the trigger index in the trace buffer. The trigger event occurred at this point.		


Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only valid when $p 4705=4$.		
p4720[0...1]	Trace recording cycle / Trace record_cyc		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Scaling: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 0
	Min	60000.000 [ms]	Factory setting
	0.000 [ms]		1.000 [ms]
Description:	Sets the recording cycle for the trace.		
Index:	[0] = Trace 0		
	[1] = Trace 1		


p4721[0...1]	Trace recording time / Trace record_time		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group:	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	$0.000[\mathrm{~ms}]$	$3600000.000[\mathrm{~ms}]$	$1000.000[\mathrm{~ms}]$
	Sets the recording time for the trace.		
Description:	$[0]=$ Trace 0		
Index:	$[1]=$ Trace 1		


p4722[0...1]	Trace trigger delay / Trace trig_delay		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-3600000.000 [ms]	3600000.000 [ms]	0.000 [ms]
Description:	Sets the trigger delay for the trace.		
	Trigger delay < 0 :		
	Pretrigger: Tracing (recording) starts the selected time before the trigger event actually occurs. Trigger delay >0:		
	Post trigger: Tracing does not start until the set time after the trigger event.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		
p4723[0...1]	Trace time slice cycle / Trace cycle		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0.03125 [ms]	4.00000 [ms]	0.12500 [ms]
Description:	Sets the time slice cycle in which the trace is called.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		


p4724[0..1]	Trace average in the time range / Trace average		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Max	Expert list: 0
	Min for motor type: -	Factory setting	
	Min	0001 bin	
	0000 bin		
Description:	Sets the averaging in the time range for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4725[0...1]	Trace data type 1 traced / Trace rec type 1		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	-	
	-		
Description:	Displays the recorded data type 1 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4726[0...1]	Trace data type 2 traced / Trace rec type 2		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Fax	Factory setting
	-	-	
Description:	Displays the recorded data type 2 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4727[0...1]	Trace data type 3 traced / Trace rec type 3		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the recorded data type 3 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


r4728[0..1]	Trace data type 4 traced / Trace rec type 4		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Fax	Factory setting
	-	-	

Index: $\left.\quad \begin{array}{l}{[0]=\text { Trace } 0} \\ \\ \\ \\ \\ \end{array} 1\right]=$ Trace 1

r4729[0...1]	Trace number of recorded values / Trace rec values		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Sot for motor type: -	Scaling: -	Expert list: 0
	Min	-	Factory setting
	-	-	
Description:	Displays the number of traced values for each signal.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		
Dependency:	Only valid when $p 4705=4$.		


p4730[0...5]	Trace record signal 0 / Trace record sig 0		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	0
Description:	Selects the first signal to be traced.		
Index:	[ 0 ] = Trace 0 parameter in BICO format   [1] = Trace 1 parameter in BICO format   [2] = Trace 0 PINx with DO Id and chart Id   [3] = Trace 0 PINx with block Id and PIN Id   [4] = Trace 1 PINy with DO Id and chart Id   [5] = Trace 1 PINy with block Id and PIN Id		


p4731[0...5]	Trace record signal 1 / Trace record sig 1		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	-	0
	-		
Description:	Selects the second signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		


p4732[0...5]	Trace record signal 2 / Trace record sig 2		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G15_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Fax	0
	-		
Description: setting			
Index:	Selects the third signal to be traced.		
	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		

[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

p4733[0...5]	Trace record signal 3 / Trace record sig 3		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	0

Description: Selects the fourth signal to be traced.

Index: $\quad[0]=$ Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

## Access level: 3

Func. diagram: -

Expert list: 0
Factory setting
0

Description: Selects the fourth signal to be traced.
$[1]=$ Trace 1 parameter in BICO format
$[2]=$ Trace 0 PINx with DO Id and chart Id
$[3]=$ Trace 0 PINx with block Id and PIN Id
$[4]=$ Trace 1 PINy with DO Id and chart Id
$[5]=$ Trace 1 PINy with block Id and PIN Id

p4734[0..5]	Trace record signal 4 / Trace record sig 4		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	0

Description: Selects the fifth signal to be traced.
Index: [0] = Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

p4735[0...5]	Trace record signal 5 / Trace record sig 5		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	0

Description: Selects the sixth signal to be traced.
Index: [0] = Trace 0 parameter in BICO format
[1] = Trace 1 parameter in BICO format
[2] = Trace 0 PINx with DO Id and chart Id
[3] = Trace 0 PINx with block Id and PIN Id
[4] = Trace 1 PINy with DO Id and chart Id
[5] = Trace 1 PINy with block Id and PIN Id

## Access level: 3

Func. diagram: -
Unit selection: -

Factory setting
0

p4736[0...5]	Trace record signal 6 / Trace record	d sig 6	
CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	Can be changed: $\mathrm{U}, \mathrm{T}$   Data type: Unsigned32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated:   Dyn. index:   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting   0
Description: Index:	Selects the seventh signal to be traced.   [ 0 ] = Trace 0 parameter in BICO format   [1] = Trace 1 parameter in BICO format   [2] = Trace 0 PINx with DO Id and chart Id   [3] = Trace 0 PINx with block Id and PIN Id   [4] = Trace 1 PINy with DO Id and chart Id   [5] = Trace 1 PINy with block Id and PIN Id		


p4737[0...5]	Trace record signal 7 / Trace record sig 7		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Func. diagram: -	
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	0
	-	-	
Description:	Selects the eighth signal to be traced.		
Index:	$[0]=$ Trace 0 parameter in BICO format		
	$[1]=$ Trace 1 parameter in BICO format		
	$[2]=$ Trace 0 PINx with DO Id and chart Id		
	$[3]=$ Trace 0 PINx with block Id and PIN Id		
	$[4]=$ Trace 1 PINy with DO Id and chart Id		
	$[5]=$ Trace 1 PINy with block Id and PIN Id		


r4740[0...16383]	Trace 0 trace buffer signal 0 floating point / Trace 0 tr sig 0		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 0 .		
	The trace (record) buffer is sub-divided into memory banks, each containing 16384 values. Parameter p4795 can be used to toggle between the individual banks.		
	Example A:		
	The first 16384 values of signal 0 , trace 0 are to be read out.		
	In this case, memory bank 0 is set with p4795 $=0$. The first 16384 values can now be read out using r4740[0] to r4740[16383].		
	Example B:		
	The values 16385 to 32768 from signal 0 , trace 0 are to be read out.		
	In this case, memory bank 1 is set with p4795=1. The values can now be read out in r4740[0] to r4740[16383].		
Dependency:	Refer to: p4795		


r4741[0...16383]	Trace 0 trace buffer signal 1	/ T	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) Refer to: r4740, p4795	race 0 and signal	
$\begin{aligned} & \text { r4742[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150DP, } \\ & \text { CU_G15O_PN } \end{aligned}$	Trace 0 trace buffer signal 2 f   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tr   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) Refer to: $\mathrm{r} 4740, \mathrm{p} 4795$	race 0 and signal 2	
$\begin{aligned} & \text { r4743[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G13O_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 0 trace buffer signal 3 f   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tra   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer)   Refer to: $\mathrm{r} 4740, \mathrm{p} 4795$	race 0 and signal	
$\begin{aligned} & \text { r4744[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G13O_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 0 trace buffer signal 4 f   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tra   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) Refer to: $\mathrm{r} 4740, \mathrm{p} 4795$	race 0 and signal	
$\begin{aligned} & \text { r4745[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G13O_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 0 trace buffer signal 5 f   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tra   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 5 . Refer to: r 4740 , p4795		


r4746[0...16383]	Trace 0 trace buffer signal 6 flo	g point / Tr	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) Refer to: r4740, p4795	and signal	
$\begin{aligned} & \text { r4747[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 0 trace buffer signal 7 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tr   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer)   Refer to: r4740, p4795	race 0 and signal	
$\begin{aligned} & \text { r4750[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 0 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ing point / Tra   Calculated:   Dyn. index: -   Units group: -   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) Refer to: r4740, p4795	ace 1 and signal	
$\begin{aligned} & \text { r4751[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 1 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tr   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer)   Refer to: r4740, p4795	race 1 and signal	
$\begin{aligned} & \text { r4752[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G10_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 2 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ng point / Tra   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer)   Refer to: r4740, p4795	ace 1 and signal	


r4753[0...16383]	Trace 1 trace buffer signal 3 fl	/ T	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer)   Refer to: r4740, p4795	ace 1 and signal 3	
$\begin{aligned} & \text { r4754[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 4 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ing point / Tr   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) fo Refer to: r4740, p4795	ce 1 and signal 4	
$\begin{aligned} & \text { r4755[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 5 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ing point / Tr   Calculated:   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for   Refer to: r4740, p4795	ace 1 and signal	
$\begin{aligned} & \text { r4756[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 6 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ing point / Tr   Calculated:   Dyn. index: -   Units group: -   Scaling: -   Max   -	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for   Refer to: r4740, p4795	race 1 and signal 6	
$\begin{aligned} & \text { r4757[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 7 flo   Can be changed: -   Data type: FloatingPoint32   P-Group: Trace and function generator   Not for motor type: -   Min	ing point / Tra   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for   Refer to: r4740, p4795	race 1 and signal 7	


r4760[0...16383]	Trace 0 trace buffer signal 0 / Trace 0 tr sig 0		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150 PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 0 as integer number.		
Note:	For signals, data type I32 or U32, the trace buffer is assigned as follows:		
	r4760[0] = value 0		
	r4760[1] = value 1		
	...		
	r4760[8191] = value 8191		
	For signals, data type I16 or U16, the trace buffer is assigned as follows:		
	$\mathrm{r} 4760[0]$ = value 1 (bit $31 . . .16$ ) and value 0 (bit $15 \ldots 0$ )		
	r4760[1] = value 3 (bit $31 \ldots 16$ ) and value 2 (bit $15 \ldots 0$ )		
	$\mathrm{r} 4760[8191]$ = value 16383 (bit $31 \ldots 16$ ) and value 16382 (bit $15 \ldots 0$ )		
	For signals, data type 18 or U8, the trace buffer is assigned as follows:		
	$\mathrm{r} 4760[0]$ = value 3 (bit $31 \ldots 24$ ) value 2 (bit $23 \ldots 16)$ value 1 (bit $15 \ldots 8)$ value 0 (bit $7 \ldots 0$ )		
	$\mathrm{r} 4760[1]=$ value 7 (bit $31 \ldots 24$ ) value 6 (bit $23 \ldots 16)$ value 5 (bit $15 \ldots 8)$ value 4 (bit $7 \ldots 0$ )		
	r4760[8191] = value 32767 (bit 31 ... 24) value 32766 (bit $23 \ldots 16$ ) value 32765 (bit $15 \ldots 8$ ) value 32764 (bit $7 \ldots 0$ )		


r4761[0...16383]	Trace $\mathbf{0}$ trace buffer signal $\mathbf{1} /$ Trace $\mathbf{0}$ tr sig $\mathbf{1}$		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 1.		
Dependency:	Refer to: r 4760		

## r4762[0...16383] Trace 0 trace buffer signal 2 / Trace 0 tr sig 2

CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-

Description: Displays the trace buffer (record buffer) for trace 0 and signal 2.
Dependency: Refer to: r4760

r4763[0..16383]	Trace 0 trace buffer signal $3 /$ Trace $\mathbf{0}$ tr sig 3		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-

Dependency: Refer to: r 4760

r4764[0...16383]	Trace $\mathbf{0}$ trace buffer signal 4 / Trace $\mathbf{0}$ tr sig $\mathbf{4}$		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index:	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 4.		
Dependency:	Refer to: 44760		


r4765[0...16383]	Trace $\mathbf{0}$ trace buffer signal $\mathbf{5} /$ Trace $\mathbf{0}$ tr sig $\mathbf{5}$		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 0
	Min	-	Factory setting
	-	-	
Description:	Displays the trace buffer (record buffer) for trace 0 and signal 5.		
Dependency:	Refer to: r4760		


r4766[0...16383]	Trace 0 trace buffer signal 6 / Trace 0 tr sig 6	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 6 . Refer to: r4760	
$\begin{aligned} & \text { r4767[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 0 trace buffer signal 7 / Trace 0 tr sig 7	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 0 and signal 7 . Refer to: r4760	


r4770[0...16383]	Trace 1 trace buffer signal 0 / Trace 1 trace sig0		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the trace buffer (record buffer) for trace 1 and signal 0.		
Dependency:	Refer to: r4760		


r4771[0...16383]	Trace 1 trace buffer signal 1 / Trace 1 tr sig 1	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 1 . Refer to: r4760	
$\begin{aligned} & \text { r4772[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 2 / Trace 1 tr sig 2	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 2.   Refer to: r4760	
$\begin{aligned} & \text { r4773[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 3 / Trace 1 tr sig 3	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 3.   Refer to: r4760	
$\begin{aligned} & \hline \mathbf{r 4 7 7 4 [ 0 \ldots . . 1 6 3 8 3 ]} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 4 / Trace 1 tr sig 4	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 4.   Refer to: r4760	
$\begin{aligned} & \text { r4775[0...16383] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 5 / Trace 1 tr sig 5	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 5 .   Refer to: r4760	


r4776[0..16383]	Trace 1 trace buffer signal 6 / Trace 1 tr sig 6	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 6. Refer to: r4760	
$\begin{aligned} & \hline \mathbf{r 4 7 7 7 [ 0 . . . 1 6 3 8 3 ]} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace 1 trace buffer signal 7 / Trace 1 tr sig 7	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting
Description:   Dependency:	Displays the trace buffer (record buffer) for trace 1 and signal 7 .   Refer to: r4760	
$\begin{aligned} & \text { p4780[0...1] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace physical address signal $\mathbf{0} /$ Trace PhyAddr Sig0    Can be changed: $\mathrm{U}, \mathrm{T}$ Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max   0000 bin 111111111111111111111111    11111111 bin	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting   0000 bin
Description:   Index:	Sets the physical address for the first signal to be traced.   The data type is defined using p4730. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
$\begin{aligned} & \hline \mathbf{p 4 7 8 1 [ 0 . . 1 ] ~} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace physical address signal 1 / Trace PhyAddr Sig1    Can be changed: U, T Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max   0000 bin 111111111111111111111111    11111111 bin	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting 0000 bin
Description: Index:	Sets the physical address for the second signal to be traced.   The data type is defined using p4731. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	


p4782[0...1]	Trace physical address signal 2 / Trace PhyAddr Sig2		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0000 bin	111111111111111111111111 11111111 bin	0000 bin
Description:	Sets the physical address for the third signal to be traced.		
	The data type is defined using p4732.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		


p4783[0...1]	Trace physical address signal 3 / Trace PhyAddr Sig3		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0000 bin	$\begin{aligned} & 1111111111111111111111111 \\ & 11111111 \text { bin } \end{aligned}$	0000 bin
Description:	Sets the physical address for the fourth signal to be traced. The data type is defined using p4733.		
Index:	$\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$		


p4784[0...1]	Trace physical address signal 4 / Trace PhyAddr Sig4		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	111111111111111111111111	0000 bin
	0000 bin		
Description:	Sets the physical address for the fifth signal to be traced.		
	The data type is defined using p4734.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


p4785[0...1]	Trace physical address signal 5 / Trace PhyAddr Sig5		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	111111111111111111111111	0000 bin
	0000 bin		
Description:	Sets the physical address for the sixth signal to be traced.		
	The data type is defined using p4735.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


p4786[0...1]	Trace physical address signal 6 / Trace PhyAddr Sig6	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: -   Data type: Unsigned32 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max   0000 bin 111111111111111111111111    11111111 bin	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting 0000 bin
Description: Index:	Sets the physical address for the seventh signal to be traced.   The data type is defined using p4736. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
$\begin{aligned} & \hline \mathbf{p 4 7 8 7 [ 0 . . 1 ]} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace physical address signal 7 / Trace PhyAddr Sig7	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting 0000 bin
Description:   Index:	Sets the physical address for the eighth signal to be traced.   The data type is defined using p4737. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
$\begin{aligned} & \text { p4789[0...1] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace physical address trigger signal / Trace PhyAddr Trig	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting 0000 hex
Description:   Index:	Sets the physical address for the trigger signal.   The data type is defined by making the appropriate selection in p 4711 . $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$	
$\begin{aligned} & \hline \mathbf{r 4 7 9 0 [ 0 . . 1 ] ~} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Trace data type 5 traced / Trace rec type 5	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting
Description: Index:	Displays the recorded data type 5 for the trace. $\begin{gathered} {[0]=\text { Trace } 0} \\ {[1]=\text { Trace } 1} \end{gathered}$	


r4791[0...1]	Trace data type $\mathbf{6}$ traced / Trace rec type 6		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	-	-
	-		
Description:	Displays the recorded data type 6 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		



r4793[0...1]	Trace data type 8 traced / Trace rec type 8		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	
Description:	Displays the recorded data type 8 for the trace.		
Index:	$[0]=$ Trace 0		
	$[1]=$ Trace 1		


p4795	Trace memory bank changeover / Trace mem changeov		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PPN } \end{aligned}$	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0	500	0
Description:	Changes over the memory bank to read out the contents of the trace buffer. Refer to: r4740, r4741, r4742, r4743, r4750, r4751, r4752, r4753		
Dependency:			
r4797[0...1]	Trace 0 trigger instant / Trace 0 t_trigger		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the instant in time for fulfilling the trigger condition for trace recorder 0 . The time comprises milliseconds (index 0 ) and days (index 1 ).		


Index:	$[0]=$ Milliseconds
	$[1]=$ Days
Dependency:	Refer to: r2114, r3102, r4719
Notice:	The accuracy of the trigger instant depends on the accuracy of the underlying basis time.
	For clarification:

For clarification:
The trigger instant is calculated with a $\mu \mathrm{s}$ accuracy. If the underlying basis time is only available with ms accuracy, then as a result of rounding effects, an inaccuracy of 1 ms can occur.
When referred to $\mathbf{r 4 7 1 9}$, the trigger instant can therefore deviate somewhat.
Note: If the time calculation of the drive can be synchronized with a higher-level control, then this time can be taken from the actual UTC time (r3102). Otherwise, the time is based on the system runtime (r2114).

r4798[0...1]	Trace 1 trigger instant / Trace 1 t_trigger		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the instant in time for fulfilling the trigger condition for trace recorder 1. The time comprises milliseconds (index 0 ) and days (index 1 ).		
Index:	$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	Refer to: r2114, r3102, r4719		
Notice:	The accuracy of the trigger instant depends on the accuracy of the underlying basis time.		
	For clarification:		
	The trigger instant is calculated with a $\mu$ s accuracy. If the underlying basis time is only available with ms accuracy, then as a result of rounding effects, an inaccuracy of 1 ms can occur.		
	When referred to r4719, the trigger instant can therefore deviate somewhat.		
Note:	If the time calculation of the drive can be synchronized with a higher-level control, then this time can be taken from the actual UTC time (r3102 ). Otherwise, the time is based on the system runtime (r2114).		


r4799	Trace memory location free / Trace mem free		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,   CU G150 PN	P-Group: Trace and function generator	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the free memory for the trace in bytes.   Refer to: 44708		
Dependency:			
p4800	Function generator control / FG control		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T   Data type: Integer16   P-Group: Trace and function generator	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
		Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0	3	0
Description:	The function generator is started with $\mathrm{p} 4800=1$.		
	The signal is only generated for a 1 signal of binector input p4819.		
Value:	0 : Stop function generator		
	1: Start function generator		
	2: Check function generator parameterization		
	3: Start function generator without enable signals		
Dependency:	Refer to: p4819		


r4805	Function generator status / FG status		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: -   Data type: Integer16 Dyn. index: -   P-Group: Trace and function generator Units group: -   Not for motor type: - Scaling: -   Min Max   0 6	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting	
Description: Value:	Displays the actual status of the function generator.   0 : Inactive   Generate accelerating ramp to offset   Generate parameterized signal shape   Generate braking ramp   Function generator stopped due to missing enable signals   Function generator waits for BI: p4819   Function generator parameterization has been checked		
Dependency:	Refer to: p4800, p4819		
r4806.0   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	BO: Function generator status signal / FG status signal	Access level: 3   Func. diagram:   Unit selection:   Expert list: 0   Factory setting	
Description: Bit field:	Displays the status of the function generator.   0 signal: Function generator inactive   1 signal: Function generator running	0 signal OFF	FP
p4810   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Function generator mode / FG operating mode	Access level: 3   Func. diagram:   Unit selection: -   Expert list: 0   Factory setting   0	
Description: Value:	Sets the operating mode of the function generator.   0: $\quad$ Connection at connector output r4818   1: Connection at current setpoint after filter and r4818   2: $\quad$ Connection as disturbing torque and r4818   3: $\quad$ Connection at speed setpoint after filter and r4818   4: Connection at current setpoint before filter and r4818   5: $\quad$ Connection at speed setpoint before filter and r4818   6: $\quad$ Connection for free measurement function r4818 and r4834   99: Connection at physical address and r4818		




p4821
CU_G130_DP,
CU_G10_PN,
CU_G150_DP,
CU_G150_PN

Description:
Dependency:

Function generator period/FG period duration
Can be changed: U, T Calculated: -
Data type: FloatingPoint32
P-Group: Trace and function generator
Not for motor type: -
Min
0.00 [ms]

Sets the period of the signal to be generated for the function generator. Ineffective when p4820 $=4$ (PRBS).

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 0
Factory setting
1000.00 [ms]

p4822	Function generator pulse width / FG pulse width		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group:	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$60000.00[\mathrm{~ms}]$	$500.00[\mathrm{~ms}]$
Description:	Sets the pulse width for the signal to be generated for the function generator.		
Dependency:	Only effective when p4820 = 1 (square-wave).		


p4823	Function generator bandwidth / FG bandwidth		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Maxing:	Expert list: 0
	Min	$16000.0000[\mathrm{~Hz}]$	Factory setting
	$0.0025[\mathrm{~Hz}]$	$4000.0000[\mathrm{~Hz}]$	
Description:	Sets the bandwidth for the signal to be generated for the function generator.		
Dependency:	Only effective when p4820 = 4 (PRBS).		
	Refer to: p4830		


p4824	Function generator amplitude / FG amplitude		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Max
	Min	1600.00 [\%]	Factory setting
	-1600.00 [\%]	5.00 [\%]	
Description:	Sets the amplitude for the signal to be generated for the function generator.		
Dependency:	Units are dependent on p4810.		
	If $p 4810=1,2,4:$ The amplitude is referred to p2002 (reference current).		
	If $p 4810=3,5:$ The amplitude is referred to p2000 (reference speed).		


p4825	Function generator 2nd amplitude / FG 2nd amplitude		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group:	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	$-1600.00[\%]$	$7.00[\%]$	
	Sescription:		


Dependency:	Only effective for $\mathrm{p} 4820=2$ (staircase).
Units are dependent on p 4810.	
	If $\mathrm{p} 4810=1,2,4:$ The amplitude is referred to p 2002 (reference current).
If $\mathrm{p} 4810=3,5:$ The amplitude is referred to p 2000 (reference speed).	

## p4826 Function generator offset / FG offset

CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	$-1600.00[\%]$	$1600.00[\%]$	$0.00[\%]$

Description: Sets the offset (DC component) of the signal to be generated for the function generator
Dependency:
Units are dependent on p4810.
If p4810 $=1,2,4$ : The offset is referred to p2002 (reference current).
If $\mathrm{p} 4810=3,5$ : The offset is referred to p2000 (reference speed).
If p4810 $=2$ : In order to avoid the undesirable effects of play (backlash), the offset does not act on the current setpoint, but instead on the speed setpoint.

## p4827

CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

## Function generator ramp-up time to offset / FG ramp-up offset

Can be changed: $\mathrm{U}, \mathrm{T}$
Data type: FloatingPoint32
P-Group: Trace and function generator Not for motor type: -

Max
100000.00 [ms]

Access level: 3 Func. diagram: Unit selection: -
Expert list: 0 Factory setting 32.00 [ms]

Description: Sets the ramp-up time to the offset for the function generator.

p4828	Function generator lower limit / FG lower limit		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Factory setting	
	$-10000.00[\%]$	$-100.00[\%]$	
	Sets the lower limit for the function generator.		
Description:	For p4810 $=2$ the limit only applies to the current setpoint, but not the speed setpoint (offset).		


p4829	Function generator upper limit / FG upper limit		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Trace and function generator	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 0	
	Not for motor type: -	Max	Factory setting
	Min	$10000.00[\%]$	$100.00[\%]$
	$0.00[\%]$		
Description:	Sets the upper limit for the function generator.		
Dependency:	For p4810 $=2$ the limit only applies to the current setpoint, but not the speed setpoint (offset).		



r4834[0...4]	CO: Function generator free measurement output signal / FG fr MeasFct outp
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_D, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 3   Data type: FloatingPoint32 Dyn. index: - Func. diagram: -   P-Group: Trace and function generator Units group: - Unit selection: -   Not for motor type: - Scaling: PERCENT Expert list: 0   Min Max Factory setting   $-[\%]$ $-[\%]$ $-[\%]$
Description: Index:	Displays the output signal for the free measurement function. $\begin{aligned} & {[0]=\text { Signal } 1} \\ & {[1]=\text { Signal } 2} \\ & {[2]=\text { Signal } 3} \\ & {[3]=\text { Signal } 4} \\ & {[4]=\text { Signal } 5} \end{aligned}$
Dependency:   Note:	Refer to: p4810   The signals are only output in the "free measurement function" operating mode (p4810 = 6)
p4835[0...4]   CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	Function generator free measurement function scaling / FG fr MeasFct scal
Description: Index:	Sets the scaling of the output signals for the free measurement function. $\begin{aligned} & {[0]=\text { Signal } 1} \\ & {[1]=\text { Signal } 2} \\ & {[2]=\text { Signal } 3} \\ & {[3]=\text { Signal } 4} \\ & {[4]=\text { Signal } 5} \end{aligned}$
Note:	The parameter cannot be changed when the measurement function has been started (r4706 = 2, 3).
p4840[0...1]	MTrace cycle number setting / Cycle number
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: Trace and function generator Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 0   Min Max Factory setting   0 4294967295 0
Description: Index:	Sets the number of cycles of a multiple trace.   The multiple trace is de-activated with a value $=0$. $\begin{aligned} & {[0]=\text { Trace } 0} \\ & {[1]=\text { Trace } 1} \end{aligned}$
Dependency:	Refer to: r4841, p4844
Notice:	A multiple trace can have a negative impact on the total system performance.   From their inherent principle of operation, flash memory cards are subject to wear as a result of write operations. As a consequence, the lifetime of flash memory cards is reduced when using the multiple trace functionality.





p4961[0...n]	OA DO-specific logbook module selection / OA DO log module		
All objects	Can be changed: T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: r4950	Func. diagram: -
	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Only for service purposes.		
r4975	OA invalid number / OA inv no.		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130-PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of invalid OA applications installed on the memory card/device memory.		
Dependency:	Refer to: r4976, r4978, r4979		
Note:	OA: Open Architecture (OA application)		
r4976	OA invalid identifier total length / OA inv ID tot_Igth		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the total length of the IDs of all the invalid OA applications installed on the memory card/device memory. Refer to: r4975, r4978, r4979		
Dependency:			
Note:	The identifier of an invalid OA application comprises a maximum of 8 characters plus separator.		
r4978[0...n]	OA invalid identifier / OA inv ID		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned8	Dyn. index: r4976	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PPN } \end{aligned}$	P-Group: OEM range	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the IDs of all the invalid OA applications installed on the memory card/device memory. r4978[0...8]: Identifier of invalid OA application 1   r4978[9...17]: Identifier of invalid OA application 2, ...		
Dependency:	Refer to: r4975, r4976, r4979		
Notice:	If there is no invalid OA application, then it is not possible to access an index.		


r4979[0...n]	OA invalid error code / OA inv error code
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: r4975 Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:   Notice:   Note:	Displays the error code of the invalid OA applications installed on the memory card/device memory. r4979[0]: Fault value of OA application 1   r4979[1]: Fault value of OA application $2, \ldots$   Refer to: r4975, r4976, r4978   If there is no invalid OA application, then it is not possible to access an index.   The value in the error code must be interpreted in binary form. The bits have the following meaning:   Bit 0: Incompatible OA interface version.   Bit 1: OA application could not be loaded.   Bit 2: Incorrect description files.   Bit 3: OA application does not define a CPU type.   Bit 4: OA application for this device not supported (incorrect CPU type).   Bit 5: OA application for this device not supported (incorrect type ID).   Bit 6: Incorrect description files (Const/Startup incompatible).
r4985   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	OA number / OA no     Can be changed: - Calculated: - Access level: 4   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 16 -
Description:   Dependency:   Note:	Displays the number of OA applications installed on the memory card/device memory. Refer to: r4986, r4987, r4988, r4989, r4990, r4991, r4992, r4993, r4994 OA: Open Architecture (OA application)
r4986   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	OA identifier total length / OA id tot_length     Can be changed: - Calculated: - Access level: 4   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 144 -
Description:   Dependency:   Note:	Displays the total length of the IDs of all the OA applications installed on the memory card/device memory. Refer to: r4985, r4987, r4988, r4989, r4990, r4991, r4992, r4993, r4994   The identifier of an OA application comprises a maximum of 8 characters plus separator.
r4987   CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	OA GUID total length / OA GUID tot_length     Can be changed: - Calculated: - Access level: 4   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 288 -
Description:   Dependency:	Displays the total length of the GUIDs of all the OA applications installed on the memory card/device memory. Refer to: r4985, r4986, r4988, r4989, r4990, r4991, r4992, r4993, r4994


Note:	The GUID of an OA application comprises 16 characters plus 1 character major information plus 1 character, minor information.   GUID: Globally Unique IDentifier
r4988[0...n]	OA identifier / OA ID
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned8 Dyn. index: r4986 Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:   Notice:	Displays the IDs of all the OA applications installed on the memory card/device memory. r4988[0...8]: Identifier of OA application 1   r4988[9...17]: Identifier of OA applications 2, ...   Refer to: r4985, r4986, r4987, r4989, r4990, r4991, r4992, r4993, r4994   If there is no OA application, then it is not possible to access an index.
r4989[0...n]   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	OA version / OA version     Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: r4985 Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:   Notice:   Note:	Displays the version of all the OA applications installed on the memory card/device memory.   r4989[0]: Version of OA application 1   r4989[1]: Version of OA application 2, ...   Refer to: r4985, r4986, r4987, r4988, r4990, r4991, r4992, r4993, r4994   If there is no OA application, then it is not possible to access an index.   Example:   The value 1010100 should be interpreted as V01.01.01.00.
r4990[0...n]   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	OA interface version / OA interf_vers     Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: r4985 Func. diagram: -   P-Group: OEM range Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:   Notice:   Note:	Displays the interface version of all the OA applications installed on the memory card/device memory. r4990[0]: Interface version of OA application 1   r4990[1]: Interface version of OA applications 2, ...   Refer to: r4985, r4986, r4987, r4988, r4989, r4991, r4992, r4993, r4994   If there is no OA application, then it is not possible to access an index.   Example:   The value 1010100 should be interpreted as V01.01.01.00.




## If $\mathrm{p} 5300=0$ :

Online tuning is inactive. To permanently save the values determined for the speed and position controllers, the parameters must be saved in a non-volatile memory ( $00977=1$ ).
The results of the moment of inertia estimator can be reset using p5300 $=0$. The moment of inertia and the tuning parameters must be redetermined after $\mathrm{p} 5300>0$.

If $\mathrm{p} 5300=1$ :
One Button Tuning is active. The moment of inertia is determined once using a test signal. The controller parameters and current setpoint filters are additionally determined once using a noise signal as excitation source.

If $\mathrm{p} 5300=2$ :
Onlinetuning is active. The moment of inertia is estimated. The controller parameters are recalculated if the moment of inertia noticeably changes.

p5301[0...n]	One Button Tuning configuration / OBT config			
VECTOR_G   (J_estimator)	Can be changed: U, T	Calculated: -	Acce	
	Data type: Unsigned32	Dyn. index: DDS, p0180	Func	
	P-Group: -	Units group: -	Unit	
	Not for motor type: REL	Scaling: -	Expe	
	Min	Max	Facto	
	-	-	0000	
Description:	Setting the functions for One Button Tuning (p5300 = 1).			
	As long as autotuning is still active (p5300 <> 0), it is not possible to change the configuration.			
	A test signal is required for some measuring steps. Parameters p5307 to p5309 must be observed for this purpose.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Setting Kp	Yes	No	-
	01 Setting current setpoint filter	Yes	No	-
	02 Moment of inertia estimator	Yes	No	-
	07 Synchronized axes	Yes	No	-
Dependency:	Refer to: p5300			
Note:	Re bit 00:			
	The speed controller gain is determined and set using a noise signal.			
	Re bit 01:			
	Possibly required current setpoint filters are determined and set using a noise signal.			
	As a consequence, a higher dynamic performance can be achieved in the speed control loop.			

Re bit 02:
Using this bit, the moment of inertia is determined using a test signal. If this bit is not set, then the load moment of inertia must be manually parameterized in parameter p1498. The test signal must have been previously set using parameters p5308 and p5309.

Re bit 07:
With this function, these axes are adapted to the dynamic response set in p 5275 . This is necessary for interpolating axes. The time in p5275 should be set according to the axis with the lowest dynamic response.

p5302[0...n]	Online tuning configuration / OT config		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
(J_estimator)	Data type: Unsigned32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Min for motor type: REL	Max	Expert list: 1
	-	-	Factory setting
Description:	Setting the functions for online tuning $(p 5300=2)$.	00001100 bin	
	As long as autotuning is still active $(p 5300<>0)$, it is not possible to change the configuration.		


Bit field:		Signal name	1 signal	0 signal	FP
		Setting Kp	Yes	No	-
		Setting current setpoint filter	Yes	No	-
		Moment of inertia estimator	Yes	No	-
		Moment of inertia estimator	Cyclic	Once	-
		Current setpoint filter adaptation	Yes	No	-
	07	Synchronized axes	Yes	No	-
Dependency:	This parameter can only be changed if p5300=0 has been parameterized.				
	Refer to: p5300				
Caution:	See Function Manual FH1.				
Note:	Re bit 00: being prepared				
	The speed controller gain is determined and set using a noise signal.				
	Re bit 01: being prepared				
	Possibly required current setpoint filters are determined and set using a noise signal.				
		consequence, a higher dynamic $p$	can be ac	d control	

Re bit 02:
Using this bit, the moment of inertia is determined while traversing (moment of inertia estimator). If this bit is not set, then the load moment of inertia must be manually parameterized in parameter p1498.

Re bit 03:
If "once" has been parameterized, then after successfully determining the moment of inertia p1498 the moment of inertia estimator is deactivated.
If "Cyclic" has been parameterized, then the moment of inertia is continually determined and the controller parameters adapted. After the moment of inertia has been successfully determined (r1407.26=1), we recommend that the parameter is saved. This means that after power on, the controller does not have to re-stabilize.

Re bit 06:
The adaptation of a current setpoint filter can be set here. See p5280-p5285.
This adaptation may be necessary if a mechanical resonance frequency changes in operation. It can also be used to dampen a fixed resonance frequency. Once the control loop has stabilized, this bit should be deactivated and the determined parameters saved in a non-volatile fashion.

Re bit 07:
With this function, these axes are adapted to the dynamic response set in p 5275 . This is necessary for interpolating axes. The time in p5275 should be set according to the axis with the lowest dynamic response.

## r5397

VECTOR G

Description:	Displays the ambient temperature for motor temperature model 3.
	This value is used to calculate the utilization display (p0034).
	The parameter value is an image of p0613.
Dependency:	Refer to: r0034
Note:	Users cannot see and change parameter p0613 (only Siemens internal).


r5398[0...n]	Mot_temp_mod 3 alarm threshold image p5390 / A thr image p5390		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the alarm threshold for monitoring the motor temperature for motor temperature model 3. This value is used to calculate the utilization display ( p 0034 ).   The parameter value is an image of p 5390 .		
Note:	Users cannot see and change parameter p5390 (only Siemens internal).		
r5399[0...n]	Mot_temp_mod 3 fault threshold image p5391 / F thr image p5391		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: MDS, p0130	Func. diagram: 8017
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: ASM, REL, FEM	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model 3. Fault F07011 is output after the fault threshold is exceeded.   The parameter value is an image of p5391.		
Note:	Users cannot see and change parameter p5391 (only Siemens internal).		
r5600	Pe energy saving mode ID / Pe mode ID		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the PROFlenergy mode ID of the effective energy saving mode.		
Value:	$\begin{array}{ll}0: & \text { POWER OFF } \\ \text { 2: } & \text { Energy-saving mode } 2 \\ \text { 255: } & \text { Ready }\end{array}$		
Note:	Pe: PROFlenergy profiles		
p5602[0...1]	Pe energy-saving mode pause time minimal / Pe mod t_pause min		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: $T$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2381
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling:-	Expert list: 1
	Min	Max	Factory setting
	300000 [ms]	4294967295 [ms]	[0] 300000 [ms]
			[1] 480000 [ms]
Description:	Sets the minimum possible pause time The value is the sum of the following tim - Energy-saving mode transition time - Operating state transition time regular - Energy-saving mode, dwell time minim	energy-saving mode.	
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$		


Note:	It is not permissible that the value is less than the sum of the "energy-saving mode transition time" and the "operating state transition time" (system properties).   Pe: PROFlenergy profiles			
p5606[0...1]	Pe energy-saving mode dwell time maximum / Pe t_dwell max			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: $T$   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min   0 [ms]	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max $4294967295 \text { [ms] }$	Acc   Fun   Unit   Exp   Fact   4294	
Description: Index:   Note:	Sets the maximum dwell time for the energy-saving mode.$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$			
p5611   CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	Pe energy-saving properties gener   Can be changed: T   Data type: Unsigned32   P-Group: Communications   Not for motor type: -   Min	ral / Pe proper   Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Acce   Func.   Unit   Exper   Facto   0000	
Description: Bit field:	Sets the general properties for energy-saving.   Bit Signal name   00 Inhibit PROFIenergy control commands   01 Drive initiates OFF1 when transitioning to energy-saving mode   02 Trans into energy-saving mode from PROFIdrive state S4 poss	1 signal   Yes   Yes   Yes	0 signal   No   No   No	FP
Note:	Pe: PROFlenergy profiles PROFIdrive state S4: operation			


p5612[0..1]	Pe energy-saving properties mode-dependent / Pe properties mod			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: $T$	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Communications	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	[0] 0110 bin	
			[1] 0000 bin	
Description:	Sets the mode-dependent properties for energy-saving.			
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$			
Bit field:	Bit Signal name   00 Reserved	1 signal Yes	0 signal No	FP
Note:	Pe: PROFlenergy profiles			


r5613.0..1	CO/BO: Pe energy-saving active/inactive / Pe save act/inact			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_D, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned8	Dyn. index: -	Func.	
	P-Group: Communications	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	-	
Description:	Display and binector output for the state display PROFlenergy energy saving active or inactive.			
Bit field:	Bit Signal name	1 sign   Yes   Yes	0 signal	FP
	00 Pe active		No	-
	01 Pe inactive		No	-
Note:	Bit 0 and bit 1 are inverse of one another. Pe: PROFlenergy profiles			
p5614   CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	BI: Pe set switch-on inhibit signal source / Pe sw on_inh s_src			
	Can be changed: T   Data type: Unsigned32 / Binary P-Group: -	Calculated: -	Access level: 3	
		Dyn. index: -	Func. diagram: -	
		Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source to set in the PROFldrive state S1 "switching-on inhibit".			
Dependency:	Refer to: r5613			
Note:	Pe: PROFlenergy profiles			
p6397	Motor module phase shift second system / MM ph_sh 2nd sys			
VECTOR_G	Can be changed: $T$	Calculated: -	Access level: 3	
	Data type: Integer16	Dyn. index: -	Func. diagram: -	
	P-Group: Converter	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	8	0	
Description:	Sets the phase shift of the second system with respect to the first system for the motor module for a 12-pulse gating unit.			
Value:	0: Shift by $+30^{\circ}$			
	1: Shift by $-30^{\circ}$			
	2: Shift by $0^{\circ}$			
	3: Shift by $+90^{\circ}$			
	4: Shift by $90^{\circ}$			
	5: Shift by $+120^{\circ}$			
	6: Shift by $-120^{\circ}$			
	7: Shift by $+150{ }^{\circ}$			
	8: Shift by $-150{ }^{\circ}$			
Dependency:	Refer to: p7003			
Notice:	The parameter is only evaluated if p7003 $=2$.			
Note:	For p6397 $=0$ the following applies: The second systems leads for a positive direction of rotation.			
	For p6397 = 1 the following applies: The second systems lags for a positive direction of rotation.			


p6700[0...n]	Voltage model angle smoothing / Volt_mod angle sm		
VECTOR_G (n/M)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: ASM, PEM, REL	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0 [ms]	100 [ms]	0 [ms]
Description:	Sets the smoothing of the flux orientation of the voltage model for a separately excited synchronous motor.		
p6870[0...n]	VSM offset voltage u1-u2 / VSM offset u1-u2		
VECTOR_G (n/M)	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.000 [V]	100.000 [V]	0.000 [V]
Description:	Offset voltage between phases L1 and L2 for the Voltage Sensing Module (VSM). The value is determined with the drive switched-off and stationary if p6903 is set. A fixed value can be entered here if p6903 is not set. This is overwritten as soon as p6903 is enabled.		
Dependency:	Refer to: p6903		
p6871[0...n]	VSM offset voltage u2-u3 / VSM offset u2-u3		
VECTOR_G ( $\mathrm{n} / \mathrm{M}$ )	Can be changed: T	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-100.000 [V]	100.000 [V]	0.000 [V]
Description:	Offset voltage between phases L2 and L3 for the Voltage Sensing Module (VSM). The value is determined with the drive switched-off and stationary if p6903 is set. A fixed value can be entered here if p6903 is not set. This is overwritten as soon as p6903 is enabled.		
Dependency:	Refer to: p6903		
p6903[0...n]	Voltage actual values, offset mode / U_act_0 offsetMode		
VECTOR_G (n/M)	Can be changed: $\cup$, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: p0150	Func. diagram: -
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Sets the offset mode for voltage actual value sensing.		
	When the mode is enabled ( $\mathrm{p} 6903=0$ ), for a pulse inhibit for stator and excitation and zero speed, the offset calibration is automatically started.		
	Offset calibration is inhibited when the mode is inhibited (p6903 = 1). Values last determined in p3658 and p3659 can be saved. However, they can also be overridden.		
Value:	0 : Offset calculation enabled   1: Offset calculation inhibited		
Dependency:	Refer to: p6870, p6871		
Note:	Offset mode can only be set for actual	sensing functions that are	in the hardware.



p6993[0...2]	Recorder trigger 2 bit mask / Rec trig 2 mask		
B_INF (Recorder), VECTOR_G (Recorder)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8144
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0001 hex
Description:	Sets the bit mask for trigger signal 2 (p6994) of the recorder.		
	Trigger 2.1 is formed by ANDing the signal source in p6994[0] and the bit mask in p6993[0].		
	Trigger 2.2 is formed by ANDing the signal source in p6994[1] and the bit mask in p6993[1].		
	Trigger 2.3 is formed by ANDing the signal source in p6994[2] and the bit mask in p6993[2].		
Index:	$\begin{aligned} & {[0]=\text { Trigger } 2.1} \\ & {[1]=\text { Trigger } 2.2} \\ & {[2]=\text { Trigger } 2.3} \end{aligned}$		
Dependency:	Refer to: p6994		


p6994[0...2]	CI: Recorder trigger 2 signal source / Rec trig 2 S_src		
B_INF (Recorder), VECTOR_G (Recorder)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned32 / Integer32	Dyn. index: -	Func. diagram: 8144
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for trigger 2 of the recorder.		
	Trigger 2.1 is formed by ANDing the signal source in p6994[0] and the bit mask in p6993[0].		
	Trigger 2.2 is formed by ANDing the signal source in p6994[1] and the bit mask in p6993[1].		
	Trigger 2.3 is formed by ANDing the signal source in p6994[2] and the bit mask in p6993[2].		
Index:	[0] = Trigger 2.1		
	[1] $=$ Trigger 2.2[2] Trigger 2.3		
Dependency:	Refer to: p6993		
p6996[0...63]	Recorder signals / Rec sig		
B_INF (Recorder), VECTOR_G (Recorder)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 8144
	P-Group: Commands	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	996553699	0
Description:	Setting to parameterize the signals for the recorder.		
$\overline{\mathrm{r} 6997}$   B_INF (Recorder), VECTOR_G (Recorder)	CO: Recorder sequencer state / Rec state		
	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: 8144
	P-Group: Closed-loop control	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	60	-
Description:   Value:	Displays the state of the sequencer for the recorder.		
	0 : Not active		
	10: Active		
	20: Post trigger time running		
	30: Prepare data save operation		
	50: End data save		
	60: Configuration		
p6998[0...4]	BI: Recorder trigger 1 signal sources / Rec trig 1 S_src		
B_INF (Recorder), VECTOR_G (Recorder)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 8144
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- -		0
Description: Index:	Sets the signal sources to activate and trigger the recorder.		
	[0] $=$ Activating [1] $=$ Trigger 1.1 [2] $=$ Trigger 1.2 [3] $=$ Trigger 1.3 [4] $=$ Trigger 1.4		



p7001[0...n]	Par_circuit power units enable / PU enable		
B_INF (Parallel),	Can be changed: $T$	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: Integer16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	1
Description:	Enables the power units in the parallel circuit configuration.		
Value:	$0: \quad$ Deactivated		
Dependency:	$1: \quad$ Activated	Refer to: r7000	
Note:	For motors with separate winding systems (p7003 =1) it is not possible to inhibit an individual power unit.		
	p7001 is automatically reset if a power unit is de-activated via p0125 or p0895.		


r7002[0...n]	CO: Par_circuit status power units / Status PU		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: Integer16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	-
Description:	Display and connector output for the status of the power units in a parallel connection.		
Value:	0 : Pulses inhibited   1: Pulses enabled		
Dependency:	Refer to: r7000, p7001		
p7003	Par_circuit winding system / Wind_sys		
VECTOR_G (Parallel)	Can be changed: C2(2)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0
Description: Value:	Specifies the motor winding system when power units are connected in parallel.		
	0 : One-winding system   1: Several separate winding systems or motors   2: Two separate offset winding systems		
Dependency:	Rep7003 = 2:		
	In order to permit separate, offset winding systems, wobbulation must first be deactivated (p1810.2 = 0). The magnitude and direction of the offset is parameterized in p6397.		
	When exiting commissioning, the circulating current control is automatically deactivated (p7035 $=0$ ), and the compensation of the valve interlocking times is replaced by the appropriate stator resistance adaptation (p1780.7 = 1).		
	Refer to: p1802, p6397		
Note:	Rep7003 = 0:		
	- the motor data identification routine (p1910) determines the stator resistance and the cable resistance. The cable resistance of an individual Motor Module is entered into p0352.		
	- the current symmetrizing is activated as standard after the motor data identification routine (p7035 = 1).		
	Rep7003 = 1, 2:		
	- the motor data identification routine ( p 1910 ) determines the total (overall) resistance. The cable resistance is not measured, but instead, entered as a component of the total resistance (refer to p0352).   - all Motor Modules are activated. It is not possible to de-activate a Motor Module.		



r7020[0...n]	CO: Par_circuit deviation current in phase U / Phase U curr dev		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the deviation between the measured current actual value of phase $U$ and the average value as peak value. The maximum deviation from the average value is displayed in r7025.		
Dependency:	Refer to: r7021, r7022, r7025		
r7021[0...n]	CO: Par_circuit deviation current in phase V / Phase V curr dev		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the deviation between the measured current actual value of phase V and the average value as peak value. The maximum deviation from the average value is displayed in r7026.		
Dependency:	Refer to: r7020, r7022, r7026		
r7022[0...n]	CO: Par_circuit deviation current in phase W / Phase W curr dev		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the deviation between the measured current actual value of phase W and the average value as peak value. The maximum deviation from the average value is displayed in r 7027 .		
Dependency:	Refer to: r7020, r7021, r7027		
r7025	CO: Par_circuit max. deviation currents phase U / Phase U Max i_dev		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase $U$ from the average value as peak value.		
	The deviation of the individual currents from the average value is displayed in r 7020.		
Dependency:	Refer to: r7020, r7026, r7027		


r7026	CO: Par_circuit max. deviation currents phase V / Phase V Max i_dev		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase V from the average value as peak value.		
	The deviation of the individual currents from the average value is displayed in r 7021 .		
Dependency:	Refer to: r7021, r7025, r7027		
r7027	CO: Par_circuit max. deviation currents phase W / Phase W Max i_dev		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the maximum absolute deviation of the measured current actual values of phase W from the average value as peak value.		
	The deviation of the individual currents from the average value is displayed in r7022.		
Dependency:	Refer to: r7022, r7025, r7026		
r7030[0...n]	CO: Par_circuit DC link voltage deviation / Vdc deviation		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the deviation of the measured DC link voltage from the average value. The maximum deviation from the average value is displayed in r 7031 .		
Dependency:	Refer to: r7031		
r7031	CO: Par_circuit DC link voltage maximum deviation / Vdc deviation max.		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the maximum absolute deviation of the measured DC link voltage from the average value. The deviation of the individual voltages from the average value is displayed in r7030.		
Dependency:	Refer to: r7030		


p7035[0...n]	Par_circuit circulating current control operating mode / I_cct_ctrl mode		
VECTOR_G (Parallel)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	1	Factory setting
	0	1	
Description:	Sets the operating mode of the circulating current control.		
	The circulating current control ensures symmetrical distribution of the total currents to the individual converters.		
Value:	$0: \quad$ Circulating current control de-activated		
	$1: \quad$ Circulating current control activated		
Dependency:	Circulating current control is not possible for separate, offset motor winding systems $(p 7003=2)$.		

p7036[0...n] Par_circuit circulating current control proportional gain / Circ_I Kp
VECTOR_G (Parallel) Can be changed: U, T Calculated: CALC_MOD_CON Access level: 3

Data type: FloatingPoint32
P-Group: Modulation
Not for motor type: -
Min
0.00000 [ohm]

Sets the proportional gain
The parameter is pre-set to the cable resistance.

p7037[0...n]	Par_circuit circulating current control integral time / I_circ Tn		
VECTOR_G (Parallel)	Can be changed: U, T	Calculated: CALC_MOD_CON	Access level: 3
	Data type: FloatingPoint32	Dyn. index: DDS, p0180	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	2.0	1000.0	
Description:	Sets the integral time of the circulating current controller.		
	The parameter is referred to the current controller sampling time (p0115[0]).		
Dependency:	Refer to: p0115		

p7038[0...n] Par_circuit circulating current control limit / I_circ limit

VECTOR G (Parallel) Can be changed: U T
Data type: FloatingPoint32
P-Group: Modulation
Not for motor type: -
Min
1 [\%]

Calculated: CALC_MOD_ALL
Dyn. index: DDS, p0180
Units group: -
Scaling: -
Max
100 [\%]

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
50 [\%]

Description: Sets the limit of the circulating current controller output values.
The parameter is, depending on the phase, referred to the valve lockout times (p1828, p1829, p1830).

p7040[0...n]	Par_circuit correction valve lockout time phase U / Comp t_lockout U		
VECTOR_G (Parallel)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ $\mu \mathrm{s}$ ]	1000000.00 [ $\mu \mathrm{s}$ ]	0.00 [ $\mu \mathrm{s}$ ]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase U (p1828).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.		
Dependency:	Refer to: p1828		
p7042[0...n]	Par_circuit correction valve lockout time phase V/ Comp t_lockout V		
VECTOR_G (Parallel)	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ $\mathrm{\mu s}$ ]	1000000.00 [ $\mu \mathrm{s}$ ]	0.00 [ $\mu \mathrm{s}$ ]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase V (p1829).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.		
Dependency:	Refer to: p1829		
p7044[0...n]	Par_circuit correction valve lockout time phase W / Comp t_lockout W		
VECTOR_G (Parallel)	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Modulation	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1000000.00 [ ss ]	1000000.00 [ $\mu \mathrm{s}$ ]	0.00 [ $\mu \mathrm{s}$ ]
Description:	For the particular Motor Module, the correction time must be added to the valve lockout time to be compensated for phase W (p1830).		
	The corrective value is used to compensate variations/spread in the valve lockout times of Motor Modules for a parallel circuit configuration.		
Dependency:	Refer to: p1830		
r7050[0...n]	Par_circuit circulating current phase U / Circ_I_phase U		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the circulating current of phase $U$ as peak value.		


r7051[0...n]	Par_circuit circulating current phase V / Circ_I_phase V		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the circulating current of phase V as peak value.		
r7052[0...n]	Par_circuit circulating current phase W / Circ_I_phase W		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the circulating current of phase W as peak value.		
r7100[0...99]	Par_circuit ring buffer fault/alarm code / Fault/alarm code		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module).   Displays the fault/alarm code.		
Dependency:	Refer to: r7101, r7102, r7103		
Note:	The last fault case that occurred is documented in index 0 .		
	The parameter is reset to 0 at POWER ON.		
r7101[0...99]	Par_circuit ring buffer data set number / Ring buffer Ds_no		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module).		
	p7101 < 100:		
	Displays the Power unit Data Set number (PDS).		
	p7101 >= 100:		
	Displays the Voltage Sensing Module Data Set number (VSMDS)		
Dependency:	Refer to: r7100, r7102, r7103		
Note:	The last fault case that occurred is documented in index 0 .		
	The parameter is reset to 0 at POWER ON.		


r7102[0...99]	Par_circuit ring buffer fault/alarm received / F/A received		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module).		
	Displays the relative system runtime when the fault or alarm occurred.		
Dependency:	Refer to: r7100, r7101, r7103		
Note:	The last fault case that occurred is documented in index 0 .		
	The parameter is reset to 0 at POWER ON.		
r7103[0...99]	Par_circuit ring buffer fault/alarm gone / F/A gone		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Ring buffer for faults and alarms that have occurred from power units connected in parallel (Motor Module, Active Line Infeed, Voltage Sensing Module).		
	Displays the relative system runtime when the fault or alarm was withdrawn.		
Dependency:	Refer to: r7100, r7101, r7102		
Note:	The last fault case that occurred is documented in index 0 .		
	The parameter is reset to 0 at POWER ON.		
r7200[0...n]	Par_circuit power unit overload I2t / PU overload I2t		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: PERCENT	Expert list: 1
	Min	Max	Factory setting
	- [\%]		
Description:	Displays the overload of the particular power unit in a parallel circuit configuration calculated using the I2t function. The maximum value of all power units is displayed in r0036.		
r7201[0...n]	CO: Par_circuit power unit temperatures max. inverter / PU temp max inv		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ} \mathrm{C}$ ]	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [ $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the maximum inverter temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[0].		


$\mathbf{r 7 2 0 2}[\mathbf{0 . . . n ] ~}$	Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the maximum depletion layer temperature in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[1].		


$\mathbf{r 7 2 0 3 [ 0 . . . n ] ~}$	CO: Par_circuit power unit temperatures max. rectifier / PU temp max rect		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the maximum rectifier temperature in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[2].

r7204[0...n]	CO: Par_circuit power unit temperatures air intake / PU temp air intake		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$
Description:	Displays the air intake temperature in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[3].		


$\mathbf{r 7 2 0 5 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures electronics / PU temp electr		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the temperature of the electronics module in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[4].

r7206[0...n]	Par_circuit power unit temperatures inverter 1/PU temp inv 1		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 1 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[5].		


r7207[0...n]	Par_circuit power unit temperatures inverter 2/PU temp inv $\mathbf{2}$		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 2 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[6].		


$\mathbf{r 7 2 0 8 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures inverter 3/PU temp inv 3		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the inverter temperature 3 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[7].

r7209[0...n]	Par_circuit power unit temperatures inverter 4 / PU temp inv 4		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 4 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in ro037[8].		


$\mathbf{r 7 2 1 0 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures inverter 5 / PU temp inv 5		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays the inverter temperature 5 in the power unit for a parallel circuit configuration.
The maximum value of all power units is displayed in r0037[9].

r7211[0...n]	Par_circuit power unit temperatures inverter $\mathbf{6} /$ PU temp inv $\mathbf{6}$		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the inverter temperature 6 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[10].		


r7212[0...n]	Par_circuit power unit temperatures inverter 1/PU temp rect 1		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays rectifier temperature 1 in the power unit for a parallel circuit configuration.		


$\mathbf{r 7 2 1 3 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures inverter 2 / PU temp rect $\mathbf{2}$		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays rectifier temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[12].

r7214[0...n]	Par_circuit power unit temperatures depletion layer 1/PU temp DepLayer 1		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 1 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in ro037[13].		


$\mathbf{r 7 2 1 5 [ 0 . . . n ] ~}$	Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Displays depletion layer temperature 2 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[14].

r7216[0...n]	Par_circuit power unit temperatures depletion layer 3/PU temp DepLayer 3		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: $21 _1$	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 3 in the power unit for a parallel circuit configuration.		
	The maximum value of all power units is displayed in r0037[15].		


r7217[0...n]	Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 4 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[16].		
r7218[0...n]	Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5		
B_INF (Parallel),	Can be changed: -	Calculated: -	Access level: 3
VECTOR_G (Parallel)	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ} \mathrm{C}$ ]	$-\left[{ }^{\circ} \mathrm{C}\right]$	- ${ }^{\circ} \mathrm{C}$ ]
Description:	Displays depletion layer temperature 5 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[17].		
r7219[0...n]	Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 21_1	Unit selection: p0505
	Not for motor type: -	Scaling: p2006	Expert list: 1
	Min	Max	Factory setting
	- [ ${ }^{\circ} \mathrm{C}$ ]	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays depletion layer temperature 6 in the power unit for a parallel circuit configuration. The maximum value of all power units is displayed in r0037[18].		
r7220[0...n]	CO: Par_circuit drive output current maximum / Drv I_outp max		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum output current of the power unit.   The minimum value of all power units multiplied by the number of Motor Modules is displayed in r0067.		
r7222[0...n]	CO: Par_circuit absolute current actual value / I_act abs val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.   The summed value of all power units is displayed in r0068.		


r7223[0...n]	CO: Par_circuit phase current actual value phase U/I_phase U act val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured actual value of phase $U$ as peak value. The summed value of all power units is displayed in r0069[0].		
r7224[0...n]	CO: Par_circuit phase current actual value phase V/I_phase V act val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured actual value of phase V as peak value. The summed value of all power units is displayed in r0069[1].		
r7225[0...n]	CO: Par_circuit phase current actual value phase W / I_phase W act val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured actual value of phase W as peak value. The summed value of all power units is displayed in r0069[2].		
r7226[0...n]	CO: Par_circuit phase current actual value phase U offset / I_phase U offset		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: 00505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured offset of phase $U$ as peak value. The summed value of all power units is displayed in r0069[3].		
r7227[0...n]	CO: Par_circuit phase current actual value phase V offset / I_phase V offset		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured offset of phase V as peak value. The summed value of all power units is displayed in r0069[4].		


r7228[0...n]	CO: Par_circuit phase current actual value phase W offset / I_phase W offset		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured offset of phase W as peak value. The summed value of all power units is displayed in r0069[5].		
r7229[0...n]	CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 6_5	Unit selection: p0505
	Not for motor type: -	Scaling: p2002	Expert list: 1
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured sum of the currents in phases $\mathrm{U}, \mathrm{V}$ and W as instantaneous value. The summed value of all power units is displayed in r0069[6].		
r7230[0...n]	CO: Par_circuit DC link voltage actual value / Vdc_act		
B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_2	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the measured actual value of the DC link voltage. The average value of all power units is displayed in r0070.		
r7231[0...n]	CO: Par_circuit phase voltage actual value phase U/ U_phase U act val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual voltage, phase $U$.   The average value of all power units is displayed in r0089[0].		
r7232[0...n]	CO: Par_circuit phase voltage actual value phase V/U_phase V act val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 5_3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual voltage, phase V .   The average value of all power units is displayed in r0089[1].		


r7233[0...n]	CO: Par_circuit phase voltage actual value phase W / U_phase W act val		
VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Displays, signals	Units group: 5 _3	Unit selection: p0505
	Not for motor type: -	Scaling: p2001	Expert list: 1
	Min	Max	Factory setting
	$-[V]$	$-[V]$	$-[V]$
Description:	Displays the actual voltage, phase W.		
	The average value of all power units is displayed in r0089[2].		


r7240[0...n]	Par_circuit gating unit status word 1 / Gating unit ZSW1				
VECTOR_G (Parallel)			Calculated: -	Access level: 4	
	Data type: Unsigned16		Dyn. index: PDS, p0120	Func. diagram: -	
	P-Group: Displays, signals		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays status word 1 of the power unit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault time-critical	ON	OFF	-
		Gating unit mode bit 0	ON	OFF	-
	02	Pulse enable	ON	OFF	-
	03	Upper shutdown path	Inactive	Active	-
	04	Lower shutdown path	Inactive	Active	-
	05	Gating unit mode bit 1	ON	OFF	-
	06	Gating unit mode bit 2	ON	OFF	-
	07	Brake state	ON	OFF	-
	08	Brake diagnostics	ON	OFF	-
	09	Armature short-circuit braking	Active	Not active	-
	10	Gating unit state bit 0	ON	OFF	-
	11	Gating unit state bit 1	ON	OFF	-
	12	Gating unit state bit 2	ON	OFF	-
	13	Alarm status bit 0	ON	OFF	-
	14	Alarm status bit 1	ON	OFF	-
	15	Diagnostics 24 V	ON	OFF	-

r7250[0...4] Par_circuit power unit rated power / PU P_rated

B_INF (Parallel), VECTOR_G (Parallel)	Can be changed: -	Calculated: -	Access level: 2
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Units group: 14_6	Unit selection: p0100
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the rated power of the individual power units connected in parallel for various load duty cycles. The sum of the rated powers of all power units connected in parallel is displayed in r0206.		
Index:	$\begin{aligned} & {[0]=\text { Rated value }} \\ & {[1]=\text { Load duty cycle with low overload }} \\ & {[2]=\text { Load duty cycle with high overload }} \\ & {[3]=\text { S1 cont duty cyc }} \\ & {[4]=\text { S6 load duty cycle }} \end{aligned}$		
Dependency:	The value is displayed in [kW] or [hp].   Refer to: p0100, p0205		



r7741[0...n]	IGBT power cycling counter valve 2 / IGBT load count 2		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of power cycling counter for valve 2.		
	For repairs, this parameter serves as internal documentation for service personnel.		
	The counter state corresponds to the valve wear. A maximum of $650 \%$ of the specified service life is displayed. 10000 corresponds to the nominal service life ( $100 \%$ ). When this value is reached, the IGBT is theoretically at the end of its service life and must be replaced.		
Dependency:	Refer to: p7786		
Notice:   Note:	After a valve has been replaced, the corresponding power cycling counter must be reset.		
	The IGBT power cycling counter can only be set to 0 .		
	Procedure when replacing valve 2 :		
	1. Switch off the system and replace valve 2.		
	2. Switch on the system and acknowledge that valve 2 has been replaced (p7786.2 $=1$ ).		
	--> the power cycling counter of valve 2 is reset (r7741 = 0 ).		
	3. Carry out a POWER ON (power off/on).		
	--> as a consequence p7786.2 is automatically set to 0 .		
B_INF, VECTOR_G	IGBT power cycling counter valve 3 / IGBT load count 3		
	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of power cycling counter for valve 3 .		
	For repairs, this parameter serves as internal documentation for service personnel.		
	The counter state corresponds to the valve wear. A maximum of $650 \%$ of the specified service life is displayed. 10000 corresponds to the nominal service life ( $100 \%$ ). When this value is reached, the IGBT is theoretically at the end of its service life and must be replaced.		
Dependency:	Refer to: p7786		
Notice:	After a valve has been replaced, the corresponding power cycling counter must be reset.		
Note:	The IGBT power cycling counter can only be set to 0 .		
	Procedure when replacing valve 3 :		
	1. Switch off the system and replace valve 3.		
	2. Switch on the system and acknowledge that valve 3 has been replaced (p7786.3 $=1$ ).		
	--> the power cycling counter of valve 3 is reset (r7742 = 0).		
	3. Carry out a POWER ON (power off/on).		
	--> as a consequence p7786.3 is automatically set to		


r7743[0...n]	IGBT power cycling counter valve 4 / IGBT load count 4		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the status of power cycling counter for valve 4.		
	For repairs, this parameter serves as internal documentation for service personnel.		

The counter state corresponds to the valve wear. A maximum of $650 \%$ of the specified service life is displayed. 10000 corresponds to the nominal service life (100\%). When this value is reached, the IGBT is theoretically at the end of its service life and must be replaced.

r7745[0...n] IGBT power cycling counter valve 6 / IGBT load count 6

## B_INF, VECTOR_G <br> Can be changed: -

Data type: Unsigned16
P-Group: -
Not for motor type: -
Min

Calculated: -
Dyn. index: PDS, p0120
Units group: -
Scaling: -
Max

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

## Description: Displays the status of power cycling counter for valve 6.

For repairs, this parameter serves as internal documentation for service personnel.
The counter state corresponds to the valve wear. A maximum of $650 \%$ of the specified service life is displayed. 10000 corresponds to the nominal service life (100\%). When this value is reached, the IGBT is theoretically at the end of its service life and must be replaced.
Dependency: Refer to: p7786
Notice: After a valve has been replaced, the corresponding power cycling counter must be reset.
Note: $\quad$ The IGBT power cycling counter can only be set to 0 .
Procedure when replacing valve 6 :

1. Switch off the system and replace valve 6.
2. Switch on the system and acknowledge that valve 6 has been replaced ( $p 7786.6=1$ ).
--> the power cycling counter of valve 6 is reset (r7745=0).
3. Carry out a POWER ON (power off/on).
--> as a consequence p7786.6 is automatically set to 0 .

r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number of the Control Unit.   The individual characters of the serial number are displayed in the ASCII code in the indices. For the commissioning software, the ASCII characters are displayed uncoded.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	KHP: Know-How Protection		
p7759[0...19]	KHP Control Unit reference serial number / KHP CU ref ser_no		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Sets the reference serial number for the Control Unit.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	Refer to: p7765, p7766		
Note:	KHP: Know-How Protection		
	- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		

## $\overline{\mathbf{r 7 7 6 0}}$

All objects

Description:
Bit field:

Dependency:

Write protection/know-how protection status / Wr_prot/KHP stat

Can be changed: -	Calculated: -	Access level: 3
Data type: Unsigned16	Dyn. index: -	Func. diagram: -
P-Group: -	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting

Displays the status for the write protection and know-how protection.

Bit	Signal name	1 signal	$\mathbf{0}$ signal	FP
00	Write protection active	Yes	No	-
01	Know-how protection active	Yes	No	-
02	Know-how protection temporarily withdrawn	Yes	No	-
03	Know-how protection cannot be deactivated	Yes	No	-
04	Extended copy protection is active	Yes	No	-
05	Basic copy protection is active	Yes	No	-
06	Trace and measuring functions for	Yes	No	-
	diagnostic purposes active			
Refer to: p7761, p7765, p7766, p7767, p7768				


Note:	KHP: Know-How Protection		
	Re bit 00:		
	Write protection can be activated/deactivated via p7761 on the Control Unit.		
	Re bit 01:		
	The know-how protection can be activated by entering a password (p7766 ... p7768).		
	Re bit 02:		
	If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password in p7766. In this case, bit $1=0$ and bit $2=1$ offset.		
	Re bit 03:		
	Know-how protection cannot be deactivated, as p7766 is not entered in the OEM exception list (only the factory setting is possible). This bit is only set if know-how protection is active (bit $1=1$ ) and p7766 has not been entered in the OEM exception list.		
	Re bit 04:		
	When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards/Control Units. This bit is only set if know-how protection is active and p7765 bit 00 is set.		
	Re bit 05:		
	When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards. This bit is only set if know-how protection is active and in p7765 bit 01 is set and not bit 00.		
	Re bit 06:		
	When know-how protection is activated, the drive data can be traced using the device trace function. This bit is only set if know-how protection is active and in p7765.2 is set.		
p7761	Write protection / Write protection		
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: $U$, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting for activating/de-activating the write protection for adjustable parameters.		
Value:	0 : Deactivate write protection		
Dependency:	Refer to: r7760		
Notice:	While write protection is active, a download is prevented; however, it is still possible to restore the factory settings.		
Note:	Parameters with the "WRITE_NO_LOCK" attributes are excluded from the write protection.		
	A product-specific list of these parameters is also available in the corresponding List Manual.		
p7762	Write protection multi-master fieldbus system access behavior / Fieldbus acc_behav		
CU_G130_DP,	Can be changed: $U$, $T$	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the behavior for write protection when accessing via multi-master fieldbus systems (e.g. CAN, BACnet).		
Value:	0 : Write access independent of p7761		
	1: Write access dependent on p7761		
Dependency:	Refer to: r7760, p7761		


p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764		
All objects	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Enit selection: -
	Not for motor type: -	Scaling: -	Factory setting
	Min	500	1
	1		
Description:	Sets the number of parameters for the OEM exception list (p7764[0...n]).		
Dependency:	p7764[0..n], with $n=$ p7763-1	Refer to: p7764	
Note:	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		


p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
B_INF, ENC, HUB,	Can be changed: U, T	Calculated: -	Access level: 3
TB30, TM150, TM31,	Data type: Unsigned16	Dyn. index: p7763	Func. diagram: -
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL, } \end{aligned}$	P-Group: -	Units group: -	Unit selection: -
VECTOR_G	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	OEM exception list ( $\mathrm{p} 7764[0 \ldots \mathrm{n}]$ for setting parameters that should be excluded from know-how protection. p7764[0...n], with $n=p 7763-1$		
Dependency:	The number of indices depends on p 7763.		
	Refer to: p7763		
Note:	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		


p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: p7763	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	65535	Factory setting
	0	$[0] 7766$	
		$[1 . .499] 0$	


p7765	KHP configuration / KHP config		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	-	Factory setting
	-	0000 bin	
	Configuration settings for know-how protection.		

Re bit 00, 01:
When KHP is activated, this means that the OEM can define whether the parameters and DCC data encrypted on the memory card should be protected before using on other memory cards/Control Units.
Re bit 02:
This means that the OEM can define whether it is possible or not to trace the drive data using the device trace function although KHP is activated.

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Extended copy protection - linked to the memory card and CU	Yes	No	-
	01	Basic copy protection - linked to the memory card	Yes	No	-
	02	Permit trace and measuring functions for diagnostic purposes	Yes	No	-
Dependency:	Refer to: p7766, p7767, p7768				
Note:	KHP: Know-How Protection				
	For copy protection, the serial numbers of the memory card and/or Control Unit are checked.				
	The memory card copy protection and preventing data to be traced are only effective when the know-how protection has been activated.				
	Re bit 00, 01:				
	If both bits are inadvertently set to 1 (e.g. at the BOP), then the setting of bit 0 applies.				
	There is no copy protection if both bits are set to 0 .				


p7766[0...29]	KHP password input / KHP passw input		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Sets the password for know-how protection.		
	Example of a password:		
	$123 \mathrm{aBc}=495051976699 \mathrm{dec}$ (ASCII characters)		
	[0] = character 1 (e.g. 49 dec )		
	[1] = character 2 (e.g. 50 dec )		
	$\ldots$		
	[5] = character 6 (e.g. 99 dec )		
	[29] = 0 dec (completes the entry)		
Dependency:	Refer to: p7767, p7768		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	When using the STARTER commissioning software, the password should be entered using the associated dialogs.		

- Password entry must start with p7766[0].
- No gaps are permissible in the password.
- Entering a password is completed when writing to $\mathrm{p} 7766[29]$ ( $p 7766[29]=0$ for passwords less than 30 characters).


## Note:

KHP: Know-How Protection
When reading, p7766[0...29] = 42 dec (ASCII character = "*") is displayed.
Parameters with the "KHP_WRITE_NO_LOCK" attribute are not involved in the know-how protection.
Parameters with the "KHP_ACTIVE_READ" attribute can be read even when know-how protection is activated.
A product-specific list of these parameters is also available in the corresponding List Manual.

p7767[0...29]	KHP password new / KHP passw new		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU G150 PN	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Sets the new password for know-how protection.		
Dependency:	Refer to: p7766, p7768		
Note:	KHP: Know-How Protection		
	When reading, p7767[0...29] = $42 \mathrm{dec}($ ASCII character $=$ "*") is displayed.		


p7768[0...29]	KHP password confirmation / KHP passw confirm		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Factory setting	
	-	-	
Description:	Confirms the new password for know-how protection.		
Dependency:	Refer to: p7766, p7767		
Note:	KHP: Know-How Protection	When reading, p7768[0..29] = 42 dec (ASCII character $=$ "*" $)$ is displayed.	


p7769[0...20]	KHP memory card reference serial number / KHP mem ref ser_no		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Sets the reference serial number for the memory card.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Note:	KHP: Know-How Protection		
	- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		

p7770
B_INF, ENC, HUB,
TB30, TM150, TM31,
TM54F_MA,
TM54F_SL,
VECTOR_G

Description:

NVRAM action / NVRAM action
Can be changed: $T$
Data type: Integer16
P-Group: -
Not for motor type: -
Min
0
Sets the action to be executed for NVRAM data.
At the end of the action the value is automatically set to 0 .

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
3

Value:	$0: \quad$ Inactive
	$1: \quad$ Load NVRAM data to parameters
Notice:	$2: \quad$ Load parameters to NVRAM
	$3: \quad$ Reset
	After action $p 7770=1$ no more pulses may be enabled.
Note:	After action $p 7770=2$, it is essential that parameters are backed up $(p 0977=1)$ and that a warm restart is then
	performed $(p 0009=30, p 0976=2,3)$. This will apply the values written.
	If value $=1:$
	This action loads the NVRAM data to the parameters.
	If value $=2:$
	This action loads the parameters to the NVRAM.
	If value $=3:$
	This action sets parameters p7771 ... p7774 to the factory setting.
	It is recommended to avoid placing unnecessary load on the subsequent upload/download operation.



p7786[0...n]	Service report / Service report		
B_INF, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned16	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0000000000000000 bin

[^6]

Description: Sets the individual signals for the component trace.

For $p 7790[0 \ldots 15]=0$, the component trace is deactivated.
Re index 0 ... 7:
The signals are set in p7790[0...7], whose characteristic is to be recorded over time.
If "No signal" is set for a trace channel, then the recording duration of the other time characteristics is increased.
Re index 8 ... 15:
The signals are set in p7790[8...15], whose instantaneous value is to be recorded.
Value:

Index:

Dependency:
No signal
Pulse frequency
Phase current U
Phase current V
Phase current W
IGBT chip temperature
Heat sink temperature
DC link voltage
Modulat_depth
Angle
[0] = Trace channel 0
[1] = Trace channel 1
[2] = Trace channel 2
[3] = Trace channel 3
[4] = Trace channel 4
[5] = Trace channel 5
[6] = Trace channel 6
[7] = Trace channel 7
[8] = Trace channel 8
[9] = Trace channel 9
[10] = Trace channel 10
[11] = Trace channel 11
[12] = Trace channel 12
[13] = Trace channel 13
[14] = Trace channel 14
[15] = Trace channel 15

In the operation state, when a trigger event occurs, the trace data of the signals are saved in the component. The oldest trace data are overwritten after more than 5 trigger events.
The trigger event can be set in p 7791 .
By activating p7792, the trace data of the component is written to files on the non-volatile storage medium (memory card). Experts can then evaluate this data.

## p7791 Component trace trigger / Comp trace trigger

B INF, VECTOR G Can be changed: U, T Calculated: -
Data type: Integer16
P-Group: Converter
Not for motor type: -

02

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: Sets the trigger event for the component trace.
Value: $\quad 0: \quad$ Overcurrent, overvoltage, ground fault, Uce
1: Time-critical message
2: Uce
Dependency: Refer to: p7790, p7792
Note:
When the power unit detects an overcurrent condition, then A30001 is output.
When the power unit detects an overvoltage condition in the DC link, then A30002 is output.
When the power unit detects a ground fault, then A30021 is output.
When the power unit detects a Uce fault, then A30022 is output.

p7792	Upload component trace data / Upload comp trace		
B_INF, VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Converter	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting to upload and sa Experts can then evalua For p 7792 = 1, the trace The parameter is then a	the component   ent is written to fil ro.	card in a non-volatile
Value:	0: Inactive   1: Upload and save		
Dependency:	Refer to: p7790, p7791		
Notice:	Trace files of this component already available on the non-volatile storage medium are overwritten after backup has been activated.		
p7820	DRIVE-CLiQ component component number / DQ compo_no		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:   Dependency:	Sets the component number of the DRIVE-CLiQ component whose parameters are to be accessed.		
p7821	DRIVE-CLiQ component parameter number / DQ para_no		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the parameter number to access a parameter of a DRIVE-CLiQ component.		
Dependency:	Refer to: p7820, p7822, r7823		
p7822	DRIVE-CLiQ component parameter index / DQ para_index		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
$\mathrm{CU}^{-\mathrm{G} 150-\mathrm{PN}}$	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the parameter index to access a parameter of a DRIVE-CLiQ component.		
Dependency:	Refer to: p7820, p7821, r7823		


r7823	DRIVE-CLiQ component read parameter value / Read DQ value
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:   Dependency:	Displays the parameter value read from the DRIVE-CLiQ component. Refer to: p7820, p7821, p7822
$\begin{aligned} & \hline \mathbf{r 7 8 2 5 [ 0 . . . 6 ] ~} \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	DRIVE-CLiQ component versions / DQ comp version
Description: Index:	Displays the firmware and EEPROM versions of the DRIVE-CLiQ component selected using p7828[1].   [0] = Reference firmware version   [1] = Actual firmware version   [2] = EEPROM0 version   [3] = EEPROM1 version   [4] = EEPROM2 version   [5] = EEPROM3 version   [6] = EEPROM4 version
Dependency:   Note:	Refer to: p7828   Re index 0 :   Firmware version on the memory card/device memory.   Re index 1:   Actual firmware version of the DRIVE-CLiQ component.   Re index 2 ... 6:   Actual EEPROM version of the DRIVE-CLiQ component.
p7826   CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	Firmware update automatic / FW update auto
Description: Value:	Sets the behavior for the automatic firmware update of the DRIVE-CLiQ components.   0: Deactivated   1: Upgrade and downgrade   2: Upgrade
Notice: Note:	If this parameter is changed, it only becomes effective the next time that the drive system boots.   The firmware is automatically updated when the system boots. The boot can take several minutes.   After the update has been completed, it is necessary to carry out a new POWER ON (power-down/power-up) for the components involved.   The firmware update procedure is displayed as follows:   Control Unit (LED RDY):   Flashes yellow with 0.5 Hz --> firmware is being updated.   Flashing yellow with 2 Hz --> POWER ON is required for the components involved.

Components involved:
Flashing red/green with 0.5 Hz --> firmware is being updated.
Flashing red/green with 2 Hz --> POWER ON of the components is required.
Only components from firmware version 2.5 support the red/green flashing at 2 Hz .

r7827	Firmware update progress display / FW update progress		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the progress when updating the firmware of the DRIVE-CLiQ components.		


p7828[0...1]	Firmware download component number / FW downl comp_no		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	399	0
Description:	Sets the component number for the required DRIVE-CLiQ component.		
	Index 0 :		
	Component number of the DRIVE-CLiQ component for which a firmware download is to be made. Index 1:		
	Component number of the DRIVE-CLiQ component for which the reference firmware version, saved in r7825 on the memory card/device memory, is to be displayed.		
Index:	[0] = Firmware download		
Dependency:	Refer to: p0121, p0141, p0151, p7829		
Note:	For p7828[0] = 399, the firmware for all of the existing components is downloaded.		
	The firmware download is started with p7829 = 1.		


p7829	Activate firmware download / FW download act		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP,   CU G150 PN	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	999	0
Description:	Activating the firmware download for the DRIVE-CLiQ components specified in p 7828.		
	1: Activate download.		
	-1: activate the download and carry out a reset.		
	0 : Download successfully completed.		
	> 1: Fault code		
	011: DRIVE-CLiQ component has detected a checksum error.		
	015: The selected DRIVE-CLiQ components did not accept the contents of the firmware file.		
	018: Firmware version is too old and is not accepted by the component.		
	019: Firmware version is not suitable for the hardware release of the component.		
	101: After several communication attempts, no response from the DRIVE-CLiQ component.		
	140: Firmware file for the DRIVE-CLiQ component not available on the memory card/device memory.		
	143: Component has not changed to the mode for firmware download. It was not possible to delete the existing firmware.		

144: When checking the firmware that was downloaded (checksum), the component detected a fault. It is possible that the file on the memory card/device memory is defective.
145: Checking the loaded firmware (checksum) was not completed by the component in the appropriate time.
156: Component with the specified component number is not available.
Additional values:
Only for internal Siemens troubleshooting.
Dependency:
Note:
Refer to: p7828
p7829 is automatically set to 0 after the firmware has been successfully downloaded.
The new firmware only becomes active at the next system run-up.


```
10534: ENC_ID_OFFSET_CORR_AB_X
10535: ENC_ID_OFFSET_CORR_AB_Y_Y
10536: ENC_ID_AB_ABS_VALUE
10537: ENC_ID_TRACM_-_CD_X
10538: ENC_ID_TRACK_CD_Y
10539: ENC_ID_TRACK_CD_ABS
10542: ENC_ID_AB_RAND_X
10543: ENC_ID_AB_RAND_Y
10544: ENC_ID_AB_RAND_ABS_VALUE
10545: ENC_ID_SUB
10546: ENC_ID_PROC_OFFSET_0
10547: ENC_ID_PROC_OFFSET_4
10550: ENC_ID_SUBTRACE_AMPL
10563: ENC_ID_ENCODER_TEMP
10564: ENC_SELFTEMP_ACT
10565: ENC_ID_MOTOR_TEMP_TOP
10566: ENC_ID_MOTOR_TEMP_1
10567: ENC_ID_MOTOR_TEMP_1_COD
10569: ENC_ID_MOTOR_TEMP_2_COD
10571: ENC_ID_MOTOR_TEMP_3_COD
10580: ENC_ID_RESISTANNCE_1
10590: ENC_ID_ANA_CHAN_A
10591: ENC_ID_ANA_CHAN_B
10592: ENC_ID_ANA_CHAN_X
10593: ENC_ID_ANA_CHAN_Y
10596: ENC_ID_AB_A_ANGLE
10597: ENC_ID_CD_ANGLE
10598: ENC_ID_MECHH_ANGLE_HI
10599: ENC_ID_RM_POSS_PHI_COMMU
10600: ENC_ID_PHI_COMMU
10601: ENC_ID_SUBTTRACE_ANGLE
10612: ENC_ID_DIFF_CD_INC
10613: ENC_ID_RM_POS_PHI_COMMU_RFG
10628: ENC_ID_MECH_ANGLE
10629: ENC_ID_MECH_RM_POS
10644: ENC_ID_INIT_VECTOR
10645: FEAT_INIT_VECTOR
10660: ENC_ID_SENSOR_STATE
10661: ENC_ID_BASIC_SYSTEM
10662: ENC_ID_REFMARRK_STATUS
10663: ENC ID DSA STATUS1 SENSOR
10664: ENC_ID_DSA_RMSTAT_HANDSHAKE
10665: ENC_ID_DSA_CONTROL1_SENSOR
10667: ENC_ID_SAFE-TY
10669: ENC_ID_SUB_STATE
10676: ENC_ID_COUNTCORR_SAW_VALUE
10677: ENC_ID_COUNTCORR_ABS_VALUE
10678: ENC_ID_SAWTOOTH_COCORR
10680: ENC_ID_SM_XIST1_CORRECTED_QUADRANTS
10692: ENC_ID_RESISTANCE_CALIB_INSTANT
10693: ENC_ID_SERPROT_POS
10700: ENC_ID_AB_VIOL_COUNT
10723: ENC_ID_ACT_STATEMACHINE_FUNCTION
10724: ENC_ID_ACT_FUNMAN_FUNCTION
10725: ENC_ID_SAFĒTY_COUNTTER_CRC
10728: ENC_ID_SUBTRACE_AREA
10740: ENC_ID_POS_ABSOLUTE
10741: ENC_ID_POS_REFMARK
10742: ENC_ID_SAWTOOTH
10743: ENC_ID_SAFETY_PULSE_COUNTER
10745: ENC_ID_EIU_ZEROCTRL
10756: ENC_ID_DSA_ACTUAL_SPEED
10757: ENC_ID_SPEED_DEV_ABS
10772: ENC_ID_DSA_PO-S_XIST1
10788: ENC_ID_AB_CROSS_CORR
10789: ENC_ID_AB_GAIN_Y_CORR
```

```
10790: ENC_ID_AB_PEAK_CORR
11825: ENC_ID_RES_TRANSITION_RATIO
11826: ENC ID RES PHASE SHIFT
15150: ENC_ID_SPINDLE_S1_RAW
15151: ENC_ID_SPINDLE_S4_RAW
15152: ENC_ID_SPINDLE_S5_RAW
15155: ENC_ID_SPINDLE_S1_CAL
15156: ENC_ID_SPINDLE_S4_CAL
15157: ENC_ID_SPINDLE_S5_CAL
```

r7832[0...23]	Telegram diagnostics numerical format / Telegr diag format		
ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	14	-
Description:	Displays the original numerical format of the signals contained in the telegram.		
	The associated signal number is represented in the appropriate index of r7831.		
Value:	-1: Unknown		
	0: Boolean		
	1: $\quad$ Signed 1 byte		
	2: $\quad$ Signed 2 byte		
	3: $\quad$ Signed 4 byte		
	4: $\quad$ Signed 8 byte		
	5: Unsigned 1 byte		
	6: Unsigned 2 byte		
	7: Unsigned 4 byte		
	8: Unsigned 8 byte		
	9: Float 4 byte		
	10: Double 8 byte		
	11: mm dd yy HH MM SS MS DOW		
	12: ASCII string		
	13: SINUMERIK frame type		
	14: SINUMERIK axis type		
Dependency:	Refer to: r7831		


r7833[0...23]	Telegram diagnostics unsigned / Telegr diag unsign		
ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
Description:	-	-	-

## r7834[0...23] Telegram diagnostics signed / Telegr diag sign

ENC, VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-

[^7]|  | Telegram diagnostics real / Telegr |  |  |
| :---: | :---: | :---: | :---: |
| ENC, VECTOR_G | Can be changed: - <br> Data type: FloatingPoint32 <br> P-Group: - <br> Not for motor type: - <br> Min | Calculated: - <br> Dyn. index: - <br> Units group: <br> Scaling: - <br> Max | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: | Parameter to display a DSA signal in the float The associated signal number is represented | format. at the approp |  |
| r7836[0...23] | Telegram diagnostics unit / Teleg | diag unit |  |
| ENC, VECTOR_G | Can be changed: - <br> Data type: Integer16 <br> P-Group: - <br> Not for motor type: - <br> Min <br> -1 | Calculated: - <br> Dyn. index: - <br> Units group: - <br> Scaling: - <br> Max <br> 147 | Access level: 4 <br> Func. diagram: <br> Unit selection: - <br> Expert list: 1 <br> Factory setting |
| Description: | Displays the units of a DSA signal. <br> The associated signal number is represented | at the appropria |  |
| Value: | Unknown <br> None <br> Millimeter or degrees <br> Millimeter <br> Degrees <br> $\mathrm{mm} / \mathrm{min}$ or RPM <br> Millimeter / min <br> Revolutions / min <br> $\mathrm{m} / \mathrm{sec}^{\wedge} 2$ or $\mathrm{U} / \mathrm{sec}^{\wedge} 2$ <br> $\mathrm{m} / \mathrm{sec}^{\wedge} 2$ <br> $\mathrm{U} / \mathrm{sec}^{\wedge} 2$ <br> $\mathrm{m} / \mathrm{sec}^{\wedge} 3$ or $\mathrm{U} / \sec ^{\wedge} 3$ <br> $\mathrm{m} / \mathrm{sec}^{\wedge} 3$ <br> U/sec^3 <br> sec <br> 16.667 / sec <br> $\mathrm{mm} /$ revolution <br> ACX_UNIT_COMPENSATION_CORR <br> Newton <br> Kilogram <br> Kilogram meter^2 <br> Percent <br> Hertz <br> Volt peak-to-peak <br> Amps peak-to-peak <br> Degrees Celsius <br> Degrees <br> Millimeter or degrees <br> Meters / minute <br> Meters / second <br> ohm <br> Millihenry <br> Newton meter <br> Newton meter/Ampere <br> Volt/Ampere <br> Newton meter second / rad <br> 31.25 microseconds <br> Microseconds <br> Milliseconds <br> Kilowatt <br> Micro amps peak-to-peak |  |  |


44:	Volt seconds
45:	Microvolt seconds
46:	Micro newton meters
47:	Amps / volt seconds
48:	Per mille
49:	Hertz / second
53:	Micrometer or millidegrees
54:	Micrometer
55:	Millidegrees
59:	Nanometer
61:	Newton/Amps
62:	Volt seconds/meter
63:	Newton seconds/meter
64:	Micronewton
65:	Liters / minute
66:	Bar
67:	Cubic centimeters
68:	Millimeter / volt minute
69:	Newton/Volt
80:	Millivolts peak-to-peak
81:	Volt rms
82:	Millivolts rms
83:	Amps rms
84:	Micro amps rms
85:	Micrometers / revolution
90:	Tenths of a second
91:	Hundredths of a second
92:	10 microseconds
93:	Pulses
94:	256 pulses
95:	Tenths of a pulse
96:	Revolutions
97:	100 revolutions / minute
98:	10 revolutions / minute
99:	0.1 revolutions / minute
100:	Thousandth revolution / minute
101:	Pulses / second
102:	100 pulses / second
103:	10 revolutions / (minute $\times$ seconds)
104:	10000 pulses/second^2
105:	0.1 Hertz
106:	0.01 Hertz
107:	0.1 / seconds
108:	Factor 0.1
109:	Factor 0.01
110:	Factor 0.001
111:	Factor 0.0001
112:	0.1 Volt peak-to-peak
113:	0.1 Volt peak-to-peak
114:	0.1 amps peak-to-peak
115:	Watt
116:	100 Watt
117:	10 Watt
118:	0.01 percent
119:	1/second^3
120:	0.01 percent/millisecond
121:	Pulses / revolution
122:	Microfarads
123:	Milliohm
124:	0.01 Newton meter
125:	Kilogram millimeter^2
126:	Rad / (seconds newton meter)
127:	Henry
128:	Kelvin
129:	Hours
130:	Kilohertz


	131:   132:   133:   135:   136:   137:   138:   139:   140:   141:   142:   143:   144:   145:   146:   147:	Milliamperes peak-to-peak   Millifarads   Meter   Kilowatt hours   Percent   Amps / Volt   Volt   Millivolts   Microvolts   Amps   Milliamperes   Micro amps   Milliamperes rms   Millimeter   Nanometer   Joules		
r7843[0...20]	Mem	card serial numb	card ser.n	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	$\begin{aligned} & \text { Can b } \\ & \text { Data } 1 \\ & \text { P-Gro } \\ & \text { Not fc } \\ & \text { Min } \\ & - \end{aligned}$	changed: -   pe: Unsigned8   p: -   motor type: -	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 1   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:	Displa   The i	s the actual serial number dividual characters of the se	nory card.   r are displayed in	he indices.
Dependency:   Notice:   Note:	Refer   An A   Exam   r7843   Serial	o: p9920, p9921   Il table (excerpt) can be fo le: displaying the serial num   ] = 49 dec --> ASCII charac   ] $=49 \mathrm{dec}$--> ASCII charac   ] $=49 \mathrm{dec}$--> ASCII charac   ] = 57 dec --> ASCII charac   ] = 50 dec --> ASCII charac   ] = 51 dec --> ASCII charac   ] = 69 dec --> ASCII charac   ] = 0 dec --> ASCII charact   19] = 0 dec --> ASCII charac   20] $=0 \mathrm{dec}$   number $=111923 \mathrm{E}$	xample, in the ap memory card:   --> serial numbe   > serial number,   --> serial number,	
r7844[0...2]	Mem	y card/device mem	ware versio	_mem FW
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can Data P-Gro Not for Min -	changed: -   pe: Unsigned32   p: -   motor type: -	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Access level: 1   Func. diagram:   Unit selection: -   Expert list: 1   Factory setting
Description:	Displays the version of the firmware stored on the memory medium of the drive device.   Depending on the drive device being used, the memory medium is a memory card, or an internal non-volatile device memory.			
Index:	$\begin{aligned} & {[0]=} \\ & {[1]=} \\ & {[2]=} \end{aligned}$	ternal xternal arameter backup		

Re index 0 :
Displays the internal firmware version (e.g. 04402315).
This firmware version is the version of the memory card/device memory and not the CU firmware (r0018), however, normally they have the same versions.
Re index 1 :
Displays the external firmware version (e.g. 04040000 -> 4.4).
For automation systems with SINAMICS Integrated this is the runtime version of the automation system.
Re index 2 :
Displays the internal firmware version of the parameter backup.
With this CU firmware version, the parameter backup was saved, which was used when powering up.

r7850[0...n]	Drive object operational/not operational / DO ready for oper		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Maling: -	Expert list: 1
	Min	32767	Factory setting
	-32786	-	
Description:	Displays whether, for an activated drive object, all activated topology components are available or not (or whether		
	these can be addressed).		
	0: Drive object not ready for operation		
	1: Drive object ready for operation		


p7852	Number of indices for r7853 / Qty indices r7853		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	1	200	1
Description:	Displays the number of indices for r7853[0...n].		
	This corresponds to the number of DRIVE-CLiQ components that are in the target topology.		
Dependency:	Refer to: r7853		
Note:	The values are valid if all available Control Units adopt the "Initialization finished" state $(r 3988=800)$ following		
	power-up.		


r7853[0...n]	Component available/not available / Comp present		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: p7852	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	FFFF hex	Factory setting
	0000 hex	-	
	Displays the component and whether this component is currently present.		
Description:	High byte: Component number		
	Low byte: $0 / 1$ (not available/available)		
	Refer to: p7852		



r7868[0...24]	Configuration changes drive object reference / Config_chng DO ref
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting
Description:	Reference to the drive objects whose configuration has changed.   Index 0:   When changing one of the following indices, then the value in this index is increased. Index 1...n:   The drive object with object number in $\mathrm{p} 0101[\mathrm{n}-1]$ has changed its configuration.   Example:   r7868[3] was incremented since the last time it was read.   --> the configuration of the drive object with object number in p0101[2] was changed.
Index:	[ 0 ] = Sum of the following indices   [1] = Object number in p0101[0]   [2] = Object number in p0101[1]   [3] = Object number in p0101[2]   [4] = Object number in p0101[3]   [5] = Object number in p0101[4]   [6] = Object number in p0101[5]   [7] = Object number in p0101[6]   [8] = Object number in p0101[7]   [9] = Object number in p0101[8]   [10] = Object number in p0101[9]   [11] = Object number in p0101[10]   [12] $=$ Object number in p0101[11]   [13] = Object number in p0101[12]   [14] = Object number in p0101[13]   [15] = Object number in p0101[14]   [16] = Object number in p0101[15]   [17] = Object number in p0101[16]   [18] = Object number in p0101[17]   [19] = Object number in p0101[18]   [20] = Object number in p0101[19]   [21] = Object number in p0101[20]   [22] $=$ Object number in p0101[21]   [23] = Object number in p0101[22]   [24] = Object number in p0101[23]
Dependency:	Refer to: p0101, r7867, r7871
r7869[0...24]	Status changes drive object reference / Status_chng DO ref
CU_G130_DP,   CU_G130_PN,   CU_G150_DP,   CU_G150_PN	Can be changed: - Calculated: - Access level: 4   Data type: Unsigned32 Dyn. index: - Func. diagram: -   P-Group: - Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:	Reference to the drive objects whose status has changed.   Index 0:   When changing one of the following indices, then the value in this index is increased.   Index 1...n:   The drive object with object number in p0101[n-1] has changed its status.   Example:   r7868[3] was incremented since the last time it was read.   --> the status of the drive object with object number in p0101[2] was changed.

Index: $\quad$| $[0]$ | $=$ Sum of the following indices |
| ---: | :--- |
| $[1]$ | $=$ Object number in p0101[0] |
| $[2]$ | $=$ Object number in p0101[1] |
| $[3]$ | $=$ Object number in p0101[2] |
| $[4]$ | $=$ Object number in p0101[3] |
| $[5]$ | $=$ Object number in p0101[4] |
| $[6]$ | $=$ Object number in p0101[5] |
| $[7]$ | $=$ Object number in p0101[6] |
| $[8]$ | $=$ Object number in p0101[7] |
| $[9]$ | $=$ Object number in p0101[8] |
| $[10]$ | $=$ Object number in p0101[9] |
| $[11]$ | $=$ Object number in p0101[10] |
| $[12]$ | $=$ Object number in p0101[11] |
| $[13]$ | $=$ Object number in p0101[12] |
| $[14]$ | $=$ Object number in p0101[13] |
| $[15]$ | $=$ Object number in p0101[14] |
| $[16]$ | $=$ Object number in p0101[15] |
| $[17]$ | $=$ Object number in p0101[16] |
| $[18]$ | $=$ Object number in p0101[17] |
| $[19]$ | $=$ Object number in p0101[18] |
| $[20]$ | $=$ Object number in p0101[19] |
| $[21]$ | $=$ Object number in p0101[20] |
| $[22]$ | $=$ Object number in p0101[21] |
| $[23]$ | $=$ Object number in p0101[22] |
| $[24]$ | $=$ Object number in p0101[23] |
| Refer to: p0101, r7867, r7872 |  |

r7870[0...7] Configuration changes global / Config_chng global

CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN

Description: Index:

Note:

Can be changed: -
Data type: Unsigned32
P-Group: -
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Displays the configuration changes of all of the drive objects in the complete unit.
[0] = Sum of the following indices
[1] = r7871[0] of a drive object
[2] = p0101 or r0102
[3] = PROFIBUS configuration (p0978)
[4] = DRIVE-CLiQ actual topology (r9900 or r9901)
[5] = DRIVE-CLiQ target topology (r9902 or r9903)
[6] = DRIVE-CLiQ sockets (p0109)
[7] = OA applications
Refer to: r7867, r7871
Re index 0 :
When changing one of the following indices, then the value in this index is incremented.
Re index 1 :
Drive object configuration. When changing r7871[0] on a drive object, the value in this index is incremented. Re index 2:
Drive object, configuration unit. When changing either p0101 or r0102, the value in this index is incremented.
Re index 3:
PROFIBUS configuration unit. When changing p0978, the value in this index is incremented.
Re index 4:
DRIVE-CLiQ actual topology. When changing either r9900 or r9901, the value in this index is incremented.
Re index 5:
DRIVE-CLiQ target topology. When changing either p9902 or p9903, the value in this index is incremented.
Re index 6:
DRIVE-CLiQ sockets. When changing p0109, the value in this index is incremented.
Re index 7:
OA applications. When changing OA applications, the value in this index is incremented.

r7871[0...15]	Configuration changes drive object / Config_chng DO
B_INF	Can be changed: - Calculated: - Access level: 4
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: - Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	- - -
Description:	Displays the configuration changes on the drive object.
Index:	$\begin{aligned} & {[0]=\text { Sum of the following indices }} \\ & {[1]=\text { p0010, p0107, p0108 }} \\ & {[2]=\text { Drive object name (p0199) }} \\ & {[3]=\text { Structure-relevant parameters (e.g. p0180) }} \\ & {[4] \text { = BICO interconnections }} \\ & {[5] \text { = Activate/de-activate drive object }} \\ & {[6] \text { = Data backup required }} \\ & {[7] \text { = Activate/de-activate component }} \\ & {[8]=\text { Reference or changeover parameters (e.g. p2000) }} \\ & {[9]=\text { Parameter count through Drive Control Chart (DCC) }} \\ & {[10]=\text { p0107, p0108 }} \\ & {[11]=\text { Reserved }} \\ & {[12]=\text { Write protection and know-how protection status }} \\ & {[13]=\text { Reserved }} \\ & {[14] \text { = Reserved }} \\ & {[15]=\text { Reserved }} \end{aligned}$
Dependency:	Refer to: r7868, r7870
Note:	Re index 0 :
	When changing one of the following indices, then the value in this index is incremented.
	Re index 1:
	Drive object commissioning: When changing p0010, p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.
	Re index 2:
	Drive object name. When changing p0199, the value in this index is incremented.
	Re index 3 :
	Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
	Re index 4:
	Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
	Re index 5:
	Drive object activity: When changing p0105, the value in this index is incremented.
	Re index 6:
	Drive object, data save.
	0 : There are no parameter changes to save.
	1: There are parameter changes to save.
	Re index 7:
	Drive object component activity: When changing either p0125 or p0145, the value in this index is incremented. Re index 8:
	Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
	Re index 9:
	Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
	Re index 10:
	Drive object configuration. When changing p0107, $00108, \mathrm{p} 0171, \mathrm{p} 0172$ or p 0173 , the value in this index is incremented.

r7871[0...15]
CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

Description: Index:

Dependency: Note:

Configuration changes drive object / Config_chng DO

Can be changed: -	Calculated: -	Access level: 4
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: -	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	-

Displays the configuration changes on the drive object.
[ 0 ] = Sum of the following indices
[1] = p0107, p0108, p0171, p0172 or p0173
[2] = Drive object name (p0199)
[3] = Structure-relevant parameters (e.g. p0180)
[4] = BICO interconnections
[5] = Activate/de-activate drive object
[6] = Data backup required
[7] = Reserved
[8] = Reference or changeover parameters (e.g. p2000)
[9] = Parameter count through Drive Control Chart (DCC)
[10] = p0107, p0108
[11] = Reserved
[12] = Write protection and know-how protection status
[13] = Reserved
[14] = Reserved
[15] = Reserved
Refer to: r7868, r7870
Re index 0 :
When changing one of the following indices, then the value in this index is incremented.
Re index 1 :
Drive object commissioning: When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.
Re index 2 :
Drive object name. When changing p0199, the value in this index is incremented.
Re index 3 :
Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
Re index 4:
Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
Re index 5:
Drive object activity: When changing p0105, the value in this index is incremented.
Re index 6:
Drive object, data save.
0 : There are no parameter changes to save.
1: There are parameter changes to save.
Re index 8 :
Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
Re index 9:
Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
Re index 10:
Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.

r7871[0...15]	Configuration chan	ct / Config_c	
ENC	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the configuration changes on the drive object.		
Index:	[ 0 ] = Sum of the following indices		
	[1] $=$ p0010, p0107, p0108, p0171, p0172 or p0173		
	[2] = Drive object name (p0199)		
	[3] = Structure-relevant parameters (e.g. p0180)		
	[4] = BICO interconnections		
	[5] = Activate/de-activate drive object		
	[6] = Data backup required		
	[7] = Activate/de-activate component		
	[8] = Reference or changeover parameters (e.g. p2000)		
	[9] = Parameter count through Drive Control Chart (DCC)		
	$[10]=p 0107, \mathrm{p} 0108, \mathrm{p} 0171, \mathrm{p} 0172$ or p0173$[11]=\mathrm{p} 0530$ or p0531		
	[12] = Write protection and know-how protection status		
	[13] $=$ Reserved$[14]=$ Reserved		
	[15] = Enc type (p0400)		
Dependency:	Refer to: r7868, r7870		
Note:	Re index 0 :		
	When changing one of the following indices, then the value in this index is incremented.		
	Re index 1:		
	Drive object configuration. When changing p0010, p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.		
	Re index 2:		
	Drive object name. When changing p0199, the value in this index is incremented.		
	Re index 3:		
	Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.		
	Re index 4:		
	Drive object BICO interconnections. When changing r3977, the value in this index is incremented.		
	Re index 6:		
	Drive object, data save.		
	0 : There are no parameter changes to save.		
	1: There are parameter changes to save.		
	Re index 8:		
	Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304 ...), the value in this index is incremented.		
	Re index 9:		
	Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.		
	Re index 15:		
	Encoder configuration. When changing p0400, the value in this index is incremented.		


r7871[0...15]	Configuration changes drive object / Config_chng DO
HUB, TB30, TM150, TM31	Can be changed: - Calculated: - Access level: 4
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: - Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	- - -
Description:	Displays the configuration changes on the drive object.
Index:	[0] = Sum of the following indices
	[1] = p0010, p0107, p0108
	[2] = Drive object name (p0199)
	[3] = Structure-relevant parameters (e.g. p0180)
	[4] = BICO interconnections
	[5] = Activate/de-activate drive object
	[6] = Data backup required
	[7] = Reserved
	[8] = Reference or changeover parameters (e.g. p2000)
	[9] = Parameter count through Drive Control Chart (DCC)
	$[10]=$ p0107, p0108
	[11] = Reserved
	[12] = Write protection and know-how protection status
	[13] $=$ Reserved
	[14] = Reserved
	[15] = Reserved
Dependency:	Refer to: r7868, r7870
Note:	Re index 0:
	When changing one of the following indices, then the value in this index is incremented.
	Re index 1:
	Drive object commissioning: When changing p0010, p0107 or p0108, the value in this index is incremented.
	Re index 2:
	Drive object name. When changing p0199, the value in this index is incremented.
	Re index 3:
	Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.
	Re index 4:
	Drive object BICO interconnections. When changing r3977, the value in this index is incremented.
	Re index 5:
	Drive object activity: When changing p0105, the value in this index is incremented.
	Re index 6:
	Drive object, data save.
	0 : There are no parameter changes to save.
	1: There are parameter changes to save.
	Re index 8:
	Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.
	Re index 9:
	Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.
	Re index 10:
	Drive object configuration. When changing either p0107 or p0108, the value in this index is incremented.
	Re index 12:
	Drive object configuration. When activating/deactivating write protection or know-how protection, the value in this index is incremented.



r7871[0...15]	Configuration cha	/ Config_	
VECTOR_G	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the configuration changes on the drive object.   [ 0 ] = Sum of the following indices   [1] = p0010, p0107, p0108, p0171, p0172 or p0173   [2] = Drive object name (p0199)   [3] = Structure-relevant parameters (e.g. p0180)   [4] = BICO interconnections   [5] = Activate/de-activate drive object   [6] = Data backup required   [7] = Activate/de-activate component   [8] = Reference or changeover parameters (e.g. p2000)   [9] = Parameter count through Drive Control Chart (DCC)   [10] $=$ p0107, p0108, p0171, p0172 or p0173   [11] $=$ p0530 or p0531   [12] = Write protection and know-how protection status   [13] = Reserved   [14] = Reserved   [15] = SERVO or VECTOR (e.g. p0300)		
Index:			
Dependency:   Note:	Refer to: r7868, r7870		
	Re index 0 :   When changing one of the following indices, then the value in this index is incremented. Re index 1 :		
	Drive object commissioning: When changing p0010, p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.		
	Re index 2:		
	Drive object name. When changing p0199, the value in this index is incremented.		
	Re index 3:		
	Drive object structure. When changing a parameter that is relevant for the structure (e.g. number of data sets), the value in this index is incremented.		
	Re index 4:		
	Drive object BICO interconnections. When changing r3977, the value in this index is incremented. Re index 5:		
	Drive object activity: When changing p0105, the value in this index is incremented.		
	Re index 6:		
	Drive object, data save.		
	0 : There are no parameter changes to save.		
	1: There are parameter changes to save.		
	Re index 7 :		
	Drive object component activity: When changing either p0125 or p0145, the value in this index is incremented. Re index 8:		
	Drive object changeover of units. When changing reference or changeover parameters (e.g. p2000, p0304), the value in this index is incremented.		
	Re index 9:		
	Drive object parameter count. When changing the number of parameters by loading Drive Control Chart (DCC), the value in this index is incremented.		
	Re index 10:		
	Drive object configuration. When changing p0107, p0108, p0171, p0172 or p0173, the value in this index is incremented.		
	Re index 11:Drive object bearing. When changing p0530 or p0531, the value in this index is incremented.		

Re index 12:
Drive object configuration. When activating/deactivating write protection or know-how protection, the value in this index is incremented.
Re index 15 :
SERVO/VECTOR configuration. When changing p0300, p0301 or p0400, the value in this index is incremented.

r7872[0...3]	Drive object status changes / DO stat_chng		
All objects	Can be changed: -	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status changes on the drive object.		
Index:	[0] = Sum of the followin   [1] = Faults (r0944)   [2] = Alarms (r2121)   [3] = Safety messages		
Dependency:	Refer to: r7869		
Note:	Re index 0:		
	When changing one of the following indices, then the value in this index is incremented.		
	Re index 1:		
	Drive object faults. When changing r0944, the value in this index is incremented.		
	Re index 2:		
	Drive object alarms. When changing r2121, the value in this index is incremented.		
	Re index 3:		
	Drive object safety messages. When changing r9744, the value in this index is incremented.		


p7900[0...23]	Drive objects priority / DO priority		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0

Description: Sets the priority for processing the existing drive objects in the system.
The parameter enables a free sequence to be set for processing the drive objects. For this purpose all the drive object numbers existing in the system have to be written in the desired sequence into the corresponding indices of the parameter. After re-booting this sequence will be effective without a plausibility check.
With the factory setting the following priorities regarding processing are applicable:

- The drive objects are pre-sorted according to their type as follows: CONTROL UNIT, INFEED, SERVO, VECTOR, TM, HUB, CU_LINK
- If they are of the same type, they are sorted in ascending order according to their drive object number, i.e. the lower the number, the higher the priority for processing.
Index: [0] = Drive object number Control Unit
[1] = Drive object number object 1
[2] = Drive object number object 2
[3] = Drive object number object 3
[4] = Drive object number object 4
[5] = Drive object number object 5
[6] = Drive object number object 6
[7] = Drive object number object 7
[8] = Drive object number object 8
[9] = Drive object number object 9
[10] = Drive object number object 10
[11] = Drive object number object 11
[12] = Drive object number object 12
[13] = Drive object number object 13
[14] = Drive object number object 14
[15] = Drive object number object 15
[16] = Drive object number object 16
[17] = Drive object number object 17
[18] = Drive object number object 18
[19] = Drive object number object 19
[20] = Drive object number object 20
[21] = Drive object number object 21
[22] = Drive object number object 22
[23] = Drive object number object 23
Notice: $\quad$ This parameter may only be used by qualified service personnel.
Note: If the same drive object numbers are used and if the existing drive object numbers in the system are entered incompletely, the content of this parameter is ignored entirely. The behavior as with factory setting will then become effective.


r7903	Hardware sampling times still assignable / HW t_samp free		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Displays the number of hardware sampling times that can still be assigned.		
	These free sampling times can be used by OA applications such as DCC or FBLOCKS.		
Note:			

Note: OA: Open Architecture

p8500[0...7]	BI: Input signal bit-serially 0 / Input_sig bit 0		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 2
CU_G130_PN,	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2195
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bit-serial input signals.		
	These signals are available in binector output r8510.0 ... 7 for further interconnection.		
Index:	[0] = To BO: r8510.0		
	[1] = To BO: 88510.1		
	[2] = То BO: 88510.2		
	[3] = То BO: 88510.3		
	[4] = То BO: 88510.4		
	[5] = То BO: 88510.5		
	[6] = То BO: 88510.6		
	[7] = То BO: 88510.7		




Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	From BI: p8501[0]	ON	OFF	-
	01	From BI: $\mathrm{p} 8501[1]$	ON	OFF	-
	02	From BI: p8501[2]	ON	OFF	-
	03	From BI: $\mathrm{p} 8501[3]$	ON	OFF	-
	04	From BI: p8501[4]	ON	OFF	-
	05	From BI: $\mathrm{p} 8501[5]$	ON	OFF	-
	06	From BI: p8501[6]	ON	OFF	-
	07	From BI: p8501[7]	ON	OFF	-
	08	From BI: p8501[8]	ON	OFF	-
	09	From BI: p8501[9]	ON	OFF	-
	10	From BI: $\mathrm{p} 8501[10]$	ON	OFF	-
	11	From BI: p8501[11]	ON	OFF	-
	12	From BI: p8501[12]	ON	OFF	-
	13	From BI: p8501[13]	ON	OFF	-
	14	From BI: $\mathrm{p} 8501[14]$	ON	OFF	-
	15	From BI: $\mathrm{p} 8501[15]$	ON	OFF	-
	16	From BI: p8501[16]	ON	OFF	-
	17	From BI: p8501[17]	ON	OFF	-
	18	From BI: $\mathrm{p} 8501[18]$	ON	OFF	-
		From BI: p8501[19]	ON	OFF	
		From BI: $\mathrm{p} 8501[20]$	ON	OFF	-
	21	From BI: $\mathrm{p} 8501[21]$	ON	OFF	-
Dependency:	Ref	r to: p8501			
r8512		Output signal wo	utp_sig word 0		
CU_G130_DP,	Can	be changed: -	Calculated: -	Acces	
CU_G130_PN,	Dat	type: FloatingPoint32	Dyn. index: -	Func.	
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$		oup: -	Units group: -	Unit s	
		for motor type:-	Scaling: PERCENT	Exper	
	Min		Max	Factor	
	- [\%]		- [\%]	- [\%]	
Description:		ay and connector outpu	iterconnected via conn	p8502.	
Dependency:	Ref	r to: p8502			
r8513		Output signal wo	utp_sig word 1		
CU_G130_DP,		be changed: -	Calculated: -	Acces	
CU_G130_PN,		type: FloatingPoint32	Dyn. index: -	Func	
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$		oup: -	Units group: -	Unit s	
		for motor type: -	Scaling: PERCENT	Expert	
	Min		Max	Factor	
	- [\%]		- [\%]	- [\%]	
Description:	Disp	ay and connector outpu	nterconnected via conn	p8503.	
Dependency:	Ref	r to: p8503			
r8514		Output signal wo	utp_sig word 2		
CU_G130_DP,		be changed: -	Calculated: -	Acces	
CU_G130_PN,		type: FloatingPoint32	Dyn. index: -	Func.	
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$		oup: -	Units group: -	Unit s	
		for motor type: -	Scaling: PERCENT	Exper	
	Min		Max	Factor	
	- [\%]		- [\%]	- [\%]	
Description:		ay and connector outpu	iterconnected via conn	p8504.	
Dependency:		r to: p8504			



r8572[0...39]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	Refer to: p1000		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		
r8573[0...39]	Macro Connector Inputs (CI) for torque setpoints / Macro Cl M_set		
B_INF, VECTOR_G	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	Refer to: p1500		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		
r8585	Macro execution actual / Macro executed		
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, TB30, TM150, TM31, VECTOR_G	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the macro currently being executed on the drive object.		
Dependency:	Refer to: p0015, p0700, p1000, p1500, r8570, r8571, r8572, r8573		
r8600	CAN device type / Device type		
CU_G130_DP (CAN),	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN (CAN),	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_PN (CAN)	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays all of the devices connected to the CAN bus after run-up. r8600		
	$=00000000$ hex: No drive recognized.		
	= FFFF0192 hex: Several drives - drive 1 is an Active Line Module, servo drive or vector drive		
	= FFFF0191 hex: Several drives - 1st drive is a Terminal Module		
	= 02010192 hex: 1 Vector drive		
	= 00020192 hex: 1 Servo drive		
	= 01000192 hex: 1 Active Line Module		
	$=00080191$ hex: 1 Terminal Module		
Note:	Corresponds to the CANopen object 1000 hex.		
	For each detected drive, the device type is displayed in object 67FF hex +800 hex * x (x: Drive number $0 \ldots 7$ ).		




p8606	CAN Producer Heartbeat Time / Prod Heartb Time		
CU_G130_DP (CAN),	Can be changed: T	Calculated: -	Access level: 3
CU_G130_PN (CAN),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP (CAN),	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN (CAN)	Scaling: -	Expert list: 1	
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$65535[\mathrm{~ms}]$	0 [ms]
Description:	Sets the time [ms] to cyclically send heartbeat telegrams.		
	The smallest cycle is 100 ms.		
Dependency:	For p8606 = 0, heartbeat telegrams are not sent.		
Note:	Refer to: p8604		
	Corresponds to the CANopen object 1017 hex.		


r8607[0..3]	CAN Identity Object / Identity object	Calculated: -	Access level: 3
CU_G130_DP (CAN),	Can be changed: -	Dyn. index: -	Func. diagram: -
CU_G130_PN (CAN),	Data type: Unsigned32	Units group: -	Unit selection: -
CU_G150_DP (CAN),	P-Group: Communications	Scaling: -	Expert list: 1
CU_G150_PN (CAN)	Not for motor type: -	Factory setting	
	Min	-	
	-		
Description:	General device information display.		
Index:	$[0]=$ Vendor ID		
	$[1]=$ Product code		
	$[2]=$ Revision number		
	$[3]=$ Serial number		
	Corresponds to the CANopen object 1018 hex.		
	Re index 3:		
	The SINAMICS serial number comprises 60 bits.		
	Of these bits, the following are displayed in this index:		
	Bits $0 \ldots 19:$ Consecutive number		
	Bits $20 \ldots 23:$ Production ID		
	-0 hex: Development		
	-1 hex: P1 unique number		

-2 hex: P2 unique number
-3 hex: WA unique number

- 9 hex: Pattern
- F hex: All others

Bits 24 ... 27: Month of manufacture (0 means January, B means December)
Bits 28 ... 31: Year of manufacture (0 means 2002)

p8608[0..1]	CAN Clear Bus Off Error / Clear bus off err		
CU_G130_DP (CAN), CU_G130_PN (CAN), CU_G150_DP (CAN), CU_G150_PN (CAN)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:			
	As a result of a Bus Off error, the CAN controller is set into the initialization state. Index 0:		
	The CAN controller is manually started after resolving the cause of the error with $\mathrm{p} 8608[0]=1$.		
	Index 1:		
	The automatic CAN bus start function is activated using p8608[1] = 1.		
	At 2 second intervals, the CAN controller is automatically restarted until the cause of the error has been resolved and a CAN connection has been established.		
Value:	0 : Inactive		
	1: Start CAN controller		
Index:	[0] = Manual controller start function		
	[1] = Activating the automatic controller start function		
Note:	Re index 0 :		
	This parameter is automatically reset to 0 after start.		


p8609[0..1]	CAN Error Behavior / Error behavior		
CU_G130_DP (CAN),	Can be changed: $T$	Calculated: -	Access level: 3
CU_G130_PN (CAN),	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP (CAN), CU G150 PN (CAN)	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	1
Description:	Sets the behavior of the CAN node referred to the communications error or equipment fault.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Pre-operational } \\ \text { 1: } & \text { No change } \\ \text { 2: } & \text { Stopped }\end{array}$		
Index:	[0] = Behavior for communication errors   [1] = Behavior for device faults		
Note:	Corresponds to the CANopen object 1029 hex.		
r8610[0...1]	CAN First Server SDO / First server SDO		
CU_G130_DP (CAN),	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN (CAN),	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU G150 PN (CAN)	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identifier (client/server and server/client) of the SDO channel.		
Index:	[ 0 ] = COB-ID from the client to the server [1] = COB-ID from the server to the client		
Dependency:	Refer to: p8612		


Note:	Corresponds to the CANopen object 1200 hex. SDO: Service Data Object
p8611[0...82]	CAN Pre-defined Error Field / Pre_def err field
CU_G130_DP (CAN),   CU_G130_PN (CAN),   CU_G150_DP (CAN),   CU_G150_PN (CAN)	Can be changed: $U$, $T$ Calculated: - Access level: 3
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: - Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0000 hex FFFF 1000 hex 0000 hex
Description:	Displays the Pre-defined Error Field of the CAN node.
	It includes the number of all errors that have occurred, the number of errors that have occurred for each drive and the errors according to their history.
	The first 16 bits represent the CANopen error code and the second 16 bits the SINAMICS error code.
	Index 1 has the same structure - however, the drive object ID is in the second 16 bits instead of the SINAMICS error code.
	CANopen error code:
	0000 hex: No error present.
	8110 hex: Alarm A08751 present.
	8120 hex: Alarm A08752 present.
	8130 hex: Alarm A08700(F) with alarm value $=2$ present.
	1000 hex: Generic error 1 present (there is at least one fault outside the range $8700 \ldots 8799$ )
	1001 hex: Generic error 2 present (there is at least one alarm in the range 8700 ... 8799 with the exception of A08751, A08752, A08700)
	All drive objects are acknowledged by writing the value 0 to index 0 . As soon as a fault has been acknowledged or an alarm cleared, then it is also cleared from the fault list.

Index:
[ 0 ] = Number of all faults in the drive unit
[1] = Most recent drive number / fault number
[2] = Number of faults drive 1
[3] = Fault 1/ drive 1
[4] = Fault 2 / drive 1
[5] = Fault 3/ drive 1
[6] = Fault 4/ drive 1
[7] = Fault 5/ drive 1
[8] = Fault 6/ drive 1
[9] = Fault 7/ drive 1
[10] = Fault 8/ drive 1
[11] = Number of faults drive 2
[12] = Fault 1/drive 2
[13] = Fault 2/ drive 2
[14] = Fault 3/ drive 2
[15] = Fault 4/ drive 2
[16] = Fault $5 /$ drive 2
[17] = Fault 6/ drive 2
[18] = Fault 7/ drive 2
[19] = Fault 8/ drive 2
[20] = Number of faults drive 3
[21] = Fault 1/drive 3
[22] = Fault 2/ drive 3
[23] = Fault 3/ drive 3
[24] = Fault 4/ drive 3
[25] = Fault $5 /$ drive 3
[26] = Fault 6/ drive 3
[27] = Fault 7/ drive 3
[28] = Fault 8/ drive 3
[29] $=$ Number of faults drive 4
[30] = Fault 1/drive 4
[31] = Fault 2/ drive 4
[32] = Fault 3/ drive 4
[33] = Fault 4/ drive 4
[34] = Fault $5 /$ drive 4
[35] = Fault 6/ drive 4
[36] = Fault 7/ drive 4
[37] = Fault 8/ drive 4
[38] = Number of faults drive 5
[39] = Fault 1/drive 5
[40] = Fault 2/ drive 5
[41] = Fault 3/ drive 5
[42] = Fault 4/ drive 5
[43] = Fault $5 /$ drive 5
[44] = Fault 6/ drive 5
[45] = Fault 7/ drive 5
[46] = Fault 8/ drive 5
[47] = Number of faults drive 6
[48] = Fault 1/ drive 6
[49] = Fault 2 / drive 6
[50] = Fault 3/ drive 6
[51] = Fault 4/ drive 6
[52] = Fault 5/ drive 6
[53] = Fault 6/ drive 6
[54] = Fault 7/ drive 6
[55] = Fault 8/ drive 6
[56] = Number of faults drive 7
[57] = Fault 1/ drive 7
[58] = Fault 2/ drive 7
[59] = Fault 3/ drive 7
[60] = Fault 4/ drive 7
[61] = Fault $5 /$ drive 7
[62] = Fault 6/ drive 7
[63] = Fault 7/ drive 7
[64] = Fault 8/ drive 7

Every node ID change only becomes effective after a POWER ON.
The active node ID is displayed in r8621.
The parameter is not influenced by setting the factory setting.
It is only possible to independently set CANopen node ID and the PROFIBUS address using p0918 and p8620
(prerequisite: the address 0 is set for the address switch).

## r8621 <br> CU_G130_DP (CAN), CU_G130_PN (CAN), CU_G150_DP (CAN), CU_G150_PN (CAN)

Description:
Dependency:
p8622
CU_G130_DP (CAN),
CU_G130_PN (CAN),
CU_G150_DP (CAN),
CU_G150_PN (CAN)

CAN Node-ID active / Node ID active
Can be changed: -
Data type: Unsigned8
P-Group: Communications
Not for motor type: -
Min

Displays the active CANopen Node ID.
Refer to: p8620

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
-

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description:	Displays the active CANopen Node ID.
Dependency:	Refer to: p8620

## CAN bit rate / Bit rate

Can be changed: T
Data type: Integer16
P-Group: -
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
7

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
6

Description: Setting the bit rate for the CAN bus.
The appropriate bit timings are selected that are defined in p8623 in the associated sub-index.
Example:
Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622 $=6$--> associated bit timing is in p8623[6].
Value:
Dependency: $\quad 7: 10 \mathrm{kbit} / \mathrm{s}$

Note: $\quad$ The parameter is not influenced by setting the factory setting.

p8623[0..7]	CAN Bit Timing selection / Bit timing select		
CU_G130_DP (CAN),	Can be changed: $T$	Calculated: -	Access level: 3
CU_G130_PN (CAN),	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP (CAN), CU G150 PN (CAN)	P-Group: -	Units group:	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	000F 7FFF hex	[0] 1405 hex
			[1] 1605 hex
			[2] 1C05 hex
			[3] 1C0B hex
			[4] 1C17 hex
			[5] 1C3B hex
			[6] 00021 C 15 hex
			[7] 0004 1C2B hex
Description:	Sets the bit timing for the C_CAN controller to the associated and selected bit rate (p8622).		

Bit 0 ... 5: BRP (Baud Rate Prescaler)
Bit 6 ... 7: SJW (Synchronization Jump Width)
Bit $8 \ldots$ 11: TSEG1 (Time Segment 1, before the sampling point)
Bit 12 ... 14: TSEG2 (Time Segment 2, after the sampling point)
Bit 15: Reserved
Bit 16 ... 19: BRPE (Baud Rate Prescaler Extension)
Bit 20 ... 31: Reserved
Example:
Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622 $=6$--> associated bit timing is in p8623[6] --> 0001 2FB6
Recommend.: Use the factory setting when setting the bit timing.

## Index:

Note:
[0] $=1 \mathrm{Mbit} / \mathrm{s}$
[1] $=800 \mathrm{kbit} / \mathrm{s}$
[2] $=500 \mathrm{kbit} / \mathrm{s}$
[3] $=250 \mathrm{kbit} / \mathrm{s}$
$[4]=125 \mathrm{kbit} / \mathrm{s}$
[5] $=50 \mathrm{kbit} / \mathrm{s}$
[6] $=20 \mathrm{kbit} / \mathrm{s}$
[7] = $10 \mathrm{kbit} / \mathrm{s}$
Dependency:
The parameter is not influenced by setting the factory setting.



CAN Abort Connection Option Code / Abort con opt code		
Can be changed: $T$	Calculated: -	Access level: 3
Data type: Integer16	Dyn. index: -	Func. diagram: -
P-Group: -	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
0	3	3

Description: Sets the drive behavior if a CAN communication error occurs.
Value:

0:	No response
1:	OFF1
2:	OFF2
3:	OFF3

## CAN Diagnosis Hardware / Diagnostics HW

Can be changed: -
Data type: Unsigned16
P-Group: Communications
Not for motor type: -
Min

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

Description: Displays the register of the CAN controller C_CAN:
Register, Message Interface Register and Message Handler Register - referred to the CAN protocol.

## Index:

Note:
[ 0 ] = Control register
[1] = Status register
[2] = Error counter
[3] = Bit timing register
[4] = Interrupt register
[5] = Test register
[6] = Baud rate prescaler extension register
[7] = Interface 1 command request register
[8] = Interface 1 command mask register
[9] = Interface 1 mask 1 register
[10] = Interface 1 mask 2 register
[11] = Interface 1 arbitration 1 register
[12] = Interface 1 arbitration 2 register
[13] = Interface 1 message control register
[14] = Interface 1 data A1 register
[15] = Interface 1 data A2 register
[16] = Interface 1 data B1 register
[17] = Interface 1 data B2 register
[18] = Interface 2 command request register
[19] = Interface 2 command mask register
[20] = Interface 2 mask 1 register
[21] = Interface 2 mask 2 register
[22] = Interface 2 arbitration 1 register
[23] = Interface 2 arbitration 2 register
[24] = Interface 2 message control register
[25] = Interface 2 data A1 register
[26] $=$ Interface 2 data A2 register
[27] = Interface 2 data B1 register
[28] = Interface 2 data B2 register
[29] = Transmission request 1 register
[30] = Transmission request 2 register
[31] = New data 1 register
[32] = New data 2 register
[33] = Interrupt pending 1 register
[34] = Interrupt pending 2 register
[35] = Message valid 1 register
[36] = Message valid 2 register


Index:	$[0]=$ PDO COB-ID
	$[1]=$ PDO transmission type
Dependency:	A valid COB-ID can only be set for the available (existing) channel.
Note:	Corresponds to the CANopen object 1400 hex +40 hex * x (x: Drive number $0 \ldots 7$ ). .
	Transmission types 0,1, FE and FF can be set.
	PDO: Process Data Object


p8701[0...1]	CAN Receive PDO 2 / Receive PDO 2		
VECTOR_G (CAN)	Can be changed: C1(3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204,9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	$[0] 8000$ 06DF hex
			$[1] 00 F E$ hex

Description: Sets the communication parameters for CANopen Receive Process Data Object 2 (RPDO 2).
Index: [0] = PDO COB-ID
[1] = PDO transmission type
Dependency: A valid COB-ID can only be set for the available (existing) channel.
Note: $\quad$ Corresponds to the CANopen object 1401 hex +40 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ )
Transmission types 0,1 , FE and FF can be set. PDO: Process Data Object

p8702[0...1]	CAN Receive PDO 3 / Receive PDO 3		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1402 hex +40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		

p8703[0...1] CAN Receive PDO 4 / Receive PDO 4
VECTOR G (CAN)

Can be changed: C1(3), T
Data type: Unsigned32
P-Group: Communications
Not for motor type: -
Min
0000 hex

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
8000 06DF hex

Access level: 3
Func. diagram: 9204, 9206
Unit selection: -
Expert list: 1
Factory setting
[0] 8000 06DF hex
[1] 00FE hex

Description: Sets the communication parameters for CANopen Receive Process Data Object 4 (RPDO 4).
Index:
[0] = PDO COB-ID
[1] = PDO transmission type
Dependency: A valid COB-ID can only be set for the available (existing) channel.
Note:
Corresponds to the CANopen object 1403 hex +40 hex * $x$ ( x : Drive number $0 \ldots 7$ )
Transmission types 0,1 , FE and FF can be set
PDO: Process Data Object


p8707[0...1]	CAN Receive PDO 8 / Receive PDO 8		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 8 (RPDO 8).		
Index:	[0] = PDO COB-ID		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1407 hex + 40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		
p8710[0...3]	CAN Receive Mapping for RPDO 1 / Mapping RPDO 1		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 1 (RPDO 1).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1600 hex +40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		
p8711[0...3]	CAN Receive Mapping for RPDO 2 / Mapping RPDO 2		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 2 (RPDO 2).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANope Dummy mapping not suppor The parameter can only be	$x+40 \text { hex * } x(x:$   n the associated	7).   set as invalid.


p8712[0...3]	CAN Receive Mapping for RPDO 3 / Mapping RPDO 3		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANope   Dummy mapping not suppor   The parameter can only be	$\text { ex }+40 \text { hex * } x \text { (x: }$   n the associated	set as invalid.


p8713[0...3]	CAN Receive Mapping for RPDO 4 / Mapping RPDO 4		
VECTOR_G (CAN)	Can be changed: $\mathrm{C} 1(3), \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 4 (RPDO 4).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1603 hex +40 hex * x (x: Drive number 0 ... 7).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8714[0...3]	CAN Receive Mapping for RPDO 5 / Mapping RPDO 5		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 5 (RPDO 5).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1604 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8715[0...3]	CAN Receive Mapping for RPDO 6 / Mapping RPDO 6		
VECTOR_G (CAN)	Can be changed: C1(3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 6 (RPDO 6).		
Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		
Note:	Corresponds to the CANopen object 1605 hex +40 hex * $x$ (x: Drive number $0 \ldots 7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8716[0...3] CAN Receive Mapping for RPDO 7 / Mapping RPDO 7
VECTOR_G (CAN) Can be changed: C1(3), T Calculated: - Access level: 3
Data type: Unsigned32 Dyn. index: - Func. diagram: 9204
P-Group: Communications Units group: - Unit selection: -
Not for motor type: - Scaling: - Expert list: 1
Min Max Factory setting
0000 hex FFFF FFFF hex 0000 hex
Description: Sets the mapping parameters for CANopen Receive Process Data Object 7 (RPDO 7).
Index: $\quad[0]=$ Mapped object 1
[1] = Mapped object 2
[2] = Mapped object 3
[3] = Mapped object 4
Note: $\quad$ Corresponds to the CANopen object 1606 hex +40 hex * x (x: Drive number 0 ... 7)
Dummy mapping not supported.
The parameter can only be written online when the associated COB ID in p870x is set as invalid.

p8717[0...3]	CAN Receive Mapping for RPDO 8 / Mapping RPDO 8		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9204
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 8 (RPDO 8).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1607 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		


p8720[0...4]	CAN Transmit PDO 1 / Transmit PDO 1		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 1 (TPDO 1).		
Index:	[0] = PDO COB-ID		
	[1]P PDOP		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )[3] $=$ Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1800 hex +40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Transmission types $0,1 \ldots$ F0, FE and FF can be set.		
	p8848: CANopen sampling time		
	PDO: Process Data Object		
p8721[0...4]	CAN Transmit PDO 2 / Transmit PDO 2		
VECTOR_G (CAN)	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 2 (TPDO 2).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )		
	[3] = Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1801 hex +40 hex *x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, $1 \ldots$... 0 , FE and FF can be set.		
	PDO: Process Data Object		


p8722[0...4]	CAN Transmit PDO 3 / Transmit PDO 3
VECTOR_G (CAN)	Can be changed: C1(3), T Calculated: - Access level: 3   Data type: Unsigned32 Dyn. index: - Func. diagram: 9208, 9210   P-Group: Communications Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0000 hex C000 06DF hex $[0]$ Co00 06DF hex     $[1] 00 \mathrm{FE}$ hex    $[2] 0000$ hex     $[3] 0000$ hex      $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 3 (TPDO 3). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency:   Notice:   Note:	A valid COB-ID can only be set for the available (existing) channel.   For inhibit time and event timer, the following apply:   A value that is not a multiple integer of the CANopen sampling time is rounded-off. Corresponds to the CANopen object 1802 hex +40 hex *x ( $x$ : Drive number $0 \ldots 7$ ). Transmission types $0,1 \ldots$ F0, FE and FF can be set.   p8848: CANopen sampling time   PDO: Process Data Object
$\begin{aligned} & \hline \text { p8723[0...4] } \\ & \text { VECTOR_G (CAN) } \end{aligned}$	CAN Transmit PDO 4 / Transmit PDO 4
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 4 (TPDO 4). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency:   Notice:	A valid COB-ID can only be set for the available (existing) channel.   For inhibit time and event timer, the following apply:   A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1803 hex +40 hex *x ( $x$ : Drive number $0 \ldots 7$ ). Transmission types $0,1 \ldots$ F0, FE and FF can be set.   p8848: CANopen sampling time   PDO: Process Data Object



p8726[0...4]	CAN Transmit PDO 7 / Transmit PDO 7		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )		
	[3] = Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1806 hex +40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Transmission types $0,1 \ldots$ F0, FE and FF can be set.		
	p8848: CANopen sampling time		
	PDO: Process Data Object		
p8727[0...4]	CAN Transmit PDO 8 / Transmit PDO 8		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 8 (TPDO 8).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$ )		
	[3] = Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1807 hex +40 hex * x (x: Drive number $0 \ldots 7$ ).		
	Transmission types 0, 1... F0, FE and FF can be set.		
	p8848: CANopen sampling time		
	PDO: Process Data Object		


p8730[0...3]	CAN Transmit Mapping for TPDO 1 / Mapping TPDO 1		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	Sets the mapping parameters for CANopen Transmit Process Data Object 1 (TPDO 1).   [0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A00 hex + 40 hex * $x$ ( $x$ : Drive number 0 ... 7).   The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8731[0...3]	CAN Transmit Mapping for TPDO 2 / Mapping TPDO 2		
VECTOR_G (CAN)	Can be changed: $\mathrm{C} 1(3), \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	Sets the mapping parameters for CANopen Transmit Process Data Object 2 (TPDO 2).   [0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1 A01 hex +40 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ).   The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8732[0...3]	CAN Transmit Mapping for TPDO 3 / Mapping TPDO 3		
VECTOR_G (CAN)	Can be changed: $\mathrm{C} 1(3), \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		
Note:	Corresponds to the CANopen object 1A02 hex +40 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ).   The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8733[0...3]	CAN Transmit Mapping for TPDO 4 / Mapping TPDO 4		
VECTOR_G (CAN)	Can be changed: $\mathrm{C} 1(3)$, T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208, 9210
	P-Group: Communications	Units group: -	
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 4 (TPDO 4).		


Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		
Note:	Corresponds to the CANopen object 1A03 hex +40 hex ${ }^{\text {c }} \mathrm{x}$ (x: Drive number $0 \ldots 7$ ).		The parameter can only be written online when the associated COB ID in p872x is set as invalid.
p8734[0...3]	CAN Transmit Mapping for TPDO 5 / Mapping TPDO 5		
VECTOR_G (CAN)	Can be changed: $\mathrm{C} 1(3), \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 5 (TPDO 5).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A04 hex +40 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ).		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8735[0...3]	CAN Transmit Mapping for TPDO 6 / Mapping TPDO 6		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 6 (TPDO 6).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A05 hex + 40 hex * x (x: Drive number $0 \ldots .7$ ).		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8736[0...3]	CAN Transmit Mapping for TPDO 7 / Mapping TPDO 7		
VECTOR_G (CAN)	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
Index:	[0] = Mapped object 1   [1] = Mapped object 2   [2] = Mapped object 3   [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A06 hex + 40 hex * x (x: Drive number $0 \ldots 7$ ).		




p8746[0..15]	CI: CAN free PZD send objects 16 bit / Free PZD send 16		
VECTOR_G (CAN)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000 H	Expert list: 1
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source for free PZD send objects 16 bit for SDO transfer. An index can only be used, if the corresponding object has not been mapped in a PDO.
Index:
[0] = PZD object 0
[1] = PZD object 1
[2] = PZD object 2
[3] = PZD object 3
[4] = PZD object 4
5] = PZD object 5
[6] = PZD object 6
[7] = PZD object 7
[8] = PZD object 8
[9] = PZD object 9
[10] = PZD object 10
[11] = PZD object 11
[12] = PZD object 12
[13] = PZD object 13
[14] = PZD object 14
[15] = PZD object 15
Note: Index 0 corresponds to the CANopen object 5810 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ) Index 1 corresponds to the CANopen object 5811 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 2 corresponds to the CANopen object 5812 hex +80 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Index 3 corresponds to the CANopen object 5813 hex +80 hex * x (x: Drive number $0 \ldots 7$ ). Index 4 corresponds to the CANopen object 5814 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 5 corresponds to the CANopen object 5815 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 6 corresponds to the CANopen object 5816 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 7 corresponds to the CANopen object 5817 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 8 corresponds to the CANopen object 5818 hex +80 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Index 9 corresponds to the CANopen object 5819 hex +80 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Index 10 corresponds to the CANopen object 581A hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 11 corresponds to the CANopen object 581B hex +80 hex *x (x: Drive number $0 \ldots 7$ ). Index 12 corresponds to the CANopen object 581C hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 13 corresponds to the CANopen object 581D hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 14 corresponds to the CANopen object 581E hex +80 hex * $x$ ( $x$ : Drive number $0 \ldots 7$ ). Index 15 corresponds to the CANopen object 581F hex +80 hex *x (x: Drive number $0 \ldots 7$ ).

## r8747[0...7]

## CO: CAN free PZD receive objects 32 bit / Free PZD recv 32

Can be changed: -	Calculated: -	Access level: 3
Data type: Integer32	Dyn. index: -	Func. diagram: -
P-Group: -	Units group: -	Unit selection: -
Not for motor type: -	Scaling: 4000 H	Expert list: 1
Min	Max	Factory setting
-	-	-

Description: Access to free PZD receive objects 32 bit using the SDO transfer
An index can only be used, if the corresponding object has not been mapped in a PDO.

## Index:

## Note:

[0] = PZD object 0
[1] = PZD object 1
[2] = PZD object 2
[3] = PZD object 3
[4] = PZD object 4
[5] = PZD object 5
[6] = PZD object 6
[7] = PZD object 7

p8748[0...7]	CI: CAN free PZD send objects 32 bit / Free PZD send 32
VECTOR_G (CAN)	Can be changed: U, T Calculated: - Access level: 3   Data type: Unsigned32 / Integer32 Dyn. index: - Func. diagram: -   P-Group: Communications Units group: - Unit selection: -   Not for motor type: - Scaling: 4000 H Expert list: 1   Min Max Factory setting
Description: Index:	Sets the signal source for free PZD send objects 32 bit for SDO transfer.   An index can only be used, if the corresponding object has not been mapped in a PDO.   $[0]=$ PZD object 0 $[1]=$ PZD object 1   [2] = PZD object 2   [3] = PZD object 3   [4] = PZD object 4   [5] = PZD object 5   [6] = PZD object 6   [7] = PZD object 7
Note:	Index 0 corresponds to the CANopen object 5830 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 1 corresponds to the CANopen object 5831 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 2 corresponds to the CANopen object 5832 hex +80 hex * x (x: Drive number 0 ... 7). Index 3 corresponds to the CANopen object 5833 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 4 corresponds to the CANopen object 5834 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 5 corresponds to the CANopen object 5835 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 6 corresponds to the CANopen object 5836 hex +80 hex * $x$ (x: Drive number $0 \ldots 7$ ). Index 7 corresponds to the CANopen object 5837 hex +80 hex * $x$ (x: Drive number 0 ... 7).
r8	CAN mapped 16-bit receive objects / RPDO 16 mapped
VECTOR_G (CAN)	Can be changed: - Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: -   P-Group: Communications Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   - - -
Description:	Displays the mapped 16-bit receive CANopen objects in the process data buffer.   Example:   If, e.g. the control word is mapped in an RPDO, then r8750 indicates the position of the control word in the process data buffer.
Index:	$\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \end{aligned}$



r8761[0...14]	CAN mapped 32-bit transmit objects / TPDO 32 mapped			
VECTOR_G (CAN)	Can be changed: -   Data type: Unsigned16   P-Group: Communications   Not for motor type: -   Min	Calculated: Dyn. index: Units group: Scaling: Max	Acces   Func.   Unit s   Exper   Facto	
Description: Index:	Displays mapped 32-bit transmit CANopen ob $\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \\ & {[3]=\text { PZD } 4+5} \\ & {[4]=\text { PZD } 5+6} \\ & {[5]=\text { PZD } 6+7} \\ & {[6]=\text { PZD } 7+8} \\ & {[7]=\text { PZD } 8+9} \\ & {[8]=\text { PZD } 9+10} \\ & {[9]=\text { PZD } 10+11} \\ & {[10]=\text { PZD } 11+12} \\ & {[11]=\text { PZD } 12+13} \\ & {[12]=\text { PZD } 13+14} \\ & {[13]=\text { PZD } 14+15} \\ & {[14]=\text { PZD } 15+16} \end{aligned}$	jects in the proc		
r8762	CO: CAN operating mode display / Op mode display			
VECTOR_G (CAN)	Can be changed: -   Data type: Integer16   P-Group: Communications   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Acces   Func.   Unit s   Exper   Facto	
Description:	To send the CANopen object $0 \times 6061$ mapped in a TPDO, this parameter can be correspondingly interconnected in the PZD interface.			
r8784	CO: CAN status word / Status word			
VECTOR_G (CAN)	Can be changed: -   Data type: Unsigned16   P-Group: Communications   Not for motor type: -   Min	Calculated: -   Dyn. index: -   Units group: -   Scaling: -   Max	Acces   Func.   Unit   Expert   Facto	
Description:	Display and connector output for the CANopen status word			
Bit field:	Bit Signal name   00 Rdy for switch on   01 Ready   02 Operation enabled   03 Fault present   04 No coasting active   05 No Quick Stop active   06 Switching on inhibited active   07 Alarm present   08 Can be freely interconnected (BI: p8785   09 Control request   10 Target reached   11 Torque limit reached   12 Velocity equal to zero	1 signal   Yes   ) Yes   Yes   Yes   Yes   Yes	0 signal   No	FP



Note: | The following BICO interconnections are automatically established if the CANopen control word is mapped at one of |
| :--- |
| the locations $x=0 \ldots 3$ in the receive process data buffer. |
| For SINAMICS S120 with CBC10, the PZD interface IF2 is used: |
| BI: $p 0840.0=$ r889x. 0 |
| BI: $p 0844.0=$ r889x. 1 |
| BI: $p 0848.0=$ r889x. 2 |
| BI: $p 0852.0=$ r889x. 3 |
| BI: p2103.0 $=$ r889x. 7 |
| For SINAMICS S110, the PZD interface IF1 is used: |
| BI: p0840.0 $=$ r209x. 0 |
| BI: $p 0844.0=$ r209x. 1 |
| BI: $p 0848.0=$ r209x. 2 |
| BI: $p 0852.0=r 209 x .3$ |
| BI: $2103.0=$ r209x. 7 |

The write access is rejected if a CANopen control word is not mapped at one of these locations.
This also causes the project download of the commissioning software to be canceled.

$\overline{\mathrm{p} 8791}$   VECTOR_G (CAN)	CAN stop option code / Stop opt_code		
	Can be changed: C 1 (3), T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-1	3	-1
Description:	Setting for the CANopen control word bit 8 "Stop" (CANopen STW.8).		
Value:	-1: $\quad$ No interconn   1: Interconnection CANopen STW. 8 with p1142   3: Interconnection CANopen STW. 8 with p1140		
Dependency:	Refer to: r8750, r8795, r8850		
Note:	The BICO interconnection is established, if the CANopen control word is mapped at one of the locations $x=0 \ldots 3$ in the receive process data buffer.		
r8792[0]	CO: CAN velocity mode 116 setpoint / Vel mod l16 set		
VECTOR_G (CAN)	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output to interconnect standardized I16 setpoint CANopen objects of the velocity mode for SDO transfer.		
Index:	[0] = VL Target Velocity		
Note:	Re index 0 :		
	Corresponds to the CANopen   The displayed parameter valu 4000 hex corresponds to p2	$x+800$ hex * $x(x$ the reference speed	7).


r8795.0... 15	CO/BO: CAN control word / Control word				
VECTOR_G (CAN)	Can be changed: -		Calculated: -	Access	
	Data type: Unsigned16		Dyn. index: -	Func. di	
	P-Group: -		Units group: -	Unit sele	
	Not for motor type:-		Scaling: -	Expert li	
	Min		Max	Factory	
	-		-	-	
Description: Bit field:	Access to the CANopen control word using SDO transfer.				
	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	Do not activate coast down	Yes	No	-
	02	Do not activate a Quick Stop	Yes	No	-
	03	Operation enable	Yes	No	-
	04	Ramp-function generator enable	Yes	No	-
		Continue ramp-function generator	Yes	No (freeze)	-
	06	Speed setpoint enable	Yes	No	-
	07	Acknowledge fault	Yes	No	-
	08	Stop	Yes	No	-
		Freely interconn	Yes	No	-
		Freely interconn	Yes	No	-
	13	Freely interconn	Yes	No	-
		Freely interconn	Yes	No	-
		Freely interconn	Yes	No	-
Dependency:		r to: p8790			
Note:		esponds to the CANopen object 604	$x+800$ hex * $x$ (x	... 7).	
r8796[0]		CAN profile velocity mode	2 setpoints / P	set	
VECTOR_G (CAN)	Can be changed: -		Calculated: -	Access	
	Data type: Integer32		Dyn. index: -	Func. di	
	P-Group: -		Units group: -	Unit sele	
	Not for motor type: -		Scaling: 4000H	Expert li	
	Min		Max	Factory	
	-		-	-	
Description:	Display and connector output to interconnect standardized I32 setpoint CANopen objects of the profile velocity mode for SDO transfer.				
	An index can only be used, if the corresponding object has not been mapped in a PDO.				
Index:	[ 0 ] = Target velocity				
Note:	Re index 0 :				
	Corresponds to the CANopen object 60FF hex +800 hex * x (x: Drive number $0 \ldots .7$ ).				
	The displayed parameter value is scaled via the reference speed p2000:				
	40000000 hex corresponds to p2000				
r8797[0]		CAN profile torque mode	setpoints / Pr	set	
VECTOR_G (CAN)	Can be changed: -		Calculated: -	Access	
	Data type: Integer16		Dyn. index: -	Func. di	
	P-Group: -		Units group: -	Unit sele	
	Not for motor type: -		Scaling: 4000H	Expert li	
	Min		Max	Factory	
	-		-	-	
Description:	Display and connector output to interconnect standardized I16 setpoint CANopen objects of the profile torque mode for SDO transfer.				
	An index can only be used, if the corresponding object has not been mapped in a PDO.				
Index:					



p8806[0...53]	Identification and Maintenance 1 / I\&M 1		
CU_G130_DP,	Can be changed: $U, T$	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1). This information is known as "System identifier" and "Location identifier".		
Dependency:	Refer to: p8807, p8808		
Notice:	Only characters belonging to the standard ASCII character set may be used ( 32 dec to 126 dec ).		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	Re p8806[0...31]:		
	System identifier.		
	Re p8806[32...53]:		
	Location identifier.		



p8808[0...53]	Identification and Maintenance 3 / I\&M 3		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 3" (I\&M 3).This information is known as "Supplementary information".		
Dependency:	Refer to: p8806, p8807		
Notice:	Only characters belonging to the standard ASCII character set may be used ( 32 dec to 126 dec ).		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	Any supplementary information and comments (ASCII).		


p8809[0...53]	Identification and Maintenance 4 / I\&M 4		
CU_G130_DP,	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 bin	11111111 bin	0000 bin
Description:	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4), This information is known as "Signature".		
Dependency:	This parameter is preas After writing information Refer to: p8805	see note). utomatically set	

Note: $\quad$| For p8805 = 0 (factory setting) the following applies: |
| :--- |
|  |
| Parameter p8809 contains the information described below. |
|  |
| Re p8809[0...3]: |
|  |
| Contains the value from r9781[0] "SI change tracking checksum functional". |
|  |
| Re p8809[4...7]: |
|  |
| Contains the value from r9782[0] "SI change tracking time stamp checksum functional". |
|  |
| Re p8809[8...53]: |
|  |
|  |
| Reserved. |

## p8811

CU_G130_DP (PROFINET CBE20), CU_G130_PN (PROFINET CBE20), CU_G150_DP (PROFINET CBE20), CU G150 PN (PROFINET CBE20)

## Description:

Value:
Note:

SINAMICS Link project selection / SINAMICS Link proj

Can be changed: C1(1)
Data type: Integer16
P-Group: Communications
Not for motor type: -
Min
16

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
64

Access level: 3
Func. diagram: 2198
Unit selection: -
Expert list: 1
Factory setting
64

Project selection for SINAMICS Link.
16: SINAMICS Link project 16 participants
64: SINAMICS Link project 64 participants
SINAMICS Link requires that the appropriate CBE20 firmware version is selected (p8835 = 3).
The parameter must be set the same for all participants.
A change only becomes effective after a POWER ON.
The parameter is not influenced by setting the factory setting.


p8815[0...1]	IF1/IF2 PZD functionality selection / IF1/IF2 PZD fct		
CU_G130_DP,	Can be changed: C 1 (1)	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2	1
Description:	Selects the PZD interface for the clock cycle synchronization functionality and PROFIsafe.		
Value:	$\begin{array}{ll}\text { 1: } & \text { Interface } 1 \text { (IF1) } \\ \text { 2: } & \text { Interface } 2 \text { (IF2) }\end{array}$		
Index:	$\begin{aligned} & {[0]=\text { Isochronous mode }} \\ & {[1]=\text { PROFIsafe }} \end{aligned}$		
Dependency:	Refer to: p8839		
Note:	A change only becomes effe Example:   p8815[0] = 1: IF1 supports th   p8815[1] = 2: IF2 supports	ER ON, reset or mode.	

CBE2x remote controller number / CBE2x rem ctrl num

p8829
CU_G130_DP
(PROFINET CBE20),
CU_G130_PN
(PROFINET CBE20),
CU_G150_DP
(PROFINET CBE20),
CU_G150_PN
(PROFINET CBE20)

Can be changed: C1(1)
Data type: Integer16
P-Group: Communications
Not for motor type: -
Min
1
Sets the number of remote controllers expected for PROFINET CBE20/CBE25.
The "Shared Device" functionality is activated with a value $=2$.
The drive is being accessed by two PROFINET controllers simultaneously:

- automation controller (SIMOTION or SIMATIC A-CPU).
- safety controller (SIMATIC F-CPU).

Value:	1:	Automation or Safety
	$2:$	Automation and Safety

Notice: The F CPU may only use PROFIsafe telegrams. The A CPU must be connected to enable the F CPU to gain access. Set the value $=1$ to commission the F CPU individually.
Note: A change only becomes effective after a POWER ON.

p8835	CBE20 firmware selection / CBE20 FW sel		
CU_G130_DP	Can be changed: C 1 (1)	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Integer16	Dyn. index: -	Func. diagram: 2198
(PROFINET CBE20),	P-Group: Communications	Units group: -	Unit selection: -
CU_G150_DP	Not for motor type: -	Scaling: -	Expert list: 1
(PROFINET CBE20),	Min	Max	Factory setting
CU_G150_PN   (PROFINET CBE20)	1	99	1
Description:	Selects the firmware version for the CBE20.		
Value:	1: PROFINET Device		
	2: PN gate		
	3: SINAMICS Link		
	4: EtherNet/IP		
	99: Customer-specific from	ctory	
Note:	A change only becomes effective after a POWER ON.		
	The parameter is not influen	factory setting.	
	CBE20: Communication Boa		


p8836	SINAMICS Link address / SINAMICS Link add
CU_G130_DP (PROFINET CBE20), CU_G130_PN (PROFINET CBE20), CU_G150_DP (PROFINET CBE20), CU_G150_PN (PROFINET CBE20)	Can be changed: C1(1) Calculated: - Access level: 3   Data type: Unsigned16 Dyn. index: - Func. diagram: 2198   P-Group: Communications Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 64 0
Description:   Dependency:   Note:	Selects the node address for the SINAMICS Link on the Communication Board Ethernet 20 (CBE20).   p8836 $=0$ : SINAMICS Link de-activated   p8836 = 1 ... 64: SINAMICS Link node address   Refer to: p8835   SINAMICS Link requires that the appropriate CBE20 firmware version is selected ( $\mathrm{p} 8835=3$ ).   A change only becomes effective after a POWER ON.   The parameter is not influenced by setting the factory setting.
p8837   B INF, ENC, VECTOR_G	IF2 STW1.10 = 0 mode / IF2 STW1.10=0
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".   Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFIdrive profile). The behavior of STW1.10 $=0$ corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.
Value:   Recommend.:   Note:	0 : Freeze setpoints and continue to process sign-of-life   Freeze setpoints and sign-of-life   Do not freeze setpoints   Do not change the setting p2037 $=0$.   If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .
$\begin{aligned} & \hline \text { p8839[0...1] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	PZD interface hardware assignment / PZD IF HW assign     Can be changed: C1(1) Calculated: - Access level: 3   Data type: Integer16 Dyn. index: - Func. diagram: 2198   P-Group: Communications Units group: - Unit selection: -   Not for motor type: - Scaling: - Expert list: 1   Min Max Factory setting   0 99 99
Description: Value:	Assignment of the hardware for cyclic communications via PZD interface 1 (IF1) and interface 2 (IF2).   0: Inactive   Control Unit onboard   COMM BOARD   99: Automatic
Index:	$\begin{aligned} & {[0]=\text { Interface } 1} \\ & {[1]=\text { Interface } 2} \end{aligned}$
Dependency:	Refer to: p2030, p8815
Note:	For value $=99$ (automatic) the following applies:   - if a COMM BOARD is not inserted, then the onboard interface (PROFIBUS/PROFINET/USS) communicates via IF1.   - if a CBE20 is inserted, then the following applies:   -- CU320-2 DP: PROFINET CBE20 communicates via IF1 and PROFIBUS/USS via IF2.   -- CU320-2 PN: PROFINET onboard communicates via IF1 and PROFINET CBE20 via IF2.

- CAN CBC10 always communicates via IF2.

For a value not equal to 99 (automatic) the following applies:

- both indices must be set to a number not equal to 99 (automatic).

A change only becomes effective after POWER ON, reset or download.

p8841[0...239] COMM BOARD send configuration data / CB s config_dat

CU_G130_DP (COMM
BOARD, PROFINET CBE20),
CU_G130_PN (COMM BOĀRD, PROFINET CBE20), Min
CU_G150_DP (COMM 0 BOARD, PROFINET CBE20),
CU_G150_PN (COMM
BOARD, PROFINET
CBE20)
Description: Sets the send configuration data for the COMM BOARD. The setting is activated with p8842.
Dependency: Refer to: p8842
Note: The configuration data are specific to the inserted COMM BOARD. For CBE20, the configuration data are not relevant.

## p8842

CU_G130_DP (COMM BOARD, PROFINET CBE20), CU_G130_PN (COMM BOARRD, PROFINET CBE20), Min
CU_G150_DP (COMM 0 BOARD, PROFINET CBE20),
CU_G150_PN (COMM
BOĀRD, PROFINET
CBE20)
Description: Activate a modified send configuration for COMM BOARD.
With p8842 = 1, the values in p8841 are transferred to the COMM BOARD and activated. After this, p8842 is automatically set to zero.
Dependency: Refer to: p8841

Note:	For CBE20, certain SINAMICS parameters are newly evaluated and activated. An existing, cyclic bus connection is interrupted.			
r8843.0.. 2	BO: IF2 PZD state / IF2 PZD state			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - C	Calculated: -	Access level: 3	
	Data type: Unsigned8 D	Dyn. index: -	Func. diagram: 2410	
	P-Group: Communications U	Units group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min M	Max	Factory setting	
	-	-	-	
Description:	Displays the PROFIdrive PZD state.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Setpoint failure	Yes	No	-
	01 Clock cycle synchronous operation active	ve Yes	No	-
	02 Fieldbus oper	Yes	No	-
Dependency:	Refer to: p2044			
Note:	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.			
p8844	IF2 fault delay / IF2 F delay			
B_INF, ENC,	Can be changed: $U, T$	Calculated: -	Access level: 3	
VECTOR_G	Data type: FloatingPoint32 D	Dyn. index: -	Func. diagram: 2410	
	P-Group: Communications U	Units group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min M	Max	Factory setting	
	0 [s] 100	100 [s]	0 [s]	
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.			
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).			
Dependency:	Refer to: r2043			
p8848	IF2 PZD sampling time / IF2 PZD t_sample			
CU_G130_DP,	Can be changed: $\mathrm{C} 1(3)$	Calculated: -	Access level: 3	
CU_G130_PN,	Data type: FloatingPoint32 D	Dyn. index: -	Func. diagram: -	
CU_G150_PN	P-Group: Communications U	Units group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min M	Max	Factory setting	
	1.00 [ms] 16.0	16.00 [ms]	4.00 [ms]	
Description:	Sets the sampling time for the cyclic interface 2 (IF2).			
Note:	The system only permits certain sampling times and after writing to this parameter, displays the value that has actually been set.			



	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
Note:	IF2: Interface 2		
	PZD1 to PZD2 are displayed bit-serially in r8890 to r8891.		
r8850[0...3]	CO: IF2 PZD receive word / IF2 PZD recv word		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2485, 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
Dependency:	Refer to: r8860, r8890, r8891, r8892, r8893		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r8850 or r8860.		
Note:	IF2: Interface 2		
	PZD1 to PZD4 are displayed bit-serially in r8890 to r8893.		
r8850[0...4]	CO: IF2 PZD receive word / IF2 PZD recv word		
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2491
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF2: Interface 2		
	PZD1 to PZD2 are displayed bit-serially in r8890 to r8891.		
r8850[0...31]	CO: IF2 PZD receive word / IF2 PZD recv word		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2485, 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		



p8851[0...24]	CI: IF2 PZD send word / IF2 PZD send word	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: -   Data type: Unsigned32 / Integer16 Dyn. index: -   P-Group: Communications Units group: -   Not for motor type: - Scaling: 4000 H   Min Max   - -	Access level: 3   Func. diagram: 2493, 9210   Unit selection: -   Expert list: 1   Factory setting   0
Description: Index:	Selects the PZD (actual values) to be sent via interface 2 in the word format.	
Note:	IF2: Interface 2	
p8851[0...11]	CI: IF2 PZD send word / IF2 PZD send word	
ENC	Can be changed: U, T Calculated: -   Data type: Unsigned32 / Integer16 Dyn. index: -   P-Group: Communications Units group: -   Not for motor type: - Scaling: 4000 H   Min Max   - -	Access level: 3   Func. diagram: 2487, 9208   Unit selection: -   Expert list: 1   Factory setting   0
Description: Index:	Selects the PZD (actual values) to be sent via interface 2 in the word format. $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \end{aligned}$	
Dependency: Note:	Refer to: p8861   IF2: Interface 2	


p8851[0...4]	CI: IF2 PZD send word / IF2 PZD send word		
TB30, TM150, TM31	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2493, 9210
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
Note:	IF2: Interface 2		
p8851[0...31]	CI: IF2 PZD send word / IF2 PZD send word		
VECTOR_G	Can be changed: $\mathrm{U}, \mathrm{T}$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Integer16	Dyn. index: -	Func. diagram: 2487, 9208
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via interface 2 in the word format.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32Refer to: 8861		
Dependency:			
Note:	IF2: Interface 2		


r8853[0...9]	IF2 diagnostics PZD send / IF2 diag PZD send				
B_INF	Can	be changed: -	Calculated: -	Acces	
	Data	type: Unsigned16	Dyn. index: -	Func.	
	P-Gr	oup: Communications	Units group: -	Unit s	
	Not	for motor type: -	Scaling: -	Exper	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the sent PZD (actual values) sent via interface 2.				
Index:	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
	[8] = PZD 9				
	[9] = PZD 10				
Bit field:		Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
		Bit 3	ON	OFF	-
		Bit 4	ON	OFF	-
		Bit 5	ON	OFF	-
		Bit 6	ON	OFF	-
		Bit 7	ON	OFF	-
		Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
		Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Note:	IF2: Interface 2				
r8853[0...24]	IF2 diagnostics PZD send / IF2 diag PZD send				
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Communications		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description:	Displays the sent PZD (actual values) sent via interface 2.				
Index:	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
	[8] = PZD 9				
	[9] = PZD 10				
	[10] = PZD 11				
	[11] = PZD 12				
	$[12]=$ PZD 13$[13]=$ PZD 14				



		Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p8851, p8861   IF2. Interface 2				
Note:					
r8853[0...4]	IF2 diagnostics PZD send / IF2 diag PZD send				
TB30, TM150, TM31	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func.	
	P-Group: Communications		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description: Index:	Displays the sent PZD (actual values) sent via interface 2.				
	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
Bit field:		Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Note:	IF2: Interface 2				
r8853[0...31]	IF2 diagnostics PZD send / IF2 diag PZD send				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2487, 9208, 9210	
	P-Group: Communications		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Expert	
	Min		Max	Factor	
	-		-	-	
Description: Index:	Displays the sent PZD (actual values) sent via interface 2.				
	[0] = PZD 1				
	[1] $=$ PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] $=$ PZD 6				
	$[6]=$ PZD 7$[7]=$ PZD 8				
	[8] = PZD 9				




r8860[0...2]	CO: IF2 PZD receive double word / IF2 PZD recv DW		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 2485, 9204, $9206$
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the double word format.		
Index:	$\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \\ & {[2]=\text { PZD } 3+4} \end{aligned}$		
Dependency:	Refer to: r8850		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r8850 or r8860.		
Note:	IF2: Interface 2		
r8860[0...30]	CO: IF2 PZD receive double word / IF2 PZD recv DW		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: 2485, 9204, 9206
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: 4000H	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Connector output for interconnecting the PZD (setpoints) received via interface 2 in the double word format.		
Index:	[0] = PZD $1+2$		
	[1] $=$ PZD $2+3$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5] $=$ PZD $6+7$		
	[ 6$]=$ PZD $7+8$		
	[7] $=$ PZD $8+9$		
	[8] = PZD $9+10$		
	[9] = PZD $10+11$		
	[10] = PZD 11 + 12		
	[11] = PZD 12 + 13		
	[12] = PZD 13 + 14		
	[13] = PZD $14+15$		
	[14] = PZD 15 + 16		
	[15] = PZD 16 + 17		
	[16] = PZD 17 + 18		
	[17] = PZD 18 + 19		
	[18] = PZD 19 + 20		
	[19] = PZD $20+21$		
	[20] = PZD $21+22$		
	[21] = PZD $22+23$		
	[22] $=$ PZD $23+24$		
	[23] $=$ PZD $24+25$		
	[24] = PZD $25+26$		
	[25] = PZD $26+27$		
	[26] $=$ PZD $27+28$		
	$[27]=$ PZD $28+29$		
	$[28]=$ PZD $29+30$		
	$[29]=$ PZD $30+31$$[30]=$ PZD $31+32$		
Dependency:	Refer to: r8850		



	[20] = PZD $21+22$				
	[21] $=$ PZD $22+23$				
	[22] $=$ PZD $23+24$				
	[23] = PZD $24+25$				
	[24] = PZD $25+26$				
	[25] = PZD $26+27$				
	[26] $=$ PZD $27+28$				
	[27] = PZD $28+29$				
	[28] = PZD $29+30$				
	[29] = PZD $30+31$				
	[30] = PZD $31+32$				
Dependency:	Refer to: p8851				
Notice:	A BICO interconnection for a single PZD can only take place either on p8851 or p 8861.				
Note:	IF2: Interface 2				
r8863[0...10]	IF2 diagnostics PZD send double word / IF2 diag send DW				
ENC	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2487	
	P-Group: Communications		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the PZD sent via interface 2 (actual values) with double word format.				
Index:	[0] = PZD $1+2$				
	[1] $=$ PZD $2+3$				
	[2] $=$ PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] = PZD $6+7$				
	[ 6 ] $=$ PZD $7+8$				
	[7] = PZD $8+9$				
	[8] $=$ PZD $9+10$				
	$[9]=$ PZD $10+11$$[10]=$ PZD $11+12$				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-
	26	Bit 26	ON	OFF	-


27	Bit 27	ON	OFF
28	Bit 28	ON	OFF
29	Bit 29	ON	OFF
30	Bit 30	ON	OFF
31	Bit 31	ON	OFF

Notice: A maximum of 4 indices of the "trace" function can be used.
Note: IF2: Interface 2

r8863[0...30]	IF2 diagnostics PZD	word / IF2 di		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2487	
	P-Group: Communications	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the PZD sent via interface 2 (actual values) with double word format.			
Index:	[0] = PZD $1+2$			
	[1] $=$ PZD $2+3$			
	[2] $=$ PZD $3+4$			
	[3] = PZD $4+5$			
	[4] $=$ PZD $5+6$			
	[ 5$]=$ PZD $6+7$			
	[ 6 ] $=$ PZD $7+8$			
	[ $7 \mathrm{l}=\mathrm{PZD} 8+9$			
	[8] = PZD 9 + 10			
	[ 9 ] P PZD 10 + 11			
	[10] = PZD 11 + 12			
	[11] = PZD 12 + 13			
	[12] = PZD 13 + 14			
	[13] = PZD 14 + 15			
	[14] = PZD 15 + 16			
	[15] = PZD 16 + 17			
	[16] $=$ PZD 17 + 18			
	[17] $=$ PZD 18 + 19			
	[18] $=$ PZD 19 + 20			
	[19] = PZD $20+21$			
	[20] P PZD $21+22$			
	[21] = PZD 22 + 23			
	[22] = PZD $23+24$			
	[23] = PZD $24+25$			
	[24] = PZD $25+26$			
	[25] P PZD $26+27$			
	[26] = PZD $27+28$			
	[27] $=$ PZD $28+29$			
	[28] = PZD $29+30$			
	[29] $=$ PZD $30+31$			
	[30] = PZD $31+32$			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	ON	OFF	-
	01 Bit 1	ON	OFF	-
	02 Bit 2	ON	OFF	-
	03 Bit 3	ON	OFF	-
	04 Bit 4	ON	OFF	-
	05 Bit 5	ON	OFF	-
	06 Bit 6	ON	OFF	-
	07 Bit 7	ON	OFF	-
	08 Bit 8	ON	OFF	-
	09 Bit 9	ON	OFF	-
	10 Bit 10	ON	OFF	-
	11 Bit 11	ON	OFF	-
	12 Bit 12	ON	OFF	-
	13 Bit 13	ON	OFF	


14	Bit 14	ON	OFF
15	Bit 15	ON	OFF
16	Bit 16	ON	OFF
17	Bit 17	ON	OFF
18	Bit 18	OFF	
19	Bit 19	ON	OFF
20	Bit 20	ON	OFF
21	Bit 21	ON	OFF
22	Bit 22	ON	OFF
23	Bit 23	ON	OFF
24	Bit 24	ON	OFF
25	Bit 25	ON	OFF
26	Bit 26	ON	OFF
27	Bit 27	ON	OFF
28	Bit 28	ON	OFF
29	Bit 29	ON	OF
30	Bit 30	ON	OFF
31	Bit 31		

Notice: A maximum of 4 indices of the "trace" function can be used.
Note:
IF2: Interface 2

r8867[0...1]	IF2 PZD maximum interconnected / IF2 PZDmaxintercon	
B_INF, CU_G130_DP,	Can be changed: - Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16 Dyn. index: -	Func. diagram: -
CU G150 PN, ENC,	P-Group: Communications Units group: -	Unit selection: -
TB30, TM150, TM31,	Not for motor type: - Scaling: -	Expert list: 1
VECTOR_G	Min Max	Factory setting
	- -	-
Description:	Display for the maximum interconnected PZD in the receive/send direction	
	Index 0: receive (r8850, r8860)	
	Index 1: send (p8851, p8861)	


p8870[0...15]	SINAMICS Link receive telegram word PZD / Recv link word		
B_INF (PROFINET	Can be changed: T	Calculated: -	Access level: 3
CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G130_DP	P-Group: Communications	Units group: -	Unit selection: -
(PROFINET CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_G130_PN	Max	Factory setting	
(PROFINET CBE20),	Min	16	0
CU_G150_DP	0		

CU_G150_PN
(PROFINET CBE20),
ENC (PROFINET
CBE20), TB30
(PROFINET CBE20),
TM150 (PROFINET
CBE20), TM31
(PROFINET CBE20),
VECTOR_G
(PROFINET CBE20)

Description: Assignment of a PZD to a telegram word from a SINAMICS Link receive telegram. For p8839[0] $=2$ (COMM BOARD via interface 1), the following applies:

- PZD p2050[index] is assigned by means of p8870[index], p8872[index].

For p8839[1] = 2 (COMM BOARD via interface 2), the following applies:

- PZD p8850[index] is assigned by means of p8870[index], p8872[index].

Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5

	[5] = PZD 6
	[6] = PZD 7
	[7] = PZD 8
	[8] = PZD 9
	[9] = PZD 10
	[10] = PZD 11
	[11] = PZD 12
	[12] = PZD 13
	[13] = PZD 14
	[14] = PZD 15
	[15] = PZD 16
Dependency:	Refer to: p8872
Note:	Value range:
	0 : Not used
	$1 . . .16$ : Telegram word
	A pair of values p8870[index], p8872[index] may only be used once in single a device. A change only becomes effective after POWER ON, reset, project download or p8842


p8871[0...15]	SINAMICS Link send telegram word PZD / Send link word		
B_INF (PROFINET	Can be changed: T	Calculated: -	Access level: 3
CBE20),	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G130_DP	Units group: -	Unit selection: -	
(PROFINET CBE20),	P-Group: Communications	Not for motor type: -	Scaling: -
CU_G130_PN	Max	Expert list: 1	
(PROFINET CBE20),	Min	16	Factory setting
CU_G150_DP	0	0	


Index:	- p887 [index] assigns
	$[0]=$ PZD 1
	$[1]=$ PZD 2
	$[2]=$ PZD 3
	$[3]=$ PZD 4
	$[4]=$ PZD 5
	$[5]=$ PZD 6
	$[6]=$ PZD 7
	$[7]=$ PZD 8
	$[8]=$ PZD 9
	$[9]=$ PZD 10
	$[10]=$ PZD 11
	$[11]=$ PZD 12
	$[12]=$ PZD 13
	$[13]=$ PZD 14
	$[14]=$ PZD 15
	$[15]=$ PZD 16
	Refer to: p2051, p8851


Note:	Value range:
	0 : Not used
	$1 . .16$ : Send telegram word
	A specific telegram word send may only be used once within a single device.
	A change only becomes effective after POWER ON, reset, project download or p8842 $=1$.




r8874[0...4]	IF2 diagnostics bus address PZD receive / IF2 diag addr recv		
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the bus address of sender from which the PZD is received.$\text { [0] = PZD } 1$		
Index:			
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
r8874[0...31]	IF2 diagnostics bus address PZD receive / IF2 diag addr recv		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the bus address of sender from which the PZD is received.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		
	[25] = PZD 26		
	[26] = PZD 27		
	[27] = PZD 28		
	[28] = PZD 29		
	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF2: Interface 2		
	Value range:		
	$0-125:$ Bus address of the sender255: Not assigned		


r8875[0...9]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the receive telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		


r8875[0...19]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the receive telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		


r8875[0...3]	IF2 diagnostics telegram offset PZD receive / IF diag offs recv		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Displays the byte offset of the PZD in the receive telegram.		



	[29] = PZD 30		
	[30] = PZD 31		
	[31] = PZD 32		
Note:	IF2: Interface 2		
	Value range:		
	0-242: Byte offset		
	255: Not assigned		
r8876[0...9]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
B_INF	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		


r8876[0...24]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	[17] = PZD 18		
	[18] = PZD 19		
	[19] = PZD 20		
	[20] = PZD 21		
	[21] = PZD 22		
	[22] = PZD 23		
	[23] = PZD 24		
	[24] = PZD 25		


r8876[0...11]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
ENC	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	[0] = PZD 1		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] $=$ PZD 7		
	[7] $=$ PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
Note:	IF2: Interface 2		
	Value range:		
	0-242: Byte offset		
	255: Not assigned		
r8876[0...4] IF2 diagnostics telegram offset PZD send / IF2 diag offs send			
TB30, TM150, TM31	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of the PZD in the send telegram.		
Index:	$[0]=$ PZD 1$[1]=$ PRD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
r8876[0...31]	IF2 diagnostics telegram offset PZD send / IF2 diag offs send		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the byte offset of th	nd telegram.	
Index:	[0] = PZD 1		
	$[1]=$ PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	$[6]=$ PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		

[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
[14] = PZD 15
[15] = PZD 16
[16] = PZD 17
[17] = PZD 18
[18] = PZD 19
[19] = PZD 20
[20] = PZD 21
[21] = PZD 22
[22] = PZD 23
[23] = PZD 24
[24] = PZD 25
[25] = PZD 26
[26] = PZD 27
[27] = PZD 28
[28] = PZD 29
[29] = PZD 30
[30] = PZD 31
[31] = PZD 32
Note: IF2: Interface 2
Value range:
0-242: Byte offset
255: Not assigned
p8880[0...15] BI: IF2 binector-connector converter status word 1 / Bin/con ZSW1

B_INF, CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN, ENC,
VECTOR_G
Can be changed: U, T
Data type: Unsigned32 / Binary
P-Group: Communications
Not for motor type: -
Min

Description: Selects bits to be sent via interface 2.
The individual bits are combined to form status word 1.
Index:

Dependency:
[0] = Bit 0
[1] = Bit 1
[2] = Bit 2
[3] = Bit 3
[4] = Bit 4
[5] = Bit 5
[6] = Bit 6
[7] = Bit 7
[8] = Bit 8
[9] = Bit 9
[10] = Bit 10
[11] = Bit 11
[12] = Bit 12
[13] = Bit 13
[14] = Bit 14
[15] = Bit 15
Refer to: p8888, r8889

Access level: 3
Func. diagram: 2489
Unit selection: -
Expert list: 1
Factory setting

0

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max





13	Bit 13	ON	OFF
14	Bit 14	ON	OFF
15	Bit 15	ON	OFF

$\begin{array}{ll}\text { Dependency: } & \text { Refer to: p8851, p8880, p8881, p8882, p8883, p8884, p8888 } \\ \text { Note: } & \text { r8889 together with p8880 to p8884 forms five binector-connector converters. }\end{array}$

## r8890.0... 15 BO: IF2 PZD1 receive bit-serial / IF2 PZD1 recv bitw

B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: -   Data type: Unsigned16		Calculated: Dyn. index:	Access level: 3		
			$\begin{aligned} & \text { Func. } \\ & 9204, \end{aligned}$	$2491$		
	P-Group: Communications			Units group: -	Unit	
	Not for motor type: -		Scaling: -	Exper		
	Min		Max	Factory setting		
	-		-	-		
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received via interface 2.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	Bit 0	ON	OFF	-	
	01	Bit 1	ON	OFF	-	
	02	Bit 2	ON	OFF	-	
	03	Bit 3	ON	OFF	-	
	04	Bit 4	ON	OFF	-	
	05	Bit 5	ON	OFF	-	
	06	Bit 6	ON	OFF	-	
	07	Bit 7	ON	OFF	-	
	08	Bit 8	ON	OFF	-	
	09	Bit 9	ON	OFF	-	
	10	Bit 10	ON	OFF	-	
	11	Bit 11	ON	OFF	-	
	12	Bit 12	ON	OFF	-	
	13	Bit 13	ON	OFF	-	
	14	Bit 14	ON	OFF	-	
	15	Bit 15	ON	OFF	-	
Dependency:	Refer to: r8850					
Note:	IF2:	nterface 2				

## r8891.0... 15 BO: IF2 PZD2 receive bit-serial / IF2 PZD2 recv bitw

B_INF, CU_G130_DP, Can be changed: -
CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G

Data type: Unsigned16

P-Group: Communications
Not for motor type: -

Min

-     - 

Description: Binector output for bit-serial interconnection of PZD2 received via interface 2.
Bit field:

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max

1 signal
ON
ON
ON ON ON ON ON ON ON ON ON ON ON ON

Access level: 3
Func. diagram: 2485, 2491, 9204, 9206

Unit selection: -
Expert list: 1
Factory setting

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Bit 0	ON	OFF	-
01	Bit 1	ON	OFF	-
02	Bit 2	ON	OFF	-
03	Bit 3	ON	OFF	-
04	Bit 4	ON	OFF	-
05	Bit 5	ON	OFF	-
06	Bit 6	ON	OFF	-
07	Bit 7	ON	OFF	-
08	Bit 8	ON	OFF	-
09	Bit 9	ON	OFF	-
10	Bit 10	ON	OFF	-
11	Bit 11	ON	OFF	-
12	Bit 12	ON	OFF	-
13	Bit 13	ON	OFF	-


		Bit 14   Bit 15	$\begin{aligned} & \mathrm{ON} \\ & \mathrm{ON} \end{aligned}$	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8892.0... 15	BO: IF2 PZD3 receive bit-serial / IF2 PZD3 recv bitw				
CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 3	
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \end{aligned}$	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2485, 9204, 9206	
CU_G150_PN, ENC, VECTOR_G	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Binector output for bit-serial interconnection of PZD3 received via interface 2.				
Bit field:		Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Dependency:	Refer to: r8850				
Note:	IF2: Interface 2				
r8893.0... 15	BO: IF2 PZD4 receive bit-serial / IF2 PZD4 recv bitw				
CU_G130_DP,	Can be changed: -		Calculated: -	Access level: 3	
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \end{aligned}$	Data type: Unsigned16		Dyn. index: -	Func. diagram: 2485, 9204, 9206	
CU_G150_PN, ENC, VECTOR G	P-Group: Communications		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received via interface 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-



Dependency:	Refer to: p8898, p8899			
p8898[0...1]	IF2 invert connector-binector converter binector output / Con/bin outp inv			
```B_INF,CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, VECTOR_G```	Can be changed: $U, T$   Data type: Unsigned16   P-Group: Communications   Not for motor type: -   Min	Calculated:   Dyn. index:   Units group:   Scaling: -   Max		
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p8898[0], the signals of Cl : $\mathrm{p} 8899[0]$ are influenced. Using p8898[1], the signals of Cl : p8899[1] are influenced.			
Bit field:	Bit Signal name 00 Bit 0 01 Bit 1 02 Bit 2 03 Bit 3 04 Bit 4 05 Bit 5 06 Bit 6 07 Bit 7 08 Bit 8 09 Bit 9 10 Bit 10 11 Bit 11 12 Bit 12 13 Bit 13 14 Bit 14 15 Bit 15	1 signal Inverted	0 signal Not inverted	FP
Dependency:	Refer to: r8894, r8895, p8899			
p8899[0...1] B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, VECTOR_G	CI: IF2 connector-binector Can be changed: U, T Data type: Unsigned32 / Integer16 P-Group: Communications Not for motor type: - Min	ter signal s Calculated: Dyn. index: - Units group: Scaling: - Max	in S_src Access Func. dia Unit sele Expert list Factory 0	
Description: Dependency: Note:	Refer to: r8850, r8894, r8895, p8898 From the signal source set via the connector input, the corresponding lower 16 bits are converted. p8899[0...1] together with r8894.0... 15 and r8895.0... 15 forms two connector-binector converters: Connector input p8899[0] to binector output in r8894.0... 15 Connector input p8899[1] to binector output in r8895.0... 15			
$\begin{aligned} & \hline \text { p8900[0...239] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	IE Name of Station / IE Nam Can be changed: U, T Data type: Unsigned8 P-Group: - Not for motor type: - Min	Calculated: - Dyn. index: - Units group: Scaling: - Max	Access le Func. dia Unit sele Expert lis Factory	
Description:	Sets the station name for the Industrial Ethernet interface (X127) on the Control Unit. The active station name is displayed in 88910 .			

Dependency:	Refer to: p8905, r8910
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.
	The interface configuration (p8900 and following) is activated with p8905 = 1.
	The parameter is not influenced by setting the factory setting.
	IE: Industrial Ethernet

p8901[0...3]	IE IP Address of Station / IE IP of Stat		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP, CU G150 PN	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the IP address for the Industrial Ethernet interface (X127) on the Control Unit. The active IP address is displayed in r8911.		
Dependency:	Refer to: p8905, r8911		
Note:	The interface configuration (p8900 and following) is activated with p8905 $=1$.		
	The parameter is not influenced by setting the factory setting.		

p8902[0...3]	IE Default Gateway of Station / IE Def Gateway		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0

Description:	Sets the default gateway for the Industrial Ethernet interface (X127) on the Control Unit.
	The active default gateway is displayed in r 8912.
Dependency:	Refer to: p8905, r8912
Note:	The interface configuration (p8900 and following) is activated with p8905 = 1.
	The parameter is not influenced by setting the factory setting.

p8903[0...3]	IE Subnet Mask of Station / IE Subnet Mask		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0

Description: Sets the subnet mask for the Industrial Ethernet interface (X127) on the Control Unit. The active subnet mask is displayed in r8913.
Dependency: Refer to: p8905, r8913
Note: \quad The interface configuration (p8900 and following) is activated with p8905 = 1 .
The parameter is not influenced by setting the factory setting.

p8904	IE DHCP mode / IE DHCP mode		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	3	Factory setting
	0	0	

Note:	The interface configuration (p8900 and following) is activated with p8905. The active DHCP mode is displayed in parameter r8914. The parameter is not influenced by setting the factory setting. If value $=0$: DHCP deactivated. If value $=1$: Reserved. If value = 2: DHCP activated. The MAC address of this interface is used for client identification. If value $=3$: DHCP activated. The station name of this interface is used for client identification.
p8905	IE Interface configuration / IE IF config
CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Can be changed: U, T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 3 0
Description: Value:	Setting to activate the interface configuration for the Industrial Ethernet interface (X127) on the Control Unit. p8905 is automatically set to 0 at the end of an operation. 0 : \quad No function 1: Activate configuration 2: Activate and save configuration 3: Delete configuration
Dependency: Note:	Refer to: p8900, p8901, p8902, p8903 Re p8905 = 1: The interface configuration (p8900 and following) is activated. Re p8905 = 2: The interface configuration (p8900 and following) is activated and saved to non-volatile memory. Re p8905 = 3: The interface configuration is reset to the factory setting at all points. The factory settings for the interface configuration are loaded on activation (p8905 = 1) or at the next POWER ON.
p8908	Activate FTP / Act FTP
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: - Access level: 3 Data type: Integer16 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 1 0
Description:	Activation of the FTP server. Permits the FTP access to the /INSTALL/SINAMICS directory of the memory card.
Value:	0 : No 1: Yes
Note:	Activation of the FTP server becomes effective immediately. Deactivation only becomes effective after POWER ON of the Control Unit. Before commissioning the system for the first time, the FTP server is activated independent of the parameter setting

r8909	PN device ID / PN device ID		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Data type: Unsigned16 P-Group: - Not for motor type: - Min	Calculated: - Dyn. index: - Units group: Scaling: - Max	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting
Description:	Displays the PROFINET Device ID. Every SINAMICS device type has its own PROFINET Device ID and its own PROFINET GSD.		
Note:	List of the SINAMICS Device IDs: 0501 hex: S120/S150 0504 hex: G130/G150 050A hex: DC MASTER 050C hex: MV 050F hex: G120P 0510 hex: G120C 0511 hex: G120 CU240E-2 0512 hex: G120D 0513 hex: G120 CU250S-2 Vector 0514 hex: G110M		
$\begin{aligned} & \text { r8910[0...239] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	IE Name of Station active / IE Can be changed: - Data type: Unsigned8 P-Group: - Not for motor type: - Min	e Stat act Calculated: - Dyn. index: - Units group: Scaling: - Max	Access level: 1 Func. diagram: Unit selection: Expert list: 1 Factory setting
Description:	Displays the active station name for the Industrial Ethernet interface (X127) on the Control Unit.		
$\begin{aligned} & \text { r8911[0...3] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	IE IP Address of Station act Can be changed: - Data type: Unsigned8 P-Group: - Not for motor type: - Min 0	IP of Stat Calculated: Dyn. index: - Units group: Scaling: - Max 255	Access level: 1 Func. diagram: Unit selection: Expert list: 1 Factory setting
Description:	Displays the active IP address for the Industrial Ethernet interface (X127) on the Control Unit.		
$\begin{aligned} & \text { r8912[0...3] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	IE Default Gateway of Statio Can be changed: - Data type: Unsigned8 P-Group: - Not for motor type: - Min 0	ve / IE Def G Calculated: - Dyn. index: - Units group: Scaling: - Max 255	Access level: 1 Func. diagram: Unit selection: Expert list: 1 Factory setting
Description:	Displays the active default gateway for the Industrial Ethernet interface (X127) on the Control Unit.		

p8922[0...3]	PN Default Gateway of Station / PN Def Gateway		
CU_G130_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G150_PN	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	0	255	0
Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit.		
	The active default gateway is displayed in r8932.		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		

p8923[0...3]	PN Subnet Mask of Station / PN Subnet Mask		
CU_G130_PN,	Can be changed: U, T	Calculated: -	Access level: 3
CU_G150_PN	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	0	255	0
Description:	Sets the subnet mask for the onboard PROFINET interface on the Control Unit.		
	The active subnet mask is displayed in r8933.		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		

If value = 1 :

Reserved.
If value $=2$:
DHCP activated. The MAC address of this interface is used for client identification.
If value $=3$:
DHCP activated. The station name of this interface is used for client identification.

p8925

PN interface configuration / PN IF config

CU_G130_PN, CU_G150_PN

Data type: Integer16
P-Group: -
Not for motor type: -
alculated: -
Dyn. index: -
Units group: -
Scaling: -
Min Max
0
3
Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0
Description: Setting to activate the interface configuration for the onboard PROFINET interface on the Control Unit. p8925 is automatically set to 0 at the end of the operation.

Value:

Notice: \quad When the DHCP mode is active (p8924 > 0), then PROFINET communication via this interface is no longer possible! However, the interface can be used by the STARTER/SCOUT commissioning tool.
Note:
Re p8925 = 1:
The interface configuration (p8920 and following) is activated.
Re p8925 = 2:
The interface configuration (p8920 and following) is activated and saved to non-volatile memory.
Re p8925 = 3:
Restores all memory locations for the interface configuration to the factory settings.
The factory settings for the interface configuration are loaded on activation (p8925 = 1) or at the next POWER ON.

p8929
CU_G130_PN,
CU_G150 PN

Description: Sets the number of remote controllers expected for PROFINET onboard.
The "Shared Device" functionality is activated with a value $=2$.
The drive is being accessed by two PROFINET controllers simultaneously:

- automation controller (SIMOTION or SIMATIC A-CPU).
- safety controller (SIMATIC F-CPU).

Value:
1: Automation or Safety
2: Automation and Safety
Notice: \quad The F CPU may only use PROFIsafe telegrams.
Note: A change only becomes effective after POWER ON, reset or download.

r8930[0...239]	PN Name of Station active / PN Name Stat act		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the active station name for the onboard PROFINET interface on the Control Unit.		
r8931[0...3]	PN IP Address of Station active / PN IP of Stat act		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active IP address for the onboard PROFINET interface on the Control Unit.		
r8932[0...3]	PN Default Gateway of Station active / PN Def Gateway act		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active default gateway for the onboard PROFINET interface on the Control Unit.		
r8933[0...3]	PN Subnet Mask of Station active / PN Subnet Mask act		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active subnet mask for the onboard PROFINET interface on the Control Unit.		
r8934	PN DHCP Mode active / PN DHCP Mode act		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active DHCP mode for the onboard PROFINET interface on the Control Unit.		
Notice:	When the DHCP mode is active (parameter value greater than 0), PROFINET communication via this interface is no longer possible! However, the interface can be used for commissioning tool such as STARTER or SCOUT.		
Note:	If value $=0$:		
	DHCP deactivated.		
	If value $=2$:		
	DHCP activated. The MAC address of this interface is used for client identification.		
	DHCP activated. The station name of this interface is used for client identification.		

r8935[0...5]	PN MAC Address of Station / PN MAC of Station		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00FF hex	-
Description:	Displays the MAC address for the onboard PROFINET interface on the Control Unit.		
r8936[0...1]	PN state cyclic con	stat cyc conn	
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	13	-
Description:	Displays the state of the cyclic PROFINET connections.		
	For two connections (Shared Device) the display in the index depends on the sequence in which the connections are established.		
Value:	0: Interrupted		
	1: Not connected		
	2: Connection starts to be established		
	3: Module information expected		
	4: Module information received		
	5: Module address expected		
	6: Module address received		
	7: Parameterization data expected		
	8: Parameterization data received		
	9: Evaluate parameterization data		
	10: Connection being established completion expected		
	11: Configured controller RUN expected		
	13: Configured controller RUN		
Dependency: Note:	Refer to: p8929		
	If value = 10:		
	If the connection remains in this state, then when using PROFINET IRT the following can apply:		
	- synchronization missing.		
r8937[0...5]	PN diagnostics / PN diag		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection:
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Display to diagnose the cyclic PROFINET connections.		
Index:	[0] = Number of cyclic connections		
	[1] = Number of send subslots of all connections		
	[2] = Number of send net data (bytes) of all connections		
	[4] = Number of receive net data (bytes) of all connections		
	[5] = Connection type (RT, IRT)		
Dependency:	Refer to: p8929		

Note:	Re index 5: Bit $0=1$: there is at least one RT connection. Bit $1=1$: there is an IRT connection.		
r8939	PN DAP ID / PN DA		
$\begin{aligned} & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFINET Device Access Point ID (DAP ID) for the onboard PROFINET interface. The combination of device ID (r8909) and DAP ID uniquely identifies a PROFINET access point.		
Note:	List of the SINAMICS DAP IDs:		
	20007 hex: CBE20 V4.5		
	20008 hex: CBE20 V4.6		
	20107 hex: CU310-2 PN V4.5		
	20108 hex: CU310-2 PN V4.6		
	20307 hex: CU320-2 PN V4.5		
	20308 hex: CU320-2 PN V4.6		
	20407 hex: CU230P-2 PN /CU240x-2 PN V4.5		
	20408 hex: CU230P-2 PN /CU240x-2 PN /CU250S-2 PN /G110M PN V4.6		
	20507 hex: CU250D-2 PN V4.5		
	20508 hex: CU250D-2 PN V4.6		
p8940[0...239] CBE2x Name of Station / CBE2x Name Stat			
CU_G130_DP (PROFINET CBE20), CU_G130_PN (PROFINET CBE20), CU_G150_DP (PROFINET CBE20), CU_G150_PN (PROFINET CBE20)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	
Description:	Sets the station name for	Board Ethernet	25).
Dependency:	Refer to: p8941, p8942,		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. The interface configuration (p8940 and following) is activated with p8945. The parameter is not influenced by setting the factory setting.		
p8941[0...3]	CBE2x IP Address of Station / CBE2x IP of Stat		
CU_G130_DP (PROFINET CBE20), CU_G130_PN (PROFINET CBE20), CU_G150_DP (PROFINET CBE20), CU_G150_PN (PROFINET CBE20)	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram:
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
		Max	Factory setting
	0	255	0
Description:	Sets the IP address for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Dependency:	Refer to: p8940, p8942, p8943, p8944, p8945		
Note:	The interface configuration (p8940 and following) is activated with p8945. The parameter is not influenced by setting the factory setting.		

p8942[0...3]	CBE2x Default Gateway of Station / CBE2x Def Gateway		
CU_G130_DP	Can be changed: U, T	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	Units group: -	Unit selection: -	
(PROFINET CBE20),	P-Group: -	Sot for motor type: -	Max
CU_G150_DP	Expert list: 1		
(PROFINET CBE20),	Min	Factory setting	
CU_G150_PN	0	0	
(PROFINET CBE20)	0		
Description:	Sets the standard gateway for the Communication Board Ethernet 20/25 (CBE20/CBE25).		
Dependency:	Refer to: p8940, p8941, p8943, p8944, p8945		
Note:	The interface configuration (p8940 and following) is activated with p8945.		
	The parameter is not influenced by setting the factory setting.		

r8950[0...239]	CBE2x Name of Station active / CBE2x Name act		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	P-Group: -	Units group: -	Unit selection: -
(PROFINET CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_G150_DP	Max	Factory setting	
(PROFINET CBE20),	Min	-	-
CU_G150_PN	-		
(PROFINET CBE20)			
Description:	Displays the active station name for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8951[0...3]	CBE2x IP Address of Station active / CBE2x IP act		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	P-Group: -	Units group: -	Unit selection: -
(PROFINET CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_G150_DP	Max	Factory setting	
(PROFINET CBE20),	Min	255	-
CU_G150_PN	0		
(PROFINET CBE20)			
Description:	Displays the active IP address for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8952[0...3]	CBE2x Default Gateway of Station active / CBE2x def GW act		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	P-Group: -	Units group: -	Unit selection: -
(PROFINET CBE20),	Not for motor type: -	Scaling: -	Expert list: 1
CU_G150_DP	Max	Factory setting	
(PROFINET CBE20),	Min	255	-
CU_G150_PN	0		
(PROFINET CBE20)			
Description:	Displays the active standard gateway for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8953[0...3]	CBE2x Subnet Mask of Station active / CBE2x Sub Mask act		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	Units group: -	Unit selection: -	
(PROFINET CBE20),	P-Group: -	Scaling: -	Expert list: 1
CU_G150_DP	Not motor type: -	Max	Factory setting
(PROFINET CBE20),	Min	255	-
CU_G150_PN	0		
(PROFINET CBE20)			
Description:	Displays the active subnet mask for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8954
CU_G130_DP
(PROFINET CBE20),
CU_G130_PN
(PROFINET CBE20),
CU_G150_DP
(PROFINET CBE20),
CU_G150_PN
(PROFINET CBE20)

CBE2x DHCP Mode active / CBE2x DHCP act

Can be changed: -
Calculated: -
Data type: Unsigned8
P-Group: -
Not for motor type: -
Min
0

Dyn. index: -
Units group: -
Scaling: -
Max
255

Access level: 3

Func. diagram:
Unit selection: -
Expert list: 1
Factory setting

Displays the active DHCP mode for the Communication Board Ethernet 20/25 (CBE20/CBE25).
Notice: When the DHCP mode is active (parameter value greater than 0), PROFINET communication via this interface is no longer possible! However, the interface can be used by the STARTER/SCOUT commissioning tool.

Note:

If value $=0$:
DHCP deactivated.
If value $=2$:
DHCP activated. The MAC address of this interface is used for client identification.
If value $=3$:
DHCP activated. The station name of this interface is used for client identification.

r8955[0...5]	CBE2x MAC Address of Station / CBE2x MAC Addr		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	Units group: -	Unit selection: -	
(PROFINET CBE20),	P-Group: -	Scaling: -	Expert list: 1
CU_G150_DP	Not for motor type: -	Max	Factory setting
(PROFINET CBE20),	Min	00FF hex	-
CU_G150_PN	0000 hex		
(PROFINET CBE20)			
Description:	Displays the MAC address for the Communication Board Ethernet 20/25 (CBE20/CBE25).		

r8959	CBE2x DAP ID / CBE2x DAP ID		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G130_PN	Units group: -	Unit selection: -	
(PROFINET CBE20),	P-Group: -	Scaling: -	Factory setting
CU_G150_DP	Not motor type: -	Max	-
(PROFINET CBE20),	Min	FFFF FFFF hex	
CU_G150_PN	0000 hex		
(PROFINET CBE20)			
Description:	Displays the DAP ID for PROFINET via the Communication Board Ethernet 20/25 (CBE20/CBE25).		
	The combination of device ID (r8909) and DAP ID (r8959) uniquely identifies a PROFINET access point.		
Note:	DAP ID: Device Access Point ID		
	DAP ID $=20007$ hex: SINAMICS CBE20 V4.5		
	DAP ID = 20008 hex: SINAMICS CBE20 V4.6		

r8960[0...2]	PN subslot controller assignment / PN subslot assign
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned8 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 8 -
Description: Index: Dependency: Note:	Displays the controller assignment of a PROFINET subslot on the actual drive object. [0] = Subslot 2 PROFIsafe [1] = Subslot 3 PZD telegram [2] = Subslot 4 PZD supplementary data Refer to: r8961, r8962 Example: If the parameter contains the value 2 in index [1], then this means that subslot 3 is assigned to controller 2 .
$\begin{aligned} & \text { r8961[0...3] } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	PN IP Address Remote Controller 1 / IP Addr Rem Ctrl1 Can be changed: - Calculated: - Access level: 3 Data type: Unsigned8 Dyn. index: - Func. diagram: - P-Group: - Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 255 -
Description:	Displays the IP address of the first PROFINET controller connected with the device via PN onboard.
$\begin{aligned} & \text { r8962[0...3] } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_PN } \end{aligned}$	PN IP Address Remote Controller 2 / IP Addr Rem Ctrl2
Description:	Displays the IP address of the second PROFINET controller connected with the device via PN onboard.
p8969 CU G130 DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	PROFIsafe wait for clock synchronization / PS wait sync
Description:	Setting for the behavior of a PROFIsafe communication connection depending on another isochronous communication connection.
Value:	$\begin{array}{ll} 0: & \text { No } \\ \text { 1: } & \text { Yes } \end{array}$
Recommend.: Note:	A value of 1 is recommended, if problems are encountered with the PROFIsafe connection when synchronizing. If value $=1$: A PROFIsafe connection is only accepted if an isochronous connection exists. Relevant, if PROFIsafe and isochronous operation are configured via various communication connections (e.g. PROFINET Shared Device).

r8971[0...3]	CBE2x IP Address Remote Controller 1 / CBE2x IP Rem Ctrl1		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	U-Group: -	Units group: -	Unit selection: -
(PROFINET CBE20),	Not for motor type: -	Max	Expert list: 1
CU_G150_DP	Factory setting		
(PROFINET CBE20),	Min	-	
CU_G150_PN	0		
(PROFINET CBE20)	0		
Description:	Displays the IP address of the first PROFINET controller connected with the device via CBE20/CBE25.		

r8972[0...3]	CBE2x IP Address Remote Controller 2 / CBE2x IP Rem Ctrl2		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G130_PN	P-Group: -	Units group: -	Unit selection: -
(PROFINET CBE20),	Not for motor type: -	Max	Expert list: 1
CU_G150_DP	255	Factory setting	
(PROFINET CBE20),	Min	-	
CU_G150_PN	0		
(PROFINET CBE20)			
Description:	Displays the IP address of the second PROFINET controller connected with the device via CBE20/CBE25.		

p8986	Web server configuration / Web serv config		
CU_G130_DP,	Can be changed: T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
Description:	-	0101 bin	

Bit field:	Bit	Signal name	1 signal	FP	
	00	Activating	Yes	No	-
	01	Only permit access via https	Yes	No	
	02	Enable "SINAMICS" user	Yes	No	
	03	Enable "Administrator" user	Yes	No	-

p8987[0..1]	Web server port assignment / WebServ PortAssign	
CU_G130_DP,	Can be changed: T	Calculated: -
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -
CU_G150_DP,	P-Group: -	Units group: -
CU_G150_PN	Not for motor type: -	Scaling: -
	Min	32767
	1	
Description:	This parameter allows the port setting for the web server to be changed.	
Index:	[0] = Port for standard transfer (http)	
	[1] = Port for secure transfer (https)	

r9207	Topology direct access integer value / Topo access int
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Calculated: - Access level: 3 Data type: Unsigned32 Dyn. index: - Func. diagram: P-Group: Topology Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting
Description: Dependency:	Displays the value for the property set in p9206. A value is only displayed for integer type properties. Refer to: p9206, r9208
$\begin{aligned} & \text { r9208[0...50] } \\ & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Topology direct access string / Topo access string
Description: Dependency: Note:	Displays the value for the property set in p9206. A value is only displayed for string type properties. Refer to: p9206, r9207 An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.
p9210 CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Flashing component number / Flash comp_no
Description: Dependency:	Sets the component number for a component to get its status LED to flash. Refer to: p9211
p9211 CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN	Flash function / Flash fct.
Description:	Sets the function for the component selected in p9210. After initiating a function, the parameter is automatically reset again. Example: - Set the component number (p9210). - Select the "flashing on" function (set p9211 = 1).
Value:	$-1:$ Select function $0:$ Flashing off 1: Flashing on
Dependency: Notice:	Refer to: p9210 If a task cannot be executed (e.g. the component number in p9210 does not exist), the following applies: - There is no negative feedback signal. - The value is reset anyway.

 must be specified.

Example: the 2nd entry must be called:
rdp 1922255
or
rdpa 1922255.

Notice: \quad This parameter is overwritten by the copy function of the safety functions integrated in the drive.

Note:
When the function is activated, a safety-relevant acknowledgement (internal event acknowledge) can be performed by selecting/deselecting STO.
Re bit 01:
When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active. Re bit 02:
This bit defines the type of motor, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for an induction motor.
For bit $=1$, the actual velocity is calculated for a synchronous motor. This value depends on the setting in p0300.
Bit $=0$ should be set if no motor is defined $(p 0300=0)$.
Re bit 03:
When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
Re bit 05:
This bit defines the type of modulation, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for space vector modulation.
For bit $=1$, the actual velocity is calculated for edge modulation. This value depends on the setting in p1802.
p9309

Description

 Bit field:
Notice:

Note:

SI Motion behavior during pulse suppression (Motor Module) / SI Mtn behav IL MM		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	0000000011111111 bin

Sets the behavior of safety functions and their feedback during pulse suppression in encoderless operation.

Bit	Signal name	1 signal	F signal	
00	SSM during pulse suppression and	Becomes inactive	Remains active	-
08	sensorless	SDI during pulse suppression and	Becomes inactive	Remains active

This parameter is overwritten by the copy function of the safety functions integrated in the drive. Re bit 00:
If the OFF1 or the OFF3 ramp-down time is too low, or there is an insufficient clearance between the SSM limit speed, and the shutdown speed, then it is possible that the "speed under limit value" signal does not change to 1 , because no speed actual value below the SSM limit was able to be identified before pulse cancellation. In this case, the OFF1 or the OFF3 ramp-down time or the clearance between the SSM limit speed and shutdown speed must be increased.
SDI: Safe Direction (safe motion direction)
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)
Re bit 00:
For bit = 1 and with the SSM safety function activated, the following applies:

- During pulse suppression, monitoring is switched off and the feedback signal has a 0 signal level.

For bit $=0$ and with the SSM safety function activated, the following applies:

- Monitoring continues during pulse suppression. The feedback signal last displayed before pulse suppression is kept and the system goes into the STO state.
Re bit 08:
For bit = 1 and with the SDI safety function activated, the following applies:
- During pulse suppression, monitoring is switched off and the status signal indicates inactive.

For bit $=0$ and with the SDI safety function activated, the following applies:

- Monitoring continues during pulse suppression. The status signal indicates active and the system goes into the STO state.

p9311	SI Motion actual value sensing clock cycle (Motor Module) / SI Mtn act clk MM			
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access leve	
	Data type: FloatingPoint32	Dyn. index: -	Func. diag	
	P-Group: Safety Integrated	Units group: -	Unit selectio	
	Not for motor type: -	Scaling: -	Expert list:	
	Min	Max	Factory set	
	0.0000 [$\mu \mathrm{s}$]	25000.0000 [ss]	0.0000 [$\mu \mathrm{s}$]	
Description:	Sets the clock cycle time of the actual value sensing for safe motion monitoring.			
	- A slower clock cycle time reduces the maximum permissible velocity - however, it ensures a lower load of the Control Unit for safe actual value sensing.			
	- The maximum permissible velocity which, when exceeded, can mean that errors occur during safe actual value sensing, is displayed in r9730.			
	- The isochronous PROFIBUS clock cycle is used as a clock cycle time for actual value sensing with a setting of 0 ms ; the setting is 1 ms if isochronous operation is not being used.			
	Setting criteria if the motion monitoring functions are executed without an encoder: - The actual value sensing clock cycle must be set to the same value as the current controller clock cycle (p0115)			
Dependency: Notice:	Refer to: p0115, p9300, p9511			
	This parameter is overwritten by the copy function of the safety functions integrated in the drive.			
Note:	The parameter is only active for drive-based motion monitoring functions (p9801.2 = 1).			
	The monitoring clock cycle from p9300 must be an integer multiple of this parameter.			
	In the case of motion monitoring functions with encoder, the clock cycle time for actual value sensing must be an integer multiple of the current controller clock cycle and at least 4 times slower than the current controller clock cycle. A factor of at least 8 is recommended.			
	The clock cycle time of the actual value sensing should not be set to more than 8 ms .			
	A change only becomes effective after a POWER ON.			
p9312	Select SI Motion safety functions without selection (MM) / SI Mtn w/o sel MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access leve	
	Data type: Unsigned32	Dyn. index: -	Func. diagr	
	P-Group: Safety Integrated	Units group: -	Unit selectio	
	Not for motor type: -	Scaling: -	Expert list:	
	Min	Max	Factory set	
	-	-	000000000	
Description:	Sets the safety functions without selection.			
	The safety functions without selection are enabled with p9601.5/p9801.5.			
	Using this parameter, the individual motion monitoring functions can then be selected (e.g. SLS, SDI positive, S negative), which should then be permanently selected.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	04 SLS static (MM)	Statically active	Statically inact	-
	12 SDI positive static (MM)	Statically active	Statically inact	-
	13 SDI negative static (MM)	Statically active	Statically inact	-
Dependency:	Refer to: p9601, p9801			
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.			
Note:	A change becomes immediately effective after exiting the safety commissioning mode.			
	SDI: Safe Direction (safe motion direction).			
	SLS: Safely-Limited Speed			

p9313	SI Motion non safety-relevant measuring steps POS1 (MM) / nsrPOS1 MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Facto	
	0	4294967295	22000	
Description:	Sets the non safety-relevant measuring steps of position value POS1.			
	The encoder that is used for the safe motion monitoring functions on processor 2 , must be parameterized in this parameter.			
Dependency:	Refer to: p9513			
$\overline{\mathrm{p} 9314}$	SI Motion absolute encoder linear measuring steps (MM) / EncLinMeasStep MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Factor	
	0 [nm]	4294967295 [nm]	100 [
Description:	Sets the resolution of the absolute position for a linear absolute encoder.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.			
Dependency:	Refer to: p9514			
p9315	SI Motion coarse position value configuration (Motor Module) / SI Mtn s config MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Acce	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factor	
	-	-	0000	
Description:	Sets the encoder configuration for the redundant coarse position value.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must b parameterized in this parameter.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Incrementer	Yes	No	-
	01 Encoder CRC least significant byte first	Yes	No	-
	02 Redundant coarse position val. most significant bit left-aligned	Yes	No	-
	04 Binary comparison not possible	Yes	No	-
	16 DRIVE-CLiQ encoder	Yes	No	-
	17 EnDat-2.2 converter	Yes	No	-
Dependency:	Refer to: r0474, p9515			
p9316	SI Motion encoder configuration, safety functions (Motor Module) / SI Mtn enc_cfg MM			
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	0000 b	
Description:	Sets the configuration for the encoder and position actual value.			

Bit field:	The encoder that is used for the safe motion monitoring functions on the Motor Module must be parameterized in this parameter.			
	Bit Signal name	1 signal	0 signal	FP
	00 Encoder rotating/linear	Linear	Rotating	
	01 Position actual value sign change	Yes	No	-
Dependency:	Refer to: p0404, p0410, p9516			
p9317	SI Motion linear scale grid division (Motor Module) / SI Mtn grid MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3	
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0.00 [nm]	250000000.00 [nm]	10000.00 [nm]	
Description:	Sets the grid division for a linear encoder.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.			
Dependency:	Refer to: p0407, p9316			
p9318	SI Motion encoder pulses per revolution (Motor Module) / SI Mtn p/rev MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	16777215	2048	
Description:	Sets the number of encoder pulses per revolution for rotary encoders.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.			
Dependency:	Refer to: p0408, p9316			
p9319	SI Motion fine resolution G1_XIST1 (Motor Module) / SI Mtn G1_XIST1 MM			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3	
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	2	18	11	
Description:	Sets the fine resolution for G1_XIST1 in bits.			
	The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.			
Dependency:	Refer to: p0418			
Note:	For safety functions that have not been enabled (p9301 = 0), the following applies: When booting, p9319 is automatically set the same as p0418.			
	For safety functions that are enabled (p9301 > 0), the following applies: p9319 is checked for agreement with p0418. G1_XIST1: Encoder 1 position actual value 1 (PROFIdrive)			

p9320	SI Motion spindle pitch (Motor Module) / SI Mtn sp_pitch MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.1000 [mm]	8388.0000 [mm]	10.0000 [mm]
Description:	Sets the gear ratio between the encoder and load in $\mathrm{mm} /$ revolution for a linear axis with rotary encoder. The encoder that is used for the safe motion monitoring functions on the Motor Module/Hydraulic Module must be parameterized in this parameter.		
Dependency:	Refer to: p9520		
Notice:	The fourth decimal point can be rounded-off depending on the size of the entered number (from 3 places before the decimal point).		
p9321[0...7]	SI Motion gearbox encoder (motor)/Ioad denom (Motor Module) / SI Mtn gearDenomMM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the denominator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load. The active gearbox stage can be switched over via PROFIsafe.		
Index:	$\begin{aligned} & {[0]=\text { Gearbox } 1} \\ & {[1]=\text { Gearbox } 2} \\ & {[2]=\text { Gearbox } 3} \\ & {[3]=\text { Gearbox } 4} \\ & {[4]=\text { Gearbox } 5} \\ & {[5]=\text { Gearbox } 6} \\ & {[6]=\text { Gearbox } 7} \\ & {[7]=\text { Gearbox } 8} \end{aligned}$		
Dependency:	Refer to: p9322		
p9322[0...7]	SI Motion gearbox encoder (motor)/Ioad numerator (Motor Module) / SI Mtn gear num MM		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the numerator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load. The active gearbox stage can be switched over via PROFIsafe.		
Index:	[0] = Gearbox 1 [1] = Gearbox 2 [2] = Gearbox 3 [3] = Gearbox 4 [4] = Gearbox 5 [5] = Gearbox 6 [6] = Gearbox 7 [7] = Gearbox 8		
Dependency:	Refer to: p9321		

p9331[0...3]	SI Motion SLS limit values (Motor Module) / SI Mtn SLS lim MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Safety Integrated Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.00[\mathrm{~mm} / \mathrm{min}]$ $1000000.00[\mathrm{~mm} / \mathrm{min}]$ $2000.00[\mathrm{~mm} / \mathrm{min}]$
Description: Index:	Sets the limit values for the function "Safely-Limited Speed" (SLS). [0] = Limit value SLS1 [1] = Limit value SLS2 [2] = Limit value SLS3 [3] = Limit value SLS4
Dependency: Notice: Note:	Refer to: p9363, p9531 This parameter is overwritten by the copy function of the safety functions integrated in the drive. SLS: Safely-Limited Speed
p9331[0...3]	SI Motion SLS limit values (Motor Module) / SI Mtn SLS lim MM
VECTOR_G (Safety rot)	Can be changed: C2(95) Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: - P-Group: Safety Integrated Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $0.00[\mathrm{rpm}]$ $1000000.00[\mathrm{rpm}]$ $2000.00[\mathrm{rpm}]$
Description: Index:	Sets the limit values for the function "Safely-Limited Speed" (SLS). [0] = Limit value SLS1 [1] = Limit value SLS2 [2] = Limit value SLS3 [3] = Limit value SLS4
Dependency: Notice: Note:	Refer to: p9363, p9531 This parameter is overwritten by the copy function of the safety functions integrated in the drive. SLS: Safely-Limited Speed
p9334[0..1]	SI Motion SLP upper limit values (Motor Module) / SI Mtn SLP uplimMM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3 Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2822 P-Group: Safety Integrated Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting $-2147000.000[\mathrm{~mm}]$ $2147000.000[\mathrm{~mm}]$ $100000.000[\mathrm{~mm}]$
Description: Index:	Sets the upper limit for the function "Safely-Limited Position" (SLP). [0] = Limit value SLP1 (SE1) [1] = Limit value SLP2 (SE2)
Dependency:	Refer to: p9501, p9535, p9562
Notice: Note:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. The following applies to the setting of these limits: - p9334[x] > p9335[x] - p9334[x] must lie in the valid traversing range ($-737280 \ldots 737280$). SLP: Safely-Limited Position / SE: Safe software limit switches

p9334[0...1]	SI Motion SLP upper limit values (Motor Module) / SI Mtn SLP uplimMM		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [$\left.{ }^{\circ}\right]$	$\left.2147000.000{ }^{\circ}{ }^{\circ}\right]$	$100000.000\left[^{\circ}\right]$
Description:	Sets the upper limit for the function "Safely-Limited Position" (SLP).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$		
Dependency:	Refer to: p9501, p9535, p9562		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The following applies to the setting of these limits:		
	- p9334[x] > p9335[x]		
	- p9334[x] must lie in the valid traversing range (-737280 ... 737280).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		

p9335[0...1]	SI Motion SLP Iower limit values (Motor Module) / SI Mtn SLPlowLimMM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [mm]	2147000.000 [mm]	-100000.000 [mm]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$		
Dependency:	Refer to: p9501, p9534, p9562		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The following applies to the setting of these limits:		
	$-\mathrm{p} 9334[x]>\mathrm{p} 9335[x]$		
	- p9335[x] must lie in the valid traversing range (-737280 ... 737280).		
	SLP: Safely-Limited Position	vare limit switches	

p9335[0...1]	SI Motion SLP Iower limit values (Motor Module) / SI Mtn SLPIowLimMM		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [$\left.{ }^{\circ}\right]$	$2147000.000{ }^{[7]}$	-100000.000 [${ }^{\circ}$]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$		
Dependency:	Refer to: p9501, p9534, p9562		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The following applies to the setting of these limits:		
	- p9335[x] must lie in the valid traversing range (-737280 ... 737280).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		

p9342	SI Motion act val comparison tol (crosswise) (Motor Module) / SI Mtn actV tol MM		
VECTOR_G (Safety rot)	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0010 [${ }^{\circ}$]	$\left.360.0000{ }^{[}\right]$	0.1000 [$\left.{ }^{\circ}\right]$
Description:	Sets the tolerance for the crosswise data comparison of the actual position between the two monitoring channels. For encoderless motion monitoring functions, the tolerance must be set to a higher value (12 degrees rotary, 1 mm linear).		
Dependency:	Refer to: p9542		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	For a linear axis, the tolerance is internally limited to 10 mm .		
	For a "linear axis with rotating motor" and factory setting of p9320, p9321 and p9322, the factory setting of p9342 corresponds to a position tolerance of 36° on the motor side.		
p9343	SI Motion gearbox switching position tolerance (MM) / SI Mtn grbx tol MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	1000	1
Description:	Sets the factor to increase the tolerance for the crosswise data comparison of the actual position between the two monitoring channels while the gearbox stage is being switched over.		
	This factor is effective when actual value synchronization is activated and when deactivated.		
	Depending on the following tolerance, the following is obtained:		
	- actual value synchronization activated: p9549 * p9543		
	- actual value synchronization deactivated: p9542 * p9543		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
p9344	SI Motion actual value comparison tolerance (referencing) (MM) / SI mtn ref tol MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [mm]	36.0000 [mm]	0.0100 [mm]
Description:	Sets the tolerance for checking the actual values.		
	For an incremental encoder, the actual values are checked after referencing; for an absolute encoder, when switching on.		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	A change only becomes effective after a POWER ON.		
	For linear axes, the maximum value is limited to 1 mm .		
p9344			
VECTOR_G (Safety rot)	SI Motion actual value comparison tolerance (referencing) (MM) / SI mtn ref tol MM		
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [$\left.{ }^{\circ}\right]$	$\left.36.0000{ }^{\circ} \mathrm{l}\right]$	0.0100 [${ }^{\circ}$]
Description:	Sets the tolerance for checkin	lues.	

	For an incremental encoder, the actual values are checked after referencing; for an absolute encoder, when switching on.
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	A change only becomes effective after a POWER ON.
	For linear axes, the maximum value is limited to 1 mm .
p9345	SI Motion SSM filter time (Motor Module) / SI Mtn SSM filt MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2823
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	$0.00[\mu \mathrm{~s}] \quad 100000.00[\mu \mathrm{~s}]$ 0.00 [$\mu \mathrm{s}$]
Description:	Sets the filter time for the SSM feedback signal to detect standstill.
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The filter time is effective only if the function is enabled (p9301.16 $\mathrm{p} 9501.16=1$).
	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.
	The parameter is included in the crosswise data comparison of the two monitoring channels.
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)
p9346	SI Motion SSM velocity limit (Motor Module) / SI Mtn SSM v_limMM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2823
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 [mm/min] 1000000.00 [mm/min] 20.00 [mm/min]
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n \mathrm{nx}$).
	When this limit value is undershot, the signal "SSM feedback signal active" is set.
	For p9368 $=$ p9568 $=0$ the value in p9346/p9546 is also applicable for the function "SAM".
Dependency:	Refer to: p9546
Caution:	The "SAM" function is switched out if the selected threshold value is undershot.
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)
p9346	SI Motion SSM velocity limit (Motor Module) / SI Mtn SSM v_limMM
VECTOR_G (Safety rot)	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2823
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 [rpm] 1000000.00 [rpm] 20.00 [rpm]
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n x$). When this limit value is undershot, the signal "SSM feedback signal active" is set. For $\mathrm{p} 9368=\mathrm{p} 9568=0$ the value in $\mathrm{p} 9346 / \mathrm{p} 9546$ is also applicable for the function "SAM"
Dependency:	Refer to: p9546
Caution:	The "SAM" function is switched out if the selected threshold value is undershot.
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

p9347	SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0010 [$\mathrm{mm} / \mathrm{min}$]	500.0000 [mm/min]	10.0000 [mm/min]
Description:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($n<n \mathrm{n}$).		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The velocity hysteresis is effective only if the function is enabled (p9301.16=p9501.16=1).		
	The parameter is included in the crosswise data comparison of the two monitoring channels.		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9347	SI Motion SSM velocity hysteresis (Motor Module) / SI Mtn SSM Hyst MM		
VECTOR_G (Safety rot)	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0010 [rpm]	500.0000 [rpm]	10.0000 [rpm]
Description:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($n<n x$).		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The velocity hysteresis is effective only if the function is enabled (p9301.16 $=$ p9501.16 $=1$).		
	The parameter is included in the crosswise data comparison of the two monitoring channels.		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9348	SI Motion SAM actual velocity tolerance (Motor Module) / SI Mtn SAM tol MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	120000.00 [mm/min]	300.00 [mm/min]
Description:	Sets the velocity tolerance for the "SAM" function.		
Dependency:	Refer to: p9548		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
p9348	SI Motion SAM actual velocity tolerance (Motor Module) / SI Mtn SAM tol MM		
VECTOR_G (Safety rot)	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	120000.00 [rpm]	300.00 [rpm]
Description:	Sets the velocity tolerance for the "SAM" function.		
Dependency:	Refer to: p9548		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		

p9349	SI Motion slip velocity tolerance (Motor Module) / SI Mtn slip MM		
VECTOR_G	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	6000.00 [mm/min]	6.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in crosswise comparison between the two monitoring channels.		
Dependency:	Refer to: p9301, p9342, p9549		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	If the "actual value synchronization" is not enabled ($\mathrm{p} 9301.3=0$), then the value parameterized in p 9342 is used as tolerance in the crosswise data comparison.		
p9349	SI Motion slip velocity tolerance (Motor Module) / SI Mtn slip MM		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	6000.00 [rpm]	6.00 [rpm]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in crosswise comparison between the two monitoring channels.		
Dependency:	Refer to: p9301, p9342, p9549		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	If the "actual value synchronization" is not enabled ($\mathrm{p} 9301.3=0$), then the value parameterized in p 9342 is used as tolerance in the crosswise data comparison.		
p9351	SI Motion SLS(SG) changeover/SOS (SBH) delay time (MM) / SI SLS/SOS t MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819, 2820
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	600000000.00 [$\mu \mathrm{s}$]	100000.00 [$\mu \mathrm{s}$]
Description:	Sets the delay time for the SLS changeover and for the activation of SOS for the functions "Safely-Limited Speed" (SLS) and "Safe operating stop" (SOS).		
	When transitioning from a higher to a lower safely-limited speed level, and when activating safe operating stop (SOS), within this delay time, the "old" speed level remains active.		
	This delay is also applicable when activating SLS from the state "SOS and SLS inactive" and activating SOS from the state "SOS inactive".		
Dependency:	Refer to: p9551		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		

p9352	SI Motion transition time STOP C to SOS (Motor Module) / SI Mtn t C->SOS MM		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	600000000.00 [$\mu \mathrm{s}$]	100000.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP C to "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9552		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock ($\mathrm{p} 9500 / \mathrm{p} 9300$) cycle. SOS: Safe Operating Stop		
p9353	SI Motion transition time STOP D to SOS (Motor Module) / SI Mtn t D->SOS MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	600000000.00 [$\mu \mathrm{s}$]	100000.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP D to "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9553		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p9354	SI Motion transition time STOP E to SOS (Motor Module) / SI Mtn t E->SOS MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	600000000.00 [$\mu \mathrm{s}$]	100000.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP E to "Safe Operating Stop" (SOS).		
Dependency:	Refer to: p9554		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle. sOS: Safe Operating Stop		
p9355	SI Motion transition time STOP F to STOP B (Motor Module) / SI Mtn t F->B MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	600000000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the transition time from STOP F to STOP B.		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		

p9377	SI Motion SLP delay time (Motor Module) / SI mtn SLP t MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	600000000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Setting the delay time: -between selecting and activ -when changing between the	y-limited Position" (SLP) fu ranges, if the new range	letely contained in the old range.
Dependency:	Refer to: p9301, p9334, p9335		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p9380	SI Motion STO delay bus failure (Motor Module) / SI Mtn t to IL MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	800000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the delay time after which STO is executed when the bus fails.		
Dependency:	Refer to: p9363		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).		
	The main use of the wait time is the ESR function (Extended Stop and Retract).		
	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p9381	SI Motion brake ramp reference value (Motor Module) / SI Mtn ramp ref MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	600.0000 [mm/min]	240000.0000 [mm/min]	1500.0000 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the reference value to define the brake ramp.		
	The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).		
Dependency:	Refer to: p9382, p9383		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
p9381	SI Motion brake ramp reference value (Motor Module) / SI Mtn ramp ref MM		
VECTOR_G (Safety rot)	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	600.0000 [rpm]	240000.0000 [rpm]	1500.0000 [rpm]
Description:	Sets the reference value to define the brake ramp.		
	The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).Refer to: p 9382 , p9383		
Dependency:			

Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
p9382	SI Motion brake ramp delay time (Motor Module) / SI Mtn rp t_del MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: Scaling: - Expert list: 1
	Min Max Factory setting
	10000.00 [$\mu \mathrm{s}] \quad 99000000.00[\mu \mathrm{~s}] \quad 250000.00$ [$\mu \mathrm{s}$]
Description:	Sets the delay time for monitoring the brake ramp.
	Monitoring of the brake ramp starts once the delay time has elapsed.
Dependency:	Refer to: p9381, p9383
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.
	Internally, the set time is limited downwards to 2 safety monitoring clock cycles (2 * p9500/p9300).
p9383	SI Motion brake ramp monitoring time (Motor Module) / SI Mtn rp t_mon MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	500.00 [ms] 3600000.00 [ms] 10000.00 [ms]
Description:	Sets the monitoring time to define the brake ramp.
	The rate of rise of the brake ramp depends upon p9381 (reference value) and p9383 (monitoring time).
Dependency:	Refer to: p9381, p9382
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.
p9385	SI Motion actual value sensing sensorless fault tolerance (MM) / ActVal sl tol MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: Integer32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	-1 4 -1
Description:	Sets the tolerance of the plausibility monitoring of the current and voltage angle.
	A higher value results in a higher degree of ruggedness when reversing at low speeds, as well as in the field weakening range for load steps.
	An increase is advantageous, if the current or voltage at the motor become small.
Dependency:	Refer to: p9507
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. Reducing this value can adversely affect the actual value sensing and the plausibility check. When the value is increased, this results in a longer evaluation delay and a higher velocity deviation (r9787).
Note:	This parameter is only effective for encoderless actual value sensing (p9506/p9306 = 1, 3).
	For synchronous motors, the value 4 must be set.
	If value $=-1$:
	- for synchronous motors, the calculation is automatically made with the value 4.
	- for induction motors, the calculation is automatically made with a value of 0 (if the code number of the power unit $\mathrm{p} 0201[0]<14000$, otherwise with a value of 2).

p9386	SI Motion actual value sensing sensorless delay time (MM) / ActVal sl t_del MM		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	5.00 [ms]	1000.00 [ms]	100.00 [ms]
Description:	Sets the delay time to evaluate the encoderless actual value sensing after the pulses have been enabled. The value must be greater than or equal to the motor magnetizing time (p 0346).		
Caution: $\widehat{\triangle}$	The safety functionality is only completely guaranteed after this time has expired.		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. If this value is reduced, this can have a negative impact on the actual value acquisition and plausibility check - and result in Safety message C30711 with the message value 1041 or 1042.		
Note:	This parameter is only effective for encoderless actual value sensing ($p 9506 / \mathrm{p} 9306=1,3$). The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p9387	SI Motion actual value sensing sensorless filter time (MM) / Actv sl t_filt MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	100000.00 [$\mu \mathrm{s}$]	25000.00 [s]
Description:	Sets the filter time for smoothing the actual value with sensorless actual value sensing.		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. A longer filter time results in a longer response time.		
Note:	This parameter is only effective for encoderless actual value sensing ($\mathrm{p} 9506 / \mathrm{p} 9306=1,3$). The smoothing is realized with a 1 st order lowpass filter For p9387 = minimum value, the filter is deactivated. The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p9388	SI Motion actual value sensing sensorless minimum current (MM) / ActVal sl I_min MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	10.00 [\%]
Description:	Sets the minimum current for encoderless actual value sensing referred to 1 A (i.e. $1 \%=10 \mathrm{~mA}$). - The value must be increased if C30711 has occurred with message value 1042. - The value must be decreased if C30711 has occurred with message value 1041. For synchronous motors, the following condition must be fulfilled: $\|\mathrm{p} 0305 \times \mathrm{p} 9783\|>=\mathrm{p} 9388 \times 1.2$		
Recommend.:	If required, the correct value of the motor minimum current should be determined by making the appropriate measurements.		
Dependency:	Refer to: r9785		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. If this percentage value is reduced excessively, then this can result in a safety message and an inaccurate actual value.		
Note:	This parameter is only effective for encoderless actual value sensing (p9506/p9306 $=1,3$).		

p9399[0...1]	SI Motion reference checksum SI parameters (Motor Module) / SI Mtn setp CRC MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the checksum for the checked Safety Integrated parameters of the motion monitoring function (reference checksum) on the Motor Module/Hydraulic Module.		
Index:	$[0]=$ Checksum over SI parameters for motion monitoring [1] = Checksum over SI parameters with hardware reference		
Dependency:	Refer to: r9398		
Note:	SI: Safety Integrated		
r9406[0...19]	PS file parameter number parameter not transferred / PS par_no n transf		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that were not able to be transferred when reading the parameter back-up files (PS files) from the non-volatile memory (e.g. memory card).		
	$\mathrm{r} 9406[0]=0$		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[0...x] > 0		
	--> indicates the parameter number in the following cases:		
	- parameter, whose value was not able to be completely accepted.		
	- indexed parameter, where at least 1 index was not able to be accepted. The first index that is not transferred is displayed in r9407.		
Dependency:	Refer to: r9407, r9408		
Note:			
	All indices from r9406 to r9408 designate the same parameter.		
	r9407[x] parameter index, parameter not accepted		
	r9408[x] fault code, parameter not accepted		
r9407[0...19]	S file parameter index parameter not transferred / PS parameter index		
All objects	Can be changed: -	Calculated: -	Access level: 1
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card).		
	If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in $\mathrm{r} 9406[\mathrm{n}]$ and the first index that was not transferred is displayed in $\mathrm{r} 9407[\mathrm{n}]$.		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[n] > 0		
	--> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred.		
Dependency:	Refer to: r9406, r9408		

p9495	BICO behavior for de-activated drive objects / Behav for deact DO		
B_INF, CU_G130_DP,	Can be changed: T	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Integer16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
TB30, TM150, TM31,	Not for motor type: -	Scaling: -	Expert list: 1
VECTOR_G	Min	Max	Factory setting
	0	2	0
Description:	Sets the behavior for BICO interconnections to drive objects that are either not capable of operation or have been deactivated.		
	$\mathrm{BO} / \mathrm{CO}$ parameters are on the drive object that is either not capable of operation or has been deactivated (signal source).		
Value:	0: Inactive		
	1: Save interconnections		
	2: Save interconnections and establish the factory setting		
Dependency:	Refer to: p9496, p9497, p9498, p9499		
Note:	For p9495 = 0, the following applies:		
	- the number of interconnections is zero (p9497 = 0).		
	For p9495 not equal to 0 , the following applies:		
	- the BI/CI parameters involved are listed in p9498[0...29] (signal sink).		
	- the associated BO/CO parameters are listed in p9499[0...29] (signal source).		

p9498[0...29]	BICO $\mathrm{Bl} / \mathrm{Cl}$ parameters to de-activated drive objects / Bl/Cl to deact obj			
B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	Can be changed: T Data type: Unsigned32 P-Group: Commands Not for motor type: - Min	Calculated: - Dyn. index: - Units group: - Scaling: - Max	Acce Func Unit Expe Fact 0	
Description: Dependency: Note:	Displays the saved $\mathrm{BI} / \mathrm{Cl}$ parameters (signal sink) capable of operation or have been deactivated. Refer to: p9495, p9496, p9497, p9499 A BICO interconnection (signal sink, signal sources	nk), whose sour urce) is displaye	drive objec dex of p949	not
p9499[0...29] B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, TB30, TM150, TM31, VECTOR_G	BICO BO/CO parameters to de-activ Can be changed: T Data type: Unsigned32 P-Group: Commands Not for motor type: - Min	vated drive Calculated: - Dyn. index: - Units group: - Scaling: - Max	CO to d Acces Func. Unit se Expert Factor 0	
Description: Dependency: Note:	Displays the saved BO/CO parameters (signal sourd of operation or have been deactivated. Refer to: p9495, p9496, p9497, p9498 A BICO interconnection (signal sink, signal sour	source), which urce) is displaye	ive objects dex of p949	t capabl
p9500 VECTOR_G	SI Motion monitoring clock cycle (C Can be changed: C2(95) Data type: FloatingPoint32 P-Group: Safety Integrated Not for motor type: - Min 0.50000 [ms]	Control Unit Calculated: - Dyn. index: - Units group: - Scaling: - Max 25.00000 [ms]	ck CU Acce Func Unit Expe Fact 12.00	
Description: Dependency: Note:	A change only becomes effective after a POWER ON. The monitoring clock cycle must be a multiple of the actual value sensing clock cycle (see the parameter description for p9511).			
p9501 VECTOR_G	SI Motion enable safety functions (C Can be changed: C2(95) Data type: Unsigned32 P-Group: Safety Integrated Not for motor type: - Min	Control Unit Calculated: - Dyn. index: - Units group: - Scaling: - Max	able CU Acces Func. Unit se Expert Factor 00000 00000	
Description: Bit field:	Sets the enable signals for the safe motion mon Bit Signal name 00 Enable SOS/SLS (SBH/SG) 01 Enable SLP (SE) 02 Enable absolute position 03 Enable actual value synchronization 16 Enable SSM ($\mathrm{n}<\mathrm{nx}$) hysteresis and filterin 17 Enable SDI	nitoring. 1 signal Enable Enable Enable Enable ing Enable Enable	0 signal Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit	$\begin{aligned} & \text { FP } \\ & - \\ & - \\ & - \\ & - \\ & 2823 \\ & 2824 \end{aligned}$

05	Actual value sensing sensorless edge	Yes	No	-
06	Configuration test stop motion monitoring functions	Test automatic	Test manual	

Note:

Re bit 00:
When the function is activated, a safety-relevant acknowledgement (internal event acknowledge) can be performed by selecting/deselecting STO.
Re bit 01:
When the function is activated, the active setpoint velocity limit (CO: r9733) is set to zero when STOP F is active. Re bit 02:
This bit defines the type of motor, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for an induction motor
For bit = 1, the actual velocity is calculated for a synchronous motor. This value depends on the setting in p0300.
Bit $=0$ should be set if no motor is defined $(p 0300=0)$.
Re bit 03:
When the bit is activated - when selecting function SS1 or activating a STOP B - an SS1E or a STOP B with Stop, which should be externally initiated, is triggered instead of SS1 with a drive-based braking response. As a consequence, brake monitoring (SBR, SAM) is deactivated.
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
Re bit 05:
This bit defines the type of modulation, which the sensorless actual value sensing evaluates.
For bit $=0$, the actual velocity is calculated for space vector modulation.
For bit = 1, the actual velocity is calculated for edge modulation. This value depends on the setting in p1802.
Re bit 06:
For the automatic test stop, the test stop can still be initiated via binector input p9705.
The automatic test stop is executed after power up, partial power up or a warm restart.

p9509

SI Motion behavior during pulse suppression (Control Unit) / SI Mtn behav IL CU

Note:

Can be changed: C2(95)
Data type: Unsigned32
P-Group: Safety Integrated
Not for motor type: Min -

Access level: 3
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0000000011111111 bin

Sets the behavior of safety functions and their feedback during pulse suppression in encoderless operation.

Bit	Signal name	1 signal	0 signal	FP
00	SSM during pulse suppression and sensorless	Becomes inactive	Remains active	-
08	SDI during pulse suppression and sensorless	Becomes inactive	Remains active	-
Re bit 00:				
If the OFF1 or the OFF3 ramp-down time is too low, or there is an insufficient clearance between the SSM limit speed, and the shutdown speed, then it is possible that the "speed under limit value" signal does not change to 1 , because no speed actual value below the SSM limit was able to be identified before pulse cancellation. In this case, the OFF1 or the OFF3 ramp-down time or the clearance between the SSM limit speed and shutdown speed must be increased.				
SDI: Safe Direction (safe motion direction)				
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)				
Re bit 00:				
For bit = 1 and with the SSM safety function activated, the following applies:				

- During pulse suppression, monitoring is switched off and the feedback signal has a 0 signal level.

For bit = 0 and with the SSM safety function activated, the following applies:

- Monitoring continues during pulse suppression. The feedback signal last displayed before pulse suppression is kept and the system goes into the STO state.

Re bit 08:
For bit = 1 and with the SDI safety function activated, the following applies:

- During pulse suppression, monitoring is switched off and the status signal indicates inactive.

For bit $=0$ and with the SDI safety function activated, the following applies:

- Monitoring continues during pulse suppression. The status signal indicates active and the system goes into the STO state.

p9510	SI Motion clock-cycle synchronous PROFIBUS master / SI Mtn sync master		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 4
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Setting for clock cycle synchronous communication between PROFIdrive controller and Control Unit.		
	The parameter is only relevant, if the safety-relevant motion monitoring functions integrated in the drive have been enabled (p9601.2 =1).		
	If a PROFIdrive controller exchanges process data in clock cycle synchronism with the Control Unit, then p9510 must be set to 1 . This also applies if the drive itself does not exchange process data in clock cycle synchronism.		
	Examples for clock cycle synchronous communication:		
	- clock-cycle synchronous control for the motion control (e.g. SIMOTION).		
	- clock-cycle synchronous PROFIsafe master (e.g. SIMATIC S7-400F).		
Value:	0 : Communication not isochronous 1: Communication isochronous		
Notice:	As of firmware version 2.6, the parameter has no effect.		
p9511	SI Motion actual value sensing cycle clock (Control Unit) / SI Mtn act cIk CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ms]	25.00000 [ms]	0.00000 [ms]
Description:	Sets the clock cycle time of the actual value sensing for safe motion monitoring.		
	Setting criteria if the motion monitoring functions are executed with an encoder.		
	- A slower clock cycle time reduces the maximum permissible velocity - however, it ensures a lower load of the Control Unit for safe actual value sensing.		
	- The maximum permissible velocity which, when exceeded, can mean that errors occur during safe actual value sensing, is displayed in r9730.		
	- The isochronous PROFIBUS clock cycle is used as a clock cycle time for actual value sensing with a setting of 0 ms ; the setting is 1 ms if isochronous operation is not being used.		
	Setting criteria if the motion monitoring functions are executed without an encoder:		
	- The actual value sensing clock cycle must be set to the same value as the current controller clock cycle (p0115).		
Dependency:	Refer to: p0115		
Note:	The parameter is only active for drive-based motion monitoring functions (p9601.2 = 1).		
	The monitoring clock cycle from p9500 must be an integer multiple of this parameter.		
	In the case of motion monitoring functions with encoder, the clock cycle time for actual value sensing must be an integer multiple of the current controller clock cycle and at least 4 times slower than the current controller clock cycle. A factor of at least 8 is recommended.		
	The clock cycle time of the actual value sensing should not be set to more than 8 ms .		
	A change only becomes effective after a POWER ON.		

p9515	SI Motion encoder coarse position value config (Control Unit) / SI Mtn s config CU			
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	0000	
Description:	Sets the encoder configuration for the redundant coarse position value.			
	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Incrementer	Yes	No	-
	01 Encoder CRC least significant byte first	Yes	No	-
	02 Redundant coarse position val. most significant bit left-aligned	Yes	No	-
	04 Binary comparison not possible	Yes	No	-
	16 DRIVE-CLiQ encoder	Yes	No	-
	17 EnDat-2.2 converter	Yes	No	-
Dependency:	Refer to: r0474, p9315			
Note:	- after starting the copy function (p9700 = 57 hex), p9515.0... 4 are set the same as r0474.			
	For safe functions that are not enabled (p9501 = 0), the following applies:			
	- when the system boots, p9515.16 is automatically set the same as p0404.10, p9515.17 the same as p0404.8 \& For safety functions that are enabled ($\mathrm{p} 9501>0$), the following applies:			
	- p9515.16 is checked to identify whether it coincides with p0404.10, p9515.17 with p0404.8 \& 11			
p9516	SI Motion encoder configuration safety functions (Control Unit) / SI Mtn enc_cfg CU			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Acces	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	-	-	0000	
Description:	Sets the configuration for the motor encoder and position actual value.			
	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in th parameter.			
Bit field:	Bit Signal name 00 Motor encoder rotating/linear 01 Position actual value sign change	1 signal	0 signal	FP
		Linear	Rotating	-
		Yes	No	-
Dependency:	Refer to: p0404, p0410			
Note:	For safe functions that are not enabled (p9501 = 0), the following applies:			
	- p9516.0 is automatically set the same as p0404.0 when the system boots.			
	- p9516.1 is automatically set the same as p0410.1 when the system boots.			
	For safety functions that are enabled (p9501 > 0), the following applies:			
	- p9516.0 is checked to identify whether it coincides with p0404.0.			
p9517	SI Motion linear encoder grid division (Control Unit) / SI Mtn grid CU			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Acces	
	Data type: FloatingPoint32	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0.00 [nm]	250000000.00 [nm]	10000	
Description:	Sets the grid division for a linear encoder.			

Dependency: Note:	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
	Refer to: p0407, p9516
	For safety functions that have not been enabled ($\mathrm{p} 9501=0$), the following applies: When booting p9517 is automatically set the same as p0407.
	For safety functions that are enabled (p9501>0), the following applies: p9517 is checked whether it coincides with p0407.
p9518	SI Motion encoder pulses per revolution (Control Unit) / SI Mtn puls/rev CU
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0167772152048
Description:	Sets the number of encoder pulses per revolution for rotary encoders. The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency:	Refer to: p0408, p9516
Note:	For safety functions that have not been enabled (p9501 = 0), the following applies: When booting, p9518 is automatically set the same as p0408. For safety functions that are enabled (p9501 > 0), the following applies: p9518 is checked whether it coincides with p0408.
p9519	SI Motion fine resolution G1_XIST1 (Control Unit) / SI Mtn G1_XIST1 CU
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	218 11
Description:	Sets the fine resolution for G1_XIST1 in bits. The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency:	Refer to: p0418
Note:	For safety functions that have not been enabled (p9501 = 0), the following applies: When booting, p9519 is automatically set the same as p0418. For safety functions that are enabled (p9501 > 0), the following applies: p9519 is checked whether it coincides with p0418. G1_XIST1: Encoder 1 position actual value 1 (PROFIdrive)
p9520	SI Motion spindle pitch (Control Unit) / SI Mtn Sp_pitch CU
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.1000 [mm] 8388.0000 [mm] $10.0000[\mathrm{~mm}]$
Description:	Sets the gear ratio between the encoder and load in $\mathrm{mm} /$ revolution for a linear axis with rotary encoder. The fourth decimal point can be rounded-off depending on the size of the entered number (from 3 places before the decimal point).
Notice:	

p9521[0...7]	SI Motion gearbox enc (motor)/Ioad denominator (Control Unit) / SI Mtn gear den CU		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the denominator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load. The active gearbox stage can be switched over via PROFIsafe.		
Index:	[0] = Gearbox 1 [1] = Gearbox 2 [2] = Gearbox 3 [3] = Gearbox 4 [4] = Gearbox 5 [5] = Gearbox 6 [6] = Gearbox 7 [7] = Gearbox 8		
Dependency:	Refer to: p9522		
p9522[0...7]	SI Motion gearbox encoder (motor)/load numerator (Control Unit) / SI Mtn gear num CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	2147000000	1
Description:	Sets the numerator for the gearbox between the encoder (or motor in the case of encoderless monitoring functions) and the load. The active gearbox stage can be switched over via PROFIsafe.		
Index:	[0] = Gearbox 1 [1] = Gearbox 2 [2] = Gearbox 3 [3] = Gearbox 4 [4] = Gearbox 5 [5] = Gearbox 6 [6] = Gearbox 7 [7] = Gearbox 8		
Dependency:	Refer to: p9521		
Note:	In the case of encoderless m gearbox ratio. Example: Gearbox ratio 1:4, pole pair n $\text { --> p9521 = 1, p9522 = } 8 \text { (4) }$	ns, the pole pair $=2$	ltiplied by the nume
p9523	SI Motion redundant coarse pos. value valid bits (Control Unit) / Valid bits CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	16	9
Description:	The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.		
Dependency:	Refer to: r0470, p9323		

Note:	- after starting the copy function (p9700 = 57 hex), p9523 is set the same as r0470.
p9524	SI Motion Redundant coarse pos. value fine resolution bits (CU) / SI Mtn fine bit CU
VECTOR_G	Can be changed: C 2 (95) Calculated: - Access level: 3
	Data type: Integer16 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	-16 16 -2
Description:	Sets the number of valid bits for the fine resolution of the redundant coarse position value. The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency:	Refer to: r0471, p9324
Note:	- after starting the copy function (p9700 $=57$ hex), p9524 is set the same as r0471.
p9525	SI Motion Redundant coarse pos. value relevant bits (CU) / Relevant bits CU
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: Unsigned16 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	01616
Description:	Sets the number of relevant bits for the redundant coarse position value. The encoder that is used for the safe motion monitoring functions on the Control Unit must be parameterized in this parameter.
Dependency:	Refer to: p0414, r0472, p9325
Note:	For safe functions that are not enabled (p9501 = 0), the following applies:
	- p9525 is automatically set the same as r0472 when the system boots.
	For safety functions that are enabled (p9501 > 0), the following applies:
	- p9525 is checked to see that it matches r0472.
p9526	SI Motion encoder assignment second channel / SI Mtn enc chan 2
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: Unsigned32 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	131
Description:	Sets the number of the encoder that the second channel (control, Motor Module) uses for safe motion monitoring functions.
Dependency:	For the safe motion monitoring functions, the redundant safety position actual value sensing must be activated in the appropriate encoder data set (p0430.19 = 1).
	Refer to: p0187, p0188, p0189, p0430
Note:	For p9526 = 1, the encoder for the closed-loop speed control is used for the second channel of the motion monitoring functions (1-encoder system).
	A change only becomes effective after a POWER ON.

Dependency:	Refer to: p9501, p9534, p9562
Note:	The following applies to the setting of these limits:
	$-\mathrm{p} 9534[\mathrm{x}]>\mathrm{p} 9535[\mathrm{x}]$
	$-\mathrm{p} 9535[\mathrm{x}]$ must lie in the valid traversing range $(-737280 \ldots 737280)$.
	SLP: Safely-Limited Position / SE: Safe software limit switches

p9535[0...1]	SI Motion SLP (SE) lower limit values (Control Unit) / SI Mtn SLP Iow lim		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2822
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-2147000.000 [${ }^{\circ}$]	$2147000.000\left[^{\circ}\right]$	-100000.000 [${ }^{\circ}$]
Description:	Sets the lower limit for the function "Safely-Limited Position" (SLP).		
Index:	[0] = Limit value SLP1 (SE1)		
Dependency:	Refer to: p9501, p9534, p9562		
Note:	The following applies to the setting of these limits:		
	- p9534[x] > p9535[x]		
	- p9535[x] must lie in the valid traversing range (-737280 ... 737280).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		

p9536[0...29] SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA+

VECTOR G

Description:
Index:

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
-2147000.000 [mm]

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
2147000.000 [mm]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
10.000 [mm]

Sets the plus cam position for the function "Safe Cam" (SCA).
[0] = Cam position SCA1 (SN1)
[1] = Cam position SCA2 (SN2)
[2] = Cam position SCA3 (SN3)
[3] = Cam position SCA4 (SN4)
[4] = Cam position SCA5 (SN5)
[5] = Cam position SCA6 (SN6)
[6] = Cam position SCA7 (SN7)
[7] = Cam position SCA8 (SN8)
8] = Cam position SCA9 (SN9)
[9] = Cam position SCA10 (SN10)
[10] = Cam position SCA11 (SN11)
[11] = Cam position SCA12 (SN12)
[12] = Cam position SCA13 (SN13)
[13] = Cam position SCA14 (SN14)
[14] = Cam position SCA15 (SN15)
[15] = Cam position SCA16 (SN16)
[16] = Cam position SCA17 (SN17)
[17] = Cam position SCA18 (SN18)
[18] = Cam position SCA19 (SN19)
[19] = Cam position SCA20 (SN20)
[20] = Cam position SCA21 (SN21)
[21] = Cam position SCA22 (SN22)
[22] = Cam position SCA23 (SN23)
[23] = Cam position SCA24 (SN24)
[24] = Cam position SCA25 (SN25
[25] = Cam position SCA26 (SN26)
[26] = Cam position SCA27 (SN27)
[27] = Cam position SCA28 (SN28)

	[28] = Cam position SCA29 (SN29) [29] = Cam position SCA30 (SN30)	
Dependency: Note:	Refer to: p9501, p9503, p9537 A change only becomes effective after a POWER ON. SCA: Safe Cam / SN: Safe software cam	
p9536[0...29]	SI Motion SCA (SN) plus cam position (Control	CA+
VECTOR_G (Safety rot)	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Safety Integrated Units group: - Not for motor type: - Scaling: - Min Max $-2147000.000\left[{ }^{\circ}\right]$ $2147000.000\left[{ }^{\circ}\right]$	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting $10.000\left[{ }^{\circ}\right]$
Description: Index:	Sets the plus cam position for the function "Safe Cam" (SCA). [0] = Cam position SCA1 (SN1) [1] = Cam position SCA2 (SN2) [2] = Cam position SCA3 (SN3) [3] = Cam position SCA4 (SN4) [4] = Cam position SCA5 (SN5) [5] = Cam position SCA6 (SN6) [6] = Cam position SCA7 (SN7) [7] = Cam position SCA8 (SN8) [8] = Cam position SCA9 (SN9) [9] = Cam position SCA10 (SN10) [10] = Cam position SCA11 (SN11) [11] = Cam position SCA12 (SN12) [12] = Cam position SCA13 (SN13) [13] = Cam position SCA14 (SN14) [14] = Cam position SCA15 (SN15) [15] = Cam position SCA16 (SN16) [16] = Cam position SCA17 (SN17) [17] = Cam position SCA18 (SN18) [18] = Cam position SCA19 (SN19) [19] = Cam position SCA20 (SN20) [20] = Cam position SCA21 (SN21) [21] = Cam position SCA22 (SN22) [22] = Cam position SCA23 (SN23) [23] = Cam position SCA24 (SN24) [24] = Cam position SCA25 (SN25) [25] = Cam position SCA26 (SN26) [26] = Cam position SCA27 (SN27) [27] = Cam position SCA28 (SN28) [28] = Cam position SCA29 (SN29) [29] = Cam position SCA30 (SN30)	
Dependency: Note:	Refer to: p9501, p9503, p9537 A change only becomes effective after a POWER ON. SCA: Safe Cam / SN: Safe software cam	
p9537[0...29]	SI Motion SCA (SN) plus cam position (Control	SCA-
VECTOR_G	Can be changed: U, T Calculated: - Data type: FloatingPoint32 Dyn. index: - P-Group: Safety Integrated Units group: - Not for motor type: - Scaling: - Min Max $-2147000.000[\mathrm{~mm}]$ $2147000.000[\mathrm{~mm}]$	Access level: 4 Func. diagram: Unit selection: - Expert list: 1 Factory setting $-10.000[\mathrm{~mm}]$
Description: Index:	Sets the minus cam position for the function "Safe Cam" (SCA). [0] = Cam position SCA1 (SN1) [1] = Cam position SCA2 (SN2) [2] = Cam position SCA3 (SN3)	

```
    [3] = Cam position SCA4 (SN4)
    [4] = Cam position SCA5 (SN5)
    [5] = Cam position SCA6 (SN6)
    [6] = Cam position SCA7 (SN7)
    [7] = Cam position SCA8 (SN8)
    [8] = Cam position SCA9 (SN9)
    [9] = Cam position SCA10 (SN10)
    [10] = Cam position SCA11 (SN11)
    [11] = Cam position SCA12 (SN12)
    [12] = Cam position SCA13 (SN13)
    [13] = Cam position SCA14 (SN14)
    [14] = Cam position SCA15 (SN15)
    [15] = Cam position SCA16 (SN16)
    [16] = Cam position SCA17 (SN17)
    [17] = Cam position SCA18 (SN18)
    [18] = Cam position SCA19 (SN19)
    [19] = Cam position SCA20 (SN20)
    [20] = Cam position SCA21 (SN21)
    [21] = Cam position SCA22 (SN22)
    [22] = Cam position SCA23 (SN23)
    [23] = Cam position SCA24 (SN24)
    [24] = Cam position SCA25 (SN25)
    [25] = Cam position SCA26 (SN26)
    [26] = Cam position SCA27 (SN27)
    [27] = Cam position SCA28 (SN28)
    [28] = Cam position SCA29 (SN29)
    [29] = Cam position SCA30 (SN30)
Dependency:
    Refer to: p9501, p9503, p9536
Note: A change only becomes effective after a POWER ON.
    SCA: Safe Cam / SN: Safe software cam
p9537[0...29] SI Motion SCA (SN) plus cam position (Control Unit) / SI Mtn SCA-
```

VECTOR_G (Safety rot)

Can be changed: U, T
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
$-2147000.000\left[^{\circ}\right]$

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max $2147000.000{ }^{[]}$

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
-10.000 [${ }^{\circ}$]

Description:
Index:

Sets the minus cam position for the function "Safe Cam" (SCA).
[0] = Cam position SCA1 (SN1)
[1] = Cam position SCA2 (SN2)
[2] = Cam position SCA3 (SN3)
[3] = Cam position SCA4 (SN4)
[4] = Cam position SCA5 (SN5)
[5] = Cam position SCA6 (SN6)
[6] = Cam position SCA7 (SN7)
[7] = Cam position SCA8 (SN8)
[8] = Cam position SCA9 (SN9)
[9] = Cam position SCA10 (SN10)
[10] = Cam position SCA11 (SN11)
[11] = Cam position SCA12 (SN12)
[12] = Cam position SCA13 (SN13)
[13] = Cam position SCA14 (SN14)
[14] = Cam position SCA15 (SN15)
[15] = Cam position SCA16 (SN16)
[16] = Cam position SCA17 (SN17)
[17] = Cam position SCA18 (SN18)
[18] = Cam position SCA19 (SN19)
[19] = Cam position SCA20 (SN20)
[20] = Cam position SCA21 (SN21)
[21] = Cam position SCA22 (SN22)
[22] = Cam position SCA23 (SN23)
[23] = Cam position SCA24 (SN24)

	Examples:$\mathrm{p} 9538[0]=207$			
	Cam 1 (index 0) is assigned cam track 2 . If the position lies within the range of this cam, a value of 7 is entered in the SGA "cam range" of the second cam track.			
	p9538[5] $=100$			
	Cam 6 (index 5) is assigned cam track 1 . If the position lies within the range of this cam, a value of 0 is entered in the SGA "cam range" of the first cam track.			
Index:	[0] = Track assignment SCA1			
	[1] = Track assignment SCA2			
	[2] = Track assignment SCA3			
	[3] = Track assignment SCA4			
	[4] = Track assignment SCA5			
	[5] = Track assignment SCA6			
	[6] = Track assignment SCA7			
	[7] = Track assignment SCA8			
	[8] = Track assignment SCA9			
	[9] = Track assignment SCA10			
	[10] = Track assignment SCA11			
	[11] = Track assignment SCA12			
	[12] = Track assignment SCA13			
	[13] = Track assignment SCA14			
	[14] = Track assignment SCA15			
	[15] = Track assignment SCA16			
	[16] = Track assignment SCA17			
	[17] = Track assignment SCA18			
	[18] = Track assignment SCA19			
	[19] = Track assignment SCA20			
	[20] = Track assignment SCA21			
	[21] = Track assignment SCA22			
	[22] = Track assignment SCA23			
	[23] = Track assignment SCA24			
	[24] = Track assignment SCA25			
	$[25]$[26] $=$ Track assignment SCA26			
	[27] = Track assignment SCA28			
	$[28]=$ Track assignment SCA29[29]			
Dependency:	Refer to: p9501, p9503			
Note:	A change only becomes effective after a POWER ON.			
	SCA: Safe Cam / SN: Safe software cam			
p9539[0...7]	SI Motion gearbox direction of rotation reversal (Control Unit) / SI Mtn grbx rev CU			
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3	
	Data type: Integer16	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	0	1	0	
Description:	Sets the direction of rotation reversal for the gearbox.			
	0 : No direction of rotation reversal			
	1: Direction of rotation reversal			
	The active gearbox stage can be switched over via PROFIsafe.			
Index:	[0] = Gearbox 1			
	$[1]=$ Gearbox 2			
	[2] = Gearbox 3			
	[3] = Gearbox 4			
	[4] = Gearbox 5			
	[5] = Gearbox 6			
	$[6]=$ Gearbox 7$[7]=$ Gearbox 8			
Dependency:	Refer to: p9521			

Note: \quad For a linear axis, the tolerance is internally limited to 10 mm .
For a "linear axis with rotating motor" and factory setting of p9520, p9521 and p9522, the factory setting of p9542 corresponds to a position tolerance of 36° on the motor side.
p9542
VECTOR_G (Safety
rot)

SI Motion act val comparison tol (crosswise) (Control Unit) / SI Mtn act tol CU		
Can be changed: C2(95)	Calculated: -	Access level: 3
Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
$0.0010\left[{ }^{\circ}\right]$	$360.0000\left[{ }^{\circ}\right]$	$0.1000\left[{ }^{\circ}\right]$

Description: Sets the tolerance for the crosswise data comparison of the actual position between the two monitoring channels. For encoderless motion monitoring functions, the tolerance must be set to a higher value (12 degrees rotary, 1 mm linear).
Note: \quad For a linear axis, the tolerance is internally limited to 10 mm .
For a "linear axis with rotating motor" and factory setting of p9520, p9521 and p9522, the factory setting of p9542 corresponds to a position tolerance of 36° on the motor side.

p9543	SI Motion gearbox switching position tolerance factor (CU) / SI Mtn grbx tol CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1	1000	1
Description:	Sets the factor to increase the tolerance for the crosswise data comparison of the actual position between the two monitoring channels while the gearbox stage is being switched over. This factor is effective when actual value synchronization is activated and when deactivated. Depending on the following tolerance, the following is obtained: - actual value synchronization activated: p9549 * p9543 - actual value synchronization deactivated: p9542 * p9543		
p9544	SI Motion actual value comparison tolerance (referencing) (CU) / SI Mtn ref tol		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [mm]	36.0000 [mm]	0.0100 [mm]
Description:	For an incremental encoder, the actual values are checked after referencing; for an absolute encoder, when switching on.		
Note:	For linear axes, the maximum value is limited to 1 mm .		
p9544	SI Motion actual value comparison tolerance (referencing) (CU) / SI Mtn ref tol		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0000 [${ }^{\text {] }}$	36.0000 [${ }^{\circ}$]	$0.0100{ }^{\circ}{ }^{\text {] }}$
Description:	Sets the tolerance for checking the actual values.		

Note:	For an incremental encoder, the actual values are checked after referencing; for an absolute encoder, when switching on.		
	A change only becomes effective after a POWER ON.		
	For linear axes, the maximum value is limited to 1 mm .		
p9545	SI Motion SSM (SGA n < nx) filter time (Control Unit) / SI Mtn SSM filt CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	0.00 [ms]
Description:	Sets the filter time for the SSM feedback signal to detect standstill.		
Note:	The filter time is effective only if the function is enabled (p9501.16 = 1).		
	The parameter is included in the crosswise data comparison of the two monitoring channels.		
	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9546	SI Motion SSM (SGA n < nx) velocity limit (CU) / SI Mtn SSM v_limCU		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	1000000.00 [mm/min]	20.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n x$).		
	When this limit value is undershot, the signal "SSM feedback signal active" (SGA $\left.n<n _x\right)$ is set.		
	For p9568 = 0, the value in p9546 is also applicable for the function "SAM".		
Caution:	The following applies for p9506 = 3:		
	The "SAM" function is switched out if the selected threshold value is undershot.		
Note:	F-DO: Failsafe Digital Output / SGA: Safety-related output		
	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $\mathrm{n}<\mathrm{nx}$: Safety-related output n < nx		
p9546	SI Motion SSM (SGA $\mathrm{n}<\mathrm{nx}$) velocity limit (CU) / SI Mtn SSM v_limCU		
VECTOR_G (Safety rot)	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	1000000.00 [rpm]	20.00 [rpm]
Description:	Sets the velocity limit for the SSM feedback signal to detect standstill ($n<n x$).		
	When this limit value is undershot, the signal "SSM feedback signal active" (SGA $\left.n<n _x\right)$ is set.		
	For p9568 = 0, the value in p9546 is also applicable for the function "SAM".		
Caution:	The following applies for p9506 = 3:		
Λ	The "SAM" function is switched out if the selected threshold value is undershot.		
Note:	F-DO: Failsafe Digital Output / SGA: Safety-related output		
	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
	SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $n<n x$: Safety-related output n < nx		

p9547	SI Motion SSM (SGA n < nx) velocity hysteresis (CU) / SI Mtn SSM hyst CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0010 [$\mathrm{mm} / \mathrm{min}$]	500.0000 [mm/min]	10.0000 [$\mathrm{mm} / \mathrm{min}$]
Description: Note:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($n<n x$). The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1). The parameter is included in the crosswise data comparison of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9547	SI Motion SSM (SGA n < $\mathbf{n x}$) velocity hysteresis (CU) / SI Mtn SSM hyst CU		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2823
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.0010 [rpm]	500.0000 [rpm]	10.0000 [rpm]
Description: Note:	Sets the velocity hysteresis for the SSM feedback signal to detect standstill ($n<n x$). The velocity hysteresis is effective only if the function is enabled (p9501.16 = 1). The parameter is included in the crosswise data comparison of the two monitoring channels. SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)		
p9548	SI Motion SAM actual velocity tolerance (Control Unit) / SI Mtn SAM tol CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	120000.00 [mm/min]	300.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance for the "SAM" function.		
Note:	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
p9548	SI Motion SAM actual velocity tolerance (Control Unit) / SI Mtn SAM tol CU		
VECTOR_G (Safety rot)	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	120000.00 [rpm]	300.00 [rpm]
Description:	Sets the velocity tolerance for the "SAM" function. SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
Note:			

p9549	SI Motion slip velocity tolerance (Control Unit) / SI Mtn slip tol		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [mm/min]	6000.00 [mm/min]	6.00 [$\mathrm{mm} / \mathrm{min}$]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in crosswise comparison between the two monitoring channels.		
Dependency:	Refer to: p9501, p9542		
Note:	If the "actual value synchronization" is not enabled (p9501.3 = 0), then the value parameterized in p9542 is used as tolerance in the crosswise data comparison.		
p9549	SI Motion slip velocity tolerance (Control Unit) / SI Mtn slip tol		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [rpm]	6000.00 [rpm]	6.00 [rpm]
Description:	Sets the velocity tolerance that is used for a 2-encoder system in crosswise comparison between the two monitoring channels.		
Dependency:	Refer to: p9501, p9542		
Note:	If the "actual value synchronization" is not enabled (p9501.3 = 0), then the value parameterized in p9542 is used as tolerance in the crosswise data comparison.		
p9550	SI Motion SGE changeover tolerance time (Control Unit) / SI Mtn SGE_chg tol		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	500.00 [ms]
Description:	Sets the tolerance time for the changeover of the safety-related inputs (SGE).		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p9551	SI Motion SLS(SG) changeover/SOS (SBH) delay time (CU) / SI SLS/SOS t CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819, 2820
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	600000.00 [ms]	100.00 [ms]
Description:	Sets the delay time for the SLS changeover and for the activation of SOS for the functions "Safely-Limited Speed" (SLS) and "Safe operating stop" (SOS).		
	When transitioning from a higher to a lower safely-limited speed level, and when activating safe operating stop (SOS), within this delay time, the "old" speed level remains active.		
	This delay is also applicable when activating SLS from the state "SOS and SLS inactive" and activating SOS from the state "SOS inactive".		
Note:	The set time is rounded inter SLS: Safely-Limited Speed / SOS: Safe Operating Stop /	er multiple of the mo ced speed ating stop	9500/p9300) cycle.

p9552	SI Motion transition time STOP C to SOS (SBH) (Control Unit) / SI Mtn t C->SOS CU		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	600000.00 [ms]	100.00 [ms]
Description: Note:	Sets the transition time from STOP C to "Safe Operating Stop" (SOS). The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle. SOS: Safe Operating Stop / SBH: Safe operating stop		
p9553	SI Motion transition time STOP D to SOS (SBH) (Control Unit) / SI Mtn t D->SOS CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	600000.00 [ms]	100.00 [ms]
Description: Note:	Sets the transition time from STOP D to "Safe Operating Stop" (SOS). The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle. SOS: Safe Operating Stop / SBH: Safe operating stop		
p9554	SI Motion transition time STOP E to SOS (SBH) (Control Unit) / SI Mtn t E->SOS CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	600000.00 [ms]	100.00 [ms]
Description:	Sets the transition time from STOP E to "Safe Operating Stop" (SOS). Refer to: p9354 The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle. SOS: Safe Operating Stop / SBH: Safe operating stop		
Dependency:			
Note:			
p9555	SI Motion transition time STOP F to STOP B (Control Unit) / SI Mtn t F->B CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2819
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	600000.00 [ms]	0.00 [ms]
Description:	Sets the transition time from STOP F to STOP B.		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		

p9562[0...1]	SI Motion SLP (SE) stop response (Control Unit) / SI Mtn SLP Stop CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	2
Description:	Sets the stop response for the function "Safely-Limited Position" (SLP).		
Value:	0: STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	10: STOP A with delayed STO when the bus fails		
	11: STOP B with delayed STO when the bus fails		
	12: STOP C with delayed STO when the bus fails		
	13: STOP D with delayed STO when the bus fails		
	14: STOP E with delayed STO when the bus fails		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLP1 (SE1) }} \\ & {[1]=\text { Limit value SLP2 (SE2) }} \end{aligned}$		
Dependency:	Refer to: p9534, p9535		
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).		
	SLP: Safely-Limited Position / SE: Safe software limit switches		
p9563[0...3]	SI Motion SLS (SG)-specific stop response (Control Unit) / SI Mtn SLS stop CU		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	14	2
Description:	Sets the SLS-specific stop response for the function "Safely-Limited Speed" (SLS).		
	An input value of less than 5 signifies personnel protection, from 10 and upwards, machine protection.		
Value:	0 0. STOP A		
	1: STOP B		
	2: STOP C		
	3: STOP D		
	4: STOP E		
	10: STOP A with delayed STO when the bus fails		
	11: STOP B with delayed STO when the bus fails		
	12: STOP C with delayed STO when the bus fails		
	13:14:STOP D with delayed STO when the bus failsSTOP E with delayed STO when the bus fails		
Index:	$\begin{aligned} & {[0]=\text { Limit value SLS1 }} \\ & {[1]=\text { Limit value SLS2 }} \\ & {[2]=\text { Limit value SLS3 }} \\ & {[3]=\text { Limit value SLS4 }} \end{aligned}$		
Dependency:	Refer to: p9531, p9561, p9580		
Notice:	In the case of encoderless motion monitoring ($\mathrm{p} 9506 / \mathrm{p} 9306=1,3$), only a value of 0 or 1 is permitted.		
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety functions (e.g. via PROFIsafe or TM54F).		
	SLS: Safely-Limited Speed /	ced speed	

Note:	SCC: Safety Control Channel		
p9574	SI Motion safe position scaling (Control Unit) / SI mtn SP scal CU		
VECTOR_G	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Integer32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	1	100000	1000
Description:	Sets the scaling factor to transfer the safe position via PROFIsafe in the 16-bit notation.		
Dependency:	Refer to: r9713		
Note:	The parameter is only effective when PROFIsafe telegram 901 is selected.		
	By selecting a suitable scaling of the 32 bit position actual value (r9713[0]), it must be ensured that the scaled position actual value is not greater than 16 bit. The scaling is realized by dividing r9713[0] with this scaling factor.		
	If, during operation, a position actual value is determined, which cannot be scaled to the 16 bits, then message C0711 with value 7001 is output and safety stop response STOP F.		
p9575	SI Motion acceptance test SLP (SE) (Control Unit) / SI Mtn accept SLP		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	0000 hex	00AC hex	0000 hex
Description:	Setting to select and de-select the acceptance test for SLP (SE).		
Value:	0: [00 hex] deselect acceptance test SLP (SE) 172: [AC hex] select acceptance test SLP (SE)		
Dependency:	Refer to: p9358, p9370, p9558, p9570, p9601		
Note:	Acceptance test SLP (SE) can only be selected, if the safe motion monitoring functions have been enabled, and the acceptance test mode was activated in p9570/p9370.		
	SLP: Safely-Limited Position / SE: Safe software limit switches		
p9577	SI Motion SLP delay time (Control Unit) / SI Mtn SLP t CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	600000.00 [ms]	0.00 [ms]
Description:	Setting the delay time:		
	-between selecting and activating the "Safety-limited Position" (SLP) function		
	-when changing between the two active SLP ranges, if the new range is not completely contained in the old range.		
Dependency:	Refer to: p9501, p9534, p9535		
Note:	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.SLP: Safely-Limited Position		
$\overline{\mathrm{p} 9580}$	SI Motion STO delay bus failure (Control Unit) / SI Mtn t to IL CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	800.00 [ms]	0.00 [ms]
Description:	Sets the delay time after which STO is executed when the bus fails.		

Dependency:	Refer to: p9561, p9563	
Note:	In the extended sense, a bus failure should be seen here as a communication error in the control signals of the safety	
	functions (e.g. via PROFIsafe or TM54F).	
	The main use of the wait time is the ESR function (Extended Stop and Retract).	

p9602	SI enable Safe Brake Control (Control Unit) / SI enable SBC CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2814
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the enable signal for the function "Safe Brake Control" (SBC) on the Control Unit.		
Value:	$\begin{array}{ll}0: & \text { Inhibit SBC } \\ \text { 1: } & \text { Enable SBC }\end{array}$		
Dependency: Note:	Refer to: p9802		
	The "Safe Brake Control" function is not activated until at least one safety monitoring function has been enabled (i.e. p9501 not equal to 0 and/or p9601 not equal to 0).		
	It does not make sense to parameterize "no motor holding brake available" and enable "Safe Brake Control" (p1215 $=0, \mathrm{p} 9602=\mathrm{p} 9802=1$) if there is no motor holding brake.		
	The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ($\mathrm{p} 1215=3$, p9602 $=1$, p9802 $=1$) is not practical.		
	It is not permissible to parameterize "motor holding brake without feedback signals" and also enable "safe brake control" (p1278 = 1, p9602 = 1, p9802 = 1).		
	CU: Control Unit		
	SBC: Safe Brake Control		
	SI: Safety Integrated		
p9610 VECTOR_G	SI PROFIsafe address (Control Unit) / SI PROFIsafe CU		
	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFE hex	0000 hex
Description:	Sets the PROFIsafe address for the Control Unit.		
Dependency:	Refer to: p9810		
p9611	SI PROFIsafe telegram selection (Control Unit) / SI Ps telegram CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	998	998
Description: Value:	Sets the PROFIsafe telegram number for the Control Unit.		
	0: No PROFIsafe telegram selected		
	30: PROFIsafe standard telegram 30, PZD-1/1		
	31: PROFIsafe standard telegram 31, PZD-2/2		
	900: PROFIsafe SIEMENS telegram 900, PZD-2/2		
	901: PROFIsafe SIEMENS telegram 901, PZD-3/5		
	902: PROFIsafe SIEMENS telegram 902, PZD-3/6		
	998: Compatibility mode (as for firmware version < 4.5)		
	Refer to: p9811, p60022		
Note:	For p9601.3 = p9801.3 = 1 (PROFIsafe enabled), the following variants exist when parameterizing PROFIsafe telegram 30:		
	- p9611 $=\mathrm{p} 9811=998$ and p60022 $=0$		
	- p9611 $=$ p9811 $=998$ and p60022 $=30$		
	- p9611 $=$ p9811 $=30$ and p60022 $=30$		

p9620[0...7]	BI: SI signal source for STO (SH)/SBC/SS1 (Control Unit) / SI S_srcSTO/SS1 CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the following functions on the Control Unit: STO: Safe Torque Off / SH: Safe standstill SBC: Safe Brake Control SS1: Safe Stop 1 (time monitored)		
Dependency:	Refer to: p9601		
Note:	The following signal sources are - fixed zero (standard setting). - digital inputs DI 0 ... 7, 16, 17, 20 - digital inputs DI 0 ... 3 on the Co - digital inputs DI 0 ... 3, 16 on the It is not permitted to establish an For a parallel circuit configuration p9620[0] = Signal source for pow p9620[n-1] = Signal source for po	Control Unit 320 ensions (CX32-2, nit 310-2 (CU310-2) tion to a digital in units, the followin	mode.
p9621	BI: SI Safe Brake Adapter signal source (Control Unit) / SI SBA S_src CU		
VECTOR_G	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2814
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for Safe Brake Adapter (SBA).		
	This defines via which digital input the Safe Brake Adapter feedback signal is read-in (SBA_DIAG). p9621/p9821 = 0 :		
	There is no Safe Brake Control (SBC) with Safe Brake Adapter (SBA) available. p9621/p9821 = r0722.x (x=0,1... 7)		
	Safe Brake Adapter and Booksize unit (no Communication Interface Module (CIM)). p9621/p9821 = r9872.3		
	Safe Brake Adapter and Chassis unit (CIM).		
Dependency:	Refer to: p9601, p9602, p9821		
Note:	No difference is tolerated for a cro To use the "Safe Brake Adapter" p9601 $=$ p9801 <> 0 and p9602 $=$	a comparison betw following must a	821.
p9622[0...1]	SI SBA relay delay times (Control Unit) / SI SBA relay t CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2814
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	1000.00 [ms]	[0] 100.00 [ms]
Description:	Sets the delay times for activating	tivating the Safe	

	The relay-specific minimum delay times for evaluating the feedback signal contacts have to be set. They differ for the activation and de-activation of one and the same relay.
Index:	[0] = Wait time activation [1] = Wait time deactivation
Dependency:	Refer to: p9822
Note:	For a crosswise data comparison between p9622 and p9822, a difference of one Safety monitoring clock cycle is tolerated. The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle. Re index 0: Wait time switch on = drop-out time + bounce time NO contact + effect of the free-wheeling diode in the Safe Brake Adapter Re index 1: Wait time switch off $=$ response time + bounce time NC contact + effect of the free-wheeling diode in the Safe Brake Adapter
p9650	SI SGE changeover discrepancy time (Control Unit) / SI SGE chg t CU
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2810
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0.00 [ms] 2000.00 [ms] 500.00 [ms]
Description:	Sets the discrepancy time to change over the safety-related inputs (SGE) on the Control Unit. An SGE changeover is not effective simultaneously due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a crosswise data comparison during this discrepancy time.
Dependency:	Refer to: p9850
Note:	For a crosswise data comparison between p9650 and p9850, a difference of one Safety monitoring clock cycle is tolerated. The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle. SGE: Safety-related input (e.g. STO terminals)

p9651	SI STO/SBC/SS1 debounce time (Control Unit) / SI STO t_debou CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$100.00[\mathrm{~ms}]$	$0.00[\mathrm{~ms}]$

Description: Sets the debounce time for the failsafe digital inputs used to control STO/SBC/SS1.
Note: \quad The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.
Example:
Debounce time $=1 \mathrm{~ms}$: Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.

p9652	SI Safe Stop 1 delay time (Control Unit) / SI Stop 1 t_del CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.00[\mathrm{~s}]$	$300.00[\mathrm{~s}]$	0.00 [s]

Recommend.:	In order that the drive can completely ramp-down along the OFF3 ramp and a motor holding brake that is possibly available can close, then the delay time should be set as follows:
	Motor holding brake parameterized: delay time >= p1135 + p1228 + p1217
	Motor holding brake not parameterized: delay time >= p1135 + p1228
Dependency:	Refer to: p1135, p9852
Note:	For a crosswise data comparison between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated.
	The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle.
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
p9653	SI Safe Stop 1 drive-based braking response / SI SS1 drv resp
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	Data type: Integer16 Dyn. index: - Func. diagram: -
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0 1 0
Description:	Sets the drive-based braking response for the "Safe Stop 1" (SS1) function.
Value:	0: SS1 with OFF3
	1: SS1E external stop
Note:	SS1: Safe Stop 1 (Safe Stop 1, corresponds to Stop Category 1 acc. to EN60204)
	SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
	SS1E requires the externally initiated stop in order to be in conformance with stop Category 1.
	With this parameter, a switchover is made from SS1 to SS1E, and the drive-based braking response of function SS1 (time controlled) of the Basic Functions is deactivated.

p9658	SI transition time STOP F to STOP A (Control Unit) / SI STOP F->A CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	30000.00 [ms]	0.00 [ms]
Description:	Sets the transition period from STOP F to STOP A on the Control Unit.		
Dependency:	Refer to: r9795, p9858		
Note:	For a crosswise data comparison between p9658 and p9858, a difference of one Safety monitoring clock cycle is tolerated.		
	The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle.		
	STOP F: Defect in a monitoring channel (error in the crosswise data comparison)		
	STOP A: STO as a result of a fault detected by Safety Integrated		
p9659	SI forced checking procedure timer / SI FCP Timer		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [h]	9000.00 [h]	8.00 [h]
Description:	Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each time that STO is de-selected.		
Note:	STO: Safe Torque Off / SH: Safe standstill		

r9660	SI forced checking procedure remaining time / SI frc chk remain		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [h]	- [h]	- [h]
Description:	Displays the time remaining before dynamization and testing of the safety shutdown paths (forced checking procedure).		
p9665[0...255]	SI Motor Module parameter save / SI MM par save		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 4
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00FF hex	0000 hex
Description:	Save the safety parameters for the basic functions on the Motor Module/Hydraulic Module.		
Note:	The parameter values are saved in the following indices:		
	p9801: index 20... 23		
	p9802: index 28... 31		
	p9810: index 36... 39		
	p9811: index 116... 119		
	p9821: index 84... 87		
	p9822[0]: index 92... 95		
	p9822[1]: index 100... 103		
	p9825[0]: index 124...127		
	p9825[1]: index 132... 135		
	p9826: index 140... 143		
	p9850: index 44... 47		
	p9851: index 76... 79		
	p9852: index 52... 55		
	p9858: index 60... 63		
	p9897: index 108... 111		
	p9899: index 68... 71		
	Depending on the existing technology, configuration and software version, it is possible that not all of the listed parameters are available.		
r9670	SI module identification Control Unit / Module ID CU		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via Node Identifier of the Control Unit. CU: Control Unit		
Note:			

r9671[0...n]	SI module identifier Motor Module / Module ID MM		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: PDS, p0120	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via the Node Identifier of a Motor Module.		
Note:	The CRC is saved indexed when Motor Modules are connected in parallel.		
	MM: Motor Module		
r9672	SI module identifier Power Module / Module ID PM		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via the Node Identifier of a Power Module.		
Note:	PM: Power Module		
r9673	SI module identifier Sensor Module channel 1 / Module ID SM 1		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via Node Identifier of the Sensor Module, which is used by the first monitoring channel.		
Note:	SM: Sensor Module		
r9674	SI module identifier Sensor Module channel 2 / Module ID SM 2		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via Node Identifier of the Sensor Module, which is used by the second monitoring channel.		
Note:	SM: Sensor Module		
r9675	SI module identifier sensor channel 1 / Module ID sensor 1		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via the serial number of the encoder, which is used by the first monitoring channel. When using an encoder without its own serial number, the value of zero is kept.		
Note:			

r9676	SI module identifier sensor channel 2 / Module ID sensor 2		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	4294967295	-
Description:	CRC via the serial number of the encoder, which is used by the second monitoring channel. When using an encoder without its own serial number, the value of zero is kept.		
Note:			
p9697	SI Motion bus failure STO/SH delay time (CU) / SI Mtn STO t CU		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	800.00 [ms]	0.00 [ms]
Description: Note:	Sets the delay time for STO after bus failure on the Control Unit (e.g. used for ESR). The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle. ESR: Extended Stop and Retract STO: Safe Torque Off / SH: Safe standstill		
$\overline{\mathrm{p} 9700}$	SI Motion copy function / SI Mtn copy fct		
TM54F_MA	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00CC hex	0000 hex
Description:	Setting to start the required copy function. After starting, the appropriate parameters are copied from the Control Unit to the Motor Module. Once copying is complete, the parameter is automatically reset to zero.		
Value:	0: [00 hex] Copy function ended 29: [1D hex] Start copy function node identifier 87: [57 hex] Start copy function SI parameters 204: [CC hex] Start copy function TM54F communication clock cycles		
Note:	The value can only be set if the safety commissioning mode is set and the Safety Integrated password was entered SI: Safety Integrated		
$\overline{\mathrm{p} 9700}$	SI Motion copy function / SI Mtn copy fct		
VECTOR_G	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00D0 hex	0000 hex
Description:	Setting to start the required copy After starting, the appropriate pa Once copying is complete, the pa	copied from the automatically res	Motor Module.
Value:	$0:$ [00 hex] Copy function en 29: [1D hex] Start copy functio $46:$ $[2 \mathrm{E}$ hex] start copy function	ntifier parameters	

	87: [57 hex] Start copy function SI parameters 208: [DO hex] Start copy function SI basic parameters		
Note:	Re value $=57$ hex, 2 E hex and The value can only be set if the Re value = D0 hex: The following parameters are co p9601 --> p9801, p9602 --> p98 p9850, p9651 --> p9851, p9652	issioning mode is arting the copy fun > 9810, p9611 --> $9658 \text {--> p9858, }$	Integrated password 321, p9622 --> 9822,
p9701	Acknowledge SI motion data change / Ackn SI Mtn dat		
TM54F_MA,	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00EC hex	0000 hex
Description:	Setting to transfer the reference checksums from the associated actual checksums after changes (SI parameters, hardware).		
	After transferring the reference checksums, parameters are automatically reset to zero.		
Value:	0: [00 hex] Data unchanged 172: [AC hex] Acknowledge data change complete 236: [EC hex] Acknowledge hardware CRC		
Dependency:	Refer to: r9398, p9399, r9728, p9729, r9798, p9799, r9898, p9899		
Note:	Re value = AC hex:		
	These values can only be set if the safety commissioning mode is set and the Safety Integrated password was entered.		
	SI: Safety Integrated		
p9701	Acknowledge SI motion data change / Ackn SI Mtn dat		
VECTOR_G	Can be changed: C2(95), U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	00EC hex	0000 hex
Description:	Setting to transfer the reference checksums from the associated actual checksums after changes (SI parameters, hardware).		
	After transferring the reference checksums, parameters are automatically reset to zero.		
Value:	0: [00 hex] Data unchanged 172: [AC hex] Acknowledge data change complete 220: [DC hex] Acknowledge SI basic parameter change 236: [EC hex] Acknowledge hardware CRC		
Dependency:	Refer to: r9398, p9399, r9728, p9729, r9798, p9799, r9898, p9899		
Note:	Re value = AC and DC hex:		
	These values can only be set if the safety commissioning mode is set and the Safety Integrated password was entered.		
p9702	SI Acknowledge component replacement / Comp_replace ackn		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	29	0
Description:	Setting to acknowledge that a component has been replaced.		

Dependency:	Refer to: r9713
Note:	Re index 0:
	The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle. Re index 1 :
	The display of the load-side position actual value on the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
	Re index 2:
	The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
	Re index 3:
	The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.
	Re index 4:
	Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
	The value is an average value from the values in index 0 and 1.
	When the function is not enabled, the content corresponds to the value in index 0 .
	Re index 5:
	The display of the maximum additional difference between the load-side position actual value on the Control Unit, and the load-side position actual value in the second channel, which can occur as a result of the actual value sensing delay in the EnDat 2.2 converter.
	Input in p9542: p9708[3] + p9708[5], after performing the measurement for the mechanical tolerance by performing a test run, where, after completion, the maximum tolerance that has occurred is displayed in p9708[3].
	CDC: Crosswise Data Comparison
r9708[0...5]	SI Motion diagnostics safe position / SI mtn safe pos
VECTOR_G (Safety rot)	Can be changed: - Calculated: - Access level: 3
	Data type: FloatingPoint32 Dyn. index: - Func. diagram: 2822, 2836
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	$-\left[{ }^{\circ}\right] \quad-\left[{ }^{\circ}\right] \quad-\left[{ }^{\circ}\right]$
Description:	Displays the actual load-side actual values of both monitoring channels and their difference.
Index:	[0] = Load-side actual value on the CU
	[1] = Load-side actual value on the second channel
	[2] = Load-side actual value difference CU - second channel
	[3] = Load-side max. actual value difference CU - second channel
	[4] = Load-side actual value as safe position via PROFIsafe
	[5] = Load-side additional actual value difference CU - second channel
Dependency:	Refer to: r9713
Note:	Re index 0 :
	The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle.
	Re index 1:
	The display of the load-side position actual value on the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
	Re index 2:
	The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
	Re index 3:
	The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.
	Re index 4:
	Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
	The value is an average value from the values in index 0 and 1.
	When the function is not enabled, the content corresponds to the value in index 0 .

Re index 5:
The display of the maximum additional difference between the load-side position actual value on the Control Unit, and the load-side position actual value in the second channel, which can occur as a result of the actual value sensing delay in the EnDat 2.2 converter.
Input in p9542: p9708[3] + p9708[5], after performing the measurement for the mechanical tolerance by performing a test run, where, after completion, the maximum tolerance that has occurred is displayed in p9708[3].
CDC: Crosswise Data Comparison

r9710[0...1]	SI Motion diagnostics result list 1 / SI Mtn res_list 1				
VECTOR_G	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description: Index:	Displays result list 1 that, for the crosswise data comparison between the monitoring channels, led to the fault. [0] = Result list second channel [1] = Result list drive				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Actual value > upper limit SOS	Yes	No	-
		Actual value > lower limit SOS	Yes	No	-
		Actual value > upper limit SLP1	Yes	No	-
		Actual value > lower limit SLP1	Yes	No	-
		Actual value > upper limit SLP2	Yes	No	-
		Actual value > lower limit SLP2	Yes	No	-
		Actual value > upper limit SLS1	Yes	No	-
		Actual value > lower limit SLS1	Yes	No	-
		Actual value > upper limit SLS2	Yes	No	-
		Actual value > lower limit SLS2	Yes	No	-
		Actual value > upper limit SLS3	Yes	No	-
		Actual value > lower limit SLS3	Yes	No	-
		Actual value > upper limit SLS4	Yes	No	-
		Actual value > lower limit SLS4	Yes	No	-
		Actual value > upper limit SAM/SBR	Yes	No	-
		Actual value > lower limit SAM/SBR	Yes	No	-
		Actual value > upper limit SDI positive	Yes	No	-
		Actual value > lower limit SDI positive	Yes	No	-
		Actual value > upper limit SDI negative	Yes	No	-
		Actual value > lower limit SDI negative	Yes	No	-
Note:	SBR SLP SLS SO	: Safe Brake Ramp (safe brake ramp mo Safely-Limited Position : Safely-Limited Speed : Safe Operating Stop	nitoring)		
r9711[0...1]	SI Motion diagnostics result list 2 / SI Mtn res_list 2				
VECTOR_G	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description: Index:	Displays result list 2 that, for the crosswise data comparison between the monitoring channels, led to the fault. [0] = Result list second channel				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Actual value > upper limit SCA1+	Yes	No	-
	01	Actual value > lower limit SCA1+	Yes	No	-
	02	Actual value > upper limit SCA1-	Yes	No	-

Note:

03	Actual value > lower limit SCA1-	Yes	No
04	Actual value > upper limit SCA2+	Yes	No
05	Actual value > lower limit SCA2+	Yes	No
06	Actual value > upper limit SCA2-	Yes	No
07	Actual value > lower limit SCA2-	Yes	No
08	Actual value > upper limit SCA3+	Yes	No
09	Actual value > lower limit SCA3+	Yes	No
10	Actual value > upper limit SCA3-	Yes	No
11	Actual value > lower limit SCA3-	Yes	No
12	Actual value > upper limit SCA4+	Yes	No
13	Actual value > lower limit SCA4+	Yes	No
14	Actual value > upper limit SCA4-	Yes	No
15	Actual value > lower limit SCA4-	Yes	No
16	Actual value > upper limit SSM+	Yes	No
17	Actual value > lower limit SSM+	Yes	No
18	Actual value > upper limit SSM-	Yes	No
19	Actual value > lower limit SSM-	Yes	No
20	Actual value > upper limit modulo	Yes	No
21	Actual value > lower limit modulo	Yes	No

[^8]Actual value $>$ upper limit SCA2+
o

Actual value > lower limit SCA2+
o

Actual value > lower limit SCA2
,
Actual value $>$ upper limit SCA3+ o

Actual value > lower limit SCA3+ o Actual value > lower limit SCA3No Actual value > upper limit SCA4+ Actual value > up Actual value > lower limit SCA4Actual value $>$ upper limit SSM + Actual value > upper limit SSM-

Actual value $>$ upper limit modulo Yes
Yes
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SCA: Safe Cam
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring)

r9712

 VECTOR_GDescription: Displays the actual motor-side position actual value for the motion monitoring functions on the Control Unit. Note:

CO: SI Motion diagnostics position actual value motor side / SI Mtn s_act mot		
Can be changed: -	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	-
Displays the actual motor-side position actual value for the motion monitoring functions on the Control Unit.		
The display is updated in the safety monitoring clock cycle.		

Index: [0] = Load-side actual value on the CU

r9713[0...5] VECTOR_G

Description

Dependency: Note:

CO: SI Motion diagnostics position actual value load side / SI Mtn s_act load		
Can be changed: -	Calculated: -	Access level: 3
Data type: Integer32	Dyn. index: -	Func. diagram: -
P-Group: Safety Integrated	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting

Displays the actual load-side actual values of both monitoring channels and their difference.
[1] = Load-side actual value on the second channel
[2] = Load-side actual value difference CU - second channel
[3] = Load-side max. actual value difference CU - second channel
[4] = Load-side actual value as safe position via PROFIsafe
[5] = Load-side additional actual value difference CU - second channel

The value of this parameter is displayed in r9708 with units (mm or degrees).
The display is updated in the safety monitoring clock cycle.
Re index 0 :
The display of the load-side position actual value on the Control Unit is updated in the monitoring clock cycle.
Re index 1 :
The display of the load-side position actual value on the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.
Re index 2:
The difference between the load-side position actual value on the Control Unit and load-side position actual value in the second channel is updated in the CDC clock cycle (r9724) and delayed by one CDC clock cycle.

Re index 3 :
The maximum difference between the load-side position actual value on the Control Unit and the load-side position actual value on the second channel.
Re index 4 :
Displays the load-side position actual value when enabling the function "Safe position via PROFIsafe".
The value is an average value from the values in index 0 and 1.
For a 16-bit notation, the value is influenced using the scaling factor (p9574/p9374).
When the function is not enabled, the content corresponds to the value in index 0 .
Re index 5 :
The display of the maximum additional difference between the load-side position actual value on the Control Unit, and the load-side position actual value in the second channel, which can occur as a result of the actual value sensing delay in the EnDat 2.2 converter. Input in p9542: p9713[3] + p9713[5], after performing the measurement for the mechanical tolerance by performing a test run, where, after completion, the maximum tolerance that has occurred is displayed in p9713[3]
CDC: Crosswise Data Comparison

r9714[0...2]	CO: Sl motion diagnostics velocity / SI Mtn diag v		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Factory setting	
	$-[m m / m i n]$	$-[\mathrm{mm} / \mathrm{min}]$	
Description:	Displays the velocity actual values for the motion monitoring functions on the Control Unit.		
Index:	[0] = Load-side velocity actual value on the Control Unit		
	[1] = Actual SAM/SBR velocity limit on the Control Unit		
Dependency:	[2] = Actual SLS velocity limit on the Control Unit		
Rotice:	Refer to: r9732		

Note: \quad The display is updated in the safety monitoring clock cycle.
For linear axes, the following unit applies: millimeters per minute
For rotary axes, the following unit applies: revolutions per minute

r9714[0...2]	CO: SI motion diagnostics velocity / SI Mtn diag v		
VECTOR_G (Safety	Can be changed: -	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the velocity actual values for the motion monitoring functions on the Control Unit.		
Index:	$\begin{aligned} & {[0]=\text { Load-side velocity actue }} \\ & {[1]=\text { Actual SAM/SBR veloci }} \\ & {[2]=\text { Actual SLS velocity limi }} \end{aligned}$	Control Unit ontrol Unit Unit	
Dependency:	Refer to: r9732		
Notice:	Re index 2 :		
	This SLS velocity limit can, as a result of conversion into the internal monitoring format, deviate from the specified SLS velocity limit (see r9732).		
Note:	The display is updated in the safety monitoring clock cycle.		
	For linear axes, the following unit applies: millimeters per minute		
	For rotary axes, the following unit applies: revolutions per minute		

r9718.23	CO/BO: SI Motion control signals 1 / SI Mtn ctrl_sig 1				
VECTOR_G		be changed: -	Calculated: -	Access	
		type: Unsigned32	Dyn. index: -	Func. di	
		oup: Safety Integrated	Units group: -	Unit sele	
		for motor type: -	Scaling: -	Expert li	
	Min		Max	Factory	
	-		-	-	
Description:	Control signal 1 for safety-relevant motion monitoring functions.				
Bit field:	Bit Signal name 23 Set offset for TfS to the actual torque		1 signal Set	0 signal Reset	FP
Note:	TfS: Traverse to fixed stop				
r9719.0... 31	CO/BO: SI Motion control signals 2 / SI Mtn ctrl_sig 2				
VECTOR_G	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. di	
	P-Group: Safety Integrated		Units group: -	Unit sele	
	Not for motor type: -		Scaling: -	Expert lis	
	Min		Max	Factory	
	-		-	-	
Description:	Control signal 2 for safety-relevant motion monitoring functions.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	De-select SOS/SLS (SBH/SG)	Yes	No	-
		De-select SOS (SBH)	Yes	No	-
		Select SLS (SG) bit 0	Set	Not set	-
	04	Select SLS (SG) bit 1	Set	Not set	-
	05	Deselect SDI positive	Yes	No	-
		Deselect SDI negative	Yes	No	-
	07	Deselect SLP	Yes	No	-
	08	Gearbox selection bit 0	Set	Not set	-
	09	Gearbox selection bit 1	Set	Not set	-
	10	Gearbox selection bit 2	Set	Not set	-
	11	Gearbox switchover	Set	Not set	-
	12	Select SLP (SE) position range	SLP2 (SE2)	SLP1 (SE1)	-
	13	Close brake from control	Yes	No	-
	15	Select test stop	Yes	No	-
	16	SGE valid	Yes	No	-
	18	De-select external STOP A	Yes	No	-
	19	De-select external STOP C	Yes	No	-
	20	De-select external STOP D	Yes	No	-
	21	De-select external STOP E	Yes	No	-
	28	SLS (SG) override bit 0	Set	Not set	-
		SLS (SG) override bit 1	Set	Not set	-
	30	SLS (SG) override bit 2	Set	Not set	-
	31	SLS (SG) override bit 3	Set	Not set	-
Note:	Rer9719.0 and r9719.1:				
	These two bits must be considered together.				
	- if SOS/SLS (SBH/SG) is de-selected using bit 0 , then assignment of bit 1 is irrelevant.				
	- if SOS/SLS (SBH/SG) is selected using bit 0 , then a changeover is made between SOS (SBH) and SLS (SG) using bit 1.				
	SLP: Safely-Limited Position / SE: Safe software limit switches				
	SLS: Safely-Limited Speed / SG: Safely reduced speed				
	SOS: Safe Operating Stop / SBH: Safe operating stop				
	SDI: Safe Direction (safe motion direction)				

r9720.0... 27	CO/BO: SI Motion control signals integrated in the drive / SI Mtn integ STW			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	2855
	P-Group: Safety Integrated	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expe	
	Min	Max	Factor	
	-	-	-	
Description:	Control signals for safety-relevant motion monitoring functions integrated in the drive.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 De-select STO	Yes	No	-
	01 De-select SS1	Yes	No	-
	02 De-select SS2	Yes	No	-
	03 De-select SOS	Yes	No	-
	04 De-select SLS	Yes	No	-
	06 Deselect SLP	Yes	No	2822
	07 Acknowledgement	Signal edge active	No	-
	09 Select SLS bit 0	Set	Not set	-
	10 Select SLS bit 1	Set	Not set	-
	12 Deselect SDI positive	Yes	No	2824
	13 Deselect SDI negative	Yes	No	2824
	19 Select SLP position range	SLP2	SLP1	2822
	24 Select gearbox bit 0	Set	Not set	-
	25 Select gearbox bit 1	Set	Not set	-
	26 Select gearbox bit 2	Set	Not set	-
	27 Gearbox switchover	Set	Not set	-

Note: \quad This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.

r9721.0... 15	CO/BO: SI Motion status signals (Control Unit) / SI Mtn stat_sig CU				
VECTOR_G	Can be changed: - C		ulated: -	Acce	
	Data type: Unsigned32		index: -	Func	
	P-Group: Safety Integrated		group: -	Unit	
	Not for motor type: -		ng: -	Expe	
	Min			Facto	
	-	-		-	
Description:	Display and BICO output for the status signals of the safe motion monitoring functions on monitoring channel 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	SOS or SLS active	Yes	No	-
	01	SOS active	Yes	No	-
	02	Pulse enable	Deleted	Enabled	-
		Active SLS stage bit 0	Set	Not set	-
	04	Active SLS stage bit 1	Set	Not set	-
		Velocity below limit value $\mathrm{n}_{\mathrm{C}} \mathrm{x}$	Yes	No	-
	06	SLP active	Yes	No	-
	07	Safely referenced	Yes	No	-
	08	SDI pos active	Yes	No	-
	09	SDI neg active	Yes	No	-
	10	SLP active position area	SLP2	SLP1	-
	12	STOP A or STOP B or STO or SS1 active	Yes	No	2819
	13	STOP C or SS2 active	Yes	No	2819
	14	STOP D active	Yes	No	2819
	15	STOP E active	Yes	No	-

Note: \quad This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.

r9722.0... 31	CO/BO: SI Motion drive-integrated status signals (Control Unit) / SI Mtn int stat CU				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32 Did		Dyn. index: -	Func.	2855
	P-Group: Safety Integrated U		Units group: -	Unit s	
	Not for motor type: - S		Scaling: -	Exper	
	Min		Max	Facto	
	-		-	-	
Description: Bit field:	Status signal for safety-relevant motion monitoring functions integrated in the drive on monitoring channel 1.				
		Signal name	1 signal	0 signal	FP
		STO or safe pulse cancellation active	Yes	No	-
		SS1 active	Yes	No	-
		SS2 active	Yes	No	-
		SOS active	Yes	No	-
		SLS active	Yes	No	-
		SLP active	Yes	No	2822
		Internal event	No	Yes	-
		Active SLS stage bit 0	Set	Not set	-
		Active SLS stage bit 1	Set	Not set	-
		SOS selected	Yes	No	-
		SDI pos active	Yes	No	2824
		SDI neg active	Yes	No	2824
		SSM (speed below limit value)	Yes	No	2823
		SLP active position area	SLP2	SLP1	2822
		SP valid	Yes	No	-
		Safely referenced	Yes	No	-
		SLP limit upper maintained	Yes	No	2822
		SLP limit lower maintained	Yes	No	2822
Notice:	Re bit 07:				
	The signal state behaves in an opposite way to the PROFIsafe Standard.				
Note:	This parameter is only supplied with actual values in the case of Safety Integrated Extended Functions. For Safety Integrated Basic Functions (SBC, SS1, STO), the value is equal to zero.				
	Re bit 07:				
	An internal event is displayed if a STOP A ... F is active.				
r9723.0.. 17	CO/BO: SI Motion diagnostic signals integrated in the drive / SI Mtn integ diag				
VECTOR_G	Can be changed: -		Calculated: -	Acces	
	Data type: Unsigned32		Dyn. index: -	Func.	
	P-Group: Safety Integrated U		Units group: -	Unit s	
	Not for motor type: -		Scaling: -	Exper	
	Min		Max	Facto	
	-				
Description:	Displays the diagnostic signals for safety-relevant motion monitoring functions integrated in the drive.				
Bit field:		Signal name	1 signal	0 signal	FP
		Forced checking procedure required	Yes	No	-
		STOP F and then STOP B active	Yes	No	2819
		Communication failure	Yes	No	-
		Actual value sensing supplies valid value	- Yes	No	2821
		Encoderless act val sensing acc to technique for U/f control	Yes	No	-
		Safe pulse cancellation active	Yes	No	-
		Test stop active	Yes	No	-
		SAM/SBR active	Yes	No	2820
		Position referenced	Yes	No	2821
Note:	Re bit 00:				
	A required dynamization is also displayed via alarm A01679.				
	Re bit 01:				
	This bit can be used, to execute a drive-based or control-based ESR.				

	Re bit 04:		
	When sensing the velocity without encoder, a distinction is made between the closed-loop speed controlled and open-loop speed controlled (U/f) modes.		
	Re bit 09:		
	Safe pulse pulse cancellation is a state that can only occur for the combination of velocity sensing without encoder (p9506) and drive-integrated motion monitoring functions without selection (p9601.5). In this state, internally an STO is initiated, which can be withdrawn again using an OFF1 enable.		
	Re bit 12:		
	An active test stop is also displayed using the safety message C01798.		
	ESR: Extended Stop and Retract		
	SAM: Safe Acceleration Monitor (safe acceleration monitoring)		
	SBR: Safe Brake Ramp (safe brake ramp monitoring)		
r9724	SI Motion crosswise comparison clock cycle / SI Mtn CDC clk cyc		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the crosswise comparison clock cycle.		
	The value indicates the clock cycle time with which each individual CDC value is compared between the two monitoring channels.		
Dependency:	Refer to: p9500		
Note:	Crosswise comparison clock cycle = monitoring clock cycle (p9500) * number of data to be crosswise compared		
r9725[0...2]	SI Motion diagnostics STOP F / SI Mtn Diag STOP F		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Re index 0 :		
	Displays the message value that resulted in the STOP F on the drive.		
	Value = 0:		
	The Control Unit signaled a STOP F.		
	Value = $1 . . .999$:		
	Number of the incorrect date in the crosswise data comparison between the monitoring channels.		
	Value >= 1000:		
	Additional diagnostic values of the drive.		
	Re index 1:		
	Displays the value of the Control Unit that resulted in the STOP F.		
	Re index 2:		
	Displays the value from the second channel that resulted in the STOP F.		
Index:	$[0]=$ Message value for CDC $[1]=$ Control Unit CDC actua $[2]=$ Components CDC actu		
Note:	The significance of the individual message values is described in message C01711.		
	CDC: Crosswise Data Comparison		
	Re Index 1, 2 :		
	When Safety message C01711 with message value >= 1000 occurs, these indices are not supplied with values.		

r9730	SI Motion Safe maximum velocity / SI mtn safe v_Max		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mm/min]	- [mm/min]	- [mm/min]
Description:	Displays the safe maximum velocity (on the load side) that is permissible for the safe motion monitoring functions as a result of the actual value sensing.		
	This parameter indicates up to which load velocity the safe encoder actual values (redundant encoder coarse position) can still be correctly detected as a result of the particular encoder parameterization.		
	This parameter is only of significance for enabled safety with encoder (otherwise "0").		
Note:	If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults.		
r9730	SI Motion Safe maximum velocity / SI mtn safe v_Max		
VECTOR_G (Safety rot)	Can be changed: - Data type: FloatingPoint32	Calculated: -	Access level: 3
		Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the safe maximum velocity (on the load side) that is permissible for the safe motion monitoring functions as a result of the actual value sensing.		
	This parameter indicates up to which load velocity the safe encoder actual values (redundant encoder coarse position) can still be correctly detected as a result of the particular encoder parameterization.		
	This parameter is only of significance for enabled safety with encoder (otherwise "0").		
Note:	If the value displayed is exceeded, message C01711 is output indicating relevant subsequent faults.		
r9731	SI Motion safe position accuracy / SI Mtn pos ac		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mm]	- [mm]	- [mm]
Description:	Displays the safe position accuracy (load side).		
	As a result of the actual value sensing for safe motion monitoring functions, this accuracy can be achieved as the maximum.		
	In the case of the two encoder system, the accuracy of the poorer encoder is displayed, based on the number of encoder pulses.		
Note:	The parameter is only of significance for enabled safety with encoder (otherwise "0").		
r9731	SI Motion safe position accuracy / SI Mtn pos acc		
VECTOR_G (Safety rot)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [${ }^{\circ}$]	- [${ }^{\circ}$	- [${ }^{\circ}$
Description:	Displays the safe position accuracy (load side).		
	As a result of the actual value sensing for safe motion monitoring functions, this accuracy can be achieved as the maximum.		

Note:	In the case of the two encoder system, the accuracy of the poorer encoder is displayed, based on the number of encoder pulses.		
	The parameter is only of significance for enabled safety with encoder (otherwise "0").		
r9732[0...1]	SI Motion velocity resolution / SI Mtn v_res		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [mm/min]	- [mm/min]	- [mm/min]
Description:	Displays the velocity resolution for safety-relevant motion monitoring functions. Re index 0 :		
	Displays the safe velocity resolution (load side). Setpoints for velocity limits or parameter changes for velocities below this threshold have no effect.		
	Re index 1:		
	Displays the safe velocity accuracy based on the safe encoder accuracy		
Index:	[0] = Actual velocity resolution		
Note:	Index 0: This parameter does not provide any information about the actual accuracy of the velocity sensing. This depends on the type of actual value sensing, the gear factors as well as the quality of the encoder being used.		
	Index 1: For a two-encoder system, with just non-safety capable encoders, this means the poorer value of the two encoders. Index[1] takes into account the coarse resolution of the encoder only		
r9732[0...1]	SI Motion velocity resolution / SI Mtn v_res		
VECTOR_G (Safety rot)	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the velocity resolution for safety-relevant motion monitoring functions. Re index 0 :		
	Displays the safe velocity resolution (load side). Setpoints for velocity limits or parameter changes for velocities below this threshold have no effect.		
	Re index 1:		
	Displays the safe velocity accuracy based on the safe encoder accuracy		
Index:	[0] = Actual velocity resolution [1] = Minimum velocity resolution		
Note:	Index 0: This parameter does not provide any information about the actual accuracy of the velocity sensing. This depends on the type of actual value sensing, the gear factors as well as the quality of the encoder being used.		
	Index 1: For a two-encoder system, with just non-safety capable encoders, this means the poorer value of the two encoders. Index[1] takes into account the coarse resolution of the encoder only		
r9733[0...2]	CO: SI Motion setpoint speed limit effective / SI Mtn setp_lim		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2 3630
	P-Group: Safety Integrated	Units group: 3_1	Unit selection: p0
	Not for motor type: -	Scaling: p2000	Expert list: 1
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the necessary setpoint speed limit as a result of the selected motion monitoring functions.		

$\overline{\mathrm{p} 9740}$	SI Motion user agreement selection/de-selection MM / SI mtn UserAgr MM			
VECTOR_G	Can be changed: U, T	Calculated: -	Acces	
	Data type: Integer16	Dyn. index: -	Func.	
	P-Group: Safety Integrated	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0000 hex	00AC hex	0000	
Description:	Setting to select and de-select the user agreement on the Motor Module/Hydraulic Module.			
Value:	0: [00 hex] De-select user agreement 172: [AC hex] Select user agreement			
Dependency:	Refer to: r9741			
r9741	SI Motion user agreement inside the drive MM / SI Mtn UserAgr int			
VECTOR_G	Can be changed: - C	Calculated: -	Access level: 3	
	Data type: Integer16 D	Dyn. index: -	Func. diagram: 2822	
	P-Group: Safety Integrated U	Units group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	- -	-	-	
Description:	Displays the internal state of the user agreement.			
	Value $=0$: User agreement is not set.			
	Value = AC hex: User agreement is set.			
Dependency:	Refer to: p9740			
r9743.4... 15	CO/BO: SI Safety Info Channel status word S_ZSW2B / SIC S_ZSW2B			
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16 Did	Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated U	Units group: -	Unit selection: -	
	Not for motor type: - S	Scaling: -	Expert list: 1	
	Min Max	Max	Factory setting	
	- -	-	-	
Description:	Display and BICO output for status word S_ZSW2B of the safety information channel.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	04 SLP selected position area	SLP2	SLP1	-
	07 SLP selected and user agreement set	Yes	No	-
	08 SDI positive selected	Yes	No	-
	09 SDI neg selected	Yes	No	-
	12 Test stop active	Yes	No	-
	13 Test stop required	Yes	No	-
	14 Reference position required	Yes	no	-
	15 Reference trigger command identified or reference position valid	Y Yes	no	-
Note:	SIC: Safety Info Channel			
r9744	SI message buffer changes, count	ter / SI msg_		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned16	Dyn. index: -	Func.	
	P-Group: Messages	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Factory setting	
	- -		-	
Description:	Displays the changes of the safety message buffer.			
	This counter is incremented every time that the safety message buffer changes.			

r9749[0...63]	SI message value / SI msg_value			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Integer32	Dyn. index: -	Func.	
	P-Group: Messages	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the additional information about the safety message that occurred (as integer number).			
Dependency:	Refer to: r9744, r9747, r9748, p9752, r9753, r9754, r9755, r9756			
r9750[0...63]	SI diagnostic attributes / SI diag_attr			
VECTOR_G	Can be changed: -	Calculated: -	Acces	
	Data type: Unsigned32	Dyn. index: -	Func.	
	P-Group: Messages	Units group: -	Unit s	
	Not for motor type: -	Scaling: -	Expert	
	Min	Max	Factor	
	-	-	-	
Description:	Displays the diagnostic attributes of the safety messages that have occurred.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Hardware replacement recommended	Yes	No	-
	15 Message has gone	Yes	No	-
	16 PROFIdrive fault class bit 0	High	Low	-
	17 PROFIdrive fault class bit 1	High	Low	-
	18 PROFIdrive fault class bit 2	High	Low	-
	19 PROFIdrive fault class bit 3	High	Low	-
	20 PROFIdrive fault class bit 4	High	Low	-
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
	The structure of the SI message buffer and the assignment of the indices is shown in r9747.			
	Re bits $20 . . .16$:			
	Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFIdrive message class 0 : not assigned			
	Bits $20,19,18,17,16=0,0,0,0,1-->$ PROFldrive message class 1: hardware fault/software error			
	Bits 20, 19, 18, 17, $16=0,0,0,1,0$--> PROFldrive message class 2: line fault			
	Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault			
	Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFIdrive message class 4: DC link fault			
	Bits $20,19,18,17,16=0,0,1,0,1-->$ PROFIdrive message class 5: power electronics faulted			
	Bits $20,19,18,17,16=0,0,1,1,0-->$ PROFIdrive message class 6 : overtemperature electronic components			
	Bits 20, 19, 18, 17, $16=0,0,1,1,1-$-> PROFldrive message class 7: ground fault/phase fault detected			
	Bits 20, 19, 18, 17, $16=0,1,0,0,0-->$ PROFldrive message class 8: motor overload			
	Bits 20, 19, 18, 17, $16=0,1,0,0,1-->$ PROFIdrive message class 9: communication error to the higher-level control			
	Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFIdrive message class 10 : safe monitoring channel has identified an error			
	Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available			
	Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFldrive message class 12: internal (DRIVE-CLiQ) communication error			
	Bits 20, 19, 18, 17, $16=0,1,1,0,1$--> PROFIdrive message class 13 : infeed unit faulted			
	Bits $20,19,18,17,16=0,1,1,1,0$--> PROFIdrive message class 14: braking controller/Braking Module faulted Bits 20, 19, 18, 17, $16=0,1,1,1,1$--> PROFIdrive message class 15 : line filter faulted			
	Bits $20,19,18,17,16=1,0,0,0,0-->$ PROFIdrive message class 16 : external measured value/signal state outside the permissible range			
	Bits $20,19,18,17,16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted			
	Bits 20, 19, 18, 17, $16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence			
	Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault			

p9752	SI message cases counter / SI msg_cases count		
VECTOR_G	Can be changed: U, T	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	Number of safety messages that have occurred since the last reset. The safety message buffer is cleared by resetting the parameter to 0 . Refer to: r9744, r9747, r9748, r9749, r9753, r9754, r9755, r9756		
Dependency:			
Note:	The parameter is reset to 0 at POWER ON.		
r9753[0...63]	SI message value for float values / SI msg_val float		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the safety message that has occurred for float values. Refer to: r9744, r9747, r9748, r9749, p9752, r9754, r9755, r9756		
Dependency:			
r9754[0...63]	SI message time received in days / SIt_msg recv days		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the relative system runtime in days when the safety message occurred. Refer to: r9744, r9747, r9748, r9749, p9752, r9753, r9755, r9756		
Dependency:			
r9755[0...63]	SI message time removed in milliseconds / SIt_msg rem ms		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	-[ms]	- [ms]
Description:	Displays the relative system runtime in milliseconds when the safety message was removed. Refer to: r9744, r9747, r9748, r9749, p9752, r9753, r9754, r9756		
Dependency:			
r9756[0...63]	SI message time removed in days / SI t_msg rem days		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Messages	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the relative system runtime in days when the safety message was removed. Refer to: r9744, r9747, r9748, r9749, p9752, r9753, r9754, r9755		
Dependency:			

p9761	SI password input / SI password inp		
VECTOR_G	Can be changed: $\mathrm{C} 1, \mathrm{~T}$	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type:-	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters the Safety Integrated password.		
Note:	It is not possible to change Safety Integrated parameters until the Safety Integrated password has been entered.		
p9762	SI password new / SI password new		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters a new Safety Integrated password.		
Dependency:	A change made to the Safety Integrated password must be acknowledged in the following parameter:		
p9763	SI password acknowledgement / SI ackn password		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Acknowledges the new Safety Integrated password.		
Dependency:	Refer to: p9762		
Note:	The new password entered into p9762 must be re-entered in order to acknowledge. p9762 $=$ p9763 $=0$ is automatically set after the new Safety Integrated password has been successfully acknowledged.		
r9765	SI Motion forced check procedure remaining time (Control Unit) / SI Mtn dyn remain		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [h]	- [h]	- [h]
Description:	Displays the time remaining until the next dynamization and testing of the safety motion monitoring functions integrated in the drives.		
	The signal source to initiate the forced checking procedure is parameterized in p 9705.		
Dependency:	Refer to: p9705		

r9768[0...7]	SI PROFIsafe receive control words (Control Unit) / SI Ps PZD recv CU		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the received PROFIsafe telegram on the Control Unit.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
Dependency:	Refer to: r9769		
Note:	The PROFIsafe trailer at the end of the telegram is also displayed (2 words).		
r9769[0...7]	SI PROFIsafe send status words (Control Unit) / SI Ps PZD send CU		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIsafe telegram to be sent on the Control Unit.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
Dependency:	Refer to: r9768		
Note:	The PROFIsafe trailer at the end of the telegram is also displayed (2 words).		
r9770[0...3]	SI version drive-integrated safety function (Control Unit) / SI version Drv CU		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the Safety Integrated version for the drive-integrated safety functions on the Control Unit.		
Index:	[0] = Safety Version (major re [1] = Safety Version (minor re [2] = Safety Version (baselev [3] = Safety Version (hotfix)		
Dependency:	Refer to: r9870, r9890		
Note:	Example:		
	$\mathrm{r} 9770[0]=2, \mathrm{r} 9770[1]=60, \mathrm{r9770}[2]=1, \mathrm{r} 9770[3]=0$--> Safety version V02.60.01.00		

r9771 VECTOR_G
 Description:

Bit field:

Dependency:

Note:

SI common functions (Control Unit) / SI common fct CU

Can be changed: -	Calculated: -	Access level: 3
Data type: Unsigned32	Dyn. index: -	Func. diagram: 2804
P-Group: Safety Integrated	Units group: -	Unit selection: -
Not for motor type: -	Scaling: -	Expert list: 1
Min	Max	Factory setting
-	-	-

Displays the supported Safety Integrated monitoring functions supported on both monitoring channels. The Control Unit determines this display.

Bit	Signal name	1 signal	0 signal	FP
00	STO supported via terminals	Yes	No	2804
01	SBC supported	Yes	No	2804
02	Extended Functions supported (p9501 > 0)	Yes	No	2804
03	SS1 supported	Yes	No	2804
04	Extended Functions PROFIsafe supported	Yes	No	-
05	Extended Functions integrated in drive supported (p9601.2 = 1)	Yes	No	-
06	Basic Functions PROFIsafe supported	Yes	No	-
07	Extended Functions encoderless supported	Yes	No	-
08	Safe Brake Adapter supported	Yes	No	-
09	Basic Functions PROFIsafe for parallel connection supported	Yes	No	-
10	Extended Functions integrated in drive for parallel connection	Yes	No	-
11	Extended Functions SDI supported	Yes	No	-
12	Extended Functions SSM encoderless supported	Yes	No	-
13	ESR delay of the pulse suppression	Yes	No	-
14	SBC for parallel connection supported	Yes	No	-
15	SLS limit SP supported via PROFIsafe	Yes	No	-
16	Safety functions without selection, SLP, SS1E supported	Yes	No	-
17	Safe gearbox stage switchover ref supported via SCC	Yes	No	-
Refer to: r9871				
CU: Control Unit				
ESR: Extended Stop and Retract				
SBC: Safe Brake Control				
SDI: Safe Direction (safe motion direction)				
SI: Safety Integrated				
SLP: Safely-Limited Position				
SP: Safe Position				
SS1: Safe Stop 1				
SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)				
SSM: Safe Speed Monitor (safety-relevant feedback signal from the velocity monitoring) / SGA $n<n x$: Safety-relat output $\mathrm{n}<\mathrm{nx}$				
STO: Safe Torque Off / SH: Safe standstill				
SCC: Safety Control Channel				
Re bit 16:				
SS1	E is supported for Safety Extended Functions			

r9772.0... 23

 VECTOR_GDescription Bit field:

CO/BO: SI status (Control Unit) / SI status CU

Can be changed: -	Calculated: -
Data type: Unsigned32	Dyn. index: -
P-Group: Safety Integrated	Units group: -
Not for motor type: -	Scaling: -
Min	Max
-	-

Access level: 2

Func. diagram: 2804
Unit selection: -
Expert list: 1
Factory setting

Displays the Safety Integrated status on the Control Unit.

Bit	Signal name	1 signal	0 signal	FP
00	STO or safe pulse cancellation on CU selected	Yes	No	2810
01	STO or safe pulse cancellation on CU active	Yes	No	2810
02	SS1 delay time active on the Control Unit	Yes	No	2810
04	SBC requested	Yes	No	2814
05	SS1 selected on the Control Unit (Basic Functions)	Yes	No	-
06	SS1 active on the Control Unit (Basic Functions)	Yes	No	-
07	STO terminal state on the Control Unit (Basic Functions)	High	Low	-
09	STOP A cannot be acknowledged active	Yes	No	2802
10	STOP A active	Yes	No	2802
15	STOP F active	Yes	No	2802
16	STO cause: Safety comm. mode	Yes	No	-
17	STO cause selection via terminal (Basic Functions)	Yes	No	-
18	STO cause selection via Safe Motion Monitoring (SMM)	Yes	No	-
19	STO cause actual value missing or safe pulse cancellation	Yes	No	-
20	STO cause selection PROFIsafe or TM54F (Basic Functions)	Yes	No	-
21	STO cause selection on the other monitoring channel	Yes	No	-
22	SS1 cause selection terminal (Basic Functions)	Yes	No	-
23	SS1 cause selection PROFIsafe or TM54F (Basic Functions)	Yes	No	-
Refer to: r9872				
Re bit 00:				
When STO or "Safe pulse cancellation" is selected, the cause is displayed in bits $16 \ldots 21$.				

- For p9772.1 = 1 and p9772.19 = 0, an STO from the Safety Basic functions is active.
- For p9772.1 = 1 and p9772.19 = 1, safe pulse cancellation is active, if safety functions without selection are activated via p9601.2/p9801.2 $=1$ and p9601.5/p9801.5 $=1$.
Note:
If p9601.0 $=1$ and p9601.2 $=1$ and p9801.5 $=1$ then for bit 0 and 1 , the STO function applies.
Re bit 05:
When SS1 is selected, the cause is displayed in bits 22 and 23.
Re bit 18:
When the bit is set, STO is selected via PROFIsafe or Terminal Module 54F (TM54F).
Re bit 19:
With SMM encoderless no actual value sensing is possible on account of OFF2.
With SMM with encoder no actual value sensing is possible on account of parking.
For Safety functions without selection, safe pulse cancellation to selected (p9772.19 = 1).
SMM: Safe Motion Monitoring

Re bit 22 and 23:

These bits show via which path the SS1 has been triggered, i.e. what has started the SS1 delay time.
If the SS1 delay time is not started (e.g. because an STO is triggered at the same time), neither of the two bits is set.

r9773.0... 31	CO/BO: SI status (Control Unit + Motor Module) / SI status CU+MM			
VECTOR_G	Can be changed: - C	ulated: -	Access level: 2	
	Data type: Unsigned32	index: -	Func. diagram: 2804	
	P-Group: Safety Integrated U	s group: -	Unit selection: -	
	Not for motor type: -	ing: -	Expert list: 1	
	Min M		Factory setting	
	- -		-	
Description:	Displays the Safety Integrated status on the drive (Control Unit + Motor Module).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 STO selected in drive	Yes	No	2804
	01 STO active in drive	Yes	No	2804
	02 SS1 delay time active in the drive	Yes	No	2804
	04 SBC requested	Yes	No	2804
	05 SS1 selected in the drive (Basic Functions)	Yes	No	-
	06 SS1 active in the drive (Basic Functions)	Yes	No	
	31 Shutdown paths must be tested	Yes	No	2810

Note: \quad This status is formed from the AND operation of the relevant status of the two monitoring channels.

Bit field:		Signal name	1 signal	0 signal	FP
	00	Safety parameter changed POWER ON required	Yes	No	-
	01	Safety functions enabled	Yes	No	-
	02	Safety component replaced and data save required	Yes	No	-
Dependency:	Refer to: r9793				
Note:	Re bit $00=1$:				
	At least one Safety parameter has been changed that will only take effect after a POWER ON.				
	Re bit 01 = 1:				
	Safety functions (basic functions or extended functions) have been enabled and are active.				
	Re bit 02 = 1:				
	A safety-relevant component has been replaced. Data save required (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").				
r9776	SI diagnostics / SI diag				
VECTOR_G	Can be changed: -		ulated: -	Acces	
	Data type: Unsigned32		index: -	Func.	
	P-Group: Safety Integrated Un		s group: -	Unit	
	Not for motor type: - S		ing: -	Exper	
	Min		Max	Factory setting	
	-			-	
Description:	The parameter is used for diagnostics.				
Bit field:		Signal name	1 signal	0 signal	FP
		Safety parameter changed POWER ON required	Yes	No	-
		Safety functions enabled	Yes	No	-
		Safety component replaced and data save required	Yes	No	-
		Safety component replaced and acknowledge/save required	Yes	No	-
Dependency:	Refer to: r9793				
Note:	Re bit $00=1$:				
	At least one Safety parameter has been changed that will only take effect after a POWER ON.				
	Re bit 01 = 1:				
	Safety functions (basic functions or extended functions) have been enabled and are active.				
	Re bit 02 = 1:				
	A safety-relevant component has been replaced. Data save required ($p 0977=1$ or $p 0971=1$ or "copy RAM to ROM").				
	Re bit $03=1$:				
	A safety-relevant component has been replaced. Acknowledge (p9702 = 29) and save ($\mathrm{p} 0977=1$ or p0971 $=1$ or "Copy RAM to ROM") required.				
r9780	SI monitoring clock cycle (Control Unit) / SI monitor_clck CU				
VECTOR_G	Can be changed: - C		Calculated: -	Access level: 3	
	Data type: FloatingPoint32 D		Dyn. index: -	Func. diagram: 2802	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min M		Max	Factory setting	
	- [ms] - [[ms]	- [ms]	
Description:	Displays the clock cycle time for the Safety Integrated Basic Functions on the Control Unit.				
Dependency:	Refer to: r0110, p0115, r9880				
Note:	Information regarding the relationship between monitoring clock cycle and response times can be found in the following references:				

- SINAMICS S120 Function Manual Safety Integrated
- technical documentation for the particular product

r9793[0...9]	SI diagnostics component replacement / Diag comp_replace		
VECTOR_G	Can be changed: -	Calculated:-	Access level: 3
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the component number for the first 10 replaced safety-relevant components.		
Dependency:	Refer to: r 9776		
Note:	This parameter does not exist for a Control Unit and Terminal Module.		
r9794[0...19]	SI crosswise comparison list (Control Unit) / SI CDC_list CU		
VECTOR_G	Can be changed: -	Calculated:-	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the data that are being presently compared crosswise on the Control Unit.		
Dependency:	Refer to: r9894		,
Note:	Example:		
	r9794[0] $=1$ (monitoring clock cycle)		
	r9794[1] $=2$ (enable safety functions)		
	r9794[2] $=3$ (F-DI changeover, tolerance time)		
	A complete list of numbers for crosswise-compared data items appears in fault F01611.		
r9795 VECTOR_G	SI diagnostics STOP F (Control Unit) / SI diag STOP F CU		
	Can be changed: -	Calculated: -	Access level: 2
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the cross-compared data which has caused STOP F on the Control Unit.		
Dependency:	Refer to: r9895		
Note:	A complete list of numbers for crosswise-compared data items appears in fault F01611.		
r9798	SI actual checksum SI parameters (Control Unit) / SI act_checksum CU		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection:-
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description: Dependency:	Displays the checksum over the checked Safety Integrated parameters on the Control Unit (actual checksum).		

p9799	SI reference checksum SI parameters (Control Unit) / SI set_checksum CU				
VECTOR_G	Can be changed: C2(95)		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2800	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	0000 hex		FFFF FFFF hex	0000 hex	
Description: Dependency:	Sets the checksum for the checked Safety Integrated parameters on the Control Unit (reference checksum).				
p9801	SI enable functions integrated in the drive (Motor Module) / SI enable fct MM				
VECTOR_G	Can be changed: C2(95)		Calculated: -	Access level: 3	
	Data type: Unsigned16		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	00000000 bin	
Description:	Sets the enable signals for the safety functions integrated in the drive and the type of selection on the Motor Module.				
	Not all of the settings listed below will be permissible, depending on the Control Unit and Motor Module or Power Module being used:				
	0000 hex:				
	Safety functions integrated in the drive inhibited (no safety function).				
	0001 hex:				
	Basic functions are enabled via onboard terminals (permissible for r9871.0 $=1$). 0004 hex:				
	Extended functions via Terminal Module 54F (TM54F) have been enabled (permissible for r9871.5 = 1). 0005 hex:				
	Extended functions via Terminal Module 54F (TM54F) and the basic functions via onboard terminals have been enabled (permissible for r9871.5 = 1).				
	0008 hex:				
	Basic functions are enabled via PROFIsafe (permissible for r9871.6 = 1).				
	0009 hex:				
	Basic functions are enabled via PROFIsafe onboard terminals (permissible for r9871.6 = 1).				
	000C hex:				
	Extended functions are enabled via PROFIsafe (permissible for r9871.4 $=1$).O00D hex:				
	Extended functions are enabled via PROFIsafe and basic functions via onboard terminals (permissible for r9871.4 1).				
	0024 hex:				
	Extended functions without selection are enabled (permissible for r9871.16 $=1$).0025 hex:				
	Extended functions without selection and basic functions via onboard terminals are enabled (permissible for r9871.16 $=1$).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		STO (SH) via terminals	Enable	Inhibit	2810
	02	Enable motion monito integrated in drive (MM)	Enable	Inhibit	-
	03	Enable PROFIsafe (M)	Enable	Inhibit	-
		Enab motion monit fun w/out selection (MM)	rive Enable	Inhibit	-
	06	Basic functions via TM	Enable	Inhibit	-
Dependency:	Refer to: p9601, r9871				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				

Note:	A change always becomes effective only after a POWER ON. Exception: Changes to p9801.0 become effective immediately. MM: Motor Module SI: Safety Integrated SMM: Safe Motion Monitoring STO: Safe Torque Off / SH: Safe standstill SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204) F-DI: Failsafe Digital Input F-DO: Failsafe Digital Output
p9802	SI enable Safe Brake Control (Motor Module) / SI enable SBC MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3 Data type: Integer32 Dyn. index: - Func. diagram: 2814 P-Group: Safety Integrated Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0 1 0
Description:	Sets the enable signal for the "Safe Brake Control" function (SBC) on the Motor Module. 0: Inhibit SBC 1: Enable SBC
Dependency:	Refer to: p9602
Notice: Note:	This parameter is overwritten by the copy function of the safety functions integrated in the drive. The "Safe Brake Control" function is not activated until at least one safety monitoring function has been enabled (i.e. p9501 not equal to 0 and/or p9801 not equal to 0). It does not make sense to parameterize "no motor holding brake available" and enable "Safe Brake Control" (p1215 $=0, p 9602=p 9802=1$) if there is no motor holding brake. The parameterization "motor holding brake the same as sequence control, connection via BICO" and "Safe Brake Control" enabled ($\mathrm{p} 1215=3, \mathrm{p} 9602=1, \mathrm{p} 9802=1$) is not practical. It is not permissible to parameterize "motor holding brake without feedback signals" and also enable "safe brake control" $(\mathrm{p} 1278=1, \mathrm{p} 9602=1, \mathrm{p} 9802=1)$. MM: Motor Module SBC: Safe Brake Control SI: Safety Integrated
p9810	SI PROFIsafe address (Motor Module) / SI PROFIsafe MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3 Data type: Unsigned16 Dyn. index: - Func. diagram: - P-Group: Safety Integrated Units group: - Unit selection: - Not for motor type: - Scaling: - Expert list: 1 Min Max Factory setting 0000 hex FFFE hex 0000 hex
Description: Notice:	Sets the PROFIsafe address of the Motor Module/Hydraulic module. This parameter is overwritten by the copy function of the safety functions integrated in the drive.
p9811	SI PROFIsafe telegram selection (Motor Module) / SI Ps telegram MM
VECTOR_G	Can be changed: C2(95) Calculated: - Access level: 3
	P-Group: Safety Integrated Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0998998
Description: Value:	Sets the PROFIsafe telegram number for the Motor Module/Hydraulic Module. 0: No PROFIsafe telegram selected 30: PROFIsafe standard telegram 30, PZD-1/1 31: PROFIsafe standard telegram 31, PZD-2/2

p9850	SI SGE changeover discrepancy time (Motor Module) / SI SGE chg t MM		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2810
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	2000000.00 [ss]	500000.00 [$\mu \mathrm{s}$]
Description:	Sets the discrepancy time to change over the safety-related inputs (SGE) on the Motor Module/Hydraulic Module. An SGE changeover is not effective simultaneously due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a crosswise data comparison during this discrepancy time.		
Dependency:	Refer to: p9650		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	For a crosswise data comparison between p9650 and p9850, a difference of one Safety monitoring clock cycle is tolerated.		
	Rounding effects can occur in the last decimal place of the parameterized time.		
	The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle.SGE: Safety-related input (e.g. STO terminals)		

p9851

VECTOR_G

Description:
Notice:
Note:

SI STO/SBC/SS1 debounce time (Motor Module) / SI STO t_debou MM
Can be changed: C2(95) Calculated: -
Data type: FloatingPoint32
P-Group: Safety Integrated
Not for motor type: -
Min
0.00 [$\mu \mathrm{s}$]

Sets the debounce time for the EP terminal of the Motor Module.
This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Rounding effects can occur in the last decimal place of the parameterized time.
The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.
Example:
Debounce time $=1 \mathrm{~ms}$: Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.

p9852	SI Safe Stop 1 delay time (Motor Module) / SI Stop 1 t_del MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [ms]	300000.00 [ms]	0.00 [ms]
Description:	Sets the delay time of the pulse suppression for the function "Safe Stop 1" (SS1) on the Motor Module to brake along the OFF3 down ramp (p1135).		
Recommend.:	In order that the drive can completely ramp-down along the OFF3 ramp and a motor holding brake that is possibly available can close, then the delay time should be set as follows:		
	Motor holding brake parameterized: delay time >= p1135 + p1228 + p1217		
	Motor holding brake not parameterized: delay time >= p1135 + p1228		
Dependency:	Refer to: p1135, p9652		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	For a crosswise data comparison between p9652 and p9852, a difference of one Safety monitoring clock cycle is tolerated.		
	Rounding effects can occur in the last decimal place of the parameterized time.		

The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle. SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

p9858	SI transition time STOP F to STOP A (Motor Module) / SI STOP F->A MM		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	30000000.00 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the transition period from STOP F to STOP A on the Motor Module/Hydraulic Module.		
Dependency:	Refer to: p9658, r9895		
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.		
Note:	For a crosswise data comparison between p9658 and p9858, a difference of one Safety monitoring clock cycle is tolerated.		
	Rounding effects can occur in the last decimal place of the parameterized time.		
	The set time is rounded internally to an integer multiple of the monitoring clock (r9780/r9880) cycle.		
	STOP F: Defect in a monitoring channel (error in the crosswise data comparison)		
	STOP A: STO as a result of a fault detected by Safety Integrated		
r9870[0...3]	SI version drive-integrated safety function (Motor Module) / SI version MM		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: -	Func. diagram: 2802
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
		-	-
Description:	Displays the Safety Integrated version for the drive-integrated safety functions on the Motor Module/Hydraulic Module.		
Index:	[0] = Safety Version (major re [1] = Safety Version (minor r [2] = Safety Version (baselev [3] = Safety Version (hotfix)		
Dependency:	Refer to: r9770, r9890		
Note:	Example:		
	$\mathrm{r} 9870[0]=2, \mathrm{r9870}[1]=60, \mathrm{r9870}[2]=1, \mathrm{r9870} 3]$ = 0 --> Safety version V02.60.01.00		

r9871

VECTOR_G

Description: Displays the supported Safety Integrated monitoring functions supported on both monitoring channels.
The Motor Module/Hydraulic Module determines this display.
Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	STO supported via terminals	Yes	No	2804
01	SBC supported	Yes	No	2804
02	Extended Functions supported (p9501 >0)	Yes	No	2804
03	SS1 supported	Yes	No	2804
04	Extended Functions PROFIsafe supported	Yes	No	-
05	Extended Functions integrated in drive	Yes	No	-
	supported (p9601.2 = 1)		No	-
06	Basic Functions PROFIsafe supported	Yes	No	-
07	Extended Functions encoderless supported	Yes		

r9898	SI actual checksum SI parameters (Motor Module) / SI act_checksum MM		
VECTOR_G	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the checksum for the checked Safety Integrated parameters on the Motor Module/Hydraulic Module (actual checksum).		
Dependency:	Refer to: r9798, p9899		
p9899	SI reference checksum SI parameters (Motor Module) / SI set_checksum MM		
VECTOR_G	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2800
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the checksum for the checked Safety Integrated parameters on the Motor Module/Hydraulic Module (reference checksum).		
Dependency:	Refer to: p9799, r9898		
r9900	Actual topology number of indices / Act topo indices		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_PN	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
		-	-
Description:	Displays the number of indices of the actual topology.		
Dependency:	Refer to: r9901		
Note:	Only for internal Siemens use.		
	The parameter is not displayed for the STARTER commissioning software.		
r9901[0...n]	Actual topology / Act topo		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3
	Data type: Unsigned16	Dyn. index: r9900	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual topology of the drive unit.		
	The actual topology is sub-divided into several sections. Each of the following data is saved under an index.		
	General data on the topology:		
	- version		
	- attribute to compare the actual topology and target topology		
	- number of components		
	Data on a component:		
	- type component of the node ID of the component		
	- number of DRIVE-CLiQ sockets in the Node Identifier		
	- manufacturer and version of the Node Identifier		
	- serial number of the Node Identifier (4 indices)		

- component number of the associated/linked component
- number of the associated/linked port
- component number of the associated/linked component
- number of the associated port, etc.

Data on the next component:

- etc.

Dependency:
Refer to: p9902
Note:
The target topology can only be modified using the commissioning software.
The parameter is not displayed for the STARTER commissioning software.
Changes only become effective when the state of p0009 = 101 changes to 0 or 111 .

p9904
CU_G130_DP,
CU_G130_PN,
CU_G50_DP,
CU_G150_PN

Description: If, when comparing the actual topology and target topology, only error has occurred, that can be acknowledged, then using this parameter, a new comparison can be started - acknowledging the error in the target topology.
Differences that can be acknowledged:

- topology comparison, component shifted
- topology comparison, serial number of a component has been detected to be different (byte $3=1$)
- topology comparison shows one component that is connected differently

The following parameter values are available:
p9904 = 1 --> the procedure is started.
p9904 = 0 after starting --> the procedure has been successfully completed.
p9904 = 1 after starting --> the procedure has not been successfully completed.
The possible causes for an unsuccessful procedure are located in bytes 4, 3, 2 .
Byte 2:
Number of structural differences.
Byte 3:
Number of differences that can be acknowledged (p9904).
Byte 4:
Number of differences. These differences can be resolved as follows:

- sets the topology comparison (p9906 or p9907/p9908).
- change over the actual topology.

The appropriate action should be selected corresponding to the message that is displayed/output.
Note: In order to permanently accept the acknowledgement of the fault that can be resolved, then it must be saved in a non-volatile fashion (p0977).

p9905
CU_G130_DP,
CU_G130_PN,
CU_G150_DP,
CU_G150_PN

Device specialization / Specialization

Can be changed: C1(1)
Data type: Unsigned16
P-Group: Topology
Not for motor type: -
Min
0

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max
2

Access level: 3

Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting
0

Description: With $\mathrm{p} 9905=1$, the serial numbers and the hardware versions of all of the components are transferred from the actual topology into the target topology and a new comparison is started.
For this device specialization, the components of the target topology may only differ from those of the actual topology by the serial numbers.
With p9905 $=2$, the serial numbers, the hardware versions and the order numbers of all of the components are transferred from the actual topology into the target topology and a new comparison is started.

Note:	For this device specialization, the components of the target topology may only differ from those of the actual topology by the serial numbers and order numbers.
	p9905 is automatically set to 0 at the end of the operation.
	In order to permanently accept the data, it is necessary to save in a non-volatile fashion (p0977).
p9906	Topology comparison comparison stage of all components / Topo_cmpr tot comp
CU_G130_DP,	Can be changed: C 1 (1) Calculated: - Access level: 3
CU_G130_PN,	Data type: Integer16 Dyn. index: - Func. diagram: -
$\begin{aligned} & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	P-Group: Topology Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0990
Description:	Sets the type of comparison between the actual topology and target topology. The comparison is started by setting the required value.
Value:	0: High: Compares the complete electronic rating plate 1: Average: Compares the component type and the Order numb 2: Low: Compares the component type 3: Minimum: Compares the component class 99: Topology has different comparison stages
Note:	The electronic rating plate comprises the following data:
	- component type (e.g. "SMC20")
	- Order No. (e.g. "6SL3055-0AA0-5BA0")
	- manufacturer (e.g. SIEMENS)
	- hardware version (e.g. "A")
	- Serial No. (e.g. "T-P30050495")
	When comparing the topology, the following data is compared in the target and actual topologies:
	p9906 = 0: Component type, Order No., Hardware version, Manufacturer, Serial No.
	p9906 = 1: Component type, Order No.
	p9906 = 2: Component type
	p9906 = 3: Component class (e.g. Sensor Module or Motor Module)
p9907	Topology comparison comparison stage of the component number /
	Topo_cmpr comp_no
CU_G130_DP,	Can be changed: C1(1) Calculated: - Access level: 3
CU_G130_PN,	Data type: Unsigned8 Dyn. index: - Func. diagram: -
CU_G150_PN	P-Group: Topology Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	01990
Description:	Enters the number of the component where the setting of how the actual topology should be compared to the target topology should be changed.
Dependency:	Refer to: p9908
p9908	Topology comparison comparison stage of a component / Topo_cmpr 1 comp
CU_G130_DP,	Can be changed: C 1 (1) Calculated: - Access level: 3
CU_G130_PN,	Data type: Integer16 Dyn. index: - Func. diagram: -
CU_G150_PN	P-Group: Topology Units group: - Unit selection: -
	Not for motor type: - Scaling: - Expert list: 1
	Min Max Factory setting
	0990
Description:	Sets the type of comparison of a component in the target topology with the actual topology.
	The comparison is started by setting the required value.
Value:	0 : High: Compares the complete electronic rating plate
	1: Average: Compares the component type and the Order number
	2: Low: Compares the component type

	$3: \quad$ Minimum: Compares the component class
Dependency:	Refer to: p9907
Note:	The electronic rating plate comprises the following data:
	- component type (e.g. "SMC20")
	- Order No. (e.g. "6SL3055-0AA0-5BA0")
	- manufacturer (e.g. SIEMENS)
	- hardware version (e.g. "A")
	- Serial No. (e.g. "T-P30050495")
	When comparing the topology, the following data is compared in the target and actual topologies:
	$\mathrm{p} 9908=0:$ Component type, Order No., Hardware version, Manufacturer, Serial No.
$\mathrm{p} 9908=1:$ Component type, Order No.	
$\mathrm{p} 9908=2:$ Component type	
$\mathrm{p} 9908=3:$ Component class (e.g. Sensor Module or Motor Module)	

p9909	Topology comparison component replacement / Topo_cmpr replace		
CU_G130_DP,	Can be changed: C1(1)	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Topology	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Max	Factory setting	
	0	1	1

Description: For $\mathrm{p} 9909=1$, the serial number and the hardware version of the new replaced component is automatically transferred from the actual topology into the target topology and then saved in a non-volatile fashion.
For the components that have been replaced, the electronic rating plate must match as far as the following data is concerned:

- component type (e.g. "SMC20")
- Order No. (e.g. "6SL3055-0AA0-5BA0")

For p9909 $=0$, serial numbers and hardware versions are not automatically transferred. In this case, the transfer must be made using p9904.

Dependency: Note:

Refer to: p9904, p9905
The modified target topology is automatically saved in a non-volatile fashion when the drive object runs-up (e.g. after a POWER ON).
Special case for Control Unit and option slot modules:
When replacing these components, independent of p9909, the serial number and hardware version are automatically transferred and saved in a non-volatile fashion.

p9910	Target topology accept additional components / Add comp accept		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: C 1 (1)	Calculated: -	Access level: 1
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	6	0
Description:	Accept additional inserted DRIVE-CLiQ components into the target topology.		
	The corresponding drive objects are added to the project.		
Value:	0 : No selection		
	1: Drive object type SERVO		
	2: Drive object type VECTOR		
	3: SINAMICS GM (DFEMV \& VECTORMV)		
	4: SINAMICS SM (AFEMV \& VECTORMV)		
	5: SINAMICS GL (VECTORGL)		
	6: SINAMICS SL (VECTORSL)		

p9911[0...6]	Insert drive object / Drv_obj insert	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: $\mathrm{C} 1(1)$ Calculated: - Data type: Unsigned32 Dyn. index: - P-Group: - Units group: - Not for motor type: - Scaling: - Min Max 0 4294967295	Access level: 3 Func. diagram: Unit selection: - Expert list: 0 Factory setting 0
Description:	New drive objects can be created using this parameter. Index 0: The values $2 \ldots 62$ are permissible. Index 1: Number of the drive object type (e.g. 11 for type SERVO). Index 2, 4, 5, 6: Function modules defined for the drive object. Index 3: $=0$: Ready. = 1: Reset (only indices $0 \ldots 3$). = 2: Reset all (indices $0 \ldots 3$ and flagged entries). = 3: Check and flag for insertion.	
Index:	[0] = Drive object number [1] = Drive object type [2] = Drive object function module [3] = Reset or check and flag for insertion [4] = Drive object function module expansion 1 [5] = Drive object function module expansion 2 [6] = Drive object function module expansion 3	
Note:	Only for internal Siemens use. The parameter is not displayed for the STARTER commissioning software.	
p9912[0...1]	Delete drive object / Drv_obj delete	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: C1(3) Calculated: - Data type: Unsigned16 Dyn. index: - P-Group: - Units group: - Not for motor type: - Scaling: - Min Max 0 62	Access level: 3 Func. diagram: Unit selection: - Expert list: 0 Factory setting 0
Description:	Drive objects can be deleted using this parameter. Index 0: The values $2 \ldots 62$ are permissible. Index 1: $=0$: Ready. = 1: Reset (only indices 0 and 1) =2: Reset all (indices 0 and 1 and flagged entries). = 3: Check and flag for deletion. = 30: Check and flag for deletion. Keep target topology.	
Index:	[0] = Drive object number [1] = Reset or check and flag for deletion	
Note:	Only for internal Siemens use. The parameter is not displayed for the STARTER commissioning software.	

p9913[0...2]	Change drive object number / Change drv_obj_no	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: $\mathrm{C} 1(4)$ Calculated: - Data type: Unsigned16 Dyn. index: - P-Group: - Units group: - Not for motor type: - Scaling: - Min Max 0 62	Access level: 3 Func. diagram: Unit selection: - Expert list: 0 Factory setting 0
Description:	Existing drive objects can be assigned new numbers using these parameters. Index 0: The values $2 \ldots 62$ are permissible. Index 1: The values 2 ... 62 are permissible. Index 2: = 0: Ready. = 1: Reset (only indices $0 \ldots 2$). $=2$: Reset all (indices $0 \ldots 2$ and flagged entries). = 3: Check and flag for modification.	
Index:	[0] = Drive object number old [1] = Drive object number new [2] = Reset or check and flag for modification	
Note:	Only for internal Siemens use. The parameter is not displayed for the STARTER commissioning software.	
p9914[0...2]	Change component number / Change comp_no	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: C1 Calculated: - Data type: Unsigned16 Dyn. index: - P-Group: - Units group: - Not for motor type: - Scaling: - Min Max 0 199	Access level: 3 Func. diagram: Unit selection: - Expert list: 0 Factory setting 0
Description:	You can change the number of topology components using this parameter. Index 0: The values 2 ... 199 are permissible. Index 1: The values 2 ... 199 are permissible. Index 2: = 0: Ready. = 1: Reset (only indices $0 \ldots 2$). = 2: Reset all (indices $0 \ldots 2$ and flagged entries). = 3: Check and flag for modification.	
Index:	[0] = Component number old [1] = Component number new [2] = Reset or check and flag for modification	
Note:	Only for internal Siemens use. The parameter is not displayed for the STARTER commissioning software.	

p9915	DRIVE-CLiQ data transfer error shutdown threshold master / DQ fault master		
CU_G130_DP,	Can be changed: C1(1)	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned32	Func. diagram: -	
CU_G150_DP,	P-Group: Topology	Unit selection: -	
CU_G150_PN	Unts group: -	Expert list: 1	
	Min	Scaling: -	Factory setting
	0000 hex	Max	0007 02FF hex

p9920[0...99]	Licensing enter license key / Enter license key	
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: U, T Calculated: -	Access level: 2
	Data type: Unsigned8 Dyn. index: -	Func. diagram: -
	P-Group: - Units group: -	Unit selection: -
	Not for motor type: - Scaling: -	Expert list: 1
	Min Max	Factory setting
	- -	-
Description:	Enters the license key for this drive unit.	
	Example of the license key:	
	EACZ-QBCA $=696567904581666765 \mathrm{dec}$ (ASCII characters)	
	Index 0 = license key character 1 (e.g. 69 dec)	
	Index 1 = license key character 2 (e.g. 65 dec)	

p9931[0...179]	System logbook module selection / SYSLOG mod select.		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex		0000 hex
Description:	Only for service purposes.		

p9932	Save system logbook EEPROM / SYSLOG EEPROM save			
CU_G130_DP,	Can be changed: U, T	Calculated: -	Acces	
CU_G130_PN,	Data type: Unsigned8	Dyn. index: -	Func.	
CU G150 PN	P-Group: -	Units group: -	Unit	
	Not for motor type: -	Scaling: -	Exper	
	Min	Max	Facto	
	0	255	0	
Description:	Only for service purposes.			
r9935.0	BO: POWER ON delay signal / POWER ON t_delay			
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: -	Calculated: -	Access level: 3	
	Data type: Unsigned8	Dyn. index: -	Func. diagram: -	
	P-Group: -	Units group: -	Unit selection: -	
	Not for motor type: -	Scaling: -	Expert list: 1	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and binector output for a delay after POWER ON.			
	After power-on, binector output r9935.0 is set with the start of the first sampling time and is again reset after approx. 100 ms .			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 POWER ON delay signal	High	Low	-

	$5: \quad$ Siemens internal
Dependency:	$6: \quad$ Siemens internal
Notice:	The functions in p9938 can only be set for p9937.0 = 0.
	Refer to: r9936, p9937, p9939, p9942
	If value $=0:$
	- detailed diagnostics is inactive.
	- the error counter is active (r9936).
	If value >0:
	- the error counter is inactive (r9936).
	- the detailed diagnostics as configured is active (r9943).

p9939	DRIVE-CLiQ detailed diagnostics time interval / DQ detail t_interv		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 1	
	Not for motor type: -	Max	Factory setting
	Min	$3600[\mathrm{~s}]$	$1[\mathrm{~s}]$
	$1[\mathrm{~s}]$		
Description:	Sets the time interval for recording the error counter in r9943.		
Dependency:	Refer to: r 9936, p9938, p9942, r9943		

p9941	Target topology feature delete all components / Feature delete		
CU_G130_DP,	Can be changed: C 1 (1)	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: Topology	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 0
	Min	Max	Factory setting
	0	1	0
Description:	For p9941 $=1$, the serial numbers of all components in the target topology are deleted (zero is written).		
	Through activation and de-activation this enables the actual topology components to be newly assigned to the target topology components.		
Note:	p9941 is automatically set to 0 at the end of the operation.		
	A warm restart is triggered automatically after p0009 $=0$.		

p9942	DRIVE-CLiQ detailed diagnostics select individual connection / DQ detail conn		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	0	0	
Description:	Sets the component, whose feeder cable is monitored for data transfer errors.		
	The feeder cable is the DRIVE-CLiQ cable that is connected to a component in the direction of the Control Unit.		
	Errors that have occurred in the selected time interval (p9939) can be read-out from r9943.		
Dependency:	Refer to: r9936, p9938, p9939, r9943		

Note: Re index 1

The value shows the total computing time load of the system.
Re index 5:
The total utilization is determined using all sampling times used. The largest total utilization is mapped here. The sampling time with the largest total utilization is displayed in r9979.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

r9979	Sampling time with largest total utilization / t_sampl Ig total		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	$-[\mu \mathrm{s}]$	Factory setting
	$-[\mu \mathrm{s}]$		
	Displays the sampling time with the largest total utilization.		
Description:	Refer to: r7901, r9976		
Dependency:	The largest total utilization is displayed in r9976[5].		
Note:	Total utilization:		
	Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).		

r9980[0...165] Sampling times utilization calculated / t_sampl util calc

CU_G130_DP,
CU G130 PN, CU_G150_DP,
CU_G150_PN

Can be changed: -
Data type: FloatingPoint32
P-Group: -
Not for motor type: -
Min

- [\%]

Calculated: -
Dyn. index: -
Units group: -
Scaling: -
Max

- [\%]

Access level: 4
Func. diagram: -
Unit selection: -
Expert list: 1
Factory setting

- [\%]

Description: Displays the calculated utilizations for the active sampling times based on the existing target topology.

Index:

1] = Total utiza
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] = Net utilization 5
[11] $=$ Total utilization 5
[12] = Net utilization 6
[13] $=$ Total utilization 6
[14] = Net utilization 7
[15] = Total utilization 7
[16] $=$ Net utilization 8
[17] = Total utilization 8
[18] = Net utilization 9
[19] = Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] $=$ Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] = Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] = Net utilization 36
[73] = Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45
[91] = Total utilization 45
[92] = Net utilization 46
[93] = Total utilization 46
[94] = Net utilization 47
[95] = Total utilization 47
[96] $=$ Net utilization 48
[97] = Total utilization 48
[98] = Net utilization 49
[99] = Total utilization 49
[100] = Net utilization 50
[101] $=$ Total utilization 50
[102] = Net utilization 51
[103] = Total utilization 51
[104] $=$ Net utilization 52
[105] $=$ Total utilization 52
[106] $=$ Net utilization 53
[107] = Total utilization 53
[108] = Net utilization 54
[109] $=$ Total utilization 54
[110] = Net utilization 55
[111] $=$ Total utilization 55
[112] = Net utilization 56
[113] $=$ Total utilization 56
[114] = Net utilization 57
[115] $=$ Total utilization 57
[116] $=$ Net utilization 58
[117] $=$ Total utilization 58
[118] $=$ Net utilization 59
[119] $=$ Total utilization 59
[120] $=$ Net utilization 60
[121] = Total utilization 60
[122] = Net utilization 61
[123] = Total utilization 61
[124] = Net utilization 62
[125] $=$ Total utilization 62
[126] = Net utilization 63
[127] $=$ Total utilization 63
[128] $=$ Net utilization 64
[129] = Total utilization 64
[130] = Net utilization 65
[131] = Total utilization 65
[132] = Net utilization 66
[133] = Total utilization 66
[134] = Net utilization 67
[135] $=$ Total utilization 67
[136] = Net utilization 68
[137] $=$ Total utilization 68
[138] = Net utilization 69
[139] $=$ Total utilization 69
[140] = Net utilization 70
[141] $=$ Total utilization 70
[142] = Net utilization 71
[143] $=$ Total utilization 71
[144] = Net utilization 72
[145] = Total utilization 72
[146] = Net utilization 73
[147] $=$ Total utilization 73
[148] = Net utilization 74
[149] $=$ Total utilization 74
[150] = Net utilization 75
[151] = Total utilization 75
[152] = Net utilization 76
[153] $=$ Total utilization 76
[154] = Net utilization 77
[155] = Total utilization 77
[156] $=$ Net utilization 78
[157] $=$ Total utilization 78
[158] = Net utilization 79
[159] $=$ Total utilization 79
[160] = Net utilization 80
[161] $=$ Total utilization 80

$[162]=$ Net utilization 81	
$[163]=$ Total utilization 81	
$[164]=$ Net utilization 82	
	$[165]=$ Total utilization 82
Dependency: \quad	Refer to: r7901, r9976, r9979
Note: \quad	The corresponding sampling times can be read out in parameter r7901.
	Net utilization:
	Computing time load that is only called by the sampling time involved.
	Total utilization:
	Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

r9981[0...165]	Sampling times utilization measured / t_sampl util meas		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	

Description: Displays the utilizations measured for the active sampling times
Index:
[0] = Net utilization 0
[1] = Total utilization 0
[2] = Net utilization 1
[3] = Total utilization 1
[4] = Net utilization 2
[5] = Total utilization 2
[6] = Net utilization 3
[7] = Total utilization 3
[8] = Net utilization 4
[9] = Total utilization 4
[10] = Net utilization 5
[11] = Total utilization 5
[12] = Net utilization 6
[13] $=$ Total utilization 6
[14] = Net utilization 7
[15] = Total utilization 7
[16] $=$ Net utilization 8
[17] $=$ Total utilization 8
[18] = Net utilization 9
[19] $=$ Total utilization 9
[20] = Net utilization 10
[21] = Total utilization 10
[22] = Net utilization 11
[23] = Total utilization 11
[24] = Net utilization 12
[25] = Total utilization 12
[26] = Net utilization 13
[27] = Total utilization 13
[28] = Net utilization 14
[29] = Total utilization 14
[30] = Net utilization 15
[31] = Total utilization 15
[32] = Net utilization 16
[33] = Total utilization 16
[34] = Net utilization 17
[35] = Total utilization 17
[36] = Net utilization 18
[37] = Total utilization 18
[38] = Net utilization 19
[39] = Total utilization 19
[40] = Net utilization 20
[41] = Total utilization 20
[42] = Net utilization 21
[43] = Total utilization 21
[44] = Net utilization 22
[45] = Total utilization 22
[46] = Net utilization 23
[47] = Total utilization 23
[48] = Net utilization 24
[49] = Total utilization 24
[50] = Net utilization 25
[51] = Total utilization 25
[52] = Net utilization 26
[53] = Total utilization 26
[54] = Net utilization 27
[55] = Total utilization 27
[56] = Net utilization 28
[57] = Total utilization 28
[58] = Net utilization 29
[59] = Total utilization 29
[60] = Net utilization 30
[61] = Total utilization 30
[62] = Net utilization 31
[63] = Total utilization 31
[64] = Net utilization 32
[65] = Total utilization 32
[66] $=$ Net utilization 33
[67] = Total utilization 33
[68] = Net utilization 34
[69] = Total utilization 34
[70] = Net utilization 35
[71] = Total utilization 35
[72] = Net utilization 36
[73] $=$ Total utilization 36
[74] = Net utilization 37
[75] = Total utilization 37
[76] = Net utilization 38
[77] = Total utilization 38
[78] = Net utilization 39
[79] = Total utilization 39
[80] = Net utilization 40
[81] = Total utilization 40
[82] = Net utilization 41
[83] = Total utilization 41
[84] = Net utilization 42
[85] = Total utilization 42
[86] = Net utilization 43
[87] = Total utilization 43
[88] = Net utilization 44
[89] = Total utilization 44
[90] = Net utilization 45
[91] = Total utilization 45
[92] = Net utilization 46
[93] = Total utilization 46
[94] = Net utilization 47
[95] = Total utilization 47
[96] = Net utilization 48
[97] = Total utilization 48
[98] = Net utilization 49
[99] = Total utilization 49
[100] = Net utilization 50
[101] = Total utilization 50
[102] $=$ Net utilization 51
[103] = Total utilization 51
[104] = Net utilization 52
[105] = Total utilization 52
[106] = Net utilization 53
[107] = Total utilization 53
[108] = Net utilization 54
[109] = Total utilization 54
[110] = Net utilization 55
[111] = Total utilization 55
[112] $=$ Net utilization 56
[113] = Total utilization 56
[114] $=$ Net utilization 57
[115] = Total utilization 57
[116] = Net utilization 58
[117] = Total utilization 58
[118] = Net utilization 59
[119] = Total utilization 59
[120] = Net utilization 60
[121] = Total utilization 60
[122] = Net utilization 61
[123] = Total utilization 61
[124] = Net utilization 62
[125] = Total utilization 62
[126] = Net utilization 63
[127] = Total utilization 63
[128] = Net utilization 64
[129] = Total utilization 64
[130] = Net utilization 65
[131] = Total utilization 65
[132] = Net utilization 66
[133] = Total utilization 66
[134] = Net utilization 67
[135] = Total utilization 67
[136] = Net utilization 68
[137] = Total utilization 68
[138] = Net utilization 69
[139] = Total utilization 69
[140] = Net utilization 70
[141] = Total utilization 70
[142] = Net utilization 71
[143] = Total utilization 71
[144] = Net utilization 72
[145] = Total utilization 72
[146] = Net utilization 73
[147] = Total utilization 73
[148] = Net utilization 74
[149] = Total utilization 74
[150] = Net utilization 75
[151] = Total utilization 75
[152] = Net utilization 76
[153] = Total utilization 76
[154] = Net utilization 77
[155] = Total utilization 77
[156] = Net utilization 78
[157] = Total utilization 78
[158] = Net utilization 79
[159] $=$ Total utilization 79
[160] = Net utilization 80
[161] = Total utilization 80
[162] = Net utilization 81
[163] = Total utilization 81
[164] = Net utilization 82
[165] = Total utilization 82
Dependency: Refer to: r7901, r9975, r9980
Note:
The corresponding sampling times can be read out in parameter r7901.
Net utilization:
Computing time load that is only called by the sampling time involved.
Total utilization:
Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).

r9982[0...4]	Data memory utilization / Mem_util dat_mem		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group:	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the calculated data memory utilization rates based on the existing target topology.		
Index:	$[0]=$ Fast data memory 1		
	$[1]=$ Fast data memory 2		
	$[2]=$ Fast data memory 3		
	$[3]=$ Fast data memory 4		
	$[4]=$ Reserved		

r9983[0...4]	Measured data memory utilization (actual load)/ Mem_ut dat_mem ms		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	

Description: Displays the measured data memory utilization rates based on the existing target topology.
Index: $\quad[0]=$ Fast Memory 1
[1] = Fast Memory 2
[2] = Fast Memory 3
[3] = Fast Memory 4
[4] = Heap

r9984[0...4]	Data memory utilization OA / Mem_ut dat_mem OA		
CU_G130_DP,	Can be changed: -	Calculated: -	
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Access level: 3
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the utilization of the data memory by OA applications.		
Index:	$[0]=$ Fast Memory 1		
	$[1]=$ Fast Memory 2		
	$[2]=$ Fast Memory 3		
	$[3]=$ Fast Memory 4		
	$[4]=$ Reserved		

r9986[0...7]	DRIVE-CLiQ system load / DQ system load		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the calculated DRIVE-CLiQ system load based on the existing target topology.		
	The values are not made available until the RUNUP READY (800) state is adopted (see p3988).		
	Index $0 \ldots 7$ corresponds to DRIVE-CLiQ socket X100 ... X107.		

r9987[0...7]	DRIVE-CLiQ bandwidth load / DQ bandw load		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Data type: FloatingPoint32 P-Group: - Not for motor type: - Min - [\%]	Calculated: - Dyn. index: - Units group: - Scaling: - Max - [\%]	Access level: 3 Func. diagram: Unit selection: - Expert list: 1 Factory setting - [\%]
Description:	Displays the calculated DRIVE-CLiQ bandwidth load based on the existing target topology. The values are not made available until the RUNUP READY (800) state is adopted (see p3988). Index 0 ... 7 corresponds to DRIVE-CLiQ socket X100 ... X107.		
r9988[0...7]	DRIVE-CLiQ DPRAM Ioad / DQ DPRAM Ioad		
$\begin{aligned} & \text { CU_G130_DP, } \\ & \text { CU_G130_PN, } \\ & \text { CU_G150_DP, } \\ & \text { CU_G150_PN } \end{aligned}$	Can be changed: - Data type: FloatingPoint32 P-Group: - Not for motor type: - Min - [\%]	Calculated: - Dyn. index: - Units group: - Scaling: - Max - [\%]	Access level: 3 Func. diagram: Unit selection: Expert list: 1 Factory setting - [\%]
Description:	Displays the calculated DRIVE-CLiQ DPRAM load based on the existing target topology. The values are not made available until the RUNUP READY (800) state is adopted (see p3988). Index 0 ... 7 corresponds to DRIVE-CLiQ socket X100 ... X107.		

p9990	DO memory usage actual value determination selection / Mem_use ActVal sel		
CU_G130_DP,	Can be changed: U, T	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned16	Dyn. index: -	Func. diagram: -
	P-Group: -	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	65535	0
Description:	The meaning of the parameter differs for reading and writing.		
	Read:		
	- Returns the number of memory areas monitored.		
	Write:		
	- Memory usage of a drive object: Enter drive object number		

r9991[0...4]	Memory usage drive object actual value / Mem_use DO ActVal		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	Factory setting	
	-	-	
Description:	Displays the memory usage for each drive object as actual value.		
Index:	$[0]=$ Fast Memory 1		
	$[1]=$ Fast Memory 2		
	$[2]=$ Fast Memory 3		
	$[3]=$ Fast Memory 4		

r9992[0...4]	Memory usage drive object reference value / Mem_use DO ref val		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Faxtory setting	
	-	-	
Description:	Displays the memory usage for each drive object as reference value.		
Index:	$[0]=$ Fast Memory 1		
	$[1]=$ Fast Memory 2		
	$[2]=$ Fast Memory 3		
	$[3]=$ Fast Memory 4		
	$[4]=$ Heap		

r9993[0...4]	Memory usage OA application / Mem_use OA		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 4
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Scaling: -	Expert list: 1	
	Nit for motor type: -	Max	Factory setting
	Min	-	
	-		
Description:	Displays the memory usage of an OA application.		
Index:	$[0]=$ Fast Memory 1		
	$[1]=$ Fast Memory 2		
	$[2]=$ Fast Memory 3		
	$[3]=$ Fast Memory 4		
	$[4]=$ Heap		

r9999[0...99]	Software error internal supplementary diagnostics / SW_err int diag		
CU_G130_DP,	Can be changed: -	Calculated: -	Access level: 3
CU_G130_PN,	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
CU_G150_DP,	P-Group: -	Units group: -	Unit selection: -
CU_G150_PN	Not for motor type: -	Max	Expert list: 1
	Min	-	Factory setting
	-	-	
Description:	Diagnostics parameter to display additional information for internal software errors.		
Note:	Only for internal Siemens troubleshooting.		

p10000[0...5]	SI TM54F communication clock cycle / TM54F comm_cycle		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00000 [ms]	25.00000 [ms]	[0] 12.00000 [ms] [1...5] 0.00000 [ms]
Description:	Sets the safety communication clock cycle with which the TM54F communicates with a drive. The communication clock cycle must correspond to the safety monitoring clock cycle of the drive. Presently, the TM54F only supports one communication clock cycle for all drives. This is entered into P10000[0].		
Index:	$\begin{aligned} & {[0]=\text { Drive } 1} \\ & {[1]=\text { Drive } 2} \\ & {[2]=\text { Drive } 3} \\ & {[3]=\text { Drive } 4} \end{aligned}$		

p10003	SI TM54F forced checking procedure timer / SI dyn t		
TM54F_MA	Can be changed: C 2 (95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2848
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.00 [h]	8760.00 [h]	8.00 [h]
Description:	Within the parameterized time, the digital inputs/outputs must must have been subject to a forced checking procedure at least once. The forced checking procedure is started with binector input p10007 $=0 / 1$ signal.		
Dependency:	Refer to: p10001, p10007, p10046		
r10004[0...1]	SI TM54F parameter actual checksum / SI par CRC act		
TM54F_MA,	Can be changed: -	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2847
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual checksum of the checksum-checked parameters for the Terminal Module 54F (TM54F).		

p10013[0...5]	SI TM54F Motor/Hydraulic Module Node Identifier Word 2 / SI MM Node ID 2		
TM54F_MA, TM54F_SL	Can be changed: C 2 (95)	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the actual Node Identifier (word 2, bit $32 \ldots$... 63) for the Motor/Hydraulic Modules.		
Index:	[0] = Drive 1		
	[1] = Drive 2		
	[2] = Drive 3		
	[3] = Drive 4		
	$\text { [4] = Drive } 5$$\text { [5] = Drive } 6$		
Dependency: Note:	Refer to: p10012, p10014		
	The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014.		
p10014[0...5] TM54F_MA, TM54F_SL	SI TM54F Motor/Hydraulic Module Node Identifier Word 3 / SI MM Node ID 3		
	Can be changed: C2(95)	Calculated: -	Access level: 4
	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the actual Node Identifier (word 3, bit $64 \ldots$... 95) for the Motor/Hydraulic Modules.		
Index:	$[0]=$ Drive 1		
	[1] = Drive 2		
	[2] = Drive 3		
	[3] = Drive 4		
	$\text { [4] = Drive } 5$		
	$\text { [5] = Drive } 6$		
Dependency:	Refer to: p10012, p10013		
Note:	The complete Node Identifier (96 bit) is represented in p10012, p10013 and p10014.		
TM54F_MA, TM54F_SL	SI TM54F sampling time / SI t_sample		
	Can be changed: -	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the active sampling time of the TM54F.		
	In this clock cycle, the debounced F-Dls (p10017) are evaluated, and converted over to SGEs.		
	In this clock cycle, also the F-DOs are controlled corresponding to the presently available SGAs.		
	This clock cycle corresponds to the smallest communication clock cycle that was entered in p10000[].		
	SGEs are transferred to the drives, and the SGAs received from the drives are transferred with the specific communication clock cycle of each drive in p 10000[] .		
	The value of a specific index of $p 10000[]$ represents the communication clock cycle of the drive, which is entered in the same index of p10010[].		
Note:	F-DO: Failsafe Digital Output / SGA: Safety-related output		
	SGE: Safety-relevant input		

p10017	SI TM54F digital inputs debounce time / SI DI t_debounce		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	1.00 [ms]	100.00 [ms]	1.00 [ms]
Description:	Sets the debounce time for digital inputs.		
	The debounce time is accepted rounded off to whole milliseconds.		
	The debounce time acts on the following digital inputs:		
	- Fail-safe digital inputs (F-DI).		
	- Single-channel digital inputs (DI).		
Note:	Example:		
	Debounce time $=1 \mathrm{~ms}$: Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.		
	Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.		

p10020[0...3]	SI TM54F special operating mode selection / SI spec op sel		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	3	1

Description: Sets the special operating mode for the operating mode "function interface".
0 = Inactive
1 = Safe Operating Stop with braking (SS2)
2 = Safe Operating Stop without braking (SOS)
3 = Safely reduced speed without standstill (SLS)
4 = Safely reduced speed with agreement (SS2 --> SLS)
Index: $[0]=$ Drive group 1
[1] = Drive group 2
[2] = Drive group 3
[3] = Drive group 4
Dependency: Refer to: p10008
Note: Parameter being prepared. For this firmware version, the function interface is not supported.
SLS: Safely-Limited Speed
SOS: Safe Operating Stop
SS2: Safe Stop 2

p10021[0...3]	SI TM54F Emergency Stop stop response / SI Emergency Stop		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	2	0

Description: Sets the stop response for the drive group for Emergency Stop.
The input terminal for Emergency Stop is set in p10038.
0 = Stop reaction STO
1 = Stop reaction SS1
2 = Stop reaction SS2

Index:	[0] = Drive group 1 [1] = Drive group 2 [2] = Drive group 3 [3] = Drive group 4		
Dependency:	Refer to: p10008, p10038		
Note:	Parameter being prepared. For this firmware version, the function interface is not supported.		
p10022[0...3]	SIM54r STO input terminal SI STO F-Di		
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0
Description:	Sets the input terminal for the "STO" function (operating mode "control interface").		
Value:	0 : Statically active		
	F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: F-DI 7 (X532.1/2/7)		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Statically inact		
Index:	[0] = Drive group 1 [1] = Drive group 2 [2] = Drive group 3 [3] = Drive group 4		
Note:	If value $=0$:		
	No terminal assigned, safety function always active.		
	If value $=255$:		
	No terminal assigned, safety function always inactive.		
	F-DI: Failsafe Digital Input		
	STO: Safe Torque Off		
$\overline{p 10023[0 \ldots 3]}$	SI TM54F SS1 input terminal / SI SS1 F-DI		
TM54F_MA, TM54F_SL	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
Description:			
Value:	0 : Statically active		
	1: F-DI 0 (X521.2/3/6)		
	2: F-DI 1 (X521.4/5/7)		
	3: F-DI 2 (X522.1/2/7)		
	4: F-DI 3 (X522.3/4/8)		
	5: F-DI 4 (X522.5/6/9)		
	6: F-DI 5 (X531.2/3/6)		
	7: F-DI 6 (X531.4/5/7)		
	8: \quad F-DI $7(X 532.1 / 2 / 7)$		
	9: F-DI 8 (X532.3/4/8)		
	10: F-DI 9 (X532.5/6/9)		
	255: Statically inact		

	8: F-DI 7 (X532.1/2/7)			
		F-DI 8 (X532.3/4/8)		
		F-DI 9 (X532.5/6/9)		
	255:	Statically inact		
Index:	[0] = Drive group 1			
	[1] = Drive group 2			
	[2] = Drive group 3			
	[3] = Drive group 4			
Note:	If value $=0$:			
	No terminal assigned, safety function always active.			
	If value $=255$:			
	No terminal assigned, safety function always inactive.			
	F-DI: Failsafe Digital Input			
	SOS: Safe Operating Stop			
p10026[0...3]	SI TM54F SLS input terminal / SI SLS F-DI			
TM54F_MA, TM54F_SL	Can be changed: C2(95)		Calculated: -	Access level: 3
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated		Units group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		255	0
Description: Sets the input terminal for SL			Sets the input terminal for SLS (operating mode "control interface").	
Value:	0 : Statically active			
	1: F-DI 0 (X521.2/3/6)			
	2: F-DI 1 (X521.4/5/7)			
	3: F-DI 2 (X522.1/2/7)			
	4: F-DI 3 (X522.3/4/8)			
	5: F-DI 4 (X522.5/6/9)			
	6: F-DI 5 (X531.2/3/6)			
	7: F-DI 6 (X531.4/5/7)			
	8: F-DI 7 (X532.1/2/7)			
	9: F-DI 8 (X532.3/4/8)			
	10: F-DI 9 (X532.5/6/9)			
	255: Statically inact			
Index:	[0] = Drive group 1			
	[1] = Drive group 2			
	[2] = Drive group 3			
	[3] = Drive group 4			
Note:	If value $=0$:			
	No terminal assigned, safety function always active.			
	If value $=255$:			
	No terminal assigned, safety function always inactive.			
	F-DI: Failsafe Digital Input			
	SLS: Safely-Limited Speed			
p10027[0...3]	SI TM54F SLS limit bit 0 input terminal / SI SLS lim 0 F-DI			
TM54F_MA, TM54F_SL	Can be changed: C2(95)		Calculated: -	Access level: 3
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated		Units group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		255	0
Description:	Sets the input terminal for SLS limit bit 0 (operating mode "control interface").			
Value:	0 :	Statically active		
	1:	F-DI 0 (X521.2/3/6)		
	2 :	F-DI 1 (X521.4/5/7)		
	$3:$	F-DI 2 (X522.1/2/7)		

Value:	0 :	Statically active		
	1:	F-DI 0 (X521.2/3/6)		
	2 :	F-DI 1 (X521.4/5/7)		
	3:	F-DI 2 (X522.1/2/7)		
	4:	F-DI 3 (X522.3/4/8)		
	5:	F-DI 4 (X522.5/6/9)		
	6:	F-DI 5 (X531.2/3/6)		
	7:	F-DI 6 (X531.4/5/7)		
	8:	F-DI 7 (X532.1/2/7)		
	9:	F-DI 8 (X532.3/4/8)		
	10:	F-DI 9 (X532.5/6/9)		
	255:	Statically inact		
Index:	[0] = Drive group 1			
	[1] = Drive group 2			
	[2] = Drive group 3			
	[3] = Drive group 4			
Note:	If value $=0$:			
	No terminal assigned, safety function always active.			
	If value $=255$:			
	No terminal assigned, safety function always inactive.			
	F-DI: Failsafe Digital Input			
	SDI: Safe Direction (safe motion direction)			
p10031[0...3]	SI TM54F SDI negative input terminal / SI SDI neg F-DI			
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: C2(95)		Calculated: -	Access level: 3
	Data type: Integer16		Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated		Units group: -	Unit selection: -
	Not for motor type: -		Scaling: -	Expert list: 1
	Min		Max	Factory setting
	0		255	0
Description:	Sets the input terminal for SDI negative (operating mode "control interface").			
Value:	0 : Statically active			
	1: F-DI 0 (X521.2/3/6)			
	2: F-DI 1 (X521.4/5/7)			
	3: F-DI 2 (X522.1/2/7)			
	4: F-DI 3 (X522.3/4/8)			
	5: F-DI 4 (X522.5/6/9)			
	6: F-DI 5 (X531.2/3/6)			
	7: F-DI 6 (X531.4/5/7)			
	8: F-DI 7 (X532.1/2/7)			
	9: F-DI 8 (X532.3/4/8)			
	10: F-DI 9 (X532.5/6/9)			
	255:	Statically inact		
Index:	[0] = Drive group 1			
	[1] = Drive group 2			
	[2] = Drive group 3			
	[3] = Drive group 4			
Note:	If value $=0$:			
	No terminal assigned, safety function always active.			
	If value $=255$:			
	No terminal assigned, safety function always inactive.			
	F-DI: Failsafe Digital Input			
	SDI: Safe Direction (safe motion direction)			

Index:	$[0]=$ Drive group 1
	$[1]=$ Drive group 2
	$[2]=$ Drive group 3
	$[3]=$ Drive group 4
Note: \quad	Parameter being prepared. For this firmware version, the function interface is not supported.
	If value $=0$:
	No terminal assigned, no static agreement.
	If value $=255:$
	No terminal assigned, static agreement.

p10038[0...3]	SI TM54F Emergency Stop input terminal / SI E-Stop F-DI		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 4
TM54F_SL	Data type: Integer16	Dyn. index: -	Func. diagram: -
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	255	0

Description: Sets the input terminal for input "Emergency Stop" (operating mode "function interface").
The behavior of this input signal is set in p10021.
Value:
0 : Statically active
1: F-DI 0 (X521.2/3/6)
2: \quad F-DI 1 (X521.4/5/7)
3: \quad F-DI 2 (X522.1/2/7)
4: \quad F-DI 3 (X522.3/4/8)
5: \quad F-DI 4 (X522.5/6/9)
6: F-DI 5 (X531.2/3/6)
7: \quad F-DI 6 (X531.4/5/7)
8: F-DI 7 (X532.1/2/7)
9: \quad F-DI 8 (X532.3/4/8)
10: F-DI 9 (X532.5/6/9)
255: Statically inact
Index: [0] = Drive group 1
[1] = Drive group 2
[2] = Drive group 3
[3] = Drive group 4
Dependency: Refer to: p10008, p10021
Note: Parameter being prepared. For this firmware version, the function interface is not supported.
If value $=0$:
No terminal assigned, "Emergency Stop" statically active.
If value $=255$:
No terminal assigned, no "Emergency Stop" statically active.

p10039[0...3]	Sl TM54F Safe State signal selection / SI Safe State Sel		
TM54F_MA,	Can be changed: C2(95)	Calculated: -	Access level: 3
TM54F_SL	Data type: Unsigned32	Dyn. index: -	Func. diagram: 2856
	P-Group: Safety Integrated	Units group:	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	00000001 bin
Index:	$[0]=$ Drive group 1		
	$[1]=$ Drive group 2		
	$[2]=$ Drive group 3		
	$[3]=$ Drive group 4	1 signal	Selected
	Bit Signal name	Selected	Selected

Value:	0 :	No function
	1:	Drive group 1 STO active
	2 :	Drive group 1 SS 1 active
	3:	Drive group 1 SS 2 active
	4:	Drive group 1 SOS active
	5:	Drive group 1 SLS active
	6:	Drive group 1 SSM feedback signal active
	7:	Drive group 1 safe state
	8:	Drive group 1 SOS selected
	9:	Drive group 1 internal event
	10:	Drive group 1 active SLS stage bit 0
	11:	Drive group 1 active SLS stage bit 1
	12:	Drive group 1 SDI positive active
	13:	Drive group 1 SDI negative active
	14:	Drive group 1 SLP active
	15:	Drive group 1 active SLP area
	257:	Drive group 2 STO active
	258:	Drive group 2 SS1 active
	259:	Drive group 2 SS 2 active
	260:	Drive group 2 SOS active
	261:	Drive group 2 SLS active
	262:	Drive group 2 SSM feedback signal active
	263:	Drive group 2 safe state
	264:	Drive group 2 SOS selected
	265:	Drive group 2 internal event
	266:	Drive group 2 active SLS stage bit 0
	267:	Drive group 2 active SLS stage bit 1
	268:	Drive group 2 SDI positive active
	269:	Drive group 2 SDI negative active
	270:	Drive group 2 SLP active
	271:	Drive group 2 active SLP area
	513:	Drive group 3 STO active
	514:	Drive group 3 SS1 active
	515:	Drive group 3 SS2 active
	516:	Drive group 3 SOS active
	517:	Drive group 3 SLS active
	518:	Drive group 3 SSM feedback signal active
	519:	Drive group 3 safe state
	520:	Drive group 3 SOS selected
	521:	Drive group 3 internal event
	522:	Drive group 3 active SLS stage bit 0
	523:	Drive group 3 active SLS stage bit 1
	524:	Drive group 3 SDI positive active
	525:	Drive group 3 SDI negative active
	526:	Drive group 3 SLP active
	527:	Drive group 3 active SLP area
	769:	Drive group 4 STO active
	770:	Drive group 4 SS1 active
	771:	Drive group 4 SS2 active
	772:	Drive group 4 SOS active
	773:	Drive group 4 SLS active
	774:	Drive group 4 SSM feedback signal active
	775:	Drive group 4 safe state
	776:	Drive group 4 SOS selected
	777:	Drive group 4 internal event
	778:	Drive group 4 active SLS stage bit 0
	779:	Drive group 4 active SLS stage bit 1
	780:	Drive group 4 SDI positive active
	781:	Drive group 4 SDI negative active
	782:	Drive group 4 SLP active
	783:	Drive group 4 active SLP area
Index:	[0] =	ND logic operation input 1
	[1] =	ND logic operation input 2
	[2] $=$	ND logic operation input 3
	[3] =	ND logic operation input 4

[4] = AND logic operation input 5
[5] = AND logic operation input 6
Note:
F-DO: Failsafe Digital Output

	07	F-DI 7	Logical 1	Logical 0	2851
	08	F-DI 8	Logical 1	Logical 0	2851
	09	F-DI 9	Logical 1	Logical 0	2851
Dependency:	Refer to: p10017, p10040				
Note:	If a safety function is assigned to an input (e.g. via p10022), then the following applies:				
	- logical "0": Safety function is selected				
	- logical "1": Safety function is de-selected				
	The interrelationship between the logical level and the external voltage level at the input depends on the parameterization (refer to p10040) of the input as either NC or NO contact and is aligned to the use of a safety function:				
	With 24 V at the input, NC contacts have a logical "1" level, for 0 V at the input, a logical "0" level.				
	This means that an NC/NC contact parameterization of 0 V at both inputs of the F-DI selects the safety function, for 24 V at both inputs, de-selects the safety function.				
	With 24 V at the input, NO contacts have a logical "0" level, for 0 V at the input, a logical "1" level.				
	This means that for an NC/NO contact parameterization, the level $0 \mathrm{~V} / 24 \mathrm{~V}$ selects the safety function, the level 24 V/0 V de-selects the safety function.				
	F-DI: Failsafe Digital Input				
r10052.0... 3	CO/BO: SI TM54F digital outputs status / SI DO status				
TM54F_MA, TM54F_SL	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the status of the digital outputs at the Terminal Module 54F (TM54F).				
	TM54F_MA (master): display of DO-				
	TM54F_SL (slave): display of DO+				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DO 0	High	Low	2853
		DO 1	High	Low	2853
		DO 2	High	Low	2853
		DO 3	High	Low	2853
Note:	F-DO: Failsafe Digital Output				
r10053.0.. 3	CO/BO: SI TM54F digital inputs 20 .. 23 status / SI DI 20... 23 stat				
TM54F_SL	Can be changed: -		Calculated: -	Access level: 3	
	Data type: Unsigned32		Dyn. index: -	Func. diagram: 2848	
	P-Group: Safety Integrated		Units group: -	Unit selection: -	
	Not for motor type: -		Scaling: -	Expert list: 1	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of the digital inputs at the Terminal Module 54F (TM54F).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	DI 20	High	Low	2853
	01	DI 21	High	Low	2853
	02	DI 22	High	Low	2853
	03	DI 23	High	Low	2853

r10054	SI TM54F failsafe events active / SI failsafe act				
$\begin{aligned} & \text { TM54F_MA, } \\ & \text { TM54F_SL } \end{aligned}$	Can be changed: - C		Calculated: -	Access level: 3	
	Data type: Unsigned32 D		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated Unts		Units group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min M		Max	Factory setting	
	- -			-	
Description:	Displays the events that lead to the transfer of failsafe signals to all drives assigned to the TM54F. If the second channel of the TM54F transmits failsafe signals, then these are synchronized to the other channel. In this particular case, p10054 of the other TM54F channel should be evaluated.				
	Possibilities of resolving the situation:				
	- error during test stop: correctly perform the test stop.				
	- internal software error: no possibility of resolving this problem, POWER ON.				
	- internal synchronization problem: no possibility of resolving this problem, POWER ON.				
	- internal status error: no possibility of resolving this problem, POWER ON.				
	- parameterizing error: evaluate description of alarms F35004 or F35006. Resolve parameterizing error. POWER ON After updating the firmware of the TM54F it is possible that a power on is required.				
	- all other causes: remove the cause of the error and carry out a safe acknowledgment (p10006).				
Bit field:		t Signal name	1 signal	0 signal	FP
	Bit 00	Commissioning mode active (p0010 = 95)	Yes	No	2847
		Checksum error of the safety parameters	Yes	No	-
		Internal synchronization problem within TM54F	Yes	No	-
		Internal software error	Yes	No	-
		Overvoltage in the TM54F	Yes	No	-
		Undervoltage in the TM54F	Yes	No	-
		Error at test stop	Yes	No	-
		Error for crosswise data comparison within TM54F	Yes	No	-
		Overtemperature in the TM54F	Yes	No	-
		Internal status error	Yes	No	-
		Param error	Yes	No	-
		Failsafe events active on another channel	Yes	No	
r10055	SI TM54F communication status drive-specific / SI comm_stat drv				
TM54F_MA, TM54F_SL	Can be changed: - C		Calculated: -	Access level: 3	
	Data type: Unsigned32 Dy		Dyn. index: -	Func. diagram: -	
	P-Group: Safety Integrated U		Units group: -	Unit selection: -	
	Not for motor type: - S		Scaling: -	Expert list: 1	
	Min M		Max	Factory setting	
	- -				
Description:	Displays the communication status of the individual drives with the Terminal Module 54F (TM54F). For r10055 = 0, the following applies: All drives assigned in p10010 communicate with the TM54F.				
Bit field:	$\begin{aligned} & \text { Bit } \\ & 00 \end{aligned}$	Signal name Communication between drive 1 and TM54F	1 signal	0 signal	FP
			Not configured	Configured	-
	01	Communication between drive 2 and TM54F	Not configured	Configured	-
	02	Communication between drive 3 and TM54F	Not configured	Configured	-
	03	Communication between drive 4 and TM54F	Not configured	Configured	-
	04	Communication between drive 5 and TM54F	Not configured	Configured	-
	05	Communication between drive 6 and TM54F	Not configured	Configured	-

p10209[0...1]	SI Motion SBT brake holding torque / SBT brake M_stop		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min		Factory setting
	1.00 [Nm]	60000.00 [Nm]	10.00 [Nm]
Description: Index:	Sets the effective holding torque on the motor side of the brake to be tested.$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	The holding torque of an external brake should be converted to the motor side. Conversion factor: - motor type = rotary and axis type = linear: p9522 / (p9521 x p9520) - otherwise: p9522 / p9521 Further, the efficiency of the mechanical system should be taken into account. Refer to: p10210, p10220		
Note:	The test torque effective for the brake test can be set for each sequence using a factor (p10210, p10220).		
p10210[0...1]	SI Motion SBT test torque factor sequence 1 / SBT M_test fact 1		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.30	1.00	1.00
Description:	Sets the factor for the test torque of sequence 1 for the safe brake test. The factor is referred to the holding torque of the brake (p 10209).		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10209, p10230, p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		
p10211[0...1]	SI Motion SBT test duration sequence 1 / SBT t_test seq 1		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the test duration for sequence 1 for the safe brake test. The test torque is available for this time at the closed brake.		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10230, p10235		
Note:	The test sequence is selecte The set time is rounded inter	4] or p10235.4. er multiple of the	9500/p9300) cycle.

p10212[0...1]	SI Motion SBT position tolerance sequence 1 / SBT pos_tol seq 1		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001 [mm]	360.000 [mm]	1.000 [mm]
Description: Index:	Sets the tolerated position deviation for sequence 1 for the safe brake test.$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10230, p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		
p10212[0...1]	SI Motion SBT position tolerance sequence 1 / SBT pos_tol seq 1		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.001 [${ }^{\circ}$]	360.000 [${ }^{\circ}$]	$\left.1.000{ }^{\circ}{ }^{\circ}\right]$
Description: Index:	Sets the tolerated position deviation for sequence 1 for the safe brake test.$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p 10230 , p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		
p10218	SI Motion SBT test torque sign / SBT M_test sign		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: Integer16	Dyn. index: -	Func. diagram: 2837
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0	1	0
Description:	Sets the sign for the test torque for the safe brake test. This parameter is only valid for "SBT for test stop selection" (p10203 = 2).		
Value:	0 : Positive 1: \quad Negative		
Dependency:	Refer to: p10203		
p10220[0...1]	SI Motion SBT test torque factor sequence 2 / SBT M_test fact 2		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	0.30	1.00	1.00
Description:	Sets the factor for the test torque of sequence 2 for the safe brake test. The factor is referred to the holding torque of the brake (p 10209).		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10209, p10230, p10235		
Note:	The test sequence is selected using p10230[4] or p10235.4.		

p10221[0...1]	SI Motion SBT test duration sequence 2 / SBT t_test seq 2		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	20 [ms]	10000 [ms]	1000 [ms]
Description:	Sets the test duration for sequence 2 for the safe brake test. The test torque is available for this time at the closed brake.		
Index:	$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$		
Dependency:	Refer to: p10230, p10235		
Note:	The test sequence is selected using $\mathrm{p} 10230[4]$ or p 10235.4 .		
	The set time is rounded internally to an integer multiple of the monitoring clock (p9500/p9300) cycle.		
p10222[0...1]	SI Motion SBT position tolerance sequence 2 / SBT pos_tol seq 2		
VECTOR_G	Can be changed: C2(95)	Calculated: -	Access level: 3
	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling:-	Expert list: 1
	Min	Max	Factory setting
	0.001 [mm]	360.000 [mm]	1.000 [mm]
Description: Index:	Sets the tolerated position deviation for sequence 2 for the safe brake test.		
Dependency:	Refer to: p10230, p10235		
Note:	The test sequence is selected using $\mathrm{p} 10230[4]$ or p 10235.4 .		
p10222[0...1]	SI Motion SBT position tolerance sequence 2 / SBT pos_tol seq 2		
VECTOR_G (Safety	Can be changed: C2(95)	Calculated: -	Access level: 3
rot)	Data type: FloatingPoint32	Dyn. index: -	Func. diagram: 2836
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	$0.001{ }^{\circ}{ }^{\text {] }}$	$\left.360.000{ }^{[}\right]$	1.000 [${ }^{\text {] }}$
Description: Index:	Sets the tolerated position deviation for sequence 2 for the safe brake test.		$\begin{aligned} & {[0]=\text { Brake } 1} \\ & {[1]=\text { Brake } 2} \end{aligned}$
Dependency:	Refer to: p10230, p10235		
Note:	The test sequence is selected using $\mathrm{p} 10230[4]$ or p 10235.4.		
p10230[0...5]	BI: SI Motion SBT control word / SBT STW		
VECTOR_G	Can be changed: $\mathrm{C} 2(95)$	Calculated: -	Access level: 3
	Data type: Unsigned32 / Binary	Dyn. index: -	Func. diagram: 2837
	P-Group: Safety Integrated	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal sources for the control word of the safe brake test This parameter is only valid for "SBT via BICO" (p10203 = 1).		
Index:	[0] = Select brake test [1] = Start brake test [2] = Select brake		

	[3] = Select test torque sign [4] = Select test sequence [5] = External brake status			
Note:	Re BI: p10230[0]: $0 / 1$ signal: select brake test. 0 signal: inactive. Re BI: p10230[1]: $0 / 1$ signal: start brake test. Re BI: p10230[2]: 1 signal: select brake 2. 0 signal: select brake 1 . Re BI: p10230[3]: 1 signal: select negative test torque. 0 signal: select positive test torque. Re BI: p10230[4]: 1 signal: select test sequence 2. 0 signal: select test sequence 1 . Re BI: p10230[5]: 1 signal: external brake closed. 0 signal: external brake open.			
$\overline{\mathrm{r} 10231}$ VECTOR_G	SI Motion SBT control word Can be changed: - Data type: Unsigned32 P-Group: Safety Integrated Not for motor type: - Min	ostics / SBT STW Calculated: - Dyn. index: - Units group: - Scaling: - Max	Access level: Func. diagram Unit selection Expert list: 1 Factory settin	
Description: Bit field:	Displays the diagnostic bits for the co	ord of the safe brake test 1 signal Yes Yes Brake 2 Negative Test sequence 2 Closed	0 signal No No Brake 1 Positive Test sequence 1 Open	
Dependency: Note:	Refer to: p10203 The bits indicate the actual control si	the control set in p10203		
$\begin{aligned} & \hline \text { r10234.0... } 15 \\ & \text { VECTOR_G } \end{aligned}$	CO/BO: SI Safety Info Chan Can be changed: - Data type: Unsigned32 P-Group: Safety Integrated Not for motor type: - Min	tus word S_ZSW3 Calculated: - Dyn. index: - Units group: - Scaling: - Max	S_ZSW3B Access level: Func. diagram: Unit selection Expert list: 1 Factory settin	
Description:	Display and BICO output for status w	ZSW3B of the safety infor	hannel.	
Bit field:	Bit Signal name 00 Brake test selected 01 Setpoint input drive/external 02 Active brake 03 Brake test active 04 Brake test result 05 Brake test completed 06 External brake request 07 Actual load sign	1 signal Yes Drive Brake 2 Yes Successful Yes Close Negative	0 signal No External Brake 1 No With error No Open Positive	FP

| Value: | $0: \quad$ No PROFIsafe telegram selected |
| :--- | :--- | :--- |
| | $30: \quad$ PROFIsafe standard telegram 30, PZD-1/1 |
| | $31: \quad$ PROFIsafe standard telegram 31, PZD-2/2 |
| | $901: \quad$ PROFIsafe SIEMENS telegram 901, PZD-3/5 |
| | $902: \quad$ PROFIsafe SIEMENS telegram 902, PZD-3/6 |
| Dependency: | Refer to: p9611, p9811 |
| Note: | For p9601.3 = p9801.3 = 1 (PROFIsafe enabled), the following variants exist when parameterizing PROFIsafe |
| | telegram $30:$ |
| | - p9611 $=$ p9811 $=998$ and p60022 $=0$ |
| | - p9611 $=$ p9811 $=998$ and $p 60022=30$ |
| | - p9611 $=$ p9811 $=30$ and $p 60022=30$ |

p60122

VECTOR_G

	Data type: Integer16	Dyn. index: -	Func. diagram: 2423
	P-Group: Communications	Units group: -	Unit selection: -
	Not for motor type: -	Scaling: -	Expert list: 1
	Min	Max	Factory setting
	700	999	999
Description:	Sets the telegram for the sa The SIC/SCC telegram p60	channel (SIC) / s irectly to the PZD	$\begin{aligned} & \text { (SCC). } \\ & 079 . \end{aligned}$
Value:	700: Supplementary teleg 701: Supplementary teleg 999: Free telegram config		
Note:	The clearance to the PZD te After changing p0922/p2079 The telegram interconnectio	creased using p , then p60122 m hanged if p60122	set to 999.

r61000[0...239]	PROFINET Name of Station / PN Name of Station		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2410
CU_G130_PN,	P-Group: -	Units group: -	Unit selection: -
CU_G150_DP	Scaling: -	Expert list: 1	
(PROFINET CBE20),	Not for motor type: -	Max	Factory setting
CU_G150_PN	Min	-	-
	-		
Description:	Displays PROFINET Name of Station.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		

r61001[0...3]	PROFINET IP of Station / PN IP of Station		
CU_G130_DP	Can be changed: -	Calculated: -	Access level: 3
(PROFINET CBE20),	Data type: Unsigned8	Dyn. index: -	Func. diagram: 2410
CU_G130_PN,	P-Group: -	Units group: -	
CU_G150_DP	Scaling: -	Unit selection: -	
(PROFINET CBE20),	Not for motor type: -	Max	Expert list: 1
CU_G150_PN	Min	-	Factory setting
	-	-	
Description:	Displays PROFINET IP of Station.		

2.3 Parameters for data sets

2.3.1 Parameters for command data sets (CDS)

The following list contains the parameters that are dependent on the command data sets.

Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: CDS	
p0641[0...n]	CI: Current limit variable / Curr lim var
p0700[0...n]	Macro Binector Input (BI) / Macro BI
p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0822[0...n]	BI: Drive Data Set selection DDS bit 2 / DDS select., bit 2
p0823[0...n]	BI: Drive Data Set selection DDS bit 3 / DDS select., bit 3
p0824[0...n]	BI: Drive Data Set selection DDS bit 4 / DDS select., bit 4
p0828[0...n]	$\mathrm{BI}:$ Motor changeover feedback signal / Mot_chng fdbk sig
p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n]	BI : Unconditionally release holding brake / Uncond open brake
p0856[0...n]	BI: Speed controller enable / n_ctrl enable
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake
p1000[0...n]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set
p1020[0...n]	BI: Fixed speed setpoint selection Bit $0 / n _$set_fixed Bit 0
p1021[0...n]	BI: Fixed speed setpoint selection Bit $1 / \mathrm{n}$ _set_fixed Bit 1
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2
p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3
p1035[0...n]	BI : Motorized potentiometer setpoint raise / Mop raise
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n]	BI : Motorized potentiometer inversion / MotP inv
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val
p1044[0...n]	CI : Motorized potentiometer setting value / Mop set val
p1051[0...n]	CI: Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n]	Cl : Speed limit RFG negative direction of rotation / n_limit RFG neg
p1055[0...n]	BI: Jog bit 0 / Jog bit 0
p1056[0...n]	BI: Jog bit 1 / Jog bit 1
p1070[0...n]	CI: Main setpoint / Main setpoint
p1071[0...n]	Cl : Main setpoint scaling / Main setp scal
p1075[0...n]	CI: Supplementary setpoint / Suppl setp
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n]	Cl : Speed limit in positive direction of rotation / n_limit pos
p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg
p1098[0...n]	Cl : Skip speed scaling / n_skip scal
p1106[0...n]	CI: Minimum speed signal source / n_min s_src
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir
p1113[0...n]	BI: Setpoint inversion / Setp inv
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG
p1138[0...n]	CI : Ramp-function generator ramp-up time scaling / RFG t_RU scal

p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal
p1140[0...n]	$\mathrm{BI}:$ Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n]	$\mathrm{BI}:$ Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v
p1144[0...n]	CI: Ramp-function generator setting value / RFG setting value
p1155[0...n]	CI: Speed controller speed setpoint $1 / \mathrm{n} _c t r l ~ n _s e t ~$
p116	

p2117[0...n]	BI: External alarm 3 / External alarm 3
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n]	BI: RFG active / RFG active
p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg
p2154[0...n]	CI: Speed setpoint 2 / n_set 2
p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable
p2220[0...n]	BI : Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n]	$\mathrm{BI}:$ Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2
p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctr prectr_sig
p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI : Technology controller limit offset / Tech_ctrl lim offs
p3111[0...n]	BI: External fault 3 enable / Ext fault 3 enab
p3112[0...n]	BI: External fault 3 enable negated / Ext flt 3 enab neg
p3802[0...n]	BI: Sync-line-drive enable / Sync enable

2.3.2 Parameters for drive data sets (DDS)

The following list contains the parameters that are dependent on the drive data sets.

	0, Version: 4702900, Language: eng, Type:
p0186[0...n]	Motor Data Sets (MDS) number / MDS number
p0187[0...n]	Encoder 1 encoder data set number / Enc 1 EDS number
p0188[0...n]	Encoder 2 encoder data set number / Enc 2 EDS number
p0189[0...n]	Encoder 3 encoder data set number / Enc 3 EDS number
p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par
p0572[0...n]	Activate/de-activate inhibit list / Inh_list act/deact
p0578[0...n]	Calculate technology-dependent parameters / Calc tec par
p0640[0...n]	Current limit / Current limit
p0644[0...n]	Current limit excitation induction motor / Imax excitat ASM
p1001[0...n]	CO: Fixed speed setpoint $1 / \mathrm{n}$ _set_fixed 1
p1002[0...n]	CO: Fixed speed setpoint $2 / \mathrm{n}$ _set_fixed 2
p1003[0...n]	CO: Fixed speed setpoint $3 / \mathrm{n}$ _set_fixed 3
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n]	CO: Fixed speed setpoint $5 / \mathrm{n}$ _set_fixed 5
p1006[0...n]	CO: Fixed speed setpoint $6 / \mathrm{n}$ _set_fixed 6
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7
p1008[0...n]	CO: Fixed speed setpoint $8 / \mathrm{n}$ _set_fixed 8
p1009[0...n]	CO: Fixed speed setpoint $9 / \mathrm{n}$ _set_fixed 9
p1010[0...n]	CO: Fixed speed setpoint $10 / \mathrm{n}$ _set_fixed 10
p1011[0...n]	CO: Fixed speed setpoint $11 / \mathrm{n}$ _set_fixed 11
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12
p1013[0...n]	CO: Fixed speed setpoint $13 / \mathrm{n}$ _set_fixed 13
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14
p1015[0...n]	CO: Fixed speed setpoint $15 / n _$set_fixed 15

p1030[0...n]	Motorized potentiometer configuration / Mop configuration
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max
p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min
p1040[0...n]	Motorized potentiometer starting value / Mop start value
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set
p1063[0...n]	Speed limit setpoint channel / n_limit setp
p1080[0...n]	Minimum speed / n_min
p1082[0...n]	Maximum speed / n_max
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg
p1091[0...n]	Skip speed 1 / n_skip 1
p1092[0...n]	Skip speed 2 / n_skip 2
p1093[0...n]	Skip speed 3 / n_skip 3
p1094[0...n]	Skip speed 4 / n_skip 4
p1101[0...n]	Skip speed bandwidth / n_skip bandwidth
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del
p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens
p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
p1151[0...n]	Ramp-function generator configuration / RFG config
p1189[0...n]	Speed setpoint configuration / n_ctrl config
p1200[0...n]	Flying restart operating mode / FlyRest op_mode
p1202[0...n]	Flying restart search current / FlyRest I_srch
p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact
p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh
p1240[0...n]	Vdc controller or Vdc monitoring configuration / Vdc ctrl config
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level
p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor
p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn
p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh
p1262[0...n]	Bypass dead time / Bypass t_dead
p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir
p1280[0...n]	Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
p1284[0...n]	Vdc_max controller time threshold (U/f) / Vdc_max t_thresh
p1285[0...n]	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level
p1287[0...n]	Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor
p1288[0...n]	Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
p1289[0...n]	Vdc_max controller speed threshold (U/f) / Vdc_max n_thresh
p1290[0...n]	Vdc controller proportional gain (U/f) / Vdc ctrl Kp

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate
p1293[0...n]	Vdc min controller output limit (U/f) / Vdc_min outp_lim
p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh
p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f / Vdc_min response
p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
p1302[0...n]	U/f control configuration / U/f config
p1310[0..n]	Starting current (voltage boost) permanent / I_start (Ua) perm
p1311[0...n]	Starting current (voltage boost) when accelerating / I_start accel
p1312[0...n]	Starting current (voltage boost) when starting / I_start start
p1320[0...n]	U/f control programmable characteristic frequency 1 / Uf char f1
p1321[0...n]	U/f control programmable characteristic voltage 1 / Uf char U1
p1322[0...n]	U/f control programmable characteristic frequency 2 / Uf char f2
p1323[0...n]	U/f control programmable characteristic voltage 2 / Uf char U2
p1324[0...n]	U/f control programmable characteristic frequency 3 / Uf char f3
p1325[0...n]	U/f control programmable characteristic voltage 3 / Uf char U3
p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4
p1327[0...n]	U/f control programmable characteristic voltage 4 / Uf char U4
p1331[0...n]	Voltage limiting / U_lim
p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start
p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start
p1335[0...n]	Slip compensation scaling / Slip comp scal
p1336[0...n]	Slip compensation limit value / Slip comp lim val
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max
p1350[0...n]	U/f control soft start / U/f soft start
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start
p1358[0...n]	Angular difference symmetrizing actual angle / Sym act angle
p1400[0...n]	Speed control configuration / n_ctrl config
p1401[0...n]	Flux control configuration / Flux ctrl config
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config
p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T
p1428[0...n]	Speed pre-control balancing dead time / n_prectrBal t_dead
p1429[0...n]	Speed pre-control balancing time constant / n_prectr bal T
p1433[0...n]	Speed controller reference model natural frequency / n_ctrl RefMod fn
p1434[0...n]	Speed controller reference model damping / n_ctrl RefMod D
p1435[0...n]	Speed controller reference model dead time / n_ctrRefMod t_dead
p1441[0...n]	Actual speed smoothing time / n_act T_smooth
p1442[0...n]	Speed controller speed actual value smoothing time / n_ctr n_act T_smth
p1451[0...n]	Motor model speed actual value smoothing time sensorless / Mot_mod n_act t_sm
p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL
p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up
p1458[0...n]	Adaptation factor lower / Adapt_factor lower
p1459[0...n]	Adaptation factor upper / Adapt_factor upper
p1460[0...n]	Speed controller P gain adaptation speed lower / n_ctrl Kp n lower
p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal
p1462[0...n]	Speed controller integral time adaptation speed lower / n_ctrl Tn n lower
p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n _ctr Tn n up scal

2.3 Parameters for data sets

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower
p1465[0...n]	Speed controller adaptation speed upper / n_ctrl n upper
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal
p1488[0...n]	Droop input source / Droop input source
p1489[0...n]	Droop feedback scaling / Droop scal
p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal
p1498[0...n]	Load moment of inertia / Load M_inertia
p1499[0...n]	Accelerating for torque control scaling / a for M_ctrl scal
p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Torque limit upper scaling / M_max upper scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
p1530[0...n]	Power limit motoring / P_max mot
p1531[0...n]	Power limit regenerative / P_max gen
p1553[0...n]	Stall limit scaling / Stall limit scal
p1556[0...n]	Power limit scaling / P_max scal
p1560[0...n]	Moment of inertia estimator accelerating torque threshold value / J_est M thresh
p1561[0...n]	Moment of inertia estimator change time moment of inertia / J_est t J
p1562[0...n]	Moment of inertia estimator change time load / J_est t load
p1563[0...n]	CO: Mom. of inertia estimator load torque direction of rotation pos. / J_est M pos
p1564[0...n]	CO: Mom. of inertia estimator load torque direction of rotation neg. / J_est M neg
p1570[0...n]	CO: Flux setpoint / Flex setp
p1572[0...n]	Supplementary flux setpoint / Suppl flux setp
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn
p1575[0...n]	Voltage target value limit / U_tgt val lim
p1576[0...n]	Flux boost adaptation speed, lower / Flux boost n lower
p1577[0...n]	Flux boost adaptation speed upper / Flux boost n upper
p1580[0...n]	Efficiency optimization / Efficiency opt.
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth
p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth
p1585[0...n]	Flux actual value smoothing time / Flux actVal T_smth
p1586[0...n]	Field weakening characteristic scaling / Field weak scal
p1590[0...n]	Flux controller P gain / Flux controller Kp
p1592[0...n]	Flux controller integral time / Flux controller Tn
p1594[0...n]	Field-weakening controller P gain / Field_ctrl Kp
p1595[0...n]	Field weakening controller additional setpoint / Field_ctr add_setp
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn
p1599[0...n]	Flux controller excitation current difference / Flux ctr I_exc_dif
p1600[0...n]	P flux controller P gain / P flux ctrl Kp
p1604[0...n]	Pulse technique current limit / Pulse current lim
p1605[0...n]	Pulse technique pattern configuration / Puls pattrn config
p1607[0...n]	Pulse technique stimulus / Puls stimulus
p1609[0...n]	I/f operation current setpoint / I/f op I_setp
p1610[0...n]	Torque setpoint static (sensorless) / M_set static
p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel
p1612[0...n]	Current setpoint magnetizing open-loop controlled / Id_set ctrl
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth
p1619[0...n]	Setpoint/actual value tracking threshold / SetAct track thrsh
p1620[0...n]	Stator current minimum / I_stator min
p1621[0...n]	Changeover speed inner cos phi $=1 / \mathrm{n}$ _chngov $\cos \mathrm{phi}=1$

p1622[0...n]	Field-generating current setpoint smoothing time constant / Id_setp T_smth
p1625[0...n]	Excitation current setpoint calibration / I_exc_setp cal
p1628[0...n]	Current model controller dynamic factor / I_mod_ctr dyn_fact
p1629[0...n]	Current model controller P gain / I_mod_ctrl Kp
p1630[0...n]	Current model controller integral time / I_mod_ctrl Tn
p1642[0...n]	Minimum excitation current / Min I_exc
p1643[0...n]	Minimum excitation current closed-loop control gain factor / I_exc_min Kp
p1653[0...n]	Current setpoint torque-generating smoothing time minimum / Isq_s T_smth min
p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW
p1656[0...n]	Current setpoint/Speed actual value filter activation / I_setp_filt act
p1657[0...n]	Current setpoint filter 1 type / I_set_filt 1 type
p1658[0...n]	Current setpoint filter 1 denominator natural frequency / I_set_filt 1 fn_d
p1659[0...n]	Current setpoint filter 1 denominator damping / I_set_filt 1 D_d
p1660[0...n]	Current setpoint filter 1 numerator natural frequency / I_set_filt 1 fn_n
p1661[0...n]	Current setpoint filter 1 numerator damping / I_set_filt 1 D_n
p1662[0...n]	Current setpoint filter 2 type / I_set_filt 2 type
p1663[0...n]	Current setpoint filter 2 denominator natural frequency / I_set_filt 2 fn _d
p1664[0...n]	Current setpoint filter 2 denominator damping / I_set_filt 2 D_d
p1665[0...n]	Current setpoint filter 2 numerator natural frequency / I_set_filt 2 fn_n
p1666[0...n]	Current setpoint filter 2 numerator damping / I_set_filt 2 D_n
p1677[0...n]	Speed actual value filter 5 type / n_act_filt 5 type
p1678[0...n]	Speed actual value filter 5 denominator natural frequency / n_act_filt 5 fn _d
p1679[0...n]	Speed actual value filter 5 denominator damping / n_act_filt 5 D_d
p1680[0...n]	Speed actual value filter 5 numerator natural frequency / n_act_filt 5 fn _ n
p1681[0...n]	Speed actual value filter 5 numerator damping / n_act_filt 5 D_n
p1702[0...n]	Isd current controller pre-control scaling / Isd_ctr_prectrScal
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal
p1704[0...n]	Isq current controller pre-control EMF scaling / Isq_ctrl EMF scal
p1705[0...n]	Flux setpoint/actual value tracking threshold / Flux track thresh
p1715[0...n]	Current controller P gain / I_ctrl Kp
p1717[0...n]	Current controller integral-action time / I_ctrl Tn
p1726[0...n]	Quadrature arm decoupling scaling / Transv_decpl scal
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecplVmaxScal
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd
p1731[0...n]	Isd controller combination current time component / Isd ctr I_combi T1
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp
p1744[0...n]	Motor model speed threshold stall detection / MotMod n_thr stall
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall
p1748[0...n]	Motor model lower changeover speed n_set -> n_act / MotMod low n_chng
p1749[0...n]	Motor model upper changeover speed / increase changeover speed / Up/incr n_chngov
p1750[0...n]	Motor model configuration / MotMod config
p1752[0...n]	Motor model changeover speed operation with encoder / MotMod n_chgov enc
p1753[0...n]	Motor model changeover speed hysteresis operation with encoder / MotMod n_chgovHysE
p1754[0...n]	Flux angle difference smoothing time / Angle diff T_smth
p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
p1757[0...n]	Motor model w/o enc. op./cl.-loop controlled stab. controller Kp / MotMod w/o enc Kp
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op
p1759[0...n]	Motor model changeover delay time open/closed-loop control / MotMod t op_cl
p1760[0...n]	Motor model with encoder speed adaptation Kp / MotMod wE n_ada Kp
p1761[0...n]	Motor model with encoder speed adaptation Tn / MotMod wE n_ada Tn
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp
p1766[0...n]	Motor model voltage model calculation enable / U_mod calc enab
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
p1774[0...n]	Motor model offset voltage compensation alpha / MotMod offs comp A
p1775[0...n]	Motor model offset voltage compensation beta / MotMod offs comp B

p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf
p1784[0...n]	Motor model feedback scaling / MotMod fdbk scal
p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp
p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr
p1795[0...n]	Motor model kT adaptation integral time / MotMod kT Tn
r1797[0...n]	Motor model kT adaptation corrective value / MotMod kT corr
p1798[0...n]	Motor model pulse technique speed adaptation Kp / MotMod PulsTech Kp
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp
p1802[0...n]	Modulator mode / Modulator mode
p1803[0...n]	Maximum modulation depth / Modulat depth max
p1804[0...n]	Filter time constant smoothed modulation index / T_filt mod_idxSmth
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr
p1811[0...n]	Pulse frequency wobbulation amplitude / Puls wobb ampl
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev
p1821[0...n]	Dir of rot / Dir of rot
p1840[0...n]	Actual value correction configuration / ActVal_corr conf
p1845[0...n]	Actual value correction evaluation factor Lsig / ActVal_cor ev Lsig
p1846[0...n]	Actual value correction damping factor / ActV_corr D_factor
p1959[0...n]	Rotating measurement configuration / Rot meas config
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2
p2141[0...n]	Speed threshold $1 / n$ _thresh val 1
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1
p2149[0...n]	Monitoring configuration / Monit config
p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3
p2153[0...n]	Speed actual value filter time constant / n_act_filt T
p2155[0...n]	Speed threshold 2 / n_thresh val 2
p2156[0...n]	On delay comparison value reached / t_on cmpr val rchd
p2161[0...n]	Speed threshold 3 / n_thresh val 3
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max
p2163[0...n]	Speed threshold 4 / n_thresh val 4
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so
p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set
p2174[0...n]	Torque threshold value 1 / M_thresh val 1
p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh
p2177[0...n]	Motor blocked delay time / Mot lock t_del
p2178[0...n]	Motor stalled delay time / Mot stall t_del
p2181[0...n]	Load monitoring response / Load monit resp
p2182[0...n]	Load monitoring speed threshold value $1 / \mathrm{n}$ _thresh 1
p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2
p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n]	Load monitoring torque threshold 1 upper / M_thresh 1 upper
p2186[0...n]	Load monitoring torque threshold 1 lower / M_thresh 1 lower
p2187[0...n]	Load monitoring torque threshold 2 upper / M_thresh 2 upper
p2188[0...n]	Load monitoring torque threshold 2 lower / M_thresh 2 lower
p2189[0...n]	Load monitoring torque threshold 3 upper / M_thresh 3 upper
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower
p2192[0...n]	Load monitoring delay time / Load monit t_del
p2194[0...n]	Torque threshold value 2 / M_thresh val 2
p2195[0...n]	Torque utilization switch-off delay / M_util t_off
p2196[0...n]	Torque utilization scaling / M_util scal
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1
p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2
p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3

```
p2204[0...n] CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n] CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller fixed value 6 / Tec_ctr fix val }
p2207[0...n] CO: Technology controller fixed value 7 / Tec_ctr fix val }
p2208[0...n] CO: Technology controller fixed value 8 / Tec_ctr fix val 8
p2209[0...n] CO: Technology controller fixed value 9 / Tec_ctr fix val 9
p2210[0...n] CO: Technology controller fixed value 10 / Tec_ctr fix val }1
p2211[0...n] CO: Technology controller fixed value 11/ Tec_ctr fix val 11
p2212[0...n] CO: Technology controller fixed value 12 / Tec_ctr fix val }1
p2213[0...n] CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller fixed value 15 / Tec_ctr fix val }1
p2216[0...n] Technology controller fixed value selection method / Tec_ctr FixVal sel
p2230[0...n] Technology controller motorized potentiometer configuration / Tec_ctr mop config
p2237[0...n] Technology controller motorized potentiometer maximum value / Tec_ctrl mop max
p2238[0...n] Technology controller motorized potentiometer minimum value / Tec_ctrl mop min
p2240[0...n] Technology controller motorized potentiometer starting value / Tec_ctrl mop start
p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
p2248[0...n] Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
p2720[0...n] Load gear configuration / Load gear config
p2721[0...n] Load gear rotary absolute encoder revolutions virtual / Abs rot rev
p2722[0...n] Load gear position tracking tolerance window / Pos track tol
r2723[0...n] CO: Load gear absolute value / Load gear abs_val
r2724[0...n] CO: Load gear position difference / Load gear pos diff
p2900[0...n] CO: Fixed value 1 [%] / Fixed value 1 [%]
p2901[0...n] CO: Fixed value 2 [%] / Fixed value 2 [%]
p2930[0...n] CO: Fixed value M [Nm] / Fixed value M [Nm]
p3201[0...n] Excitation current outside the tolerance threshold value / I_exc n Tol thresh
p3202[0..n] Excitation current outside the tolerance hysteresis / I_exc n Tol hyst
p3203[0...n] Excitation current outside the tolerance delay time / I_exc n Tol t_del
p3204[0...n] Flux outside the tolerance threshold value / Flux n tol thresh
p3205[0...n] Flux outside the tolerance hysteresis / Flux n tol hyst
p3206[0...n] Flux outside tolerance delay time / Flux n tol t_del
p3207[0...n] Zero current signal threshold value / I_0_sig thresh
p3208[0...n] Zero current signal hysteresis / I_0_sig hyst
p3209[0...n] Zero current signal delay time / I_0_sig t_del
p3233[0...n] Torque actual value filter time constant / M_act_filt T
p3236[0...n] Speed threshold 7 / n_thresh val }
p3237[0...n] Hysteresis speed 7/n_hysteresis 7
p3238[0...n] OFF delay n_act_motor model = n_act external / t_del n_a = n_ext
p3320[0...n] Fluid flow machine power point 1/ Fluid_mach P1
p3321[0...n] Fluid flow machine speed point 1/ Fluid_mach n1
p3322[0...n] Fluid flow machine power point 2 / Fluid_mach P2
p3323[0...n] Fluid flow machine speed point 2 / Fluid_mach n2
p3324[0...n] Fluid flow machine power point 3 / Fluid_mach P3
p3325[0...n] Fluid flow machine speed point 3 / Fluid_mach n3
p3326[0...n] Fluid flow machine power point 4 / Fluid_mach P4
p3327[0...n] Fluid flow machine speed point 4 / Fluid_mach n4
p3328[0...n] Fluid flow machine power point 5 / Fluid_mach P5
p3329[0...n] Fluid flow machine speed point 5 / Fluid_mach n5
p3800[0...n] Sync-line-drive activation / Sync act
p3801[0...n] Sync-line-drive drive object number / Sync DO_no
p3806[0...n] Sync-line-drive frequency difference threshold value / Sync f_diff thresh
p3809[0..n] Sync-line-drive phase setpoint / Sync phase setp
p3811[0...n] Sync-line-drive frequency limiting / Sync f_lim
```

p3813[0...n]	Sync-line-drive phase synchronism threshold value / Sync Ph_sync thrsh
p3815[0...n]	Sync-line-drive voltage difference threshold value / Sync U_diff thresh
p3820[0...n]	Friction characteristic value $\mathrm{n0} /$ Friction n 0
p3821[0...n]	Friction characteristic value n1/ Friction n1
p3822[0...n]	Friction characteristic value n2 / Friction n2
p3823[0...n]	Friction characteristic value n3/Friction n3
p3824[0...n]	Friction characteristic value n4/Friction n4
p3825[0...n]	Friction characteristic value n5 / Friction n5
p3826[0...n]	Friction characteristic value n6 / Friction n6
p3827[0...n]	Friction characteristic value n7 / Friction n7
p3828[0...n]	Friction characteristic value n8/Friction n8
p3829[0...n]	Friction characteristic value n9 / Friction n9
p3830[0...n]	Friction characteristic value M0 / Friction M0
p3831[0...n]	Friction characteristic value M1 / Friction M1
p3832[0...n]	Friction characteristic value M2 / Friction M2
p3833[0...n]	Friction characteristic value M3 / Friction M3
p3834[0...n]	Friction characteristic value M4 / Friction M4
p3835[0...n]	Friction characteristic value M5 / Friction M5
p3836[0...n]	Friction characteristic value M6 / Friction M6
p3837[0...n]	Friction characteristic value M7 / Friction M7
p3838[0...n]	Friction characteristic value M8 / Friction M8
p3839[0...n]	Friction characteristic value M9 / Friction M9
p3843[0...n]	Friction characteristic frictional torque diff. smoothing time / Frict M_diff t_sm
p3844[0...n]	Friction characteristic number changeover point upper / FricNo chng_pt up
p3846[0...n]	Friction characteristic record ramp-up/ramp-down time / Frict rec t_RU/RD
p3847[0...n]	Friction characteristic record warm-up time / Frict rec t_warm
r3925[0...n]	Identification final display / Ident final_disp
r3927[0...n]	Motor data identification control word / MotID STW
r3928[0...n]	Rotating measurement configuration / Rot meas config
r3998[0...n]	First drive commissioning / First drv_comm
p5300[0...n]	Autotuning selection / Autotuning select
p5301[0...n]	One Button Tuning configuration / OBT config
p5302[0...n]	Online tuning configuration / OT config
p6700[0...n]	Voltage model angle smoothing / Volt_mod angle sm
p7035[0...n]	Par_circuit circulating current control operating mode / I_cct_ctrl mode
p7036[0...n]	Par_circuit circulating current control proportional gain / Circ_I Kp
p7037[0...n]	Par_circuit circulating current control integral time / I_circ Tn
p7038[0...n]	Par_circuit circulating current control limit / I_circ limit

2.3.3 Parameters for encoder data sets (EDS)

The following list contains the parameters that are dependent on the encoder data sets.

```
Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: EDS
p0141[0...n] Encoder interface (Sensor Module) component number / Enc_interf comp_no
p0142[0...n] Encoder component number / Encoder comp_no
p0144[0...n] Sensor Module detection via LED / SM detection LED
p0145[0...n] Activate/de-activate encoder interface / Enc_intf act/deact
r0146[0...n] Encoder interface active/inactive / Enc_intf act/inact
r0147[0...n] Sensor Module EEPROM data version / SM EEPROM version
r0148[0...n] Sensor Module firmware version / SM FW version
p0400[0...n] Encoder type selection / Enc_typ sel
p0401[0...n] Encoder type OEM selection / Enc type OEM sel
p0402[0...n] Gearbox type selection / Gearbox type sel
p0404[0...n] Encoder configuration effective / Enc_config eff
p0405[0...n] Square-wave encoder track A/B / Sq-wave enc A/B
p0407[0...n] Linear encoder grid division / Enc grid div
p0408[0...n] Rotary encoder pulse number / Rot enc pulse No.
p0410[0...n] Encoder inversion actual value / Enc inv act value
p0411[0...n] Measuring gear configuration / Meas gear config
p0412[0...n] Measuring gear absolute encoder rotary revolutions virtual / Abs rot rev
p0413[0...n] Measuring gear position tracking tolerance window / Pos track window
p0414[0...n] Redundant coarse position value relevant bits (identified) / Relevant bits
p0415[0...n] Gx_XIST1 Coarse position safe most significant bit (identified) / Gx_XIST1 safe MSB
p0416[0...n] Non safety-relevant meas. steps position value POS1 (detected) / nsrPos1
p0417[0...n] Encoder safety comparison algorithm (detected) / Safety comp_algo
p0418[0...n] Fine resolution Gx_XIST1 (in bits) / Enc fine Gx_XIST1
p0419[0...n] Fine resolution absolute value Gx_XIST2 (in bits) / Enc fine Gx_XIST2
p0420[0...n] Encoder connection / Enc_connection
p0421[0...n] Absolute encoder rotary multiturn resolution / Enc abs multiturn
p0422[0...n] Absolute encoder linear measuring step resolution / Enc abs meas step
p0423[0\ldotsn] Absolute encoder rotary singleturn resolution / Enc abs singleturn
p0424[0...n] Encoder linear zero mark distance / Enc lin ZM_dist
p0425[0...n] Encoder rotary zero mark distance / Enc rot dist ZM
p0426[0...n] Encoder zero mark differential distance / Enc ZM Dif_dist
p0427[0...n] Encoder SSI baud rate / Enc SSI baud rate
p0428[0...n] Encoder SSI monoflop time / Enc SSI t_monoflop
p0429[0...n] Encoder SSI configuration / Enc SSI config
p0430[0...n] Sensor Module configuration / SM config
p0431[0...n] Angular commutation offset / Ang_com offset
p0432[0...n] Gearbox factor encoder revolutions / Grbx_fact enc_rev
p0433[0...n] Gearbox factor motor/load revolutions / Grbx_fact mot_rev
p0434[0...n] Encoder SSI error bit / Enc SSI error bit
p0435[0...n] Encoder SSI alarm bit / Enc SSI alarm bit
p0436[0...n] Encoder SSI parity bit / Enc SSI parity bit
p0437[0...n] Sensor Module configuration extended / SM config ext
p0438[0...n] Squarewave encoder filter time / Enc t_filt
p0439[0...n] Encoder ramp-up time / Enc ramp-up time
p0440[0...n] Copy encoder serial number / Copy enc ser_no
p0441[0...n] Encoder commissioning serial number part 1 / Enc comm ser_no 1
p0442[0...n] Encoder commissioning serial number part 2 / Enc comm ser_no 2
p0443[0...n] Encoder commissioning serial number part 3 / Enc comm ser_no 3
p0444[0...n] Encoder commissioning serial number part 4 / Enc comm ser_no 4
p0445[0...n] Encoder commissioning serial number part 5 / Enc comm ser_no 5
p0446[0...n] Encoder SSI number of bits before the absolute value / Enc SSI bit before
```

p0447[0...n]	Encoder SSI number of bits absolute value / Enc SSI bit val
p0448[0...n]	Encoder SSI number of bits after the absolute value / Enc SSI bit after
p0449[0...n]	Encoder SSI number of bits filler bits / Enc SSI fill bits
p0453[0...n]	Pulse encoder evaluation zero speed measuring time / Enc_ev n_0 t_meas
p0493[0...n]	Zero mark selection input terminal / ZM_sel inp_term
p0494[0...n]	Equivalent zero mark input terminal / ZM_equiv inp_term
p4600[0...n]	Motor temperature sensor 1 sensor type / Temp_sens 1 type
p4601[0...n]	Motor temperature sensor 2 sensor type / Temp_sens 2 type
p4602[0...n]	Motor temperature sensor 3 sensor type / Temp_sens 3 type
p4603[0...n]	Motor temperature sensor 4 sensor type / Temp_sens 4 type
p4662[0...n]	Encoder characteristic type / Enc char_type
p4663[0...n]	Encoder characteristic K0 / Enc char K0
p4664[0...n]	Encoder characteristic K1 / Enc char K1
p4665[0...n]	Encoder characteristic K2 / Enc char K2
p4666[0...n]	Encoder characteristic K3 / Enc char K3
p4670[0...n]	Analog sensor configuration / Ana_sens config
p4671[0...n]	Analog sensor input / Ana_sens inp
p4672[0...n]	Analog sensor channel A voltage at actual value zero / Ana_sens A U at 0
p4673[0...n]	Analog sensor channel A voltage per encoder period / Ana_sens A U/per
p4674[0...n]	Analog sensor channel B voltage at actual value zero / Ana_sens B U at 0
p4675[0...n]	Analog sensor channel B voltage per encoder period / Ana_sens B U/per
p4676[0...n]	Analog sensor range limit threshold / Ana_sens lim thr
p4677[0...n]	Analog sensor LVDT configuration / Ana_sens LVDT conf
p4678[0...n]	Analog sensor LVDT ratio / An_sens LVDT ratio
p4679[0...n]	Analog sensor LVDT phase / An_sens LVDT ph
p4680[0...n]	Zero mark monitoring tolerance permissible / ZM_monit tol perm
p4681[0...n]	Zero mark monitoring tolerance window limit 1 positive / ZM tol lim 1 pos
p4682[0...n]	Zero mark monitoring tolerance window limit 1 negative / ZM tol lim 1 neg
p4683[0...n]	Zero mark monitoring tolerance window alarm threshold positive / ZM tol A_thr pos
p4684[0...n]	Zero mark monitoring tolerance window alarm threshold negative / ZM tol A_thr neg
p4685[0...n]	Speed actual value mean value generation / n_act mean val
p4686[0...n]	Zero mark minimum length / ZM min length

2.3.4 Parameters for motor data sets (MDS)

The following list contains the parameters that are dependent on the motor data sets.

Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: MDS	
p0131[0...n]	Motor component number / Mot comp_no
p0133[0...n]	Motor configuration / Motor config
p0300[0...n]	Motor type selection / Mot type sel
p0301[0...n]	Motor code number selection / Mot code No. sel
r0302[0...n]	Motor code number of motor with DRIVE-CLiQ / Mot code mot w/ DQ
r0303[0...n]	Motor with DRIVE-CLiQ status word / Motor w DQ ZSW
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0306[0...n]	Number of motors connected in parallel / Motor qty
p0307[0...n]	Rated motor power / Mot P_rated
p0308[0...n]	Rated motor power factor / Mot cos phi rated
p0309[0...n]	Rated motor efficiency / Mot eta_rated
p0310[0...n]	Rated motor frequency / Mot f_rated
p0311[0...n]	Rated motor speed / Mot n_rated
r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act
p0314[0...n]	Motor pole pair number / Mot pole pair No.
p0316[0...n]	Motor torque constant / Mot kT
p0318[0...n]	Motor stall current / Mot I_standstill
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n]	Maximum motor speed / Mot n_max
p0323[0...n]	Maximum motor current / Mot I_max
p0324[0...n]	Winding maximum speed/ Winding n_max
p0325[0...n]	Motor pole position identification current 1st phase / Mot PolID I 1st ph
p0327[0...n]	Optimum motor load angle / Mot phi_load opt
p0328[0...n]	Motor reluctance torque constant / Mot kT_reluctance
p0329[0...n]	Motor pole position identification current / Mot PollD current
r0330[0...n]	Rated motor slip / Mot slip_rated
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act
r0332[0...n]	Rated motor power factor / Mot cos phi rated
r0333[0...n]	Rated motor torque / Mot M_rated
r0334[0...n]	Actual motor-torque constant / Mot kT act
p0335[0...n]	Motor cooling type / Mot cool type
r0336[0...n]	Actual rated motor frequency / Mot f_rated act
r0337[0...n]	Rated motor EMF / Mot EMF_rated
r0339[0...n]	Rated motor voltage / Mot U_rated
p0341[0...n]	Motor moment of inertia / Mot M_mom of inert
p0342[0...n]	Ratio between the total and motor moment of inertia / Mot MomInert Ratio
r0343[0...n]	Rated motor current identified / Mot I_rated ident
p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n]	Nominal motor starting time / Mot t_start_rated
p0346[0...n]	Motor excitation build-up time / Mot t_excitation
p0347[0...n]	Motor de-excitation time / Mot t_de-excitat
p0350[0...n]	Motor stator resistance cold / Mot R_stator cold
p0352[0...n]	Cable resistance / R_cable
p0353[0...n]	Motor series inductance / Mot L_series
p0354[0...n]	Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d
p0355[0...n]	Motor damping resistance q axis / Mot R_damp q
p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.
p0357[0...n]	Motor stator inductance d axis / Mot L_stator d
p0358[0...n]	Motor rotor leakage inductance / damping inductance d axis / Mot L_r leak / LDd
p0359[0...n]	Motor damping inductance q axis / Mot L_damp q

p0360[0...n] Motor magnetizing inductance/magn. inductance d axis saturated / Mot Lh/Lh d sat
p0361[0...n] Motor magnetizing inductance q axis saturated / Mot L_magn q sat
p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Motor saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Motor saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0370[0...n] Motor stator resistance cold / Mot R_stator cold
r0372[0...n] Cable resistance / Mot R_cable
r0373[0...n] Motor rated stator resistance / Mot R_stator rated
r0374[0...n] Motor rotor resistance cold / damping resistance d axis / Mot R_r cold/R_D d
r0375[0...n] Motor damping resistance q axis / Mot R_damp q
r0376[0...n] Rated motor rotor resistance / Mot rated R_rotor
r0377[0...n] Motor leakage inductance total / Mot L_leak total
r0378[0...n] Motor stator inductance d axis / Mot L_stator d
r0380[0...n] Motor damping inductance d axis / Mot L_damp d
r0381[0...n] Motor damping inductance q axis / Mot L_damp q
r0382[0...n] Motor magnetizing inductance transformed / Lh d axis saturated / Mot L_m tr/Lhd sat
r0383[0...n] Motor magnetizing inductance q axis saturated / Mot L_magn q sat
r0384[0...n] Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0385[0...n] Motor damping time constant q axis / Mot L_damping q
r0386[0...n] Motor stator leakage time constant / Mot T_stator leak
r0387[0...n] Motor stator leakage time constant q axis / Mot T_Sleak /T_Sq
p0389[0...n] Excitation rated no-load current / Exc I_noload_rated
p0390[0...n] Rated excitation current / Exc I_rated
p0391[0...n] Current controller adaptation starting point KP / I_adapt pt KP
p0392[0...n] Current controller adaptation starting point KP adapted / I_adapt pt KP adap
p0393[0...n] Current controller adaptation P gain scaling / I_adapt Kp scal
r0395[0...n] Actual stator resistance / R_stator act
r0396[0...n] Actual rotor resistance / R_rotor act
p0397[0...n] Angle magnetic decoupling maximum angle / Magn decpl max_ang
p0398[0...n] Angle magn decoupling (cross saturation) coeff 1 / Magn decoupl C1
p0399[0...n] Angle magn decoupling (cross saturation) coeff 3 / Magn decoupl C3
p0530[0...n] Bearing version selection / Bearing vers sel
p0531[0...n] Bearing code number selection / Bearing codeNo sel
p0532[0...n] Bearing maximum speed / Bearing n_max
p0600[0...n] Motor temperature sensor for monitoring / Mot temp_sensor
p0601[0...n] Motor temperature sensor type / Mot_temp_sens type
p0604[0...n] Mot_temp_mod 2/KTY alarm threshold / Mod 2/KTY A thresh
p0605[0...n] Mot_temp_mod 1/2 threshold / Mod $1 / 2$ threshold
p0606[0...n] Mot_temp_mod 2/KTY timer / Mod 2/KTY t_timer
p0607[0...n] Temperature sensor fault timer / Sensor fault time
p0610[0...n] Motor overtemperature response / Mot temp response
p0611[0...n] I2t motor model thermal time constant / I2t mot_mod T
p0612[0...n] Mot_temp_mod activation / Mot_temp_mod act
p0614[0...n] Thermal resistance adaptation reduction factor / Therm R_adapt red
p0615[0...n] Mot_temp_mod 1 (I2t) fault threshold / I2t F thresh
p0616[0...n] Motor overtemperature alarm threshold 1 / Mot temp alarm 1
p0620[0...n] Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n] Identification stator resistance after restart / Rst_ident Restart
p0622[0...n] Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
p0624[0...n] Motor temperature offset PT100 / Mot T_offset PT100

p0625[0...n]	Motor ambient temperature during commissioning / Mot T_ambient
p0626[0...n]	Motor overtemperature, stator core / Mot T_over core
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor
p0629[0...n]	Stator resistance reference / R_stator ref
r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient
r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator
r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding
r0633[0...n]	Mot_temp_mod rotor temperature / Mod rotor temp
p0634[0...n]	Q flux flux constant unsaturated / PSIQ KPSI UNSAT
p0635[0...n]	Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT
p0636[0...n]	Q flux direct axis current constant unsaturated / PSIQ KID UNSAT
p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT
p0643[0...n]	Overvoltage protection for synchronous motors / Overvolt_protect
p0650[0...n]	Actual motor operating hours / Mot t_oper act
p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint
p0652[0...n]	Motor stator resistance scaling / Mot R_stator scal
p0653[0...n]	Motor stator leakage inductance scaling / Mot L_S_leak scal
p0655[0...n]	Motor magnetizing inductance d axis saturated scaling / Mot L_m d sat scal
p0656[0...n]	Motor magnetizing inductance q axis saturated scaling / Mot L_m q sat scal
p0657[0...n]	Motor damping inductance d axis scaling / Mot L_damp d scal
p0658[0...n]	Motor damping inductance q axis scaling / Mot L_damp q scal
p0659[0...n]	Motor damping resistance d axis scaling / Mot R_damp d scal
p0660[0...n]	Motor damping resistance q axis scaling / Mot R_damp q scal
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.
p0827[0...n]	Motor changeover status word bit number / Mot_chg ZSW bitNo.
p1231[0...n]	Armature short-circuit / DC braking configuration / ASC/DCBRK config
p1232[0...n]	DC braking braking current / DCBRK I_brake
p1233[0...n]	DC braking time / DCBRK time
p1234[0...n]	Speed at the start of DC braking / DCBRK n_start
p1236[0...n]	Ext. armature short-cct. contactor feedback signal monit. time / ASC ext t_monit
p1237[0...n]	External armature short-circuit delay time when opening / ASC ext t_wait
p1909[0...n]	Motor data identification control word / MotID STW
p1980[0...n]	PollD technique / PollD technique
p1982[0...n]	PollD selection / PollD selection
p1991[0...n]	Motor changeover angular commutation correction / Ang_com corr
p1999[0...n]	Ang. commutation offset calibr. and PollD scaling / Com_ang_offs scal
p4610[0...n]	Motor temperature sensor 1 sensor type MDS / Temp sens1 typ MDS
p4611[0...n]	Motor temperature sensor 2 sensor type MDS / Temp sens2 typ MDS
p4612[0...n]	Motor temperature sensor 3 sensor type MDS / Temp sens3 typ MDS
p4613[0...n]	Motor temperature sensor 4 sensor type MDS / Temp sens4 typ MDS
r5398[0...n]	Mot_temp_mod 3 alarm threshold image p5390 / A thr image p5390
r5399[0...n]	Mot_temp_mod 3 fault threshold image p5391 / F thr image p5391

2.3.5 Parameters for power unit data sets (PDS)

The following list contains the parameters that are dependent on the power unit data sets.

Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: PDS	
p0121[0...n]	Power unit component number / PU comp_no
p0124[0...n]	Power unit detection via LED / PU detection LED
p0125[0...n]	Activate/de-activate power unit components / PU_comp act/deact
r0126[0...n]	Power unit components active/inactive / PU comp act/inact
r0127[0...n]	Power unit EEPROM data version / PU EEPROM version
r0128[0...n]	Power unit firmware version / PU FW version
r0200[0...n]	Power unit code number actual / PU code no. act
p0201[0...n]	Power unit code number / PU code no
r0203[0...n]	Actual power unit type / PU actual type
r0204[0...n]	Power unit hardware properties / PU HW property
p0251[0...n]	Operating hours counter power unit fan / PU fan t_oper
p0254[0...n]	Operating hours counter power unit fan inside the converter / PU inner fan t_op
p0895[0...n]	BI: Activate/de-activate power unit components / PU_comp act/deact
p3901[0...n]	Power unit EEPROM Vdc offset calibration / PU EEPROM Vdc offs
p7001[0...n]	Par_circuit power units enable / PU enable
r7002[0...n]	CO: Par_circuit status power units / Status PU
r7020[0...n]	CO: Par_circuit deviation current in phase U / Phase U curr dev
r7021[0...n]	CO: Par_circuit deviation current in phase V / Phase V curr dev
r7022[0...n]	CO: Par_circuit deviation current in phase W / Phase W curr dev
r7030[0...n]	CO: Par_circuit DC link voltage deviation / Vdc deviation
p7040[0...n]	Par_circuit correction valve lockout time phase U / Comp t_lockout U
p7042[0...n]	Par_circuit correction valve lockout time phase V / Comp t_lockout V
p7044[0...n]	Par_circuit correction valve lockout time phase W / Comp t_lockout W
r7050[0...n]	Par_circuit circulating current phase U / Circ_ı_phase U
r7051[0...n]	Par_circuit circulating current phase V / Circ_I_phase V
r7052[0...n]	Par_circuit circulating current phase W / Circ_I_phase W
r7200[0...n]	Par_circuit power unit overload I2t / PU overload I2t
r7201[0...n]	CO: Par_circuit power unit temperatures max. inverter / PU temp max inv
r7202[0...n]	Par_circuit power unit temperatures max. depletion layer / PU TempMaxDepLayer
r7203[0...n]	CO: Par_circuit power unit temperatures max. rectifier / PU temp max rect
r7204[0...n]	CO: Par_circuit power unit temperatures air intake / PU temp air intake
r7205[0...n]	Par_circuit power unit temperatures electronics / PU temp electr
r7206[0...n]	Par_circuit power unit temperatures inverter 1 / PU temp inv 1
r7207[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp inv 2
r7208[0...n]	Par_circuit power unit temperatures inverter 3 / PU temp inv 3
r7209[0...n]	Par_circuit power unit temperatures inverter 4 / PU temp inv 4
r7210[0...n]	Par_circuit power unit temperatures inverter 5 / PU temp inv 5
r7211[0...n]	Par_circuit power unit temperatures inverter 6 / PU temp inv 6
r7212[0...n]	Par_circuit power unit temperatures inverter 1 / PU temp rect 1
r7213[0...n]	Par_circuit power unit temperatures inverter 2 / PU temp rect 2
r7214[0...n]	Par_circuit power unit temperatures depletion layer 1 / PU temp DepLayer 1
r7215[0...n]	Par_circuit power unit temperatures depletion layer 2 / PU temp DepLayer 2
r7216[0...n]	Par_circuit power unit temperatures depletion layer 3 / PU temp DepLayer 3
r7217[0...n]	Par_circuit power unit temperatures depletion layer 4 / PU temp DepLayer 4
r7218[0...n]	Par_circuit power unit temperatures depletion layer 5 / PU temp DepLayer 5
r7219[0...n]	Par_circuit power unit temperatures depletion layer 6 / PU temp DepLayer 6
r7220[0...n]	CO: Par_circuit drive output current maximum / Drv I_outp max
r7222[0...n]	CO: Par_circuit absolute current actual value / I_act abs val
r7223[0...n]	CO: Par_circuit phase current actual value phase U / I_phase U act val
r7224[0...n]	CO: Par_circuit phase current actual value phase V / __phase V act val
r7225[0...n]	CO: Par_circuit phase current actual value phase W / __phase W act val

r7226[0...n] CO: Par_circuit phase current actual value phase U offset / I_phase U offset
r7227[0...n] CO: Par_circuit phase current actual value phase V offset / I_phase V offset
r7228[0...n] CO: Par_circuit phase current actual value phase W offset / I_phase W offset
r7229[0...n] CO: Par_circuit phase current actual value sum U, V, W / I_phase sum UVW
r7230[0...n] CO: Par_circuit DC link voltage actual value / Vdc_act
r7231[0...n] CO: Par_circuit phase voltage actual value phase U / U_phase U act val
r7232[0...n] CO: Par_circuit phase voltage actual value phase V / U _phase V act val
r7233[0...n] CO: Par_circuit phase voltage actual value phase W / U_phase W act val
r7240[0...n] Par_circuit gating unit status word 1 / Gating unit ZSW1
r7740[0...n] IGBT power cycling counter valve 1 / IGBT load count 1
r7741[0...n] IGBT power cycling counter valve 2 / IGBT load count 2
r7742[0...n] IGBT power cycling counter valve 3 / IGBT load count 3
r7743[0...n] IGBT power cycling counter valve 4 / IGBT load count 4
r7744[0...n] IGBT power cycling counter valve 5 / IGBT load count 5
r7745[0...n] IGBT power cycling counter valve 6 / IGBT load count 6
p7786[0...n] Service report / Service report
r9671[0...n] SI module identifier Motor Module / Module ID MM

2.4 Parameters for write protection and know-how protection

2.4.1 Parameters with "WRITE_NO_LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute. These parameters are not affected by the write protection.

Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: WRITE_NO_LOCK	
p0003	BOP access level / BOP acc_level
p0009	Device commissioning parameter filter / Dev comm par_filt
p0124[0...n]	Power unit detection via LED / PU detection LED
p0124[0...n]	Main component detection using LED / M_comp detect LED
p0144[0...n]	Sensor Module detection via LED / SM detection LED
p0154	DRIVE-CLiQ Hub Module detection via LED / Hub detection LED
p0154	Terminal Module detection via LED / TM detection LED
p0972	Drive unit reset / Drv_unit reset
p0976	Reset and load all parameters / Reset load all par
p0977	Save all parameters / Save all par
p2035	Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no
p2102	BI: Acknowledge all faults / Ackn all faults
p2111	Alarm counter / Alarm counter
p3100	RTC time stamp mode / RTC t_stamp mode
p3101[0...1]	RTC set UTC time / RTC set UTC
p3103	RTC synchronization source / RTC sync_source
p3950	Service parameter / Serv par
p3981	Faults acknowledge drive object / Faults ackn DO
p3985	Master control mode selection / PcCtrl mode select
p4700[0...1]	Trace control / Trace control
p4701	Measuring function control / Meas fct ctrl
p4703[0...1]	Trace options / Trace options
p4707	Measurement function configuration / Meas fct config
p4710[0...1]	Trace trigger condition / Trace Trig_cond
p4711[0...5]	Trace trigger signal / Trace trig_signal
p4712[0...1]	Trace trigger threshold / Trace trig_thresh
p4713[0...1]	Trace tolerance band trigger threshold 1 / Trace trig thr 1
p4714[0...1]	Trace tolerance band trigger threshold 2 / Trace trig thr 2
p4715[0...1]	Trace bit mask trigger, bit mask / Trace trig mask
p4716[0...1]	Trace bit mask trigger trigger condition / Trace Trig_cond
p4717	Measuring function number of averaging operations / Meas fct avg qty
p4718	Measuring function number of stabilizing periods / MeasFct StabPerQty
p4720[0...1]	Trace recording cycle / Trace record_cyc
p4721[0...1]	Trace recording time / Trace record_time
p4722[0...1]	Trace trigger delay / Trace trig_delay
p4723[0...1]	Trace time slice cycle / Trace cycle
p4724[0...1]	Trace average in the time range / Trace average
p4730[0...5]	Trace record signal 0 / Trace record sig 0
p4731[0...5]	Trace record signal 1 / Trace record sig 1
p4732[0...5]	Trace record signal 2 / Trace record sig 2
p4733[0...5]	Trace record signal 3 / Trace record sig 3
p4734[0...5]	Trace record signal 4 / Trace record sig 4
p4735[0...5]	Trace record signal 5 / Trace record sig 5
p4736[0...5]	Trace record signal 6 / Trace record sig 6
p4737[0...5]	Trace record signal 7 / Trace record sig 7

p4780[0...1] Trace physical address signal 0 / Trace PhyAddr Sig0
p4781[0...1] Trace physical address signal 1 / Trace PhyAddr Sig1
p4782[0...1] Trace physical address signal 2 / Trace PhyAddr Sig2
p4783[0...1] Trace physical address signal 3 / Trace PhyAddr Sig3
p4784[0...1] Trace physical address signal 4 / Trace PhyAddr Sig4
p4785[0...1] Trace physical address signal 5 / Trace PhyAddr Sig5
p4786[0...1] Trace physical address signal 6 / Trace PhyAddr Sig6
p4787[0...1] Trace physical address signal 7 / Trace PhyAddr Sig7
p4789[0...1] Trace physical address trigger signal / Trace PhyAddr Trig
p4795 Trace memory bank changeover / Trace mem changeov
p4800 Function generator control / FG control
p4810 Function generator mode / FG operating mode
p4812 Function generator physical address / FG phys address
p4813 Function generator physical address reference value / FG phys addr ref
p4815[0...2] Function generator drive number / FG drive number
p4816 Function generator output signal integer number scaling / FG outp integ scal
p4819 BI: Function generator control / FG control
p4820 Function generator signal shape / FG signal shape
p4821 Function generator period / FG period duration
p4822 Function generator pulse width / FG pulse width
p4823 Function generator bandwidth / FG bandwidth
p4824 Function generator amplitude / FG amplitude
p4825 Function generator 2nd amplitude / FG 2nd amplitude
p4826 Function generator offset / FG offset
p4827 Function generator ramp-up time to offset / FG ramp-up offset
p4828 Function generator lower limit / FG lower limit
p4829 Function generator upper limit / FG upper limit
p4830 Function generator time slice cycle / FG time slice
p4831 Function generator amplitude scaling / FG amplitude scal
p4832[0...2] Function generator amplitude scaling / FG amplitude scal
p4833[0...2] Function generator offset scaling / FG offset scal
p4835[0...4] Function generator free measurement function scaling / FG fr MeasFct scal
p4840[0...1] MTrace cycle number setting / Cycle number
p7761 Write protection / Write protection
p7770 NVRAM action / NVRAM action
p8550 AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8805 Identification and maintenance 4 configuration / I\&M 4 config
p8806[0...53] Identification and Maintenance 1 / I\&M 1
p8807[0...15] Identification and Maintenance 2 / I\&M 2
p8808[0...53] Identification and Maintenance 3 / I\&M 3
p8809[0...53] Identification and Maintenance 4 / I\&M 4
p8829 CBE2x remote controller number / CBE2x rem ctrl num
p9210 Flashing component number / Flash comp_no
p9211 Flash function / Flash fct.
p9484 BICO interconnections search signal source / BICO S_src srch

2.4.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute. These parameters are not affected by the know-how protection.

Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: KHP_WRITE_NO_LOCK
p0003 BOP access level / BOP acc_level
p0009 Device commissioning parameter filter / Dev comm par_filt
p0124[0...n] Power unit detection via LED / PU detection LED
p0124[0...n] Main component detection using LED / M_comp detect LED
p0144[0...n] Sensor Module detection via LED / SM detection LED
p0154 DRIVE-CLiQ Hub Module detection via LED / Hub detection LED
p0154 Terminal Module detection via LED / TM detection LED
p0972 Drive unit reset / Drv_unit reset
p0976 Reset and load all parameters / Reset load all par
p0977 Save all parameters / Save all par
p2035 Fieldbus interface USS PIV drive object number / Fieldbus USS DO_no
p2040 Fieldbus interface monitoring time / Fieldbus t_monit
p2102 BI: Acknowledge all faults / Ackn all faults
p2111 Alarm counter / Alarm counter
p3100 RTC time stamp mode / RTC t_stamp mode
p3101[0...1] RTC set UTC time / RTC set UTC
p3103 RTC synchronization source / RTC sync_source
p3950 Service parameter / Serv par
p3981 Faults acknowledge drive object / Faults ackn DO
p3985 Master control mode selection / PcCtrl mode select
p7761 Write protection / Write protection
p7770 NVRAM action / NVRAM action
p8550 AOP LOCAL/REMOTE / AOP LOCAL/REMOTE
p8805 Identification and maintenance 4 configuration / I\&M 4 config
p8806[0...53] Identification and Maintenance 1 / I\&M 1
p8807[0...15] Identification and Maintenance 2 / I\&M 2
p8808[0...53] Identification and Maintenance 3 /I\&M 3
p8809[0...53] Identification and Maintenance 4 / I\&M 4
p8829 CBE2x remote controller number / CBE2x rem ctrl num
p8835 CBE20 firmware selection / CBE20 FW sel
p8839[0...1] PZD interface hardware assignment / PZD IF HW assign
p8840 COMM BOARD monitoring time / CB t_monit
p9210 Flashing component number / Flash comp_no
p9211 Flash function / Flash fct.
p9484 BICO interconnections search signal source / BICO S_src srch

2.4.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute.
These parameters can also be read with activated know-how protection.
Product: SINAMICS G130/G150, Version: 4702900, Language: eng, Type: KHP_ACTIVE_READ
p0015 Macro drive object / Macro DO
p0015 Macro drive unit / Macro drv unit
p0100 IEC/NEMA mot stds / IEC/NEMA mot stds
p0101[0...n] Drive object numbers / DO numbers
p0103[0...n] Application-specific view / Appl_spec view
p0105 Activate/de-activate drive object / DO act/deact
p0107[0...n] Drive object type / DO type
p0108[0...n] Drive objects function module / DO fct_mod
p0120 Number of Power unit Data Sets (PDS) / PDS count
p0121[0...n] Power unit component number / PU comp_no
p0125[0...n] Activate/de-activate power unit components / PU_comp act/deact
p0130 Number of Motor Data Sets (MDS) / MDS count
p0131[0...n] Motor component number / Mot comp_no
p0140 Number of Encoder Data Sets (EDS) / EDS count
p0141[0...n] Encoder interface (Sensor Module) component number / Enc_interf comp_no
p0142[0...n] Encoder component number / Encoder comp_no
p0145[0...n] Activate/de-activate encoder interface / Enc_intf act/deact
p0150 Number of VSM data sets / VSM dat_sets qty.
p0151[0...1] DRIVE-CLiQ Hub Module component number / Hub comp_no
p0151 Terminal Module component number / TM comp_no
p0151[0...n] Voltage Sensing Module component number / VSM comp_no
p0161 Option board component number / Opt board comp_no
p0170 Number of Command Data Sets (CDS) / CDS count
p0180 Number of Drive Data Sets (DDS) / DDS count
p0199[0...24] Drive object name / DO name
p0300[0...n] Motor type selection / Mot type sel
p0304[0...n] Rated motor voltage / Mot U_rated
p0305[0...n] Rated motor current / Mot I_rated
p0349 System of units motor equivalent circuit diagram data / Unit_sys mot ESB
p0400[0...n] Encoder type selection / Enc_typ sel
p0505 Selecting the system of units / Unit sys select
p0595 Technological unit selection / Tech unit select
p0806 BI: Inhibit master control / PcCtrl inhibit
p0864 BI: Infeed operation / INF operation
p0922 IF1 PROFIdrive PZD telegram selection / IF1 PZD telegr
p0978[0...n] List of drive objects / List of the DO
p1080[0...n] Minimum speed / n_min
p1082[0...n] Maximum speed / n_max
p1520[0...n] CO: Torque limit upper / M_max upper
p2000 Reference frequency / f_ref
p2000 Reference speed reference frequency / n_ref f_ref
p2000 Reference velocity reference frequency / v_ref f_ref
p2001 Reference voltage / Reference voltage
p2002 Reference current / I_ref
p2003 Reference torque / M_ref
p2005 Reference angle / Reference angle
p2006 Reference temp / Ref temp
p2007 Reference acceleration / a_ref
p2030 Field bus int protocol selection / Field bus protocol
p2038 IF1 PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode

p2079	IF1 PROFIdrive PZD telegram selection extended / IF1 PZD telegr ext
p4956[0...n]	OA DO-specific activation / OA DO act
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764
p7764[0...n]	KHP OEM exception list / KHP OEM excep list
p7852	Number of indices for r7853 / Qty indices r7853
p8836	SINAMICS Link address / SINAMICS Link add
p8870[0...15]	SINAMICS Link receive telegram word PZD / Recv link word
p8871[0...15]	SINAMICS Link send telegram word PZD / Send link word
p8872[0...15]	SINAMICS Link address receive PZD / Link addr recv
p9500	SI Motion monitoring clock cycle (Control Unit) / SI Mtn clock CU
p9601	SI enable functions integrated in the drive (Control Unit) / SI enable fct CU
p9810	SI PROFIsafe address (Motor Module) / SI PROFIsafe MM
p9902	Target topology number of indices / TargetTopo indices

2.4 Parameters for write protection and know-how protection

Function diagrams

Content

3.1 Table of contents 1027
3.2 Explanation of the function diagrams 1034
3.3 CU320-2 input/output terminals 1039
3.4 PROIFlenergy 1047
3.5 PROFIdrive 1050
3.6 Internal control/status words 1095
3.7 Sequence control 1108
3.8 Brake control 1111
3.9 Safety Integrated Basic Functions 1116
3.10 Safety Integrated Extended Functions 1124
3.11 Safety Integrated PROFIsafe 1146
3.12 Setpoint channel 1149
3.13 Encoder evaluation 1159
3.14 Vector control 1163
3.15 Technology functions 1189
3.16 Technology controller 1196
3.17 Signals and monitoring functions 1202
3.18 Diagnostics 1211
3.19 Data sets 1218
3.20 Basic Infeed 1224
3.21 Terminal Board 30 (TB30) 1232
3.22 Communication Board CAN10 (CBC10) 1238
3.23 Terminal Module 31 (TM31) 1245
3.24 Terminal Module 150 (TM150) 1256
3.25 Voltage Sensing Module (VSM) 1260
3.26 Basic Operator Panel 20 (BOP20) 1263

3.1 Table of contents

3.2 Explanation of the function diagrams 1034
1020 - Explanation of the symbols (part 1) 1035
1021 - Explanation of the symbols (part 2) 1036
1022 - Explanation of the symbols (part 3) 1037
1030 - Handling BICO technology 1038
3.3 CU320-2 input/output terminals 1039
2119 - Overview 1040
2120 - Digital inputs, electrically isolated (DI 0 DI 3, DI 16, DI 17) 1041
2121 - Digital inputs, electrically isolated (DI $4 \ldots$ DI 7, DI 20, DI 21) 1042
2130 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 1043
2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 1044
2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13) 1045
2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15) 1046
3.4 PROIFlenergy 1047
2381 - Control commands / interrogation commands 1048
2382 - States 1049
3.5 PROFIdrive 1050
2401 - Overview 1052
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 1053
2415 - Standard telegrams and process data 1 1054
2416 - Standard telegrams and process data 2 1055
2419 - Manufacturer-specific telegrams and process data 1 1056
2420 - Manufacturer-specific telegrams and process data 2 1057
2421 - Manufacturer-specific telegrams and process data 3 1058
2422 - Manufacturer-specific telegrams and process data 4 1059
2423 - Manufacturer-specific/free telegrams and process data 1060
2425 - STW1_BM control word, metal industry interconnection 1061
2426 - STW2_BM control word, metal industry interconnection 1062
2427 - E_STW1_BM control word, infeed metal industry interconnection 1063
2428 - ZSW1_BM status word, metal industry interconnection 1064
2429 - ZSW2_BM status word, metal industry interconnection 1065
2430 - E_ZSW1_BM status word, infeed metal industry interconnection 1066
2439 - PZD receive signals interconnection, profile-specific 1067
2440 - PZD receive signals interconnection, manufacturer-specific 1068
2441 - STW1 control word interconnection (p2038 = 2) 1069
2442 - STW1 control word interconnection (p2038 = 0) 1070
2444 - STW2 control word interconnection (p2038 = 0) 1071
2447 - E_STW1 control word infeed interconnection 1072
2449 - PZD send signals interconnection, profile-specific 1073
2450 - PZD send signals interconnection, manufacturer-specific 1074
2451 - ZSW1 status word interconnection (p2038 = 2) 1075
2452 - ZSW1 status word interconnection (p2038 = 0) 1076
2454 - ZSW2 status word interconnection (p2038 = 0) 1077
2457 - E_ZSW1 status word, infeed interconnection 1078
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 1079
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 1080
2472 - IF1 status words, free interconnection 1081
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 1082
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 1083
2485 - IF2 receive telegram, free interconnection 1084
2487 - IF2 send telegram, free interconnection 1085
2489 - IF2 status words, free interconnection 1086
2491 - IF2 receive telegram, free interconnection 1087
2493 - IF2 send telegram, free interconnection 1088
2495 - CU_STW1 control word 1, Control Unit interconnection 1089
2496 - CU_ZSW1 status word 1, Control Unit interconnection 1090
2497 - A_DIGITAL interconnection 1091
2498 - E_DIGITAL interconnection 1092
2499 - A_DIGITAL_1 interconnection 1093
2500 - E_DIGITAL_1 interconnection 1094
3.6 Internal control/status words 1095
2501 - Control word, sequence control 1096
2503 - Status word, sequence control 1097
2505 - Control word, setpoint channel 1098
2520 - Control word, speed controller 1099
2522 - Status word, speed controller 1100
2526 - Status word, closed-loop control 1101
2530 - Status word, closed-loop current control 1102
2534 - Status word, monitoring functions 1 1103
2536 - Status word, monitoring functions 2 1104
2537 - Status word, monitoring functions 3 1105
2546 - Control word, faults/alarms 1106
2548 - Status word, faults/alarms 1 and 2 1107
3.7 Sequence control 1108
2610 - Sequencer 1109
2634 - Missing enable signals, line contactor control, logic operation 1110
3.8 Brake control 1111
2701 - Basic brake control (r0108.14 = 0) 1112
2704 - Extended brake control, zero-speed detection (r0108.14 = 1) 1113
2707 - Extended brake control, open/close brake (r0108.14 = 1) 1114
2711 - Extended brake control, signal outputs (r0108.14 = 1) 1115
3.9 Safety Integrated Basic Functions 1116
2800 - Parameter manager 1117
2802 - Monitoring functions and faults/alarms 1118
2804 - SI status CU, MM, CU + MM, group STO 1119
2806 - S_STW1/2 Safety control word 1/2, S_ZSW1/2 Safety status word 1/2 1120
2810 - STO (Safe Torque Off), SS1 (Safe Stop 1) 1121
2811 - STO (Safe Torque Off), safe pulse suppression 1122
2814 - SBC (Safe Brake Control), SBA (Safe Brake Adapter) 1123
3.10 Safety Integrated Extended Functions 1124
2818 - Parameter manager 1125
2819 - SS1, SS2, SOS, internal STOP B, C, D, F 1126
2820 - SLS (Safely-Limited Speed) 1127
2821 - Safe referencing 1128
2822 - SLP (Safely-Limited Position) 1129
2823 - SSM (Safe Speed Monitor) 1130
2824 - SDI (Safe Direction) 1131
2836 - SBT (Safe Brake Test) 1132
2837 - Selection of active control word 1133
2840 - SI Motion drive-integrated control signals/status signals 1134
2842 - S_STW1 Safety control word 1, S_ZSW1 Safety status word 1 1135
2843 - S_STW2 Safety control word 2, S_ZSW2 Safety status word 2 1136
2846 - TM54F overview 1137
2847 - TM54F parameter manager 1138
2848 - TM54F configuration, F-DI/F-DO test 1139
2850 - TM54F (F-DI 0 ... F-DI 4) 1140
2851 - TM54F (F-DI 5 ... F-DI 9) 1141
2853 - TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23) 1142
2855 - TM54F control interface (p9601.2 = 1 \& p9601.3 = 0) 1143
2856 - TM54F Safe State selection 1144
2857 - TM54F assignment (F-DO 0 ... F-DO 3) 1145
3.11 Safety Integrated PROFIsafe 1146
2915 - Standard telegrams 1147
2917 - Manufacturer-specific telegrams 1148
3.12 Setpoint channel 1149
3001 - Overview 1150
3010 - Fixed speed setpoints 1151
3020 - Motorized potentiometer 1152
3030 - Main/supplementary setpoint, setpoint scaling, jogging 1153
3040 - Direction limitation and direction reversal 1154
3050 - Skip frequency bands and speed limitations 1155
3060 - Basic ramp-function generator 1156
3070 - Extended ramp-function generator 1157
3080 - Ramp-function generator selection, status word, tracking 1158
3.13 Encoder evaluation 1159
4702 - Overview 1160
4704 - Raw signal sensing 1161
4715 - Speed actual value and pole pos. sensing, motor encoder ASM/SM (encoder 1) 1162
3.14 Vector control 1163
6020 - Speed control and generation of the torque limits, overview 1164
6030 - Speed setpoint, droop 1165
6031 - Pre-control balancing, reference/acceleration model 1166
6040 - Speed controller with/without encoder 1167
6050 - Speed controller adaptation (Kp_n/Tn_n adaptation) 1168
6060 - Torque setpoint 1169
6220 - Vdc_max controller and Vdc_min controller 1170
6300 - U/f control, overview 1171
6301 - U/f characteristic and voltage boost 1172
6310 - Resonance damping and slip compensation 1173
6320 - Vdc_max controller and Vdc_min controller (U/f) 1174
6490 - Speed control configuration 1175
6491 - Flux control configuration 1176
6630 - Upper/lower torque limit 1177
6640 - Current/power/torque limits 1178
6700 - Current control, overview 1179
6710 - Current setpoint filter 1180
6714 - Iq and Id controllers 1181
6721 - Id setpoint (PEM, p0300 = 2) 1182
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 1183
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 1184
6724 - Field weakening controller (PEM, p0300 = 2) 1185
6730 - Interface to the Motor Module (ASM, p0300 = 1) 1186
6731 - Interface to the Motor Module (PEM, p0300 = 2) 1187
6799 - Display signals 1188
3.15 Technology functions 1189
7010 - Friction characteristic 1190
7014 - External Armature Short-Circuit (EASC, p0300 = 2xx or 4xx) 1191
7016 - Internal Armature Short-Circuit (IASC, p0300 = 2xx or 4xx) 1192
7017 - DC brake (p0300 = 1xx) 1193
7020 - Synchronization 1194
7033 - Essential service mode (ESM) 1195
3.16 Technology controller 1196
7950 - Fixed value selection binary (r0108.16 = 1 and p2216 = 2) 1197
7951 - Fixed value selection direct (r0108.16 = 1 and p2216 = 1) 1198
7954 - Motorized potentiometer (r0108.16 = 1) 1199
7958 - Closed-loop control (r0108.16 = 1) 1200
7960 - DC link voltage controller (r0108.16 = 1) 1201
3.17 Signals and monitoring functions 1202
8005 - Overview 1203
8010 - Speed signals 1 1204
8011 - Speed signals 2 1205
8012 - Torque signals, motor blocked/stalled 1206
8013 - Load monitoring (r0108.17 = 1) 1207
8014 - Thermal monitoring, power unit 1208
8016 - Thermal monitoring, motor 1209
8017 - Thermal motor models 1210
3.18 Diagnostics 1211
8050 - Overview 1212
8060 - Fault buffer 1213
8065 - Alarm buffer 1214
8070 - Faults/alarms trigger word (r2129) 1215
8075 - Faults/alarms configuration 1216
8134 - Measuring sockets (T0, T1, T2) 1217
3.19 Data sets 1218
8560 - Command Data Sets (CDS) 1219
8565 - Drive Data Sets (DDS) 1220
8570 - Encoder Data Sets (EDS) 1221
8575 - Motor Data Sets (MDS) 1222
8580 - Power unit Data Sets (PDS) 1223
3.20 Basic Infeed 1224
8710 - Overview 1225
8720 - Control word, sequence control infeed 1226
8726 - Status word, sequence control infeed 1227
8732 - Sequencer 1228
8734 - Missing enable signals, line contactor control 1229
8750 - Interface to the Basic Infeed power unit (control signals, actual values) 1230
8760 - Signals and monitoring functions (p3400.0 $=0$) 1231
3.21 Terminal Board 30 (TB30) 1232
9099 - Overview 1233
9100 - Digital inputs, electrically isolated (DI 0 ... DI 3) 1234
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3) 1235
9104 - Analog inputs (AI 0 ... AI 1) 1236
9106 - Analog outputs (AO 0 ... AO 1) 1237
3.22 Communication Board CAN10 (CBC10) 1238
9204 - Receive telegram, free PDO mapping (p8744 = 2) 1239
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) 1240
9208 - Send telegram, free PDO mapping (p8744 = 2) 1241
9210 - Send telegram, Predefined Connection Set (p8744 = 1) 1242
9220 - Control word, CANopen 1243
9226 - Status word, CANopen 1244
3.23 Terminal Module 31 (TM31) 1245
9549 - Overview 1246
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3) 1247
9552 - Digital inputs, electrically isolated (DI 4 ... DI 7) 1248
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1) 1249
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9) 1250
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11) 1251
9566 - Analog input 0 (AI 0) 1252
9568 - Analog input 1 (AI 1) 1253
9572 - Analog outputs (AO 0 ... AO 1) 1254
9576 - Temperature evaluation (KTY/PTC) 1255
3.24 Terminal Module 150 (TM150) 1256
9625 - Temperature evaluation structure (channels $0 \ldots 11$) 1257
9626 - Temperature evaluation $1 \times 2,3,4$ wire (channels $0 \ldots 5$) 1258
9627 - Temperature evaluation 2×2 wire (channels $0 \ldots 11$) 1259
3.25 Voltage Sensing Module (VSM) 1260
9880 - Analog inputs (AI 0 ... AI 3) 1261
9886 - Temperature evaluation 1262
3.26 Basic Operator Panel 20 (BOP20) 1263
9912 - Control word interconnection 1264

3.2 Explanation of the function diagrams

Function diagrams
1020 - Explanation of the symbols (part 1) 1035

1021 - Explanation of the symbols (part 2) 1036
1022 - Explanation of the symbols (part 3) 1037
1030 - Handling BICO technology 1038

Switch-on delay The digital signal x must have the value " 1 " without any interruption

Delay element, first order. pxxxx = time constant

2nd-order filter (bandstop/general filter)

Used as bandstop filter - center frequency $\frac{p x x x x}{}$
The digital signal x must have the value "
the time T before output y changes to " 0 "

Delay (switch-on and switch-off)

The digital signal x must have the value " 1 " without interruption during
time T_{1} or must have the value " 0 " during time T_{2} before output y changes its signal state.

PT2 low pass

Transfer function

$$
H(s)=\frac{1}{\left(\frac{s}{2 \pi f n_{-} d}\right)^{2}+\frac{2 \cdot D _d}{2 \pi f n _d} \cdot s+1}
$$

$$
\text { U_boost total r1315 } \rightarrow \text { Linear }
$$

$$
\begin{array}{ll}
\text { Parabolic } \\
\text { U_boost total r1315 }
\end{array} \rightarrow
$$

Flux current control (FCC)		
	7	8
ng.vsd	Function diagram	
.07.00	SINAMICS	

The main setpoint for the speed controller (CI: p1070) should be received from the output of the motorized potentiometer (CO: r1050) and
the "jog" command (BI: p1055) from digital input DI 0 (BO: r0722.0, X122.1 terminal) on the CU320.

Parameterizing steps:

(1) $\mathrm{p} 1055[0]=722.0$
Terminal X122.1 acts as "Jog bit 0".
(2) $p 1070[0]=1050$
The output of the motorized potentiometer acts as main setpoint for the speed controller.

1	2	3	4	5	6	7	8
DO: All objects					fp_1030_51_eng.vsd	Function diagram	- 1030 -
Explanations on the function diagrams - Handling BICO technology					10.05.11 V04.07.00	SINAMICS	

$3.3 \quad$ CU320-2 input/output terminals

Function diagrams

2119 - Overview	1040
2120 - Digital inputs, electrically isolated (DI 0 ... DI 3, DI 16, DI 17)	1041
2121 - Digital inputs, electrically isolated (DI 4 ... DI 7, DI 20, DI 21)	1042
2130 - Digital inputs/outputs, bidirectional (DI/DO $8 \ldots$ DI/DO 9)	1043
2131 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11)	1044
2132 - Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13)	1045
2133 - Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15)	1046

$3.4 \quad$ PROIFIenergy

Function diagrams

2381 - Control commands / interrogation commands	1048
2382 - States	1049

sueı6е!р ио!џวип」 ε

$3.5 \quad$ PROFIdrive

Function diagrams
2401 - Overview 1052
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 1053
2415 - Standard telegrams and process data 1 1054
2416 - Standard telegrams and process data 2 1055
2419 - Manufacturer-specific telegrams and process data 1 1056
2420 - Manufacturer-specific telegrams and process data 2 1057
2421 - Manufacturer-specific telegrams and process data 3 1058
2422 - Manufacturer-specific telegrams and process data 4 1059
2423 - Manufacturer-specific/free telegrams and process data 1060
2425 - STW1_BM control word, metal industry interconnection 1061
2426 - STW2_BM control word, metal industry interconnection 1062
2427 - E_STW1_BM control word, infeed metal industry interconnection 1063
2428 - ZSW1_BM status word, metal industry interconnection 1064
2429 - ZSW2_BM status word, metal industry interconnection 1065
2430 - E_ZSW1_BM status word, infeed metal industry interconnection 1066
2439 - PZD receive signals interconnection, profile-specific 1067
2440 - PZD receive signals interconnection, manufacturer-specific 1068
2441 - STW1 control word interconnection (p2038 = 2) 1069
2442 - STW1 control word interconnection (p2038 = 0) 1070
2444 - STW2 control word interconnection (p2038 = 0) 1071
2447 - E_STW1 control word infeed interconnection 1072
2449 - PZD send signals interconnection, profile-specific 1073
2450 - PZD send signals interconnection, manufacturer-specific 1074
2451 - ZSW1 status word interconnection (p2038 = 2) 1075
2452 - ZSW1 status word interconnection (p2038 = 0) 1076
2454 - ZSW2 status word interconnection (p2038 = 0) 1077
2457 - E_ZSW1 status word, infeed interconnection 1078
2468 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 1079
2470 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 1080
2472 - IF1 status words, free interconnection 1081
2481 - IF1 receive telegram, free interconnection via BICO (p0922 = 999) 1082
2483 - IF1 send telegram, free interconnection via BICO (p0922 = 999) 1083
2485 - IF2 receive telegram, free interconnection 1084
2487 - IF2 send telegram, free interconnection 1085
2489 - IF2 status words, free interconnection 1086
2491 - IF2 receive telegram, free interconnection 1087
2493 - IF2 send telegram, free interconnection 1088
2495 - CU_STW1 control word 1, Control Unit interconnection 1089
2496 - CU_ZSW1 status word 1, Control Unit interconnection 1090
2497 - A_DIGITAL interconnection 1091
2498 - E_DIGITAL interconnection 1092
2499 - A_DIGITAL_1 interconnection 1093
2500 - E_DIGITAL_1 interconnection 1094

<1> Depending on the drive object, only specific telegrams can be used.
Hp022 $=999$ is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423].
por22 $\neq 999$ is changed to $00922=999$, the "old" telegram assignment is maintained as specified in [2415] - [2423]
<4> The maximum number of PZD words depends on the drive object type
<5> Only for SINAMICS S120/S150.
$\square=$ Position encoder signal

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2419_54_eng.vsd	Function diagram	- 2419 -
PROFIdrive - Manufacturer-specific telegrams and process data 1					06.03.14 V04.07.00	S120/S150/G130/G150	

<2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423].
If p0922 $\neq 999$ is changed to p0922 $=999$, the "old" telegram assignment is maintained as specified in [2415] - [2423]!
<4> The maximum number of PZD words depends on the drive object type
$<5>$ In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1). p2037 = 2 should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.
<6> Not for U/f control.
<7> Preassignment, not disabled.
<8> Only for S120/S150.
<9> Values smoothed at Vector, Values unsmooted at Servo. <10> Not for SERVO
-

6	7	8	
fp_2421_54_eng.vsd	Function diagram	- 2421 -	

<1> Depending on the drive object, only specific telegrams can be used.
<2> If p0922 = 999 is changed to another value, the telegram is automatically assigned as specified in [2415] - [2423]
If p0922 $\neq 999$ is changed to p0922 = 999, the "old" telegram assignment is maintained as specified in [2415] - [2423]
$<3>$ In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1).
p2037 = 2 should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.
<4> The maximum number of PZD words depends on the drive object type

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2423_54_eng.vsd	Function diagram	- 2423 -
PROFIdrive - Manufacturer-specific/free telegrams and process data					07.03.14 V04.07.00	S120/S150/G130/G	

Signal targets for E_STW1_BM							<1> <7>				
Signal	Meaning		Interconnection parameters	[Function diagram] internal control word			[Function diagram] signal target			Inverted	
			A_INF	B_INF <7>	S_INF <5>	A_INF	B_INF <7>	S_INF <5>			
STW1.0	$\begin{aligned} & \hline \bar{K}=\text { ON (close pre-charging/line contactor, pulses } \\ & 0=\text { OFF1 (reduce Vdc along a ramp, suppress pu } \end{aligned}$	an be enabled) e and open pre-charging/line contactor)		p0840[0] $=$ r2090.0	[8920.3]	[8720.3]	[8820.3]	[8932]	[8732]	[8832]	-
STW1.1	1 = No OFF2 (enable is possible) $0=$ OFF2 (immediate pulse suppression and pow	r-on inhibit)	p0844[0] = r2090.1	[8920.3]	[8720.3]	[8820.3]	[8932]	[8732]	[8832]	-	
STW1.2	Reserved		-	-	-	-	-	-	-	-	
STW1.3	$\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibit operation (suppress pulses) } \end{aligned}$	<3>	p0852[0] = r2090.3	[8920.3]	-	[8820.3]	[8932]	-	[8832]	-	
STW1.4	Reserved		-	-	-	-	-	-	-	-	
STW1.5	1 = Infeed, inhibit motoring	<4>	p3532= r2090.5	[8920.3]	-	-	[8920]	-	-	-	
STW1.6	1 = Infeed, inhibit regenerative operation	<3>	p3533 $=$ r2090.6	[8920.3]	-	[8820.3]	[8920]	-	[8820]	-	
STW1.7	$\Sigma=$ Acknowledge faults		$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	[2546.3]			[8060]			-	
STW1.8	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.9	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.10	1 = Control via PLC	<2>	p0854[0] $=$ r2090.10	[8920.3]	[8720.3]	[8820.3]	[8920]	[8720]	[8820]	-	
STW1.11	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.12	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.13	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.14	Reserved	<6>	<6>	-	-	-	-	-	-	-	
STW1.15	Controller-sign-of-life Toggle Bit		p2080[15] = r2090.15	-	-	-	-	-	-	-	

<1> Used in telegram 371. <2> STW1.10 must be set to ensure that the drive object accepts the process data (PZD). <3> Only for A_INF, _INF <4> Only for A_INF
1

	Signal sources for ZSW2_BM <1>									PROFIdrive sampling time	
	Signal	Meaning			Interconnection parameters	[Function diagram] internal status word	[Function diagram] signal source		Inverted		
\cdots	ZSW2.0	Reserved	<3>		<3>	-	-		-		
$\bigcirc 1$	zSW2.1	Reserved	<3>		<3>	-	-		-		
甭	ZSW2. 2	Reserved	<3>		<3>	-	-		-		
$\underset{\omega}{\infty}$	ZSW2.3	Reserved	<3>		<3>	-	-		-		
$\stackrel{\infty}{>} \quad \stackrel{\stackrel{\omega}{c}}{\stackrel{C}{\infty}}$	ZSW2.4	Reserved <3>			<3>	-	-		-		
응	ZSW2.5	1 = Alarm class bit 0			p2081[5] $=$ r2139.11	-	[2548]		-		
$\underset{\sim}{0}$	ZSW2.6	1 = Alarm class bit 1			p2081[6] $=$ r2139.12	-	[2548]		-		
흘	ZSW2.7	Reserved			-	-	-		-		
\gtrless	ZSW2.8	Reserved			-	-	-		-		
	ZSW2.9	1 = Speed setpoint limited <2>			p2081[9] $=$ r1407.11	-	-		-		
$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\stackrel{1}{2}}$	zSW2.10	1 = Upper torque limit <2>			p2081[10] = r1407.8	-	-		-		
	ZSW2.11	1 = Lower torque limit <2>			p2081[11] = r1407.9	-	-		-		
	ZSW2.12	1 = Encoderless operation due to fault			p2081[12] $=$ r1407.13	-	-		-		
	ZSW2.13	1 = SS1 delay time active in the drive			p2081[13] = r9773.2	-	-		-		
	ZSW2.14	1 = STO active in drive			p2081[14] = r9773.1	-	-		-		
	ZSW2.15	Controller slave sign-of-life Toggle bit			p2081[15] = r2093.15	-	-		-		
	<1> Used in telegram 220. <2> Not for VECTOR U/f. <3> Interconnection is not disabled.										
	1	2	3	4	5		6		7		8
	DO: SERVO, VECTOR					fp_2429_	54_eng.vsd	Function diagram			- 2429 -
$\stackrel{\rightharpoonup}{\circ}$	PROFIdrive - ZSW2_BM status word metal industry interconnection					27.06.13	V04.07.00	S12	/S150	30/G150	

	Signal receivers for PZD receive signals			<1>		<2>	
	Signal	Meaning	PROFIdrive Signal No.	Interconnection parameter	Function diagram	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Scaling
	STW1	Control word 1	1	(bitwise)	$\begin{gathered} {[2442],[2443]<3>} \\ {[2475]<3>} \end{gathered}$	U16	-
	STW2	Control word 2	3	(bitwise)	$\begin{aligned} & {[2444]} \\ & {[2445]} \\ & \hline \end{aligned}$	U16	-
	NSOLL_A	Speed setpoint A (16-bit)	5	$\begin{aligned} & \hline \text { p1070 } \\ & \text { p1155 } \end{aligned}$	$\begin{aligned} & {[3030.2]} \\ & {[3080.4]<3>} \end{aligned}$	116	4000 hex $\hat{=}$ p2000
	NSOLL_B	Speed setpoint B (32-bit)	7	$\begin{gathered} \hline \text { p1070 } \\ \text { p1155 } \\ \text { p1430 <3> } \end{gathered}$	$\begin{aligned} & \hline[3030.2] \\ & {[3080.4]} \\ & {[3090.8]<3>} \end{aligned}$	132	40000000 hex $\hat{=} \mathrm{p} 2000$
<3>	G1_STW	Encoder 1 control word	9	p0480[0]	[4720]	U16	-
<3>	G2_STW	Encoder 2 control word	13	p0480[1]	[4720]	U16	-
<3>	G3_STW	Encoder 3 control word	17	p0480[2]	[4720]	U16	-
D	A_DIGITAL	Digital output (16-bit)	22	(bitwise)	[2497]	U16	-
<3>	XERR	Position deviation	25	p1190	[3090.5]	132	-
<3>	KPC	Position controller gain factor	26	p1191	[3090.5]	132	-
	SATZANW	Pos block selection	32	(bitwise)	[2476]	U16	-
	MDI_TARPOS	MDI position	34	p2642	[3618]	132	1 hex $\hat{=} 1 \mathrm{LU}$
	MDI_VELOCITY	MDI velocity	35	p2643	[3618]	132	1 hex $1000 \mathrm{LU} / \mathrm{min}$
	MDI_ACC	MDI acceleration override	36	p2644	[3618]	116	4000 hex $\hat{=} 100 \%$
	MDI_DEC	MDI deceleration override	37	p2645	[3618]	116	4000 hex $\hat{=} 100 \%$
	MDI_MOD	MDI mode	38	(bitwise)	[2480]	U16	-
<4>	STW2_ENC	Control word 2 ENCODER	80	(bitwise)	[2433]	U16	-

[^9]<2> Data type according to to the PROFIdrive profile: I16 = Integer16, I32 = Integer32, U16 = Unsigned16, U32 = Unsigned32.
$<3>$ Only for SINAMICS S120
<4> Only for ENCODER.

PROFIdrive sampling time
<1> When selecting a standard telegram or manufacturer-specific telegram via 0922, these interconnection
parameters of the command data set
CDSO are automatically set.
2> Data type according to to the
PROFIdrive profile: $116=$ Integer16, I32 = Integer32, U16 = Unsigned16, U32 = Unsigned32.
<3> Only for S120.
<4> Only for S120/S150.

Signal targets for E_STW1

	Signal sources for PZD send signals			＜1＞			
	Signal	Description	PROFIdrive Signal No．	Interconnection parameter	Function diagram	Data type	Scaling
	ZSW1	Status word 1	2	r2089［0］	［2452］，［2453］，［2479］＜2＞	U16	－
	ZSW2	Status word 2	4	r2089［1］	［2454］，［2455］＜2＞	U16	－
	NIST＿A	Speed setpoint A（16 bit）	6	$\begin{array}{\|c} \hline \text { r0063 SERVO } \\ \text { ro063[0] VECTOR } \\ \text { r0061 ENCODER } \end{array}$	$\begin{gathered} {[4710]<2>} \\ {[4715]} \\ {[4710]} \end{gathered}$	116	4000 hex ${ }^{\text {¢ }}$ p2000
	NIST＿B	Speed setpoint B（32 bit）	8	r0063 SERVO r0063［0］VECTOR r0061 ENCODER	$\begin{gathered} {[4710]<2>} \\ {[4715]} \\ {[4710]} \\ \hline \end{gathered}$	132	40000000 hex § p2000
$<2>\{$	G1＿ZSW	Encoder 1 status word	10	r0481［0］	［4730］	U16	－
	G1＿XIST1	Encoder 1 actual position 1	11	r0482［0］	［4704］	U32	－
	G1＿XIST2	Encoder 1 actual position 2	12	r0483［0］	［4704］	U32	－
	G2＿ZSW	Encoder 2 status word	14	r0481［1］	［4730］	U16	－
	G2＿XIST1	Encoder 2 actual position 1	15	r0482［1］	［4704］	U32	－
	G2＿XIST2	Encoder 2 actual position 2	16	r0483［1］	［4704］	U32	－
	G3＿ZSW	Encoder 3 status word	18	r0481［2］	［4730］	U16	－
	G3＿XIST1	Encoder 3 actual position 1	19	r0482［2］	［4704］	U32	－
	G3＿XIST2	Encoder 3 actual position 2	20	r0483［2］	［4704］	U32	－
	E＿DIGITAL	Digital inputs	21	r2089［2］	［2459］	U16	－
	E＿ANALOG	Analog inputs	23	p2051［20］	－	U16	－
＜2＞	XIST＿A	Position actual value A	28	r2521［0］	［4010］	132	1 hex $\hat{=} 1 \mathrm{LU}$
	AKTSATZ	Pos selected block	33	r2670	［3650］	U16	－
	IAIST＿GLATT	Absolute actual current，smoothed	51	r0068［1］	［6714］	116	4000 hex p 2002
	ITIST＿GLATT	Current actual value，torque－generating	52	r0078［1］	［6714］	116	4000 hex 气 p 2002
	MIST＿GLATT	Actual torque smoothed	53	r0080［1］	［6714］	116	4000 hex 气 p2003
	PIST＿GLATT	Power factor，smoothed	54	r0082［1］	［6714］	116	4000 hex 气 p2004
	NIST＿A＿GLATT	Actual speed，smoothed	57	r0063［1］	［4715］	116	4000 hex § p2000
	MELD＿NAMUR	VIK－NAMUR message bit bar	58	r3113	－	U16	－
	IAIST	Absolute actual current	59	r0068［0］	［6714］	116	4000 hex 0 p2002
	MIST	Actual torque	60	r0080［0］	［6714］	116	4000 hex p2003
＜3＞	ZSW2＿ENC	Status word 2 ENCODER	81	（bitwise）	［2434］	U16	－

Send words $1 \ldots 16$ p2051［0．．．15］WORD r2053［0．．．15］WORD p2061［0．．．14］DWORD r2063［0．．．14］DWORD

Telegram
assignment
according to p0922 ［2415］．．．［2423］
$\left\{\begin{array}{c|}\hline \\ \hline \text { Drive object } \mathrm{n} \\ \hline \\ \vdots \\ \hline \text { Drive object } \mathrm{m} \\ \hline \text { Trailer } \\ \square\end{array}\right.$
PROFINET
＜1＞Data type according to the PROFIdrive profile：$I 16=$ Integer16， $\mathrm{I} 32=\operatorname{Integer} 32, \mathrm{U} 16=$ Unsigned16，U32 $=$ Unsigned 32 ．
＜2＞Only for SINAMICS S120．
＜3＞Only for ENCODER．

1	2	3	4	5	6	7	8
DO：A＿INF，B＿INF，ENC，S＿INF，SERVO，VECTOR					fp＿2449＿54＿eng．vsd	Function diagram	2449 －
PROFIdrive－PZD send signals interconnection，profile－specific					27．06．13 V04．07．00	S120／S150／G130／G150	

Signal sources for E_ZSW1

Signal	Meaning	Interconnection parameters	[Function diagram] signal source			[Function diagram] internal status word			Inverted
			A_INF	B_INF <4>	S_INF <3>	A_INF	B_INF <4>	S_INF <3>	
ZSW1.0	1 = Ready for switching on	p2080[0] $=$ r0899.0	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-
zSW1.1	1 = Ready for operation	p2080[1] = r0899.1	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.2	1 = Operation enabled	p2080[2] $=$ r0899.2	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.3	1 = Fault present	p2080[3] $=\mathrm{r} 2139.3$	[8060]			[2548.7]			-
zSW1.4	1 = No OFF2 effective	p2080[4] $=$ r0899.4	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.5	Reserved	-	-	-	-	-	-	-	-
ZSW1.6	1 = Switching on inhibited	p2080[6] = r0899.6	[8932]	[8732]	[8832]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.7	1 = Alarm present	p2080[7] $=$ r2139.7	[8065]			[2548.7]			-
ZSW1.8	Reserved	-	-	-	-	-	-	-	-
ZSW1.9	1 = PLC requests control <2>	p2080[9] $=$ r0899.9	[8926]	[8726]	[8826]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.10	Reserved	-	-	-	-	-	-	-	-
ZSW1.11	1 = Pre-charging completed	p2080[11] $=$ r0899.11	[8950]	[8750]	[8850]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.12	1 = Line contactor closed	p2080[12] $=$ r0899.12	[8934]	[8734]	[8834]	[8926.7]	[8726.7]	[8826.7]	-
ZSW1.13	Reserved	-	-	-	-	-	-	-	-
ZSW1.14	Reserved	-	-	-	-	-	-	-	-
ZSW1.15	Reserved	-	-	-	-	-	-	-	-

<1> Used in telegram 370.
<2> The drive object is ready to accept data
<3> Only for S120
<4> Only for S120 and G150.
<5> Not for G130.

<1> The number of PZD receive words depends on the drive object type.
2> TM15DI_DO, TM120 not for G130/G150.
<3> The following representation applies for words: 4000 hex $=100 \%$.
The reference variables p 200 x apply for the ongoing interconnection ($100 \%->\mathrm{p} 200 \mathrm{x}$).
The following applies for temperature values: $100^{\circ} \mathrm{C}->100 \%=4000 \mathrm{hex} ; 0^{\circ} \mathrm{C} \rightarrow 0 \%$.
<4> In order to maintain the PROFIdrive profile, send word 1 must be used as status word 1 (ZSW1) for A_INF, B_INF, S_INF and CU S
<5> Using the binector/connector converters at [2472], bits of 4 send words can be interconnected with any binectors.
<6> A INF and S_INF not for G130/G150

＜1＞The number of PZD send words depends on the drive object type
＜2＞A PZD send word can either be supplied via connector input p8851［x］（WORD）or via p8861［x］（DWORD）
connector inputs cannot be interconnected．
＜3＞Physical word and double word values are inserted in the telegram as referenced variables．p200x apply as reference variables（telegram contents $=4000$ hex or 4000 0000 hex in the case of double words，if the input variable has the value p200x）． The following applies for temperature values： $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000$ hex；
$0^{\circ} \mathrm{C}$－＞ $0 \%=40000000$ hex

sue』бе！р ио！џวип」 ε

<1> B_INF and S_INF not for S150 and G130.
<2> A_INF, S_INF, TM15DI_DO and TM120 not for G130/G150.
<2> A_INF, S_INF, TM15DI_DO and TM120 not for G130/G150.
<3> The following representation applies for words: 4000 hex $=100 \%$
The reference variables p200x apply for the ongoing interconnection (100%-> p200x).
The following applies for temperatur values: $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000$ hex: $0^{\circ} \mathrm{C} \rightarrow 0 \%$.
$4>$ Using the two connector-binector converters, two of the PZD receive words 3 to 5 can be converted into binectors for continued interconnection.
$<5>$ When interconnecting a connector output multiple times all the connector inputs must have either Integer or FloatingPoint data type.
<6> Not for TB30, TM15DI_DO, TM31 and TM120.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DO: A_INF, B_INF, CU_G, CU_S, S_INF, TB30, TM15DI_DO, TM31, TM120 | fp_2491_54_eng.vsd | Function diagram | 27.06 .13 V04.07.00 | S120/S150/G130/G150 | - 2491 - | | |

Signal targets for A_DIGITAL									PROFIdrive sampling time	
Signal	Meaning			Interconnection parameters <3>	[Function diagram] internal status word	[Function diagram] signal target		Inverte		
A_digital. 0	Digital output 8 (DIDOO 8)	<2>		p0738 $=$ r2091. 0	-			-		
A_DIGITAL. 1	Digital output 9 (DIDO 9)	<2>		p0739 $=$ r2091. 1	-			-		
A_digital. 2	Digital output 10 (DI/DO 10)	<2>		p0740 $=$ r2091. 2	-			-		
A_DIGITAL. 3	Digital output 11 (DI/DO 11)	<2>		p0741 $=$ r2091.3	-			-		
A_DIGITAL. 4	Digital output 12 (DI/DO 12)	<2>		p0742 $=$ r 2091.4	-			-		
A_DIGITAL. 5	Digital output 13 (DI/DO 13)	<2>		p0743 $=$ r 2091.5	-			-		
A_digital. 6	Digital output 14 (DI/DO 14)	<2>		p0744 $=$ r 2091.6	-			-		
A_digital. 7	Digital output 15 (DI/DO 15)	<2>		p0745 $=$ r2091. 7	-			-		
A_digital. 8	Reserved			-	-	-		-		
A_dIGITAL. 9	Reserved			-	-			-		
A_DIGITAL. 10	Reserved			-	-			-		
A_DIGITAL. 11	Reserved			-	-			-		
A_DIGITAL. 12	Reserved			-	-	-		-		
A_DIGITAL. 13	Reserved			-	-	-		-		
A_DIGITAL. 14	Reserved			-	-	-		-		
A_digital. 15	Reserved			-	-	-		-		
<1> Used in telegrams 390 to 396.		<2> Can be set via p0728 as input (DI) or output (DO).			<3> Pre-assignment, can be freely changed.					
1	2	3	4	5	6			7		8
DO: CU_G, CU_S					fp_2497_54_eng.vsd		Function diagram			- 2497 -
PROFIdrive - A_DIGITAL interconnection					27.06.13 V040	4.07 .00	S120/	150/G	30/G150	

3.6 Internal control/status words

Function diagrams

2501 - Control word, sequence control	1096
2503 - Status word, sequence control	1097
2505 - Control word, setpoint channel	1098
2520 - Control word, speed controller	1099
2522 - Status word, speed controller	1100
2526 - Status word, closed-loop control	1101
2530 - Status word, closed-loop current control	1102
2534 - Status word, monitoring functions 1	1103
2536 - Status word, monitoring functions 2	1104
2537 - Status word, monitoring functions 3	1105
2546 - Control word, faults/alarms	1106
2548 - Status word, faults/alarms 1 and 2	1107

<1> Only for servo control without encoder.
<2> Only for SERVO
<3> Only for SINAMICS S120.

$3.7 \quad$ Sequence control

Function diagrams
2610 - Sequencer 1109
2634 - Missing enable signals, line contactor control, logic operation 1110

$3.8 \quad$ Brake control

Function diagrams2701 - Basic brake control (r0108.14 = 0)1112
2704 - Extended brake control, zero-speed detection (r0108.14 = 1) 1113
2707 - Extended brake control, open/close brake (r0108.14 = 1) 1114
2711 - Extended brake control, signal outputs (r0108.14 = 1) 1115

p08
250
25013

p0856 $1=$
conditionally close the holding brake

Background
＜9＞
holding brak ake
＜1＞Motor holding brake configuration（p1215）
$0=$ No motor holding brake being used．
$1=$ Motor holding brake acc．to sequence control．
$2=$ Motor holding brake always released．
3 ＝Motor holding brake like sequence control，connection via BICO．
＜2＞Priority assignment（high－＞low）：p1215，p0858，p0855，p0856，sequence control． $<3>$ If p1215 $=0,2->\mathrm{t}=0 \mathrm{~ms}$ $4>$ Only if Safety $<1=0 \mathrm{~ms}$ ． 10＞ ，
＜5＞For p1227＝ 300 s ，the monitoring function is deactivated
＜6＞If an external motor holding brake is used，p1215 should be set to 3 and r0899．12 should be interconnected as control signal．
＜7＞r0046．21 $=0$ ，as long as r0046．0 $=1$（OFF1 enable missing or power－on inhibit）．
r0046．21＝1，if p0858＝ 1 or p0856 $=0$ ．
The signal generation is shown simplified．
＜8＞The internal signal includes signals that lead to OFF1 or OFF3（e．g．BICO or fault response）．
＜9＞If the brake is permanently applied or released（p0855，p0858 or p1215），the drive does not wait while the brake is released or applied． $<10>$ Only for SINAMICS S120．

Note：Braking signal diagnostic evaluation（p1278）only applies for SBC（Safe Brake Control）（controls the Safe Brake Relay）．＜10＞
Note：With VECTOR with activated＂parallel circuit＂Function Module（r0108．15＝1），the holding brake may only be connected to a power unit（p7015）．

1	2	3	4	5	6	7	8
DO：SERVO，VECTOR					fp＿2701＿54＿eng．vsd	Function diagram	2701－
Brake control－Basic brake control（r0108．14＝0）					14．02．14 V04．07．00	S120／S150／G130／G150	

[^10]
$3.9 \quad$ Safety Integrated Basic Functions

Function diagrams

2800 - Parameter manager	1117
2802 - Monitoring functions and faults/alarms	1118
$2804-$ SI status CU, MM, CU + MM, group STO	1119
$2806-$ S_STW1/2 Safety control word 1/2, S_ZSW1/2 Safety status word 1/2	1120
$2810-$ STO (Safe Torque Off), SS1 (Safe Stop 1)	1121
2811 - STO (Safe Torque Off), safe pulse suppression	1122
2814 - SBC (Safe Brake Control), SBA (Safe Brake Adapter)	1123

S_STW2 Safety control word 2

S_ZSW2 Safety status word 2

S_STW1 Safety control word 1

osiolociossur

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2806_54_eng.vsd	Function diagram	- 2806 -
SI Basic Functions - S_STW1/2 Safety control word 1/2, S_ZSW1/2 Safety status word 1/2					16.03.12 V04.07.00	S120/S150/G130/G	

3.10 Safety Integrated Extended Functions

Function diagrams
2818 - Parameter manager 1125
2819 - SS1, SS2, SOS, internal STOP B, C, D, F 1126
2820 - SLS (Safely-Limited Speed) 1127
2821 - Safe referencing 1128
2822 - SLP (Safely-Limited Position) 1129
2823 - SSM (Safe Speed Monitor) 1130
2824 - SDI (Safe Direction) 1131
2836 - SBT (Safe Brake Test) 1132
2837 - Selection of active control word 1133
2840 - SI Motion drive-integrated control signals/status signals 1134
2842 - S_STW1 Safety control word 1, S_ZSW1 Safety status word 1 1135
2843 - S_STW2 Safety control word 2, S_ZSW2 Safety status word 2 1136
2846 - TM54F overview 1137
2847 - TM54F parameter manager 1138
2848 - TM54F configuration, F-DI/F-DO test 1139
2850 - TM54F (F-DI 0 ... F-DI 4) 1140
2851 - TM54F (F-DI 5 ... F-DI 9) 1141
2853 - TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23) 1142
2855 - TM54F control interface (p9601.2 = $1 \&$ p9601.3 = 0) 1143
2856 - TM54F Safe State selection 1144
2857 - TM54F assignment (F-DO 0 ... F-DO 3) 1145

ω 0 0	[2858.2] \longrightarrow S_STW	V1 Safety control word 1	
		Meaning	[2858.3]
$\begin{aligned} & N \\ & \text { © } \\ & \text { N } \end{aligned}$	0	1 = Deselect STO	
	1	1 = Deselect SS1	
∞	2	1 = Deselect SS2	
$\underset{ }{-1}$	3	1 = Deselect SOS	
∞	4	1 = Deselect SLS	
$\stackrel{\text { ® }}{\stackrel{1}{+}}$	- :	Reserved	
O	6	1 = Deselect SLP	
으	7	1/0 = Acknowledgement	
\bigcirc	- \cdot	Reserved	
$\stackrel{\sim}{\sim}$	9	1 = Select SLS bit 0	
N	10	1 = Select SLS bit 1	
\sum	$\because \cdot$	Reserved	
$\stackrel{1}{0}$	12	1 = Deselect SDI positive	
$\stackrel{\sim}{0}$	13	1 = Deselect SDI negative	
$\stackrel{\stackrel{0}{\mathrm{E}}}{\stackrel{\rightharpoonup}{*}}$	- 15	Reserved	

[2858.6] \longrightarrow	S_ZSW1 Safety status word 1			$2 \times \mathrm{p9500}(24.00 \mathrm{~ms})$
	Bit No.	Meaning		$\xrightarrow[{[2858.7}]]{\text { S_ZSW1 }}$
	0	1 = STO or safe pulse cancellation active		
[2858.6] \longrightarrow	1	1 = SS1 active		
[2858.6]	2	1 = SS2 active		
[2858.6]	3	1 = SOS active		
[2858.6] \longrightarrow	4	1 = SLS active		
	\cdots	Reserved		
[2858.6]	6	1 = SLP active		
$\frac{\mathrm{r} 9722.7}{1085.61}<1$	7	1 = Internal event		
	\cdots	Reserved		
[2858.6] \longrightarrow	9	Active SLS stage bit 0	$\begin{aligned} & 0=\mathrm{SLS} 1 \\ & 1=\mathrm{SLS} 2 \\ & 2=\mathrm{SLS} \\ & 3=\mathrm{SLS} \end{aligned}$	
[2858.6] \longrightarrow	10	Active SLS stage bit 1		
[2858.6] \longrightarrow	11	1 = SOS selected		
[2858.6] \longrightarrow	12	1 = SDI positiv active		
[2858.6] \longrightarrow	13	1 = SDI negativ active		
	\cdots	Reserved		
[2858.6] \longrightarrow	15	1 = SSM (speed below limit value)		

3.11 Safety Integrated PROFIsafe

Function diagrams

2915 - Standard telegrams $\quad 1147$

[^11]
<1> Depending on the hardware and software version of the drive product used (SINAMICS G, SINAMICS S, software version, ...), only subsets of the Safety Integrated functions (SI functions) listed may be configured
The current Safety Integrated Function Manual (FHS) describes which SI functions are supported by which drive products.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_2917_54_eng.vsd	Function diagram	- 2917 -
SI PROFIsafe - Manufacturer-specific telegrams					04.12.12 V04.07.00	S120/S150/G130/G150	

3.12 Setpoint channel

Function diagrams

3001 - Overview	1150
3010 - Fixed speed setpoints	1151
3020 - Motorized potentiometer	1152
3030 - Main/supplementary setpoint, setpoint scaling, jogging	1153
3040 - Direction limitation and direction reversal	1154
3050 - Skip frequency bands and speed limitations	1155
3060 - Basic ramp-function generator	1156
3070 - Extended ramp-function generator	1157
3080 - Ramp-function generator selection, status word, tracking	1158

ןəииечэ ұи！оdəəS 乙レ・غ sweı6е！р ио！łэип」 \＆
$3>$ Only for G130/G150.
100> For SERVO, the following applies: Only if the function module "extended setpoint channel" is activated (r0108.8=1).
<101> To view the pre-assignment of the sampling times in p0115, refer to p0112.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR, VECTOR3P, VECTORGL, VECTORM2C, VECTORMV, VECTORSL					fp_3040_51_eng.vsd	Function diagram	3040-
Setpoint channel - Direction limitation and direction reversal					16.10.13 V04.07.00	SINAMICS	

əииечэ ұи!

3.13 Encoder evaluation

Function diagrams

4702 - Overview	1160
4704 - Raw signal sensing	1161
4715 - Speed actual value and pole pos. sensing, motor encoder ASM/SM (encoder 1)	1162

$3.14 \quad$ Vector control

Function diagrams
6020 - Speed control and generation of the torque limits, overview 1164
6030 - Speed setpoint, droop 1165
6031 - Pre-control balancing, reference/acceleration model 1166
6040 - Speed controller with/without encoder 1167
6050 - Speed controller adaptation (Kp_n/Tn_n adaptation) 1168
6060 - Torque setpoint 1169
6220 - Vdc_max controller and Vdc_min controller 1170
6300 - U/f control, overview 1171
6301 - U/f characteristic and voltage boost 1172
6310 - Resonance damping and slip compensation 1173
6320 - Vdc_max controller and Vdc_min controller (U/f) 1174
6490 - Speed control configuration 1175
6491 - Flux control configuration 1176
6630 - Upper/lower torque limit 1177
6640 - Current/power/torque limits 1178
6700 - Current control, overview 1179
6710 - Current setpoint filter 1180
6714 - Iq and Id controllers 1181
6721 - Id setpoint (PEM, p0300 = 2) 1182
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 1183
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 1184
6724 - Field weakening controller (PEM, p0300 = 2) 1185
6730 - Interface to the Motor Module (ASM, p0300 = 1) 1186
6731 - Interface to the Motor Module (PEM, p0300 = 2) 1187
6799 - Display signals 1188

[^12]

[^13]＜1＞If the lower transition point exceeds the upper transition point，the Kp－adaptation also changes over．

1	2	3	4	5	6	7	8
DO：VECTOR，VECTOR3P，VECTORGL，VECTORMV，VECTORSL					fp＿6050＿51＿eng．vsd	Function diagram	6050－
Vector control－Speed controller adaptation（Kp＿n／Tn＿n adaptation）					05．07．13 V04．07．00	SINAMICS	

sueı反е!р uo!џวип」 ε

[^14]

[^15]

[^16]

[^17]sшелбе!р ио!џ৩й」 ε

3.15 Technology functions

Function diagrams

7010 - Friction characteristic	1190
7014 - External Armature Short-Circuit (EASC, p0300 = 2xx or 4xx)	1191
7016 - Internal Armature Short-Circuit (IASC, p0300 = 2xx or 4xx)	1192
7017 - DC brake (p0300 = 1xx)	1193
$7020-$ Synchronization	1194
7033 - Essential service mode (ESM)	1195

$3.16 \quad$ Technology controller

Function diagrams

7950 - Fixed value selection binary (r0108.16 = 1 and p2216 = 2)	1197
7951 - Fixed value selection direct (r0108.16 = 1 and p2216 = 1)	1198
7954 - Motorized potentiometer (r0108.16 = 1)	1199
7958 - Closed-loop control (r0108.16 = 1)	1200
7960 - DC link voltage controller (r0108.16 = 1)	1201

3.17 Signals and monitoring functions

Function diagrams

$8005-$ Overview	1203
8010 - Speed signals 1	1204
8011 - Speed signals 2	1205
8012 - Torque signals, motor blocked/stalled	1206
8013 - Load monitoring (r0108.17 = 1)	1207
8014 - Thermal monitoring, power unit	1208
8016 - Thermal monitoring, motor	1209
8017 - Thermal motor models	1210

<1> Only for SERVO
<2> Only for VECTOR.
<3> Only for p0108.17 = 1 .

1	2	3	4	5	6	7	8
DO: All objects					fp_8005_51_eng.vsd	Function diagram	- 8005 -
Monitoring functions, faults, alarms, overview					12.03.13 V04.07.00	SINAMICS	

suо!роиия би!иоџиош рие sןеи6!s $\angle L \cdot \varepsilon$

3.18 Diagnostics

Function diagrams

8050 - Overview	1212
8060 - Fault buffer	1213
8065 - Alarm buffer	1214
8070 - Faults/alarms trigger word (r2129)	1215
8075 - Faults/alarms configuration	1216
8134 - Measuring sockets (TO, T1, T2)	1217

[^18]sue„бе!р uo!!วun」 ε

Changing the fault response $<1>$

Background
Changing the acknowledge mode＜1＞

＜1＞The fault response，acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting． Changes that may be required are only possible in specific value ranges specified by SIEMENS．
When the message type is changed，the supplementary information is tranferred from fault value r0949 to alarm value r 2124 and vice versa．

3.19 Data sets

Function diagrams

8560 - Command Data Sets (CDS)	1219
8565 - Drive Data Sets (DDS)	1220
8570 - Encoder Data Sets (EDS)	1221
8575 - Motor Data Sets (MDS)	1222
8580 - Power unit Data Sets (PDS)	1223

Example:
Change over Command Data Set
CDS0 --> CDS1
BI: p0810 = "0" \quad BI: p0810 $=$ " $1 "$
B1: p0810 = "0"
CDS0 selected
CDSO selected
CDS1 selected r0836.0 $=1$ --------------------------

CDS1 effective

<1> For SERVO, the following applies: Min / Max / Factory setting: $1 / 2 / 2$

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_8560_54_eng.vsd	Function diagram	-8560-
Data sets - Command Data Sets (CDS)					03.07.13 V04.07.00	S120/S150/G130/	

r0838 r0838[0] Motor data set MDS selected r0049[1] Encoder 1 encoder data set EDS selected r0838[2] Encoder 2 encoder data set EDS selected <2> r0838[3] Encoder 3 encoder data set EDS selected <2>

A07530 "Drive data set does not exist"
DDS effective r0051

| |
| ---: | :--- |

roo51.1
r0051.3
r0051.4
r0049
roo49[0] Motor data set MDS effective
r0049[1] Encoder 1 encoder data set EDS effective r0049[2] Encoder 2 encoder data set EDS effective <2 r0049[3] Encoder 3 encoder data set EDS effective <2
<1> A BICO interconnection to a parameter which is part of a drive data set always influences the currently effective data set
<2> Only for SINAMICS S120/S150.

1 2	3	4	5	6	7	8
DO: SERVO, VECTOR, TM41				fp_8565_54_eng.vsd	Function diagram	- 8565 -
Data sets - Drive Data Sets (DDS)				03.07.13 V04.07.00	S120/S150/G130/G150	

<1>p0120> 1 only for parallel connected Power unit components.

1	2	3	4	5	6	7	8
DO: SERVO, VECTOR					fp_8580_54_eng.vsd	Function diagram	-8580-
Data sets - Power unit Data Sets (PDS)					14.03.14 V04.07.00	S120/S150/G130/G150	

$3.20 \quad$ Basic Infeed

Function diagrams

8710 - Overview	1225
8720 - Control word, sequence control infeed	1226
8726 - Status word, sequence control infeed	1227
8732 - Sequencer	1228
8734 - Missing enable signals, line contactor control	1229
8750 - Interface to the Basic Infeed power unit (control signals, actual values)	1230
8760 - Signals and monitoring functions (p3400.0 $=0)$	1231

 PROFIdrive
 - Slave addres
 - Diagnostics
 - Interconnection of the
 free receive and send telegrams
 [2410], [2468], [2470]

[8720], [8726]
[2447], [2457]

[8760]

[8014]

[8732], [8734] \quad Closed-loop control operation to SERVO/VECTOR control operation to SERVO/VECTOR

[8060] ... [8075]

[^19]

[^20]sue»бе!р uо!џวип」 ε

Line voltage monitoring when powering－up

F06310
＂Supply voltage（p0210）incorrectly parameterized＂

DC link monitoring

Temperature monitoring braking resistor \qquad
＜1＞

рәәци э！seg 0乙｀غ
sue』6е！р ио！џวип」 ε

3.21 Terminal Board 30 (TB30)

Function diagrams

9099 - Overview	1233
9100 - Digital inputs, electrically isolated (DI 0 ... DI 3)	1234
9102 - Digital outputs, electrically isolated (DO 0 ... DO 3)	1235
9104 - Analog inputs (AI 0 ... AI 1)	1236
9106 - Analog outputs (AO $0 \ldots$ AO 1)	1237

（0عяค） 0ε рлеоя Іеи！шләц レ乙 ε

3 Function diagrams

3.22 Communication Board CAN10 (CBC10)

Function diagrams

9204 - Receive telegram, free PDO mapping (p8744 = 2)	1239
9206 - Receive telegram, Predefined Connection Set $(\mathrm{p} 8744=1)$	1240
9208 - Send telegram, free PDO mapping $(\mathrm{p} 8744=2)$	1241
9210 - Send telegram, Predefined Connection Set $(\mathrm{p} 8744=1)$	1242
9220 - Control word, CANopen	1243
9226 - Status word, CANopen	1244

List Manual (LH2), 04/2014, A5E03263479A OGเ૭/0દเ૭ SכIWVNIS

Signal targets for control word CANopen

Signal	Meaning	Interconnection parameters <1>	[Function diagram] internal control word	[Function diagram] signal target	Inverted
STW1.0	$\begin{aligned} & S_{1}=\text { ON (pulses can be enabled) } \\ & 0=\text { OFF1 (braking with ramp-function generator, then pulse cancellation and ready-to-power-up) } \end{aligned}$	p0840[0] = r8890.0	[2501.3]	[2610]	-
STW1.1	1 = No coast-down activated (enable possible) $0=$ Activate coast-down (immediate pulse cancellation and power-on inhibit)	p0844[0] = r8890.1	[2501.3]	[2610]	-
STW1.2	1 = No fast stop activated (enable possible) $0=$ Activate fast stop (braking along an OFF3 ramp p1135, then pulse cancellation and power-on inhibit)	p0848[0] = r8890.2	[2501.3]	[2610]	-
STW1.3	1 = Enable operation (pulses can be enabled) $0=$ Inhibit operation (cancel pulses)	p0852[0] = r8890.3	[2501.3]	[2610]	-
STW1.4	1 = Enable ramp-function generator $0=$ Inhibit ramp-function generator	$\begin{gathered} \langle 2> \\ \text { p1140[0] }=~ r 8890.4 \end{gathered}$	[2501.3]	[3060]	-
STW1.5	1 = Continue ramp-function generator $0=$ Freeze ramp-function generator	$\begin{gathered} <2> \\ \mathrm{p} 1141[0]=\mathrm{r} 8890.5 \end{gathered}$	[2501.3]	[3060]	-
STW1.6	1 = Enable speed setpoint ramp-function generator input $0=$ Inhibit setpoint (the ramp-function generator input is set to zero)	$\begin{gathered} \langle<> \\ \mathrm{p} 1142[0]= \\ =\text { r8890.6 } \end{gathered}$	[2501.1]	[3060]	-
STW1.7	Σ = Acknowledge fault	p2103[0] = r8890.7	[2546.1]	[8060]	-
STW1.8	1 = Stop	$\begin{aligned} & <2> \\ & <\overline{3}> \\ & \hline \end{aligned}$	-	[3060]	-
STW1.9	Reserved	-	-	-	-
STW1.10	Reserved	-			-
STW1.11	Can be freely connected	$p x x x x[y]=r 8890.11$			-
STW1.12	Can be freely connected	$p x x x x[y]=r 8890.12$	-	-	-
STW1.13	Can be freely connected	pxxxx[y] $=$ r8890.13	-	-	-
STW1.14	Can be freely connected	pxxxx[y] $=$ r8890.14	-	-	-
STW1.15	Can be freely connected	pxxxx[y] $=$ r8890.15	-	-	-

<1> Depending on the position of the CANopen control word in p8750, the number of the binector to be connected changes. $2>$ Ignored by automatic control word interconnection (p8790).

1	2	3	4	5	6	7	6
DO: A_INFM2C, SERVO, VECTOR, VECTOR3P, VECTORGL, VECTORMV, VECTORSL	fp_9220_51_eng.vsd	Function diagram					
Communication Board CAN10 (CBC10) - Control word, CANopen	- 9220 -	04.07 .13 V04.07.00	SINAMICS				

3.23 Terminal Module 31 (TM31)

Function diagrams

9549 - Overview	1246
9550 - Digital inputs, electrically isolated (DI 0 ... DI 3)	1247
9552 - Digital inputs, electrically isolated (DI 4 ... DI 7)	1248
9556 - Digital relay outputs, electrically isolated (DO 0 ... DO 1)	1249
9560 - Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9)	1250
9562 - Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11)	1251
9566 - Analog input 0 (Al 0)	1252
9568 - Analog input 1 (Al 1)	1253
9572 - Analog outputs (AO 0 ... AO 1)	1254
9576 - Temperature evaluation (KTY/PTC)	1255

[^21]

3.24 Terminal Module 150 (TM150)

Function diagrams
9625 - Temperature evaluation structure (channels $0 \ldots 11$) 1257
9626 - Temperature evaluation $1 \times 2,3,4$ wire (channels $0 \ldots 5$) 1258
9627 - Temperature evaluation $2 x 2$ wire (channels $0 \ldots 11$) 1259

<1> For p4102[0...23] $=251^{\circ} \mathrm{C}$ the evaluation of the appropriate threshold is deactivated.
<2> p4100[0...11]
0 : Evaluation disabled
2: KTY8ermistor (with monitoring for short-circuit)
2. KTY84 (with monitoring for wire break and short-circuit)

4: Bimetal NC contact (no monitoring)
6: PT1000 (withonioring for wire break and short-circuit)
<3> For p4103 = 0 s and sensor type "KTY84", "PT100", "PT1000" (p4100[0...11] $=2,5,6$) the following applies

- The relevant fault can only be triggered via the fault threshold (the timer output is always logical 0)

For p4103 $=0$ s and sensor type "PTC thermistor", "Bimetal NC contact" ($p 4100[0 . .11]=1,4$) the following applies:

- The corresponding alarm and fault are output simultaneously (delay time $=0 \mathrm{~s}$).
<4> Only for $1 \times 2 / 2 \times 2$ wire evaluation ($p 4108[0 \ldots 5]=0,1$).

1	2	3	4	5	6	7	8
DO: TM150					fp_9626_51_eng.vsd	Function diagram	-9626-
Terminal Module 150 (TM150) - Temperature evaluation 1x2, 3, 4 wire (channels $0 \ldots 5$)					04.12.12 V04.07.00	SINAMICS	

$3.25 \quad$ Voltage Sensing Module (VSM)

Function diagrams
9880 - Analog inputs (AI $0 \ldots$ AI 3) 1261

[^22]
<2> A fault or alarm in the temperature evaluation of the VSM is communicated to the downstream evaluation using special temperature values
$<3>$ As a result of the wire breakage monitoring the maximum temperature that can be measured is limited to approx. $175^{\circ} \mathrm{C}$.
$<4>$ When using a PTC, a value exceeding $250^{\circ} \mathrm{C}$ deactivates the warning resp. fault.
When using a KTY, a value exceeding $188.6^{\circ} \mathrm{C}$ deactivates the warning resp. fault.
<5> Can only be used with chassis infeeds.
> The VECTOR drive object is assigned a dynamic index (p0150).

3.26 Basic Operator Panel 20 (BOP20)

Function diagrams
9912 - Control word interconnection

Content

4.1 Overview of faults and alarms 1266
4.2 List of faults and alarms

4.1 Overview of faults and alarms

4.1.1 General information on faults and alarms

Display of faults/alarms (messages)

In the case of a fault, the drive signals the corresponding fault(s) and/or alarm(s).
For example, the following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS/PROFINET.
- Display online using the commissioning software.

Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 4-1 Differences between faults and alarms

Type	\quad Description
Faults	What happens when a fault occurs? - The appropriate fault reaction is triggered. - Status signal ZSW1.3 is set. - The fault is entered in the fault buffer.
How are faults eliminated?	
- Remove the original cause of the fault.	
- Acknowledge the fault.	

Fault reactions

Note

The following table lists all fault reactions and their meanings used for the entire SINAMICS drive family.

The following fault reactions are defined:

Table 4-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE	-	None	No reaction when a fault occurs. Note When the "Basic positioner" function module is activated (r0108.4 = 1), the following applies: When a fault occurs with fault reaction "NONE", an active traversing task is interrupted and the system switches to tracking mode until the fault has been rectified and acknowledged.
OFF1	ON/ OFF	Brake along the ramp-function generator down ramp followed by pulse inhibit	Closed-loop speed control (p1300 = 20, 21) - $n_{_}$set $=0$ is input immediately to brake the drive along the rampfunction generator ramp down (p1121). - When zero speed is detected, the motor holding brake (if parameterized) is closed (p 1215). The pulses are suppressed when the brake application time (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold (p 1226) or if the monitoring time (p 1227) started when the speed setpoint $<=$ speed threshold (p 1226) has expired. Torque control (p1300 = 23) - The following applies for torque control: Reaction as for OFF2. - When the system switches to torque control with p1501, the following applies: No separate braking reaction. If the actual speed value drops below the speed threshold (p1226) or the timer stage (p 1227) has expired, the motor holding brake (if one is being used) is closed. The pulses are suppressed when the brake application time (p 1217) expires.
OFF1 DELAYED	-	As for OFF1, however delayed	Faults with this fault response only become effective after the delay time in p3136 has expired. The remaining time up to OFF1 is displayed in r3137.
OFF2	COAST STOP	Internal/external pulse inhibit	Closed-loop speed and torque control - Instantaneous pulse suppression, the drive "coasts" to a standstill. - The motor holding brake (if one is being used) is closed immediately. - Switching on inhibited is activated.

Table 4-2 Fault reactions, continued

List	PROFIdrive	Reaction	Description
OFF3	QUICK STOP	Braking along the OFF3 down ramp followed by pulse inhibit	Closed-loop speed control (p1300 = 20, 21) - n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the closing time of the holding brake (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold (p 1226) or if the monitoring time (p 1227) started when the speed setpoint <= speed threshold (p1226) has expired. - Switching on inhibited is activated. Torque control (p1300 = 23) - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP2	-	n _set $=0$	- n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - The drive remains in closed-loop speed control.
IASC/ DCBRK	-	-	- For synchronous motors, the following applies: If a fault occurs with this fault reaction, an internal armature shortcircuit is triggered. The conditions for p1231 = 4 must be observed. - For induction motors, the following applies: If a fault occurs with this fault reaction, DC braking is triggered. DC braking must have been commissioned (p1232, p1233, p1234).
ENCODER	-	Internal/external pulse inhibit (p0491)	The fault reaction ENCODER is applied as a function of the setting in p0491. Factory setting: p0491 = 0 --> Encoder fault causes OFF2 Notice When changing p0491, it is imperative that the information in the description of this parameter is carefully observed.

Acknowledging faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been removed

Table 4-3 Acknowledging faults

Acknowledgemen t	Description
POWER ON	The fault is acknowledged by a POWER ON (switch drive unit off and on again). Note If this action has not removed the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged on one drive object (Points 1 to 3) or on all drive objects (Point 4) as follows: 1 Acknowledge by setting parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledge via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledge via PROFIBUS control signal: STW1.7 = 0 --> 1 (edge) 4 Acknowledge all faults p2102 BI: Acknowledge all faults All of the faults on all of the drive objects of the drive system can be acknowledged using this binector input. Note - These faults can also be acknowledged by a POWER ON. - If the cause of the fault has not been removed, the fault will continue to be displayed after acknowledgement. - Safety Integrated faults The "Safe standstill" (SH) function must be deselected before these faults are acknowledged.
PULSE INHIBIT	The fault can only be acknowledged when the pulses are inhibited (r0899.11 = 0). The same options are available for acknowledging as described under acknowledge IMMEDIATELY.

Fault buffer - saved when switching off

The contents of the fault buffer are saved to the non-volatile memory when the Control Unit is switched off, i.e. the fault buffer history is still available when the unit is switched on again.
The fault buffer of a drive object comprises the following parameters:

- r0945[0...63], r0947[0...63], r0948[0...63], r0949[0...63]
- r2109[0...63], r2130[0...63], r2133[0...63], r2136[0...63]

The fault buffer contents can be deleted manually as follows:

- Delete fault buffer for all drive objects: p2147 = 1 --> p2147 = 0 is automatically set after execution.
- Delete fault buffer for a specific drive object: p0952 = 0 --> The parameter belongs to the specified drive object.
The fault buffer contents are automatically deleted when the following occurs:
- Restore factory setting ($\mathrm{p} 0009=30$ and p0976 = 1).
- Download with modified structure (e.g. number of drive objects changed).
- Power-up after other parameter values have been loaded (e.g. p0976 = 10).
- Upgrade firmware to later version.

4.1.2 Explanation of the list of faults and alarms

The data in the following example has been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.

The "List of faults and alarms" (Page 1279) has the following layout:

Start of example

Axxxxx (F, N)	Fault location (optional): Name
Message value:	Component number: \%1, fault cause: \%2
Message class:	Text of the message class (number according to PROFIdrive)
Drive object:	List of objects.
Reaction:	NONE
Acknowledgement:	NONE
Cause:	Description of possible causes.
	Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional)
	Information about fault or alarm values (optional).
Remedy:	Description of possible remedies.
Response to F:	A_INFEED: OFF2 (OFF1, NONE)
	SERVO: NONE (OFF1, OFF2, OFF3)
	VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Response upon N:	NONE
Acknowl. upon N:	NONE

End of example

Axxxxx	Alarm xxxxx
Axxxxx (F, N)	Alarm xxxxx (message type can be changed to F or N)
Fxxxxx	Fault $\times x \times x x$
Fxxxxx (A, N$)$	Fault xxxxx (report type can be changed to A or N)
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed to A)
Cxxxxx	Safety message (separate message buffer)
	A message comprises a letter followed by the relevant number.
	The meaning of the letters is as follows:

- A means "Alarm"
- F means "Fault"
- N means "No message" or "Internal message"
- C means "Safety message"

The optional brackets indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters (p2118, p2119).
Information about reaction and acknowledgement is specified independently for a message with adjustable message type (e.g. reaction to F, acknowledgement for F).

Note

You can change the default properties of a fault or alarm by setting parameters.
The "List of faults and alarms" (Page 1279) supplies information referred to the properties of a message set as default. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

Message value:

The information provided under the message value informs you about the composition of the fault/alarm value.

Example:

Message value: Component number: \%1, fault cause: \%2
This message value contains information about the component number and cause of the fault. The entries \%1 and \%2 are placeholders, which are filled appropriately in online operation (e.g. with the commissioning software).

Message class:

For each message, specifies the associated message class with the following structure:
Text of the message class (number according to PROFIdrive)
The message classes are transferred at different interfaces to higher-level control systems and their associated display and operating units.
The message classes that are available are shown in Table "Message classes and coding of various diagnostic interfaces" (Page 1273). In addition to the text of the message class and their number according to PROFIdrive - as well as a brief help text regarding the cause and remedy - they also include information about the various diagnostic interfaces:

- PN (hex)

Specifies the "Channel error type" of the PROFINET channel diagnostics.
When activating the channel diagnostics, using the GSDML file, the texts listed in the table can be displayed.

- DS1 (dec)

Specifies the bit number in date set DS1 of the diagnostic alarm for SIMATIC S7.
When the diagnostic alarms are activated, the texts listed in the table can be displayed.

- DP (dec)

Specifies the "Error type" of the channel-related diagnostics for PROFIBUS.
When the channel diagnostics are activated, the texts listed in the standard and the GSD file can be displayed.

- ET 200 (dec)

Specifies the "Error type" of the channel-related diagnostics for the SIMATIC ET 200pro FC-2 device.

When the channel diagnostics are activated, the texts listed in the standard and the GSD file of the ET 200pro can be displayed.

- NAMUR (r3113.x)

Specifies the bit number in parameter r3113.
For the interfaces DP, ET 200, NAMUR, in some instances, the message classes are combined.

Table 4-4 Message classes and coding of various diagnostic interfaces

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{aligned} & \text { PN } \\ & \text { (hex) } \end{aligned}$	$\begin{aligned} & \text { DS1 } \\ & \text { (dec) } \end{aligned}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	$\begin{aligned} & \text { ET } 200 \\ & \text { (dec) } \end{aligned}$	NAMUR (r3113.x)
Hardware/software errors (1) A hardware or software malfunction was detected. Carry out a POWER ON for the relevant component. If it occurs again, contact the hotline.	9000	0	16	9	0
Line fault (2) A line supply fault has occurred (phase failure, voltage level ...). Check the line supply and fuses. Check the supply voltage. Check the wiring.	9001	1	17	24	1
Supply voltage fault (3) An electronics supply voltage fault ($48 \mathrm{~V}, 24 \mathrm{~V}, 5 \mathrm{~V}$...) was detected. Check the wiring. Check the voltage level.	9002	2	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	15
DC-link overvoltage (4) The DC-link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.	9003	3	18	24	2
Power electronics fault (5) An impermissible operating state of the power electronics was detected (overcurrent, overtemperature, IGBT failure ...). Check compliance with the permissible load cycles. Check the ambient temperatures (fan).	9004	4	19	24	3
Overtemperature of the electronic component (6) The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet ventilation.	9005	5	20	5	4
Ground fault / inter-phase short-circuit detected (7) A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.	9006	6	21	20	5
Motor overload (8) The motor was operated outside the permissible limits (temperature, current, torque ...). Check the load cycles and set limits. Check the ambient temperature / motor cooling.	9007	7	22	24	6

4.1 Overview of faults and alarms

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{gathered} \text { PN } \\ \text { (hex) } \end{gathered}$	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { ET } 200 \\ \text { (dec) } \end{gathered}$	$\begin{aligned} & \text { NAMUR } \\ & \text { (r3113.x) } \end{aligned}$
Communication to the higher-level controller faulted (9) The communication to the higher-level controller (internal coupling, PROFIBUS, PROFINET ...) is faulted or interrupted. Check the state of the higher-level controller. Check the communication connection/-wiring. Check the bus configuration/cycles.	9008	8	23	19	7
Safety monitoring channel has detected an error (10) A safe operation monitoring function has detected an error	9009	9	24	25	8
Actual position/speed value incorrect or not available (11) An illegal signal state was detected while evaluating the encoder signals (track signals, zero marks, absolute values ...). Check the encoder / state of the encoder signals. Observe the maximum permissible frequencies.	900A	10	25	29	9
Internal (DRIVE-CLiQ) communication faulted (12) The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMCcompliant installation. Observe the maximum permissible quantity structures / cycles.	900B	11	26	31	10
Infeed fault (13) The infeed is faulty or has failed. Check the infeed and its environment (line supply, filters, reactors, fuses ...). Check the infeed control.	900C	12	27	24	11
Braking controller / Braking Module faulted (14) The internal or external Braking Module is faulted or overloaded (temperature). Check the connection/state of the Braking Module. Comply with the permissible number of braking operations and their duration.	900D	13	28	24	15
Line filter fault (15) The line filter monitoring has detected an excessively high temperature or another impermissible state. Check the temperature / temperature monitoring. Check the configuration to ensure that it is permissible (filter type, infeed, thresholds).	900E	14	17	24	15
External measured value / signal state outside of the permissible range (16) A measured value / signal state read in via the input area (digital/analog/temperature) has assumed an impermissible value/state. Identify and check the relevant signal. Check the set thresholds.	900F	15	29	26	15
Application / technological function faulty (17) The application / technological function has exceeded a (set) limit (position, velocity, torque ...). Identify and check the relevant limit. Check the setpoint specification of the higher-level controller.	9010	16	30	9	15

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	PN (hex)	DS1 (dec)	DP (dec)	ET 200 (dec)	NAMUR (r3113.x)
Error in the parameterization/configuration/commissioning procedure (18) An error was identified in the parameterization or in a commissioning procedure, or the parameterization does not match the actual device configuration. Determine the precise cause of the fault using the commissioning tool. Adapt the parameterization or device configuration.	9011	17	31	16	15
General drive fault (19) Group fault. Determine the precise cause of the fault using the commissioning tool.	9012	18	9	9	15
Auxiliary unit fault (20) The monitoring of an auxiliary unit (incoming transformer, cooling unit ...) has detected an illegal state. Determine the exact cause of the fault and check the relevant device.	9013	19	29	26	15

1. Undervoltage condition of the electronics power supply
2. Overvoltage condition of the electronics power supply

Drive object:

Each message (fault/alarm) specifies the drive object in which it can be found.
A message can belong to either one, several, or all drive objects.

Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional parentheses indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

Note

See Table "Fault reactions" (Page 1267).

Acknowledgement: Default acknowledgement (adjustable acknowledgement)

Specifies the default method of acknowledging faults after the cause has been eliminated.
The optional parentheses indicate whether the default acknowledgement can be changed and which acknowledgement can be adjusted via parameters (p2126, p2127).

Note

See Table "Acknowledging faults" (Page 1269).

Cause:

Describes the possible causes of the fault or alarm. A fault or alarm value can also be specified (optional).

Fault value (r0949, format):
The fault value is entered into the fault buffer in r0949[0...63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...7] and specifies additional, more precise information about an alarm.

Remedy:

Description of the methods available for eliminating the cause of the active fault/alarm

WARNING

In certain cases, servicing and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults.

4.1.3 Number ranges of faults and alarms

Note

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family.
The faults and alarms for the product described in this List Manual are described in detail in "List of faults and alarms" (Page 1279).

Faults and alarms are organized into the following number ranges:
Table 4-5 Number ranges of faults and alarms

of	To	Area
1000	3999	Control Unit
4000	4999	Reserved
5000	5999	Power section
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	12999	Reserved
13000	13020	Licensing
13021	13099	Reserved
13100	13102	Know-how protection
13103	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
33000	33999	DRIVE-CLiQ component encoder 3 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
34000	34999	Voltage Sensing Module (VSM)
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)
36000	36999	DRIVE-CLiQ Hub Module
37000	37999	HF Damping Module

Table 4-5 Number ranges of faults and alarms, continued

of	To	Area
40000	40999	Controller Extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	SINAMICS DC MASTER (closed-loop DC current control)

4.2 List of faults and alarms

Product: SINAMICS G130/G150, Version: 4702900, Language: eng
Objects: B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, HUB, TB30, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G

F01000	Internal software error
Message value:	Module: \%1, line: \%2
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- evaluate fault buffer (r0945).
	- carry out a PowER ON (power off/on) for all components.
	- if required, check the data on the non-volatile memory (e.g. memory card).
	- upgrade firmware to later version.
	- contact the Hotline.
	- replace the Control Unit.
F01001	FloatingPoint exception
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An exception occurred during an operation with the FloatingPoint data type.

4.2 List of faults and alarms

Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
F01003	Acknowledgement delay when accessing the memory
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A memory area was accessed that does not return a "READY".
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- contact the Hotline.

N01004 (F, A)	Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- read out diagnostics parameter (r9999).
	- contact the Hotline.
	See also: r9999 (Software error internal supplementary diagnostics)
Reaction upon F:	OFF2
Acknowl. upon F:	POWER ON
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01005	Firmware download for DRIVE-CLiQ component unsuccessful
Message value:	Component number: \%1, fault cause: \%2
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	It was not possible to download the firmware to a DRIVE-CLiQ component.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ component number, $\mathrm{xxxx}=$ fault cause
	$x x x x=000 \mathrm{~B}$ hex $=11 \mathrm{dec}$:
	DRIVE-CLiQ component has detected a checksum error.
	xxxx $=000 \mathrm{~F}$ hex $=15 \mathrm{dec}$:
	The selected DRIVE-CLiQ component did not accept the contents of the firmware file. $x x x x=0012$ hex $=18 \mathrm{dec}$:
	Firmware version is too old and is not accepted by the component.
	xxxx $=0013$ hex = 19 dec:
	Firmware version is not suitable for the hardware release of the component. xxxx $=0065$ hex $=101$ dec:
	After several communication attempts, no response from the DRIVE-CLiQ component. xxxx $=008 \mathrm{~B}$ hex $=139 \mathrm{dec}$:
	Initially, a new boot loader is loaded (must be repeated after POWER ON).

xxxx = 008C hex = 140 dec:
Firmware file for the DRIVE-CLiQ component not available on the memory card.
$x x x x=008 D$ hex $=141 \mathrm{dec}$:
An inconsistent length of the firmware file was signaled. The firmware download may have been caused by a loss of connection to the firmware file. This can occur during a project download/reset in the case of a SINAMICS Integrated Control Unit, for example.
$x x x x=008 F$ hex $=143 \mathrm{dec}$:
Component has not changed to the mode for firmware download. It was not possible to delete the existing firmware.
xxxx $=0090$ hex $=144 \mathrm{dec}$:
When checking the firmware that was downloaded (checksum), the component detected a fault. It is possible that the file on the memory card is defective.
$x x x x=0091$ hex $=145 \mathrm{dec}$:
Checking the loaded firmware (checksum) was not completed by the component in the appropriate time.
xxxx = 009C hex = 156 dec:
Component with the specified component number is not available (p7828).
xxxx = Additional values:
Only for internal Siemens troubleshooting.
Remedy: - check the selected component number (p7828)

- check the DRIVE-CLiQ wiring.
- save suitable firmware file for download in the directory "/siemens/sinamics/code/sac/".
- use a component with a suitable hardware version
- after POWER ON has been carried out again for the DRIVE-CLiQ component, download firmware again. Depending on p7826, the firmware will be automatically downloaded.

A01006
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Firmware update for DRIVE-CLiQ component required

Component number: \%1
General drive fault (19)
All objects
NONE
NONE
The firmware of a DRIVE-CLiQ component must be updated as there is no suitable firmware or firmware version in the component for operation with the Control Unit.
Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.
Remedy: Firmware update using the commissioning software:
The firmware version of all of the components on the "Version overview" page can be read in the Project Navigator under "Configuration" of the associated drive unit and an appropriate firmware update can be carried out.
Firmware update via parameter:

- take the component number from the alarm value and enter into p7828.
- start the firmware download with p7829 $=1$.

A01007
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

4.2 List of faults and alarms

A01009 (N)	CU: Control module overtemperature
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit.
	- check the Control Unit fan.
	Note:
	The alarm automatically disappears after the limit value has been undershot.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01010	Drive type unknown
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
	Fault value (r0949, interpret decimal):
	Drive object number (refer to p0101, p0107).
Remedy:	- replace Power Module.
	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
F01011 (N)	Download interrupted
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The project download was interrupted.
	Fault value (r0949, interpret decimal):
	1: The user prematurely interrupted the project download.
	2: The communication cable was interrupted (e.g. cable breakage, cable withdrawn).
	3: The project download was prematurely ended by the commissioning software (e.g. STARTER, SCOUT).
	100: Different versions between the firmware version and project files which were loaded by loading into the file system "Download from memory card".
	Note:
	The response to an interrupted download is the state "first commissioning".
Remedy:	- check the communication cable.
	- download the project again.
	- boot from previously saved files (power-down/power-up or p0976).
	- when loading into the file system (download from memory card), use the matching version.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F01012 (N)	Project conversion error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	When converting the project of an older firmware version, an error occurred.
	Fault value (r0949, interpret decimal):
	Parameter number of the parameter causing the error.
	For fault value $=600$, the following applies:
	The temperature evaluation is no longer assigned to the power unit but to the encoder evaluation.
	Notice:
	Monitoring of the motor temperature is no longer ensured.
Remedy:	Check the parameter indicated in the fault value and correctly adjust it accordingly.
	For fault value $=600$:
	Parameter p0600 must be set to the values 1,2 or 3 in accordance with the assignment of the internal encoder evaluation to the encoder interface.
	Value 1 means: The internal encoder evaluation is assigned to the encoder interface 1 via p0187.
	Value 2 means: The internal encoder evaluation is assigned to the encoder interface 2 via p0188.
	Value 3 means: The internal encoder evaluation is assigned to the encoder interface 3 via p0189.
	- If necessary, the internal encoder evaluation must be assigned to an encoder interface via parameters p0187, p0188 or p0189 accordingly.
	- If necessary, upgrade the firmware to a later version.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01015	Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
A01016 (F)	Firmware changed
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0 : Checksum of one file is incorrect.
	1: File missing.
	2: Too many files.
	3: Incorrect firmware version.
	4: Incorrect checksum of the back-up file.

4.2 List of faults and alarms

Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition. Note: The file involved can be read out using parameter r9925. The status of the firmware check is displayed using r9926. See also: r9925 (Firmware file incorrect), r9926 (Firmware check status)
Reaction upon F:	OFF2
Acknowl. upon F:	POWER ON
A01017	Component lists changed
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory. Alarm value (r2124, interpret decimal): zyx dec: $x=$ Problem, $y=$ Directory, $z=$ File name $x=1$: File does not exist. $x=2$: Firmware version of the file does not match the software version. $x=3$: File checksum is incorrect. $y=0$: Directory /SIEMENS/SINAMICS/DATA/ $y=1$: Directory /ADDON/SINAMICS/DATA/ $z=0$: File MOTARM.ACX $z=1$: File MOTSRM.ACX $z=2$: File MOTSLM.ACX $z=3$: File ENCDATA.ACX z = 4: File FILTDATA.ACX $z=5$: File BRKDATA.ACX $z=6$: File DAT_BEAR.ACX $z=7$: File CFG_BEAR.ACX $z=8$: File ENC_GEAR.ACX
Remedy:	For the file on the memory card involved, restore the status originally supplied from the factory.
A01020	Writing to RAM disk unsuccessful
Message value:	
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p 9930). See also: p9930 (System logbook activation)
F01023	Software timeout (internal)
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F01030	Sign-of-life failure for master control
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	For active PC master control, no sign-of-life was received within the monitoring time.
	The master control was returned to the active BICO interconnection.
Remedy:	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function.
	For the commissioning software, the monitoring time is set as follows:
	<Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
	Notice:
	The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!
F01031	Sign-of-life failure for OFF in REMOTE
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	With the "OFF in REMOTE" mode active, no sign-of-life was received within 3 seconds.
Remedy:	- Check the data cable connection at the serial interface for the Control Unit (CU) and operator panel.
	- Check the data cable between the Control Unit and operator panel.
A01032 (F)	ACX: all parameters must be saved
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameters of an individual drive object were saved ($p 0971=1$), although there is still no backup of all drive system parameters.
	The saved object-specific parameters are not loaded the next time that the system powers up.
	For the system to successfully power up, all of the parameters must have been completely backed up.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save drive object parameters)
Remedy:	Save all parameters (p0977 = 1 or "copy RAM to ROM").
	See also: p0977 (Save all parameters)
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
F01033	Units changeover: Reference parameter value invalid
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0

4.2 List of faults and alarms

	Fault value (r0949, parameter):
	Reference parameter whose value is 0.0 .
	See also: p0349 (System of units motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Set the value of the reference parameter to a number different than 0.0 .
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
F01034	Units changeover: Calculation parameter values after reference value change unsuccessful
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.
	Fault value (r0949, parameter):
	Parameter whose value was not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	- Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
	- Technology unit selection (p0595) before changing the reference parameter p0596, set p0595 $=1$.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004

A01035 (F)
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

\(\left.\begin{array}{ll}Remedy: \& - Download the project again with the commissioning software.

\& - save all parameters (p0977 = 1 or "copy RAM to ROM").

See also: p0977 (Save all parameters)\end{array}\right\}\)| Vector: NONE (OFF1, OFF2, OFF3) |
| :--- |
| Reaction upon F: \quadInfeed: NONE (OFF1, OFF2) |
| Acknowl. upon F: \quadIMMEDIATELY |

F01036 (A)	ACX: Parameter back-up file missing
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2, 3, 4:
	Only for internal Siemens troubleshooting.
Remedy:	If you have saved the project data using the commissioning software, carry out a new download for your project.
	Save using the function "Copy RAM to ROM" or with p0977 = 1
	This means that the parameter files are again completely written into the non-volatile memory.
	Note:
	If the project data have not been backed up, then a new first commissioning is required.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01038 (A)	ACX: Loading the parameter back-up file unsuccessful
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2:
	255: Incorrect drive object type.
	254: Topology comparison unsuccessful -> drive object type was not able to be identified.
	Reasons could be:
	- Incorrect component type in the actual topology
	- Component does not exist in the actual topology.
	- Component not active.
	Additional values:
	Only for internal Siemens troubleshooting.
	Byte 4, 3:
	Only for internal Siemens troubleshooting.
Remedy:	- If you have saved the project data using the commissioning software, download the project again. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the non-volatile memory.
	- replace the memory card or Control Unit.
	Re byte 2 = 255:

Reaction upon A : Acknowl. upon A:	NONE NONE
F01039 (A)	ACX: Writing to the parameter back-up file was unsuccessful
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful.
	- In the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten.
	- There is not sufficient free memory space available.
	- The non-volatile memory is defective and cannot be written to.
	Fault value (r0949, interpret hexadecimal):
	dcba hex
	$\mathrm{a}=$ yyy in the file names PSxxxyyy.***
	$\mathrm{a}=000$--> consistency back-up file
	$a=001 . .062$--> drive object number
	$a=070$--> FEPROM.BIN
	$\mathrm{a}=080$--> DEL4BOOT.TXT
	$a=099$--> PROFIBUS parameter back-up file
	$b=x x x$ in the file names PSxxxyyy.***
	$b=000-->$ data save started with p0977 = 1 or p0971 = 1
	$b=010-->$ data save started with p0977 = 10
	$b=011$--> data save started with p0977 = 11
	$b=012$--> data save started with p0977 = 12
	d, c:
	Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable".
	- check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system.
	- replace the memory card or Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01040	Save parameter settings and carry out a POWER ON
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, HUB, TB30, TM150, TM31, TM54F_MA, TM54F_SL
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot.
Remedy:	- save parameters (p0971, p0977).
	- carry out a POWER ON (power off/on) for all components.
	Then:
	- upload the drive unit (commissioning software).

F01040

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

Save parameter settings and carry out a POWER ON

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
POWER ON
A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot. Examples:

- p1810.2 (wobulation of the pulse frequency) and p1802 (edge modulation)
- p1750.5 (cl.-loop control mode PESM up to $\mathrm{f}=0 \mathrm{~Hz}$ with HF signal injection)
- save parameters (p0971, p0977).
- carry out a POWER ON for all components (switch-on the Control Unit with or after the power units).

When changing p1750.5 or p1810.2 for edge modulation, a warm restart is sufficient ($p 0009=30$, p0976 = 3). Then:

- upload the drive unit (commissioning software).

F01041	Parameter save necessary
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Defective or missing files were detected on the memory card when booting.
	Fault value (r0949, interpret decimal):
	1: Source file cannot be opened.
	2: Source file cannot be read.
	3: Target directory cannot be set up.
	4. Target file cannot be set up/opened.
	5. Target file cannot be written to.
	Additional values:
	Only for internal Siemens troubleshooting.
	- save the parameters.
	- download the project again to the drive unit.
	- update the firmware
	- if required, replace the Control Unit and/or memory card card.

F01042
Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause:

Parameter error during project download

Parameter: \%1, Index: \%2, fault cause: \%3
Error in the parameterization / configuration / commissioning procedure (18)
All objects
Vector: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY
An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.

Fault value (r0949, interpret hexadecimal):
ccbbaaaa hex
aaaa $=$ Parameter
bb = Index
cc = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2 : Lower or upper value limit exceeded.

4.2 List of faults and alarms

3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating state.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently de-activated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010=4).
110: Write access only in the commissioning state, motor (p0010=3).
111: Write access only in the commissioning state, power unit (p0010=2).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode ($\mathrm{p} 0010=0$).
114: Write access only in the commissioning state, parameter reset ($p 0010=30$).
115: Write access only in the Safety Integrated commissioning state (p0010 = 95).
116: Write access only in the commissioning state, technological application/units (p0010=5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download (p0010=29).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basic configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basic configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
129: Parameter may not be written in download.
130: Transfer of the master control is inhibited via binector input p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.
201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.
Remedy: - enter the correct value in the specified parameter.

- identify the parameter that restricts the limits of the specified parameter.

F01043

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause:

Remedy:

Fatal error at project download

Fault cause: \%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
Vector: OFF2 (OFF1, OFF3)
Infeed: OFF2 (OFF1)
IMMEDIATELY
A fatal error was detected when downloading a project using the commissioning software.
Fault value (r0949, interpret decimal):
1: Device status cannot be changed to Device Download (drive object ON?).
2: Incorrect drive object number.
3: A drive object that has already been deleted is deleted again.
4: Deleting of a drive object that has already been registered for generation.
5: Deleting a drive object that does not exist.
6: Generating an undeleted drive object that already existed.
7: Regenerating a drive object already registered for generation.
8: Maximum number of drive objects that can be generated exceeded.
9: Error while generating a device drive object.
10: Error while generating target topology parameters (p9902 and p9903).
11: Error while generating a drive object (global component).
12: Error while generating a drive object (drive component).
13: Unknown drive object type.
14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
15: Drive status cannot be changed to drive download.
16: Device status cannot be changed to "ready for operation".
17: It is not possible to download the topology. The component wiring should be checked, taking into account the various messages/signals.
18: A new download is only possible if the factory settings are restored for the drive unit.
19: The slot for the option module has been configured several times (e.g. CAN and COMM BOARD)
20: The configuration is inconsistent (e.g. CAN for Control Unit, however no CAN configured for drive objects A_INF, SERVO or VECTOR).
21: Error when accepting the download parameters.
22: Software-internal download error.
Additional values: only for internal Siemens troubleshooting.

- use the current version of the commissioning software.
- modify the offline project and carry out a new download (e.g. compare the number of drive objects, motor, encoder, power unit in the offline project and at the drive).
- change the drive state (is a drive rotating or is there a message/signal?).
- carefully note any other messages/signals and remove their cause.
- boot from previously saved files (power-down/power-up or p0976).

F01044

Message value:

Message class:

Drive object:
Reaction:
Acknowledge:

Cause:

Remedy:

CU: Descriptive data error

\%1
Hardware / software error (1)
All objects
OFF2
POWER ON
An error was detected when loading the descriptive data saved in the non-volatile memory.
Replace the memory card or Control Unit.

A01045
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

CU: Configuring data invalid

\%1
Hardware / software error (1)
All objects
NONE
NONE
An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting

- Check the parameters displayed in r9406 up to r9408, and correct these if required.
- Restore the factory setting using ($\mathrm{p} 0976=1$) and re-load the project into the drive unit.

Then save the parameterization in STARTER using the "Copy RAM to ROM" function or with p0977 $=1$. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.

A01049	CU: It is not possible to write to file
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal): Drive object number.
Remedy:	Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/SINAMICS/DATA/..
	When required, remove write protection and save again (e.g. set p0977 to 1).

F01050

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause: The memory card and the device type do not match (e.g. a memory card for SINAMICS S is inserted in SINAMICS $\mathrm{G})$.
Remedy: - insert the matching memory card.

- use the matching Control Unit or power unit.

F01054

Message value:
Message class:
Drive object:
Reaction: Acknowledge: Cause:

CU: System limit exceeded

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
OFF2
IMMEDIATELY
At least one system overload has been identified.
Fault value (r0949, interpret decimal):
1: Computing time load too high (r9976[1]).
5: Peak load too high (r9976[5]).
Note:
As long as this fault is present, it is not possible to save the parameters (p0971, p0977).
See also: r9976 (System utilization)

Remedy:	Re fault value $=1,5$: - reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100%. - check the sampling times and adjust if necessary (p0115, p0799, p4099). - de-activate function modules. - de-activate drive objects. - remove drive objects from the target topology. - note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology. When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies - the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or r20005 (FBLOCKS). - if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r21001, r20001). - if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).
F01055	CU: Internal error (SYNO of port and application not identical)
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	All applications that operate with slaves at one port must be derived from the same SYNO clock cycle. The first application whose registration (log-on) connects a slave to a port defines the SYNO clock cycle that will be used as basis for the port. Fault value (r0949, interpret hexadecimal): Method ID. Note: Only for internal Siemens troubleshooting.
Remedy:	Contact the Hotline.
F01056	CU: Internal error (clock cycle of parameter group already assigned differently)
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested parameter group (IREG, NREG, ...) is already being used in a different clock cycle. Fault value (r0949, interpret hexadecimal): Method ID. Note: Only for internal Siemens troubleshooting.
Remedy:	Contact the Hotline.
F01057	CU: Internal error (different DRIVE-CLiQ type for the slave)
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested DRIVE-CLiQ type (hps_ps, hps_enc, ...) has been specified differently for the same slave component. Fault value (r0949, interpret hexadecimal): Method ID. Note: Only for internal Siemens troubleshooting.
Remedy:	Contact the Hotline.

F01058
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CU: Internal error (slave missing in topology)

\%1
Hardware / software error (1)
B_INF, TM150, VECTOR_G
NONE
IMMEDIATELY
The requested slave component does not exist in the topology.
Fault value (r0949, interpret hexadecimal):
Method ID.
Note:
Only for internal Siemens troubleshooting.
Remedy: Contact the Hotline.

F01059

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause: The port object assigned according to the topology of the requested slave component does not exist.
Fault value (r0949, interpret hexadecimal):
Method ID.
Note:
Only for internal Siemens troubleshooting.
Remedy:

F01060 CU: Internal error (parameter group not available)
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: Contact the Hotline.
Hardware / software error (1)
B_INF, TM150, VECTOR_G
NONE
IMMEDIATELY
The requested parameter group (IREG, NREG, ...) is not offered by this slave type.
Fault value (r0949, interpret hexadecimal):
Method ID.
Note:
Only for internal Siemens troubleshooting.

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

F01061
 CU: Internal error (application not known)

 \%1Hardware / software error (1)
B_INF, TM150, VECTOR_G
NONE
IMMEDIATELY
An application that is not registered with TSM has attempted to register with registerSlaves().
The cause can be an unsuccessful TSM registration or an incorrect registration sequence. It is always necessary to log in to the TSM before registerSlaves() can be used.
Fault value (r0949, interpret hexadecimal):
Method ID.

Note:

Only for internal Siemens troubleshooting.

F01063	CU: Internal error (PDM)
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Method ID.
	Note:
	Only for internal Siemens troubleshooting.
Remedy:	Contact the Hotline.
A01064 (F)	CU: Internal error (CRC)
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CRC error in the Control Unit program memory
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F01068	CU: Data memory memory overflow
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The utilization for a data memory area is too large.
	Fault value (r0949, interpret binary):
	Bit $0=1$: High-speed data memory 1 overloaded
	Bit $1=1$: High-speed data memory 2 overloaded
	Bit $2=1$: High-speed data memory 3 overloaded
	Bit $3=1$: High-speed data memory 4 overloaded
Remedy:	- de-activate the function module.
	- de-activate drive object.
	- remove the drive object from the target topology.
A01069	Parameter backup and device incompatible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.

4.2 List of faults and alarms

Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON. - insert a memory card without parameter backup and carry out a POWER ON. - save the parameters (p0977 = 1).
F01070	Project/firmware is being downloaded to the memory card
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An upgrade (project/firmware download) was initiated on the memory card.
	While this fault is present, the corresponding update takes place with plausibility and consistency checks. After this, depending on the command option, a new boot (reset) for the Control Unit is initiated. Caution:
	During the upgrade and while this fault is present, it is not permissible to switch off the Control Unit.
	If the operation is interrupted, this can destroy the file system on the memory card. The memory card will then no longer work properly and must be repaired.
Remedy:	Not necessary.
	The fault automatically disappears after the upgrade has been completed.
F01072	Memory card restored from the backup copy
Message value:	-
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective.
	After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.
Remedy:	Check that the firmware and parameterization is up-to-date.
A01073 (N)	POWER ON required for backup copy on memory card
Message value:	-
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter assignment on the visible partition of the memory card has changed.
	In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out a POWER ON or hardware reset (p0972) of the Control Unit.
	Note:
	It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).
Remedy:	- carry out a POWER ON (power off/on) for the Control Unit. - carry out a hardware reset (RESET button, p0972).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01099	Tolerance window of time synchronization exited
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time master exited the selected tolerance window for time synchronization.
	See also: p3109 (RTC real time synchronization tolerance window)

Remedy:	Select the re-synchronization interval so that the synchronization deviation between the time master and drive system lies within the tolerance window. See also: r3108 (RTC last synchronization deviation)
A01100	CU: Memory card withdrawn
Message value:	-
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card (non-volatile memory) was withdrawn during operation.
	Notice:
	It is not permissible for the memory card to be withdrawn or inserted under voltage.
Remedy:	- power down the drive system.
	- re-insert the memory card that was withdrawn - this card must match the drive system.
	- power up the drive system again.
F01105 (A)	CU: Insufficient memory
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
	- use an additional Control Unit.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F01106	CU: Insufficient memory
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	There is not sufficient free memory space available.
Remedy:	Not necessary.
F01107	CU: Save to memory card unsuccessful
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save in the non-volatile memory was not able to be successfully carried out.
	- non-volatile memory is defective.
	- insufficient space in the non-volatile memory.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- try to save again.
	- replace the memory card or Control Unit.

F01110	CU: More than one SINAMICS G on one Control Unit
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	More than one SINAMICS G type power unit is being operated from the Control Unit.
	Fault value (r0949, interpret decimal):
	Number of the second drive with a SINAMICS G type power unit.
Remedy:	Only one SINAMICS G drive type is permitted.
F01111	CU: Mixed operation of drive units illegal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Illegal operation of various drive units on one Control Unit:
	- SINAMICS S together with SINAMICS G

F01122 (A)	Frequency at the measuring probe input too high
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The frequency of the pulses at the measuring probe input is too high.
	Fault value (r0949, interpret decimal):
	1: DI/DO 9 (X122.8)
	2: DI/DO 10 (X122.10)
	4: DI/DO 11 (X122.11)
	8: DI/DO 13 (X132.8)
	16: DI/DO 14 (X132.10)
	32: DI/DO 15 (X132.11)
	64: DI/DO 8 (X122.7)
	128: DI/DO 12 (X132.7)
Remedy:	Reduce the frequency of the pulses at the measuring probe input.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F01150

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CU: Number of instances of a drive object type exceeded

Drive object type: \%1, number permitted: \%2, actual number: \%3
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
IMMEDIATELY
The maximum permissible number of instances of a drive object type was exceeded.
Drive object type:
Drive object type (p0107), for which the maximum permissible number of instances was exceeded
Number permitted:
Max. permissible number of instances for this drive object type.
Actual number:
Current number of instances for this drive object type.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
ddccbbaa hex: $a=$ drive object type, $b b=$ number limited, $c c=a c t u a l ~ n u m b e r, ~ d d=n o$ significance
Remedy: - power down the unit.

- suitably restrict the number of instances of a drive object type by reducing the number of inserted components
- re-commission the unit.

F01151

Message value:
Message class:
Drive object:
Reaction:
Acknowledge
Cause:

CU: Number of drive objects of a category exceeded

Drive object category: \%1, number permitted: \%2, actual number: \%3
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
IMMEDIATELY
The maximum permissible number of drive objects of a category was exceeded.
Drive object category
Drive object category, for which the maximum permissible number of drive objects was exceeded.
Number permitted:
Max. permissible number for this drive object category.
Actual number:
Actual number for this drive object category.

Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124): ddccbbaa hex: $a=$ drive object category, $b b=$ number limited, $c c=$ actual number, $d d=$ no significance

Remedy:

- power down the unit.
- suitably restrict the number of drive objects of the specified category by reducing the number of inserted components.
- re-commission the unit.

F01152

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

CU: Invalid constellation of drive object types

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
POWER ON
It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA.
A maximum of 2 of these drive object types can be operated on a Control Unit.

- power down the unit.
- restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2.
- re-commission the unit.

F01200

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CU: Time slice management internal software error

\%1
Hardware / software error (1)
All objects
OFF2
IMMEDIATELY (POWER ON)
A time slice management error has occurred.
It is possible that the sampling times have been inadmissibly set.
Fault value (r0949, interpret hexadecimal):
998:
Too many time slices occupied by OA (e.g. DCC).
999:
Too many time slices occupied by the basic system. Too many different sampling times may have been set. Additional values:
Only for internal Siemens troubleshooting.
Remedy: $\quad-$ check the sampling time setting (p0112, p0115, p4099, p9500, p9511).

- contact the Hotline.

F01205

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

CU: Time slice overflow

\%1
Hardware / software error (1)
All objects
OFF2
POWER ON
Insufficient processing time is available for the existing topology.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

- reduce the number of drives.
- increase the sampling times.

F01221

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CU: Bas clk cyc too low

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
MMEDIATELY
The closed-loop control / monitoring cannot maintain the envisaged clock cycle.
The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the computing time remaining in the system is not sufficient for the closed-loop control/monitoring.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting
Remedy: Increase the basic clock cycle of DRIVE-CLiQ communication. See also: p0112 (Sampling times pre-setting p0115)

F01222

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CU: Basic clock cycle too low (computing time for communication not available) \%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, TM150, VECTOR_G
NONE
IMMEDIATELY
A time slice has not been defined that fulfills the requirements.
The port cannot be correctly operated as the alternating cyclic clock cycle cannot be maintained.
Fault value (r0949, interpret hexadecimal):
Method ID.
Note:
Only for internal Siemens troubleshooting.
Remedy:

Contact the Hotline.

A01223
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
CU: Sampling time inconsistent
\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
When changing a sampling time (p0115[0], p0799 or p4099), inconsistency between the clock cycles has been
identified.
Alarm value (r2124, interpret decimal):
1: Value lower than minimum value.
2: Value higher than maximum value.
3: Value not a multiple of $1.25 \mu \mathrm{~s}$.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
5: Value not a multiple of $125 \mu \mathrm{~s}$.
6: Value not a multiple of $250 \mu \mathrm{~s}$.
7: Value not a multiple of $375 \mu \mathrm{~s}$.
8: Value not a multiple of $400 \mu \mathrm{~s}$.
10: Special restriction of the drive object violated.
20: On a SERVO with a sampling time of $62.5 \mu \mathrm{~s}$, more than two drive objects or one drive object of a type other than
SERVO have been detected on the same DRIVE-CLiQ line (a maximum of two SERVO type drive objects are
permitted).
21: Value can be a multiple of the current controller sampling time of a servo or vector drive in the system (e.g. for
TB30, the values of all of the indices should be taken into account).
30: Value less than $31.25 \mu \mathrm{~s}$.
31: Value less than $62.5 \mu \mathrm{~s}$ ($31.25 \mu \mathrm{~s}$ is not supported for SMC10, SMC30, SMI10 and Double Motor Modules).
32: Value less than $125 \mu \mathrm{~s}$.
33: Value less than $250 \mu \mathrm{~s}$.

CU: Sampling time inconsistent

 \%(18)

NONE
NONE
When changing a sampling time (p0115[0], p0799 or p4099), inconsistency between the clock cycles has been

1: Value lower than minimum value.
2: Value higher than maximum value.
3: Value not a multiple of $1.25 \mu \mathrm{~s}$.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
Value not a multiple of 125 us.
of $250 \mu \mathrm{~s}$

8: Value not a multiple of $400 \mu \mathrm{~s}$.
10: Special restriction of the drive object violated.
20: On a SERVO with a sampling time of $62.5 \mu \mathrm{~s}$, more than two drive objects or one drive object of a type other than俍

21: Value can be a multiple of the current controller sampling time of a servo or vector drive in the system (e.g. for B30, the values of all of the indices should be taken into account).
less than $31.25 \mu \mathrm{~s}$

32: Value less than $125 \mu \mathrm{~s}$.
33: Value less than $250 \mu \mathrm{~s}$.

4.2 List of faults and alarms

40: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$. Further, none of the nodes has a sampling time of less than $125 \mu \mathrm{~s}$.
41: A chassis unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $250 \mu \mathrm{~s}$.
42: An Active Line Module was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $125 \mu \mathrm{~s}$.
43: A Voltage Sensing Module (VSM) was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is not equal to the current controller sampling time of the drive object of the VSM.
44: The highest common denominator of the sampling times of all of the components connected to the DRIVE-CLiQ line is not the same for all components of this drive object (e.g. there are components on different DRIVE-CLiQ lines on which different highest common denominators are generated).
45: A chassis parallel unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than $162.5 \mu \mathrm{~s}$ or $187.5 \mu \mathrm{~s}$ (for a 2 or $3 x$ parallel connection).
46: A node has been identified on the DRIVE-CLiQ line whose sampling time is not a multiple of the lowest sampling time on this line.
52: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $31.25 \mu \mathrm{~s}$.
54: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $62.5 \mu \mathrm{~s}$.
56: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $125 \mu \mathrm{~s}$.
58: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than $250 \mu \mathrm{~s}$.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].
General note:
The topology rules should be noted when connecting up DRIVE-CLiQ (refer to the appropriate product documentation).
The parameters of the sampling times can also be changed with automatic calculations.
Example for highest common denominator: $125 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 62.5 \mu \mathrm{~s}$--> $62.5 \mu \mathrm{~s}$
Remedy:

- check the DRIVE-CLiQ cables.
- set a valid sampling time.

See also: p0115, p0799, p4099

A01224

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

Cause:

CU: Pulse frequency inconsistent

 \%1Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
When changing the minimum pulse frequency (p 0113) inconsistency between the pulse frequencies was identified. Alarm value (r2124, interpret decimal):
1: Value lower than minimum value.
2: Value higher than maximum value.
3: Resulting sampling time is not a multiple of $1.25 \mu \mathrm{~s}$.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
10: Special restriction of the drive object violated.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].
Remedy:
See also: p0113 (Minimum pulse frequency, selection)

F01250

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

CU: CU-EEPROM incorrect read-only data

\%1
Hardware / software error (1)
All objects
NONE (OFF2)
POWER ON
Error when reading the read-only data of the EEPROM in the Control Unit.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting

- carry out a POWER ON.
- replace the Control Unit.

A01251

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

CU: CU-EEPROM incorrect read-write data

\%1
Hardware / software error (1)
All objects
NONE
NONE
Error when reading the read-write data of the EEPROM in the Control Unit.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
For alarm value $\mathrm{r} 2124<256$, the following applies:

- carry out a POWER ON.
- replace the Control Unit.

For alarm value r2124 >= 256, the following applies:

- for the drive object with this alarm, clear the fault memory ($\mathrm{p} 0952=0$).
- as an alternative, clear the fault memory of all drive objects (p2147 = 1).
- replace the Control Unit.

F01255

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CU: Option Board EEPROM read-only data error

\%1
Hardware / software error (1)
All objects
NONE (OFF2)
POWER ON
Error when reading the read-only data of the EEPROM in the Option Board.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON.

- replace the Control Unit.

A01256	CU: Option Board EEPROM read-write data error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Option Board.
	Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. - carry out a POWER ON.
Remedy:	- replace the Control Unit.

A01302	Error in the component trace
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred in the component trace.
	The message appears in the following cases:
	- upload trace data (p7792 = 1).
	- change factory setting (p7790, p7791) for missing property "component trace" (r0193.1 = 0).
	Alarm value (r2124, interpret decimal):
	1: The DRIVE-CLiQ component does not support the component trace (r0193.1 = 0).
	101: Data from trace 1 cannot be read.
	102: Data from trace 2 cannot be read.
	103: Data from trace 3 cannot be read.
	104: Data from trace 4 cannot be read.
	105: Data from trace 5 cannot be read.
Remedy:	Re alarm value $=1$:
	Upgrade the firmware of the DRIVE-CLiQ component involved.
F01303	Component does not support the required function
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
	Fault value (r0949, interpret decimal):
	1: The component does not support the de-activation.
	101: The Motor Module does not support an internal armature short-circuit.
	102: The Motor Module does not support the de-activation.
	201: The Sensor Module does not support actual value inversion ($\mathrm{p} 0410.0=1$) when using a Hall sensor ($\mathrm{p} 0404.6=$ 1) for the commutation.
	202: The Sensor Module does not support parking/unparking.
	203: The Sensor Module does not support the de-activation.
	204: The firmware of this Terminal Module 15 (TM15) does not support the application TM15DI/DO.
	205: The Sensor Module does not support the selected temperature evaluation (r0458).
	206: The firmware of this Terminal Modules TM41/TM31/TM15 refers to an old firmware version. It is urgently necessary to upgrade the firmware to ensure disturbance-free operation.
	207: The power unit with this hardware version does not support operation with device supply voltages of less than 380 V .
	208: The Sensor Module does not support de-selection of commutation with zero mark (via p0430.23).
	211: The Sensor Module does not support single-track encoders (r0459.10).
	212: The Sensor Module does not support LVDT sensors (p4677.0).
	213: The Sensor Module does not support the characteristic type (p4662).
Remedy:	Upgrade the firmware of the DRIVE-CLiQ component involved.
	For fault value $=205$:
	Check parameter p0600 and p0601 and if required, adapt interpretation.
	For fault value = 207:
	Replace the power unit or if required set the device supply voltage higher (p0210).
	For fault value = 208:
	Check parameter p0430.23 and reset if necessary.

4.2 List of faults and alarms

A01304 (F)	Firmware version of DRIVE-CLiQ component is not up-to-date
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile memory has a more recent firmware version than the one in the connected DRIVE-CLiQ component. Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component involved.
Remedy:	Update the firmware (p7828, p7829 and commissioning software).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01305	Topology: Component number missing
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161). Fault value (r0949, interpret decimal): Data set number. Note: The fault also occurs if encoders have been configured (p0187 to p0189) but no component numbers exist for them. In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. $3 x x$, if a component number was not entered in p0141 for encoder 3 (p0189)). See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189
Remedy:	- enter missing component number. - if required, remove the component and restart commissioning. See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189
A01306	Firmware of the DRIVE-CLiQ component being updated
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Firmware update is active for at least one DRIVE-CLiQ component. Alarm value (r2124, interpret decimal): Component number of the DRIVE-CLiQ component.
Remedy:	Not necessary. This alarm automatically disappears after the firmware has been updated.
A01314	Topology: Component must not be present
Message value:	\%1, to \%2: \%3, connection: \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a component, "de-activate and not present" is set but this component is still in the topology. Alarm value (r 2124 , interpret hexadecimal): ddccbbaa hex: aa = component number

4.2 List of faults and alarms

Remedy:	$\mathrm{bb}=$ component class of the component cc = connection number
	Note:
	Component class and connection number are described in F01375. - remove the corresponding component.
	- change the setting "de-activate and not present".
	Note:
	Under "Topology --> Topology view" the commissioning software where relevant offer capability (e.g. setpoint/actual value comparison).
	See also: p0105, p0125, p0145, p0155
A01315	Drive object not ready for operation
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the active drive object involved, at least one activated component is missing.
	Note:
	All other active and operational drive objects can be in the "RUN" state.
Remedy:	The alarm automatically disappears again with the following actions:
	- de-activate the drive object involved ($\mathrm{p} 0105=0$).
	- de-activate the components involved (p0125 = 0, p0145 = 0, p0155 = 0, p0165 $=0$).
	- re-insert the components involved.
	See also: p0105, p0125, p0145, p0155

A01316

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

Drive object inactive and again ready for operation

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
If, when inserting a component of the target topology, an inactive, non-operational drive object becomes operational again. The associated parameter of the component is, in this case, set to "activate" (p0125, p0145, p0155, p0165).
Note:
This is the only message that is displayed for a de-activated drive object.
The alarm automatically disappears again with the following actions:

- activate the drive object involved (p0105 = 1).
- again withdraw the components involved.

See also: p0105 (Activate/de-activate drive object)

A01317 (N)
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

De-activated component again present
-
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "de-activate" (p0125, p0145, p0155, p0165).
Note:
This is the only message that is displayed for a de-activated component.
Remedy:

Reaction upon N : Acknowl. upon N :	NONE NONE
A01318	BICO: De-activated interconnections present
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	This alarm is used in the following cases:
	- If an inactive/non-operational drive object is active again/ready for operation
	- If there are items in the list of BI/CI parameters (r9498[0...29], r9499[0...29])
	- If the BICO interconnections saved in the list of BI/CI parameters (r9498[0...29], r9499[0...29]) have actually been changed
Remedy:	Reset alarm:
	- Set p9496 to 1 or 2
	or

A01319

Message value:
Message class: Drive object: Reaction: Acknowledge:

Cause:

Remedy:

A01320
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Inserted component not initialized
-
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, ENC, HUB, TB30, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
NONE
NONE
Initialization is required for at least one inserted component.
This is only possible if the pulses are inhibited for all the drive objects.
Activate pulse inhibit for all drive objects.

Topology: Drive object number does not exist in configuration

 \%1Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
A drive object number is missing in p0978
Alarm value (r2124, interpret decimal):
Index of p0101 under which the missing drive object number can be determined.
Remedy: Set p0009 to 1 and change p0978:
Rules:

- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

A01321
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Topology: Drive object number does not exist in configuration
\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
p0978 contains a drive object number that does not exist.
Alarm value (r2124, interpret decimal):
Index of p0978 under which the drive object number can be determined.

Topology: Drive object number does not exist in configuration

 \%1rror in the parameterization / configuration / commissioning procedure (18)
Allobect
NONE
p0978 contains a drive object number that does not exist.

Index of p0978 under which the drive object number can be determined.

4.2 List of faults and alarms

Remedy: \quad Set p0009 to 1 and change p0978:
Rules:

- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

A01322	Topology: Drive object number present twice in configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A drive object number is present more than once in p0978. Alarm value (r2124, interpret decimal): Index of p0978 under which the involved drive object number is located.
Remedy:	Set parameter p0009 $=1$ and change p0978: Rules: - p0978 must include all of the drive object numbers (p 0101). - it is not permissible for a drive object number to be repeated. - by entering a 0 , the drive objects with PZD are separated from those without PZD. - only 2 partial lists are permitted. After the second 0 , all values must be 0 . - dummy drive object numbers (255) are only permitted in the first partial list.

A01323

Message value:

Message class:

Drive object:
Reaction:

Acknowledge:

Cause:

Remedy:

Topology: More than two partial lists created

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
Partial lists are available more than twice in p0978. After the second 0 , all must be 0 .
Alarm value (r 2124 , interpret decimal):
Index of p0978 under which the illegal value is located.
Set p0009 to 1 and change p0978:
Rules:

- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

A01324	Topology: Dummy drive object number incorrectly created
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	In p0978, dummy drive object numbers (255) are only permitted in the first partial list.
	Alarm value (r2124, interpret decimal):
	Index of p0978 under which the illegal value is located.
Remedy:	Set p0009 to 1 and change p0978:
	Rules:
	- p0978 must include all of the drive object numbers (p0101).
	- it is not permissible for a drive object number to be repeated.

- by entering a 0 , the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0 , all values must be 0 .
- dummy drive object numbers (255) are only permitted in the first partial list.

F01325

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

Cause:

Remedy:

Topology: Component number not present in target topology

Component number: \%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
IMMEDIATELY
The component configured in a parameter (e.g. p0121, p0131, etc.) is not present in the target topology. Alarm value (r2124, interpret decimal):
Configured component number that is not present in target topology.
Establish topology and DO configuration consistency.

A01330

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Topology: Quick commissioning not possible

Fault cause: \%1, supplementary information: \%2, preliminary component number: \%3
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
Unable to carry out a quick commissioning. The existing actual topology does not fulfill the requirements. Alarm value (r2124, interpret hexadecimal):
ccccbbaa hex: cccc = preliminary component number, $b b=$ supplementary information, $a \mathrm{a}=$ fault cause aa $=01$ hex $=1 \mathrm{dec}$:
On one component illegal connections were detected.

- bb = 01 hex $=1$ dec: For a Motor Module, more than one motor with DRIVE-CLiQ was detected.
$-\mathrm{bb}=02$ hex $=2$ dec: For a motor with DRIVE-CLiQ, the DRIVE-CLiQ cable is not connected to a Motor Module.
aa $=02$ hex $=2$ dec:
The topology contains too many components of a particular type.
- bb = 01 hex $=1 \mathrm{dec}$: There is more than one master Control Unit.
$-\mathrm{bb}=02$ hex $=2 \mathrm{dec}$: There is more than 1 infeed (8 for a parallel circuit configuration).
$-\mathrm{bb}=03$ hex $=3 \mathrm{dec}$: There are more than 10 Motor Modules (8 for a parallel circuit configuration).
$-\mathrm{bb}=04$ hex $=4 \mathrm{dec}$: There are more than 9 encoders.
$-\mathrm{bb}=05$ hex $=5 \mathrm{dec}$: There are more than 8 Terminal Modules.
- bb $=07$ hex $=7$ dec: Unknown component type
- $\mathrm{bb}=08$ hex $=8 \mathrm{dec}$: There are more than 6 drive slaves.
$-\mathrm{bb}=09 \mathrm{hex}=9 \mathrm{dec}$: Connection of a drive slave not permitted.
$-\mathrm{bb}=0 \mathrm{a}$ hex $=10 \mathrm{dec}$: There is no drive master.
$-\mathrm{bb}=0 \mathrm{~b}$ hex $=11 \mathrm{dec}$: There is more than one motor with DRIVE-CLiQ for a parallel circuit.
$-\mathrm{bb}=0 \mathrm{c}$ hex $=12 \mathrm{dec}$: Different power units are being used in a parallel connection.
- cccc: Not used.
aa $=03$ hex $=3$ dec:
More than 16 components are connected at a DRIVE-CLiQ socket of the Control Unit.
$-\mathrm{bb}=0,1,2,3$ means e.g. detected at the DRIVE-CLiQ socket X100, X101, X102, X103.
- cccc: Not used.
aa $=04$ hex $=4 \mathrm{dec}$:
The number of components connected one after the other is greater than 125.
- bb: Not used.
- cccc = preliminary component number of the first component and component that resulted in the fault. aa $=05$ hex $=5$ dec:
The component is not permissible for SERVO.
- $\mathrm{bb}=01$ hex $=1$ dec: SINAMICS G available.
- bb $=02$ hex $=2$ dec: Chassis available.
- cccc = preliminary component number of the first component and component that resulted in the fault.
aa $=06$ hex $=6 \mathrm{dec}:$
On one component illegal EEPROM data was detected. These must be corrected before the system continues to boot.
- bb = 01 hex = 1 dec: The Order No. [MLFB] of the power unit that was replaced includes a space retainer. The space retainer (*) must be replaced by a correct character.
- cccc $=$ preliminary component number of the component with illegal EEPROM data.
aa $=07$ hex $=7$ dec:
The actual topology contains an illegal combination of components.
- $\mathrm{bb}=01$ hex = 1 dec: Active Line Module (ALM) and Basic Line Module (BLM).
- bb = 02 hex = 2 dec: Active Line Module (ALM) and Smart Line Module (SLM).
- bb = 03 hex = 3 dec: SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15).
$-\mathrm{bb}=04$ hex $=4 \mathrm{dec}$: SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32).
- cccc: Not used.

Note:
Connection type and connection number are described in F01375.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)
Remedy: - adapt the output topology to the permissible requirements.

- carry out commissioning using the commissioning software.
- for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor 1 (X1) to X202, from motor 2 (X2) to X203).
Re aa $=06$ hex $=6 \mathrm{dec}$ and $\mathrm{bb}=01 \mathrm{hex}=1 \mathrm{dec}$:
Correct the order number when commissioning using the commissioning software.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

A01331

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:

Cause:

Topology: At least one component not assigned to a drive object

Component number: \%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
At least one component is not assigned to a drive object

- when commissioning, a component was not able to be automatically assigned to a drive object.
- the parameters for the data sets are not correctly set.

Alarm value (r2124, interpret decimal):
Component number of the unassigned component.
Remedy: This component is assigned to a drive object.
Check the parameters for the data sets.
Examples:

- power unit (p0121).
- motor (p0131, p0186).
- encoder interface (p0140, p0141, p0187 ... p0189).
- encoder (p0140, p0142, p0187 ... p0189).
- Terminal Module (p0151).
- option board (p0161).

F01340

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Topology: Too many components on one line

Component number or connection number: \%1, fault cause: \%2
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
IMMEDIATELY
For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.

	Fault value (r0949, interpret hexadecimal):
	xyy hex: $x=$ fault cause, $\mathrm{y} y=$ component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	2yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers.
	$3 y y:$
	Cyclic communication is fully utilized.
	4yy:
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of 31.25μ s have not been maintained.
	5 yy :
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	6 yy :
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7yy:
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8yy:
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
Remedy:	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware. - check the DRIVE-CLiQ wiring.
	- Reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets of the Control Unit. This means that communication is uniformly distributed over several lines.
	Re fault value = 1yy-4yy in addition:
	- increase the sampling times (p0112, p0115, p4099). If necessary, for DCC or FBLOCKS, change the assignment of the run-time group (p21000, p20000) so that the sampling time ($\mathrm{r} 21001, \mathrm{r} 20001$) is increased.
	- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).
	- reduce the function modules (r0108).
	- establish the conditions for operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ (at the DRIVE-CLiQ line, only operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, this means a 3 at the last position of the order number)).
	- For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to a free DRIVE-CLiQ socket of the NX.
	Re fault value = 8yy in addition:
	- check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, which have components on the line involved.
	Re fault value = 9yy in addition:
	- check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical values of the clock cycles.
F01341	Topology: Maximum number of DRIVE-CLiQ components exceeded
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Too many DRIVE-CLiQ components were defined in the actual topology.
	Note:
	Pulse enable is withdrawn and prevented.

4.2 List of faults and alarms

Remedy:	- check the DRIVE-CLiQ wiring. - reduce the number components on the DRIVE-CLiQ line involved in order to maintain the maximum quantity structure.
F01354	Topology: Actual topology indicates an illegal component
Message value:	Fault cause: \%1, component number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one illegal component.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ cause.
	$x x=1$: Component at this Control Unit not permissible.
	$x x=2$: Component in combination with another component not permissible.
	Note:
	Pulse enable is prevented.
Remedy:	Remove the illegal components and restart the system.
F01355	Topology: Actual topology changed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The device target topology (p0099) does not correspond to the device actual topology (r0098).
	The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning software.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: r0098 (Actual device topology), p0099 (Device target topology)
Remedy:	One of the following counter-measures can be selected if no faults have occurred in the topology detection itself: If commissioning is still not completed: - carry out a self-commissioning routine (starting from p0009 = 1).
	In general:
	Set p0099 $=$ r0098, set p0009 $=0$; for existing Motor Modules, this results in servo drives being automatically generated (p0107).
	Generating servo drives: Set p0097 to 1, set p0009 to 0 .
	Generating vector drives: Set p0097 to 2, set p0009 to 0.
	Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0 .
	In order to set configurations in p0108, before setting p0009 to 0 , it is possible to first set p0009 to 2 and modify p0108. The index corresponds to the drive object (p 0107).
	If commissioning has already been completed:
	- re-establish the original connections and re-connect power to the Control Unit.
	- restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again.
	- change the device parameterization to match the connections (this is only possible using the commissioning software).
	Notice:
	Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning software and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting.
	See also: r0098 (Actual device topology)

F01356	Topology: There is a defective DRIVE-CLiQ component
Message value:	Fault cause: \%1, Component number: \%2, Connection number: \%3
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The actual topology indicates at least one defective DRIVE-CLiQ component.
	Fault value (r0949, interpret hexadecimal):
	zzyyxx hex:
	$z z=$ connection number of the component at which the defective component is connected
	yy = component number of the component at which the defective component is connected
	$x \mathrm{x}=$ fault cause
	$x x=1$: Component at this Control Unit not permissible.
	$x x=2$: component with communication defect.
	Note:
	Pulse enable is withdrawn and prevented.
Remedy:	Replace the defective component and restart the system.
F01357	Topology: Two Control Units identified on the DRIVE-CLiQ line
Message value:	component number: \%1, connection number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	In the actual topology, 2 Control Units are connected with one another through DRIVE-CLiQ.
	As standard, this is not permitted.
	It is only permitted, if the OA application OALINK is already installed on both Control Units.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex:
	yy = connection number of the Control Unit at which the second Control Unit is connected
	$\mathrm{xx}=$ component number of the Control Unit at which the second Control Unit is connected
	Note:
	Pulse enable is withdrawn and prevented.
Remedy:	- remove the DRIVE-CLiQ connection, restart the systems, install OALINK on both Control Units and commission. - remove the connection to the second Control Unit and restart.
	- for the S120M component DRIVE-CLiQ extension, interchange the hybrid cable (IN/OUT).
A01358	Topology: Line termination not available
Message value:	CU connection number: \%1, component number: \%2, connection number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one line with distributed drives is not terminated. The last participant on the line must be terminated with a line termination connector.
	This therefore ensures the degree of protection of the distributed drives.
	Fault value (r0949, interpret hexadecimal):
	zzyyxx hex:
	zz = connection number of the distributed drive where there is no terminating connector
	yy = component number
	$x x=$ CU connection number
Remedy:	Install the line terminating connector for the last distributed drive.

F01359	Topology: DRIVE-CLiQ performance not sufficient
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ performance is not sufficient at one line in order to identify an inserted component. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - Distribute components across several DRIVE-CLiQ lines. Note: For this topology, do not withdraw and insert components in operation.
F01360	Topology: Actual topology not permissible
Message value:	Fault cause: \%1, preliminary component number: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The detected actual topology is not permissible.
	```Fault value (r0949, interpret hexadecimal): ccccbbaa hex: cccc = preliminary component number, bb = no significance, aa = fault cause aa = 01 hex = 1 dec:```
	Too many components were detected at the Control Unit. A maximum of 199 components is permissible aa $=02$ hex $=2$ dec:
	The component type of a component is not known. aa $=03$ hex $=3$ dec:
	It is illegal to combine ALM and BLM. $\mathrm{aa}=04 \mathrm{hex}=4 \mathrm{dec}:$
	It is illegal to combine ALM and SLM. aa $=05$ hex $=5$ dec:
	It is illegal to combine BLM and SLM.
	$\mathrm{aa}=06 \mathrm{hex}=6 \mathrm{dec}$ :
	A CX32 was not directly connected to a permitted Control Unit. $\mathrm{aa}=07 \mathrm{hex}=7 \mathrm{dec}$ :
	An NX10 or NX15 was not directly connected to a permitted Control Unit.
	A component was connected to a Control Unit that is not permitted for this purpose. aa $=09$ hex $=9$ dec:
	A component was connected to a Control Unit with out-of-date firmware.
	$\mathrm{aa}=0 \mathrm{~A}$ hex $=10 \mathrm{dec}:$
	Too many components of a particular type detected.
	$a \mathrm{a}=0 \mathrm{~B}$ hex $=11 \mathrm{dec}$ :
	Too many components of a particular type detected on a single line.
	Note:
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Re fault cause = 1 :
	Change the configuration. Connect less than 199 components to the Control Unit.
	Re fault cause $=2$ :
	Remove the component with unknown component type.
	Re fault cause $=3,4,5$ :
	Establish a valid combination.

Re fault cause $=6,7$ :
Connect the expansion module directly to a permitted Control Unit.
Re fault cause $=8$ :
Remove component or use a permissible component.
Re fault cause $=9$ :
Upgrade the firmware of the Control Unit to a later version.
Re fault cause $=10,11$ :
Reduce the number of components.

A01361	Topology: Actual topology contains SINUMERIK and SIMOTION components
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The detected actual topology contains SINUMERIK and SIMOTION components.
	The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex: cc $=$ fault cause, bb = component class of the actual topology, aa = component number of the
	component
	cc $=01$ hex $=1$ dec:
	An NX10 or NX15 was connected to a SIMOTION control.
	cc $=02$ hex $=2$ dec:
	A CX32 was connected to a SINUMERIK control.
	Re alarm value $=1:$
	Replace all NX10 or NX15 by a CX32.
	Re alarm value $=2:$
	Replace all CX32 by an NX10 or NX15.

## A01362

Message value:
Message class:
Drive object:

## Reaction:

Acknowledge:

## Cause:

## Topology: Topology rule(s) broken

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
At least one topology rule for the SINAMICS S120 Combi has been broken.
In the event of a fault, the ramping up of the drive system is aborted and closed-loop drive control is not enabled. Alarm value (r2124, interpret decimal):
The alarm value indicates which rule has been violated.
1: The S120 Combi may only be wired via DRIVE-CLiQ socket X200 to X100 on the NCU.
2: Only one Single Motor Module (SMM) or one Double Motor Module (DMM) may be connected via X200 to the DRIVE-CLiQ socket X101 on the NCU.
3: Only one Terminal Module 54F (TM54F) or one DRIVE-CLiQ Hub Module (hub) may be connected via X500 to the DRIVE-CLiQ socket X102 on the NCU.
4: Only Sensor Modules may be connected to DRIVE-CLiQ sockets X201 up to X203 (3-axis) or X204 (4-axis) on the S120 Combi.

5: Only one Sensor Module, type SMC20 or SME20 may be connected to DRIVE-CLiQ socket X205 (X204 is not available for 3-axis).
6: If a Single Motor Module is being used as the first expansion axis, only one more Single Motor Module may be connected (via X200 to X201 on the first Single Motor Module).
7: Only Sensor Modules may be connected to the corresponding DRIVE-CLiQ socket X202 on any Single Motor Modules which may be present.
8: For a second Single Motor Module or for a Double Motor Module, it is not permissible to connect anything at X201. 9: If a Double Motor Module is used as an expansion axis, only Sensor Modules may be connected to X202 and X203.
10: If a Terminal Module 54F (TM54F) is configured, only one DRIVE-CLiQ Hub Module (DMC20, DME20) may be connected to X501 of the TM54F module via DRIVE-CLiQ socket X500.

### 4.2 List of faults and alarms

	11: On the DRIVE-CLiQ Hub Module, only Sensor Modules Cabinet (SMC) and Sensor Modules External (SME) may be connected to X501 through X505.
	12: Only certain Motor Modules may be used for expansion axes.
	13: For an S120 Combi with 3 axes, nothing must be connected at the DRIVE-CLiQ Hub Module at X503.
Remedy:	Evaluate the alarm value and ensure compliance with the corresponding topology rule(s).
F01375	Topology: Connection duplicated between two components
Message value:	Component: \%1, \%2, connection: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When checking the actual topology, a ring-type connection was detected.
	The fault value describes a component contained in the ring.
	Fault value (r0949, interpret hexadecimal):
	ccbbaaaa hex:
	cc = connection number (\%3)
	bb = component class (\% 2)
	aaaa = preliminary component number (\%1)
	Component class:
	0: Component unknown.
	1: Control Unit
	2: Motor Module
	3: Line Module
	4: Sensor Module
	5: Voltage Sensing Module
	6: Terminal Module
	7: DRIVE-CLiQ Hub Module
	8: Controller Extension
	9: Filter Module
	10: Hydraulic Module.
	49: DRIVE-CLiQ component
	50: Option slot
	60: Encoder
	70: DRIVE-CLiQ motor
	71: Hydraulic cylinder
	72: Hydraulic valve
	80: Motor
	Connection number:
	0: Port 0, 1: Port 1, 2: Port 2, 3: Port 3, 4: Port 4, 5: Port 5
	10: X100, 11: X101, 12: X102, 13: X103, 14: X104, 15: X105
	20: X200, 21: X201, 22: X202, 23: X203
	50: X500, 51: X501, 52: X502, 53: X503, 54: X504, 55: X505
Remedy:	Output the fault value and remove the specified connection.
	Note:
	Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

## F01380

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Topology: Actual topology EEPROM defective

Preliminary component number: \%1
Hardware / software error (1)
All objects
NONE
POWER ON
When detecting the actual topology, a component with a defective EEPROM was detected.

Remedy:	Fault value (r0949, interpret hexadecimal):   bbbbaaaa hex:   bbbb = reserved   aaaa $=$ preliminary component number of the defective components   Output the fault value and remove the defected component.
A01381	Topology: power unit incorrectly inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a power unit in the actual topology that has been incorrectly inserted. Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   $\mathrm{dd}=$ connection number (\%4)   $\mathrm{cc}=$ component number (\%3)   bb = component class (\% 2)   $\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)   Note:   The component is described in dd, cc and bb, where the component involved is incorrectly inserted.   Component class and connection number are described in F01375.   The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   - automatically remove the topology error (p9904).   Note:   Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01382
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Topology: Sensor Module incorrectly inserted

Component: \%1, to \%2: \%3, connection : \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The topology comparison has detected a Sensor Module in the actual topology that has been incorrectly inserted with respect to the target technology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number (\%4)
cc = component number (\%3)
bb = component class (\% 2)
$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
Note:
The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Adapting topologies:

- insert the components involved at the right connection (correct the actual topology).
- adapt the project/parameterization in the commissioning software (correct the target topology).
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01383	Topology: Terminal Module incorrectly inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Terminal Module in the actual topology that has been incorrectly inserted with respect to the target technology.   Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd = connection number (\%4)   cc = component number (\%3)   $\mathrm{bb}=$ component class (\% 2)   aa = component number of the incorrectly inserted component (\% 1)   Note:   The component is described in dd, cc and bb, where the component involved is incorrectly inserted.   Component class and connection number are described in F01375.   The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   - automatically remove the topology error (p9904).   Note:   Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01384	Topology: DRIVE-CLiQ Hub Module incorrectly inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been incorrectly inserted with respect to the target topology.   Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd = connection number (\%4)   $\mathrm{cc}=$ component number (\%3)   $\mathrm{bb}=$ component class (\% 2)   aa = component number of the incorrectly inserted component (\% 1)   Note:   The component is described in dd, cc and bb, where the component involved is incorrectly inserted.   Component class and connection number are described in F01375.   The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   - automatically remove the topology error (p9904).   Note:   Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01385
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

A01386
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Topology: Controller Extension incorrectly inserted

Component: \%1, to \%2: \%3, connection : \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been incorrectly inserted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number (\%4)
cc = component number (\%3)
bb = component class (\% 2)
aa = component number of the incorrectly inserted component (\% 1)
Note
The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Adapting topologies:

- insert the components involved at the right connection (correct the actual topology).
- adapt the project/parameterization in the commissioning software (correct the target topology).
- automatically remove the topology error (p9904).

Note
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

## Topology: DRIVE-CLiQ component incorrectly inserted

Component: \%1, to \%2: \%3, connection : \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been incorrectly inserted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number (\%4)
cc = component number (\%3)
bb = component class (\% 2)
aa = component number of the incorrectly inserted component (\% 1)
Note:
The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
Component class and connection number are described in F01375
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled
Remedy: Adapting topologies:

- insert the components involved at the right connection (correct the actual topology)
- adapt the project/parameterization in the commissioning software (correct the target topology).
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

### 4.2 List of faults and alarms

## A01389

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## A01416

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Topology: Motor with DRIVE-CLiQ incorrectly inserted

Component: \%1, to \%2: \%3, connection : \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The topology comparison has detected a motor with DRIVE-CLiQ in the actual topology that has been incorrectly inserted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number (\%4)
cc = component number (\%3)
bb = component class (\% 2)
$\mathrm{aa}=$ component number of the incorrectly inserted component (\% 1)
Note:
The component is described in dd, cc and bb, where the component involved is incorrectly inserted.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Adapting topologies:

- insert the components involved at the right connection (correct the actual topology).
- adapt the project/parameterization in the commissioning software (correct the target topology).
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

## Topology: Component additionally inserted

\%1, to \%2: \%3, connection: \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The topology comparison has found a component in the actual topology which is not specified in the target topology. Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = component class (\% 2)
cc = connection number (\%4)
$\mathrm{bb}=$ component class of the additional component (\%1)
$\mathrm{aa}=$ component number (\%3)
Note:
The component class of the additional component is contained in bb .
The component is described in dd, cc and aa, where the additional component is inserted.
Component class and connection number are described in F01375.
Remedy:

Adapting topologies:

- remove the additional component (correct the actual topology).
- adapt the project/parameterization in the commissioning software (correct the target topology). Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).



### 4.2 List of faults and alarms

## Remedy: Adapting topologies:

- change over the actual topology to match the target topology.
- download the target topology that matches the actual topology (commissioning software).

Re byte cc:
cc = 1 --> can be acknowledged using p9904 or p9905.
cc > 1 --> can be acknowledged using p9905 and can be de-activated using p9906 or p9907/p9908.
Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
See also: p9904 (Topology comparison acknowledge differences), p9905 (Device specialization), p9906 (Topology comparison comparison stage of all components), p9907 (Topology comparison comparison stage of the component number), p9908 (Topology comparison comparison stage of a component)

## A01428

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Topology: Incorrect connection used

Component: \%1, \%2, connection (actual): \%3, connection (target): \%4
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The topology comparison has detected differences in the actual and target topologies in relation to one component.
For a component, another connection was used.
The different connections of a component are described in the alarm value.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number of the target topology (\%4)
cc = connection number of the actual topology (\%3)
bb = component class (\% 2)
aa $=$ component number (\%1)
Note:
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Adapting topologies:

- reinsert the DRIVE-CLiQ cable to the component (correct the actual topology).
- adapt the project/parameterization in the commissioning software (correct the target topology).
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
See also: p9904 (Topology comparison acknowledge differences)

## F01451

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Topology: Target topology is invalid

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
IMMEDIATELY
An error was detected in the target topology.
The target topology is invalid.
Fault value (r0949, interpret hexadecimal):
ccccbbaa hex: cccc = index error, bb = component number, aa = fault cause
$a \mathrm{a}=1 \mathrm{~B}$ hex $=27$ dec: Error not specified.
aa $=1 \mathrm{C}$ hex $=28 \mathrm{dec}$ : Value illegal.
aa $=1 \mathrm{D}$ hex $=29 \mathrm{dec}$ : Incorrect ID.
$\mathrm{aa}=1 \mathrm{E}$ hex $=30 \mathrm{dec}$ : Incorrect ID length.
aa $=1 \mathrm{~F}$ hex $=31 \mathrm{dec}$ : Too few indices left.
aa $=20$ hex $=32$ dec: component not connected to Control Unit.

Remedy: Reload the target topology using the commissioning software.

A01481 (N)	Topology: power unit not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a power unit that is missing in the actual topology with respect to the target
topology.	

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01483	Topology: Terminal Module not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Terminal Module that is missing in the actual topology with respect to the target topology.   Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd $=$ connection number (\%4)   $\mathrm{cc}=$ component number (\%3)   bb = component class (\% 2)   aa = component number of the component that has not been inserted (\% 1)   Note:   The component is described in dd, cc and bb, where the component has not been inserted.   Component class and connection number are described in F01375.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   Check the hardware:   - check the 24 V supply voltage.   - check DRIVE-CLiQ cables for interruption and contact problems.   - check that the component is working properly.   Note:   Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01484	Topology: DRIVE-CLiQ Hub Module not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ Hub Module missing in the actual topology with respect to the target topology.   Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd = connection number (\%4)   $\mathrm{cc}=$ component number (\%3)   $\mathrm{bb}=$ component class (\% 2)   aa = component number of the component that has not been inserted (\% 1)   Note:   The component is described in dd, cc and bb, where the component has not been inserted.   Component class and connection number are described in F01375.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   Check the hardware:   - check the 24 V supply voltage.   - check DRIVE-CLiQ cables for interruption and contact problems.   - check that the component is working properly.

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01485	Topology: Controller Extension not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a Control Extension (CX32) missing in the actual topology with respect to the target topology.   Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd = connection number (\%4)   cc = component number (\%3)   $\mathrm{bb}=$ component class (\% 2)   $\mathrm{aa}=$ component number of the component that has not been inserted (\% 1)   Note:   The component is described in dd, cc and bb, where the component has not been inserted.   Component class and connection number are described in F01375.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   Check the hardware:   - check the 24 V supply voltage.   - check DRIVE-CLiQ cables for interruption and contact problems.   - check that the component is working properly.   Note:   Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01486	Topology: DRIVE-CLiQ component not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a DRIVE-CLiQ component missing in the actual topology with respect to the target topology.   Alarm value (r2124, interpret hexadecimal):   ddccbbaa hex:   dd = connection number (\%4)   cc = component number (\%3)   $\mathrm{bb}=$ component class (\% 2)   aa = component number of the component that has not been inserted (\% 1)   Note:   The component is described in dd, cc and bb, where the component has not been inserted.   Component class and connection number are described in F01375.
Remedy:	Adapting topologies:   - insert the components involved at the right connection (correct the actual topology).   - adapt the project/parameterization in the commissioning software (correct the target topology).   Check the hardware:   - check the 24 V supply voltage.   - check DRIVE-CLiQ cables for interruption and contact problems.   - check that the component is working properly.

Note:
Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).

A01487	Topology: Option slot component not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected an option slot component missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	cc = component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aa = component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterization in the commissioning software (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.
	Note:
	Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
A01489	Topology: Motor with DRIVE-CLiQ not inserted
Message value:	Component: \%1, to \%2: \%3, connection : \%4
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The topology comparison has detected a motor with DRIVE-CLiQ missing in the actual topology with respect to the target topology.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{dd}=$ connection number (\%4)
	cc = component number (\%3)
	$\mathrm{bb}=$ component class (\% 2)
	aa = component number of the component that has not been inserted (\% 1)
	Note:
	The component is described in dd, cc and bb, where the component has not been inserted.
	Component class and connection number are described in F01375.
Remedy:	Adapting topologies:
	- insert the components involved at the right connection (correct the actual topology).
	- adapt the project/parameterization in the commissioning software (correct the target topology).
	Check the hardware:
	- check the 24 V supply voltage.
	- check DRIVE-CLiQ cables for interruption and contact problems.
	- check that the component is working properly.


	Note:   Under "Topology --> Topology view" the commissioning software where relevant offers improved diagnostics capability (e.g. setpoint/actual value comparison).
F01505 (A)	BICO: Interconnection cannot be established
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A PROFldrive telegram has been set (p0922).
	An interconnection contained in the telegram was not able to be established.
	Fault value (r0949, interpret decimal):
	Parameter receiver that should be changed.
Remedy:	Establish another interconnection.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01506 (A)	BICO: No standard telegram
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The standard telegram in p0922 is not maintained and therefore p0922 is set to 999.
	Fault value (r0949, interpret decimal):
	BICO parameter for which the write attempt was unsuccessful.
Remedy:	Again set the required standard telegram (p0922).
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A01507 (F, N)	BICO: Interconnections to inactive objects present
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	There are BICO interconnections to an inactive/inoperable drive object.
	The BI/CI parameters involved are listed in r9498.
	The associated BO/CO parameters are listed in r9499.
	The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the de-activated drive object.
	Note:
	r9498 and r9499 are only written to, if p9495 is not set to 0 .
	Alarm value (r2124, interpret decimal):
	Number of BICO interconnections found to inactive drive objects.
Remedy:	- set all open BICO interconnections centrally to the factory setting with p9495 $=2$.
	- make the non-operational drive object active/operational again (re-insert or activate components).
Reaction upon F:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A01508	BICO: Interconnections to inactive objects exceeded
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum number of BICO interconnections (signal sinks) when de-activating a drive object was exceeded.
	When de-activating a drive object, all BICO interconnections (signal sinks) are listed in the following parameters:
	- r9498[0..29]: List of the BI/CI parameters involved.
	- r9499[0...29]: List of the associated BO/CO parameters.
Remedy:	The alarm automatically disappears as soon as no BICO interconnection (value = 0) is entered in r9498[29] and   r9499[29].
	Notice:


Remedy:	Fault value (r0949, interpret decimal):   Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor. Apply scaling or check the transfer value.
F01513 (N, A)	BICO: Interconnection cross DO with different scalings
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different.   Example 1:
	BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Example 2:
	BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input.
	p2001: contains the reference value for voltage, drive objects 1, 2
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A01514 (F)	BICO: Error when writing during a reconnect
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
	Example:
	When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
	Alarm value (r2124, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.

### 4.2 List of faults and alarms

Remedy: If required, return the master control and repeat the operation

Reaction upon A:
Acknowl. upon A:

NONE
NONE

## A01590 (F) <br> Message value: <br> Message class: <br> Drive object: <br> Reaction: <br> Acknowledge: <br> Cause:

Remedy:
Reaction upon F:
Acknowl. upon F:

```
Drive: Motor maintenance interval expired
Fault cause: \%1 bin
General drive fault (19)
All objects
NONE
NONE
The selected service/maintenance interval for this motor was reached.
Alarm value (r2124, interpret decimal):
Motor data set number.
See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval) carry out service/maintenance and reset the service/maintenance interval (p0651).
NONE
IMMEDIATELY
```


## F01600

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - select Safe Torque Off and de-select again.

- replace the Motor Module involved.

For fault value = 9999:

- carry out diagnostics for fault F01611.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

## F01611 (A) SI P1 (CU): Defect in a monitoring channel

Message value: \%1
Message class: Safety monitoring channel has identified an error (10)
Drive object:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): STOP A initiated

\%1
Safety monitoring channel has identified an error (10)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected a fault and initiated a STOP A (STO via the safety shutdown path of the Control Unit).

- forced checking procedure of the safety shutdown path of the Control Unit unsuccessful.
- subsequent response to fault F01611 (defect in a monitoring channel).

Fault value (r0949, interpret decimal):
0 : Stop request from monitoring channel 2.
1005: STO active although STO not selected and there is no internal STOP A present.
1010: STO inactive although STO is selected or an internal STOP A is present.
1015: Feedback signal of STO for Motor Modules connected in parallel are different.
9999: Subsequent response to fault F01611.

VECTOR_G
NONE (OFF1, OFF2, OFF3)
IMMEDIATELY (POWER ON)
The drive-integrated "Safety Integrated" function on processor 1 has detected a fault in the crosswise data comparison between the two monitoring channels and has initiated a STOP F.
As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.

Fault value (r0949, interpret decimal):
0 : Stop request from monitoring channel 2.
1 ... 999:
Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI delay time of STO for Safe Stop 1 (p9652, p9852).
8: SI PROFIsafe address (p9610, p9810).
9: SI debounce time for STO/SBC/SS1 (MM) (p9651, p9851).
10: SI delay time for initiating STO for ESR (p9697, p9897).
11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
14: SI PROFIsafe telegram selection (p9611, p9811).
1000: Watchdog timer has expired.
Within the time of approx. $5 \times \mathrm{p} 9650$, alternatively, the following was defined:

- Too many signal changes have occurred at the EP terminal of the Motor Module.
- Via PROFIsafe/TM54F, STO was too frequently initiated (also as subsequent response).
- Safe pulse cancellation (r9723.9) was too frequently initiated (also as subsequent response).

1001, 1002: Initialization error, change timer / check timer.
1900: CRC error in the SAFETY sector.
1901: CRC error in the ITCM sector.
1902: Overloading in the ITCM sector has occurred in operation.
1903: Internal parameterizing error for CRC calculation.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
2000: Status of the STO selection for both monitoring channels are different.
2001: Feedback signals of STO shutdown for both monitoring channels are different.
2002: Statuses of the delay timer SS1 on both monitoring channels are different (status of the timer in p9650/p9850).
2003: Status of the STO terminal for both monitoring channels are different.
2004: Status of the STO selection for Motor Modules connected in parallel are different.
2005: Feedback signal of the safe pulse suppression on the Control Unit and Motor Modules connected in parallel are different.
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
6000: A fatal PROFIsafe communication error has occurred.
6064 ... 6071: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver.
6072: $F$ parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.

### 4.2 List of faults and alarms

6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
Remedy:
Re fault value = $1 \ldots 5$ and $7 \ldots 999$ :

- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=6$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=1000$ :

- check the EP terminal at the Motor Module (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the failsafe inputs at the TM54F (contact problems).
- check the tolerance time F-DI changeover and if required, increase the value (p9650/p9850).

Re fault value $=1001$, 1002:

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value $=1900,1901,1902$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Control Unit software.
- replace Control Unit.

Re fault value = 2000, 2001, 2002, 2003, 2004, 2005 :

- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of the STO selection in r9772. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace the Motor Module involved.

Note:
This fault can be acknowledged after removing the cause of the error and after correct selection/deselection of STO.
For fault value $=6000$ :

- carry out a POWER ON (power off/on) for all components.

Check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.

- increase the monitoring cycle clock settings (p9500, p9511).
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

For fault value = 6064:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).

For fault value $=6065$ :

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
For fault value $=6066$ :
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
For fault value $=6067$ :
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0!
For fault value $=6068$ :
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!

	For fault value = 6069:
	- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
	For fault value $=6070$ :
	- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V 1 mode and 1 in the V 2 mode!
	For fault value $=6071$ :
	- check the settings of the values of the $F$ parameters and the $F$ parameter $C R C$ (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
	For fault value = 6072:
	- check the settings of the values for the F parameters and, if required, correct.
	The following combinations are permissible for F parameters F_CRC_Length and F_Par_Version:
	F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
	F_CRC_Length = 3-byte CRC and F_Par_Version = 1
	For fault value $=6165$ :
	- if the fault occurs after powering up the Control Unit or after plugging in the PROFIBUS/PROFINET cable, acknowledge the fault.
	- check the configuration and communication at the PROFIsafe slave.
	- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
	Check whether there is a DRIVE-CLiQ communication error between the two monitoring channels and, if required, carry out a diagnostics routine for the faults identified.
	For fault value = 6166:
	- check the configuration and communication at the PROFIsafe slave.
	- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
	- evaluate diagnostic information in the $F$ host.
	- check PROFIsafe connection.
	Note:
	CU: Control Unit
	EP: Enable Pulses (pulse enable)
	ESR: Extended Stop and Retract
	MM: Motor Module
	SGE: Safety-relevant input
	SI: Safety Integrated
	SMM: Safe Motion Monitoring
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F01612	SI P1 (CU): STO inputs for power units connected in parallel different
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on the Control Unit (CU) has identified different states of the AND'ed STO inputs for power units connected in parallel and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
	Fault value (r0949, interpret binary):
	Binary image of the digital inputs of the Control Unit that are used as signal source for the function "Safe Torque Off".
Remedy:	- check the tolerance time SGE changeover and if required, increase the value (p9650).
	- check the wiring of the safety-relevant inputs (SGE) (contact problems).
	Note:
	CU: Control Unit
	SGE: Safety-relevant input

SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

N01620 (F, A)	SI P1 (CU): Safe Torque Off active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function of the basic functions has been selected on the Control Unit (CU) using the input terminal and is active.
	Note:
	- This message does not result in a safety stop response.
	- This message is not output when STO is selected using the Extended Functions.
Remedy:	Not necessary.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
N01621 (F, A)	SI P1 (CU): Safe Stop 1 active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Stop 1" (SS1) function has been selected on the Control Unit (CU) and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	Not necessary.
	Note:
	CU: Control Unit
	SI: Safety Integrated
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
Reaction upon F:	NONE (OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01625	SI P1 (CU): Sign-of-life error in safety data
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the two monitoring channels and has initiated a STOP A.
	- there is either a DRIVE-CLiQ communication error or communication has failed.
	- a time slice overflow of the safety software has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.



- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module or Safe Brake Adapter:

- check the Safe Brake Module or Safe Brake Adapter connection.
- Replace the Safe Brake Module or Safe Brake Adapter.

Note:
CU: Control Unit
SBC: Safe Brake Control
SI: Safety Integrated

A01631 (F, N)	SI P1 (CU): motor holding brake/SBC configuration not practical
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A configuration of motor holding brake and SBC was detected that is not practical.
	The following configurations can result in this message:
	- "No motor holding brake available" (p1215 = 0) and "SBC" enabled (p9602 = 1).
	- "Motor holding brake just like the sequence control, connection via BICO" (p1215 = 3) and "SBC" enabled (p9602 = 1).
	Note:
	SBC: Safe Brake Control
Remedy:	Check the parameterization of the motor holding brake and SBC and correct.
	See also: p1215 (Motor holding brake configuration), p9602 (SI enable Safe Brake Control (Control Unit)), p9802 (SI enable Safe Brake Control (Motor Module))
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01640	SI P1 (CU): component replacement identified and acknowledgment/save required
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The "Safety Integrated" function integrated in the drive has identified that a component has been replaced.
	It is no longer possible to operate the drive.
	When safety functions are active, after a component has been replaced it is necessary to carry out a partial acceptance test.
	Fault value (r0949, interpret binary):
	Bit $0=1$ :
	It has been identified that the Control Unit has been replaced.
	Bit $1=1$ :
	It has been identified that the Motor Module/Hydraulic Module has been replaced.
	Bit $2=1$ :
	It has been identified that the Power Module has been replaced.
	Bit $3=1$ :
	It has been identified that the Sensor Module channel 1 has been replaced.
	Bit $4=1$ :
	It has been identified that the Sensor Module channel 2 has been replaced.
	Bit 5 = 1:
	It has been identified that the sensor channel 1 has been replaced.

Bit $6=1$ :
It has been identified that the sensor channel 2 has been replaced.

Remedy:	- acknowledge component replacement (p9702 = 29).   - save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").   - acknowledge fault (e.g. BI: p2103).   Note:   In addition to the fault, diagnostics bits r9776.2 and r9776.3 are set.   See also: p9702 (SI Acknowledge component replacement), r9776 (SI diagnostics)
F01641	SI P1 (CU): component replacement identified and save required
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The "Safety Integrated" function integrated in the drive has identified that a component has been replaced.
	No additional fault response is initiated, therefore operation of the particular drive is not restricted.
	When safety functions are active, after a component has been replaced it is necessary to carry out a partial acceptance test.
	Fault value (r0949, interpret binary):
	Bit $0=1$ :
	It has been identified that the Control Unit has been replaced.
	Bit $1=1$ :
	It has been identified that the Motor Module/Hydraulic Module has been replaced.
	Bit $2=1$ :
	It has been identified that the Power Module has been replaced.
	Bit $3=1$ :
	It has been identified that the Sensor Module channel 1 has been replaced.
	Bit $4=1$ :
	It has been identified that the Sensor Module channel 2 has been replaced.
	Bit 5 = 1:
	It has been identified that the sensor channel 1 has been replaced.
	Bit $6=1$ :
	It has been identified that the sensor channel 2 has been replaced.
Remedy:	- save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").
	- acknowledge fault (e.g. BI: p2103).
	See also: r9776 (SI diagnostics)
F01641	SI P1 (CU): component replacement identified and save required
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	TM54F_MA
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The "Safety Integrated" function integrated in the drive has identified that a Terminal Module 54F (TM54F) has been replaced.
Remedy:	- save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM").
	- acknowledge fault (e.g. BI: p2103).
	See also: r9776 (SI diagnostics)


F01649	SI P1 (CU): Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on the Control Unit has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	- carry out a POWER ON (power off/on) for all components.
	- re-commission the "Safety Integrated" function and carry out a Power on.
	- Upgrade the firmware of the Control Unit to a later version.
Remedy:	- contact the Hotline.
	- replace the Control Unit.
	Note:
	CU: Control Unit
	SI: Safety Integrated


	9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	For fault value =130: - carry out safety commissioning routine.
	For fault value = 1000:
	- check the Safety Integrated Basic Functions (r9780) and adapt the reference checksum (p9799).
	- again carry out safety commissioning routine.
	- replace the memory card or Control Unit.
	- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
	For fault value $=2000$ :
	- check the safety parameters on monitoring channel 1 and adapt the reference checksum (p9799).
	For fault value = 2001:
	- check the safety parameters on monitoring channel 2 and adapt the reference checksum (p9899).
	For fault value $=2002$ :
	- check the enable the safety-related functions on both monitoring channels (p9601 = p9801).
	Re fault value $=2003$, 2004, 2005:
	- Carry out an acceptance test and generate an acceptance report.
	The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
	SINAMICS S120 Function Manual Safety Integrated
	The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected.
	For fault value = 2010:
	- check the enable the safety-related brake control on both monitoring channels (p9602 = p9802).
	For fault value $=2020$ :
	- again carry out safety commissioning routine.
	- replace the memory card or Control Unit.
	For fault value $=3003$ :
	- carry out the function checks for the modified hardware and generate an acceptance report.
	The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
	SINAMICS S120 Function Manual Safety Integrated
	For fault value $=3005$ :
	- carry out the function checks for the modified hardware and generate an acceptance report.
	The fault with fault value 3005 can only be acknowledged when the "STO" function is de-selected.
	For fault value = 9999:
	- carry out diagnostics for the other safety-related fault that is present.
	Note:
	CU: Control Unit
	MM: Motor Module
	SI: Safety Integrated
	STO: Safe Torque Off
	See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))
F01651	SI P1 (CU): Synchronization safety time slices unsuccessful
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function requires a synchronization of the safety time slices between the two monitoring channels and between the Control Unit and the higher-level control. This synchronization routine was unsuccessful. Note:
	This fault results in a STOP A that cannot be acknowledged.

### 4.2 List of faults and alarms

Fault value (r0949, interpret decimal):
121:

- with SINUMERIK Safety Integrated enabled, a drive-side warm restart was performed on the CU/NX.
- with SINUMERIK Safety Integrated enabled, the function "restore factory setting" was selected on a drive object of the CU and a drive-side warm restart was initiated.
150:
- fault in the synchronization to the PROFIBUS master.

All other values:

- only for internal Siemens troubleshooting.

See also: p9510 (SI Motion clock-cycle synchronous PROFIBUS master)
Remedy:
For fault value = 121:

- carry out a common POWER ON/warm restart for the higher-level control and SINAMICS.

For fault value $=150$ :

- check the setting of p9510 (SI Motion clock-cycle synchronous PROFIBUS master) and if required, correct. General:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module/Hydraulic Module software.
- upgrade the Control Unit software.
- upgrade the software of the higher-level control.

Note:
CU: Control Unit
SI: Safety Integrated

## F01652

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## SI P1 (CU): Illegal monitoring clock cycle

\%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
One of the Safety Integrated monitoring clock cycles is not permissible.

- the monitoring clock cycle integrated in the drive cannot be maintained due to the communication conditions required in the system.
- the monitoring clock cycle for safe motion monitoring functions is not permissible (p9500).
- the actual value sensing clock cycle for safe motion monitoring functions is not permissible (p9511).
- The sampling time for the current controller (p0112, p0115[0]) cannot be supported.

Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
For motion monitoring functions that are not enabled (p9601.2 $=$ p9801.2 $=0, p 9501=0$ ), the following applies:

- Minimum setting for the monitoring clock cycle (in $\mu \mathrm{s}$ ).

For motion monitoring functions that are enabled (p9601.2 = p9801.2 = 1 and/or p9501 > 0) , the following applies: 100:

- No matching monitoring clock cycle was able to be found.
- an illegal actual value sensing clock cycle was set for S120M (p9511).

101:

- The monitoring clock cycle is not an integer multiple of the actual value sensing clock cycle.

102:

- An error has occurred when transferring the actual value sensing clock cycle to the Motor Module. 103:
- An error has occurred when transferring the actual value sensing clock cycle to the Sensor Module.

104, 105:

- four times the current controller sampling time (p0115[0]) is greater than 1 ms when operating with a nonisochronous PROFIBUS.
- four times the current controller sampling time (p0115[0]) is greater than the DP clock cycle when operating with an isochronous PROFIBUS.
- The DP clock cycle is not an integer multiple of the sampling time of the current controller (p0115[0]).

106:

- The monitoring clock cycle does not match the monitoring clock cycle of the TM54F.

107:

- The actual value sensing clock cycle (p9511) is less than four times the current controller sampling time (p0115[0]).
- The actual value sensing clock cycle (p9511) is not an integer multiple of the sampling time of the current controller (p0115[0]).
108:
- The parameterized actual value sensing clock cycle cannot be set on this component

109:

- If the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle (p9511) and the current controller clock cycle ( $\mathrm{p} 0115[0]$ ) must be identical.
The following applies to SINAMICS S110:
- If the motion monitoring functions have been parameterized as encoderless (p9506), the actual value sensing clock cycle p9511 must be $=250 \mu \mathrm{~s}$.
110:
- The actual value sensing clock cycle (p9511) for safety with encoder (p9506 = 0) is less than 2 ms for this Control Unit (e.g. CU305).
111:
- The monitoring clock cycle is not an integer multiple of the sampling time of the current controller (p0115[0]).

112:

- An actual value sensing clock cycle p9511 = 0 on a drive object of a Double Motor Module is not permissible in the existing configuration.
200, 201:
- S120M: the monitoring clock cycle cannot be maintained as a result of the conditions required in the system.

202:

- The current controller sampling time is set to zero (p0115[0]).

Remedy:
For enabled SI monitoring integrated in the drive (p9601/p9801>0):

- Upgrade the firmware of the Control Unit to a later version.

For enabled motion monitoring function (p9501>0):

- correct the monitoring clock cycle (p9500) and carry out POWER ON.

For fault value = 100:

- for S120M, set the actual value sensing clock cycle to p9511 $=0$.

For fault value = 101:

- actual value sensing clock cycle corresponds to position control clock cycle/DP clock cycle (factory setting).
- for motion monitoring functions integrated in the drive (p9601/p9801bit $2=1$ ) the actual value sensing clock cycle can be directly parameterized in p9511/p9311.
Re fault value $=104,105$ :
- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard setting in p0112, p0115, the current controller sampling time is automatically reduced to $250 \mu \mathrm{~s}$. If the standard values were changed, then the current controller sampling time ( $\mathrm{p} 0112, \mathrm{p} 0115$ ) should be appropriately set.
- increase the DP clock cycle for operation with a clock-cycle synchronous PROFIBUS so that there is a multiple clock cycle ratio of at least $4: 1$ between the DP clock cycle and the current controller sampling time. A clock cycle ratio of at least $8: 1$ is recommended.
- With firmware version 2.5, please ensure that parameter p9510 is set to 1 in the drive (clock cycle synchronous operation).
For fault value = 106:
- set the parameters for the monitoring clock cycles the same (p10000 and p9500 / p9300).

For fault value = 107:

- Set an actual value sensing clock cycle that matches the current controller clock cycle (p9511 >= 4 * p0115[0], 8 * p0115[0]) is recommended.
Note:
An actual value sensing clock cycle (p9511) that is set too low, can sporadically mean that safety messages C01711/C30711 are output with message value 1020 or 1021.

For fault value = 108:

- set a suitable actual value sensing clock cycle in p9511.
- if the DP clock cycle is used as the actual value sensing clock cycle for operation with isochronous PROFIBUS (p9511 = 0), then a suitable DP clock cycle must be configured. This must be set to less than 8 ms . If this is not possible, then p9511 must be set to the required actual value sensing clock cycle (< 8 ms ).
- For SIMOTION D410-2, a suitable multiple of the DP clock cycle (e.g. 1, 2, 3, 4, 5, 6, 8, 10) must be parameterized. Otherwise, the clock cycle must be set to less than 8 ms .
For fault value = 109:
- set the actual value sensing clock cycle in p9511 to the same value as the current controller clock cycle (p0115[0]).

The following applies to SINAMICS S110:

- set the actual value sensing clock cycle to p9511 $=250 \mu \mathrm{~s}$.

For fault value =110:

- set the actual value sensing clock cycle in p9511 to 2 ms or higher.

For fault value =111

- set the monitoring clock cycle in p9500 as an integer multiple of the sampling time of the current controller (p0115[0]).
For fault value = 112:
- set the actual value sensing clock cycle p9511 to the required value (not equal to zero).

Re fault value = 200, 201

- Increase the current controller sampling time (p0115[0]).
- If required, reduce the number of components connected to the corresponding DRIVE-CLiQ line, or distribute the components across several DRIVE-CLiQ sockets.
For fault value = 202:
- Set the current controller sampling time to a sensible value (p0115[0]).

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

## F01653

Message value:
Message class:
Drive object:
Reaction:
Acknowledge: Cause:

## Remedy:

## SI P1 (CU): PROFIBUS/PROFINET configuration error

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE (OFF1, OFF2, OFF3)
IMMEDIATELY (POWER ON)
There is a PROFIBUS/PROFINET configuration error for using Safety Integrated monitoring functions with a higherlevel control (SINUMERIK or F-PLC).
Note:
For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
200: A safety slot for receive data from the control has not been configured.
210, 220: The configured safety slot for the receive data from the control has an unknown format.
230: The configured safety slot for the receive data from the F-PLC has the incorrect length.
231: The configured safety slot for the receive data from the F-PLC has the incorrect length.
240: The configured safety slot for the receive data from the SINUMERIK has the incorrect length.
250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive.
300: A safety slot for the send data to the control has not been configured.
310, 320: The configured safety slot for the send data to the control has an unknown format.
330: The configured safety slot for the send data to the F-PLC has the incorrect length.
331: The configured safety slot for the send data to the F-PLC has the incorrect length.
340: The configured safety slot for the send data to the SINUMERIK has the incorrect length.
The following generally applies:

- check and, if necessary, correct the PROFIBUS/PROFINET configuration of the safety slot on the master side.
- upgrade the Control Unit software.

For fault value $=250$ :

- remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive.

Re fault value $=231,331$ :

- in the drive, parameterize the appropriate PROFIsafe telegram (p9611/p9811) to be set on the F-PLC and to be set in p60022.
- Configure the PROFIsafe telegram matching the parameterization (p9611/p9811) in the F-PLC.

A01654 (F)	SI P1 (CU): Deviating PROFIsafe configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of a PROFIsafe telegram in the higher-level control (F-PLC) does not match the parameterization in the drive.
	Note:
	This message does not result in a safety stop response.
	Alarm value (r2124, interpret decimal):
	1:
	A PROFIsafe telegram is configured in the higher-level control, however PROFIsafe is not enabled in the drive (p9601.3).
	2 :
	PROFIsafe is parameterized in the drive; however, a PROFIsafe telegram has not been configured in the higher-level control.
Remedy:	The following generally applies:
	- check and, if necessary, correct the PROFIsafe configuration in the higher-level control.
	Re alarm value $=1$ :
	- remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive.
	Re alarm value $=2$ :
	- configure the PROFIsafe telegram to match the parameterization in the higher-level F-control.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F01655	SI P1 (CU): Align monitoring functions
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions of both monitoring channels. No common set of supported SI monitoring functions was able to be determined.
	- there is either a DRIVE-CLiQ communication error or communication has failed.
	- Safety Integrated software releases on the Control Unit and Motor Module/Hydraulic Module are not compatible with one another.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade the Motor Module/Hydraulic Module software.
	- upgrade the Control Unit software.
	- check the electrical cabinet design and cable routing for EMC compliance
	Note:
	CU: Control Unit
	SI: Safety Integrated


F01656	SI CU: Parameter monitoring channel $\mathbf{2}$ error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for monitoring channel 2 in the non-volatile memory, an error has
	occurred.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	129:
	- safety parameters for monitoring channel 2 corrupted.
	- drive with enabled safety functions was possibly copied offline using the commissioning software and the project
downloaded.	

## F01658

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): PROFIsafe telegram number differ

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The PROFIsafe telegram number is set differently in p9611 and p60022.
For p9611 not equal to 998, the following applies:
The telegram number must be identically set in both parameters
The following applies for p9611 = 998:
As a result of the compatibility to firmware versions < 4.5, then only the values 0 and 30 are permitted in p60022.
Note:
This fault does not result in a safety stop response.
See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection)
Remedy: Match the telegram number in both parameters so that they are the same (p9611, p60022)

## F01659

Message value:
Message class:
Drive object
Reaction:

## Acknowledge:

Cause:

## SI P1 (CU): Write request for parameter rejected

\%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected.
Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1: The Safety Integrated password is not set.
2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
3: The interconnected STO input is in the simulation mode.
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration (r9871.14).
13: An attempt was made to enable the SS1 function although this cannot be supported
14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on both monitoring channels is different.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection ( p 1231 ) is enabled
17: An attempt was made to enable the PROFIsafe function although this cannot be supported for a parallel circuit configuration

18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
19: An attempt was made to enable the SBA (Safe Brake Adapter), although this cannot be supported.
20: An attempt was made to enable the motion monitoring functions integrated in the drive and the STO function, both controlled via F-DI.

21: An attempt was made to enable the motion monitoring functions integrated in the drive for a parallel connection, although these cannot be supported.
22: An attempt was made to enable the Safety Integrated functions although these cannot be supported by the connected Power Module

23: For ESR, an attempt was made to enable the delay of STO, although this cannot be supported.
24: An attempt was made to enable the SBC function, although no power unit data set is set for the brake control (p7015 = 99)
25: An attempt was made to parameterize a PROFIsafe telegram although this cannot be supported.

26: At a digital input of the Control Unit, an attempt was made to activate the simulation mode ( p 0795 ), which is used by Safety Integrated (p10049).
27: An attempt was made to activate the Basic Functions by controlling via TM54F although this cannot be supported.
See also: p0970, p3900, r9771, r9871
Remedy:
For fault value =1:

- set the Safety Integrated password (p9761).

For fault value $=2$ :

- Inhibit Safety Integrated (p9501, p9601) or reset safety parameters (p0970 = 5), then reset the drive parameters again.
For fault value $=3$ :
- end the simulation mode for the digital input (p0795).

Re fault value $=10,11,12,13,14,15,17,18,19,21,22,23$ :

- check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value = 16 :

- inhibit the internal voltage protection (p1231).

For fault value $=20$ :

- correct setting in p9601.

For fault value $=22$ :

- use a Power Module that supports the Safety Integrated functions.

For fault value $=24$ :

- set the power unit data set for the holding brake (p7015).

For fault value $=25$ :

- use a Power Module that supports the PROFIsafe telegram selection.
- Correct the telegram number setting (p9611).

For fault value $=26$ :

- check whether p10049 is set. Also check p10006 and p10009. Check whether in p10046, p10047 a test stop of the F-DO with read back input has been parameterized.
- correct the setting in p9611.

For fault value $=33$ :

- deselect drive integrated motion monitoring without selection (p9601.5, p9801.5) and select safety functions that are supported (see p9771/p9871).
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Note:
CU: Control Unit
ESR: Extended Stop and Retract
SBA: Safe Brake Adapter
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9601 (SI enable functions integrated in the drive (Control Unit)), p9620 (SI signal source for STO (SH)/SBC/SS1 (Control Unit)), p9761 (SI password input), p9801 (SI enable functions integrated in the drive (Motor Module))

## F01659

Message value:
Message class:
Drive object:

## Reaction:

Acknowledge:
Cause:

## Remedy:

## SI P1 (CU): Write request for parameter rejected

 \%1Error in the parameterization / configuration / commissioning procedure (18)
TM54F_MA, TM54F_SL
NONE
IMMEDIATELY (POWER ON)
The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected. Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1: The Safety Integrated password is not set.
2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
3: The interconnected STO input is in the simulation mode.
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration (r9871.14).
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on both monitoring channels is different.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection (p1231) is enabled.
17: An attempt was made to enable the PROFIsafe function although this cannot be supported for a parallel circuit configuration.
18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
19: An attempt was made to enable the SBA (Safe Brake Adapter), although this cannot be supported.
20: An attempt was made to enable the motion monitoring functions integrated in the drive and the STO function, both controlled via F-DI.
21: An attempt was made to enable the motion monitoring functions integrated in the drive for a parallel connection, although these cannot be supported.
22: An attempt was made to enable the Safety Integrated functions although these cannot be supported by the connected Power Module.
23: For ESR, an attempt was made to enable the delay of STO, although this cannot be supported.
24: An attempt was made to enable the SBC function, although no power unit data set is set for the brake control (p7015 = 99).
25: An attempt was made to parameterize a PROFIsafe telegram although this cannot be supported.
26: At a digital input of the Control Unit, an attempt was made to activate the simulation mode (p0795), which is used by Safety Integrated (p10049).
27: An attempt was made to activate the Basic Functions by controlling via TM54F although this cannot be supported.
See also: p0970, p3900, r9771, r9871
For fault value $=1$ :

- set the Safety Integrated password (p10061).

For fault value $=2$ :

- Inhibit Safety Integrated ( $\mathrm{p} 9501, \mathrm{p} 9601$ ) or reset safety parameters ( $\mathrm{p} 0970=5$ ), then reset the drive parameters again.
For fault value $=3$ :
- end the simulation mode for the digital input ( p 0795 ).

Re fault value $=10,11,12,13,14,15,17,18,19,21,22,23$ :

- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=16$ :

- inhibit the internal voltage protection (p1231).

For fault value $=20$ :

- correct setting in p9601.

For fault value $=22$ :

- use a Power Module that supports the Safety Integrated functions.

Note:
CU: Control Unit
ESR: Extended Stop and Retract
MM: Motor Module
SBA: Safe Brake Adapter
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9601 (SI enable functions integrated in the drive (Control Unit)), p9620 (SI signal source for STO (SH)/SBC/SS1 (Control Unit)), p9761 (SI password input), p9801 (SI enable functions integrated in the drive (Motor Module))

## F01660

Message value:
Message class: Drive object: Reaction:

## Acknowledge:

Cause:

## Remedy:

## F01661

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): Safety-related functions not supported

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The Motor Module/Hydraulic Module does not support the safety-related functions (e.g. the Motor Module/Hydraulic Module version is not the correct one). Safety Integrated cannot be commissioned.
Note:
This fault does not result in a safety stop response.

	- upgrade the Motor Module/Hydraulic Module software.   Note:   CU: Control Unit   SI: Safety Integrated
F01661	SI P1 (CU): Simulation of the safety inputs active
Message value:	Fault cause: \%1 bin
Message class:	General drive fault (19)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY   Cause:
	The simulation of the digital inputs of the Control Unit (p0795) is active.   It is not permissible that safety inputs are simulated.
	Fault value (r0949, interpret binary):
	The displayed bits indicate which digital inputs must not be simulated.
Remedy:	- Deactivate the simulation of the digital inputs of the Control Unit for the safety inputs (p0795).
	- acknowledge fault.

## F01663

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): Copying the SI parameters rejected

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
In p9700, the value 87 or 208 is saved or was entered offline.

This is the reason that when booting, an attempt is made to copy SI parameters from monitoring channel 1 to monitoring channel 2 . However, no safety-relevant function has been selected on monitoring channel 1 ( $\mathrm{p} 9501=0$, p9601 = 0). Copying was rejected for safety reasons.
As a consequence, inconsistent parameterization can occur in both monitoring channels, which in turn results in additional error messages.
Especially for inconsistent enabling of the safety functions on both monitoring channels ( $\mathrm{p} 9601=0, \mathrm{p} 9801$ <> 0 ), fault F30625 is output.
Note:
This fault does not result in a safety stop response.
See also: p9700 (SI Motion copy function)

## Remedy:

- Set p9700 to 0.
- Check p9501 and p9601 and if required, correct.
- Restart the copying function by entering the corresponding value into p9700.

Alternatively, using the STARTER commissioning tool, perform the following steps in the online mode:

- Call the "Safety Integrated" screen form (the field "Select safety functions" is at "No Safety Integrated").
- Click on "Change settings".
- Click on "Activate settings" (as a consequence, Safety Integrated is inhibited on both monitoring channels).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON (power off/on) for all components.


## F01664

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## SI P1 (CU): No automatic firmware update

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
During booting, the system detected that the "Firmware update automatic" function (p7826 = 1) was not activated. This function must be activated for automatic firmware updates/downgrades to prevent impermissible version combinations when safety functions are enabled.
Note:
This fault does not result in a safety stop response.
See also: p7826 (Firmware update automatic)
When safety functions are enabled (p9501 <> 0 and/or p9601 <> 0):

1. Activate the "Firmware update automatic" function (p7826 = 1).
2. Save the parameters ( $00977=1$ ) and carry out a POWER ON.

When de-activating the safety functions ( $\mathrm{p} 9501=0$, p9601 = 0) , the fault can be acknowledged after exiting the safety commissioning mode.

## F01665

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI P1 (CU): System is defective

\%1
Hardware / software error (1)
VECTOR G
OFF2
IMMEDIATELY
A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).
Fault value (r0949, interpret hexadecimal):
200000 hex, 400000 hex, 8000yy hex (yy any):

- Fault in the actual booting/operation. 800004 hex:
- Parameters p9500/p9300 are, under certain circumstances, not the same. In addition, Safety message C01711/C30711 is displayed.
Additional values:
- defect before the last time that the system booted.


### 4.2 List of faults and alarms

Remedy:	- carry out a POWER ON (power off/on).   - upgrade firmware to later version.   - contact the Hotline.   Re fault value $=200000$ hex, 400000 hex, 8000yy hex (yy any):   - ensure that the Control Unit is connected to the Power Module.   Re fault value $=800004$ hex:   - Check that parameters p9500/p9300 are the same.
A01666 (F)	SI Motion P1 (CU): Steady-state (static) 1 signal at the F-Dl for safe acknowledgment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F -DI configured in p 10006 for more than 10 seconds.   If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy:	Set the fail-safe digital input (F-DI) to a logical 0 signal (p10006). Note:   F-DI: Failsafe Digital Input
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
A01669 (F, N)	SI Motion: Unfavorable combination of motor and power unit
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The combination of motor and power unit used is not suitable for using safe motion monitoring functions without an encoder.   The ratio between the power unit rated current (r0207[0]) and rated motor current ( p 0305 ) is greater than 5.   Alarm value (r2124, interpret decimal):   Number of the motor data set, which caused the fault.   Notice:   If this alarm is not observed, then message C01711 or C30711 - with the value 1041 ... 1044 - can sporadically occur.
Remedy:	Use a suitable power unit with a lower power rating or a motor with a higher power rating.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F01670	SI Motion: Invalid parameterization Sensor Module
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterization of a Sensor Module used for Safety Integrated is not permissible.   Note:   This fault results in a STOP A that cannot be acknowledged.   Fault value (r0949, interpret decimal):   1: No encoder was parameterized for Safety Integrated.   2: An encoder was parameterized for Safety Integrated that does not have an A/B track (sine/cosine).

3: The encoder data set selected for Safety Integrated is still not valid.
4: A communication error with the encoder has occurred.
5: Number of relevant bits in the encoder coarse position invalid.
6: DRIVE-CLiQ encoder configuration invalid.
7: Non-safety relevant component of the encoder coarse position for the linear DRIVE-CLiQ encoder not valid.
8: Parameterized Safety comparison algorithm not supported.
9: Relationship between the grid division and measuring step for linear DRIVE-CLiQ encoder is not binary.
10: For an encoder used for Safety Integrated, not all of the Drive Data Sets (DDS) are assigned to the same Encoder Data Set (EDS) (p0187 ... p0189).
11: The zero point setting of a linear DRIVE-CLiQ encoder used in Safety Integrated is not zero.
12: The second encoder is not parameterized.
13: Hydraulic Module: A second encoder has not been parameterized and a DRIVE-CLiQ encoder is not being used.
Remedy: Re fault value $=1,2$ :

- use and parameterize an encoder that Safety Integrated supports (encoder with track A/B sine-wave, p0404.4 = 1). For fault value $=3$ :
- check whether the drive or drive commissioning function is active and if required, exit this ( $p 0009=p 00010=0$ ) save the parameters ( $p 0971=1$ ) and carry out a POWER ON

For fault value $=4$ :

- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Sensor Module involved and if required, carry out a diagnostics routine for the faults identified.
For fault value $=5$ :
- p9525 = 0 (not permissible). Check the encoder parameterization on the Sensor Modules involved.

For fault value $=6$ :

- check p9515.0 (for DRIVE-CLiQ encoders, the following applies: p9515.0 = 1). Check the encoder parameterization on the Sensor Modules involved.

For fault value $=7$ :

- p12033 for an encoder used for Safety Integrated is not equal to 1. Use a linear DRIVE-CLiQ and parameterize for p12033 = 1 .
For fault value $=8$ :
- check p9541. Use and parameterize an encoder that implements an algorithm supported by Safety Integrated. For fault value $=9$
- check p9514 and p9522. Use an encoder and parameterize, where the ratio between p9514 and p9522 is binary. For fault value $=10$ :
- align the EDS assignment of all of the encoders used for Safety Integrated (p0187 ... p0189).

For fault value = 11:

- use and parameterize a linear DRIVE-CLiQ encoder, where the zero point setting is equal to 0 .

For fault value $=12$ :

- p0526 = 1 (not permissible). A second encoder must be parameterized.

For fault value =13:

- Parameterize a second encoder or use a DRIVE-CLiQ encoder.

Note:
SI: Safety Integrated

## F01671

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion: Parameterization encoder error

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR G
OFF2
IMMEDIATELY (POWER ON)
The parameterization of the encoder used by Safety Integrated is different to the parameterization of the standard encoder.

Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Parameter number of the non-corresponding safety parameter.

### 4.2 List of faults and alarms

Remedy:	Align the encoder parameterization between the safety encoder and the standard encoder. Note:   SI: Safety Integrated
F01672	SI P1 (CU): Motor Module software/hardware incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Motor Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Motor Module.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	1:
	The existing Motor Module software does not support the safe motion monitoring function.
	$2,3,6,8$ :
	There is a communications error between the Control Unit and Motor Module.
	4, 5, 7:
	The existing Motor Module software is not compatible to the software on the Control Unit.
	9, 10, 11, 12:
	The existing Motor Module software does not support the safe encoderless motion monitoring function.
	13:
	At least one Motor Module in parallel operation does not support the safe motion monitoring function.
Remedy:	- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	For fault value = 1:
	- use a Motor Module that supports safe motion monitoring.
	Re fault value $=2,3,6,8$ :
	- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
	Re fault value $=4,5,7,9,13$ :
	- upgrade the Motor Module software.
	Note:
	SI: Safety Integrated
F01673	SI Motion: Sensor Module software/hardware incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Sensor Module software and/or hardware does not support the safe motion monitoring function with the higher-level control.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- upgrade the Sensor Module software.
	- use a Sensor Module that supports the safe motion monitoring function.
	Note:
	SI: Safety Integrated


F01674	SI Motion P1 (CU): Safety function not supported by PROFIsafe telegram
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The monitoring function enabled in p9501 and p9601 is not supported by the currently set PROFIsafe telegram (p9611).
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret bitwise binary):
	Bit $24=1$ :
	Transfer SLS (SG) limit value via PROFIsafe not supported (p9501.24).
	Bit $25=1$ :
	Transfer safe position via PROFIsafe is not supported (p9501.25).
	Bit $26=1$ :
	Gearbox stage switchover via PROFIsafe is not supported (p9501.26).
Remedy:	- Deselect the monitoring function involved (p9501, p9601).
	- set the matching PROFIsafe telegram (p9611).
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SP: Safe Position
F01679	SI CU: Safety parameter settings and topology changed, warm restart/POWER ON required
Message value:	- ${ }^{\text {coser }}$
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	POWER ON
Cause:	Safety parameters have been changed; these will only take effect following a warm restart or POWER ON (see alarm A01693).
	A partial power up (boot) with modified configuration was then performed.
Remedy:	- carry out a warm restart (p0009 $=30, \mathrm{p} 0976=2,3$ ).
	- carry out a POWER ON (power off/on) for all components.
F01680	SI Motion P1 (CU): Checksum error safety monitoring functions
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the drive and entered in r9728 via the safety-relevant parameters does not match the reference checksum saved in p9729 at the last machine acceptance.
	Safety-relevant parameters have been changed or a fault is present.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	0 : Checksum error for SI parameters for motion monitoring.
	1: Checksum error for SI parameters for actual values.
	2: Checksum error for SI parameters for component assignment.

### 4.2 List of faults and alarms

Remedy: - check the safety-relevant parameters and if required, correct.

- execute the function "Copy RAM to ROM".
- perform a POWER ON if safety parameters requiring a POWER ON have been modified.
- carry out an acceptance test.


## F01681

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Incorrect parameter value

Parameter: \%1, supplementary information: \%2
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G

## OFF2

IMMEDIATELY (POWER ON)
The parameter cannot be parameterized with this value.

## Note:

This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
yyyy $=0$ :
No information available.
xxxx = 9500 and yyyy $=1$ :
Parameter p9500 is not equal to p9300 or not an integer multiple of the sampling time of the current controller ( $\mathrm{p} 0115[0]$ ).
xxxx = 9501:
It is not permissible to enable the function " $n<n x$ hysteresis and filtering" (p9501.16) in conjunction with the function "Extended functions without selection" (p9601.5).
$x x x x=9501$ and yyyy $=8$ :
Referencing via SCC (p9501.27 = 1) is enabled without enabling an absolute motion monitoring function (p9501.1 or p9501.2).
xxxx = 9501 and yyyy = 10:
Referencing via SCC (p9501.27 = 1) and epos (r108.4=1) are simultaneously enabled.
xxxx = 9505:
When SLP is active (p9501.1 = 1), the modulo function is activated and this is not permitted (p9505 not equal to 0 ).
$x x x x=9506$ and yyyy $=1$ :
Parameter p9506 is not equal to p9306.
$x x x x=9511$ and yyyy = 1:
Parameter p9511 is not equal to p9311.
xxxx $=9511$ and yyyy $=2$ :
On a Double Motor Module, between the drive objects, no different values in p9511 and p0115[0] is permitted.
$x x x x=9522$ :
The gear stage was set too high.
xxxx = 9534 or 9535 :
The limit values of SLP have been set too high (absolute values).
xxxx = 9544:
For linear axes, the maximum value is limited to 1 mm .
xxxx = 9547:
Parameter p9547 has been set too low.
xxxx = 9573:
"Referencing via safety control channel" was requested ( $\mathrm{p} 9573=263$ ), without enabling the function "Referencing via SCC" (p9501.27=0).

## xxxx = 9585:

For Safety without encoder and synchronous motor, p9585 must be set to 4 .
xxxx = 9601 and yyyy = 1:
If motion monitoring functions integrated in the drive ( $\mathrm{p} 9601.2=1$ ) and extended functions without selection (p9601.5 $=1$ ) are enabled, then PROFIsafe (p9601.3 = 1) or onboard F-DI (p9601.4 = 1) is not possible.
$x x x x=9601$ and yyyy $=2$ :
Extended functions without selection (p9601.5 =1) are enabled without enabling motion monitoring functions integrated in the drive (p9601.2).
$x x x x=9601$ and yyyy $=3$
Onboard F-DI are enabled without enabling motion monitoring functions integrated in the drive (p9601.2).
$x x x x=9601$ and yyyy $=4$
Onboard F-DI are enabled. Then, it is not permissible to simultaneously set PROFIsafe and F-DI via PROFIsafe (p9501.30).
xxxx $=9601$ and yyyy $=5$ :
Transfer of the SLS limit value via PROFIsafe (p9501.24) has been enabled, without enabling PROFIsafe.
$x x x x=9601$ and $y y y y=6$ :
Transfer of the safe position via PROFIsafe (p9501.25) has been enabled, without enabling PROFIsafe.
$x x x x=9601$ and yyyy = 7:
Safe switchover of the gearbox stages (p9501.26) has been enabled without enabling PROFIsafe.
Remedy:
Correct parameter (if required, also on another monitoring channel, p9801)
If $x x x x=9500$ and $y y y y=1$ :

- Set p9500 "SI Motion monitoring clock cycle" as an integer multiple of p0115[0] "Current controller sampling time".
- Align parameters 9300 and 9500, backup parameters (p0971 = 1) and carry out a POWER ON.

If $\mathrm{xxxx}=9501$ :

- Correct parameters p9501.16 and p9301.16, or deselect the extended functions without selection (p9601.5)

If $x x x x=9501$ and $y y y y=8$ :
Inhibit referencing via SCC (p9501.27) or enable an absolute motion monitoring function (p9501.1 or p9501.2).
If $x x x x=9501$ and $y y y y=10$ :
Inhibit referencing via SCC (p9501.27) or epos (r108.4).
If $\mathrm{xxxx}=9505$ :
Correct parameter p9501.1 or p9505.
If $\mathrm{xxxx}=9507$ :
Set synchronous or induction motor according to p0300.
If $\mathrm{xxxx}=9506$
Align parameters p9306 and p9506, backup parameters (p0971 = 1) and carry out a POWER ON.
If $\mathrm{xxxx}=9511$ :
Align parameters p9311 and p9511, backup parameters (p0971 = 1) and carry out a POWER ON.
If $\mathrm{xxxx}=9517$ :
Parameter p9516.0 should also be checked.
If $\mathrm{xxxx}=9522$ :
Correct the corresponding parameter.
If $\operatorname{xxxx}=9534$ or 9535 :
Reduce the limit values (absolute values) of SLP.
If $\mathrm{xxxx}=9544$ :
Correct parameter (for linear axes, the maximum value is limited to 1 mm ).
If $\mathrm{xxxx}=9547$ :
With hysteresis/filtering enabled (p9501.16 = 1), the following applies

- Set parameters p9546/p9346 and p9547/p9347 acc. to the following rule: p9546 >= $2 \times \mathrm{p} 9547$; p9346 >= $2 \times \mathrm{p} 9347$.
- The following rule must also be adhered to when actual value synchronization (p9501.3 = 1) is enabled: p9549 <= p9547; p9349 <= p9347.
If $\mathrm{xxxx}=9585$ :
Correct parameter (if required, also on the second monitoring channel, p9385).
If $\mathrm{xxxx}=9601$ :
yyyy $=1$ :
Only enable motion monitoring functions integrated in the drive (p9601.2 = 1) and extended functions without selection (p9601.5 = 1), or only enable PROFIsafe (p9601.3 = 1) or only onboard F-DI (p9601.4 = 1).
yyyy = 2, 3:
Enable motion monitoring functions integrated in the drive (p9601.2 = 1).
yyyy $=4$ :
If onboard F-DI are enabled, then it is not permissible to simultaneously set PROFIsafe and F-DI via PROFIsafe (p9501.30), deselect PROFIsafe functionality or onboard F-DI.
yyyy $=5$ :
To transfer the SLS limit values via PROFIsafe (p9501.24 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).

> yyyy = 6:

For the safe position via PROFIsafe (p9501.25 = 1), also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive ( $\mathrm{p} 9601.2=1$ ).

## yyyy $=7$ :

For safe switchover of gearbox stages (p9501.26 = 1) also enable PROFIsafe (p9601.3 =1) and motion monitoring functions integrated in the drive (p9601.2 = 1).

## F01682

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

## Cause:

## SI Motion P1 (CU): Monitoring function not supported

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G

## OFF2

IMMEDIATELY (POWER ON)
The monitoring function enabled in p9501, p9601, p9801, p9307 or p9507 is not supported in this firmware version. Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
1: Monitoring function SLP not supported (p9501.1).
2: Monitoring function SCA not supported (p9501.7 and p9501.8 ... 15 and p9503).
3: Monitoring function SLS override not supported (p9501.5).
4: Monitoring function external ESR activation not supported (p9501.4).
5: Monitoring function F-DI in PROFIsafe not supported (p9501.30).
6: Enable actual value synchronization not supported (p9501.3).
9: Monitoring function not supported by the firmware or enable bit not used.
10: Monitoring functions only supported for a SERVO drive object.
11: Encoderless monitoring functions (p9506.1) only supported for motion monitoring integrated in the drive (p9601.2).
12: Monitoring functions for ncSI are not supported for CU305.
20: Motion monitoring functions integrated in the drive are only supported in conjunction with PROFIsafe (p9501, p9601.1 ... 2 and p9801.1 ... 2).
21: Enable a safe motion monitoring function (in p9501), not supported for enabled basic functions via PROFIsafe (p9601.2 = 0, p9601.3 = 1).
22: Encoderless monitoring functions in "chassis" format not supported.
23: CU240 does not support monitoring functions requiring an encoder.
24: Monitoring function SDI not supported (p9501.17).
25: Drive-integrated motion monitoring functions not supported (p9501, p9601.2).
26: hysteresis and filtering for SSM monitoring function without an encoder not supported (p9501.16).
27: This hardware does not support onboard F-DI and F-DO.
28: Encoderless monitoring functions are not supported for synchronous motors (p9507.2).
29: SINAMICS S120M: Safety Extended Functions without encoder not supported.
31: This hardware does not support transfer SLS (SG) limit value via PROFIsafe (p9301/p9501.24).
33: Safety functions without selection not supported (p9601.5, p9801.5).
34: This module does not support safe position via PROFIsafe.
36: Function "SS1E" not supported.
37: safe actual value sensing with HTL/TTL encoder (SMC30) not supported.
38: It is not permissible to simultaneously enable the safety functions (p9601) and the essential service mode (ESM, Essential Service Mode, p3880).
39: This module or software version of the CU/MM does not support safe gearbox stage switchover (p9501.26).
40: SIMOTION D410-2: Motion monitoring functions integrated in the drive or PROFIsafe control not supported.
41: SIMOTION D410-2: Safety functions not supported for the "Chassis" format.
42: Motion monitoring functions SLP and SP not supported for D4×5-2 and CX32-2 (p9501.1/25).
43: Motion monitoring functions SLP and SP as well as PROFIsafe telegrams 31/901/902 not supported for D410-2 (p9501.1/24/25/30, p9611).
44: This module/this software version does not support referencing via the safety control channel (p9501.27).
45: Deactivating SOS/SLS during an external STOP A is not supported (p9501.23).

	46: This software version does not support control of the basis functions via TM54F and the simultaneous enable of the extended functions or ncSI or Profisafe.
	50: Shortening the switchover times for SOS (p9569/p9369, p9567/p9367) is not supported.
	9586: Set value of p9586/p9386 is greater than the supported maximum value.
	9588: Set value of p9588/p9388 is greater than the supported maximum value.
	9589: Set value of $\mathrm{p} 9589 / \mathrm{p} 9389$ is greater than the supported maximum value.
Remedy:	- Deselect the monitoring function involved (p9501, p9503, p9506, p9601, p9801, p9307, p9507).
	- Reduce the set value (p9586, p9588, p9589).
	Note:
	ESR: Extended Stop and Retract
	SCA: Safe Cam / SN: Safe software cam
	SDI: Safe Direction (safe motion direction)
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SP: Safe Position
	SPL: Safe programmable logic
	SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
	SOS: Safe Operating Stop / SBH: Safe operating stop
	See also: p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit)), r9771 (SI common functions (Control Unit))
F01683	SI Motion P1 (CU): SOS/SLS enable missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The safety-relevant basic function "SOS/SLS" is not enabled in p9501 although other safety-relevant monitoring functions are enabled.
	Note:
	This fault does not result in a safety stop response.
Remedy:	Enable the function "SOS/SLS" (p9501.0) and carry out a POWER ON.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SOS: Safe Operating Stop / SBH: Safe operating stop
	See also: p9501 (SI Motion enable safety functions (Control Unit))
F01684	SI Motion P1 (CU): Safely limited position limit values interchanged
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the function "Safely Limited Position" (SLP), a lower value is in p9534 than in p9535.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	1: Limit values SLP1 interchanged.
	2: Limit values SLP2 interchanged.
	See also: p9534 (SI Motion SLP (SE) upper limit values (Control Unit)), p9535 (SI Motion SLP (SE) lower limit values (Control Unit))
Remedy:	- correct the lower and upper limit values (p9535, p9534).
	- carry out a POWER ON (power off/on).

### 4.2 List of faults and alarms

	Note:   SI: Safety Integrated   SLP: Safely-Limited Position / SE: Safe software limit switches
F01685	SI Motion P1 (CU): Safely-limited speed limit value too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz .   Note:   This fault does not result in a safety stop response.   Fault value (r0949, interpret decimal):   Maximum permissible speed.
Remedy:	Correct the limit values for SLS and carry out a POWER ON.   Note:   SI: Safety Integrated   SLS: Safely-Limited Speed / SG: Safely reduced speed   See also: p9531 (SI Motion SLS (SG) limit values (Control Unit))
F01686	SI Motion: Illegal parameterization cam position
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	At least one enabled "Safety Cam" (SCA) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position.   The following conditions must be complied with to assign cams to a cam track:   - the cam length of cam $x=p 9536[x]-p 9537[x]$ must be greater or equal to the cam tolerance + the position tolerance ( $=$ p9540 + p9542). This also means that for cams on a cam track, the minus position value must be less than the plus position value.   - the distance between 2 cams $x$ and $y$ (minus position value[y] - plus position value[ $x$ ] = $p 9537$ [ $y$ ] - p9536[x]) on a cam track must be greater than or equal to the cam tolerance + position tolerance $(=p 9540+p 9542)$.   Note:   This fault does not result in a safety stop response.   Fault value (r0949, interpret decimal):   Number of the "Safe Cam" with an illegal position.   See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy:	Correct the cam position and carry out a POWER ON.   Note:   SCA: Safe Cam / SN: Safe software cam   SI: Safety Integrated   See also: p9536 (SI Motion SCA (SN) plus cam position (Control Unit)), p9537 (SI Motion SCA (SN) plus cam position (Control Unit))
F01687	SI Motion: Illegal parameterization modulo value SCA (SN)
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameterized modulo value for the "Safe Cam" (SCA) function is not a multiple of 360000 mDegrees.


Remedy:	Note:
	This fault does not result in a safety stop response.
	Correct the modulo value for SCA and carry out a POWER ON.
	Note:
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	See also: p9505 (SI Motion SP modulo value (Control Unit))
F01688	SI Motion CU: Actual value synchronization not permissible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	- It is not permissible to enable actual value synchronization for a 1-encoder system.
	- It is not permissible to simultaneously enable actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
	- It is not permissible to simultaneously enable actual value synchronization and safe position via PROFIsafe.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
Remedy:	- Either select the "actual value synchronization" function or parameterize a 2-encoder system.
	- Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.
	- Either deselect the "actual value synchronization" function or do not enable "Safe position via PROFIsafe".
	Note:
	SCA: Safe Cam / SN: Safe software cam
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	SP: Safe Position
	See also: p9501 (SI Motion enable safety functions (Control Unit)), p9526 (SI Motion encoder assignment second channel)
C01689	SI Motion: Axis re-configured
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The axis configuration was changed (e.g. changeover between linear axis and rotary axis).
	Parameter p0108.13 is internally set to the correct value.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Parameter number of parameter that initiated the change.
	See also: p9502 (SI Motion axis type (Control Unit))
Remedy:	The following should be carried out after the changeover:
	- exit the safety commissioning mode (p0010).
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	- carry out a POWER ON.
	Once the Control Unit has been switched on, safety message F01680 or F30680 indicates that the checksums in r9398[0] and r9728[0] have changed in the drive. The following must, therefore, be carried out:
	- activate safety commissioning mode again.
	- complete safety commissioning of the drive.
	- exit the safety commissioning mode (p0010).
	- save all parameters (p0977 = 1 or "copy RAM to ROM").
	- carry out a POWER ON.

## Note:

For the commissioning software, the units are only consistently displayed after a project upload.

F01690	SI Motion: Data save problem for the NVRAM
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	POWER ON
Cause:	There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety logbook).
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	0 : There is no physical NVRAM available in the drive.
	1: There is no longer any free memory space in the NVRAM.
Remedy:	For fault value $=0$ :
	- use a Control Unit NVRAM.
	For fault value = 1:
	- de-select functions that are not required and that take up memory space in the NVRAM.
	- contact the Hotline.
	Note:
	NVRAM: Non-Volatile Random Access Memory (non-volatile read and write memory)
A01691 (F)	SI Motion: Ti and To unsuitable for DP cycle
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configured times for PROFIBUS communication are not permitted and the DP cycle is used as the actual value acquisition cycle for the safe movement monitoring functions.
	Isochronous PROFIBUS:
	The sum of Ti and To is too high for the selected DP cycle. The DP cycle should be at least 1 current controller cycle greater than the sum of Ti and To .
	No isochronous PROFIBUS:
	The DP clock cycle must be at least 4 x the current controller clock cycle.
	Notice:
	If this alarm is not observed, then message C01711 or C30711 - with the value 1020 ... 1021 - can sporadically occur.
Remedy:	Configure Ti and To low so that they are suitable for the DP cycle or increase the DP cycle time.
	Alternative when SI monitoring integrated in the drive is enabled (p9601/p9801 > 0):
	Use the actual value acquisition cycle p9511/p9311 and, in turn, set independently from DP cycle. The actual values sensing clock cycle must be at least $4 x$ the current controller clock cycle. A clock cycle ratio of at least $8: 1$ is recommended.
	See also: p9511 (SI Motion actual value sensing cycle clock (Control Unit))
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


F01692	SI Motion P1 (CU): Parameter value not permitted for encoderless
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be set to this value if encoderless motion monitoring functions have been selected in p9506. Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	Parameter number with the incorrect value.
	See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy:	- Correct the parameter specified in the fault value.
	- If necessary, de-select encoderless motion monitoring functions (p9506).
	See also: p9501 (SI Motion enable safety functions (Control Unit))
A01693 (F)	SI P1 (CU): Safety parameter setting changed, wam restart/POWER ON required
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a warm restart or POWER ON.
	Notice:
	All changed parameters of the safety motion monitoring functions will only take effect following a warm restart or POWER ON.
	Alarm value (r2124, interpret decimal):
	Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON.
Remedy:	- carry out a warm restart ( $\mathrm{p} 0009=30, \mathrm{p} 0976=2,3$ ).
	- carry out a POWER ON (power off/on) for all components.
	Note:
	Before performing an acceptance test, a POWER ON must be carried out for all components.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	POWER ON
F01694 (A)	SI Motion CU: Firmware version Motor Module/Hydraulic Module older Control Unit
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The firmware version of the Motor Module/Hydraulic Module is older than the version of the Control Unit. It is possible that safety functions are not available (r9771/r9871).
	Note:
	This message does not result in a safety stop response.
	This message can also occur, if after an automatic firmware update, a POWER ON was not carried out (Alarm A01007).
Remedy:	Upgrade the firmware of the Motor Module/Hydraulic Module to a later version.
	See also: r9390 (SI Motion version safety motion monitoring (Motor Module)), r9590 (SI Motion version safety motion monitoring (Control Unit))
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A01695 (F)	SI Motion: Sensor Module was replaced
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Sensor Module, which is used for safe motion monitoring functions, was replaced. The hardware replacement must be acknowledged. An acceptance test must be subsequently performed.   Note:   This message does not result in a safety stop response.
Remedy:	Carry out the following steps using the STARTER commissioning software:   - press the "Acknowledge hardware replacement" button in the safety screen form.   - execute the function "Copy RAM to ROM".   - carry out a POWER ON (power off/on) for all components.   As an alternative, carry out the following steps in the expert list of the commissioning software:   - start the copy function for the node identifier on the drive (p9700 = 1D hex).   - acknowledge the hardware CRC on the drive (p9701 = EC hex).   - save all parameters (p0977 = 1).   - carry out a POWER ON (power off/on) for all components.   Then carry out an acceptance test (refer to the Safety Integrated Function Manual).   For SINUMERIK, the following applies:   HMI supports the replacement of components with Safety functions (operating area "Diagnostics" --> Softkey "Alarm list" --> Softkey "Confirm SI HW" etc.).   The precise procedure is given in the following document:   SINUMERIK Function Manual Safety Integrated   See also: p9700 (SI Motion copy function), p9701 (Acknowledge SI motion data change)
Reaction upon F :   Acknowl. upon F:	NONE (OFF1, OFF2, OFF3) IMMEDIATELY (POWER ON)
A01696 (F)	SI Motion: Testing of the motion monitoring functions selected when booting
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The test of the motion monitoring functions was already illegally active when booting.   This is the reason that the test is only carried out again after selecting the forced checking procedure parameterized in p9705.   Note:   This message does not result in a safety stop response.   See also: p9705 (SI Motion: Test stop signal source)
Remedy:	De-select the forced checking procedure of the safety motion monitoring functions and then select again. The signal source for initiation is parameterized in binector input p9705.   Notice:   It is not permissible to use TM54F inputs to start the test stop.   Note:   SI: Safety Integrated   See also: p9705 (SI Motion: Test stop signal source)
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

### 4.2 List of faults and alarms

A01697 (F)	SI Motion: Motion monitoring functions must be tested
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9559 for the forced checking procedure of the safety motion monitoring functions has been
	exceeded. A new test is required.
	After next selecting the forced checking procedure parameterized in p9705, the message is withdrawn and the
	monitoring time is reset.
	Note:
	- This message does not result in a safety stop response.
- As the shutdown paths are not automatically checked during booting, an alarm is always issued once booting is	



	Note:   SAM: Safe Acceleration Monitor (safe acceleration monitoring) SBR: Safe Brake Ramp (safe brake ramp monitoring)   SI: Safety Integrated
C01701	SI Motion P1 (CU): STOP B initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE (OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP B (braking along the OFF3 deceleration ramp).
	As a result of this fault, after the time parameterized in p9556 has expired, or the speed threshold parameterized in p9560 has been undershot, message C01700 "STOP A initiated" is output.
	Possible causes:
	- stop request from the second monitoring channel.
	- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
	- subsequent response to the message C01711 "SI Motion CU: Defect in a monitoring channel".
	- subsequent response to the message C01707 "SI Motion CU: tolerance for safe operating stop exceeded".
	- subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".
	- subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".
Remedy:	- remove the cause of the fault on the second monitoring channel.
	- carry out a diagnostics routine for message C01714.
	- carry out a diagnostics routine for message C01711.
	- carry out a diagnostics routine for message C01707.
	- carry out a diagnostics routine for message C01715.
	- carry out a diagnostics routine for message C01716.
	This message can be acknowledged without a POWER ON as follows:
	- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
	- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only
	Note:
	SI: Safety Integrated
C01706	SI Motion P1 (CU): SAM/SBR limit exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Motion monitoring functions with encoder $(\mathrm{p} 9506=0)$ or encoderless with set acceleration monitoring $(S A M, ~ p 9506=$ $3)$ :
	- after initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.
	Motion monitoring functions encoderless with set brake ramp monitoring (SBR p9506 = 1): - after initiating STOP B (SS1) or SLS changeover to the lower speed stage, the speed has exceeded the selected tolerance.
	The drive is shut down by the message C01700 "SI Motion: STOP A initiated".
Remedy:	Check the braking behavior and, if necessary, adapt the parameterization of the parameter settings of the "SAM" or the "SBR" function.
	This message can be acknowledged without a POWER ON as follows:
	- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
	- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only

### 4.2 List of faults and alarms

## Note:

SAM: Safe Acceleration Monitor (safe acceleration monitoring)
SBR: Safe Brake Ramp (safe ramp monitoring)
SI: Safety Integrated
See also: p9548 (SI Motion SAM actual velocity tolerance (Control Unit)), p9581 (SI Motion brake ramp reference value (Control Unit)), p9582 (SI Motion brake ramp delay time (Control Unit)), p9583 (SI Motion brake ramp monitoring time (Control Unit))

## $\overline{\mathrm{C} 01707}$

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## SI Motion P1 (CU): Tolerance for safe operating stop exceeded

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
The actual position has distanced itself further from the target position than the standstill tolerance.
The drive is shut down by the message C01701 "SI Motion: STOP B initiated".

- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.
- check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.
- carry out a POWER ON.

This message can be acknowledged without a POWER ON as follows:

- motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: via the machine control panel in acceptance test mode only Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9530 (SI Motion standstill tolerance (Control Unit))
SI Motion P1 (CU): STOP C initiated

Safety monitoring channel has identified an error (10)
VECTOR_G
STOP2
IMMEDIATELY (POWER ON)
The drive is stopped via a STOP C (braking along the OFF3 deceleration ramp).
"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
Possible causes:

- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded".
- subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".
- subsequent response to the message C01716 "SI Motion CU: tolerance for safe motion direction exceeded".

See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))

## Remedy:

- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714/C01715/C01716.

This message can be acknowledged as follows:

- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

C01709	SI Motion P1 (CU): STOP D initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP D (braking along the path).
	"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
	Possible causes:
	- stop request from the higher-level control.

If at least one monitoring function is active, then after the parameterized timer has expired, the message C 01701 " SI Motion: STOP B initiated" is output.
The message value that resulted in a STOP F is displayed in r9725.
If the drive is operated together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK, with the exception of the following message values, which can only occur in SINAMICS:
1007: communication error with the PLC (sign-of-life)
1008: communication error with the PLC (CRC)
The following described message values involve the crosswise data comparison between the two monitoring channels (safety functions integrated in the drive).
The message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:

- cycle times not set uniformly (p9500/p9300 and p9511/p9311)
- differently parameterized axis types (p9502/p9302).
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- for message values $3,44 \ldots 57,232$ and 1-encoder systems, differently parameterized encoder values
(p9516/p9316, p9517/p9317, p9518/p9318, p9520/p9320, p9521/p9321, p9522/p9322, p9526/p9326).
- incorrect synchronization.

Message value (r9749, interpret decimal):
0 to 999: Number of the cross-compared data that resulted in this fault.
Message values that are not subsequently listed are only for internal Siemens troubleshooting.
0 : Stop request from the other monitoring channel.
1: Status image of monitoring functions SOS, SLS or SLP (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function SCA or $n<n x$ (result list 2) (r9711[0], r9711[1]).
3: The position actual value differential ( $\mathrm{r} 9713[0 / 1]$ ) between the two monitoring channels is greater than the tolerance in p9542/p9342. When actual value synchronization is enabled (p9501.3/p9301.3), the velocity differential (based on the position actual value) is greater than the tolerance in p9549/p9349.
4: Error when synchronizing the crosswise data comparison between the two channels.
5: Function enable signals (p9501/p9301) Safety monitoring clock cycle too small (p9500/p9300).
6: Limit value for SLS1 (p9531[0]/p9331[0])
7: Limit value for SLS2 (p9531[1]/p9331[1])
8: Limit value for SLS3 (p9531[2]/p9331[2])
9: Limit value for SLS4 (p9531[3]/p9331[3])
10: Standstill tol. (p9530/p9330)
11: Upper limit value for SLP1 (p9534[0]/p9334[0]).
12: Lower limit value for SLP1 (p9535[0]/p9335[0]).
13: Upper limit value for SLP2 (p9534[1]/p9334[1]).
14: Lower limit value for SLP2 (p9535[1]/p9335[1]).
31: Position tolerance ( $\mathrm{p} 9542 / \mathrm{p} 9342$ ) or ( $\mathrm{p} 9549 / \mathrm{p} 9349$ ) when actual value synchronization is enabled (p9501.3/p9301.3)
32: Position tolerance for safe referencing (p9544/p9344).
33: Time, velocity changeover (p9551/p9351)
35: Delay time, STOP A (p9556/p9356)
36: Checking time, STO (p9557/p9357)
37: Trans. time, STOP C to SOS (p9552/p9352)
38: Trans. time STOP D to SOS (p9553/p9353)
39: Trans. time, STOP E to SOS (p9554/p9354)
40: Stop response for SLS (p9561/p9361)
41: Stop response for SLP1 (p9562[0]/p9362[0])
42: Shutdown speed, STO (p9560/p9360)
43: Memory test, stop response (STOP A).
44 ... 57: General
Possible cause 1 (during commissioning or parameter modification)
The tolerance value for the monitoring function is not the same on the two monitoring channels.
Possible cause 2 (during active operation)
The limit values are based on the actual value (r9713[0/1]). If the safe actual values on the two monitoring channels do not match, the limit values, which have been set at a defined interval, will also be different (i.e. corresponding to message value 3). This can be ascertained by checking the safe actual positions.

44: Position actual value (r9713[0/1]) + limit value SLS1 (p9531[0]/p9331[0]) * safety monitoring clock cycle (p9500/p9300).
45: Position actual value (r9713[0/1]) - limit value SLS1 (p9531[0]/p9331[0]) * safety monitoring clock cycle (p9500/p9300).
46: Position actual value (r9713[0/1]) + limit value SLS2 (p9531[1]/p9331[1]) * safety monitoring clock cycle (p9500/p9300).
47: Position actual value (r9713[0/1]) - limit value SLS2 (p9531[1]/p9331[1]) * safety monitoring clock cycle (p9500/p9300).
48: Position actual value (r9713[0/1]) + limit value SLS3 (p9531[2]/p9331[2]) * safety monitoring clock cycle (p9500/p9300).
49: Position actual value (r9713[0/1]) - limit value SLS3 (p9531[2]/p9331[2]) * safety monitoring clock cycle (p9500/p9300).
50: Position actual value (r9713[0/1]) + limit value SLS4 (p9531[3]/p9331[3]) * safety monitoring clock cycle (p9500/p9300).
51: Position actual value (r9713[0/1]) - limit value SLS4 (p9531[3]/p9331[3]) * safety monitoring clock cycle (p9500/p9300).
52: Standstill position + tolerance (p9530/9330)
53: Standstill position - tolerance (p9530/9330)
54: Position actual value (r9713[0/1]) + limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300) + tolerance (p9542/p9342).
55: Position actual value (r9713[0/1]) + limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300).
56: Position actual value (r9713[0/1]) - limit value $n x$ (p9546/p9346) * safety monitoring clock cycle (p9500/p9300).
57: Position actual value (r9713[0/1]) - limit value nx (p9546/p9346) * safety monitoring clock cycle (p9500/p9300) tolerance (p9542/p9342).
58: Actual stop request.
75: Velocity limit $n x$ ( $p 9546, ~ p 9346$ ).
When the function " $n<n x$ : hysteresis and filtering" ( $p 9501.16=1$ ) is enabled, this message value is also output for a different hysteresis tolerance ( p9547/p9347).
76: Stop response for SLS1 (p9563[0]/p9363[0])
77: Stop response for SLS2 (p9563[1]/p9363[1])
78: Stop response for SLS3 (p9563[2]/p9363[2])
79: Stop response for SLS4 (p9563[3]/p9363[3])
80: Modulo value for SP for rotary axes (p9505/p9305).
81: Velocity tolerance for SAM (p9548/p9348)
82: SGEs for SLS correction factor.
83: Acceptance test timer (p9558/p9358)
84: Trans. time STOP F (p9555/p9355)
85: Trans. time bus failure (p9580/p9380)
86: ID 1-encoder system (p9526/p9326).
87: Encoder assignment, second channel (p9526/p9326)
89: Encoder limit freq.
230: Filter time constant for $n<n x$.
231: Hysteresis tolerance for $n<n x$.
232: Smoothed velocity actual value.
233: Limit value $n x$ / safety monitoring clock cycle + hysteresis tolerance.
234: Limit value $n x$ / Safety monitoring clock cycle.
235: -Limit value $n x$ / Safety monitoring clock cycle.
236: -Limit value $n x$ / safety monitoring clock cycle - hysteresis tolerance.
237: SGA n < nx.
238: Speed limit value for SAM (p9568/p9368).
239: Acceleration for SBR (p9581/p9381 and p9583/p9383).
240: Inverse value of acceleration for SBR (p9581/p9381 and p9583/p9383).
241: Deceleration time for SBR (p9582/p9382).
242: Encoderless safety (p9506/p9306).
243: Function configuration (p9507/p9307).
244: Encoderless actual value sensing filter time (p9587/p9387).
245: Encoderless actual value sensing minimum current (p9588/p9388).

246: Voltage tolerance acceleration (p9589/p9389).
247: SDI tolerance (p9564/p9364).
248: SDI positive upper limit (7FFFFFFF hex).
249: Position actual value (r9713[0/1]) - SDI tolerance (p9564/p9364).
250: Position actual value (r9713[0/1]) + SDI tolerance (p9564/p9364).
251: SDI negative lower limit (80000001 hex).
252: SDI stop response (p9566/p9366).
253: SDI delay time (p9565/p9365).
254: Setting the evaluation delay for actual value sensing after pulse enable (p9586/p9386).
255: Setting, behavior during pulse suppression (p9509/p9309).
256: Status image of monitoring functions SOS, SLS, SLP, test stop, SBR, SDI (result list 1 ext) (r9710).
257: Safety functions for motion monitoring functions without selection (p9512/p9312) different.
258: Fault tolerance, actual value sensing encoderless (p9585/p9385).
259: Scaling factor for safe position via PROFIsafe (p9574/p9374) or PROFIsafe telegram (p9611/p9811) different.
260: Modulo value including scaling (p9505/p9305 and p9574/p9374) for SP with 16 bit.
261: Scaling factor for acceleration for SBR different.
262: Scaling factor for the inverse value of the acceleration for SBR different.
263: Stop response for SLP2 (p9562[1]/p9362[1])
264: Position tolerance including scaling (p9542/p9342 and p9574/p9374) for SP with 16 bit.
265: Status image of all change functions (results list 1) (r9710).
266: The switchover speed to SOS differs (p9567/p9367).
267: The transition time to SOS after standstill differs (p9569/p9369).
268: SLP delay time differs (p9577/p9377).
269: Factor to increase the position tolerance when switching over the gearbox stage ( $\mathrm{p} 9543 / 9343$ ).
270: Screen form for SGE image: all functions, which are not supported/enabled for the actual parameterization (p9501/p9301, p9601/p9801 and p9506/p9306)..
271: Screen form for SGE image: Deselect all bits for the "Safe gearbox switchover" function
272: Activation of the increased position tolerance for the "Safe gearbox switchover" function different
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1002:
User agreement after the timer has expired different.
The user agreement is not consistent. After a time of 4 s has expired, the status of the user agreement is different in both monitoring channels.
1003:
Reference tolerance exceeded.
When the user agreement is set, the difference between the new reference point that has been determined after power up (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9544). In this case, the user agreement is withdrawn.

## 1004:

Plausibility error for user agreement.

1. If the user agreement has already been set, then setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005:

- For safe motion monitoring functions without encoder: pulses already suppressed for test stop selection.
- For safe motion monitoring functions with encoder: STO already active for test stop selection.

1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1015: Gearbox switchover (bit 27 in PROFIsafe Telegram (takes longer than 2 min .
1020: Cyc. communication failure between the monit. cycles.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1022: Sign-of-life error for DRIVE-CLiQ encoders monitoring channel 1.
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1024: Sign-of-life error for HTL/TTL encoders.

1032: Sign-of-life error for DRIVE-CLiQ encoders monitoring channel 2.
1033: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder monitoring channel 1.
1034: Error checking offset between POS1 and POS2 for DRIVE-CLiQ encoder monitoring channel 2.
1039: Overflow when calculating the position.
1041: Current absolute value too low (encoderless)
1042: Current/voltage plausibility error
1043: Too many acceleration phases
1044: Actual current values plausibility error.
5000 ... 5140:
PROFIsafe message values.
For these message values, the failsafe control signals (failsafe values) are transferred to the safety functions. $5000,5014,5023,5024,5030 \ldots 5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots 5087,5090,5091,5122$ ... 5125, 5132 ... 5135, 5140: An internal software error has occurred (only for internal Siemens troubleshooting).
5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the F parameters. The values of the transferred $F$ parameters do not match the expected values in the PROFIsafe driver.
5025: The result of the F parameterization is different for the two controllers.
5026: CRC error for the F parameters. The transferred CRC value of the F parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these message values, the failsafe control signals (failsafe values) are transferred to the safety functions.
The significance of the individual message values is described in safety fault F01611.
7000: Difference of the safe position is greater than the parameterized tolerance (p9542/p9342).
7001: Scaling value for the safe position in the 16 bit notation, too low (p9574/p9374).
7002: Cycle counter for transferring the safe position is different in both monitoring channels.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion diagnostics STOP F)
Remedy:
The following generally applies:
The monitoring clock cycles in both channels and the axis types should be checked for equality and the same setting applied if necessary. If the error continues to be identified, increasing the monitoring clock cycles may resolve it.
Re message value $=0$ :

- no error was identified in this monitoring channel. Note the error message of the other monitoring channel (for MM: C30711).
Re message value $=3$ :
Commissioning phase:
- Encoder evaluation for own or second channel has been set incorrectly --> Correct the encoder evaluation. In operation:
- Check the mechanical design and the encoder signals.
- If closed-loop control with edge modulation is parameterized ( $p 1802[x]=9$ ): parameterize edge modulation for actual value sensing without encoder (p9507.5 = p9307.5 = 1).
Re message value $=4$ :
The monitoring clock cycles in both channels should be checked for equality and if required, set the same. In combination with message value 5 from the other monitoring channel (with MM: C30711), the monitoring clock cycle settings must be increased.
Re message value = 11 ... 14:
- the limit values in p9534/p9334 or p9535/p9335 are not equal or have been set too high. Correct the values.

Re message value $=232$ :

- Increase the hysteresis tolerance (p9547/p9347). Possibly set the filtering higher (p9545/p9345).

Re message value $=1 \ldots 999$ :

- if the message value is listed under cause: Check the crosswise-compared parameters to which the message value refers.
- copy the safety parameters.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts, travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Note:
For SINAMICS firmware version $>=4.7$, the CDC list is increased when setting p9567 $>0$. For a non-compatible version of SINUMERIK this can lead to an error for the crosswise data comparison (is indicated with message value $>=237$ ). If necessary, p9567 must be set $=0$, or the firmware version of SINUMERIK upgraded.
Re message value $=1000$ :
- investigate the signal associated with the safety-relevant input (contact problems).

Re message value $=1001$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re message value $=1002$ :

- Perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 4 s). Re message value $=1003$ :
- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- Increase the tolerance for the actual value comparison when referencing (p9544).

Then check the actual values, perform a POWER ON and set the user agreement again.
Re message value $=1004$ :
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced.
Re message value $=1005$ :

- For safe motion monitoring functions without encoder: check the conditions for pulse enable.
- For safe motion monitoring functions with encoder: check the conditions for STO deselection.


## Note:

For a power module, the test stop should always be performed for pulse enable (independent of whether with encoder or without encoder).
Re message value $=1007$ :

- check the PLC for the correct operating state (run state, basic program).

Re message value $=1008$ :

- check whether incorrect or overlapping address ranges have been set in SINUMERIK machine data MD10393.

Re message value $=1011$ :

- for diagnostics, refer to parameter (r9571).

Re message value $=1012$ :

- upgrade the Sensor Module firmware to a more recent version.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- For a 1-encoder system and 2-encoder system the following applies: in order to correctly copy the encoder parameters from p04xx, p9700 must be set to 46 and p9701 must be set to 172.
- For DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance
- carry out a POWER ON (power off/on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

Re message value $=1020,1021,1024$ :

- check the communication link.
- increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (power off/on) for all components or a warm restart (p0009 = 30, p0976 = 2, 3).
- replace the hardware.

Re message value $=1033$ :

- If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.

Re message value $=1039$ :

- Check the conversion factors such as spindle pitch or gearbox ratios.

Re message value = 1041:

- Check whether the motor has sufficient current (>r9785[0]).
- reduce the minimum current (p9588).
- for synchronous motors increase the absolute value of p9783.
- Check whether the function "Closed-loop controlled operation with HF signal injection" is activated (p1750.5 = 1) and if required, deactivate.
Re message value $=1042$ :
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.
- Check the absolute current and voltage values, and set the control behavior so that this is greater than $3 \%$ of the rated converter data in operation or in the case of a fault.
- increase the minimum current (p9588/p9388).

Re message value $=1043$ :

- increase the voltage tolerance (p9589).
- increase the ramp-function generator ramp-up/down time (p1120/p1121).
- check that the current/speed control is set correctly (torque-generating/field-generating current and actual speed value may not fluctuate).
- reduce the dynamic response of the setpoint value.

Re message value $=5000,5014,5023,5024,5030,5031,5032,5042,5043,5052,5053,5068,5072,5073,5082 \ldots$
5087, 5090, 5091, 5122 ... 5125, 5132 ... 5135, 5140:

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Re message value $=5012$ :

- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!
Re message value $=5013$, 5025:
- carry out a POWER ON (power off/on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re message value $=5022$ :
- check the setting of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length, F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).
Re message value $=5026$ :
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and update.
Re message value $=5065$ :
- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re message value $=5066$ :
- check the setting of the value for $F$ parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the $F$ host.
- check PROFIsafe connection.

Re message value = 6000 ... 6999:
Refer to the description of the message values in safety fault F01611.
Re message value $=7000$ :

- Increase the position tolerance (p9542/p9342).


### 4.2 List of faults and alarms

- Determine the actual position of CU (r9713[0] and the second channel r9713[1], and check the difference for plausibility.
- Reduce the difference of the actual position from CU (r9713[0] and the second channel r9713[1] for a 2-encoder system.
Re message value $=7001$ :
- Increase the scaling value for the safe position in the 16 bit notation (p9574/p9374).
- If required, reduce the traversing range.

Re message value $=7002$ :

- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe - motion monitoring functions with SINUMERIK: Via the machine control panel

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C01712
Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

## SI Motion P1 (CU): Defect in F-IO processing

## \%1

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
The safety message C01711 with message value 0 is also displayed due to initiation of STOP F.
If at least one monitoring function is active, the safety message C01701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.
Message value (r9749, interpret decimal):
Number of the cross-compared data that resulted in this message.
1: SI discrepancy monitoring time inputs (p10002, p10102).
2: SI acknowledgement internal event input terminal (p10006, p10106).
3: SI STO input terminal (p10022, p10122).
4: SI SS1 input terminal (p10023, p10123).
5: SI SS2 input terminal (p10024, p10124).
6: SI SOS input terminal (p10025, p10125).
7: SI SLS input terminal (p10026, p10126).
8: SI SLS_Limit(1) input terminal (p10027, p10127).
9: SI SLS_Limit(2) input terminal (p10028, p10128).
10: SI Safe State signal selection (p10039, p10139).
11 SI F-DI input mode (p10040, p10140).
12: SI F-DO 0 signal sources (p10042, p10142).
13: Different states for static inactive signal sources (p10006, p10022 ... p10031).
14: SI discrepancy monitoring time outputs (p10002, p10102).
15: SI acknowledgment internal event (p10006, p10106).
16: SI test sensor feedback signal test mode selected for test stop (p10046, p10146, p10047, p10147).
17: SI delay time for test stop at DOs (p10001).
18 ... 25: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of internal readback signal, generated from the selected test stop mode.
26 ... 33: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of external readback signal, generated from the selected test stop mode.
34 ... 41: SI test sensor feedback signal (p10046, p10146, p10047, p10147). Expected state of second internal readback signal, generated from the selected test stop mode.
42: Internal data for processing the second internal readback signal, generated from the selected test stop mode (p10047, p10147).

	43: Internal data for processing the internal readback signal, generated from the selected test stop mode (p10047, p10147).
	44: Internal data for processing the external readback signal, generated from the selected test stop mode (p10047, p10147).
	45: Internal data for initialization state of test stop mode, dependent upon test stop parameters.
	46: SI digital inputs debounce time (p10017, p10117)
	47: Selection F-DI for PROFIsafe (p10050, p10150)
	48: Screen form of the F-Dis used (p10006, p10022 ... p10031).
	49: SI SDI positive input terminal (p10030, p10130).
	50: SI SDI negative input terminal (p10031, p10131).
	51: SI SLP input terminal (p10032, p10132).
	52: SI SLP select input terminal (p10033, p10133).
	53: Internal data for retraction logic (p10009, p100109).
	54: SI F-DI for retraction SLP (p10009, p100109).
Remedy:	- check parameterization in the parameters involved and correct if required.
	- ensure equality by copying the SI data to the second channel and then carry out an acceptance test.
	- check monitoring clock cycle in p9500 and p9300 for equality.
	Note:
	This message can be acknowledged via F-DI or PROFIsafe.
	See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))
C01714	SI Motion P1 (CU): Safely-Limited Speed exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive has moved faster than that specified by the velocity limit value ( p 9531 ). The drive is stopped as a result of the configured stop response (p9563).
	Message value (r9749, interpret decimal):
	100: SLS1 exceeded.
	200: SLS2 exceeded.
	300: SLS3 exceeded.
	400: SLS4 exceeded.
	1000: Encoder limit frequency exceeded.
Remedy:	- check the traversing/motion program in the control.
	- check limits for SLS and if required adapt accordingly (p9531).
	This message can be acknowledged as follows:
	- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
	- motion monitoring functions with SINUMERIK: Via the machine control panel
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	See also: p9531 (SI Motion SLS (SG) limit values (Control Unit)), p9563 (SI Motion SLS (SG)-specific stop response (Control Unit))
C01715	SI Motion P1 (CU): Safely-Limited Position exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The axis has moved past a parameterized position that is monitored by the "SLP" function.

### 4.2 List of faults and alarms

	Message value (r9749, interpret decimal):
	10: SLP1 violated.
	20: SLP2 violated.
Remedy:	- check the traversing/motion program in the control.
	- check the limits for "SLP" function and if required, adapt (p9534, p9535).
	This message can be acknowledged as follows:
	- motion monitoring functions with SINUMERIK: Via the machine control panel
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	See also: p9534 (SI Motion SLP (SE) upper limit values (Control Unit)), p9535 (SI Motion SLP (SE) lower limit values (Control Unit))
C01716	SI Motion P1 (CU): Tolerance for safe motion direction exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the configured stop response (p9566).
	Message value (r9749, interpret decimal):
	0 : Tolerance for the "safe motion direction positive" function exceeded.
	1: Tolerance for the "safe motion direction negative" function exceeded.
Remedy:	- check the traversing/motion program in the control.
	- check the tolerance for "SDI" function and if required, adapt (p9564).
	This message can be acknowledged as follows:
	- Deselect the "SDI" function and select again.
	- Perform a safe acknowledgment via F-DI or PROFIsafe.
	Note:
	SDI: Safe Direction (safe motion direction)
	SI: Safety Integrated
	See also: p9564 (SI Motion SDI tolerance (Control Unit)), p9565 (SI Motion SDI delay time (Control Unit)), p9566 (SI Motion SDI stop response (Control Unit))
C01730	SI Motion P1 (CU): Reference block for dynamic safely limited speed invalid
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The reference block transferred via PROFIsafe is negative.
	A reference block is used to generate a referred velocity limit value based on the reference quantity "Velocity limit value SLS1" (p9531[0]).
	The drive is stopped as a result of the configured stop response (p9563[0]).
	Message value (r9749, interpret decimal):   requested, invalid reference block.
Remedy:	In the PROFIsafe telegram, input data S_SLS_LIMIT_IST must be corrected.
	This message can be acknowledged as follows:
	- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
	- motion monitoring functions with SINUMERIK: Via the machine control panel
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed


C01745	SI Motion P1 (CU): Checking braking torque for the brake test
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	The scaling of the brake torque for the brake test can be changed using parameter p2003.
	An acceptance test must be carried out again for the braking test. This determines whether the braking test is still
carried out with the correct braking torque.	

### 4.2 List of faults and alarms

	Message value (r9749, interpret decimal):
	1: It is not possible to directly transfer the reference position (p9573=89).
	2: It is not possible to transfer the reference into the motion.
Remedy:	- unpark axis/encoder.
	- acknowledge encoder fault
	- de-activate gearbox stage switchover.
	- when referencing via the Safety Control Channel (SCC), enable the function "Referencing via SCC" (p9501.27/9301.27).
	This message can be acknowledged as follows:
	- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
C01770	SI Motion P1 (CU): Discrepancy error of the fail-safe inputs/outputs
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The fail-safe digital inputs/digital outputs (F-DI/F-DO) show a different state longer than that parameterized in p10002 / p10102.
	Fault value (r0949, interpret bitwise binary):
	yyyyxxxx bin
	xxxx: Discrepancy error for fail-safe digital inputs (F-DI).
	Bit 0: Discrepancy error for F-DI 0
	Bit 1: Discrepancy error for F-DI 1
	...
	yyyy: Discrepancy error for fail-safe digital outputs (F-DO).
	Bit 0: Discrepancy error for F-DO 0
	$\cdots$
	Note:
	If several discrepancy errors occur consecutively, then this message is only signaled for the first error that occurs.
Remedy:	- check the wiring of the F-DI (contact problems).
	Note:
	This message can be acknowledged via F-DI or PROFIsafe.
	Discrepancy errors of an F-DI can only be completely acknowledged if safe acknowledgement was carried out once the cause of the error was resolved (p10006 or acknowledgment via PROFIsafe). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state internally.
	For cyclic switching operations at the F-DI, it may be necessary to adapt the discrepancy time to the switching frequency.
	If the period of a cyclic switching pulse corresponds to twice the value of p 10002 , then the following formulas should be checked:
	- p10002 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time)
	- p10002 >= p9500 (discrepancy time must be no less than p9500)
	- p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply)
	$\mathrm{td}=$ possible actual discrepancy time (in ms ) that can occur with a switching operation. This must correspond to at least 1 SI monitoring cycle (see p9500).
	$\mathrm{tp}=$ period for a switching operation in ms.
	When debounce p10017 is active, the discrepancy time is directly specified by the debounce time.
	If the period of a cyclic switching pulse corresponds to twice the debounce time, then the following formulas should be checked.
	- p10002 < p10017 + 1 ms - td
	- p10002 > td
	- p10002 >= p9500

Example:
For a 12 ms SI monitoring cycle and a switching frequency of $110 \mathrm{~ms}(\mathrm{p} 10017=0)$, the maximum discrepancy time which can be set is as follows:
p10002 <= (110/2 ms) - $12 \mathrm{~ms}=43 \mathrm{~ms}$
Rounded-off, p10002 <= 36 ms is obtained (since the discrepancy time can only be accepted as a whole SI monitoring cycle, the value will need to be rounded up or down to a whole SI monitoring cycle if the result is not an exact multiple of an SI monitoring cycle).
Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

## A01772

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Test stop failsafe inputs/outputs active

Safety monitoring channel has identified an error (10)

## VECTOR_G

NONE
NONE
The test stop for the fail-safe digital inputs (F-DI) and/or fail-safe digital outputs (F-DO) is presently being performed. Note:
F-DI: Failsafe Digital Input F-DO: Failsafe Digital Output
Remedy: The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop.

## F01773

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Test stop error

\%1
Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
A fault has occurred on the CU side during the test stop for the fail-safe outputs.
Fault value (r0949, interpret hexadecimal):
RRRVWXYZ hex:
R: Reserved.
V : Actual state of the DO channel concerned (see X) on the CU (corresponds to the states read back from the hardware, bit $0=$ DO 0, bit $1=$ DO 1, etc.).
W: Required state of the DO channel concerned (see $X$, bit $0=D O 0$, bit $1=\mathrm{DO} 1$, etc.).
$X$ : DO channels involved, which indicate an error (bit $0=D O 0$, bit $1=\mathrm{DO} 1$, etc.).
Y: Reason for the test stop fault.
Z: State of the test stop in which the fault has occurred.

Y: Reason for the test stop fault
$\mathrm{Y}=1$ : MM side in incorrect test stop state (internal fault).
$Y=2$ : Expected states of the DOs were not fulfilled (CU305: readback via DI 22 / CU240 readback DI 5).
$\mathrm{Y}=3$ : Incorrect timer state on CU side (internal fault)
$Y=4$ : Expected states of the diag DOs were not fulfilled (CU305: internal readback on MM channel).
$Y=5$ : Expected states of the second diag DOs were not fulfilled (CU305: internal readback on CU channel).
X and V indicate the DI or Diag-DO state dependent upon the reason for the fault ( 2,4 or 5 ).
In the event of multiple test stop faults, the first one that occurred is shown.

Z: Test stop state and associated test actions
$Z=0 \ldots 3$ : Synchronization phase of test stop between CU and Motor Module no switching operations
$Z=4: D O+O F F$ and DO - OFF
$Z=5$ : Check to see if states are as expected
$Z=6: D O+O N$ and DO - ON
$Z=7$ : Check to see if states are as expected

### 4.2 List of faults and alarms

$\mathrm{Z}=8: \mathrm{DO}+\mathrm{OFF}$ and DO-ON
$Z=9$ : Check to see if states are as expected
$Z=10: D O+O N$ and DO - OFF
$Z=11$ : Check to see if states are as expected
$Z=12: D O+O F F$ and DO - OFF
$Z=13$ : Check to see if states are as expected
$Z=14$ : End of test stop
Diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: 0/-/-/1
7: 0/-/-/0
9: 0/-/-/0
11: 1/-/-/1
13: 0/-/-/1
Second diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: --/-/1
7: -/-/-/0
9: -/-/-/1
11: -/-/-/0
13: -/-/-/1
DI expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/1/1/-
7: -/0/0/-
9: -/0/1/-
11: -/0/1/-
13: -/1/1/-

## Example:

Fault F01773 (CU) is signaled with fault value $=0001 _0127$ and fault $\mathrm{F} 30773(\mathrm{MM})$ is signaled with fault value 0000_0127.
This means that in state $7(Z=7)$ the state of the external readback signal was not set correctly $(Y=2)$ after DO-0 (X $=1$ ) was switched to ON/ON.
Fault value 0001_0127 indicates that 0 was expected $(\mathrm{W}=0)$ and $1(\mathrm{~V}=1)$ was read back from the hardware.
Fault value 0000_0127 on the MM indicates that the states were as expected.
In the case of fault F30773, W and V are always identical; a value of 0 always means that 0 was expected at the readback input but was not present on the other channel (CU).
Remedy: Check the wiring of the F-DOs and restart the test stop.
Note:
The fault is withdrawn if the test stop is successfully completed.
In the event of multiple test stop faults, the first one that occurred is shown.
Once the test stop has been restarted the next queued test stop fault will be signaled (if there is one).

A01774
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P1 (CU): Test stop necessary

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
NONE

- after powering up the drive, a test stop has still not been carried out.
- a new test stop is required after commissioning.
- the time to carry out the forced checking procedure (test stop) has expired (p10003).

	Note:
	- The test must be performed within a defined, maximum time interval (p10003, maximum of 8760 hours) in order to comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are depending on the safety functions correctly functioning.
Remedy:	Initiate test stop (BI: p10007).
A01780	SBT When selected, the brake is closed
Message value:	Following brakes are closed: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When selecting the brake test or starting the brake test, not all of the brakes were open.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ :
	The internal brake is closed.
	Bit 1 = 1:
	The external brake is closed (p10230.5, p10235.5, p10202).
	Note:
	The alarm is also issued, if a brake has not been configured in p10202.
	SBT: Safe Brake Test
	See also: p10202 (SI Motion SBT brake selection), p10230 (SI Motion SBT control word), p10235 (SI Safety Control Channel control word S_STW3B)
Remedy:	Open all brakes and reselect the brake test (p10230.0, p10235.0).
A01781	SBT brake opening time exceeded
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum time (11 s) to open the brake during the brake test was exceeded.
	Possible causes:
	- during the brake test the drive went into a fault condition, and therefore the brake was closed by the drive.
	- for an external brake, the feedback signal "Brake closed" was signaled too long (p10230.5, p10235).
	Alarm value (r2124, interpret binary):
	Bit $0=1$ :
	Internal brake was not able to be opened.
	Bit 1 = 1:
	External brake was not able to be opened.
	Note:
	SBT: Safe Brake Test
Remedy:	- Carry out a safe acknowledgment.
	- restart the brake test (p10230.1, p10235.1).
	See also: p10230 (SI Motion SBT control word), p10235 (SI Safety Control Channel control word S_STW3B)
A01782	SBT brake test incorrect control
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The brake test was canceled as a result of incorrect control.

Alarm value (r2124, evaluate binary):
Alarm value 0:
The brake test was canceled as a result of a fault (brake opening time or brake closing time exceeded).
Bit 0:
The safe brake test was canceled by resetting the brake test selection.
Bit 1:
The safe brake test was canceled by resetting the brake test start.
Bit 2:
The brake, which was selected at the start of the brake test, has not been configured in p10202.
When starting the brake test, as a result of the test top selection, brake 1 is not configured as internal brake.
There is a brake test configuration error. In this case, alarm A01785 is also output.
Note:
SBT: Safe Brake Test
See also: p10202 (SI Motion SBT brake selection)
Remedy: - Check parameterization of the brake test (p10202).

- Check as to whether alarm A01785 is present, and if so, evaluate.
- Carry out a safe acknowledgment.
- If required, restart the brake test.

A01783
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## SBT brake closing time exceeded

## Fault cause: \%1 bin

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
NONE
The maximum time ( 11 s ) to close the brake during the brake test was exceeded.
Alarm value (r2124, interpret binary):
Bit $0=1$ :
Internal brake was not able to be closed.
Bit $1=1$ :
External brake was not able to be closed.
Note:
SBT: Safe Brake Test
Remedy: - When using an external brake, check that the feedback signal "brake closed" is correctly interconnected with the control word of the brake test (p10230.5, p10235.5).

- When using an internal brake with external feedback signal, check whether the feedback signal is correctly interconnected with the extended brake control.
- Carry out a safe acknowledgment.
- restart the brake test (p10230.1, p10235.1).


## A01784

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SBT brake test canceled with fault

Fault cause: \%1 bin
Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
NONE
The safe brake test was canceled as a result of a fault.
Alarm value (r2124, interpret binary):
Bit $17=1$ : fault in the brake test sequence (cause, see bits $0 \ldots 10$ ).
Bit $18=1$ : the internal brake is closed. It must be open when the external brake is tested ( p 10202 ).
Bit $19=1$ : the external brake is closed. It must be open when the internal brake is tested (p10202).
Bit $20=1$ : not all brakes are open ( $p 10202$ ).
Bit 21 = 1: axis position during the brake test not valid due to parking axis.
Bit $22=1$ : internal software error.
Bit $23=1$ : the permissible position range of the axis was violated with the brake closed ( $\mathrm{p} 10212 / \mathrm{p} 10222$ ).
Bit 24 = 1: the tested internal brake was opened while the brake test was active.

Bit $25=1$ : the tested external brake was opened while the brake test was active
Bit $26=1$ : during the active brake test, the test torque left its tolerance bandwidth (20 \%).
Cause for alarm value bit 17:
Bit $0=1$ : operation when selecting the brake test not enabled (r0899.2 $=0$ ).
Bit 1 = 1: external fault occurred (e.g. the brake test that has already started is canceled by the user).
Bit $2=1$ : when selecting the brake test a brake is closed.
Bit $3=1$ : when determining the load torque a brake is closed.
Bit 4 = 1: a fault with a stop response has occurred (e.g.. OFF1, OFF2 or OFF3).
Bit $5=1$ : when selecting the brake test the axis speed setpoint is too high.
Bit $6=1$ : the actual speed (r0063) of the axis is too high (e.g. brake does not hold during the brake test).
Bit $7=1$ : incorrect speed controller mode (e.g. encoderless speed control or U/f operation).
Bit $8=1$ : closed-loop control not enabled or function generator active.
Bit $9=1$ : control does not switch over to the brake test (e.g. because PI speed control has not been parameterized).
Bit $10=1$ : torque limit reached ( $\mathrm{r} 1407.7, r 1408.8$ ).
Note:
SBT: Safe Brake Test

- Remove the fault cause.
- Carry out a safe acknowledgment.
- If required, restart the brake test.

Re bit $17=1$ with bit $6=1$ or bit $23=1$ :
If the brake closing time of the motor holding brake (p1217) has been set too low, then at the start of the brake test, the brake is closed too late. The brake closing time should be adapted (p1217).

A01785	SBT brake test configuration error
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when parameterizing the brake test.
	In this configuration, the brake test cannot be started or cannot be started without error.
	Alarm value (r2124, interpret decimal):
	1:
	No motion monitoring functions have been enabled.
	2:
	Two internal brakes were configured (p10202).
	4:
	No internal brakes were configured (p10202).
	8:
	The brake test is configured for an internal brake, however the safety brake control is not enabled (p9602/p9802). 16:
	The safe brake test and Safety without encoder are simultaneously enabled (p9306/p9506). This is not permissible. 32:
	The safe brake test and vector u/f control have been enabled. The safe brake test is not possible in this control mode.
	Note:
	SBT: Safe Brake Test
Remedy:	Check parameterization of the brake test.
F01786	SCC signal source changed
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The signal source in p10235 or p10250 was changed.

### 4.2 List of faults and alarms

The new signal source is effective immediately.
Note:
SCC: Safety Control Channel
See also: p10235 (SI Safety Control Channel control word S_STW3B), p10250 (SI Safety Control Channel control word S_STW1B)
Remedy: Acknowledge fault.
F01787 SBT motor type different

Message value:
Message class: Safety monitoring channel has identified an error (10)
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:
VECTOR_G
OFF2
IMMEDIATELY
The motor type set for the safe brake test (p10204) does not match the motor type set via the function module (r0108.12).

Remedy: Adapt the motor type set for the safe brake test.
Note:
All of the parameters for the brake test, whose unit depends on the motor type, should be checked.
See also: p10204 (SI Motion SBT motor type), p10209 (SI Motion SBT brake holding torque)

## A01788

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

Automatic test stop: wait for STO deselection via SMM
-
Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
NONE
The STO function is selected via Safety Extended Functions or a safety message is present, which results in STO. The automatic test stop was not able to be carried out since the power up.
The automatic test stop is performed after deselecting STO.
Deselect STO via Safety Extended Functions.
Remove the cause of the safety message and acknowledge the fault.

## A01789

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Automatic test stop and brake test not permitted when test stop is selected

 -Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
NONE
The parameterization of the automatic test stop (p9507.6/p9307.6) and the brake test when a test stop is selected (p10203 = 2) is not permissible.
The test stop is not automatically carried out when the powering up.

- correct the parameter assignment.
- set p10203 not equal to 2 or deactivate the automatic test stop.

Note:
A warm restart or POWER ON is required to carry out the automatic test stop.

## A01794 (N)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

SI MOTION: check modulo value for safe position via PROFIsafe

Hardware / software error (1)
VECTOR_G
NONE
NONE
When parameterizing the modulo value for safe position via PROFIsafe (p9505) the position actual value can jump when the range that can be represented overflows.

	Range that can be represented:   - 32-bit value: +/- 2048 revolutions   - 16-bit value: +/- 2048 revolutions (depending on p9574)
Remedy:	Correct the parameter assignment.
	Set p9505 to $2^{\wedge} \mathrm{n}$ revolutions - and to complete revolutions (i.e. a multiple of $360{ }^{\circ}$ ).
	Note:
	This alarm can be hidden for the case that the possible position actual value jump can be tolerated for the particular application, or does not represent a problem; for example because the parameterized modulo range fits "almost as integer number" in the range of $+/-2048$ revolutions that can be represented.
	To re-parameterize the alarm to "NO REPORT", it is not permissible that the alarm is present. As a consequence, the following sequence is required for the re-parameterization:
	- correct p9505 to "2^n".
	- re-parameterize the alarm using p2118 and p2119.
	- set p9505 back to the required value.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A01795	SI Motion P1 (CU): Wait time after exiting the safe pulse cancellation expired
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	After exiting safe pulse cancellation, within the wait time of 5 seconds, encoderless actual value sensing was not able to be activated for the extended functions without selection.
	A change is again made into the "safe pulse cancellation" state.
Remedy:	- Check missing enable signals, which prevent the drive control from being commissioned (r0046).
	- Evaluate possible fault messages of the encoderless actual value sensing and remove.


A01796 (F, N)	SI P1 (CU): Wait for communication
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive waits for communication to be established to execute the safety-relevant motion monitoring functions. Note:   STO is active in this state.   Alarm value (r2124, interpret decimal):   1: Wait for communication to be established to SINUMERIK.   2: Wait for communication to be established to TM54F.   3: Wait for communication to be established to PROFIsafe F-Host.
Remedy:	If, after a longer period of time, the message is not automatically withdrawn, the following checks have to be made as appropriate:   For communication with SINUMERIK, the following applies:   - check any other PROFIBUS messages/signals present and remove their cause.   - check that assignment of the axes on the higher-level control to the drives in the drive unit is correct.   - check enable signal of the safety-relevant motion monitoring functions for the corresponding axis on the higher-level control and if required, set it.   For communication with TM54F, the following applies:   - check any other messages/signals present for DRIVE-CLiQ communication with the TM54F and remove their cause.   - check the setting of p10010. All the drive objects controlled by the TM54F must be listed.

### 4.2 List of faults and alarms




A01840	SMI: Component found without motor data
Message value:	Component number: \%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An SMI/DQI without motor data has been found (e.g. SMI installed as replacement part).
	Alarm value (r2124, interpret decimal):
	Component number from target topology.
Remedy:	1. Download the SMI/DQI data (motor/encoder data) from the data backup again (p4690, p 4691 ).
	2. Carry out a POWER ON (power off/on) for this component.
	Note:
	DQI: DRIVE-CLiQ Sensor Integrated
	SMI: SINAMICS Sensor Module Integrated
	See also: p4690 (SMI spare part component number), p4691 (SMI spare part save/download data)
A01900 (F)	PB/PN: Configuration telegram error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection using an incorrect configuring telegram.
	Alarm value (r2124, interpret decimal):
	1:
	Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978.
	2 2.
	Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in $\mathrm{r} 2050 / \mathrm{p} 2051$.
	3 :
	Uneven number of bytes for input or output.
	4:
	Setting data for synchronization not accepted. For more information, see A01902.
	211:
	Unknown parameterizing block.
	223:
	Clock synchronization for the PZD interface set in p8815[0] is not permissible.
	More than one PZD interface is operated in clock synchronism.
	253:
	PN Shared Device: Illegal mixed configuration of PROFIsafe and PZD.
	254:
	PN Shared Device: Illegal double assignment of a slot/subslot.
	255:
	PN: Configured drive object and existing drive object do not match.
	500:
	Illegal PROFIsafe configuration for the interface set in p8815[1].
	More than one PZD interface is operated with PROFIsafe.
	501:
	PROFIsafe parameter error (e.g. F_dest).
	502:
	PROFIsafe telegram does not match.
	503:
	PROFIsafe connection is rejected as long as there is no isochronous connection (p8969).


	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the bus configuration on the master and the slave sides.
	Re alarm value $=1,2$ :
	- Check the list of the drive objects with process data exchange (p0978).
	Note:
	With $\mathrm{p} 0978[\mathrm{x}]=0$, all of the following drive objects in the list are excluded from the process data exchange.
	Re alarm value $=2$ :
	- Check the number of data words for output and input to a drive object.
	Re alarm value = 211:
	- Ensure offline version <= online version.
	Re alarm value $=223,500$ :
	- Check the setting in p8839 and p8815.
	- Check for inserted but not configured CBE20.
	- Ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe.
	Re alarm value $=255$ :
	- Check configured drive objects.
	Re alarm value $=501$ :
	- Check the set PROFIsafe address (p9610).
	Re alarm value $=502$ :
	- Check the set PROFIsafe telegram (p60022, p9611).
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY
A01902	PB/PN clock cycle synchronous operation parameterization not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Parameterization for isochronous operation is not permissible.
	Alarm value (r2124, interpret decimal):
	0 : Bus cycle time Tdp < 0.5 ms .
	1: Bus cycle time Tdp>32 ms.
	2: Bus cycle time Tdp is not an integer multiple of the current controller sampling time.
	3: Instant of the actual value sensing $\mathrm{Ti}>$ Bus cycle time Tdp or $\mathrm{Ti}=0$.
	4: Instant of the actual value sensing Ti is not an integer multiple of the current controller sampling time.
	5: Instant of the setpoint acceptance To >= Bus cycle time Tdp or To = 0 .
	6: Instant of the setpoint acceptance To is not an integer multiple of the current controller sampling time.
	7: Master application cycle time Tmapc is not an integer multiple of the speed controller sampling time.
	8: Bus reserve bus cycle time Tdp - data exchange time Tdx less than two current controller sampling times.
	10: Instant of the setpoint acceptance To <= data exchange time Tdx + current controller sampling time
	11: Master application cycle time Tmapc $>14 \times$ Tdp or Tmapc $=0$.
	12: PLL tolerance window Tpll_w > Tpll_w_max.
	13: Bus cycle time Tdp is not a multiple of all basic clock cycles p0110[x].
	16: For COMM BOARD, the instant in time for the actual value sensing Ti is less than two current controller sampling times.
Remedy:	- Adapt the bus parameterization Tdp, Ti, To.
	- adapt the sampling time for the current controller or speed controller.
	Re alarm value = 10:

- Reduce Tdx by using fewer bus participants or shorter telegrams.

Note:
PB: PROFIBUS
PN: PROFINET

F01910 (N, A)	Fieldbus: setpoint timeout
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	Vector: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)   Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the fieldbus interface (onboard, PROFIBUS/PROFINET/USS) has been interrupted.      - bus connection interrupted.
	- controller switched off.


	Note:
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A01920 (F)	PROFIBUS: Interruption cyclic connection
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
	Note:
	If there is no communication to a higher-level control system, then p2030 should be set = 0 to suppress this
message.	
Reaction upon F:	See also: p2030 (Field bus int protocol selection)
Acknowl. upon F:	IMMEDIATELY


A01921 (F)	PROFIBUS: Receive setpoints after To
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle.
Remedy:	- check bus configuration.
	- check parameters for clock cycle synchronization (ensure To > Tdx).
	Note:
	To: Time of setpoint acceptance
	Tdx: Data exchange time
Reaction upon F:	NONE (OFF1)
Acknowl. upon F:	IMMEDIATELY


A01930	PB/PN current controller sampling time clock cycle synch. not equal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current controller sampling time of all drives must be set the same for the clock cycle synchronous operation.
	Alarm value (r2124, interpret decimal):
	Number of the drive object with different current controller sampling time.
Remedy:	Set current controller sampling time to identical values (p0115[0]).
	Note:
	PB: PROFIBUS
	PN: PROFINET
	See also: p0115


A01931	PB/PN speed controller sampling time clock cycle synch. not equal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The speed controller sampling time of all drives must be set the same for the clock cycle synchronous operation.
	Alarm value (r2124, interpret decimal):
	Number of the drive object with the different speed controller sampling time.
Remedy:	Set the speed controller sampling times to identical values (p0115[1]).
	Note:
	PB: PROFIBUS
	PN: PROFINET
	See also: p0115


A01932	PB/PN clock cycle synchronization missing for DSC
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no clock synchronization or clock synchronous sign of life and DSC is selected.
	Note:
	DSC: Dynamic Servo Control
	See also: p0922 (IF1 PROFIdrive PZD telegram selection)
Remedy:	Set clock synchronization across the bus configuration and transfer clock synchronous sign-of-life.          See also: r2064 (PB/PN diagnostics clock cycle synchronism)

A01940
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

PB/PN clock cycle synchronism not reached

Communication error to the higher-level control system (9)
All objects
NONE
NONE
The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master.

- the master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus.
- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
- at least one drive object has a pulse enable (not controlled from PROFIBUS/PROFINET either).
- check the master application and bus configuration.
- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.
- check that no drive object has a pulse enable. Only enable the pulses after synchronizing the PROFIBUS/PROFINET drives.
Note:
PB: PROFIBUS
PN: PROFINET


## A01941

Message value:
Message class:
Drive object:
Reaction:
Acknowledge
Cause:

Remedy:

## PB/PN clock cycle signal missing when establishing bus communication

Communication error to the higher-level control system (9)
All objects
NONE
NONE
The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received
Check the master application and bus configuration.
Note:
PB: PROFIBUS
PN: PROFINET

A01944
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## A01943

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

PB/PN clock cycle signal error when establishing bus communication

Communication error to the higher-level control system (9)
All objects
NONE
NONE
The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram.
The global control telegram for synchronization is being irregularly received.
-.the master is sending an irregular global control telegram

- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
Remedy: - check the master application and bus configuration.
- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.
Note:
PB: PROFIBUS
PN: PROFINET


## PB/PN sign-of-life synchronism not reached

Communication error to the higher-level control system (9)
B_INF, ENC, VECTOR_G
NONE
NONE
The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram.
Synchronization with the master sign-of-life (STW2.12 ... STW2.15) could not be completed because the sign-of-life is changing differently to how it was configured in the Tmapc time grid.

- ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc.
- correct the interconnection of the master sign-of-life (p2045).

Note:
PB: PROFIBUS
PN: PROFINET

## A01945

Message value:
Message class: Drive object:
Reaction:
Acknowledge:
Cause:

## PROFIBUS: Connection to the Publisher failed

Fault cause: \%1 bin
Communication error to the higher-level control system (9)
All objects
NONE
NONE
For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed.

### 4.2 List of faults and alarms

	Alarm value (r2124, interpret binary):
	Bit $0=1$ : Publisher with address in r2077[0], connection failed.
	...
Remedy:	Bit $15=1$ : Publisher with address in r2077[15], connection failed.
Remedy:	- carry out a first commissioning of the Publisher that has the failed connection.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Message value:	Fault cause: \%1 bin
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	At this drive object, the connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Publisher with address in r2077[0], connection aborted.
	...
	Bit $15=1$ : Publisher with address in r2077[15], connection aborted.
Remedy:	- check the PROFIBUS cables.
	- check the state of the Publisher that has the aborted connection.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01950 (N, A)	PB/PN clock cycle synchronous operation synchronization unsuccessful
Message value:	- ${ }^{\text {P }}$
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	OFF1 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits an unexpected shift.
Remedy:	Only for internal Siemens troubleshooting.
	Note:
	PB: PROFIBUS
	PN: PROFINET
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F01951	CU SYNC: Synchronization application clock cycle missing
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	If DRIVE-CLiQ components with different application clock cycle are operated on a DRIVE-CLiQ port, this requires synchronization with the Control Unit. This synchronization routine was unsuccessful.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.


Remedy:	- carry out a POWER ON (power off/on) for all components.   - upgrade the software of the DRIVE-CLiQ components.   - upgrade the Control Unit software.   Note:   If a Controller Extension is being used (e.g. CX32, NX10), then the following applies:   Check whether the Controller Extension is issuing error messages, and if required, remove these.
F01952	CU DRIVE-CLiQ: Synchronization of component not supported
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing system configuration requires that the connected DRIVE-CLiQ components support the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and the application clock cycle.   However, not all DRIVE-CLiQ components have this functionality.   Fault value (r0949, interpret decimal):   Component number of the first faulty DRIVE-CLiQ component.
Remedy:	Upgrade the firmware of the component specified in the fault value.   Note:   If required, also upgrade additional components in the DRIVE-CLiQ line.
A01953	CU SYNC: Synchronization not completed
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.   Alarm value (r2124, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (power off/on) for all components.   If the error occurs after the drive sampling times were changed, and if a Terminal Module 31 (TM31) is being used, the sampling times ( $\mathrm{p} 0115, \mathrm{p} 4099$ ) should be set as integer multiples to the drive clock cycles ( p 0115 ).
F01954	CU DRIVE-CLiQ: Synchronization unsuccessful
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and was not able to be successfully completed (e.g. after switch-on).   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	1. Remove the cause of a possible DRIVE-CLiQ fault.   2. Initiate a new synchronization, e.g. as follows:   - remove the PROFIBUS master and re-insert again.   - restart the PROFIBUS master.   - switch-off the Control Unit and switch-on again.   - carry out a Control Unit hardware reset (RESET button, p0972).   - carry out a parameter reset and download the saved parameters ( $\mathrm{p} 0009=30$, p0976 $=2,3$ ).


A01955	CU DRIVE-CLiQ: Synchronization DO not completed
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.   Alarm value (r2124, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (power off/on) for all components of the DO.
A01980	PN: Interruption cyclic connection
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to a PROFINET controller is interrupted.
	Alarm value (r2124, interpret decimal):
	Number of the interrupted connection.
	See also: r8936 (PN state cyclic connections)
Remedy:	Establish the PROFINET connection and activate the PROFINET controller in the cyclic mode.
A01981	PN: Maximum number of controllers exceeded
Message value:	Info. 1: \%1, info. 2: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A controller attempts to establish a connection to the drive, and as a consequence exceeds the permitted number of PROFINET connections.
	The alarm disappears automatically after approx. 30 seconds.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info 1 = 0: number of RT connections exceeded
	Info $1>0$ : number of IRT connections exceeded
	Info 2: permitted number of connections
Remedy:	Check the configuration of the PROFINET controllers as well as the p8929 setting.
	See also: p8929 (PN remote controller number)
A01982	PROFINET: Second controller missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFINET function "Shared Device" has been activated (p8929 = 2). However, only the connection to a PROFINET controller is present.
Remedy:	Check the configuration of the PROFINET controllers as well as the p8929 setting.
	See also: p8929 (PN remote controller number)


A01989	PROFINET: Internal cyclic data transfer error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual values and/or setpoints were not transferred within the specified times.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Correctly set T_io_input or T_io_output.


A01990 (F)	USS: PZD configuration error
Message value:	$\% 1$

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:

## Remedy:

Reaction upon F: NONE (OFF1)
Acknowl. upon F: IMMEDIATELY

A02000	Function generator: Start not possible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The function generator has already been started.
Remedy:	Stop the function generator and restart again if necessary.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4800 (Function generator control)


A02005	Function generator: Drive does not exist
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection does not exist.
	See also: p4815 (Function generator drive number)
Remedy:	Use the existing drive object with the corresponding number.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4815 (Function generator drive number)


A02006	Function generator: No drive specified for connection
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	No drive specified for connection in p4815.
	See also: p4815 (Function generator drive number)
Remedy:	At least one drive to be connected must be specified in p4815.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4815 (Function generator drive number)
A02007	Function generator: Drive not SERVO / VECTOR / DC_CTRL
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection is not a SERVO / VECTOR or DC_CTRL.
	See also: p4815 (Function generator drive number)
Remedy:	Use a SERVO / VECTOR / DC_CTRL drive object with the corresponding number.     Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.

## A02008

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Function generator: Drive specified a multiple number of times

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The drive object specified for connection is already specified.
Alarm value (r2124, interpret decimal):
Drive object number of the drive object that is specified a multiple number of times.
Specify a different drive object.
Note:
The alarm is reset as follows:

- remove the cause of this alarm.
- restart the function generator.


## A02009

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:

Remedy:

Function generator: Illegal mode
\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The set operating mode ( p 1300 ) of the drive object is not permissible when using the function generator.
Alarm value ( r 2124 , interpret decimal):
Number of the drive object involved.
Change the operating mode for this drive object to p1300 $=20$ (encoderless speed control) or p1300 $=21$ (speed control with encoder).

Note:
The alarm is reset as follows

- remove the cause of this alarm.
- restart the function generator.

A02011
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:


Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

Cause: The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Remedy: For all of the drives specified for connection, set the speed setpoints to zero.
Note:
The alarm is reset as follows:

- remove the cause of this alarm
- restart the function generator.


## Function generator: Speed setpoint from the drive is not zero

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE

Function generator: The actual drive speed is not zero

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The speed actual value of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Set the relevant drives to zero speed before starting the function generator.
Note:
The alarm is reset as follows:

- remove the cause of this alarm.
- restart the function generator.


## A02015

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Function generator: Drive enable signals missing

- 

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The master control and/or enable signals are missing to connect to the specified drive.
See also: p4815 (Function generator drive number)
Fetch the master control to the specified drive object and set all enable signals.
Note:
The alarm is reset as follows:

- remove the cause of this alarm.
- restart the function generator.


## A02016

Message value:
Message class:

## Drive object:

Reaction:
Acknowledge:

## Function generator: Magnetizing running

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE

### 4.2 List of faults and alarms

Cause:	Magnetizing has not yet been completed on a drive object specified for connection.
	Alarm value (r2124, interpret decimal):
	Number of the drive object involved.
Remedy:	See also: p4815 (Function generator drive number)
	Wait for magnetizing of the motor (r0056.4).
	Note:
	The alarm is reset as follows:
	- restart the function generator.
	See also: r0056 (Status word, closed-loop control)



A02025
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Function generator: Period too short

- 

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
Cause: $\quad$ The value for the period is too short.
See also: p4821 (Function generator period)
Remedy: Check and adapt the value for the period.
Note:
The alarm is reset as follows:

- remove the cause of this alarm.
- restart the function generator.

See also: p4821 (Function generator period)

A02026	Function generator: Pulse width too high
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pulse width is too high.
	The pulse width must be less than the period duration.
	See also: p4822 (Function generator pulse width)

Remedy: $\quad$ Reduce pulse width. $\quad$ Note: $\quad$ The alarm is reset as follows: $\quad$ - remove the cause of this alarm. $\quad$ - restart the function generator. $\quad$ See also: p4821 (Function generator period), p4822 (Function generator pulse width)

A02030	Function generator: Physical address equals zero
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified physical address is zero.
	See also: p4812 (Function generator physical address)
Remedy:	Set a physical address with a value other than zero.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: p4812 (Function generator physical address)

## A02040

Drive object:
Reaction:

Acknowledge:
Cause:

## Remedy:

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Function generator: IIlegal value for offset

All objects
NONE
NONE
The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit.
See also: p4826 (Function generator offset)
Adjust the offset value accordingly.
Note
The alarm is reset as follows:

- remove the cause of this alarm
- restart the function generator

See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator upper limit)

## A02041

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Function generator: Illegal value for bandwidth

Error in the parameterization / configuration / commissioning procedure (18) All objects

NONE
NONE
The bandwidth referred to the time slice clock cycle of the function generator has either been set too low or too high.
Depending on the time slice clock cycle, the bandwidth is defined as follows:
Bandwidth_max $=1$ / ( $2 x$ time slice clock cycle)
Bandwidth_min = Bandwidth_max / 100000
Example:
Assumption: p4830 $=125 \mu \mathrm{~s}$
--> Bandwidth_max $=1 /(2 \times 125 \mu \mathrm{~s})=4000 \mathrm{~Hz}$
--> Bandwidth_min $=4000 \mathrm{~Hz} / 100000=0.04 \mathrm{~Hz}$
Note:
p4823: Function generator bandwidth
p4830: Function generator time slice clock cycle
See also: p4823 (Function generator bandwidth), p4830 (Function generator time slice cycle)

### 4.2 List of faults and alarms

Remedy: | Check the value for the bandwidth and adapt accordingly. |
| :--- |
| Note: |
| The alarm is reset as follows: |
| - remove the cause of this alarm. |
| - restart the function generator. |

A02047	Function generator: Time slice clock cycle invalid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices.
	See also: p4830 (Function generator time slice cycle)
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
	Note:
	The alarm is reset as follows:
	- remove the cause of this alarm.
	- restart the function generator.
	See also: r7901 (Sampling times)


A02050	Trace: Start not possible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace has already been started.
	See also: p4700 (Trace control)   Semedy:
	Stop the trace and, if necessary, start again.


A02051	Trace: recording not possible as a result of know-how protection
Message value:	involves \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	TRACE recording is not possible as at least one signal or trigger signal being used is under know-how protection.
	Alarm value (r2124, interpret decimal):
	1: Recorder 0
	2: Recorder 1
	3: Recorders 0 and 1
	See also: p4700, p4711, p4730, p4731, p4732, p4733, p4734, p4735, p4736, p4737
	- Temporarily activate or deactivate know-how protection (p7766).
Remedy:	- Include the signal in the OEM exception list (p7763, p7764).
	- Where relevant do not record of the signal.
	See also: p7763 (KHP OEM exception list number of indices for p7764), p7764 (KHP OEM exception list)


A02055	Trace: Recording time too short
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short.            The minimum is twice the value of the trace clock cycle.   Semedy:$\quad$See also: p4721 (Trace recording time)   Check the selected recording time and, if necessary, adjust.


A02056	Trace: Recording cycle too short
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected recording cycle is shorter than the selected basic clock cycle 0 (p0110[0]).      Semedy:
	See also: p4720 (Trace recording cycle)   Increase the value for the trace cycle.


A02057	Trace: Time slice clock cycle invalid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices.
	See also: p4723 (Trace time slice cycle)
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)


A02058	Trace: Time slice clock cycle for endless trace not valid
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
	See also: p4723 (Trace time slice cycle)   Remedy:
	Enter the clock cycle of an existing time slice with a cycle time $>=2$ ms for up to 4 recording channels or $>=4 \mathrm{~ms}$                              Trom 5 recording channels per trace.   See also: r7901 (Sampling times)

## A02059

Message value
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Trace: Time slice clock cycle for $2 \times 8$ recording channels not valid -

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The selected time slice clock cycle cannot be used for more than 4 recording channels.
See also: p4723 (Trace time slice cycle)

Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=4 \mathrm{~ms}$ or reduce the number of recording channels   to 4 per trace.   The existing time slices can be read out via p7901.   See also: r7901 (Sampling times)
A02060	Trace: Signal to be traced missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a signal to be traced was not specified.   - the specified signals are not valid.   See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace   record signal 3)
- specify the signal to be traced.	
Remedy:	- check whether the relevant signal can be traced.


A02061	Trace: Invalid signal
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist.
	- the specified signal can no longer be traced (recorded).   See also: p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace record signal 2), p4733 (Trace   record signal 3)
Remedy:	- specify the signal to be traced.


A02062	Trace: Invalid trigger signal
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a trigger signal was not specified.
	- the specified signal does not exist.
	- the specified signal is not a fixed-point signal.
	- the specified signal cannot be used as a trigger signal for the trace.   See also: p4711 (Trace trigger signal)   Specify a valid trigger signal.
Remedy:	


A02063	Trace: Invalid data type
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid.
	See also: p4711 (Trace trigger signal), p4730 (Trace record signal 0), p4731 (Trace record signal 1), p4732 (Trace   record signal 2), p4733 (Trace record signal 3)   Remedy:
	Use a valid data type.


A02070	Trace: Parameter cannot be changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active.   See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732,   p4733, p4780, p4781, p4782, p4783, p4789, p4795
- stop the trace before parameterization.	


A02075	Trace: Pretrigger time too long
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pretrigger time must be shorter than the trace time.   See also: p4721 (Trace recording time), p4722 (Trace trigger delay)   Check the pretrigger time setting and change if necessary.


F02080	Trace: Parameterization deleted due to unit changeover
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference   parameters.
Remedy:	Restart trace.


A02095	MTrace 0: multiple trace cannot be activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 0):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
	- if required, deactivate the multiple trace (p4840[0] = 0).
Remedy:	- deactivate function or setting that is not permissible
	See also: p4840 (MTrace cycle number setting)

A02096
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## MTrace 0: cannot be saved

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 0 ) A multiple trace is not started or is canceled.

### 4.2 List of faults and alarms

Alarm value (r2124, interpret decimal):
1: Memory card cannot be accessed.

- card is not inserted or is blocked by a mounted USB drive.

3: data save operation to slow.

- a second trace has been completed before the measurement results of the first trace were able to be saved.
- writing the measurement result files to the card is blocked by the parameter save.

4: Data save operation canceled.

- for instance, the file required for the data save operation was not able to be found.

See also: p4840 (MTrace cycle number setting)
Remedy: - insert or remove the memory card.

- use a larger memory card.
- configure a longer trace time or use an endless trace.
- avoid saving parameters while a multiple trace is running.
- check whether other functions are presently accessing measurement result files.

A02097
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## MTrace 1: multiple trace cannot be activated

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 1):

- measuring function
- long-time trace
- trigger condition "immediate recording start" (IMMEDIATE)
- trigger condition "start with function generator" (FG_START)

Remedy: $\quad-$ if required, deactivate the multiple trace ( $p 4840[1]=0$ ).

- deactivate function or setting that is not permissible

See also: p4840 (MTrace cycle number setting)

## A02098

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Remedy:

## MTrace 1: cannot be saved

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 1).
A multiple trace is not started or is canceled.
Alarm value ( r 2124 , interpret decimal):
1: Memory card cannot be accessed.

- card is not inserted or is blocked by a mounted USB drive.

3: data save operation to slow.

- a second trace has been completed before the measurement results of the first trace were able to be saved.
- writing the measurement result files to the card is blocked by the parameter save.

4: Data save operation canceled.

- for instance, the file required for the data save operation was not able to be found.

See also: p4840 (MTrace cycle number setting)

- insert or remove the memory card.
- use a larger memory card.
- configure a longer trace time or use an endless trace.
- avoid saving parameters while a multiple trace is running.
- check whether other functions are presently accessing measurement result files.

A02099	Trace: Insufficient Control Unit memory
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy:	Reduce the memory required, e.g. as follows:      - increase the trace clock cycle.   - reduce the number of signals to be traced.

## A02100

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - set p0118 to zero.

## Drive: Computing dead time current controller too short

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability. Possible causes:

- A parameter backup with a version higher than 4.3 was loaded to a version less than or equal to 4.3.
- The system properties after replacing a component no longer match the parameter assignment.

Alarm value (r2134, floating point):
Minimum value for p0118 where dead time no longer occurs.

- set p0118 to a value greater than or equal to the alarm value (for p1810.11 = 1)
- set p0117 (from the device) to an automatic setting (p0117 = 1).
- check the firmware versions of the components involved.

See also: p0117 (Current controller computing dead time mode), p0118 (Current controller computing dead time)

## A02150

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

OA: Application cannot be loaded
\%1
Hardware / software error (1)
All objects
NONE
NONE
The system was not able to load an OA application.
Alarm value (r2124, interpret hexadecimal):
16:
The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded. Only for internal Siemens troubleshooting
Remedy: - carry out a POWER ON (power off/on) for all components.

- upgrade firmware to later version
- contact the Hotline.

Re alarm value = 16:
Load a compatible DCB user library (compatible to the interface of the DCC standard library)
Note:
OA: Open Architecture
See also: r4950, r4955, p4956, r4957

F02151 (A)	OA: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.


	$y \mathrm{y}=4$ :
	No data available to load.
	See also: p7770 (NVRAM action)
Remedy:	- Perform the remedy according to the results of the troubleshooting.
	- If necessary, start the action again.
F03001	NVRAM checksum incorrect
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit.
	The NVRAM data affected was deleted.
Remedy:	Carry out a POWER ON (power off/on) for all components.
F03500 (A)	TM: Initialization
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred.
	Fault value (r0949, interpret decimal):
	yxxx dex
	$y=$ Only for internal Siemens troubleshooting
	xxx = component number (p0151)
Remedy:	- power down/power up the power supply for the Control Unit.
	- check the DRIVE-CLiQ connection.
	- if required, replace the Terminal Module.
	The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit.
	If the fault occurs again, replace the Terminal Module.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A03501	TM: Sampling time change
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The sampling times of the inputs/outputs were changed.
	This change only becomes valid after the next boot.
Remedy:	Carry out a POWER ON.
F03505 (N, A)	Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input current of the analog input has exceeded the threshold value parameterized in p0761[0].
	p0756[0]: analog input 0 (X131.7/X131.8)

### 4.2 List of faults and alarms

	Fault value (r0949, interpret decimal):
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	p0756[0] $=3$ (4 ... 20 mA with monitoring)
Remedy:	- Check the wiring to the signal source for interruptions.
	- Check the magnitude of the injected current - it is possible that the infed signal is too low.
	- Check the load resistor (250 Ohm).
	Note:
	The input current measured by the analog input can be read in r0752[0].
	For p756[0] = 3 (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ )) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 752[0]$ - but instead $\mathrm{r} 752[0]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F03505 (N, A)	Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, ENC, HUB, VECTOR_G
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
Remedy:	Check the wiring for interruptions.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F03505 (N, A) TB: Analog input wire breakage
Message value: \%1

Message class: External measured value / signal state outside the permissible range (16)
Drive object: TB30
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
Remedy:
Reaction upon N :
Acknowl. upon N :
The wire-break monitoring for an analog input has responded.
Check the wiring for interruptions.
NONE

Reaction upon A: NONE
Acknowl. upon A: NONE
$\overline{\text { F03505 (N, A) TM: Analog input wire breakage }}$
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: TM31
Reaction:
Acknowledge:
Cause:

NONE
IMMEDIATELY (POWER ON)
The wire-break monitoring for an analog input has responded.
The input current of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$.
Index $x=0$ : Analog input 0 (X521.1/X521.2)
Index $x=1$ : Analog input 1 (X521.3/X521.4)

	Fault value (r0949, interpret decimal): yxxx dec
	$y=$ analog input ( $0=$ analog input 0 (AI 0), $1=$ analog input 1 (AI 1))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored (+4 ... +20 mA)
Remedy:	- check the wiring for interruptions.
	- Check the magnitude of the injected current - it is possible that the infed signal is too low.
	- Check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from r4052[x].
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ ) ) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F03505 (N, A)	Analog input wire breakage
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	TM150, TM54F_MA, TM54F_SL
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input current of the analog input has exceeded the threshold value parameterized in $\mathrm{p} 4061[\mathrm{x}]$.
	Index $\mathrm{x}=0$ : Analog input 0 (X521.1/X521.2)
	Index $x=1$ : Analog input 1 (X521.3/X521.4)
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=$ analog input ( $0=$ analog input 0 (AI 0), $1=$ analog input 1 (AI 1))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored (+4 .. +20 mA )
Remedy:	- check the wiring for interruptions.
	- Check the magnitude of the injected current - it is possible that the infed signal is too low.
	- Check the load resistor (250 Ohm).
	Note:
	The input current measured by the Terminal Module can be read out from r4052[x].
	For $\mathrm{p} 4056[\mathrm{x}]=3$ (unipolar current input monitored ( $+4 \ldots+20 \mathrm{~mA}$ ) ) the following applies:
	A current less than 4 mA is not displayed in $\mathrm{r} 4052[\mathrm{x}]$ - but instead $\mathrm{r} 4052[\mathrm{x}]=4 \mathrm{~mA}$ is output.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A03506 (F, N)	24 V power supply missing
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply for the digital outputs (X124) is missing.

### 4.2 List of faults and alarms

Remedy:	Check the terminals for the power supply voltage (X124, L1+, M).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A03507 (F, N)	Digital output not set
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, HUB, TB30, TM150, TM31, TM54F_MA,
Reaction:	TM54F_SL
Acknowledge:	NONE
Cause:	Despite specification by the signal source the digital output has not been set.
	Possible causes:
	- power supply missing.
	- the digital output is in current limiting (e.g. due to short-circuit).
	- The digital output is being used for Safety Extended Functions.
	- The control has authority to access the digital output by means of direct access (see also r0729).
	Alarm value (r2124, interpret bitwise binary):
	Digital output involved (structured the same as r0747).
Remedy:	- check the 24 V power supply (e.g. X130.6 for CU310-2, ground is X130.5).
	- check the output terminals for short-circuits.
	- reset the signal source of the digital output for use by Safety Extended functions.
Reaction upon F:	- carry out a POWER ON (power off/on).
NONE	
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A03507 (F, N)	Digital output not set
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Despite specification by the signal source the digital output has not been set.
	Possible causes:
	- power supply missing.
	- the digital output is in current limiting (e.g. due to short-circuit).
	- The digital output is being used for Safety Extended Functions.
	- The control has authority to access the digital output by means of direct access (see also r0729).
	Alarm value (r2124, interpret bitwise binary):
	Digital output involved (structured the same as r0747).
Remedy:	- check the 24 V power supply (e.g. X131.7 for CU305, ground is X131.8).
	- check the output terminals for short-circuits.
	- reset the signal source of the digital output for use by Safety Extended functions.
	- carry out a POWER ON (power off/on).
Reaction upon F:	NONE   Acknowl. upon F:   IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A03510 (F, N)	Calibration data not plausible
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, CU_G130_DP, CU_G130_PN, CU_G150_DP, CU_G150_PN, ENC, HUB, TB30, TM54F_MA, TM54F_SL
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1: 10 V value, analog input 0 invalid.
	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.
Remedy:	- power down/power up the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A03510 (F, N)	Calibration data not plausible
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility.      At least one calibration data point was determined to be invalid.
Remedy:	- power down/power up the power supply for the Control Unit.   - check the DRIVE-CLiQ wiring.
	Note:   If it reoccurs, then replace the module.
	In principle, operation could continue.
Reaction upon F:	The analog channel involved possibly does not achieve the specified accuracy.   NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A03510 (F, N)	TM: Calibration data not plausible
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	TM150, TM31
Reaction:	NONE
Acknowledge:	NONE
Cause:	During ramp-up, the Terminal Module 31 (TM31) calibration data is read in and checked for plausibility.
	At least one calibration data point was determined to be invalid.
	Alarm value (r2124, interpret binary):
	Bit 1:10 V value, analog input 0 invalid.

### 4.2 List of faults and alarms

	Bit 3: 10 V value, analog input 1 invalid.
	Bit 4: Offset, analog output 0 invalid.
	Bit 5: 10 V value, analog output 0 invalid.
	Bit 6: Offset, analog output 1 invalid.
	Bit 7: 10 V value, analog input 1 invalid.
Remedy:	- power down/power up the power supply for the Control Unit.
	- check the DRIVE-CLiQ wiring.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A03550	TM: Speed setpoint filter natural frequency > Shannon frequency
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The natural filter frequency of the speed setpoint filter ( p 1417 ) is greater than or equal to the Shannon frequency.
	The Shannon frequency is calculated according to the following formula:
	0.5 / p4099[3]
Remedy:	Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417).
F03590 (N, A)	TM: Module not ready
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Terminal Module involved does not send a ready signal and no valid cyclic data.
	Fault value (r0949, interpret decimal):
	Drive object number of the Terminal Module involved.
Remedy:	- check the 24 V power supply.
	- check the DRIVE-CLiQ wiring.
	- check whether the sampling time of the drive object involved is not equal to zero (p4099[0]).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290.
	If the temperature of the heat sink increases by an additional 5 K , then fault F30004 is initiated.


Remedy:	Check the following:   - is the ambient temperature within the defined limit values?   - have the load conditions and the load duty cycle been appropriately dimensioned?   - has the cooling failed?
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05001 (N)	Power unit: Overtemperature depletion layer chip
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. Note:   - The response is set using p0290.   - If the depletion layer temperature increases by an additional 15 K , then fault F30025 is triggered.
Remedy:	Check the following:   - is the ambient temperature within the defined limit values?   - have the load conditions and the load duty cycle been appropriately dimensioned?   - has the cooling failed?   - pulse frequency too high?   Note:   If the alarm occurs after reducing the current controller sampling time ( $\mathrm{p} 0115[0]$ ) during the motor data identification (standstill measurement), then it is recommended that this is initially performed using the standard sampling time and then the sampling time should be subsequently changed over.   See also: r0037, p0290 (Power unit overload response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A05001 (N)	Power unit: Overtemperature depletion layer chip
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. Note:   - The response is set using p0290.   - If the depletion layer temperature increases by an additional 15 K , then fault F30025 is triggered.
Remedy:	Check the following:   - is the ambient temperature within the defined limit values?   - have the load conditions and the load duty cycle been appropriately dimensioned?   - has the cooling failed?   - pulse frequency too high?   See also: r0037, p0290 (Power unit overload response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A05002 (N)	Power unit: Air intake overtemperature
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is   $42^{\circ} \mathrm{C}$ (hysteresis 2 K$)$. The response is set using p0290.   If the air intake temperature increases by an additional 13 K, then fault F30035 is output.   Check the following:
Remedy:	- is the ambient temperature within the defined limit values?      - has the fan failed? Check the direction of rotation.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A05003 (N)	Power unit: Internal overtemperature
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.   If the temperature inside the power unit increases by an additional 5 K, then fault F30036 is triggered.   Check the following:
Remedy:	- is the ambient temperature within the defined limit values?   - has the fan failed? Check the direction of rotation.
Reaction upon N:	NONE   Acknowl. upon $\mathrm{N}:$


A05004 (N)	Power unit: Rectifier overtemperature
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290.
	If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is triggered.   Check the following:
Remedy:	- is the ambient temperature within the defined limit values?
	- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the fan failed? Check the direction of rotation.	
Reaction upon N:	- has a phase of the line supply failed?   - is an arm of the supply (incoming) rectifier defective?   NONE


A05005	Cooling unit: Cooling medium flow rate too low
Message value:	\%1
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Cooling unit: Alarm - flow rate has fallen below the alarm value
Remedy:	- Check the feedback signals and parameter assignment (p0260 ... p0267).
	- Check the coolant feed.


A05006 (N)	Power unit: Overtemperature thermal model
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize power units only).   Depending on p0290, an appropriate overload response is initiated.   See also: r0037
Remedy:	Not necessary.   The alarm disappears automatically once the limit value is undershot.   Note:   If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024. See also: p0290 (Power unit overload response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
N05007 (A)	Power unit: Overtemperature thermal model (chassis PU)
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (r0293) (chassis power units only).   Depending on p0290, an appropriate overload response is initiated.   See also: r0037, r0293 (Power unit alarm threshold model temperature)
Remedy:	Not necessary.   The alarm disappears automatically once the limit value is undershot. See also: p0290 (Power unit overload response)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F05050	Parallel circuit: Pulse enable in spite of pulse inhibit
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3, STOP2) Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A power unit signals that the pulses are enabled although the pulses are inhibited. Fault value (r0949, interpret decimal):   Number of the power unit involved.
Remedy:	The power unit is defective and must be replaced.
F05051	Parallel circuit: Power unit pulse enable missing
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3, STOP2) Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	For one or several power units, the pulses were not able to be enabled.

Fault value (r0949, interpret decimal):
Number of the power unit involved.
Remedy: - acknowledge power unit faults that are still present.

- inhibit the pulses of the power unit involved (p7001).

A05052 (F)	Parallel circuit: Illegal current dissymmetry
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The deviation of the individual currents of the power units exceeds the alarm threshold specified in p7010.
	Alarm value (r2124, interpret decimal):
	1: Phase U.
	2: Phase V.
	3: Phase W.
Remedy:	- inhibit the pulses of the faulted power unit (p7001).
	- check the connecting cables. Loose contacts can cause current spikes.
	- the motor reactors are non-symmetrical or faulty and must be replaced.
	- the CTs must be calibrated or replaced.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A05053 (F)	Parallel circuit: Inadmissible DC link voltage dissymmetry
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The deviation of the DC link voltage measured values exceeds the alarm threshold specified in p7011.
Remedy:	- inhibit the pulses of the faulted power unit (p7001).
	- check the DC link connecting cables.
- the DC link voltage measurement is incorrect and must be calibrated or renewed.	
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3, STOP2)   Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY

A05054
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

Parallel circuit: Power unit de-activated
\%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, VECTOR_G
NONE
NONE
For the drive object involved, fewer power units connected in parallel are active than exist in the target topology. Operation is only possible at reduced power (power derating).
Re-activate the de-activated power units if required.
See also: p0125 (Activate/de-activate power unit components), p0895 (Activate/de-activate power unit components), p0897 (Parking axis selection)

## F05055

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Parallel connection: Power units with illegal code numbers

Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2 (NONE)
IMMEDIATELY
The code numbers of the power units do not match
Fault value (r0949, interpret decimal):
Parameter in which the first different power unit code number was detected.
Use power units with the same code number.
For parallel circuit configurations, only power units with identical power unit data may be used.

## F05055

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Parallel connection: Power units with illegal code numbers

Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF
OFF2 (NONE)
MMEDIATELY
The code numbers of the power units are not permissible.
For parallel circuit configurations, only power units with identical power unit data may be used.
Possible causes:

- The code numbers of the power units do not match.

For booksize drive units, the following additionally applies:

- a parallel connection is not possible for the power units being used.
- there are too many power units being used in the parallel connection.

Fault value (r0949, interpret decimal):
Parameter in which the inadmissible power unit code number was detected.

- Use power units with the same code number.

For booksize drive units, the following additionally applies:

- use power units which are permitted for a parallel connection.
- reduce the number of power units being used in the parallel connection.


## F05056

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

Parallel circuit: Power unit EEPROM versions differ
Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, VECTOR_G
OFF2 (NONE)
IMMEDIATELY
The EEPROM versions of the power units do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Use power units with the same EEPROM version.
Note:
For parallel circuit configurations, only power units with identical EEPROM versions may be used.

## F05057

Message value:
Message class:
Drive object:
Reaction:
Acknowledge: Cause:
Parallel circuit: Power unit firmware versions differ
Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, VECTOR_G
OFF2 (NONE)
IMMEDIATELY
The firmware versions of the power units connected in parallel do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.

### 4.2 List of faults and alarms

Remedy:	Use power units with the same firmware version.
For parallel circuit configurations, only power units with identical firmware versions may be used.	


F05058	Parallel circuit: VSM EEPROM versions differ
Message value:	Parameter: \%1
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The EEPROM versions of the Voltage Sensing Modules (VSM) do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different version number was detected.
Remedy:	For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical EEPROM versions may be used.
F05059	Parallel circuit: VSM firmware versions differ
Message value:	Parameter: \%1
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The firmware versions of the Voltage Sensing Module (VSM) do not match.
	Fault value (r0949, interpret decimal):
	Parameter in which the first different version number was detected.
Remedy:	For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical firmware versions may be used.
F05060	Parallel circuit: Power unit firmware version does not match
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Firmware from version V02.30.01.00 is required when connecting the power units in parallel.
Remedy:	Update the firmware of the power units (at least V02.30.01.00).
F05061	Infeed VSM count
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The number of active Voltage Sensing Modules (VSM) for the drive object infeed with chassis power units is not correct.
	For A_Infeed, each active power unit must be assigned an active VSM also for a parallel circuit configuration.
	For S_Infeed, the active drive object, must be assigned at least one active VSM.
	Fault value (r0949, interpret decimal):
	Number of VSMs that are currently assigned to the drive object.
Remedy:	Adapts the number of active Voltage Sensing Modules (VSM).

## F05064

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

Reaction upon A :   Acknowl. upon A:	NONE NONE
F05119 (A)	Bypass contactor simultaneity monitoring time exceeded
Message value:	fault cause: \%1, additional information: \%2
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the bypass contactor is interconnected and the simultaneity monitoring (p0255[5, 7]) activated.
	After opening or closing a contactor of the parallel connection, after a monitoring time has elapsed, not all of the contactors have assumed the same state.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : simultaneity error when closing the contactors.
	Bit $1=1$ : simultaneity error when opening the contactors.
	Bit $16=1$ : PDS0 contactor is closed.
	Bit $17=1$ : PDS1 contactor is closed.
	Bit $18=1$ : PDS2 contactor is closed.
	Bit $19=1$ : PDS3 contactor is closed.
	Bit $20=1$ : PDS4 contactor is closed.
	Bit $21=1$ : PDS5 contactor is closed.
	Bit $22=1$ : PDS6 contactor is closed.
	Bit $23=1$ : PDS7 contactor is closed.
	Note:
	PDS: Power unit Data Set
Remedy:	- check the monitoring time setting (p0255[5, 7]).
	- check the wiring and control of the contactor.
	- if required, replace the contactor.
	See also: p0255 (Power unit contactor monitoring time)
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F06000	Infeed: Precharging monitoring time expired
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	B_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	After the line contactor closes the power unit does not signal the READY state within the monitoring time (p0857).
	The end of the DC link pre-charging was not able to be completed for one of the following reasons:
	2) The line contactor/line side switch has not been closed.
	3) The line supply voltage is too low.
	4) Line supply voltage incorrectly set (p0210).
	5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
	6) The pre-charging resistors are overheated as the DC link capacitance is too high.
	7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
	8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
	9) The DC link has either a ground fault or a short-circuit.
	10) The pre-charging circuit is possibly defective (only for chassis units).
	See also: p0210 (Drive unit line supply voltage), p0857 (Power unit monitoring time)


Remedy:	In general:   - check the line supply voltage at the connecting terminals.   - check the line supply voltage setting (p0210).   - check the monitoring time and, if required, increase (p0857).   - where relevant, observe additional power unit messages/signals (e.g. F30027).   - the following applies to booksize units: Wait (approx. 8 min.) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.   $\operatorname{Re} 5):$   - carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).   Re 6):   - check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC-link capacitance if necessary (refer to the appropriate Equipment Manual)   Re 7):   - interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link   Re 8):   - check the connections of the external line contactor. The line contactor must be open during DC-link fast discharge. Re 9):   - check the DC link for ground faults or short circuits.
F06010	Infeed: Power unit EP 24 V missing in operation
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	B_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	In operation, the pulse enable via terminal EP at the Line Module (X21.3, X21.4) was withdrawn. Note:   EP: Enable Pulses (pulse enable)
Remedy:	- do not open the line side switch in operation - only when the pulses are inhibited.   - check the wiring of terminal EP (X21.3, X21.4) at the Line Module to exclude any poor contacts.
F06100	Infeed: Shutdown due to line supply undervoltage condition
Message value:	\%1
Message class:	Network fault (2)
Drive object:	B_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The filtered (steady-state) value of the line supply voltage is less than the fault threshold (p0283).   Fault condition: Vrms < p0283 * p0210   Fault value (r0949, floating point):   Actual steady-state line supply voltage.   Note:   The occurrence of this fault is delayed by the time in p3492. If the fault is removed during this design time, then the power unit is not tripped (shut down).
Remedy:	- check the line supply.   - check the line supply voltage (p0210).   - check the threshold value (p0283).


A06105 (F)	Infeed: Line supply undervoltage
Message value:	\%1
Message class:	Network fault (2)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The filtered (steady-state) value of line supply voltage is lower than the alarm threshold (p0282).
	Alarm condition: Vrms < p0282 * p0210
	Alarm value (r2124, floating point):         Actual steady-state line supply voltage.
- check the line supply.	
Remedy:	- check the line supply voltage (p0210).
- check the alarm threshold (p0282).	
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

F06211 Infeed: Summation current impermissibly high

Message value:
\%1
Message class: Ground fault / inter-phase short-circuit detected (7)
Drive object:
Reaction:
Acknowledge:
Cause: The smoothed sum of the phase currents ( $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3$ ) is impermissibly high. The summed current has exceeded the parameterized threshold for the ground fault monitoring (p0287).
Possible causes:

- there is a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, reactor, filter or motor!
- the current measurement in the power unit is defective.

Fault value (r0949, floating point):
Smoothed total of the phase currents.
Remedy: - check the line supply for ground faults and remove any that are present.

- check the set threshold for the ground fault monitoring (p0287).
- if required, replace the power unit.

See also: p0287 (Ground fault monitoring thresholds)

A06301 (F)	Infeed: Line supply overvoltage
Message value:	Line supply voltage: \%1
Message class:	Network fault (2)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The filtered (steady-state) value of the rms line supply voltage Vrms is higher than the alarm threshold (p0281).
	Alarm condition: Vrms > p0281 * p0210.
	Alarm value (r2124, floating point):
	Actual steady-state line supply voltage.
- check the line supply.	
Remedy:	- check the line supply voltage (p0210).
	- check the alarm threshold (p0281).
Reaction upon F:	See also: p0210 (Drive unit line supply voltage)   NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Message value:	-
Message class:	Network fault (2)
Drive object:	VECTOR_G
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For AC/AC drive units, the measured DC voltage lies outside the tolerance range after pre-charging has been completed.
	The following applies for the tolerance range: 1.16 * p0210 < r0070 < 1.6 * p0210
	Note:
	The fault can only be acknowledged when the drive is powered down.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F06310 (A)	Infeed: Supply voltage (p0210) incorrectly parameterized
Message value:	Line supply voltage: \%1
Message class:	Network fault (2)
Drive object:	B_INF
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	After pre-charging was completed, the line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms is not within the tolerance range of the supply voltage.
	The following applies for the tolerance range: 85 \% * p0210 < Vrms < 110 \% * p0210
	Fault value (r0949, floating point):
	Line supply voltage Vrms present.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F06311	Infeed: Supply voltage (p0210) incorrect
Message value:	Line supply voltage: \%1
Message class:	Network fault (2)
Drive object:	B_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The line voltage nominal value indicated in p0210 is outside the nominal voltage range of the power unit.
	After pre-charging was completed, the actual line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms does not lie within the extended tolerance range of the supply voltage set in p0210.
	The following applies for the extended tolerance range: 75 \% * p0210 < Vrms < 120 \% * p0210
	Alarm value (r2124, floating point):
	Line supply voltage Vrms present.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)


F06700 (A)	Infeed: Switch line contactor for load condition
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	B_INF
Reaction:	NONE (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	For an ON command, the infeed line contactor should be switched under load.
Remedy:	- do not load the DC link if the infeed has not issued an operating signal (r0863.0 $=1$ ).
	- after the infeed has been powered down, all power units connected to to the DC link should be powered down. To   realize this, the operating signal of the infeed (ro863.0) must be suitably interconnected.
Reaction upon A: NONE   Acknowl. upon A: NONE	


A06810 (F)	Infeed: DC link voltage alarm threshold
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	In operation, the DC link voltage has dropped to below the alarm threshold. The alarm threshold is obtained from the sum of p0279 and r0296.
	Possible causes include:
	- line supply voltage dip or another line supply fault.
	- overload of the infeed.
	- for Active Line Module: Controller incorrectly parameterized.
	See also: p0279 (DC link voltage offset alarm threshold), r0296 (DC link voltage undervoltage threshold)
Remedy:	- check the line voltage and line supply quality.
	- reduce the power drawn, avoid step-like load changes
	- for Active Line Module: Adapt the controller parameterization (e.g. automatic line supply identification (p3410 $=4$, 5)).
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A06900 (F)	Braking Module: Fault ( 1 -> 0)
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Braking Module signals a fault ( 1 -> 0) via X21.4 ("booksize" format) or X21.5 ("chassis" format).
	This signal is wired to a system digital input and correspondingly interconnected using binector input $\mathrm{p} 3866[0 . . .7]$.
	Possible causes:
	- Wiring of the signal or BICO interconnection of the signal source incorrect.
	- Overtemperature
	- Electronics power supply missing.
	- Ground fault/short-circuit.
	- Internal component fault.
	See also: p3866 (Braking Module fault)
Remedy:	- check binector input p3866[0...7] and the wiring from terminal X21.4 ("booksize" format) or X21.5 ("chassis" format).
	- reduce the number of braking operations.
	- Check the 24 V power supply of the component.
	- Check for a ground fault or short circuit.
	- Replace the component if necessary.
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY

## A06901

Message value: $\%$
Message class: Braking Module faulted (14)
Drive object:
Reaction:
Acknowledge:
Cause:
\%1

B_INF
NONE
NONE

## Remedy:

## Braking Module: Pre-alarm I2t shutdown

The Braking Module "Booksize" format signals "Pre-alarm I2t shutdown" via terminal X21.3.
This signal is wired to a system digital input and correspondingly interconnected using binector input p3865[0...7]. Note:
This function is not supported for the "chassis" format.

- check binector input p3865[0...7] and the wiring from terminal X21.3 of the particular Braking Module.

A06904 (N)	Braking Module internal is inhibited
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal Braking Module was inhibited via binector input p3680 $=1$ signal. In the inhibited state, energy cannot be dissipated using the braking resistor. See also: p3680 (Braking Module internal inhibit)
Remedy:	Release the internal Braking Module (BI: p3680 = 0 signal).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A06905	Braking Module internal I2t shutdown alarm
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal Braking Module outputs an alarm due to the high I2t value. $80 \%$ of the maximum switch-on duration of the braking resistor has been reached. Note:
	This message is also displayed via BO: p3685.
	See also: r3685 (Digital Braking Module: Pre-alarm I2t shutdown)
Remedy:	Reduce the number of braking operations.


F06906 (A)	Braking Module internal fault
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The internal Braking Module outputs a fault due to overcurrent or an excessively high I2t value and is therefore inhibited.
	Note:
	This message is also displayed via BO: p3686.
	Fault value (r0949, interpret bitwise binary):
	Bit $0=1$ : 12 exceeded
	Bit $1=1$ : overcurrent
	See also: r3686 (Digital Braking Module Fault)
Remedy:	Reduce the number of braking operations.

### 4.2 List of faults and alarms

Reaction upon A :   Acknowl. upon A:	NONE NONE
F06907	Braking Module internal overtemperature
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The temperature sensor connected to the braking resistor signals an overtemperature.
	The Braking Module is still active. If the overtemperature persists for more than 60 s , fault 006908 is output, and the braking module is switched off.
	See also: r3687 (Digital Braking Module pre-alarm overtemperature)
Remedy:	- reduce the temperature at the sensor.   - check the temperature sensor connection.
F06908	Braking Module internal overtemperature shutdown
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	Braking module shut down due to overtemperature at the temperature sensor of the braking resistor.
	The overtemperature is detected by the sensor for longer than 60 s .
	See also: r3688 (Braking Module internal overtemperature shutdown)
Remedy:	- reduce the temperature at the sensor.
	- check the temperature sensor connection.
F06909	Braking Module internal Vce fault
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	B_INF
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U_ce) of the power semiconductor to control the braking resistor has responded.
	Possible causes:
	- short circuit at the braking resistor terminals
	- defective power semiconductor in the braking resistor control.
	Note:
	Under certain circumstances, this alarm is also output if a braking resistor has not been connected and power is fed back into the Braking Module.
	See also: r3689 (Digital Braking Module Uce fault)
Remedy:	- connect a braking resistor.
	- check the braking resistor connection.
	- check the braking resistor.
	- carry out a POWER ON (power off/on).
	- replace the unit.


A06921 (N)	Braking resistor phase unsymmetry
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the three resistors of the braking chopper are not symmetrical.


	- DC link voltage oscillations caused by fluctuating loads of the connected drives.   - check the feeder cables to the braking resistors.
Remedy:	- If required, increase the value for detecting dissymmetry (p1364).
	See also: p1360 (Braking chopper braking resistor cold), p1362 (Braking chopper activation threshold), r1363 (Braking chopper output voltage), p1364 (Braking chopper resistor asymmetry)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F06922	Braking resistor phase failure
Message value:	\%1
Message class:	Braking Module faulted (14)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A phase failure for the brake resistor was detected.
	Fault value (r0949, interpret decimal):
	11: Phase U
	12: Phase V
	13: Phase W
	See also: p3235 (Phase failure signal motor monitoring time)
Remedy:	Check the feeder cables to the braking resistors.
	See also: p1360 (Braking chopper braking resistor cold), p1362 (Braking chopper activation threshold), r1363 (Braking chopper output voltage), p1364 (Braking chopper resistor asymmetry)
F07011	Drive: Motor overtemperature
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	KTY or no sensor:
	The measured motor temperature or model temperature has exceeded the fault threshold ( p 0605 ) or the timer ( p 0606 ) has elapsed following the alarm threshold ( p 0604 ) being exceeded.
	The response parameterized in p0610 becomes active.
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened and the timer (p0606) has expired. The response parameterized in p0610 becomes active.
	Possible causes:
	- Motor is overloaded
	- the motor ambient temperature is too high.
	- PTC / bimetallic NC contact: Wire breakage or sensor not connected.
	Fault value (r0949, interpret decimal):
	200:
	The motor temperature model 1 ( 12 t ) signals an overtemperature ( $\mathrm{p} 0612.0=1, \mathrm{p} 0611>0, \mathrm{p} 0615$ reached).
	Number of the temperature channel leading to the message (for SME/TM120 (p0601 = 10, 11)).
	See also: p0604, p0605, p0606, p0612, p0625, p0626, p0627, p0628
Remedy:	- Reduce the motor load.
	- check the ambient temperature and the motor ventilation.
	- check the wiring and the connection of the PTC or bimetallic NC contact.
	See also: p0604, p0605, p0606, p0612, p0625, p0626, p0627, p0628


A07012 (N)	Drive: Motor temperature model 1/3 overtemperature
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor temperature model $1 / 3$ identified that the alarm threshold was exceeded.
	Hysteresis:2K.
	Alarm value (r2124, interpret decimal):
	200:
	Motor temperature model 1 (I2t): Temperature too high (p0605).
	300:
	Motor temperature model 3: Temperature too high (p5398).
	See also: r0034 (Motor utilization thermal), p0605 (Mot_temp_mod 1/2 threshold), p0611 (I2t motor model thermal time constant), p0612 (Mot_temp_mod activation)
Remedy:	- check the motor load and if required, reduce.
	- check the motor ambient temperature.
	- check activation of the motor temperature model (p0612).
	Motor temperature model 1 (12t):
	- check the thermal time constant (p0611).
	- check the alarm threshold (p0605).
	Motor temperature model 3:
	- check the motor type.
	- check the alarm threshold (p5398).
	- check the model parameters.
	See also: r0034 (Motor utilization thermal), p0605 (Mot_temp_mod 1/2 threshold), p0611 (I2t motor model thermal time constant), p0612 (Mot_temp_mod activation), r5397 (Mot_temp_mod 3 ambient temperature image p0613)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07014 (N)	Drive: Motor temperature model configuration alarm
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	1:
	All motor temperature models: It is not possible to save the model temperature
	See also: p0610 (Motor overtemperature response)
Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I_max" (p0610 = 2).
	See also: p0610 (Motor overtemperature response)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07015	Drive: Motor temperature sensor alarm
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0600 and p0601.
	With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.


Possible causes:	
	- wire breakage or sensor not connected (KTY: R > 1630 Ohm).
	- measured resistance too low (PTC: $\mathrm{R}<20 \mathrm{Ohm}, \mathrm{KTY:R}<50 \mathrm{Ohm}$ ).
	Alarm value (r2124, interpret decimal):
Remedy:	- SME/TM120 is selected (p0601 = 10, 11),
	this is the number of the temperature channel leading to the message.
	- make sure that the sensor is connected correctly.
	- check the parameterization (p0600, p0601).
See also: r0035, p0600 (Motor temperature sensor for monitoring), p0601, p0607 (Temperature sensor fault timer)	


F07016	Drive: Motor temperature sensor fault
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0600 and p0601.
	Possible causes:
	- wire breakage or sensor not connected (KTY: R > 1630 Ohm).
	- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm).
	Note:
	If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	Fault value (r0949, interpret decimal):
	- if SME/TM120 is selected (p0601 = 10, 11),
	this is the number of the temperature channel leading to the message.
	See also: p0607 (Temperature sensor fault timer)
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0600, p0601).
	- induction motors: De-activate temperature sensor fault (p0607 = 0).
	- When TM120 and SMC/SME (p0601 = 10, 11) are being used, set the same sensor type on the drive (p4610 ... p 4613 ) as for TM120.
	See also: r0035, p0600 (Motor temperature sensor for monitoring), p0601, p0607 (Temperature sensor fault timer)
F07080	Drive: Incorrect control parameter
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, HUB, TB30, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0).
	Fault value (r0949, interpret decimal):
	The fault value includes the parameter number involved.
	The following parameter numbers only occur as fault values for vector drives:
	p0310, for synchronous motors: p0341, p0344, p0350, p0357
	The following parameter numbers do not occur as fault values for synchronous motors:
	p0354, p0358, p0360
	See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0404, p0408, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0).
	See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0404, p0408, p0640, p1082


F07082	Macro: Execution not possible
Message value:	Fault cause: \%1, supplementary information: \%2, preliminary parameter number: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal):   ccccbbaa hex:   $\mathrm{cccc}=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.
	22: Called file is not valid for parameter 1000.
	23: Called file is not valid for parameter 1500.
	24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
	Fault causes for the parameters to be set:
	25: Error level has an undefined value.
	26: Mode has an undefined value.
	27: A value was entered as string in the tag value that is not "DEFAULT".
	31: Entered drive object type unknown.
	32: A device was not able to be found for the determined drive object number.
	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved.
	- check the macro file and BICO interconnection.
	See also: p0015, p0700, p1000, p1500
F07083	Macro: ACX file not found
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, interpret decimal):
	Parameter number with which the execution was started.
	See also: p0015, p0700, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.
	Example:
	If p0015 is set to 1501 , then the selected ACX file must be located in the following directory: ... /PMACROS/DEVICE/P15/PM001501.ACX


F07084	Macro: Condition for WaitUntil not fulfilled
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal):
	Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.
F07085	Drive: Open-loop/closed-loop control parameters changed
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Open-loop/closed-loop control parameters have had to be changed.
	Possible causes:
	1. As a result of other parameters, they have exceeded the dynamic limits.
	2. They cannot be used due to the fact that the hardware detected not having certain features.
	3. The value is estimated as the thermal time constant is missing.
	4. Motor temperature model 1 is activated as thermal motor protection is missing.
	Fault value (r0949, interpret decimal):
	Changed parameter number.
	340:
	The motor and control parameters were automatically calculated ( $p 0340=1$ ), because the vector control was subsequently activated as configuration (r0108.2).
	611:
	The time constant for thermal motor model 1 was estimated.
	612:
	Thermal motor model 1 was activated (p0612.0 = 1).
	See also: p0640 (Current limit), p1082 (Maximum speed), p1300 (Open-loop/closed-loop control operating mode), p1800 (Pulse frequency setpoint)
Remedy:	Not necessary.
	It is not necessary to change the parameters as they have already been correctly limited.
F07086	Units changeover: Parameter limit violation due to reference value change
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting.
	Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.
	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
	See also: r9450 (Reference value change parameter with unsuccessful calculation)


F07088	Units changeover: Parameter limit violation due to units changeover
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".
	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.
	Fault value (r0949, interpret decimal):
	Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
	See also: p0100 (IEC/NEMA mot stds), p0349 (System of units motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Check the adapted parameter values and if required correct.
	See also: r9451 (Units changeover adapted parameters)
A07089	Changing over units: Function module activation is blocked because the units have been changed over
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to activate a function module. This is not permissible if the units have already been changed over.
	See also: p0100 (IEC/NEMA mot stds), p0349 (System of units motor equivalent circuit diagram data), p0505 (Selecting the system of units)
Remedy:	Restore units that have been changed over to the factory setting.
A07092	Drive: moment of inertia estimator still not ready
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The moment of inertia estimator still has no valid values.
	The acceleration cannot be calculated.
	The moment of inertia estimator is ready, if the frictional values ( $\mathrm{p} 1563, \mathrm{p} 1564$ ) as well as the moment of inertia value ( p 1493 ) have been determined ( $\mathrm{r} 1407.26=1$ ).
Remedy:	Repeat the operation when the moment of inertia estimator is ready (r1407.26 = 1 ).
F07100	Drive: Sampling times cannot be reset
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When resetting drive parameter (p0976) sampling times cannot be reset using p0111, p0112, p0115.
	Fault value (r0949, interpret decimal):
	Parameter whose setting prevents the sampling times being reset.
	See also: r0110 (Basic sampling times)


Remedy:	- continue to work with the set sampling times.   - before resetting the drive parameters, set the basic clock cycle p0110[0] to the original value.   See also: r0110 (Basic sampling times)
F07110	Drive: Sampling times and basic clock cycle do not match
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The parameterized sampling times do not match the basic clock cycle.
	Fault value (r0949, interpret decimal):
	The fault value specifies the parameter involved.
	See also: r0110, r0111, p0115
Remedy:	Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112. Note which basic clock cycle is selected in p0111.
	The sampling times in p0115 can only be changed manually in the sampling times pre-setting "Expert" (p0112). See also: r0110, r0111, p0112, p0115
A07200	Drive: Master control ON command present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The ON/OFF1 command is present (no 0 signal).
	The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control.
Remedy:	Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0 .
$\overline{\mathrm{F} 07220 \text { ( } \mathrm{N}, ~ A)}$	Drive: Master control by PLC missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3, STOP2)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
	If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A :	NONE

\(\left.\left.\begin{array}{ll}\hline F07300 (A) \& Drive: Line contactor feedback signal missing <br>
Message value: \& - <br>
Message class: \& Auxiliary unit faulted (20) <br>
Drive object: \& B_INF, VECTOR_G <br>
Reaction: \& OFF2 (NONE) <br>
Acknowledge: \& IMMEDIATELY <br>
Cause: \& - the line contactor was not able to be closed within the time in p0861. <br>
\& - the line contactor was not able to be opened within the time in p0861. <br>

\& - the line contactor dropped out during operation\end{array}\right] $$
\begin{array}{ll} & \text { - the line contactor has closed although the drive converter is powered down. }\end{array}
$$\right]\)|  | - check the setting of p0860. |
| :--- | :--- |

Remedy: - check the transfer of the feedback signals.

- check the switch.

F07320	Drive: Automatic restart interrupted
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- The specified number of restart attempts (p1211) has been completely used up because within the monitoring time
	(p1213) the faults were not able to be acknowledged. The number of restart attempts (p1211) is decremented at
	each new start attempt.
	- there is no active ON command.
	- the monitoring time for the power unit has expired (p0857).
	- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the
	drive unit is not automatically powered up again.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r1214.
	- increase the delay time in p1212 and/or the monitoring time in p1213.
Remedy:	- issue an ON command (p0840).
	- either increase or disable the monitoring time of the power unit (p0857).
	- Reduce the delay time for resetting the start counter p1213[1] so that fewer faults are registered in the time interval.

## F07320

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

Remedy: $\quad-$ increase the number of restart attempts ( p 1211 ). The actual number of starting attempts is displayed in r1214.

- increase the delay time in p1212 and/or the monitoring time in p1213.
- issue an ON command (p0840).
- either increase or disable the monitoring time of the power unit (p0857).

A07321
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

Drive: Automatic restart active
-
Application / technological function faulted (17)
B_INF, VECTOR_G
NONE
NONE
The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.

- the automatic restart (AR) should, if required, be inhibited (p1210=0).
- an automatic restart can be directly interrupted by withdrawing the power-on command (BI: p0840).

F07330
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Flying restart: Measured search current too low

Application / technological function faulted (17)
VECTOR_G
OFF2 (NONE, OFF1)
IMMEDIATELY
During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.

## F07331

Message value:

## Message class:

Drive object:
Reaction:
Acknowledge:

## Cause:

Check the motor feeder cables.

## Flying restart: Function not supported

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2 (NONE, OFF1)
IMMEDIATELY
It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported:
Permanent-magnet and separately-excited synchronous motors (PEM, FEM): Operation with U/f characteristic.
Permanent-magnet synchronous motor (PEM): Encoderless operation without a Voltage Sensing Module (VSM) being connected.
Remedy: $\quad$ - de-activate the "flying restart" function $(\mathrm{p} 1200=0)$.

- change the open-loop/closed-loop control mode (p1300).
- connect a Voltage Sensing Module (VSM) (voltage measurement).

A07350 (F)	Drive: Measuring probe parameterized to a digital output
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output.
	Alarm value (r2124, interpret decimal):
	8: DI/DO 8 (X122.9/X132.1)
	9: DI/DO 9 (X122.10/X132.2)
	10: DI/DO 10 (X122.12/X132.3)
	11: DI/DO 11 (X122.13/X132.4)
	12: DI/DO 12 (X132.9)
	13: DI/DO 13 (X132.10)
	14: DI/DO 14 (X132.12)
	15: DI/DO 15 (X132.13)
	To the terminal designation:
	The first designation is valid for CU320, the second for CU305.
Remedy:	- set the terminal as input (p0728).
	- de-select the measuring probe (p0488, p0489, p0580).
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY


A07400 (N)	Drive: DC link voltage maximum controller active
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds.
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1280 (Vdc controller or Vdc monitoring configuration (U/f))
Remedy:	If the controller is not to intervene:
	- increase the ramp-down times.
	- switch-off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).
	If the ramp-down times are not to be changed:
	- use a chopper or regenerative feedback unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07401 (N)	Drive: DC link voltage maximum controller de-activated
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled).
	- the line supply voltage is permanently higher than specified for the power unit.
	- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:	- check whether the input voltage is within the permissible range (if required, increase the value in p0210).
	- check whether the load duty cycle and load limits are within the permissible limits.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07402 (N)	Drive: DC link voltage minimum controller active
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246, r1286).
	The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller or Vdc monitoring configuration), p1280 (Vdc controller or Vdc monitoring configuration (U/f))
Remedy:	The alarm disappears when power supply returns.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F07403 (N, A)	Drive: Lower DC link voltage threshold reached
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DC link voltage monitoring is active ( $\mathrm{p} 1240, \mathrm{p} 1280=5,6$ ) and the lower DC link voltage threshold ( r 1246 , r1286) was reached in the "Operation" state.
Remedy:	- check the line supply voltage.   - check the infeed.   - adapt the device supply voltage (p0210) or the switch-on level (p1245, p1285).   - disable the DC link voltage monitoring (p1240, p1280 = 0).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07404	Drive: Upper DC link voltage threshold reached
Message value:	-
Message class:	DC link overvoltage (4)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	- the DC link voltage monitoring is active ( $\mathrm{p} 1240, \mathrm{p} 1280=4,6$ ) and the upper DC link voltage threshold ( r 1242 , r1282) was reached in the "Operation" state.   - the monitoring of the DC link voltage p1284 has responded (only U/f control).
Remedy:	- check the line supply voltage.   - check the infeed.   - adapt the device supply voltage (p0210).   - if necessary, deactivate the DC link voltage monitoring (p1240, p1280 = 0).   - adapt the monitoring of the DC link voltage (p1284, only U/f).


F07405 (N, A)	Drive: Kinetic buffering minimum speed not reached
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy:	Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).
	See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f))
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F07406 (N, A)	Drive: Kinetic buffering maximum time exceeded
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned.


Remedy:	Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).   See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f))
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07407	Drive: Vdc reduction not permissible
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For chassis power units, the reduction of the line voltage (see r0212.0) is only possible for closed-loop control of the
Remedy:	DC link voltage.
	- Activate DC link voltage control for the motor/generator.
	- de-activate line voltage reduction (p0212.0 = 0).
	See also: p0212 (Power unit configuration)


A07409	Drive: U/f control, current limiting controller active
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm automatically disappears after one of the following measures:
	- increase current limit (p0640).
	- reduce the load.
	- slow down the ramp up to the setpoint speed.

## F07410

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

Drive: Current controller output limited

Application / technological function faulted (17)
VECTOR_G
OFF2 (NONE, OFF1)
IMMEDIATELY
The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: - motor not connected or motor contactor open.

- motor data and motor configuration (star-delta) do not match.
- no DC link voltage present.
- power unit defective.
- the "flying restart" function is not activated.
- connect the motor or check the motor contactor.
- check the motor parameterization and the connection type (star-delta).
- check the DC link voltage (r0070).
- check the power unit.
- activate the "flying restart" function (p1200).


## F07412

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Drive: Commutation angle incorrect (motor model)

 \%1Position/speed actual value incorrect or not available (11)

## VECTOR_G

ENCODER (NONE, OFF2)

## IMMEDIATELY

An incorrect commutation angle was detected that can result in a positive coupling in the speed controller.
Possible causes:

- The phase sequence of the output phases for the motor is incorrect (e.g. the phases are interchanged).
- the motor encoder is incorrectly adjusted with respect to the magnet position.
- the motor encoder is damaged.
- the angular commutation offset is incorrectly set (p0431).
- data to calculate the motor model has been incorrectly set (p0356 (motor-stator leakage inductance) and/or p0350 (motor-stator resistance) and/or p0352 (cable resistance).
- the changeover speed for the motor model is too low (p1752). The monitoring function only becomes effective above the changeover speed.
- pole position identification might have calculated an incorrect value when activated (p1982 = 1).
- the motor encoder speed signal is faulted.
- the control loop is instable due to incorrect parameterization.

Fault value (r0949, interpret decimal):

## SERVO:

0 : The comparison of the pole position angle from the encoder and motor model resulted in an excessively high value (>80 ${ }^{\circ}$ electrical).
1:-

## VECTOR:

0 : The comparison of the pole position angle from the encoder and motor model resulted in an excessively high value (> $45^{\circ}$ electrical).
1: The change in the speed signal from the motor encoder has changed by >p0492 within a current controller clock cycle.

- Check the phase sequence for the motor, and if required, correct (wiring, p1820).
- if the encoder mounting was changed - re-adjust the encoder.
- replace the defective motor encoder.
- correctly set the angular commutation offset (p0431). If required, determine using p1990.
- correctly set the motor stator resistance, cable resistance and motor-stator leakage inductance (p0350, p0352, p0356).
Calculate the cable resistance from the cross-section and length, check the inductance and stator resistance using the motor data sheet, measure the stator resistance, e.g. using a multimeter - and if required, again identify the values using the stationary motor data identification (p1910).
- increase the changeover speed for the motor model (p1752). The monitoring is completely de-activated for p1752 > p1082 (maximum speed).
- with pole position identification activated ( $\mathrm{p} 1982=1$ ) check the procedure for pole position identification ( p 1980 ) and force a new pole position identification procedure by means of de-selection followed by selection (p1982 =0 -> 1).

Note:
For High Dynamic Motors (1FK7xxx-7xxx), for applications with a higher current, if necessary, the monitoring should be disabled.

## F07413

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Drive: Commutation angle incorrect (pole position identification)

Position/speed actual value incorrect or not available (11)

## VECTOR_G

ENCODER (NONE, OFF2)
IMMEDIATELY
An incorrect commutation angle was detected that can result in a positive coupling in the speed controller. Within the pole position identification routine (p1982 = 2):

- a difference of $>45^{\circ}$ electrical to the encoder angle was determined.

For VECTOR, within the encoder adjustment (p1990 = 2):

- a difference of $>6^{\circ}$ electrical to the encoder angle was determined.

Remedy: - correctly set the angular commutation offset (p0431).

- re-adjust the motor encoder after the encoder has been replaced.
- replace the defective motor encoder.
- check the pole position identification routine. If the pole position identification routine is not suitable for this motor type, then disable the plausibility check (p1982 = 0).

A07416	Drive: Flux controller configuration
Message value:	Parameter: \%1, Index: \%2, fault cause: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the flux control ( p 1401 ) is contradictory.
	Alarm value (r2124, interpret hexadecimal):
	ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	$\mathrm{cc}=01 \mathrm{hex}=1 \mathrm{dec}$ :
	Quick magnetizing (p1401.6) for soft start (p1401.0).
	$\mathrm{cc}=02 \mathrm{hex}=2 \mathrm{dec}$ :
	Quick magnetizing (p1401.6) for flux build-up control (p1401.2).
	cc = $03 \mathrm{hex}=3 \mathrm{dec}$ :
	Quick magnetizing (p1401.6) for Rs identification after restart (p0621 $=2$ ).
Remedy:	Re fault cause $=1$ :
	- Shut down soft start (p1401.0 = 0).
	- Shut down quick magnetizing (p1401.6 = 0).
	Re fault cause $=2$ :
	- De-energize flux build-up control (p1401.2 = 0).
	- Shut down quick magnetizing (p1401.6 = 0).
	Re fault cause $=3$ :
	- Re-parameterize Rs identification (p0621 = 0, 1)
	- Shut down quick magnetizing (p1401.6 = 0).
$\overline{\text { F07417 }}$	Drive: Pulse technique not plausible (motor model)
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The evaluation of the test pulse response indicated incorrect values.
	Fault value (r0949, interpret decimal):
	0 :
	An impermissible pulse technique configuration was detected during ramp-up.
	Possible causes:
	- The pulse technique was initially selected when the system powered up (p1750.5 =1) but the power unit component does not support the current oversampling required (see r0192.23). As a consequence, p1750.0 was deselected automatically.
	10:
	The pulse response is repeatedly implausible.
	Possible causes:
	- Incorrect configuration of the power unit component
	- The power unit component is faulty.

### 4.2 List of faults and alarms

	20:
	For the specified pulse amplitude, the measured pulse response is much higher than the expected value.
	Possible causes:
	- Strong oscillations have occurred.
	- The motor is short-circuited for high frequencies (output filter).
	- The motor is damaged.
Remedy:	For fault value $=0$ :
	Once the pulse technique has been de-selected automatically ( $\mathrm{p} 1750.5=0$ ), there are two possible options: - acknowledge the fault and save parameter p1750.5 = 0 -> field-oriented control mode to standstill is not used and replaced by transition to open-loop control at low speeds.
	- upgrade the power unit firmware (at least V4.3) -> field-oriented control mode to standstill is available.
	For fault value = 10:
	With active selection of the pulse technique (p1750.5 = 1):
	- POWER ON (switch-off/switch-on) the Control Unit and the power unit together again.
	or
	- carry out a manual warm restart (p0009 = 30, p0976 = 2, 3).
	If this does not solve the problem: Replace the power unit component.
	For fault value $=20$ :
	- control parameters might have been adjusted (factory setting, commissioning).
	- filters must not be connected between motor and converter/inverter.
	- check the motor.
F07422	Drive: Reference model natural frequency > Shannon frequency
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The natural filter frequency of the PT2 element for the reference model (p1433) is greater than the Shannon frequency.
	The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1]
Remedy:	- reduce the natural frequency of PT2 element for reference model (p1433).
	- reduce the speed controller sampling time (p0115[1]).
F07426 (A)	Technology controller actual value limited
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit.
	Fault value (r0949, interpret decimal):
	1: upper limit reached.
	2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268).
	- Check the actual value normalization (p0595, p0596).
	- Deactivate evaluation of the limits (p2252 bit 3)
	See also: p0595 (Technological unit selection), p0596 (Technological unit reference quantity), p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value)
Reaction upon A :	NONE
Acknowl. upon A:	NONE

### 4.2 List of faults and alarms

A07428 (N)	Technology controller parameterizing error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	Re alarm value $=1$ :
	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07434	Drive: It is not possible to change the direction of rotation with the pulses enabled
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A drive data set was selected - with the pulses enabled - which has a different parameterized direction of rotation (p1821).
	It is only possible to change the motor direction of rotation using p1821 when the pulses are inhibited.
Remedy:	- change over the drive data set with the pulses inhibited.
	- ensure that the changeover to a drive data set does not result in the motor direction of rotation being changed (i.e. for these drive data sets, the same value must be in p1821).
	See also: p1821 (Dir of rot)
F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Message value:	Parameter: \%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141) or bypassed (p1122). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen or was not able to be realized.
	The drive is switched-on with flying restart activated (p1200), and at the same time the ramp-function generator is bypassed (p1122).
Remedy:	- de-activate the holding command for the ramp-function generator (p1141).
	- do not bypass the ramp-function generator (p1122).
	- suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.6).
	Note:
	For sensorless vector control it is not practical to read in the main setpoint of the speed control via p1155 or p1160 (p0922). In this case, the main setpoint should be injected before the ramp-function generator (p1070). The reason for this is that the ramp-function generator output is automatically set when transitioning from closed-loop speed controlled into open-loop speed controlled operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

## A07440

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## EPOS: Jerk time is limited

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G

## NONE

NONE
The calculation of the jerk time $\operatorname{Tr}=\max (\mathrm{p} 2572$, p 2573 ) / p2574 resulted in an excessively high value so that the jerk time is internally limited to 1000 ms .
Note:
The alarm is also output if jerk limiting is not active.
Remedy: - increase the jerk limiting (p2574).

- reduce maximum acceleration or maximum deceleration (p2572, p2573).

A07441	LR: Save the position offset of the absolute encoder adjustment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The status of the absolute encoder adjustment has changed.   In order to permanently save the determined position offset (p2525) and the determined number of the drive data set   (p2733), they must be saved in a non-volatile fashion (p0971, p0977).
Remedy:	Not necessary.
	This alarm automatically disappears after the offset has been saved.

## F07442 (A)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Reaction upon A :

Acknowl. upon A:

## LR: Multiturn does not match the modulo range

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1 (OFF2, OFF3)
IMMEDIATELY
The ratio between the multiturn resolution and the modulo range (p2576) is not an integer number.
This results in the adjustment being set back, as the position actual value cannot be reproduced after power-off/power-on.
Make the ration between the multiturn resolution and the modulo range an integer number.
The ratio $v$ is calculated as follows:

1. Motor encoder without position tracking
v = (p0421 * p2506 * p0433 *p2505) / (p0432 *p2504 *p2576)
2. Motor encoder with position tracking for the measuring gear
v = (p0412 * p2506 * p2505) / (p2504 * p2576)
3. Motor encoder with position tracking for the load gear
$\mathrm{v}=(\mathrm{p} 2721$ * p2506 * p 0433 ) / (p0432 * p2576)
4. Motor encoder with position tracking for the load and measuring gear
v = (p2721 * p2506) / p2576
5. Direct encoder without position tracking
v = (p0421 * p2506 * p0433) / (p0432 * p2576)
6. Direct encoder with position tracking for the measuring gear
$\mathrm{v}=(\mathrm{p} 0412$ * p 2506 ) / p2576
Note:
With position tracking, it is recommended that p0412 and p2721 are changed
See also: p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0432 (Gearbox factor encoder revolutions), p0433 (Gearbox factor motor/load revolutions), p2721 (Load gear rotary absolute encoder revolutions virtual)
NONE
NONE

F07443 (A)	LR: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The reference point coordinate received when adjusting the encoder via connector input p2599 lies outside the half of   the encoder range and cannot be set as actual axis position.
	Fault value (r0949, interpret decimal):
	Maximum permissible value for the reference point coordinate.

### 4.2 List of faults and alarms

F07448 (A)	Load gear: Position tracking, linear axis has exceeded the maximum range
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: NONE
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis/no modulo axis, the currently effective motor encoder (encoder 1 ) has exceeded the maximum possible traversing range.
	For the configured linear axis, the maximum traversing range is defined to be $64 x(+/-32 x)$ of p0421. It should be read in p2721 and interpreted as the number of load revolutions.
	Note:
	Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$.
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset position tracking, position (p2720.2 = 1).
	- de-select encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07449 (A)	Load gear: Position tracking actual position outside tolerance window
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: NONE
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the currently effective motor encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Note:
	Only the motor encoder in the currently effective drive data set is monitored here. The actual effective drive data set is displayed in $\mathrm{x}=\mathrm{r0051}$ and the corresponding motor encoder is specified in in $\mathrm{p} 0187[\mathrm{x}]$.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value after the measuring gear - if one is being used. The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r2724.
	See also: p2722 (Load gear position tracking tolerance window), r2724 (Load gear position difference)
Remedy:	Reset the position tracking as follows:
	- select encoder commissioning (p0010 = 4).
	- reset position tracking, position (p2720.2 = 1).
	- de-select encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
	See also: p0010
Reaction upon A:	NONE
Acknowl. upon A :	NONE


F07450 (A)	LR: Standstill monitoring has responded
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After the standstill monitoring time (p2543) expired, the drive left the standstill window (p2542).   - position actual value inversion incorrectly set (p0410).   - standstill window set too small (p2542).   - standstill monitoring time set too low (p2543).   - position loop gain too low (p2538).   - position loop gain too high (instability/oscillation, p2538).   - mechanical overload.   - Connecting cable, motor/drive converter incorrect (phase missing, interchanged).   - when selecting motor identification, select tracking mode (BI: p2655[0] = 1 signal).   - when selecting function generator, select tracking mode (BI: p2655[0] = 1 signal) and de-activate position control (BI:p2550 = 0 signal).
Remedy:	Check the causes and resolve.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07451 (A)	LR: Position monitoring has responded
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When the position monitoring time (p2545) expired, the drive had still not reached the positioning window ( p 2544 ).   - positioning window parameterized too small (p2544).   - position monitoring time parameterized too short (p2545).   - position loop gain too low (p2538).   - position loop gain too high (instability/oscillation, p2538).   - drive mechanically locked.
Remedy:	Check the causes and resolve.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07452 (A)	LR: Following error too high
Message value:	- Application /
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The difference between the position setpoint position actual value (following error dynamic model, r2563) is higher than the tolerance (p2546).   - the drive torque or accelerating capacity exceeded.   - position measuring system fault.   - position control sense incorrect.   - mechanical system locked.   - excessively high traversing velocity or excessively high position reference value (setpoint) differences
Remedy:	Check the causes and resolve.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07453
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## A07454

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

LR: Position actual value preprocessing error
-
Application / technological function faulted (17)
VECTOR_G
OFF1 (OFF2, OFF3)
IMMEDIATELY
An error has occurred during the position actual value preprocessing.
Check the encoder for the position actual value preprocessing.
LR: Position actual value preprocessing does not have a valid encoder
-
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
One of the following problems has occurred with the position actual value preprocessing:

- an encoder is not assigned for the position actual value preprocessing (p2502 = 0).
- an encoder is assigned, but no encoder data set (p0187 = 99 or p0188 = 99 or p0189 = 99).
- an encoder an an encoder data set have been assigned, however, the encoder data set does not contain any encoder data ( $\mathrm{p} 0400=0$ ) or invalid data (e.g. p0408 = 0).
Remedy: Check the drive data sets, encoder data sets and encoder assignment.
See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection)


## A07455

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

EPOS: Maximum velocity limited
-
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
The maximum velocity (p2571) is too high to correctly calculate the modulo correction.
Within the sampling time for positioning (p0115[5]), with the maximum velocity, a maximum of the half modulo length must be moved through. p2571 was limited to this value.
Remedy:

- reduce the maximum velocity ( p 2571 ).
- increase the sampling time for positioning (p0115[5]).


## $\overline{\text { A07456 }}$

## Message value:

Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:
Remedy:

## EPOS: Setpoint velocity limited

- 

Application / technological function faulted (17)
VECTOR_G
NONE
NONE
The actual setpoint velocity is greater than the parameterized maximum velocity ( p 2571 ) and is therefore limited.

- check the entered setpoint velocity.
- reduce the velocity override (CI: p2646).
- increase the maximum velocity (p2571).
- check the signal source for the externally limited velocity (CI: p2594).


## A07457

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:

Cause: An illegal combination of input signals that are simultaneously set was identified.
EPOS: Combination of input signals illegal \%1
Application / technological function faulted (17)
VECTOR_G
NONE
NONE

	Alarm value (r2124, interpret decimal):
	0: Jog 1 and jog 2 (p2589, p2590).
	1: Jog 1 or jog 2 and direct setpoint input/MDI (p2589, p2590, p2647).
	2: Jog 1 or jog 2 and start referencing (p2589, p2590, p2595).
	3: Jog 1 or jog 2 and activate traversing task (p2589, p2590, p2631).
	4: Direct setpoint input/MDI and starting referencing (p2647, p2595).
	5: Direct setpoint input/MDI and activate traversing task (p2647, p2631).
	6: Start referencing and activate traversing task (p2595, p2631).
Remedy:	Check the appropriate input signals and correct.
F07458	EPOS: Reference cam not found
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After starting the search for reference, the axis moved through the maximum permissible distance to search for the reference cam without actually finding the reference cam.
Remedy:	- check the "reference cam" binector input (BI: p2612).
	- check the maximum permissible distance to the reference cam (p2606).
	- if axis does not have any reference cam, then set p2607 to 0 .
F07459	EPOS: No zero mark
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	After leaving the reference cam, the axis has traversed the maximum permissible distance between the reference cam and zero mark without finding the zero mark.
Remedy:	- check the encoder regarding the zero mark
	- check the maximum permissible distance between the reference cam and zero mark (p2609).
	- use an external encoder zero mark (equivalent zero mark) (p0495).
	See also: p0495 (Equivalent zero mark input terminal)
F07460	EPOS: End of reference cam not found
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During the search for reference, when the axis reached the zero mark it also reached the end of the traversing range without detecting an edge at the binector input "reference cam" (BI: p2612).
	Maximum traversing range: -2147483648 [LU] ... -2147483647 [LU]
Remedy:	- check the "reference cam" binector input (BI: p2612).
	- repeat the search for reference.
A07461	EPOS: Reference point not set
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When starting a traversing block/direct setpoint input, a reference point is not set (r2684.11 = 0).
Remedy:	Reference the system (search for reference, flying referencing, set reference point).

## A07462

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

```
EPOS: Selected traversing block number does not exist
%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
A traversing block selected via binector input p2625 ... p2630 was started via binector input p2631 = 0/1 edge
"Activate traversing task".
- the number of the started traversing block is not contained in p2616[0...n].
- the started traversing block is suppressed.
Alarm value (r2124, interpret decimal):
Number of the selected traversing block that is also not available.
Remedy: - correct the traversing program.
- select an available traversing block number.
```

A07463 (F)	EPOS: External block change not requested in the traversing block
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For a traversing block with the block change enable CONTINUE_EXTERNAL_ALARM, the external block change was not requested.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block.
Remedy:	Resolve the reason as to why the edge is missing at binector input (BI: p 2632 ).
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
$\overline{\text { F07464 }}$	EPOS: Traversing block is inconsistent
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The traversing block does not contain valid information.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with invalid information.
Remedy:	Check the traversing block and where relevant, take into consideration alarms that are present.

## A07465

Message value:
EPOS: Traversing block does not have a subsequent block
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
There is no subsequent block in the traversing block.
Alarm value (r2124, interpret decimal):
Number of the traversing block with the missing subsequent block.
Remedy: - parameterize this traversing block with the block change enable END.

- parameterize additional traversing blocks with a higher block number and for the last block, using the block change enable END.

A07466

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## A07467

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Remedy:

EPOS: Traversing block number assigned a multiple number of times
\%1
Error in the parameterization / configuration / commissioning procedure (18) VECTOR_G
NONE
NONE
The same traversing block number was assigned a multiple number of times. Alarm value (r2124, interpret decimal):
Number of the traversing block that was assigned a multiple number of times. Correct the traversing blocks.

A07468	EPOS: Traversing block jump destination does not exist
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In a traversing block, a jump was programmed to a non-existent block.
	Alarm value (r2124, interpret decimal):      Nemedy $:$
	- correct the traversing block.
	- add the missing traversing block.

## EPOS: Traversing block has illegal task parameters

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
The task parameter in the traversing block contains an illegal value. Alarm value ( r 2124 , interpret decimal):
Number of the traversing block with an illegal task parameter.
Correct the task parameter in the traversing block.

## A07469

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
A07469 EPOS: Traversing block < target position < software limit switch minus \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
In the traversing block the specified absolute target position lies outside the range limited by the software limit switch minus.
Alarm value ( r 2124 , interpret decimal):
Number of the traversing block with illegal target position.
Remedy: - correct the traversing block.

- change software limit switch minus (CI: p2578, p2580).


## A07470

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

EPOS: Traversing block> target position > software limit switch plus \%1
Error in the parameterization / configuration / commissioning procedure (18) VECTOR_G

## NONE

NONE
In the traversing block the specified absolute target position lies outside the range limited by the software limit switch plus.

Alarm value (r2124, interpret decimal):
Number of the traversing block with illegal target position.
Remedy: - correct the traversing block.

- change software limit switch plus (CI: p2579, p2581).

A07471	EPOS: Traversing block target position outside the modulo range
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the traversing block the target position lies outside the modulo range.
	Alarm value (r2124, interpret decimal):
	Number of the traversing block with illegal target position.
Remedy:	- in the traversing block, correct the target position.
	- change the modulo range (p2576).

## A07472

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

A07473 (F)	EPOS: Beginning of traversing range reached
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When traversing, the axis has moved to the traversing range limit.
Remedy:	Move away in the positive direction.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07474 (F)	EPOS: End of traversing range reached
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When traversing, the axis has moved to the traversing range limit.
Remedy:	Move away in the negative direction.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


F07475 (A)	EPOS: Target position < start of traversing range
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The target position for relative traversing lies outside the traversing range.
Remedy:	Correct the target position.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07476 (A)	EPOS: Target position > end of the traversing range
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The target position for relative traversing lies outside the traversing range.
Remedy:	Correct the target position.
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A07477 (F)	EPOS: Target position < software limit switch minus
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the actual traversing operation, the target position is less than the software limit switch minus.
Remedy:	- correct the target position.
	- change software limit switch minus (CI: p2578, p2580).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07478 (F)	EPOS: Target position > software limit switch plus
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the actual traversing operation, the target position is greater than the software limit switch plus.
Remedy:	- correct the target position.
	- change software limit switch plus (CI: p2579, p2581).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07479	EPOS: Software limit switch minus reached
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The axis is at the position of the software limit switch minus. An active traversing block was interrupted.
Remedy:	- correct the target position.
	- change software limit switch minus (CI: p2578, p2580).


A07480	EPOS: Software limit switch plus reached
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The axis is at the position of the software limit switch plus. An active traversing block was interrupted.
Remedy:	- correct the target position.
	- change software limit switch plus (CI: p2579, p2581).


F07481 (A)	EPOS: Axis position < software limit switch minus
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual position of the axis is less than the position of the software limit switch minus.
Remedy:	- correct the target position.
	- change software limit switch minus (CI: p2578, p2580).
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07482 (A) EPOS: Axis position > software limit switch plus

Message value:
Message class: Application / technological function faulted (17)
Drive object:
Reaction:
Acknowledge:
Cause:
VECTOR_G
OFF1 (OFF2, OFF3)
IMMEDIATELY
The actual position of the axis is greater than the position of the software limit switch plus.
Remedy: - correct the target position.

- change software limit switch plus (CI: p2579, p2581).

Reaction upon A:
NONE
Acknowl. upon A: NONE

A07483	EPOS: Travel to fixed stop clamping torque not reached
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The fixed stop in the traversing block was reached without the clamping torque/clamping force having been achieved.
Remedy:	- Check the maximum torque-generating current (r1533).
	- check the torque limits (p1520, p1521).
	- check the power limits (p1530, p1531).
	- check the BICO interconnections of the torque limits (p1522, p1523, p1528, p1529).

## F07484

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## EPOS: Fixed stop outside the monitoring window

Application / technological function faulted (17)
VECTOR_G
OFF3 (OFF1, OFF2)
IMMEDIATELY
In the "fixed stop reached" state, the axis has moved outside the defined monitoring window (p2635).

- check the monitoring window (p2635).
- check the mechanical system.

F07485 (A)	EPOS: Fixed stop not reached
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	In a traversing block with the task FIXED STOP, the end position was reached without detecting a fixed stop.
Remedy:	- check the traversing block and locate the target position further into the workpiece.
	- check the "fixed stop reached" control signal (p2637).
	- if required, reduce the maximum following error window to detect the fixed stop (p2634).
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A07486	EPOS: Intermediate stop missing
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the modes "traversing blocks" or "direct setpoint input/MDI" at the start of motion, the binector input "no intermediate stop/intermediate stop" (BI: p2640) did not have a 1 signal.
Remedy:	Connect a 1 signal to the binector input "no intermediate stop/intermediate stop" (BI: p2640) and re-start motion.
A07487	EPOS: Reject traversing task missing
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the modes "traversing blocks" or "direct setpoint input/MDI" at the start of motion, the binector input "do not reject traversing task/reject traversing task" (BI: p2641) does not have a 1 signal.
Remedy:	Connect a 1 signal to the binector input "do not reject traversing task/reject traversing task" (BI: p2641) and restart motion.
F07488	EPOS: Relative positioning not possible
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	In the mode "direct setpoint input/MDI", for continuous transfer (p2649 = 1) relative positioning was selected (BI: p2648 = 0 signal).
Remedy:	Check the control.
A07489	EPOS: Reference point correction outside the window
Message value:	- Appicaion /
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the function "flying referencing" the difference between the measured position at the measuring probe and the reference point coordinate lies outside the parameterized window.
Remedy:	- check the mechanical system.
	- check the parameterization of the window (p2602).


F07490 (N)	EPOS: Enable signal withdrawn while traversing
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	- for a standard assignment, another fault may have occurred as a result of withdrawing the enable signals.
	- the drive is in the "switching on inhibited" state (for a standard assignment).
Remedy:	- set the enable signals or check the cause of the fault that first occurred and then result (for a standard assignment).
- check the assignment to enable the basic positioning function.	


	Note:
	For a linear encoder, the following must be maintained:
	- p0407 * p2503 / (2^p0418*10^7) < 1
	- p0407 * p2503 / (2^p0419*10^7) < 1
Remedy:	If required, reduce the traversing range or position resolution (p2506).
	Increase the fine resolution of absolute position actual value (p0419).
	Note for fault value = 3:
	If the value for the maximum possible absolute position (LU) is greater than 4294967296 , then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear:
	p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear
	p2506 * p2721 * p0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear
	p2506 * p2721
	5. Direct encoder without position tracking
	p2506 * p0433 / p0432
	p2506 * p0433 * p0421 / p0432 for multiturn encoders
	6 . Direct encoder with position tracking for measuring gear
	p2506 * p0412
F07494	LR: Drive Data Set changeover in operation
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships (p2503 ... 2506), direction of rotation (p1821) or the encoder assignment (p2502) was requested in operation.
	Note:
	DDS: Drive Data Set
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
A07495 (F)	LR: Reference function interrupted
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
	Possible causes:
	- an encoder fault has occurred (Gn_ZSW. 15 = 1).
	- position actual value was set during an activated reference function.
	- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
	- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and $\mathrm{BI}:$ p2509 $=0$ signal).
Remedy:	- check the causes and resolve.
	- reset the control (BI: p2508 and BI : p2509 = 0 signal) and activate the requested function.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY

### 4.2 List of faults and alarms

A07496	EPOS: Enable not possible
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to enable the basic positioner because at least one signal is missing.
	Alarm value (r2124, interpret decimal):
	1: EPOS enable missing (BI: p2656).
	2: Position actual value, valid feedback signal missing (BI: p2658).
	Check the appropriate binector inputs and signals.


A07497 (N)	LR: Position setting value activated
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI: p2514 = 1 signal. A possible system      deviation cannot be corrected.   Remedy:         Reaction upon N:   Notessary.   The alarm automatically disappears with BI: p2514 = 0 signal.   Acknowl. upon N:$\quad$NONE

A07498 (F) LR: Measuring probe evaluation not possible
Message value: \%1
Message class: Application / technological function faulted (17)
Drive object: VECTOR_G
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the measuring probe, an error occurred.
Alarm value (r2124, interpret decimal):
6:
The input terminal for the measuring probe is not set.
4098:
Error when initializing the measuring probe.
4100
The measuring pulse frequency is too high.
$>50000$ :
The measuring clock cycle is not a multiple integer of the position controller clock cycle.
Remedy: De-activate the measuring probe evaluation (BI: p2509 $=0$ signal).
Re alarm value $=6$ :
Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
Re alarm value $=4098$ :
Check the Control Unit hardware
Re alarm value $=4100$ :
Reduce the frequency of the measuring pulses at the measuring probe.
$R e$ alarm value > 50000:
Set the clock cycle ratio of the measuring clock cycle to the position controller clock cycle to an integer multiple
To do this, the currently effective measuring clock cycle can be determined from the alarm value as follows:
Tmeas [125 $\mu \mathrm{s}$ ] = alarm value - 50000
With PROFIBUS, the measuring clock cycle corresponds to the PROFIBUS clock cycle (r2064[1]).
Without PROFIBUS, the measuring clock cycle is an internal cycle time that cannot be influenced.

### 4.2 List of faults and alarms

Reaction upon F :   Acknowl. upon F:	OFF1 IMMEDIATELY
F07499 (A)	EPOS: Reversing cam approached with the incorrect traversing direction
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	The reversing cam MINUS was approached in the positive traversing direction or the reversing cam PLUS was approached in the negative traversing direction.
Remedy:	- check the wiring of the reversing cam (BI: p2613, BI: p 2614 ).
	- check the traversing direction to approach the reversing cam.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07500	Drive: Power unit data set PDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Only for controlled line supply infeed/regenerative feedback units:
	The power unit data set was not configured - this means that a data set number was not entered into the drive data set.
	Fault value (r0949, interpret decimal):
	Drive data set number of p0185.
Remedy:	The index of the power unit data set associated with the drive data set should be entered into p0185.
F07501	Drive: Motor Data Set MDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Only for power units:
	The motor data set was not configured - this means that a data set number was not entered into the associated drive data set.
	Fault value (r0949, interpret decimal):
	The fault value includes the drive data set number of p0186.
Remedy:	The index of the motor data set associated with the drive data set should be entered into 00186 . See also: p0186 (Motor Data Sets (MDS) number)
F07502	Drive: Encoder Data Set EDS not configured
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Only for power units:
	The encoder data set was not configured - this means that a data set number was not entered into the associated drive data set.
	Fault value (r0949, interpret decimal):
	The fault value includes the drive data set number of p0187, p0188 and p0189.
	The fault value is increased by 100 * encoder number (e.g. for p0189: Fault value 3 xx with $\mathrm{xx}=$ data set number).

### 4.2 List of faults and alarms

Remedy: The index of the encoder data set associated with the drive data set should be entered into p0187 (1st encoder), p0188 (2nd encoder) and p0189 (3rd encoder).

## F07503

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy: - check the wiring of the STOP cam (BI: p2569, BI: p2570).

- check the traversing direction to approach the STOP cam.

A07504	Drive: Motor data set is not assigned to a drive data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A motor data set is not assigned to a drive object.
	All of the existing motor data sets in the drive data sets must be assigned using the MDS number ( $\mathrm{p} 0186[0 \ldots \mathrm{n}$ ). There must be at least as many drive data sets as motor data sets.
	Alarm value (r2124, interpret decimal):
	Number of the motor data set that has not been assigned.
Remedy:	In the drive data sets, assign the non-assigned motor data set using the MDS number (p0186[0...n]).
	- check whether all of the motor data sets are assigned to drive data sets.
	- if required, delete superfluous motor data sets.
	- if required, set up new drive data sets and assign to the corresponding motor data sets.
	See also: p0186 (Motor Data Sets (MDS) number)

A07505
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

EPOS: Task fixed stop not possible in the U/f/SLVC mode \%1
Error in the parameterization / configuration / commissioning procedure (18) VECTOR_G
NONE
NONE
In the U/f/SLVC mode, an attempt was made to execute a traversing block with the "fixed stop" task. This is not possible.
Alarm value (r2124, interpret decimal):
Number of the traversing block with an illegal task parameter.

- Check the traversing block and change the task.
- change the open-loop/closed-loop control mode (p1300).

See also: p1300 (Open-loop/closed-loop control operating mode)

## F07509

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Drive: Component assignment missing

\%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, ENC, VECTOR_G
OFF2
IMMEDIATELY
A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number.


## F07512

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

```
Drive: Encoder data set changeover cannot be parameterized
%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, ENC, VECTOR_G
OFF2
IMMEDIATELY
Using p0141, a changeover of the encoder data set is prepared that is illegal. In this firmware release, an encoder
data set changeover is only permitted for the components in the actual topology.
Alarm value (r2124, interpret decimal):
Incorrect EDS data set number.
See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189
(Encoder 3 encoder data set number)
Every encoder data set must be assigned its own dedicated DRIVE-CLiQ socket. The component numbers of the encoder interfaces (p0141) must have different values within a drive object.
The following must apply:
p0141[0] not equal to \(\mathrm{p} 0141[1]\) not equal to ... not equal to p 0141 [n]
```


## A07514 (N)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Drive: Data structure does not correspond to the interface module -
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, ENC, VECTOR_G
NONE
NONE
The interface mode "SIMODRIVE 611 universal" was set ( p 2038 = 1) and the data structure does not correspond to
this mode.
The following settings are possible, depending on the number of data sets:
Number of DDS/MDS (p0180/p0130): p0186
1/1: p0186[0] = 0
2/2: $p 0186[0]=0, p 0186[1]=1$
4/4: p0186[0] $=0, p 0186[1]=1, p 0186[2]=2, p 0186[3]=3$
8/8: p0186[0] = 0, p0186[1] = 1, p0186[2] = $2 \ldots$ p0186[7] = 7
16/16: p0186[0] $=0, p 0186[1]=1, p 0186[2]=2 \ldots p 0186[15]=15$
32/32: p0186[0] = 0, p0186[1] = 1, p0186[2] = $2 \ldots p 0186[31]=31$
2/1: p0186[0, 1] = 0
4/2: $p 0186[0,1]=0, p 0186[1,2]=1$
8/4: p0186[0, 1] = 0, p0186[1, 2] = 1, p0186[3, 4] = 2, p0186[5, 6] $=3$
16/8: $p 0186[0,1]=0, p 0186[1,2]=1, p 0186[3,4]=2 \ldots p 0186[14,15]=7$
32/16: p0186[0, 1] = 0, p0186[1, 2] = 1, p0186[3, 4] = $2 \ldots p 0186[30,31]=15$
4/1: p0186[0, 1, 2, 3] = 0
8/2: p0186[0, 1, 2, 3] = 0, p0186[4, 5, 6, 7] = 1
16/4: p0186[0, 1, 2, 3] = 0, p0186[4, 5, 6, 7] = 1, p0186[8, 9, 10, 11] $=2, p 0186[12,13,14,15]=3$
32/8: $p 0186[0,1,2,3]=0, p 0186[4,5,6,7]=1, p 0186[8,9,10,11]=2 \ldots p 0186[28,29,30,31]=7$
8/1: p0186[0...7] = 0
16/2: $p 0186[0 \ldots 7]=0, p 0186[8 \ldots 15]=1$
32/4: p0186[0...7] = 0, p0186[8...15] = 1, p0186[16...23] $=2, p 0186[24 \ldots 31]=3$
16/1: p0186[0...15] = 0
32/2: p0186[0...15] = 0, p0186[16...31] = 1
32/1: p0186[0...31] = 0
9/2: $p 0186[0 \ldots 7]=0, p 0186[8]=1$
10/2: $p 0186[0 \ldots 7]=0, p 0186[8,9]=1$
12/2: $p 0186[0 \ldots 7]=0, p 0186[8 \ldots 11]=1$
See also: p0180 (Number of Drive Data Sets (DDS)), p0186 (Motor Data Sets (MDS) number), p2038 (IF1 PROFIdrive STW/ZSW interface mode)

- Check the data structure according to the possible settings mentioned in the cause.
- check the interface mode (p2038).

Reaction upon N :   Acknowl. upon N :	NONE NONE
F07515	Drive: Power unit and motor incorrectly connected
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A power unit (via PDS) was assigned to a motor (via MDS) in a drive data set that is not connected in the target topology. It is possible that a motor has not been assigned to the power unit (p0131).   Fault value (r0949, interpret decimal):   Number of the incorrectly parameterized drive data set.
Remedy:	- assign the drive data set to a combination of motor and power unit permitted by the target topology.   - adapt the target topology.   - If required, for a missing motor, recreate the component (drive Wizard).   See also: p0121 (Power unit component number), p0131 (Motor component number), p0186 (Motor Data Sets (MDS) number)
F07516	Drive: Re-commission the data set
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The assignment between the drive data set and motor data set ( p 0186 ) or between the drive data set and the encoder data set was modified ( p 0187 ). This is the reason that the drive data set must re-commissioned.
	Fault value (r0949, interpret decimal):
	Drive data set to be re-commissioned.
Remedy:	Commission the drive data set specified in the fault value (r0949).
F07517	Drive: Encoder data set changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An MDS cannot have different motor encoders in two different DDS.
	The following parameterization therefore results results in an error:
	$\mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=0$
	$\mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=1$
	Alarm value (r2124, interpret decimal):
	The lower 16 bits indicate the first DDS and the upper 16 bits indicate the second DDS.
Remedy:	If you wish to operate a motor once with one motor encoder and then another time with the other motor encoder, then you must set up two different MDSs, in which the motor data are the same.
	Example:
	$\mathrm{p} 0186[0]=0, \mathrm{p} 0187[0]=0$
	$\mathrm{p} 0186[0]=1, \mathrm{p} 0187[0]=1$
F07518	Drive: Motor data set changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The system has identified that two motor data sets were incorrectly parameterized.

### 4.2 List of faults and alarms

Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the motor data sets are assigned different motors. p0827 is used to assign the motors and/contactors.
It is not possible to toggle between motor data sets.
Alarm value (r2124, interpret hexadecimal):
xxxxyyyy:
xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS
Remedy: Correct the parameterization of the motor data sets.

A07519	Drive: Motor changeover incorrectly parameterized
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	With the setting p0833.0 = 1, a motor changeover via the application is selected. This is the reason that p0827 must   have different values in the appropriate motor data set.      Alarm value (r2124, interpret hexadecimal):   xxxxyyyy:   xxxx: First MDS, yyyy: Second MDS
- parameterize the appropriate motor data sets differently (p0827).	
Remedy:	- select the setting p0833.0 = 0 (motor changeover via the drive).

## A07520

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Drive: Motor cannot be changed over
\%1
Application / technological function faulted (17)
VECTOR_G
NONE
NONE
The motor cannot be changed over.
Alarm value (r2124, interpret decimal):
1:
The contactor for the motor that is presently active cannot be opened, because for a synchronous motor, the speed (r0063) is greater than the speed at the start of field weakening (p0348). As long as r0063 > p0348, the current in the motor does not decay in spite of the pulses being suppressed.
2 :
The "contactor opened" feedback signal was not detected within 1 s .
3:
The "contactor closed" feedback signal was not detected within 1 s .
Remedy: $\quad$ Re alarm value $=1$ :
Set the speed lower than the speed at the start of field weakening (r0063 < p0348).
Re alarm value $=2,3$ :
Check the feedback signals of the contactor involved.

A07530
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

Drive: Drive Data Set DDS not present
,
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, ENC, VECTOR_G
NONE
NONE
The selected drive data set is not available ( $\mathrm{p} 0837>\mathrm{p} 0180$ ). The drive data set was not changed over.
See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837

- select the existing drive data set.
- set up additional drive data sets.

A07531	Drive: Command Data Set CDS not present
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available (p0836 > p0170). The command data set was not changed over.     See also: p0810 (Command data set selection CDS bit 0), p0811 (Command data set selection CDS bit 1), r0836   (Command Data Set CDS selected)
Remedy:	- select the existing command data set.
	- set up additional command data sets.

### 4.2 List of faults and alarms

Remedy:	Re fault cause $=1$ :   - check the encoder parameterization (p0404).   - use an encoder with track C/D, EnDat interface of Hall sensors.   - use an encoder with sinusoidal $A / B$ track for which the motor pole pair number (r0313) is an integer multiple of the encoder pulse number (p0408).   - activate the pole position identification routine (p1982 = 1) for motor encoders without absolute position information Then, using an encoder adjustment (p1990), the angular commutation offset should be determined.   Re fault cause $=2$ :   - the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: (p0314 p0433) / p0432.   Note:   For operation with track C/D, this quotient must be less than 8.   See also: p0402 (Gearbox type selection), p0404 (Encoder configuration effective), p0432 (Gearbox factor encoder revolutions), p0433 (Gearbox factor motor/load revolutions)
F07552 (A)	Drive encoder: Encoder configuration not supported
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Message clas	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2) Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The requested encoder configuration is not supported. Only bits may be requested in p0404 that are signaled as being supported by the encoder evaluation in r0456.   Fault value (r0949, interpret decimal):   ccccbbaa hex: cccc = fault cause, $\mathrm{bb}=$ component number, $a \mathrm{a}=$ encoder data set   $\operatorname{cccc}=1$ : encoder sin/cos with absolute track (is supported by SME25).   $\operatorname{cccc}=3$ : Squarewave encoder (this is supported by SMC30).   $\operatorname{cccc}=4: \sin /$ cos encoder (this is supported by SMC20, SMI20, SME20, SME25).   cccc = 10: DRIVE-CLiQ encoder (is supported by DQI).   $\operatorname{cccc}=12: \sin / c o s$ encoder with reference mark (this is supported by SME20).   cccc $=15$ : Commutation with zero mark for separately-excited synchronous motors with VECTORMV.   $\operatorname{cccc}=23$ : Resolver (this is supported by SMC10, SMI10).   cccc = 65535: Other function (compare r0456 and p0404).   See also: p0404 (Encoder configuration effective), r0456 (Encoder configuration supported)
Remedy:	- check the encoder parameterization (p0400, p0404).   - use the matching encoder evaluation (r0456).
Reaction upon A :	NONE
Acknowl. upon A:	NONE

## F07553 (A) Drive encoder: Sensor Module configuration not supported

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge: IMMEDIATELY (POWER ON)

Cause: The Sensor Module does not support the requested configuration.
For incorrect p0430 (cc=0), the following applies:

- In p0430 (requested functions), at least 1 bit was set that is not set in r0458 (supported functions) (exception: Bit 19, 28, 29, 30, 31).
- p1982 > 0 (pole position identification requested), but r0458.16 $=0$ (pole position identification not supported).

For incorrect p0437 (cc=1), the following applies:

- In p0437 (requested functions), at least 1 bit was set that is not set in r0459 (supported functions).

Remedy:	- check the encoder parameterization (p0430, p0437).
	- check the pole position identification routine (p1982).
	- use the matching encoder evaluation (r0458, r0459).
	See also: p0430, p0437, r0458, r0459, p1982
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F07555 (A) Drive encoder: Configuration position tracking

Message value: Component number: \%1, encoder data set: \%2, drive data set: \%3, fault cause: \%4
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Reaction:

Acknowledge:
Cause:

## Remedy:

Fault value (r0949, interpret hexadecimal):
ddccbbaa hex
aa: encoder data set number
bb: first incorrect bit
cc: incorrect parameter
cc $=0$ : incorrect parameter is p0430
$c c=1$ : incorrect parameter is p0437
cc $=2$ : incorrect parameter is r0459
dd: reserved (always 0)

B_INF, ENC, VECTOR_G
Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY (POWER ON)
For position tracking, the configuration is not supported.
Position tracking can only be activated for absolute encoders.
For linear axes, it is not possible to simultaneously activate the position tracking for load and measuring gears.
Fault value (r0949, interpret hexadecimal):
ddccbbaa hex
aa = encoder data set
bb = component number
$c c=$ drive data set
dd = fault cause
$\mathrm{dd}=00$ hex $=0 \mathrm{dec}$
An absolute encoder is not being used.
$\mathrm{dd}=01 \mathrm{hex}=1 \mathrm{dec}$
Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
$\mathrm{dd}=02$ hex $=2 \mathrm{dec}$
For a linear axis, the position tracking was activated for the load and measuring gear.
dd $=03$ hex $=3$ dec
Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set.
$\mathrm{dd}=04$ hex $=4 \mathrm{dec}$
A linear encoder is being used.
See also: p0404 (Encoder configuration effective), p0411 (Measuring gear configuration)
For fault value 0 :

- use an absolute encoder.

For fault value 1:

- use a Control Unit with sufficient NVRAM.

Re fault value $=2,4$ :

- if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear).

For fault value 3:

- Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type (p2720.1) and tolerance window (p2722) are also the same. These parameters must be the same in all drive data sets, which use the same motor encoder (p187).


### 4.2 List of faults and alarms

Reaction upon A :   Acknowl. upon A:	NONE NONE
F07556	Measuring gear: Position tracking, maximum actual value exceeded
Message value:	Component number: \%1, encoder data set: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits.
	Maximum value: p 0408 * p0412 * ${ }^{\text {^ }}$ p 0419
	Fault value (r0949, interpret decimal):   aaaayyxx hex: $y y=$ component number, $x x=$ encoder data set
	See also: p0408 (Rotary encoder pulse number), p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
Remedy:	- reduce the fine resolution (p0419).
	- reduce the multiturn resolution (p0412).
	See also: p0412 (Measuring gear absolute encoder rotary revolutions virtual), p0419 (Fine resolution absolute value


A07557 (F)	E
Message value:	\%
Message class:	App

Cause:

## Remedy:

Reaction upon F: OFF1 (OFF2, OFF3)
Acknowl. upon F:

A07558 (F)	Encoder 2: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input CI:p2599 lies outside the
	half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in   the supplementary information.
Remedy:	Set the reference point coordinate less than the value from the supplementary information.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07559 (F)	Encoder 3: Reference point coordinate not in the permissible range
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The reference point coordinate received when adjusting the encoder via connector input Cl:p2599 lies outside the   half of the encoder range and cannot be set as actual axis position. The maximum permissible value is displayed in   the supplementary information.   Semedy: the reference point coordinate less than the value from the supplementary information.


Reaction upon F:   Acknowl. upon F:	OFF1 (OFF2, OFF3)   IMMEDIATELY
F07560	Drive encoder: Number of pulses is not to the power of two
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G   Reaction:
Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)   Infeed: OFF2 (NONE, OFF1)	
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For rotary absolute encoders, the pulse number in p0408 must be to the power of two.
	Fault value (r0949, interpret decimal):
The fault value includes the encoder data set number involved.	
Remedy:	- check the parameterization (p0408, p0404.1, r0458.5).
	- upgrade the Sensor Module firmware if necessary


F07561	Drive encoder: Number of multiturn pulses is not to the power of two
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The multiturn resolution in p0421 must be to the power of two.
	Fault value (r0949, interpret decimal):      The fault value includes the encoder data set number involved.   Remedy:
	- check the parameterization (p0421, p0404.1, r0458.5).
	- upgrade the Sensor Module firmware if necessary


F07562 (A)	Drive, encoder: Position tracking, incremental encoder not possible
Message value:	Fault cause: \%1, component number: \%2, encoder data set: \%3
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The requested position tracking for incremental encoders is not supported.
	Fault value (r0949, interpret hexadecimal):
	ccccbbaa hex
	aa $=$ encoder data set
	$\mathrm{bb}=$ component number
	cccc $=$ fault cause
	cccc $=00$ hex $=0 \mathrm{dec}$
	The encoder type does not support the "Position tracking incremental encoder" function.
	$\operatorname{cccc}=01$ hex $=1 \mathrm{dec}$
	Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
	cccc $=04$ hex $=4 \mathrm{dec}$
	A linear encoder is used that does not support the "position tracking" function.
	See also: p0404 (Encoder configuration effective), p0411 (Measuring gear configuration), r0456 (Encoder configuration supported)
Remedy:	- check the encoder parameterization (p0400, p0404).
	- use a Control Unit with sufficient NVRAM.
	- if required, de-select position tracking for the incremental encoder (p0411.3 = 0).
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F07563 (A)	Drive encoder: XIST1_ERW configuration incorrect
Message value:	Fault cause: \%1, encoder data set: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An incorrect configuration was identified for the "Absolute position for incremental encoder" function
	Fault value (r0949, interpret decimal):
	Fault cause:
	1 (= 01 hex):
	The "Absolute value for incremental encoder" function is not supported (r0459.13 = 0).
	Note regarding the message value:
	The individual information is coded as follows in the message value ( $\mathrm{r} 0949 / \mathrm{r} 2124$ ):
	yyxx dec: $\mathrm{yy}=$ fault cause, $\mathrm{xx}=$ encoder data set
	See also: r0459 (Sensor Module properties extended), p4652 (XIST1_ERW reset mode)
Remedy:	For fault value $=1$ :
	- upgrade the Sensor Module firmware version.
	- check the mode ( $\mathrm{p} 4652=1,3$ requires the property r0459.13 $=1$ ).
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A07565 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 1
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 1 via the PROFIdrive encoder interface (G1_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G1_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[0] is not equal to zero.
Remedy:	Acknowledge the encoder error using the encoder control word (G1_STW. $15=1$ ).
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07566 (F, N)	Drive: Encoder error in PROFIdrive encoder interface 2
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G2_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[1] is not equal to zero.
Remedy:	Acknowledge the encoder error using the encoder control word (G2_STW. $15=1$ ).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


Reaction upon N :   Acknowl. upon N :	NONE NONE
A07567 (F, N)	Drive: Encoder error in PROFldrive encoder interface 3
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An encoder error was signaled for encoder 3 via the PROFIdrive encoder interface (G3_ZSW.15).
	Alarm value (r2124, interpret decimal):
	Error code from G3_XIST2, refer to the description regarding r0483.
	Note:
	This alarm is only output if p0480[2] is not equal to zero.
Remedy:	Acknowledge the encoder error using the encoder control word (G3_STW. $15=1$ ).
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07569 (F)	Enc identification active
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	During encoder identification (waiting) with $\mathrm{p} 0400=10100$, the encoder could still not be identified.
	Either the wrong encoder has been installed or no encoder has been installed, the wrong encoder cable has been connected or no encoder cable has been connected to the Sensor Module, or the DRIVE-CLiQ component has not been connected.
	Note:
	Encoder identification must be supported by the encoder and is possible in the following cases:
	- Encoder with EnDat interface.
	- Encoder with SSI interface.
	- Motor with DRIVE-CLiQ.
Remedy:	- check and, if necessary, connect the encoder / encoder cable.
	- check and, if necessary, establish the DRIVE-CLiQ connection.
	- for SSI encoders, carry out the required operator actions (see the Function Manual).
	- in the case of encoders that cannot be identified (e.g. encoders without EnDat interface), enter the correct encoder type in p0400.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
N07570 (F)	Encoder identification data transfer running
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The encoder type was automatically determined using p0400 $=10100$.
	This fault causes the pulses to be suppressed - this is necessary to transfer the encoder parameterization to p0400ff. See also: p0400 (Encoder type selection)
Remedy:	The fault can be acknowledged without any additional measures.
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY

### 4.2 List of faults and alarms

F07575	Drive: Motor encoder not ready
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF2 (ENCODER)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	The motor encoder signals that it is not ready.
	- initialization of encoder 1 (motor encoder) was unsuccessful.
	- the function "parking encoder" is active (encoder control word G1_STW. $14=1$ ).
	- the encoder interface (Sensor Module) is de-activated (p0145).
	- the Sensor Module is defective.
Remedy:	Evaluate other queued faults via encoder 1.
A07576	Drive: Encoderless operation due to a fault active
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Encoderless operation is active due to a fault (r1407.13 = 1).
	Note:
	The behavior for faults has been set to ENCODER fault response in p0491.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- remove the cause of a possible encoder fault.
	- carry out a POWER ON (power off/on) for all components.
A07577 (F)	Encoder 1: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6: The input terminal for the measuring probe is not set.
	4098: Error when initializing the measuring probe.
	4100: The measuring pulse frequency is too high.
	4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 = 0 signal).
	Re alarm value $=6$ :
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	Re alarm value $=4098$ :
	Check the Control Unit hardware.
	Re alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	Re alarm value $=4200$ :
	Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F :	OFF1
Acknowl. upon F:	IMMEDIATELY


A07578 (F)	Encoder 2: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6: The input terminal for the measuring probe is not set.
	4098: Error when initializing the measuring probe.
	4100: The measuring pulse frequency is too high.
	4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 = 0 signal).
	Re alarm value $=6$ :
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	Re alarm value $=4098$ :
	Check the Control Unit hardware.
	Re alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	Re alarm value $=4200$ :
	Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY
A07579 (F)	Encoder 3: Measuring probe evaluation not possible
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the measuring probe, an error occurred.
	Alarm value (r2124, interpret decimal):
	6: The input terminal for the measuring probe is not set.
	4098: Error when initializing the measuring probe.
	4100: The measuring pulse frequency is too high.
	4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:	De-activate the measuring probe evaluation (BI: p2509 = 0 signal).
	Re alarm value $=6$ :
	Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
	Re alarm value $=4098$ :
	Check the Control Unit hardware.
	Re alarm value $=4100$ :
	Reduce the frequency of the measuring pulses at the measuring probe.
	Re alarm value $=4200$ :
	Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.
Reaction upon F:	OFF1
Acknowl. upon F:	IMMEDIATELY


A07580 (F, N)	Drive: No Sensor Module with matching component number
Message value:	Encoder data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Sensor Module with the component number specified in p0141 was not found.
	Alarm value (r2124, interpret decimal):
	Encoder data set involved (index of p0141).
Remedy:	Correct parameter p0141.
Reaction upon F:	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
	Infeed: OFF1 (NONE, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A07581 (F)	Encoder 1: Position actual value preprocessing error
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07582 (F)	Encoder 2: Position actual value preprocessing error
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07583 (F)	Encoder 3: Position actual value preprocessing error
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the position actual value preprocessing.
Remedy:	Check the encoder for the position actual value preprocessing.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07584	Encoder 1: Position setting value activated
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI: p2514 = 1 signal. A possible system   deviation cannot be corrected.
Remedy:	Not necessary.
	The alarm automatically disappears with BI: p2514 = 0 signal.


A07585	Encoder 2: Position setting value activated
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI: p2514 = $=1$ signal. A possible system   deviation cannot be corrected.
Remedy:	Not necessary.
	The alarm automatically disappears with BI: p2514 = 0 signal.


A07586	Encoder 3: Position setting value activated
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position actual value is set to the value received via CI: p2515while BI: p2514 = 1 signal. A possible system   deviation cannot be corrected.
Remedy:	Not necessary.   $\quad$The alarm automatically disappears with BI: p2514 $=0$ signal.


A07587	Encoder 1: Position actual value preprocessing does not have a valid encoder
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing.   - an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400   = 0) or invalid data (e.g. p0408 = 0).
Remedy:	Check the drive data sets, encoder data sets.   See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189   (Encoder 3 encoder data set number), p0400 (Encoder type selection)

A07588
Encoder 2: Position actual value preprocessing does not have a valid encoder
Message value:
Message class:
Error in the parameterization / configuration / commissioning procedure (18)
Drive object
Reaction:
Acknowledge:
VECTOR_G
NONE
NONE
Cause: The following problem has occurred during the position actual value preprocessing.

- an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400
$=0$ ) or invalid data (e.g. p0408 = 0).

Remedy: $\quad$| Check the drive data sets, encoder data sets. |
| :--- |
| See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 |
| (Encoder 3 encoder data set number), p0400 (Encoder type selection) |

A07589	Encoder 3: Position actual value preprocessing does not have a valid encoder
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following problem has occurred during the position actual value preprocessing.

- an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 $=0$ ) or invalid data (e.g. p0408 = 0).
Remedy: Check the drive data sets, encoder data sets.
See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number), p0400 (Encoder type selection)

A07590 (F)	Encoder 1: Drive Data Set changeover in operation
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment   (p2502) was requested in operation.
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.
Reaction upon F:	OFF1 (OFF2, OFF3)   Acknowl. upon F:


A07591 (F)	Encoder 2: Drive Data Set changeover in operation
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment
(p2502) was requested in operation.	
Remedy:	To changeover the drive data set, initially, exit the "operation" mode.   Reaction upon F:   Acknowl. upon F:

A07592 (F) Encoder 3: Drive Data Set changeover in operation
Message value:
Message class: Application / technological function faulted (17)
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:
Reaction upon F: OFF1 (OFF2, OFF3) VECTOR_G
NONE
NONE
A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment ( p 2502 ) was requested in operation.

Acknowl. upon F: IMMEDIATELY

A07593 (F, N)	Encoder 1: Value range for position actual value exceeded
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded.
	When the overflow occurs, the "referenced" or "absolute encoder adjusted" status is reset.
	Fault value (r0949, interpret decimal):
	1: The position actual value (r2521) has exceeded the value range.
	2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
	3: The maximum encoder value multiplied by the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
Remedy:	If required, reduce the traversing range or position resolution.
	Re alarm value $=3$ :
	Reducing the position resolution and conversion factor:
	- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
	- increase the fine resolution of absolute position actual values (p0419).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07594 (F, N)	Encoder 2: Value range for position actual value exceeded
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded.
	When the overflow occurs, the "referenced" or "absolute encoder adjusted" status is reset.
	Fault value (r0949, interpret decimal):
	1: The position actual value (r2521) has exceeded the value range.
	2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
	3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
Remedy:	If required, reduce the traversing range or position resolution.
	Re alarm value $=3$ :
	Reducing the position resolution and conversion factor:
	- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
	- increase the fine resolution of absolute position actual values (p0419).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A07595 (F,N)	Encoder 3: Value range for position actual value exceeded
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The value range $(-2147483648 \ldots 2147483647)$ for the position actual value representation was exceeded.

### 4.2 List of faults and alarms

	When the overflow occurs, the "referenced" or "absolute encoder adjusted" status is reset.
	Fault value (r0949, interpret decimal):
	1: The position actual value (r2521) has exceeded the value range.
	2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
	3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.
Remedy:	If required, reduce the traversing range or position resolution.
	Re alarm value $=3$ :
	Reducing the position resolution and conversion factor:
	- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
	- increase the fine resolution of absolute position actual values (p0419).
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07596 (F)	Encoder 1: Reference function interrupted
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
	- an encoder fault has occurred (Gn_ZSW. 15 = 1).
	- position actual value was set during an activated reference function.
	- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
	- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI : p2509 $=0$ signal).
Remedy:	- check the causes and resolve.
	- reset the control (BI: p2508 and BI : p2509 = 0 signal) and activate the requested function.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
A07597 (F)	Encoder 2: Reference function interrupted
Message value:	- Application/ technological function fauled (17)
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
	- an encoder fault has occurred (Gn_ZSW. $15=1$ ).
	- position actual value was set during an activated reference function.
	- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
	- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI : p2509 $=0$ signal).
Remedy:	- check the causes and resolve.
	- reset the control (BI: p2508 and BI : p2509 = 0 signal) and activate the requested function.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY


A07598 (F)	Encoder 3: Reference function interrupted
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An activated reference function (reference mark search or measuring probe evaluation) was interrupted.   - an encoder fault has occurred (Gn_ZSW. $15=1$ ).   - position actual value was set during an activated reference function.   - simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).   - activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and $\mathrm{BI}:$ p2509 $=0$ signal).
Remedy:	- check the causes and resolve.   - reset the control (BI: p2508 and $\mathrm{BI}:$ p2509 $=0$ signal) and activate the requested function.
Reaction upon F:	OFF1 (OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F07599 (A)	Encoder 1: Adjustment not possible
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range ( $-2147483648 \ldots 2147483647$ ) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296 , then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking:
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear: p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear:
	p2506 * p2721 * p0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear:
	p2506 * p2721
	5. Direct encoder without position tracking:
	p2506 * p0433 / p0432
	p2506 * p0433 * p0421 / p0432 for multiturn encoders
	6 . Direct encoder with position tracking for measuring gear:
	p2506 * 0412
	For a linear encoder, the following must be maintained:
	- p0407 * p2503 / (2^p0419 * 10^7) <= 1.0
Reaction upon A :	NONE
Acknowl. upon A:	NONE

### 4.2 List of faults and alarms

F07600 (A)	Encoder 2: Adjustment not possible
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range ( $-2147483648 \ldots 2147483647$ ) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296 , then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking:
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear:
	p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear:
	p2506 * p2721 * 0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear:
	p2506 * 22721
	5. Direct encoder without position tracking:
	p2506 * p0433 / p0432
	p2506 * p0433 * p0421 / p0432 for multiturn encoders
	6 . Direct encoder with position tracking for measuring gear:
	p2506 * 0412
	For a linear encoder, the following must be maintained:
	- p0407 * p2503 / (2^p0419 * 10^7) < 1.0
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07601 (A)	Encoder 3: Adjustment not possible
Message value:	Drive data set: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range ( $-2147483648 \ldots 2147483647$ ) for displaying the position actual value.
Remedy:	If the value for the maximum possible absolute position (LU) is greater than 4294967296 , then it is not possible to make an adjustment due to an overflow.
	For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
	1. Motor encoder without position tracking:
	p2506 * p0433 * p2505 / (p0432 * p2504)
	p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
	2. Motor encoder with position tracking for measuring gear:
	p2506 * p0412 * p2505 / p2504
	3. Motor encoder with position tracking for load gear:
	p2506 * p2721 * p0433 / p0432
	4. Motor encoder with position tracking for load and measuring gear:
	p2506 * p2721
	5. Direct encoder without position tracking:
	p2506 * p0433 / p0432
	p2506 * p0433 * p0421 / p0432 for multiturn encoders



### 4.2 List of faults and alarms

F07801	Drive: Motor overcurrent
Message value:	-
Message class:	Motor overload (8)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.
	- effective current limit set too low.
	- current controller not correctly set.
	- U/f operation: Up ramp was set too short or the load is too high.
	- U/f operation: Short-circuit in the motor cable or ground fault.
	- U/f operation: Motor current does not match current of power unit.
	- Switch to rotating motor without flying restart function (p1200).
	Note:
	Limit current $=2 \times$ minimum (p0640, $4 \times \mathrm{p} 0305 \times \mathrm{p} 0306$ ) > $=2 \times \mathrm{p} 0305 \times \mathrm{p} 0306$
Remedy:	- check the current limits (p0640).
	- vector control: Check the current controller (p1715, p1717).
	- U/f control: Check the current limiting controller (p1340 ... p1346).
	- increase the up ramp (p1120) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the motor for the star-delta configuration and rating plate parameterization.   - check the power unit and motor combination.
	- Choose "flying restart" function (p1200) if switched to rotating motor.

## F07802

Message value:

## Message class:

Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Drive: Infeed or power unit not ready

- 

Infeed faulted (13)
VECTOR_G
OFF2 (NONE)
IMMEDIATELY
After an internal power-on command, the infeed or drive does not signal ready.

- monitoring time is too short.
- DC link voltage is not present.
- associated infeed or drive of the signaling component is defective.
- supply voltage incorrectly set.
- increase the monitoring time (p0857).
- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.
- replace the associated infeed or drive of the signaling component.
- check the line supply voltage setting (p0210).

See also: p0857 (Power unit monitoring time)

A07805 (N)	Drive: Power unit overload I2t
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for l2t overload (p0294) of the power unit exceeded.
	The response parameterized in p0290 becomes active.         See also: p0290 (Power unit overload response)
Remedy:	- reduce the continuous load.
	- adapt the load duty cycle.
Reaction upon N:	- check the assignment of the rated currents of the motor and Motor Module.
Acknowl. upon N:	NONE


A07805 (N)	Infeed: Power unit overload I2t
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for $12 t$ overload (p0294) of the power unit exceeded.
Remedy:	- reduce the continuous load.
	- adapt the load duty cycle.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07807	Drive: Short-circuit/ground fault detected
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A phase-phase short-circuit or ground fault was detected at the motor-side output terminals of the converter.
	Fault value (r0949, interpret decimal):
	1: Short-circuit, phases U-V
	2: Short-circuit, phases U-W
	3: Short-circuit, phases V-W
	4: Ground fault with overcurrent
	1xxxx: Ground fault with current in phase $U$ detected ( $x x x x=$ component of the current in phase V in per mille)
	$2 x x x x$ : Ground fault with current in phase V detected ( $x \times x x=$ component of the current in phase $U$ in per mille)
	Note:
	Also when interchanging the line and motor cables is identified as a motor-side short circuit.
	Connecting to a motor that is either not de-energized or partially de-energized is possibly detected as ground fault. - check the motor-side converter connection for a phase-phase short-circuit.
Remedy:	- rule-out interchanged line and motor cables.
	- check for a ground fault.
	For a ground fault:
	- do not enable the pulses when connecting to a rotating motor without the "Flying restart" function activated (p1200).
	- increase the de-energization time (p0347).
	- If required, deactivate the monitoring (p1901).
F07808 (A)	HF damping module: damping not ready
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switching on or in the switched-on state, the HF damping module does not return a ready signal.
Remedy:	- Check the DRIVE-CLiQ wiring to the HF damping module.
	- check the 24 V supply voltage.
	- if required, replace the HF damping module.
	Note:
	HF Damping Module
Reaction upon A :	NONE
Acknowl. upon A:	NONE

## F07815

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## F07810

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:

## Remedy:

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Drive: Power unit EEPROM without rated data

Hardware / software error (1)
B_INF, VECTOR_G
NONE
IMMEDIATELY
No rated data are stored in the power unit EEPROM.
See also: p0205 (Power unit application), r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit maximum current)
Replace the power unit or inform Siemens Customer Service.

## Drive: Power unit has been changed

Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
IMMEDIATELY
The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum).
Fault value (r0949, interpret decimal):
Number of the incorrect parameter.
See also: r0200 (Power unit code number actual), p0201 (Power unit code number)
Remedy

- Set p0201 to r0200 and exit commissioning with p0010 $=0$.

Note:
If the power unit type was changed (see r0203) or the motor replaced, then the motor must be recommissioned (e.g. using p0010 $=1, \mathrm{p} 3900=3, \mathrm{p} 1900=1,2$ ). This is also necessary if motor data is still to be downloaded via DRIVECLiQ.
If the new power unit is accepted, then if required, the current limit p0640 can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).
If the comparison stage in p9906 is set to 2,3 , then commissioning can be exited ( $\mathrm{p} 0010=0$ ) and the fault acknowledged. This procedure is not recommended for different power unit types.
See also: r0200 (Power unit code number actual)
Drive: Power unit has been changed
Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF
NONE
IMMEDIATELY
The code number of the actual power unit does not match the saved number. This only occurs if the comparator in p9906 or p9908 is not at 2 (low) or 3 (minimum).
Fault value (r0949, interpret decimal):
Number of the incorrect parameter.
See also: r0200 (Power unit code number actual), p0201 (Power unit code number)
Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 $=0$.
For infeeds, the following applies:
Line reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine ( $\mathrm{p} 3410=5$ ) must then be carried out. It is not possible to change the power unit without recommissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units.
For inverters, the following applies:
If the new power unit is accepted, then if required, the current limit ( p 0640 ) can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).

If not only the power unit is changed, but also the motor, then the motor must be re-commissioned (e.g. using p0010 $=1$ ). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ.
See also: r0200 (Power unit code number actual)

A07820	Drive: Temperature sensor not connected
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature sensor for monitoring the motor temperature, specified in p0600, is not available.
	Alarm value (r2124, interpret decimal):
	1: p0601 = 10 (SME), but in p0600 - not evaluated via encoder is selected.
	2: p0600 = 10 (BICO), but the signal source (p0603) is not interconnected.
	3: p0601 = 11 (BICO), but in p0600 - not evaluated via BICO interconnection is selected (20 or 21).
	4: p0601 = 11 (BICO) and p4610-p4613 > 0, but the associated signal source (p0608, p0609) is not interconnected.
	5: Component with sensor evaluation not present or has been removed in the meantime.
	6: Evaluation via Motor Module not possible (r0192.21).
	Re alarm value $=1:$
Remedy:	- In p0600 set an encoder with temperature sensor.
	Re alarm value $=2:$

- interconnect p0603 with the temperature signal.

Re alarm value $=3,4$ :

- set the available temperature sensor (p0600, p0601).
- set p4610 ... p4613 = 0 (no sensor), or interconnect p0608 or p0609 with an external temperature signal.

Re alarm value $=5$ :

- connect the component with the temperature sensor. Check the DRIVE-CLiQ connection.

Re alarm value $=6$ :

- update the Motor Module firmware. Connect temperature sensor via encoder.

See also: p0600 (Motor temperature sensor for monitoring), p0601

A07825 (N)	Drive: Simulation mode activated
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The simulation mode is activated.
	The drive can only be powered up if the DC link voltage is less than 40 V .
Remedy:	Not necessary.
	The alarm automatically disappears if simulation mode is de-activated with p1272 $=0$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07826	Drive: DC link voltage for simulation operation too high
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The simulation mode is activated and the DC link voltage is greater than the permissible value of 40 V .
Remedy:	- switch out (disable) simulation mode (p1272 $=0$ ) and acknowledge the fault.
	- reduce the input voltage in order to reach a DC link voltage below 40 V .

### 4.2 List of faults and alarms

F07840	Drive: Infeed operation missing
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	The signal "infeed operation" is not present although the enable signals for the drive have been present for longer   than the parameterized monitoring time (p0857).
	- infeed not operational.


A07851 (F)	External alarm 2
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 2" is satisfied.
	Note:
	The "External alarm 2" is initiated by a $1 / 0$ edge via binector input p2116. See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A07852 (F)	External alarm 3
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 3" is satisfied.
	Note:
	The "External alarm 3" is initiated by a $1 / 0$ edge via binector input p2117. See also: p2117 (External alarm 3)
Remedy:	Eliminate the causes of this alarm.
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F07860 (A)	External fault 1
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 1 " is satisfied.
	Note:
	The "External fault 1" is initiated by a 1/0 edge via binector input p2106.
	See also: p2106 (External fault 1)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07861 (A)	External fault 2
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 2" is satisfied.

### 4.2 List of faults and alarms

	Note:
	The "External fault 2" is initiated by a 1/0 edge via binector input p2107.
	See also: p2107 (External fault 2)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07862 (A)	External fault 3
Message value:	-
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	All objects
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 3" is satisfied.
	Note:
	The "External fault 3" is initiated by a 1/0 edge via the following parameters.
	- AND logic operation, binector input p2108, p3111, p3112.
	- switch-on delay p3110.
	See also: p2108, p3110, p3111, p3112
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07890	Internal voltage protection / internal armature short-circuit with STO active
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal armature short-circuit (p1231 = 4) is not possible as Safe Torque Off (STO) is enabled. The pulses cannot be enabled.
Remedy:	Switch out the internal armature short-circuit (p1231=0) or de-activate Safe Torque Off (p9501 = p9561 $=0$ ).
	Note:
	STO: Safe Torque Off / SH: Safe standstill
F07898	Drive: flying restart unsuccessful due to excessively low flux
Message value:	-
Message class:	Motor overload (8)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	While identifying the rotor position of a separately-excited synchronous motor based on voltage measurement, after the excitation time had elapsed, the flux was too low.
Remedy:	Increase the excitation time (p0346).
	See also: p0346 (Motor excitation build-up time)


A07899 (N)	Drive: Stall monitoring not possible
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Stall monitoring is not possible, because a change was made into the open-loop speed controlled mode before the wait time p2177 had expired.   This situation can only occur, if the following conditions apply: $\begin{aligned} & \text { p1300 }=20 \\ & \text { p2177 > p1758 } \\ & \text { p1750.2 }=0 \\ & \text { p1750.6 }=0 \end{aligned}$
Remedy:	- Deactivate the changeover into open-loop speed controlled operation when operating at the torque limit (p1750.6 = 0).   Condition:   No slow reversing through the open-loop speed controlled operating range p1755 within the time p1758 when operating at the torque limit.   - shorten the stall detection wait time ( p 2177 < p1758).   - Activate closed-loop controlled operation from standstill and higher (p1750.2 = 1).   Condition:   There is no active load, for example, a hoisting gear   - Use an operating mode with encoder (p1300 = 21).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F07900 (N, A)	Drive: Motor blocked
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in p2175.   This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.   If the simulation mode is enabled ( $p 1272=1$ ) and the closed-loop control with speed encoder activated ( $p 1300=21$ ), then the inhibit signal is generated if the encoder signal is not received from a motor that is driven with the torque setpoint of the closed-loop control.   See also: p2175 (Motor blocked speed threshold), p2177 (Motor blocked delay time)
Remedy:	- check that the motor can freely move.   - check the effective torque limit (r1538, r1539).   - check the parameter, message "Motor blocked" and if required, correct (p2175, p2177).   - check the inversion of the actual value (p0410).   - check the motor encoder connection.   - check the encoder pulse number (p0408).   - after de-selecting the "Basic positioner" (EPOS) function mode, check the motoring ( p 1528 ) and regenerative ( p 1529 ) torque limit and modify again.   - in the simulation mode and operation with speed encoder, the power unit to which the motor is connected must be powered up and must be supplied with the torque setpoint of the simulated closed-loop control. Otherwise, change over to encoderless control (see p1300).   - check the direction of rotation enable signals for a flying restart of the motor (p1110, p1111).   - for U/f control: check the current limits and acceleration times (p0640, p1120).
Reaction upon N : Acknowl. upon N :	NONE NONE


Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F07901

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Drive: Motor overspeed

Application / technological function faulted (17)
VECTOR_G
OFF2 (IASC/DCBRK)
IMMEDIATELY
The maximum permissible speed was either positively or negatively exceeded.
The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
The following applies for a positive direction of rotation:

- check r1084 and if required, correct p1082, CI:p1085 and p2162.

The following applies for a negative direction of rotation:

- check r1087 and if required, correct p1082, CI:p1088 and p2162.

Activate pre-control of the speed limiting controller (p1401.7 = 1).
Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

## F07902 (N, A) Drive: Motor stalled

## Message value: \%1

Message class: Application / technological function faulted (17)
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

VECTOR_G
OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2) IMMEDIATELY
The system has identified that the motor has stalled for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744, p0492).
2: Stall detection using r1408.12 ( p 1745 ) or via the flux difference (r0083 ... r0084).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)
It should always be carefully ensured that the motor data identification ( p 1910 ) as well as the rotating measurement (p1960) were carried out (also refer to r3925). For synchronous motors with encoder, the encoder must have been adjusted (p1990).
For closed-loop speed and torque control with speed encoder, the following applies:

- check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).
- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the same motor that is controlled for the data set changeover.
If there is no fault, then the fault tolerance (p1744 or p0492) can be increased. For resolvers with a high signal ripple, for example p0492 should be increased and the speed signal smoothed (p1441, p1442).
If the stalled motor should take place in the range of the monitor model and for speeds of less than $30 \%$ of the rated motor speed, then a change can be made directly from the current model into the flux impression (p1401.5 = 1). We therefore recommend that the time-controlled model change is switched in (p1750.4 = 1) or the model changeover limits are significantly increased ( $\mathrm{p} 1752>0.35 \times \mathrm{p} 0311$; p1753 $=5 \%$ ).
- check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover.
For closed-loop speed and torque control without speed encoder, the following applies:
- Check whether the drive stalls solely due to the load in controlled mode (r1750.0) or when the speed setpoint is still zero. If so, increase the current setpoint via p1610 or set p1750.2 = 1 (sensorless vector control to standstill for passive loads).
- If the motor excitation time ( p 0346 ) was significantly reduced and the drive stalls when it is switched on and run immediately, p0346 should be increased again or quick magnetizing selected (p1401).
- check the current controller ( $\mathrm{p} 1715, \mathrm{p} 1717$ ) and the speed adaptation controller ( $\mathrm{p} 1764, \mathrm{p} 1767$ ). If the dynamic response was significantly reduced, then this should be increased again.
- If there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased.

Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A07903	Drive: Motor speed deviation
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute value of the speed difference from the two setpoints (p2151, p2154) and the speed actual value (r2169) exceeds the tolerance threshold (p2163) longer than tolerated (p2164, p2166).   The alarm is only enabled for p2149.0 = 1.   Possible causes could be:   - the load torque is greater than the torque setpoint.   - when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small.   - for closed-loop torque control, the speed setpoint does not track the speed actual value.   - for active Vdc controller.   For U/f control, the overload condition is detected as the Imax controller is active.   See also: p2149 (Monitoring configuration)
Remedy:	- increase p2163 and/or p2166.   - increase the torque/current/power limits.   - for closed-loop torque control: The speed setpoint should track the speed actual value.   - de-activate alarm with p2149.0 $=0$.

## F07904 (N, A) External armature short-circuit: Contactor feedback signal "Closed" missing

Message value:
Message class: Application / technological function faulted (17)
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: $\quad$ - check that the contactor feedback signal is correctly connected ( p 1235 ).

- check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open").
- increase the monitoring time (p1236).
- if required, set the external armature short-circuit without contactor feedback signal (p1231 = 2).

Reaction upon N: NONE
Acknowl. upon N: NONE

### 4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
F07905 (N, A)	External armature short-circuit: Contactor feedback signal "Open" missing
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	When opening, the contactor feedback signal (p1235) did not issue the signal "Open" $(\mathrm{r} 1239.1=0)$ within the monitoring time (p1236).
Remedy:	- check that the contactor feedback signal is correctly connected ( p 1235 ).   - check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open").   - increase the monitoring time (p1236).   - if required, set the external armature short-circuit without contactor feedback signal (p1231 = 2).
Reaction upon N :	NONE
Acknowl. upon N:	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F07906	Armature short-circuit / internal voltage protection: Parameterization error
Message value:	Fault cause: \%1, motor data set: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The armature short-circuit is incorrectly parameterized.
	Fault value (r0949, interpret decimal):
	zzzzyyxx: zzzz = fault cause, $x$ x = motor data set
	$z z z z=0001$ hex = 1 dec:
	A permanent-magnet synchronous motor has not been selected.
	$z z z z=0002$ hex = 2 dec :
	No induction motor selected.
	zzzz = 0065 hex = 101 dec :
	External armature short-circuit: Output (r1239.0) not wired.
	zzzz = 0066 hex = 102 dec :
	External armature short-circuit with contactor feedback signal: No feedback signal connected (BI:p1235). The feedback signal must be interconnected in all command data sets (CDS).
	$z z z z=0067$ hex = 103 dec :
	External armature short-circuit without contactor feedback signal: Wait time when opening (p1237) is 0 . $z z z z=00 C 9$ hex $=201 \mathrm{dec}$ :
	Internal voltage protection: The maximum output current of the Motor Module (r0209) is less than $1.8 \times$ motor shortcircuit current (r0331).
	zzzz $=00 \mathrm{CA}$ hex $=202 \mathrm{dec}$ :
	Internal voltage protection: A Motor Module in booksize or chassis format is not being used.
	zzzz $=00 \mathrm{CB}$ hex $=203 \mathrm{dec}$ :
	Internal voltage protection: The motor short-circuit current (p0320) is greater than the maximum motor current (p0323).
	zzzz = 00CC hex = 204 dec :
	Internal voltage protection: The activation (p1231 = 4) is not given for all motor data sets with synchronous motors (p0300 = 2xx, 4xx).
Remedy:	For fault value $=1$ :
	- an armature short-circuit / voltage protection is only permissible for permanent-magnetic synchronous motors. The highest position of the motor type in p0300 must either be 2 or 4 .

For fault value = 101:

- the contactor for the external armature short-circuit configuration should be controlled using output signal r1239.0. For instance, the signal can be connected to an output terminal via binector input p0738. Before this fault can be acknowledged, p1231 must be set again.
For fault value = 102:
- if the external armature short-circuit with contactor feedback signal ( $\mathrm{p} 1231=1$ ) is selected, this feedback signal must be connected to an input terminal (e.g. r722.x) and then connected to BI: p1235.
- alternatively, the external armature short-circuit without contactor feedback signal (p1231 = 2) can be selected. For fault value = 103:
- if the external armature short-circuit without contactor feedback signal (p1231 $=2$ ) is selected, then a delay time must be parameterized in p 1237 . This time must always be greater than the actual contactor opening time, as otherwise the Motor Module would be short-circuited!
For fault value $=201$ :
- a Motor Module with a higher maximum current or a motor with a lower short-circuit current must be used. The maximum Motor Module current must be higher than 1.8 x short-circuit current of the motor.
For fault value = 202:
- for internal voltage protection, use a Motor Module in booksize or chassis format.

For fault value = 203:

- for internal voltage protection, only use short-circuit proof motors.

For fault value $=204$ :

- The internal voltage protection must either be activated for all motor data sets with synchronous motors (p0300= $2 x x, 4 x x)(p 1231=3)$ or it must be de-activated for all motor data sets ( $p 1231$ not equal to 3 ). This therefore ensures that the protection cannot be accidentally withdrawn as a result of a data set changeover. The fault can only be acknowledged if this condition is fulfilled.

F07907	Internal armature short-circuit: Motor terminals are not at zero potential after pulse
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The function "Internal voltage protection" (p1231 = 3) was activated.
	The following must be observed:
	- when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC
	link voltage (without an internal voltage protection, the motor terminals are at zero potential)!


A07908	Internal armature short-circuit active
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal armature short-circuit is selected (p1231 = 4):
Remedy:	For synchronous motors, the armature short-circuit braking is activated with binector input p1230 $=1$ signal. See also: p1230 (Armature short-circuit / DC braking activation), p1231 (Armature short-circuit / DC braking configuration)

## F07909

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Internal voltage protection: De-activation only effective after POWER ON

- 

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
POWER ON
The de-activation of the internal voltage protection (p1231 not equal to 3 ) only becomes effective after POWER ON. The status signal r1239.6 = 1 indicates that the internal voltage protection is ready.
Not necessary.
This a note for the user.

A07910 (N)	Drive: Motor overtemperature
Message value:	\%1
Message class:	Motor overload (8)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY or no sensor:
	The measured motor temperature or temperature of motor temperature model 2 has exceeded the alarm threshold ( $\mathrm{p} 0604, \mathrm{p} 0616$ ). The response parameterized in p 0610 becomes active.
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened.
	Alarm value (r2124, interpret decimal):
	- SME not selected in p0601:
	11: No output current reduction.
	12: Output current reduction active.
	- SME or TM120 selected in p0601 (p0601 = 10, 11):
	this is the number of the temperature channel leading to the message.
	See also: p0604 (Mot_temp_mod 2/KTY alarm threshold), p0610 (Motor overtemperature response)
Remedy:	- check the motor load.
	- check the motor ambient temperature and cooling.
	- check PTC or bimetallic NC contact.
	- check the monitoring limits (p0604, p0605).
	- activate/check the parameters of the motor temperature model (p0612, p0626 and following).
	See also: p0612 (Mot_temp_mod activation), p0625 (Motor ambient temperature during commissioning), p0626 (Motor overtemperature, stator core), p0627 (Motor overtemperature, stator winding), p0628 (Motor overtemperature rotor winding)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F07913	Excitation current outside the tolerance range
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The difference between the excitation current actual value and setpoint has exceeded the tolerance: abs (r1641-r1626) >p3201 + p3202
	The cause of this fault is again reset for abs(r1641-r1626) < p3201.
Remedy:	- check the parameterization (p1640, p3201, p3202).
	- check the interfaces to the excitation equipment (r1626, p1640).
	- check the excitation equipment.

## F07914

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Flux out of tolerance

Application / technological function faulted (17)
VECTOR_G
OFF2
IMMEDIATELY
The difference between the flux actual value and setpoint has exceeded the tolerance:
abs(r0084 - r1598) > p3204 + p3205
The cause of this fault is again reset for abs(r0084-r1598) < p3204
The fault is only issued after the delay time in p3206 has expired.
Remedy: - check the parameterization (p3204, p3205).

- check the interfaces to the excitation equipment (r1626, p1640).
- check the excitation equipment.
- check the flux control (p1590, p1592, p1597).
- check the control for oscillation and take the appropriate counter measures (e.g. optimize the speed control loop, parameterize a bandstop filter).

A07918 (N)	Three-phase setpoint generator operation selected/active
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Only for separately excited synchronous motors (p0300 = 5):
	The actual open-loop/closed-loop control mode is I/f control (open-loop) with a fixed current (p1300 = 18).
	The speed is entered via the setpoint channel and the current setpoint is given by the minimum current ( p 1620 ). It must be ensured that in this mode, the control dynamic performance is very limited. This is the reason that longer ramp-up times should be set for the setpoint speed than for normal operation.
	See also: p1620 (Stator current minimum)
Remedy:	Select another open-loop/closed-loop control mode
	See also: p1300 (Open-loop/closed-loop control operating mode)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07920	Drive: Torque/speed too low
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic (too low).
	See also: p2181 (Load monitoring response)

### 4.2 List of faults and alarms

Remedy: - check the connection between the motor and load.

- adapt the parameterization corresponding to the load.

A07921	Drive: Torque/speed too high
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic (too high).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.


A07922	Drive: Torque/speed out of tolerance
Message value:	-
Message class:	Application/technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The torque deviates from the torque/speed envelope characteristic.
Remedy:	- check the connection between the motor and load.  

## F07923

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Drive: Torque/speed too Iow

- 

Application / technological function faulted (17)
VECTOR_G
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
The torque deviates from the torque/speed envelope characteristic (too low).
Remedy: - check the connection between the motor and load.

- adapt the parameterization corresponding to the load.


## F07924

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## Drive: Torque/speed too high

- 

Application / technological function faulted (17)
VECTOR_G
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
The torque deviates from the torque/speed envelope characteristic (too high).

- check the connection between the motor and load.
- adapt the parameterization corresponding to the load.


## F07925

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

Drive: Torque/speed out of tolerance

Application / technological function faulted (17)
VECTOR_G
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
The torque deviates from the torque/speed envelope characteristic.

- check the connection between the motor and load.
- adapt the parameterization corresponding to the load.
\(\left.\begin{array}{ll}\hline A07927 \& DC braking active <br>
Message value: \& - <br>
Message class: \& Application / technological function faulted (17) <br>
Drive object: \& VECTOR_G <br>
Reaction: \& NONE <br>
Acknowledge: \& NONE <br>
Cause: \& The motor is braked with DC current. DC braking is active. <br>
\& 1) <br>
\& A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the <br>

duration set in in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.\end{array}\right]\)|  |  |
| :--- | :--- |
|  | 2) |
|  | DC braking has been activated at binector input p1230 with the DC braking set (p1230 = 4). Braking current p1232 is |
| injected until this binector input becomes inactive. |  |

### 4.2 List of faults and alarms

## 40:

Fault in "brake closed" state.
50:
Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
80:
When using the Safe Brake Adapter (SBA), a fault has occurred in the brake control of the Control Unit.
See also: p1278 (Brake control diagnostics evaluation)
Remedy: - check the motor holding brake connection.

- for a parallel connection, check the setting of the power unit data set to control the holding brake (p7015).
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module:

- check the Safe Brake Module connection.
- replace the Safe Brake Module.

Operation with Safe Brake Module (SBA):

- check the SBA connection and if required, replace the SBA.

See also: p1215 (Motor holding brake configuration), p1278 (Brake control diagnostics evaluation)

A07931 (F, N)	Brake does not open
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	This alarm is output for r1229.4 = 1.
	See also: p1216 (Motor holding brake opening time), r1229 (Motor holding brake status word)   Remedy:
	- check the functionality of the motor holding brake.
Reaction upon $\mathrm{F}:$	- check the feedback signal (p1223).
ACknowl. upon $\mathrm{F}:$	IMMEDIATELY
Reaction upon N: OFF1, OFF2, OFF3)	
Acknowl. upon N:	NONE
	NONE

A07932
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Brake does not close

Application / technological function faulted (17)
VECTOR_G
NONE
NONE
This alarm is output for r1229.5 $=1$.
For r1229.5 $=1$, OFF1/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor whereby OFF2 remains effective.
See also: p1217 (Motor holding brake closing time), r1229 (Motor holding brake status word)

- check the functionality of the motor holding brake.
- check the feedback signal (p1222).

F07934 (N)	Drive: S120 Combi motor holding brake configuration
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A connected motor holding brake has been detected with an S120 Combi. However, this brake has not been
	assigned to just one Combi feed drive and, therefore, brake control is not configured (correctly).
	Fault value (r0949, interpret decimal):
	0: No motor holding brake is assigned (p1215 = 0 or 3 on all S120 Combi feed drives).
	1: More than one motor holding brake has been assigned (p1215 = 1 or 2 on more than one S120 Combi feed drive)

### 4.2 List of faults and alarms

	For fault value $=1:$
	- If required change the motor holding brake configuration (p1215 $=1,2$ ).
	- If this fault value unexpectedly occurs, then the motor connections should be checked in order to rule out that they
have been interchanged.	
	For fault value $=11$ :


A07941	Sync-line-drive: Target frequency not permissible
Message value:	Parameter: \%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The target frequency is outside the permissible value range.
	Alarm value (r2124, interpret decimal):               1084: Target frequency greater than the positive speed limit, f_sync > f_max (r1084).   1087: Target frequency less than the negative speed limit, f_sync < f_min (r1087).   Remedy:   Fulfill the conditions for the target frequency for line-drive synchronization.    See also: r1084 (Speed limit positive effective), r1087 (Speed limit negative effective)


A07942	Sync-line-drive: Setpoint frequency is completely different than the target frequency
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is a considerable difference between the setpoint frequency and the target frequency (f_set <> f_target). The   deviation that can be tolerated is set in p3806.
Remedy:	The alarm automatically disappears after the difference that can be tolerated between the setpoint and target   frequencies (p3806) is reached.
	See also: p3806 (Sync-line-drive frequency difference threshold value)

## A07943 <br> Message value: <br> Message class:

Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: Fulfill the conditions for the line-drive synchronization
Re alarm value $=1300$ :
Set the control mode (p1300) to encoderless closed-loop speed control (p1300 = 20) or U/f characteristic (p1300 = 0 .. 19).
Re alarm value $=1910$ :
Exit the motor data identification routine (p1910).
Re alarm value $=1960$ :
Exit the speed controller optimization routine (p1960)
Re alarm value = 1990:
Exit the encoder adjustment (p1990).
Re alarm value $=3801$ :
Connect the Voltage Sensing Module (VSM), assign it to the synchronizing drive (see p9910, p0151) and enter the drive object number of the synchronizing drive in p3801. When connecting the VSM to a neighboring drive object, ensure that the same current controller clock cycle p0115[0] exists as the one in the synchronizing drive.
Re alarm value $=3845$ :
Exit the friction characteristic record (p3845).

### 4.2 List of faults and alarms

F07950 (A)	Drive: Incorrect motor parameter
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	- the motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor)
	- The braking resistor (p6811) has still not been parameterized - commissioning cannot be completed.
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	300 (CU250S-2):
	For this control mode, the motor type is not supported.
	307:
	The following motor parameters could be incorrect:
	p0304, p0305, p0307, p0308, p0309
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct.
	Re fault value $=300$ (CU250S-2):
	Operate a motor type supported by the selected control mode.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F07955	Drive: Motor has been changed
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The code number of the actual motor with DRIVE-CLiQ does not match the saved number.
	Fault value (r0949, interpret decimal):
	Number of the incorrect parameter.
	See also: p0301 (Motor code number selection), r0302 (Motor code number of motor with DRIVE-CLiQ)
Remedy:	Connect the original motor, power up the Control Unit again (POWER ON) and exit quick commissioning with p0010 $=0$.
	Or set p0300 = 10000 (load the parameters from the motor with DRIVE-CLiQ) and re-commission.
	Quick commissioning ( $0010=1$ ) is automatically exited with p3900 > 0 .
	If quick commissioning was exited with p $0010=0$, then an automatic controller calculation ( $p 0340=1$ ) is not carried out.
F07956 (A)	Drive: Motor code does not match the list (catalog) motor
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor code of the connected motor with DRIVE-CLiQ does not match the possible list motor types (see selection in p 0300 ).
	The connected motor with DRIVE-CLiQ might not be supported by this firmware version.
	Fault value (r0949, interpret decimal):
	Motor code of the connected motor with DRIVE-CLiQ.
	Note:
	The first three digits of the motor code generally correspond to the list motor type.
Remedy:	Use a motor with DRIVE-CLiQ and the matching motor code.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

### 4.2 List of faults and alarms

## A07960

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Drive: Incorrect friction characteristic

Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
The friction characteristic is incorrect.
Alarm value (r2124, interpret decimal):
1538:
The friction torque is greater than the maximum from the upper effective torque limit (p1538) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.

## 1539:

The friction torque is less than the minimum from the lower effective torque limit (p1539) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.
3820 ... 3829:
Incorrect parameter number. The speeds entered in the parameters for the friction characteristic do not correspond to the following condition:
$0.0<$ p3820 < p3821 < ... < p3829 < p 0322 or p1082, if p $0322=0$
Therefore the output of the friction characteristic (r3841) is set to zero.
3830 ... 3839:
Incorrect parameter number. The torques entered in the parameters for the friction characteristic do not correspond to the following condition:
$0<=$ p3830, p3831 ... p3839 <= p0333
Therefore the output of the friction characteristic (r3841) is set to zero.
See also: r3840 (Friction characteristic status word)
Fulfill the conditions for the friction characteristic.
Re alarm value $=1538$ :
Check the upper effective torque limit (e.g. in the field weakening range).
Re alarm value $=1539$ :
Check the lower effective torque limit (e.g. in the field weakening range).
Re alarm value $=3820 \ldots 3839$ :
Fulfill the conditions to set the parameters of the friction characteristic.
If the motor data (e.g. the maximum speed p0322) are changed during commissioning ( $\mathrm{p} 0010=1,3$ ), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340=5).

## A07961

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Drive: Friction characteristic record activated

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
The automatic friction characteristic record is activated.
The friction characteristic is recorded at the next power-on command
When plotting the friction characteristic, it is not possible to save the parameters (p0971, p0977)
Remedy:

Not necessary
The alarm disappears automatically after the friction characteristic record has been successfully completed or the record is de-activated (p3845 = 0).

## F07963

Message value: Message class:
Drive object:

## Reaction:

Acknowledge:
Cause:

Remedy:

## Drive: Friction characteristic record interrupted

Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1
IMMEDIATELY
The conditions to record the friction characteristic are not fulfilled.
Fault value (r0949, interpret decimal):
0046: Missing enable signals (r0046).
1082: The highest speed value to be approached (p3829) is greater than the maximum speed (p1082).
1084: The highest speed value to be approached ( p 3829 ) is greater than the maximum speed (r1084, p1083, p1085).
1087: The highest speed value to be approached ( p 3829 ) is greater than the maximum speed (r1087, p1086, p1088).
1110: Friction characteristic record, negative direction selected ( p 3845 ) and negative direction inhibited ( p 1110 ).
1111: Friction characteristic record, positive direction selected (p3845) and positive direction inhibited (p1111).
1198: Friction characteristic record selected ( $\mathrm{p} 3845>0$ ) and negative ( p 1110 ) and positive directions ( p 1111 ) inhibited (r1198).
1300: The control mode ( p 1300 ) has not been set to closed-loop speed control.
1755: For encoderless closed-loop control ( $\mathrm{p} 1300=20$ ), the lowest speed value to be approached ( p 3820 ) is less than or equal to the changeover speed, open-loop controlled operation ( p 1755 ).
1910: Motor data identification activated.
1960: Speed controller optimization activated.
3820 ... 3829: Speed (p382x) cannot be approached.
3840: Friction characteristic incorrect.
3845: Friction characteristic record de-selected.
Fulfill the conditions to record the friction characteristic.
Re fault value $=0046$ :

- establish missing enable signals.

Re fault value $=1082,1084,1087$ :

- Select the highest speed value to be approached ( p 3829 ) less than or equal to the maximum speed ( p 1082 , r1084, r1087).
- Re-calculate the speed points along the friction characteristic ( $\mathrm{p} 0340=5$ ).

For fault value $=1110$ :

- Select the friction characteristic record, positive direction (p3845).

For fault value $=1111$ :

- Select the friction characteristic record, negative direction (p3845).

For fault value $=1198$ :

- Enable the permitted direction (p1110, p1111, r1198).

For fault value $=1300$ :

- Set the control mode (p1300) on the closed-loop speed control (p1300 $=20,21$ ).

For fault value $=1755$ :

- For encoderless closed-loop speed control $(\mathrm{p} 1300=20)$ select the lowest speed value to be approached ( p 3820 ) greater than the changeover speed of open-loop controlled operation (p1755).
- Re-calculate the speed points along the friction characteristic ( $\mathrm{p} 0340=5$ ).

For fault value $=1910$ :

- Exit the motor data identification routine (p1910).

For fault value = 1960:

- Exit the speed controller optimization routine (p1960).

Re fault value 3820 ... 3829:

- check the load at speed p382x.
- check the speed signal (r0063) for oscillation at speed p382x. Check the settings of the speed controller if applicable.
For fault value $=3840$ :
- Make the friction characteristic error-free (p3820 ... p3829, p3830 ... p3839, p3840).

For fault value $=3845$ :

- Activate the friction characteristic record (p3845).

F07967	Drive: Automatic encoder adjustment/pole position identification incorrect
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the automatic encoder adjustment or the pole position identification. Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, interpret decimal):
	10: Stage 1: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
Remedy:	For fault value $=10$ :
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	De-activate technique (p1909).
	For fault value = 12:
	Check whether motor data have been correctly entered.
	De-activate technique (p1909).
	For fault value = 16:
	De-activate technique (p1909).
	For fault value = 17:
	Repeat technique.
F07969	Drive: Incorrect pole position identification
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, interpret decimal):
	1: Current controller limited
	2: Motor shaft locked.
	4: Encoder speed signal not plausible.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.

### 4.2 List of faults and alarms

18: First harmonic too low.
20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.
Remedy:
For fault value =1:
Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the Motor Module involved.
For fault value $=2$ :
Open the motor holding brake ( $\mathrm{p} 1215=2$ ) and bring the motor into a no-load condition.
For fault value $=4$ :
Check whether the encoder pulse number (p0408) and gearbox factor (p0432, p0433) are correct.
Check whether the motor pole pair number is correct ( p 0314 ).
For fault value $=10$ :
When selecting p1980 = 4: Increase the value for p0325.
When selecting p1980 = 1: Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the Motor Module involved.
For fault value = 11:
Increase the value for 00329 .
Check whether the motor is correctly connected.
Replace the Motor Module involved.
For fault value $=12$ :
When selecting p1980 = 4:
Reduce the value for p 0325 .
When selecting p1980 $=1$ :
Reduce the value for p 0329 (minimum p0305)..
If p0329 $=$ p0305: then reduce p0356, p0357
Check whether motor data have been correctly entered.
For fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value $=14$ :
Increase the value for p0329.
Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10 ).
For fault value $=15$ :
Increase the value for p0325.
Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10 ).
For fault value = 16:
De-activate technique (p1982).
For fault value = 17:
Repeat technique.
For fault value = 18:
Increase the value for 00329.
Saturation not sufficient, change the technique (p1980 = 10).
For fault value $=20$ :
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

## F07970

Message value:

## Message class:

Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Drive: Automatic encoder adjustment incorrect

\%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2 (NONE)
IMMEDIATELY
A fault has occurred during the automatic encoder adjustment.
Fault value (r0949, interpret decimal):
1: Current controller limited
2: Motor shaft locked.
4: Encoder speed signal not plausible.
5: Deselect U/f (p1300) or deactivate encoder calibration (p1990),
10: Stage 1: The ratio between the measured current and zero current is too low.
11: Stage 2: The ratio between the measured current and zero current is too low.
12: Stage 1: The maximum current was exceeded.
13: Stage 2: The maximum current was exceeded.
14: Current difference to determine the $+d$ axis too low.
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.
For fault value $=1$ :
Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the power unit involved.
For fault value $=2$ :
Open the motor holding brake (p1215 = 2 ) and bring the motor into a no-load condition.
For fault value $=4$ :
Check whether the speed actual value inversion is correct (p0410.0).
Check whether the motor is correctly connected.
Check whether the encoder pulse number (p0408) and gearbox factor (p0432, p0433) are correct.
Check whether the motor pole pair number is correct ( p 0314 ).
For fault value $=5$ :
Deselect U/f (p1300) or deactivate encoder calibration (p1990).
For fault value $=10$
Increase the value for p0325.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value = 11:
Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value = 12:
Reduce the value for p0325.
Check whether motor data have been correctly entered.
For fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value = 14:
Increase the value for p0329.
For fault value = 15:
Increase the value for p0325.
For fault value $=16$ :
De-activate technique (p1982).

For fault value $=17$ :
Repeat technique

A07971 (N)	Drive: Angular commutation offset determination activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1, 3).
	Note:
	The automatic determination is carried out at the next power-on command.
	See also: p1990 (Encoder adjustment determine angular commutation offset)
Remedy:	Not necessary.
	The alarm automatically disappears after determination or for the setting p1990 = 0.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A07975 (N)	Drive: Travel to the zero mark - setpoint input expected
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The zero mark must be evaluated in order to adjust the encoder.
	It is expected that a speed or torque setpoint is entered.
	See also: p1990 (Encoder adjustment determine angular commutation offset)
Remedy:	Not necessary.
	The alarm disappears once the zero mark has been detected.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A07976	Drive: Fine encoder calibration activated
Message value:	Parameter: \%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm indicates the phases of the fine encoder calibration using the alarm value.
	Alarm value (interpret decimal):
	1: Fine encoder calibration active.
	2: Rotating measurement started (set the setpoint speed > 40 \% rated motor speed).
	3: Rotating measurement lies within the speed and torque range.
	4: Rotating measurement successful: pulse inhibit can be initiated to accept the values.
	5: Fine encoder calibration is calculated.
	10: Speed too low, rotating measurement interrupted.
	12: Torque too high, rotating measurement interrupted.
	See also: p1905 (Parameter tuning selection)
	Re alarm value = 10:
Increase the speed.	
	Re alarm value = 12:
	Bring the drive into a no-load condition.


A07980	Drive: Rotating measurement activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next power-on command.
	Note:
	During the rotating measurement it is not possible to save the parameters (p0971, p0977).
	See also: p1960 (Rotating measurement selection)
Remedy:	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$.


A07981	Drive: Enable signals for the rotating measurement missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals.
	For p1959.13 = 1, the following applies:
	- enable signals for the ramp-function generator missing (see p1140 ... p1142).
	- enable signals for the speed controller integrator missing (see p1476, p1477).
Remedy:	- acknowledge faults that are present.
	- establish missing enable signals.
	See also: r0002, r0046
F07982	Drive: Rotating measurement encoder test
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the encoder test.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4: The speed setpoint was not able to be approached as the maximum limiting is active.
	5: The encoder does not supply a signal.
	6: Incorrect polarity.
	7: Incorrect pulse number.
	8: Noise in the encoder signal or speed controller unstable.
	9: Voltage Sensing Module (VSM) incorrectly connected.
Remedy:	For fault value = 1:
	- check the motor parameters.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < 25 \%).
	For fault value $=2$ :
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value = 3 :
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

### 4.2 List of faults and alarms

For fault value $=4$ :

- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086)

For fault value $=5$

- check the encoder connection. If required, replace the encoder.

For fault value $=6$

- check the connection assignment of the encoder cable. Adapt the polarity (p0410)

For fault value $=7$ :

- adapt the pulse number (p0408).

For fault value $=8$ :

- check the encoder connection and encoder cable. It is possible that there is a problem associated with the ground connection.
- reduce the dynamic response of the speed controller (p1460, p1462 and p1470, p1472).

For fault value $=9$ :

- check the connections of the Voltage Sensing Module (VSM).

Note:
The encoder test can be switched out (disabled) using p1959.0.
See also: p1959 (Rotating measurement configuration)

## F07983

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Drive: Rotating measurement saturation characteristic \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1 (NONE, OFF2)
MMEDIATELY
A fault has occurred while determining the saturation characteristic.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The rotor flux did not reach a steady-state condition.
3: The adaptation circuit did not reach a steady-state condition.
4: The adaptation circuit was not enabled.
5: Field weakening active.
6: The speed setpoint was not able to be approached as the minimum limiting is active.
7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
8: The speed setpoint was not able to be approached as the maximum limiting is active.
9: Several values of the determined saturation characteristic are not plausible.
10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy: $\quad$ For fault value $=1$ :

- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).

De-select rotating measurement (p1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
Re fault value = $1 . . .2$ :

- increase the measuring speed ( p 1961 ) and repeat the measurement.

Re fault value = 1 ... 4 :

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
- carry out a motor data identification routine ( p 1910 ).
- if required, reduce the dynamic factor ( $\mathrm{p} 1967<25 \%$ ).

For fault value $=5$

- the speed setpoint ( p 1961 ) is too high. Reduce the speed.

For fault value $=6$

- adapt the speed setpoint (p1961) or minimum limiting (p1080).

For fault value $=7$ :

- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=8$ :

- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

Re fault value $=9,10$ :

- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959 (Rotating measurement configuration)


## F07984

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Remedy:

## Drive: Speed controller optimization, moment of inertia

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1 (NONE, OFF2)
IMMEDIATELY
A fault has occurred while identifying the moment of inertia.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4. The speed setpoint was not able to be approached as the maximum limiting is active.

5: It is not possible to increase the speed by $10 \%$ as the minimum limiting is active.
6: It is not possible to increase the speed by $10 \%$ as the suppression (skip) bandwidth is active.
7 : It is not possible to increase the speed by $10 \%$ as the maximum limiting is active.
8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
9: Too few data to be able to reliably identify the moment of inertia.
10: After the setpoint step, the speed either changed too little or in the incorrect direction.
11: The identified moment of inertia is not plausible.
For fault value $=1$ :

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < $25 \%$ ).

Re fault value $=2,5$ :

- adapt the speed setpoint ( p 1965 ) or adapt the minimum limit ( p 1080 ).

Re fault value $=3,6$ :

- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

Re fault value $=4,7$ :

- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).

For fault value $=8$ :

- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement (p1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
For fault value $=9$ :
- check the moment of inertia (p0341, p0342). After the change, re-calculate ( $\mathrm{p} 0340=3$ or 4 ).

For fault value $=10$ :

- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.

Note:
The moment of inertia identification routine can be disabled using p1959.2.
See also: p1959 (Rotating measurement configuration)

### 4.2 List of faults and alarms

## F07985

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## F07986

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## A07987

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## Drive: Speed controller optimization (oscillation test)

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1 (NONE, OFF2)
IMMEDIATELY
A fault has occurred during the vibration test.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4: The speed setpoint was not able to be approached as the maximum limiting is active.
5: Torque limits too low for a torque step.
6: No suitable speed controller setting was found.
For fault value $=1$ :

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < $25 \%$ ).

For fault value $=2$ :

- adapt the speed setpoint (p1965) or adapt the minimum limit ( p 1080 ).

For fault value $=3$ :

- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=4$ :

- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).

For fault value $=5$ :

- increase the torque limits (e.g. p1520, p1521).

For fault value $=6$ :

- reduce the dynamic factor (p1967).
- disable the vibration test (p1959.4 = 0) and repeat the rotating measurement.

See also: p1959 (Rotating measurement configuration)

## F07988

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## Drive: Rotating measurement, no configuration selected

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2 (NONE, OFF1)
IMMEDIATELY
When configuring the rotating measurement (p1959), no function was selected.
Select at least one function for automatic optimization of the speed controller ( p 1959 ). See also: p1959 (Rotating measurement configuration)

## F07989

Message value:
Message class:
Drive object:
Reaction:
Acknowledge: Cause:

## Remedy:

## Drive: Rotating measurement leakage inductance (q-axis)

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1 (NONE, OFF2)
IMMEDIATELY
An error has occurred while measuring the dynamic leakage inductance.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4: The speed setpoint was not able to be approached as the maximum limiting is active.
5: The $100 \%$ flux setpoint was not reached.
6: No Lq measurement possible because field weakening is active.
7: Speed actual value exceeds the maximum speed p1082 or $75 \%$ of the rated motor speed.
8: Speed actual value is below 2 \% of the rated motor speed.
For fault value = 1 :

- check the motor parameters.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < $25 \%$ ).

For fault value $=2$ :

- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).

For fault value $=3$ :

- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=4$ :

- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).

For fault value $=5$ :

- flux setpoint p1570 = $100 \%$ and current setpoint p1610 $=0 \%$ kept during the Lq measurement.

For fault value $=6$ :

- reduce the regenerative load so that the drive does not reach field weakening when accelerating.
- reduce p1965 so that the q leakage inductance is recorded at lower speeds.

For fault value $=7$ :

- increase p1082 if this is technically permissible.
- reduce p1965 so that the q leakage inductance is recorded at lower speeds.

For fault value $=8$ :

- reduce the load when motoring so that the drive is not braked.
- increase p1965 so that the measurement may be taken at higher speeds.

Note:
The measurement of the q leakage inductance can be disabled using p1959.5. If only p1959.5 is set, then only this measurement is carried out if p 1960 is set to 1,2 and the drive is powered up.
See also: p1959 (Rotating measurement configuration)

## F07990

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Drive: Incorrect motor data identification

 \%1Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2 (NONE, OFF1)

## IMMEDIATELY

A fault has occurred during the identification routine.
Fault value (r0949, interpret decimal):
1: Current limit value reached.
2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn . Separately excited synchronous motors: damping resistance outside $1.0 \ldots 15 \%$ of Zn .
4: Identified stator reactance lies outside the expected range $50 \ldots 900 \%$ of Zn . Separately excited synchronous motors: stator reactance outside $20 \ldots 500 \%$ of Zn .
5: Identified magnetizing reactance lies outside the expected range $50 \ldots 900 \%$ of Zn . Separately excited synchronous motors: magnetizing reactance outside $20 \ldots 500 \%$ of Zn .
6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} \ldots 5 \mathrm{~s}$. Separately-excited synchronous motors: damping time constant outside of $5 \mathrm{~ms} . . .1 \mathrm{~s}$.
7: Identified total leakage reactance lies outside the expected range $4 \ldots 100 \%$ of Zn .
8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . Separately excited synchronous motors: stator leakage reactance outside $2 \ldots 40 \%$ of Zn .
9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn . Separately excited synchronous motors: damping leakage reactance outside $1.5 \ldots 20 \%$ of Zn .
10: Motor has been incorrectly connected.
11: Motor shaft rotates.
12: Ground fault detected.
15: Pulse inhibit occurred during motor data identification
20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$.
30: Current controller in voltage limiting.
40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
50: The selected sampling time is too low for the motor identification (p0115[0]).

## Note:

Percentage values are referred to the rated motor impedance:
$\mathrm{Zn}=$ Vmot.nom / sqrt(3) / Imot,nom
Re fault value $=1 . . .40$ :

- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4.
- check configuration (star-delta).

Re fault value $=11$ in addition:

- Deactivate oscillation monitoring (p1909.7 = 1).

For fault value $=2$ :

- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system $(\mathrm{p} 7003=0)$, although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
Re fault value $=4,7$ :
- check whether inductances are correctly set in p0233 and p0353.
- check whether motor has been correctly connected (star-delta).
- Set p1909.0 $=1$.

For fault value $=12$ :

- check the power cable connections.
- check the motor.
- check the CT.

For fault value $=50$ :

- Perform a motor data identification with a higher sampling time, and after this, change to the required higher sampling time (p0115[0]).

A07991 (N)	Drive: Motor data identification activated
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next power-on command.
	If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or de-activated, the option to save the parameter assignment will be made available again.
	See also: p1910 (Motor data identification selection)
Remedy:	Not necessary.
	The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A07994 (F, N)	Drive: motor data identification not performed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "vector control" mode has been selected and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases: - vector control is parameterized in the actual drive data set (p1300 >= 20). and
	- motor data identification has still not been performed in the actual drive data set (see r3925).
	Note:
	For SINAMICS G120, a check is made and an alarm is output also when exiting commissioning and when the system powers up.
Remedy:	- Perform motor data identification (see p1900).
	- If required, parameterize "U/f control" (p1300 < 20).
	- switch over to a drive data set, in which the conditions do not apply.
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F08000 (N, A)	TB: +/-15 V power supply faulted
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	All objects
Reaction:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Terminal Board 30 detects an incorrect internal power supply voltage.
	Fault value (r0949, interpret decimal):
	0: Error when testing the monitoring circuit.
	1: Fault in normal operation.
Remedy:	- replace Terminal Board 30.
Reaction upon N:	- replace Control Unit.
NONE	
Acknowl. upon N:	NONE


Reaction upon A:	NONE
Acknowl. upon A:	NONE
F08010 (N, A)	TB: Analog-digital converter
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	Vector: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Infeed: NONE (OFF1, OFF2)	


F08502 (A)	PN/COMM BOARD: Monitoring time sign-of-life expired
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	Vector: OFF1 (OFF2, OFF3)
	Infeed: OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the sign-of-life counter has expired.
	The connection to the COMM BOARD was interrupted.
Remedy:	- check communications link.
	- check COMM BOARD.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A08504 (F)	PN/COMM BOARD: Internal cyclic data transfer error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic actual and/or setpoint values were not transferred within the specified times.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Check the parameterizing telegram (Ti, To, Tdp, etc.).
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


F08510 (A)	PN/COMM BOARD: Send configuration data invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	Vector: OFF1 (OFF2, OFF3)
	Infeed: OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	COMM BOARD did not accept the send-configuration data.
	Fault value (r0949, interpret decimal):
	Return value of the send-configuration data check.
Remedy:	Check the send configuration data.
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## A08511 (F) PN/COMM BOARD: Receive configuration data invalid

Message value: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Reaction:
Acknowledge:
Cause: The drive unit did not accept the receive configuration data.
Alarm value (r2124, interpret decimal):
Return value of the receive configuration data check.
1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence are defined in p0978
2: Too many PZD data words for output or input to a drive object. The number of possible PZD items in a drive object is determined by the number of indices in r2050/p2051 for PZD IF1, and in r8850/p8851 for PZD IF2.

### 4.2 List of faults and alarms

3: Uneven number of bytes for input or output.
4: Setting data for synchronization not accepted. For more information, see A01902
5: Cyclic operation not active.
17: CBE20 Shared Device: Configuration of the F-CPU has been changed.
223: Illegal clock synchronization for the PZD interface set in p8815[0].
500: Illegal PROFIsafe configuration for the interface set in p8815[1].
501: PROFIsafe parameter error (e.g. F_dest).
503: PROFIsafe connection is rejected as long as there is no isochronous connection (p8969).
Additional values:
Only for internal Siemens troubleshooting.
Remedy: Check the receive configuration data.
Re alarm value $=1,2$ :

- Check the list of the drive objects with process data exchange (p0978). With $p 0978[x]=0$, all of the following drive objects in the list are excluded from the process data exchange.
Re alarm value $=2$ :
- Check the number of data words for output and input to a drive object.

Re alarm value $=17$ :

- CBE20 Shared Device: Unplug/plug A-CPU.

Re alarm value $=223,500$ :

- Check the setting in p8839 and p8815.
- Ensure that only one PZD interface is operated in clock synchronism or with PROFIsafe.

Re alarm value $=501$ :

- Check the set PROFIsafe address (p9610).

Reaction upon F: Vector: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF1, OFF2)
Acknowl. upon F: IMMEDIATELY

A08520 (F)	PN/COMM BOARD: Non-cyclic channel error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the non-cyclic channel has an error.
	Alarm value (r2124, interpret decimal):
	0: Error in the buffer status.
	1: Error in the memory.
Remedy:	Check communications link.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)      Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY

## A08526 (F)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## PN/COMM BOARD: No cyclic connection

Communication error to the higher-level control system (9)
All objects
NONE
NONE
There is no cyclic connection to the control.
Establish the cyclic connection and activate the control with cyclic operation.
For PROFINET, check the parameters "Name of Station" and "IP of Station" (r61000, r61001).
If a CBE20 is inserted and PROFIBUS is to communicate via PZD Interface 1, then this must be parameterized using the STARTER commissioning tool or directly using p8839.
Reaction upon F: NONE (OFF1)
Acknowl. upon F: IMMEDIATELY

A08530 (F)	PN/COMM BOARD: Message channel error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory or the buffer status of the message channel has an error.
	Alarm value (r2124, interpret decimal):
	0: Error in the buffer status.
	1: Error in the memory.
Remedy:	Check communications link.   Reaction upon F:   Vector: NONE (OFF1, OFF2, OFF3)   Acknowl. upon F:


A08550	PZD Interface Hardware assignment error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The assignment of the hardware to the PZD interface has been incorrectly parameterized.
	Alarm value (r2124, interpret decimal):
	1: Only one of the two indices is not equal to 99 (automatic).
	2: Both PZD interfaces are assigned to the same hardware.
	3: Assigned COMM BOARD missing.
	4: CBC10 is assigned to interface 1.
	See also: p8839 (PZD interface hardware assignment)
	Check the parameterization and if required, correct (p8839).

A08560
Message value
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

A08561
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - Check the interface configuration (p8900 and following), correct if necessary, and activate (p8905 = 1)

- Save the parameters for interface configuration (e.g. p8905 = 2) or
- Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). See also: p8905 (IE Interface configuration)


## IE: Syntax error in configuration file

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
A syntax error has been detected in the ASCII configuration file for the Industrial Ethernet interface (X127). The saved configuration file has not been loaded.
Note:
E: Industrial Ethernet

## IE: Consistency error affecting adjustable parameters

 \%1Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
A consistency error was detected when activating the configuration (p8905) for the Industrial Ethernet interface (X127)

### 4.2 List of faults and alarms

Alarm value (r2124, interpret decimal):
0 : general consistency error
1: error in the IP configuration (IP address, subnet mask or standard gateway).
2: Error in the station names.
5: standard gateway is also set at the PROFINET onboard interface.
6: the station name is also set at the PROFINET onboard interface.
7: IP address is located in the same subnet as the IP address of the PROFINET onboard interface.
Note:
For alarm value $=0,1,2,7$ the following applies: the configuration was not changed.
For alarm value $=5,6$ the following applies: The new configuration was however activated.
IE: Industrial Ethernet
See also: p8900 (IE Name of Station), p8901 (IE IP Address of Station), p8902 (IE Default Gateway of Station), p8903 (IE Subnet Mask of Station)
Remedy: - Check the required interface configuration (p8900 and following), correct if necessary, and activate (p8905). or

- Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). See also: p8905 (IE Interface configuration)


## A08563

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## A08562

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy: - Check the interface configuration (p8920 and following), correct if necessary, and activate (p8925 = 1).

- Save the parameters for interface configuration (e.g. p8925 = 2).
or
- Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). See also: p8925 (PN interface configuration)


## PROFINET: Syntax error in configuration file

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
A syntax error has been detected in the ASCII configuration file for the onboard PROFINET interface. The saved configuration file has not been loaded.

## PROFINET: Consistency error affecting adjustable parameters

## \%1

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
A consistency error was detected when activating the configuration (p8925) for the PROFINET interface.
Alarm value (r2124, interpret decimal):
0 : general consistency error
1: error in the IP configuration (IP address, subnet mask or standard gateway).
2: Error in the station names.
3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
4: a cyclic PROFINET connection is not possible as DHCP is activated.
5: standard gateway is also set at the Industrial Ethernet interface (X127).
6: standard station name is also set at the Industrial Ethernet interface (X127).
7: IP address is located in the same subnet as the IP address of the Industrial Ethernet interface (X127).
Note:
For alarm value $=0,1,2,3,4,7$ the following applies: the configuration was not changed.
For alarm value $=5,6$ the following applies: The new configuration was however activated.
DHCP: Dynamic Host Configuration Protocol
See also: p8920 (PN Name of Station), p8921 (PN IP address of station), p8922 (PN Default Gateway of Station), p8923 (PN Subnet Mask of Station)

Remedy:	- Check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945).
or	
- Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software).	
See also: p8925 (PN interface configuration)	

## A08564

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:
Remedy: $\quad-$ Check the CBE20 configuration (p8940 and following), correct if necessary, and activate (p8945 = 2). Note:
The configuration is not applied until the next POWER ON!

- reconfigure the CBE20 (e.g. using the STARTER commissioning software)

See also: p8945 (CBE2x interface configuration)

## A08565

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## PNCOMM BOARD : Consistency error affecting adjustable parameters

## \%1

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
A consistency error was detected when activating the configuration (p8945) for the Communication Board Ethernet 20 (CBE20).
Alarm value (r2124, interpret decimal):
0 : general consistency error
1: error in the IP configuration (IP address, subnet mask or standard gateway).
2: Error in the station names.
3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
4: a cyclic PROFINET connection is not possible as DHCP is activated.
Note:
For all alarm values, the following applies: currently set configuration has not been activated.
DHCP: Dynamic Host Configuration Protocol
See also: p8940 (CBE2x Name of Station), p8941 (CBE2x IP Address of Station), p8942 (CBE2x Default Gateway of Station), p8943 (CBE2x Subnet Mask of Station), p8944 (CBE2x DHCP Mode)
Remedy: - Check the required interface configuration (p8940 and following), correct if necessary, and activate (p8945). or

- Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software). See also: p8945 (CBE2x interface configuration)

F08700 (A)	CAN: Communications error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	Vector: OFF3 (NONE, OFF1, OFF2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A CAN communications error has occurred.
	Fault value (r0949, interpret decimal):
	1: The error counter for the send telegrams has exceeded the BUS OFF value 255. The bus disables the CAN
	controller.
	- bus cable short circuit.
	- incorrect baud rate.

### 4.2 List of faults and alarms

- incorrect bit timing.

2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).

- bus cable interrupted.
- bus cable not connected.
- incorrect baud rate.
- incorrect bit timing.
- master fault.

Note:
The fault response can be set as required using p8641.
See also: p8604 (CAN life guarding), p8641 (CAN Abort Connection Option Code)

Remedy:	- check the bus cable   - check the baud rate (p8622).   - check the bit timing (p8623).   - check the master.   The CAN controller must be manually restarted with p8608 = 1 after the cause of the fault has been resolved! See also: p8608 (CAN Clear Bus Off Error), p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F08701	CAN: NMT state change
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	Vector: OFF3
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped".
	Fault value (r0949, interpret decimal):
	1: CANopen NMT state transition from "operational" to "pre-operational".
	2: CANopen NMT state transition from "operational" to "stopped".
	Note:
	In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:	Not necessary.
	Acknowledge the fault and continue operation.

## F08702 (A)

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:

Cause:	The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted   or the CANopen Master was switched-off.   See also: p8699 (CAN: RPDO monitoring time)
Remedy:	- check the bus cable
- check the master.	


F08703 (A)	CAN: Maximum number of drive objects exceeded
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects   Reaction:
	Vector: OFF3 (NONE, OFF1, OFF2)   Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The maximum number of 8 drive objects with the "CAN" function module was exceeded.   Note:   In the CANopen standard only a maximum of 8 drive objects are defined for each CANopen slave.
	- New commissioning of maximum 8 drive objects with the "CAN" function module in the topology.
Remedy:	- For the drive objects, if required, deselect the "CAN" function module (r0108.29).


A08751 (N)	CAN: Telegram loss
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message (telegram).
Remedy:	Reduce the cycle times of the receive messages.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A08752	CAN: Error counter for error passive exceeded
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error counter for the send or receive telegrams has exceeded the value 127.
Remedy:	- check the bus cable      - set a higher baud rate (p8622).   See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)


A08753	CAN: Message buffer overflow
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow.
	Alarm value (r2124, interpret decimal):
	1: Non-cyclic send buffer (SDO response buffer) overflow.
	2: Non-cyclic receive buffer (SDO receive buffer) overflow.   3: Cyclic send buffer (PDO send buffer) overflow.
Remedy:	- check the bus cable.
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).

Re alarm value $=2$ :

- reduce the cycle times of the SDO receive messages.
- SDO request from master only after SDO feedback for previous SDO request.

See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)

A08754	CAN: Incorrect communications mode
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy:	Change to the "pre-operational" or "stopped" mode.

## A08755

Message value:
Message class: Drive object: Reaction: Acknowledge: Cause: Remedy:

CAN: Obj cannot be mapped

Error in the parameterization / configuration / commissioning procedure (18) All objects
NONE
NONE
The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Use a CANopen object intended for the PDO mapping or enter 0 .
The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object (TPDO):

- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex - 580F hex; 5820 hex - 5827 hex
- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606 B hex, 606 C hex, 6074 hex; 5810 hex - 581 F hex; 5830 hex 5837 hex

Only sub-index 0 of the specified objects can be mapped.
Note:
As long as A08755 is present, the COB-ID cannot be set to valid.

## A08756

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

CAN: Number of mapped bytes exceeded
-
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible. Map fewer objects or objects with a smaller data type.
See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735, p8736, p8737

## A08757

Message value:

## Message class:

Drive object:
Reaction:
Acknowledge:

## Cause:

## CAN: Set COB-ID invalid

Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE
For online operation, the appropriate COB-ID must be set invalid before mapping.
Example:
Mapping for RPDO 1 should be changed (p8710[0]).
--> set p8700[0] = C00006E0 hex (invalid COB-ID)
--> set p8710[0] as required.
--> p8700[0] enter a valid COB-ID
Remedy: Set the COB-ID to invalid.

A08758	CAN: Maximum number of valid PDO exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum number of valid PDO was exceeded.
	Alarm value (r2124, interpret decimal):
	1:
	The total number of valid RPDO of all CANopen supported drive objects was exceeded. As a result of the hardware, the limit is 25 valid RPDO.
	2:
	The total number of valid TPDO of all CANopen supported drive objects was exceeded.
	The limit is defined by the following ratio:
	CAN sampling time (p8848) / current controller sampling time (p0115[0])
	Note:
	RPDO: Receive Process Data Object
	TPDO: Transmit Process Data Object
Remedy:	Comply with the limit for the maximum number of valid RPDO or TPDO.
	Apply one of the following options to delete the alarm:
	- POWER ON (off/on).
	- carry out a warm restart (p0009 = 30, p0976 = 2).
	- execute CANopen NMT command reset node.
	- change CANopen NMT state.
	- delete alarm buffer [0...7] (p2111 = 0).
	Note:
	The remaining available RPDO or TPDO are indicated in r8742.
	See also: r8742 (CAN PDO available number)
A08759	CAN: PDO COB-ID already available
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An existing PDO COB-ID was allocated.
Remedy:	Select another PDO COB-ID.
A08760	CAN: maximum size of the IF PZD exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum size of the IF PZD was exceeded.
	Alarm value (r2124, interpret decimal):
	1: error for IF PZD receive.
	2: error for IF PZD send.
	Note:
	IF: interface
Remedy:	Map fewer process data in PDO.
	Apply one of the following options to delete the alarm:
	- POWER ON (off/on).
	- carry out a warm restart (p0009 = 30, p0976 = 2).
	- execute CANopen NMT command reset node.

- change CANopen NMT state.
- delete alarm buffer [0...7] (p2111 = 0).

A08800	PROFlenergy energy-saving mode active
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFlenergy energy-saving mode is active
	Alarm value (r2124, interpret decimal):
	Mode ID of the active PROFlenergy energy-saving mode.
	See also: r5600 (Pe energy saving mode ID)
Remedy:	The alarm automatically disappears when the energy-saving mode is exited.
	Note:
	After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited.

## A08802

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

## Cause:

Remedy: The alarm automatically disappears when the energy-saving mode is exited.
Note:
After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited.

## A13000

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## PROFlenergy not possible to switch off incremental encoder supply

 \%1Communication error to the higher-level control system (9)
All objects
NONE
NONE
The incremental encoder is used for the closed-loop position control. This means that its power supply cannot be switched off during the PROFlenergy energy-saving mode, otherwise it would lose its position actual value.
Alarm value (r2124, interpret decimal):
Encoder number

## License not adequate

\%1
Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
NONE

- for the drive unit, the options that require a license are being used but the licenses are not sufficient.
- an error occurred when checking the existing licenses.

Alarm value (r2124, interpret decimal):
0 :
The existing license is not sufficient.
1:
An adequate license was not able to be determined as the memory card with the required licensing data was withdrawn in operation.
2:
An adequate license was not able to be determined as there is no licensing data available on the memory card.
3:
An adequate license was not able to be determined as there is a checksum error in the license key.
4:
An internal error occurred when checking the license.
Remedy: $\quad$ Re alarm value $=0$ :
Additional licenses are required and these must be activated (p9920, p9921).
Re alarm value $=1$ :
With the system powered down, re-insert the memory card that matches the system.

Re alarm value $=2$ :
Enter and activate the license key (p9920, p9921).
Re alarm value $=3$ :
Compare the license key (p9920) entered with the license key on the certificate of license.
Re-enter the license key and activate (p9920, p9921).
Re alarm value $=4$ :

- carry out a POWER ON.
- upgrade firmware to later version.
- contact the Hotline.

A13001	Error in license checksum
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	When checking the checksum of the license key, an error was detected.
Remedy:	Compare the license key (p9920) entered with the license key on the certificate of license.
	Re-enter the license key and activate (p9920, p9921).
F13009	Licensing OA application not licensed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one OA application which is under license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed OA applications.
Remedy:	- enter and activate the license key for OA applications under license (p9920, p9921).
	- if necessary, de-activate unlicensed OA applications (p4956).
	See also: p9920 (Licensing enter license key), p9921 (Licensing activate license key)
F13010	Licensing function module not licensed
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	All objects
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one function module which is under license does not have a license.
	Fault value (r0949, interpret hexadecimal):
	Bit $\mathrm{x}=1$ : The corresponding function module does not have a license.
	Note:
	Refer to p0108 or r0108 for the assignment between the bit number and function module.
Remedy:	- enter and activate the license key for function modules under license (p9920, p9921).
	- if necessary, de-activate unlicensed function modules (p0108, r0108).
	See also: p9920 (Licensing enter license key), p9921 (Licensing activate license key)

## F13100

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Know-how protection: Copy protection error

 \%1Error in the parameterization / configuration / commissioning procedure (18)
All objects
OFF1
IMMEDIATELY
The know-how protection with copy protection for the memory card is active. An error has occurred when checking the memory card.

### 4.2 List of faults and alarms

Fault value (r0949, interpret decimal):
0 : A memory card is not inserted.
2: An invalid memory card is inserted.
3: The memory card is being used in another Control Unit.
12: An invalid memory card is inserted (OEM input incorrect, p7769).
13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
See also: p7765 (KHP configuration)
Remedy:
For fault value $=0$ :

- Insert the correct memory card and carry out POWER ON.

Re fault value $=2,3,12,13$ :

- contact the responsible OEM.
- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).

Note:
In general, the copy protection can only be changed when know-how protection is deactivated.
KHP: Know-How Protection
See also: p3981 (Faults acknowledge drive object), p7765 (KHP configuration)

## F13101

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Know-how protection: Copy protection cannot be activated

 \%1Error in the parameterization / configuration / commissioning procedure (18)
All objects
NONE
IMMEDIATELY
An error occurred when attempting to activate the copy protection for the memory card.
Fault value (r0949, interpret decimal):
0 : A memory card is not inserted.
Note:
KHP: Know-How Protection
Remedy: - insert the memory card and carry out POWER ON.

- Try to activate copy protection again (p7765).

See also: p7765 (KHP configuration)

F13102
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - Replace the project on the memory card or replace project files for download from the memory card.

## Know-how protection: Consistency error of the protected data

 \%1Error in the parameterization / configuration / commissioning procedure (18)
All objects
OFF1
IMMEDIATELY
An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex: yyyy = object number, xxxx = fault cause
$x x x x=1$ :
A file has a checksum error.
$x x x x=2$ :
The files are not consistent with one another.
xxxx = 3 :
The project files, which were loaded into the file system via load (download from the memory card), are inconsistent.
Note:
KHP: Know-How Protection

- Restore the factory setting and download again.

F30001	Power unit: Overcurrent
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: Rated motor current is significantly greater than that of the Motor Module.
	- infeed: High discharge and post-charging currents for voltage dip.
	- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
	- infeed: Short-circuit currents at power-up due to the missing line reactor.
	- power cables are not correctly connected.
	- the power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Additional causes for a parallel switching device (r0108.15 = 1):
	- a power unit has tripped (powered down) due to a ground fault.
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized (e.g. for blocksize device).
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star/delta).
	- U/f operation: Increase up ramp.
	- U/f operation: Check the assignment of the rated currents of the motor and Motor Module.
	- infeed: Check the line supply quality.
	- infeed: Reduce the motor load.
	- infeed: Check the correct connection of the line filter and the line commutating reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	- check the line supply phases.
	For a parallel switching device (r0108.15 = 1) the following additionally applies:
	- check the ground fault monitoring thresholds (p0287).
	- check the setting of the closed-loop circulating current control (p7036, p7037).
F30002	Power unit: DC link voltage overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected overvoltage in the DC link.
	- motor regenerates too much energy.
	- device connection voltage too high.
	- when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.

### 4.2 List of faults and alarms

	- line phase interrupted.
Remedy:	Fault value (r0949, interpret decimal):
	DC link voltage at the time of trip $[0.1 \mathrm{~V}]$.
	- increase the ramp-down time
	- activate the DC link voltage controller
	- use a brake resistor or Active Line Module
	- increase the current limit of the infeed or use a larger module (for the Active Line Module)
	- check the device supply voltage
	- check and correct the phase assignment at the VSM and at the power unit
	- check the line supply phases.
	- set the rounding times (p1130, p1136). This is particularly recommended in U/f operation to relieve the DC link
voltage controller with rapid ramp-down times of the ramp-function generator.	
See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration)	


F30002	Power unit: DC link voltage overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	B_INF
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected overvoltage in the DC link.   - motor regenerates too much energy.   - device connection voltage too high.   - when operating with a Voltage Sensing Module (VSM), the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.   - line phase interrupted.   Fault value (r0949, interpret decimal):   DC link voltage at the time of trip [0.1 V].
Remedy:	- increase the ramp-down time   - activate the DC link voltage controller (p1240)   - use a brake resistor or Active Line Module   - increase the current limit of the infeed or use a larger module (for the Active Line Module)   - check the device supply voltage   - check and correct the phase assignment at the VSM and at the power unit   - check the line supply phases.   See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller or Vdc monitoring configuration)
F30003	Power unit: DC link voltage undervoltage
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an undervoltage condition in the DC link.   - line supply failure   - line supply voltage below the permissible value.   - line supply infeed failed or interrupted.   - line phase interrupted.   Note:   The monitoring threshold for undervoltage in the DC link is indicated in r0296.
Remedy:	- check the line supply voltage   - check the line supply infeed and observe the fault messages relating to it (if there are any)   - check the line supply phases.   - check the line supply voltage setting (p0210).   - booksize units: check the setting of p0278.


	Note:   The ready signal for the infeed (r0863) must be interconnected to the associated drive inputs (p0864). See also: p0210 (Drive unit line supply voltage)
F30004	Power unit: Overtemperature heat sink AC inverter
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value.   - insufficient cooling, fan failure.   - overload.   - ambient temperature too high.   - pulse frequency too high.   Fault value (r0949):   Temperature [1 bit $=0.01^{\circ} \mathrm{C}$ ].
Remedy:	- check whether the fan is running.   - check the fan elements.   - check whether the ambient temperature is in the permissible range.   - check the motor load.   - reduce the pulse frequency if this is higher than the rated pulse frequency.   Notice:   This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot.   See also: p1800 (Pulse frequency setpoint)
F30005	Power unit: Overload 12t
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = $100 \%$ ).   - the permissible rated power unit current was exceeded for an inadmissibly long time.   - the permissible load duty cycle was not maintained.   Fault value (r0949, interpret decimal):   I2t [100 \% = 16384].
Remedy:	- reduce the continuous load.   - adapt the load duty cycle.   - check the motor and power unit rated currents.   - increase p0294   See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)
F30005	Power unit: Overload 12t
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded ( $\mathrm{r} 0036=100 \%$ ).   - the permissible rated power unit current was exceeded for an inadmissibly long time.   - the permissible load duty cycle was not maintained.   Fault value (r0949, interpret decimal): I2t [100 \% = 16384].

### 4.2 List of faults and alarms

Remedy:	- reduce the continuous load.   - adapt the load duty cycle.   - check the motor and power unit rated currents.   See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)
F30006	Power unit: Thyristor Control Board
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.   - there is no line supply voltage.   - the line contactor is not closed.   - the line supply voltage is too low.   - line supply frequency outside the permissible range ( $45 \ldots 66 \mathrm{~Hz}$ ).   - there is a DC link short-circuit.   - there is a DC link short-circuit (during the pre-charging phase).   - voltage supply for the Thyristor Control Board outside the nominal range ( $5 \ldots 18 \mathrm{~V}$ ) and line voltage $>30 \mathrm{~V}$.   - there is an internal fault in the Thyristor Control Board.
Remedy:	The faults must be saved in the Thyristor Control Board and must be acknowledged. To do this, the supply voltage of the Thyristor Control Board must be switched out for at least 10 s !   - check the line supply voltage   - check or energize the line contactor.   - check the monitoring time and, if required, increase (p0857).   - if required, observe additional power unit messages/signals.   - check the DC link regarding short-circuit or ground fault.   - evaluate diagnostic LEDs for the Thyristor Control Board.

## F30008

Message value:

## Message class:

Drive object:
Reaction:

Acknowledge:
Cause:

## Remedy:

## Power unit: Sign-of-life error cyclic data

Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
Vector: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF1, OFF2)

## IMMEDIATELY

The Control Unit has not punctually updated the cyclic setpoint telegram. The number of consecutive sign-of-life errors has exceeded the fault threshold (p7789).

- check the electrical cabinet design and cable routing for EMC compliance
- for projects with the VECTOR drive object, check whether p0117 = 6 has been set on the Control Unit.
- increase the fault threshold (p7789).

See also: p0117 (Current controller computing dead time mode)

A30010 (F)	Power unit: Sign-of-life error cyclic data
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the power unit involved.
	The cyclic setpoint telegrams of the Control Unit were not received on time by the power unit for at least one clock   cycle.
Remedy:	Check the electrical cabinet design and cable routing for EMC compliance.   Reaction upon F:   Vector: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	Infeed: NONE (OFF1, OFF2)   IMMEDIATELY (POWER ON)

F30011
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:


## Power unit: Line phase failure in main circuit

\%1
Network fault (2)
B_INF, VECTOR_G
OFF2 (OFF1)
IMMEDIATELY
At the power unit, the DC link voltage ripple has exceeded the permissible limit value.
Possible causes:

- A line phase has failed.
- The 3 line phases are inadmissibly unsymmetrical.
- The capacitance of the DC link capacitor forms a resonance frequency with the line inductance and the reactor integrated in the power unit.
- the fuse of a phase of a main circuit has ruptured.
- A motor phase has failed.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - check the main circuit fuses.

- Check whether a single-phase load is distorting the line voltages.
- Detune the resonant frequency with the line inductance by using an upstream line reactor.
- Dampen the resonant frequency with the line inductance by switching over the DC link voltage compensation in the software (see p1810) - or increase the smoothing (see p1806). However, this can have a negative impact on the torque ripple at the motor output.
- check the motor feeder cables.

F30012	Power unit: Temperature sensor heat sink wire breakage
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a heat sink temperature sensor in the power unit is interru
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
	Contact the manufacturer.
Remedy:	Power unit: Temperature sensor heat sink short-circuit
F30013	\%1
Message value:	Power electronics faulted (5)
Message class:	B_INF, VECTOR_G
Drive object:	OFF1 (OFF2)
Reaction:	IMMEDIATELY
Acknowledge:	The heat sink temperature sensor in the power unit is short-circuited.
Cause:	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1

### 4.2 List of faults and alarms

	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30015 (N, A)	Power unit: Phase failure motor cable
Message value:	-
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure in the motor feeder cable was detected.
	The signal can also be output in the following cases:
	- The motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents.
	- the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated.
	Note:
	Chassis power units do not feature phase failure monitoring.
Remedy:	- check the motor feeder cables.
	- increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control.
	- check the speed controller settings.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A30016 (N)	Power unit: Load supply switched out
Message value:	\%1
Message class:	Network fault (2)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low.
	Alarm value (r2124, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	- switch on load supply.
	- check the line supply if necessary.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30017	Power unit: Hardware current limit has responded too often
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit.
	For infeed units, the following applies:
	- closed-loop control is incorrectly parameterized.
	- load on the infeed is too high.

- Voltage Sensing Module incorrectly connected.
- line reactor missing or the incorrect type.
- power unit defective.

The following applies to Motor Modules:

- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Fault value (r0949, interpret binary):
Bit 0: Phase U
Bit 1: Phase V
Bit 2: Phase W
Remedy: For infeed units, the following applies:

- check the controller settings and reset and identify the controller if necessary (p0340 = 2, p3410 = 5)
- reduce the load and increase the DC-link capacitance or use a higher-rating infeed if necessary
- check the connection of the optional Voltage Sensing Module
- check the connection and technical data of the line reactor
- check the power cables for short-circuit or ground fault.
- replace power unit.

The following applies to Motor Modules:

- check the motor data and if required, recalculate the controller parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1).
- check the motor circuit configuration (star-delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.


## F30020

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Remedy:

## Power unit: Configuration not supported

fault cause: \%1, additional information: \%2
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
A configuration is requested that is not supported by the power unit.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex: $x x x x=$ fault cause, yyyy = additional information (internal Siemens)
$x x x x=0$ : Autonomous operation is requested but is not supported.
$x x x x=1$ : The requested DRIVE-CLiQ timing is not permissible.
$x x x x=2$ : A PM260 has been detected with PS-ASIC version 2 . This combination is not supported.
xxxx = 3: Initialization was not able to be successfully completed. It is possible that the Control Unit was withdrawn from the power module before or during power-up.
$x x x x=4$ : The combination of power unit and Control Unit or Control Unit Adapter is not supported.
$x x x x=5$ : The higher current controller dynamic performance is not supported.
Re fault cause $=0$ :
If required, deactivate an active internal voltage protection ( p 1231 ).
Re fault cause =1:
Update the Control Unit firmware or change the DRIVE-CLiQ topology.
Re fault cause $=2$ :
Replace the power unit with a PM260 with PS-ASIC version 3 (or higher).
Re fault cause $=3,4$ :
Insert a Control Unit or Control Unit Adapter (CUAxx) on an appropriate Power Module and perform a POWER ON for the Control Unit or the Control Units Adapter.

### 4.2 List of faults and alarms

	Re fault cause $=5$ :   - use a booksize format power unit.   - for a Double Motor Module operate the two drive controls with the same current controller sampling time (p0115[0]). Otherwise, the higher current controller dynamics can only be activated on the drive with the longer sampling time.   - If required, de-select the higher current controller dynamic performance ( $\mathrm{p} 1810.11=0$ ). After deselecting the computing dead time, recalculate the controller gains ( $\mathrm{p} 0340=4$ ). If required, optimize the speed controller.   See also: p0115, p1231, p1810
F30021	Power unit: Ground fault
Message value:	\%1
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The Power unit has detected a ground fault.
	Possible causes:
	- ground fault in the power cables.
	- Ground fault at the motor.
	- CT defective.
	- when the brake closes, this causes the hardware DC current monitoring to respond.   - short-circuit at the braking resistor.
	- the closed-loop circulating current control for devices connected in parallel (r0108.15 = 1 ) is either too slow or has been set too fast.
	Note:
	For power units, a ground fault is also emulated in r3113.5.
	Fault value (r0949, interpret decimal):
	0 :
	- the hardware DC current monitoring has responded.
	- short-circuit at the braking resistor.
	> 0 :
	Absolute value, total current amplitude [20479 = r0209 * 1.4142].
Remedy:	- check the power cable connections.
	- check the motor.
	- check the CT.
	- check the cables and contacts of the brake connection (a wire is possibly broken).
	- check the braking resistor.
	For parallel switching devices (r0108.15 = 1) the following additionally applies:
	- check the ground fault monitoring thresholds (p0287).
	- check the setting of the closed-loop circulating current control (p7036, p7037).
	See also: p0287 (Ground fault monitoring thresholds)
F30022	Power unit: Monitoring U_ce
Message value:	Fault cause: \%1 bin
Message class:	Ground fault / inter-phase short-circuit detected (7)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U_ce) of the semiconductor has responded.
	Possible causes:
	- fiber-optic cable interrupted.
	- power supply of the IGBT gating module missing.
	- short-circuit at the power unit output.
	- defective semiconductor in the power unit.


	Fault value (r0949, interpret binary):
	Bit 0: Short-circuit in phase $U$
	Bit 1: Short circuit in phase $V$
	Bit 2: Short-circuit in phase W
	Bit 3: Light transmitter enable defective
	Bit 4: U_ce group fault signal interrupted
	See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace.
	- check the power supply of the IGBT gating module (24 V).
	- check the power cable connections.
	- select the defective semiconductor and replace.
F30024	Power unit: Overtemperature thermal model
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value.
	- the permissible load duty cycle was not maintained.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	See also: r0037
Remedy:	- adapt the load duty cycle.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- reduce the pulse frequency if this is higher than the rated pulse frequency.
	- if DC braking is active: reduce braking current (p1232).
F30024	Power unit: Overtemperature thermal model
Message value:	
Message class:	Power electronics faulted (5)
Drive object:	B_INF
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value. - the permissible load duty cycle was not maintained.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	See also: r0037
Remedy:	- adapt the load duty cycle.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- reduce the pulse frequency if this is higher than the rated pulse frequency.

### 4.2 List of faults and alarms

## F30025

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Power unit: Chip overtemperature

\%1
Power electronics faulted (5)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
The chip temperature of the semiconductor has exceeded the permissible limit value.

- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.

Fault value (r0949, interpret decimal):
Temperature difference between the heat sink and chip $\left[0.01^{\circ} \mathrm{C}\right.$ ].
Remedy: - adapt the load duty cycle.

- check whether the fan is running.
- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot.
See also: r0037

## F30027

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Power unit: Precharging DC link time monitoring

Enable signals: \%1, Status: \%2
Infeed faulted (13)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
The power unit DC link was not able to be pre-charged within the expected time.

1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).
11) Infeed is defective and/or fuse has ruptured in the Motor Module (only Booksize units).

Fault value (r0949, interpret binary):
yyyyxxxx hex:
yyyy = power unit state
0 : Fault status (wait for OFF and fault acknowledgement).
1: Restart inhibit (wait for OFF).
2: Overvoltage condition detected -> change into the fault state.
3: Undervoltage condition detected -> change into the fault state.
4: Wait for bridging contactor to open $->$ change into the fault state.
5: Wait for bridging contactor to open -> change into restart inhibit.
6: Commissioning.
7: Ready for pre-charging.

8: Pre-charging started, DC link voltage less than the minimum switch-on voltage.
9: Pre-charging, DC link voltage end of pre-charging still not detected.
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed.
11: Pre-charging completed, ready for pulse enable.
12: It was detected that the STO terminal was energized at the power unit.
xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down.
Bit 1: Ground fault detected.
Bit 2: Peak current intervention.
Bit 3: I2t exceeded.
Bit 4. Thermal model overtemperature calculated.
Bit 5: (heat sink, gating module, power unit) overtemperature measured.
Bit 6: Reserved.
Bit 7: Overvoltage detected.
Bit 8: Power unit has completed pre-charging, ready for pulse enable.
Bit 9: STO terminal missing.
Bit 10: Overcurrent detected.
Bit 11: Armature short-circuit active.
Bit 12: DRIVE-CLiQ fault active.
Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
Bit 14: Undervoltage detected.
See also: p0210 (Drive unit line supply voltage)

## Remedy:

A30030
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

In general:

- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).

For booksize drive units, the following applies:

- wait (approx. 8 minutes) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
$\operatorname{Re} 5)$ :
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).

Re 6):

- check the total capacitance of the DC link and reduce in accordance with the maximum permissible DC-link capacitance if necessary (refer to the appropriate Equipment Manual)
$\operatorname{Re} 7$ ):
- interconnect the ready-for-operation signal from the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link
Re 8):
- check the connections of the external line contactor. The line contactor must be open during DC-link fast discharge.

Re 9):

- check the DC link for ground faults or short circuits.

Re 11):

- Check the DC link voltage of the infeed (r0070) and Motor Modules (r0070).

If the DC link voltage generated by the infeed (or external) is not displayed for the Motor Modules (r0070), then a fuse has ruptured in the Motor Module.
See also: p0210 (Drive unit line supply voltage)

## Power unit: Internal overtemperature alarm

\%1
Power electronics faulted (5)
B_INF, VECTOR_G
NONE
NONE
The temperature inside the drive converter has exceeded the permissible temperature limit.

- insufficient cooling, fan failure.
- overload.


### 4.2 List of faults and alarms

- ambient temperature too high.

Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - possibly use an additional fan.

- check whether the ambient temperature is in the permissible range.

Notice:
This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

A30031	Power unit: Hardware current limiting in phase U
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase $\mathrm{U}, \mathrm{V}$ or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ( $\mathrm{p} 0340=3$ ). As an alternative, run a motor data identification ( $\mathrm{p} 1910=1, \mathrm{p} 1960=1$ ).
	- check the motor circuit configuration (star/delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.

## A30032

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Power unit: Hardware current limiting in phase V

Power electronics faulted (5)
B_INF, VECTOR_G
NONE
NONE
Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period.

- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Note:
Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: $\quad$ Check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data identification (p1910 = 1, p1960 = 1).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30033	Power unit: Hardware current limiting in phase W
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
	- check the motor data and if required, recalculate the control parameters (p0340 = 3 ). As an alternative, run a motor
	data identification (p1910 $=1$, p1960 $=1$ ).
	- check the motor circuit configuration (star/delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
- check the length of the power cables.	

## A30034 <br> Message value: <br> Message class:

Drive object:
Reaction:
Acknowledge:
Cause:
Remedy: $\quad$ - check the ambient temperature.

## F30035

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

### 4.2 List of faults and alarms

F30036	Power unit: Internal overtemperature
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy: check whether the fan is running.	
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.


F30037	P
Message value:	\%

Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- line supply phase failure.
Remedy:	Fault value (r0949, interpret decimal):
	Temperature [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- check the line supply phases.
	Notice:
	This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.

## Power unit: Rectifier overtemperature

 \%1Power electronics faulted (5)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.

- insufficient cooling, fan failure.
- overload.
ambient temperature too high

Fault value (r0949, interpret decimal):
Temperature $\left[0.01^{\circ} \mathrm{C}\right.$ ].

- check the fan elements.
check whether the ambient temperature is in the permissible range.
- check the line supply phases.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.

A30038	Power unit: Capacitor fan monitoring
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The capacitor fan signals a fault.
Remedy:	Replace the capacitor fan in the power unit.
F30039	Power unit: Failure capacitor fan
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	B_INF
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The capacitor fan has failed.


Remedy:	Replace the capacitor fan in the power unit.
F30040	Power unit: Undervolt 24 V
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The undervoltage threshold of the 24 V power supply for the power unit was fallen below for longer than 3 ms.
	Note:
	- for booksize power units, the undervoltage threshold is 15 V.
	- for CU310-2, CUA31 and CUA32 the undervoltage threshold is 16 V.
	- for all other power units, the undervoltage threshold depends on the power unit, and is not displayed.
	Fault value (r0949, interpret decimal):
24 V voltage [0.1 V].	
	- Check the power supply of the power unit.
	- carry out a POWER ON (power off/on) for the component.

## F30040

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Power unit: Undervolt 24 V
\%1
Supply voltage fault (undervoltage) (3)
B_INF
OFF2
IMMEDIATELY (POWER ON)
The undervoltage threshold of the 24 V power supply for the power unit was fallen below for longer than 3 ms . Note:

- for booksize power units, the undervoltage threshold is 15 V .
- for all other power units, the undervoltage threshold depends on the power unit, and is not displayed.

Fault value (r0949, interpret decimal):
24 V voltage [0.1 V].
Remedy: - Check the power supply of the power unit.

- carry out a POWER ON (power off/on) for the component.

A30041 (F)	Power unit: Undervoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the lower threshold has been violated. Alarm value (r2124, interpret decimal):   24 V voltage [ 0.1 V ].
Remedy:	- Check the power supply of the power unit.   - carry out a POWER ON (power off/on) for the component.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A30041 (F)	Power unit: Undervoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the lower threshold has been violated. Alarm value (r2124, interpret hexadecimal):   Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms

Remedy:	- Check the power supply of the power unit.
	- carry out a POWER ON (power off/on) for the component.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

## A30042 <br> Message value: <br> Message class: <br> Drive object: <br> Reaction:

Acknowledge:
Cause:

## Remedy:

Power unit: Fan has reached the maximum operating hours
\%1
Power electronics faulted (5)
B_INF, VECTOR_G
NONE
NONE
The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
Fault value (r0949, interpret binary):
Bit 0 : heat sink fan will reach the maximum operating time in 500 hours.
Bit 1: heat sink fan has exceeded the maximum operating time.
Bit 8: internal device fan will reach the maximum operating time in 500 hours.
Bit 9: internal device fan has exceeded the maximum operating time.
Note:
The maximum operating time of the heat sink fan in the power unit is displayed in p0252.
The maximum operating time of the internal device fan in the power unit is internally specified and is fixed.
For the fan involved, carry out the following:

- replace the fan.
- reset the operating hours counter (p0251, p0254).

See also: p0251 (Operating hours counter power unit fan), p0252 (Maximum operating time power unit fan), p0254 (Operating hours counter power unit fan inside the converter)

F30043	Power unit: Overvolt 24 V
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	For the power unit power supply, the upper threshold has been violated.
	Fault value (r0949, interpret decimal):
	24 V voltage $[0.1 \mathrm{~V}]$.
Remedy:	Check the power supply of the power unit.


A30044 (F)	Power unit: Overvoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the upper threshold has been violated.
	Alarm value (r2124, interpret decimal):
	24 V voltage [0.1 V].
Remedy:	Check the power supply of the power unit.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A30044 (F)	Power unit: Overvoltage 24 V alarm
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the power unit power supply, the upper threshold has been violated.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Check the power supply of the power unit.
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

## F30045 Power unit: Supply undervoltage

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
\%1
Supply voltage fault (undervoltage) (3)
B_INF, VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
Power supply fault in the power unit.

- The voltage monitor signals an undervoltage fault on the module.

The following applies for CU31x:

- the voltage monitoring on the DAC board signals an undervoltage fault on the module.

Remedy: - Check the power supply of the power unit.

- carry out a POWER ON (power off/on) for the component.
- replace the module if necessary.

A30046 (F)	Power unit: Undervoltage alarm
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Before the last restart, a problem occurred at the power unit power supply.
	The voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module.
	Fault value (r0949, interpret decimal):
	Register value of the voltage fault register.
Remedy:	- check the 24 V DC voltage supply to power unit.
	- carry out a POWER ON (power off/on) for the component.
	- replace the module if necessary.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A30046 (F)	Power unit: Undervoltage alarm
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	Before the last restart, a problem occurred at the power unit power supply.                           The voltage monitor in the internal FPGA of the PSA signals an undervoltage fault on the module.      Only for internal Siemens troubleshooting.

### 4.2 List of faults and alarms

Remedy:	- check the 24 V DC voltage supply to power unit.
	- carry out a POWER ON (power off/on) for the component.
- replace the module if necessary.	
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F30047	Cooling unit: Cooling medium flow rate too low
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The flowrate of the cooling unit has fallen below the fault threshold.
Remedy:	- Check the feedback signals and parameter assignment (p0260 ... p0267).
	- Check the coolant feed.
	- Check the thermal conductivity of the coolant.
	- Check the coolant concentration.

## A30048

Message value:
Message class: External measured value / signal state outside the permissible range (16)
Drive object:
Reaction:
Acknowledge:
B_INF, VECTOR_G
NONE
NONE
Cause: The feedback signal from the external fan indicates a fault.

- fan faulty, blocked.
- feedback signal inaccurate.

Remedy: - check the external fan and replace if necessary.

- if you are using an external fan with feedback, check its wiring (X12.2 or X13.2).

Note:
If you are using an external fan without feedback, check that the feedback terminal wiring on the power unit is connected to ground and make this connection if necessary (X12.1/2 or X13.1/2).

A30049	Power unit: Internal fan faulty
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan has failed.
Remedy:	Check the internal fan and replace if necessary.
F30050	Power unit: 24 V supply overvoltage
Message value:	-
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The voltage monitor signals an overvoltage fault on the module.
Remedy:	- check the 24 V power supply.
	- replace the module if necessary.


F30051	Power unit: Motor holding brake short circuit detected
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A short-circuit at the motor holding brake terminals has been detected.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the motor holding brake for a short-circuit.
	- check the connection and cable for the motor holding brake.
F30052	EEPROM data error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module.
	Fault value (r0949, interpret decimal):
	0, 2, 3, 4:
	The EEPROM data read in from the power unit module are incorrect.
	1:
	EEPROM data is not compatible to the firmware of the power unit application.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Re fault value $=0,2,3,4$ :
	Replace the power unit module or update the EEPROM data.
	For fault value = 1:
	The following applies for CU31x and CUA31:
	Update the firmware \SIEMENSISINAMICSICODE\SAClcu31xi.ufw (cua31.ufw)
F30053	FPGA data faulty
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The FPGA data of the power unit are faulty.
Remedy:	Replace the power unit or update the FPGA data.


A30054 (F, N)	Power unit: Undervoltage when opening the brake
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the brake is being opened, it is detected that the power supply voltage is less than $24 \mathrm{~V}-10 \%=21.6 \mathrm{~V}$.
	Alarm value (r2124, interpret decimal):
	Supply voltage fault [0.1 V].
	Example:
Remedy:	Alarm value = 195 --> voltage = 19.5 V
Reaction upon F:	Check the 24 V voltage for stability and value.
Acknowl. upon F:	NONE (OFF1, OFF2, OFF3)
	IMMEDIATELY


Reaction upon N:	NONE
Acknowl. upon N:	NONE
F30055	Power unit: Braking chopper overcurrent
Message value:	-
Message class:	Braking Module faulted (14)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An overcurrent condition has occurred in the braking chopper.
Remedy:	- check whether the braking resistor has a short circuit.
	- for an external braking resistor, check whether the resistor may have been dimensioned too small.
	Note:
	The braking chopper is only enabled again at pulse enable after the fault has been acknowledged.


A30057	Power unit: Line asymmetry
Message value:	\%1
Message class:	Network fault (2)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase.
	It is also possible that a motor phase has failed.
	Fault F30011 is output if the alarm is present and at the latest after 5 minutes.   The precise duration depends on the power unit type and the particular frequencies. For booksize and chassis power   units, the duration also depends on how long the alarm has been active.
	Alarm value (r2124, interpret decimal):   Only for internal Siemens troubleshooting.
	- check the line phase connection.   Remedy:
	- check the motor feeder cable connections.   If there is no phase failure of the line or motor, then line asymmetry is involved.   - reduce the power in order to avoid fault F30011.

## F30059

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## Power unit: Internal fan faulty

- 

Auxiliary unit faulted (20)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
The internal power unit fan has failed and is possibly defective.
Check the internal fan and replace if necessary.

## F30060 (A)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Pre-charge contactor state monitoring

Fault cause: \%1 bin
Infeed faulted (13)
B_INF, VECTOR_G
OFF2 (NONE, OFF1)
IMMEDIATELY (POWER ON)
A feedback signal for the pre-charging contactor (ALM, SLM, BLM diode) or the line contactor (BLM thyristor) interconnected and the monitoring activated.
After switching-in/switching-out the contactor, a correct feedback signal was not received within the monitoring time set in p0255[0].
Fault value (r0949, interpret binary):
Bit 0: The time set in p0255[0] was exceeded when switching-in/switching-out the contactor.
Bit 1: The pre-charging contactor was opened while pre-charging or in the infeed mode (BLM thyristor).
Bit 2: The pre-charging contactor was switched-in in the OFF state or during infeed operation.

Remedy:	- check the monitoring time setting (p0255[0]).   - check the contactor wiring and activation.   - replace the contactor.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F30061 (A)	Bridging contactor monitoring
Message value:	Fault cause: \%1 bin
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the bypass contactor is interconnected and the monitoring activated.
	After switching-in/switching-out the contactor, a correct feedback signal was not received within the monitoring time set in p0255[1].
	Fault value (r0949, interpret binary):
	Bit 0: The time set in p0255[1] was exceeded when switching-in/switching-out the contactor.
	Bit 1: The bypass contactor was opened in operation.
	Bit 2: The bypass contactor was switched-in in the OFF state or during pre-charging.
Remedy:	- check the monitoring time setting (p0255[1]).
	- check the contactor wiring and activation.
	- replace the contactor.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A30065 (F, N)	Voltage measured values not plausible
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement supplies values that are not plausible
	Bit01: Phase U.
	Bit02: Phase V.
	Bit03: Phase W.
Remedy:	- Deactivate voltage measurement (p247.0 = 0).
	- Deactivate flying restart with voltage measurement (p247.5 = 0) and deactivate fast flying restart (p1780.11 = 0).
Reaction upon F:	NONE (OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F30070	Cycle requested by the power unit module not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle is requested that is not supported by the power unit.
	Fault value (r0949, interpret hexadecimal):
	0 : The current control cycle is not supported.
	1: The DRIVE-CLiQ cycle is not supported.
	2: Internal timing problem (clearance between RX and TX instants too low).
	3: Internal timing problem (TX instant too early).

### 4.2 List of faults and alarms

Remedy:	The power unit only supports the following cycles:
	$62.5 \mu \mathrm{~s}, 125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$
	For fault value $=0$ :
	Set a permitted current control cycle.
	For fault value = 1:
	Set a permitted DRIVE-CLiQ cycle.
	Re fault value = 2, 3:
	Contact the manufacturer (you may have an incompatible firmware version).
F30071	No new actual values received from the power unit
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The number of actual value telegrams from the power unit module that have failed has exceeded the permissible
Remedy:	Check the interface (adjustment and locking) to the power unit module.
F30072	Setpoints are no longer being transferred to the power unit
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The following applies for CU31x and CUA31:
Remedy:	More than one setpoint telegram was not able to be transferred to the power unit module.


A30073 (N)	Actual value/setpoint preprocessing no longer synchronous
Message value:	-
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Communication with the power unit module is no longer in synchronism with the current control cycle.
Remedy:	Wait until synchronization is re-established.
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F30074 (A) Communication error between the Control Unit and Power Module
Message value: \%1
Message class:
Drive object:
Reaction:
Acknowledge: Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
NONE
IMMEDIATELY
Cause: Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
Fault value (r0949, interpret hexadecimal):
0 hex:

- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
- with the Power Module switched off, the external 24 V supply for the Control unit was interrupted for some time.

	1 hex:
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.   20A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	20B hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number.
	601 hex:
	The Control Unit was inserted on a Power Module, whose power/performance class (chassis unit) is not supported.
Remedy:	Reinsert the Control Unit (CU) or the Control Unit adapter (CUAxx) onto the original Power Module and continue operation. If required, carry out a POWER ON for the CU and/or the CUA.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F30075	Configuration of the power unit unsuccessful
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A communication error has occurred while configuring the power unit using the Control Unit. The cause is not clear.
	Fault value (r0949, interpret decimal):
	0:
	The output filter initialization was unsuccessful.
	Activation/deactivation of the regenerative feedback functionality was unsuccessful.
Remedy:	- acknowledge the fault and continue operation.
	- if the fault reoccurs, carry out a POWER ON (switch off/on).
	- if required, replace the power unit.
F30080	Power unit: Current increasing too quickly
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- infeed: High discharge and post-charging currents for voltage dip.
	- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
	- infeed: Short-circuit currents at power-up due to the missing line reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Additional causes for a parallel switching device (r0108.15 = 1):
	- a power unit has tripped (powered down) due to a ground fault.
	- the closed-loop circulating current control is either too slow or has been set too fast.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.

### 4.2 List of faults and alarms

Remedy: $\quad$ - check the motor data - if required, carry out commissioning. $\quad$ - check the motor circuit configuration (star-delta) $\quad$ - U/f operation: Increase up ramp.

F30081	Power unit: Switching operations too frequent
Message value:	Fault cause: \%1 bin
Message class:	Power electronics faulted (5)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has executed too many switching operations for current limitation.   - closed-loop control is incorrectly parameterized.   - motor has a short-circuit or fault to ground (frame).   - U/f operation: Up ramp set too low.   - U/f operation: rated current of motor much greater than that of power unit.   - infeed: High discharge and post-charging currents for voltage dip.   - infeed: High post-charging currents for overload when motoring and DC link voltage dip.   - infeed: Short-circuit currents at power-up due to the missing line reactor.   - power cables are not correctly connected.   - power cables exceed the maximum permissible length.   - power unit defective.   Additional causes for a parallel switching device (r0108.15 = 1):   - a power unit has tripped (powered down) due to a ground fault.   - the closed-loop circulating current control is either too slow or has been set too fast.   Fault value (r0949, interpret bitwise binary):   Bit 0: Phase U.   Bit 1: Phase V.   Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning.   - check the motor circuit configuration (star-delta)   - U/f operation: Increase up ramp.   - U/f operation: Check assignment of rated currents of motor and power unit.   - infeed: Check the line supply quality.   - infeed: Reduce the motor load.   - infeed: Correct connection of the line reactor.   - check the power cable connections.   - check the power cables for short-circuit or ground fault.   - check the length of the power cables.   - replace power unit.   For a parallel switching device (r0108.15 = 1) the following additionally applies:   - check the ground fault monitoring thresholds (p0287).   - check the setting of the closed-loop circulating current control (p7036, p7037).


F30105	PU: Actual value sensing fault
Message value:	-
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA).
	The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters.   If the actual value channel is incorrect, check the components and if required, replace.

## F30314

Power unit: 24 V power supply overloaded by PM
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

A30315 (F)	Power unit: 24 V power supply overloaded by PM
Message value:	-
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply through the Power Module (PM) is overloaded.
	An external 24 V power supply via X124 on the Control Unit is not connected.
Remedy:	Connect an external 24 V power supply via X124 at the Control Unit.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A30502	Power unit: DC link overvoltage
Message value:	\%1
Message class:	DC link overvoltage (4)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit. - device connection voltage too high.
	- line reactor incorrectly dimensioned.
	Alarm value (r0949, interpret decimal):
	DC link voltage [ $1 \mathrm{bit}=100 \mathrm{mV}$ ].
	See also: r0070 (Actual DC link voltage)
Remedy:	- check the device supply voltage (p0210).
	- check the dimensioning of the line reactor.
	See also: p0210 (Drive unit line supply voltage)


F30600	SI P2: STOP A initiated
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function in monitoring channel 2 has detected a fault and initiated a STOP A (STO via the safety shutdown path of monitoring channel 2 ).
	- forced checking procedure of the safety shutdown path of monitoring channel 2 unsuccessful.
	- subsequent response to fault F30611 (defect in a monitoring channel).
	Fault value (r0949, interpret decimal):
	0 : Stop request from the Control Unit.
	1005: STO active although STO not selected and there is no internal STOP A present.
	1010: STO inactive although STO is selected or an internal STOP A is present.
	1011: internal error for STO deselected in monitoring channel 2.
	1020: Internal software error in the "Internal voltage protection" function. The "internal voltage protection" function is withdrawn. A STOP A that cannot be acknowledged is initiated.
	9999: Subsequent response to fault F30611.
Remedy:	- select Safe Torque Off and de-select again.
	- carry out a POWER ON (power off/on) for all components.
	- replace the Motor Module/Hydraulic Module involved.
	For fault value = 1020:
	- upgrade the Motor Module/Hydraulic Module software.
	- replace the Motor Module/Hydraulic Module.
	For fault value = 9999:
	- carry out diagnostics for fault F30611.
	Note:
	CU: Control Unit
	MM: Motor Module
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
F30611 (A)	SI P2: Defect in a monitoring channel
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected a fault in the crosswise data comparison between the two monitoring channels and has initiated a STOP F.
	As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP $A$ initiated).
	Fault value (r0949, interpret decimal):
	0 : Stop request from the Control Unit.
	1 ... 999:
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9895.
	1: SI monitoring clock cycle (r9780, r9880).
	2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
	3: SI SGE changeover tolerance time (p9650, p9850).
	4: SI transition period STOP F to STOP A (p9658, p9858).
	5: SI enable Safe Brake Control (p9602, p9802).
	6: SI Motion enable, safety-relevant functions (p9501, internal value).
	7: SI delay time of STO for Safe Stop 1 (p9652, p9852).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO/SBC/SS1 (MM) (p9651, p9851).

10: SI delay time for initiating STO for ESR (p9697, p9897).
11: SI Safe Brake Adapter mode, BICO interconnection (p9621, p9821).
12: SI Safe Brake Adapter relay ON time (p9622[0], p9822[0]).
13: SI Safe Brake Adapter relay OFF time (p9622[1], p9822[1]).
14: SI PROFIsafe telegram selection (p9611, p9811).
1000: Watchdog timer has expired.
Within the time of approx. $5 \times \mathrm{p} 9650$, alternatively, the following was defined:

- Too many signal changes have occurred at the EP terminal of the Motor Module.
- Via PROFIsafe/TM54F, STO was too frequently initiated (also as subsequent response).
- Safe pulse cancellation (r9723.9) was too frequently initiated (also as subsequent response).

1001, 1002: Initialization error, change timer / check timer.
1950: Module temperature outside the permissible temperature range.
1951: Module temperature not plausible.
1952: S120M: hardware access fault
2000: Status of the STO selection for both monitoring channels are different.
2001: Feedback signals of STO shutdown for both monitoring channels are different.
2002: Statuses of the delay timer SS1 on both monitoring channels are different (status of the timer in p9650/p9850).
2003: Status of the STO terminal for both monitoring channels are different.
6000 ... 6999:
Error in the PROFIsafe control.
For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
The significance of the individual message values is described in safety message C01711.
Remedy:
Re fault value $=1 \ldots 5$ and $7 \ldots 999$ :

- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=6$ :

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value $=1000$ :

- check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the wiring of the failsafe inputs at the TM54F (contact problems).
- check the tolerance time F-DI changeover and if required, increase the value (p9650/p9850).

Re fault value = 1001, 1002:

- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

For fault value = 1950:

- operate the module in the permissible range.
- check the module fan, replace the Motor Module involved.

For fault value = 1951:

- operate the module in the permissible range.
- replace the Motor Module involved.

For fault value $=1952$ :

- replace the Motor Module involved.

Re fault value = 2000, 2001, 2002, 2003:

- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check why STO was selected in r9872. When the SMM functions are active (p9501 = 1), STO can also be selected using these functions.
- replace the Motor Module involved.


### 4.2 List of faults and alarms

	Note:
	This fault can be acknowledged after removing the cause of the error and after correct selection/deselection of STO.
	Refer to the description of the message values in safety message C01711.
	Note:
	CU: Control Unit
	EP: Enable Pulses (pulse enable)
	ESR: Extended Stop and Retract
	MM: Motor Module
	SGE: Safety-relevant input
	SI: Safety Integrated
	SMM: Safe Motion Monitoring
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon A :	NONE
Acknowl. upon A:	NONE
N30620 (F, A)	SI P2: Safe Torque Off active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function of the basic functions has been selected in monitoring channel 2 using the input terminal and is active.
	Note:
	- This message does not result in a safety stop response.
	- This message is not output when STO is selected using the Extended Functions.
Remedy:	Not necessary.
	Note:
	MM: Motor Module
	SI: Safety Integrated
	STO: Safe Torque Off / SH: Safe standstill
Reaction upon F:	OFF2
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
N30621 (F, A)	SI P2: Safe Stop 1 active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Stop 1" function (SS1) was selected in monitoring channel 2 and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	Not necessary.
	Note:
	MM: Motor Module
	SI: Safety Integrated
	SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
Reaction upon F:	NONE (OFF3)
Acknowl. upon F:	IMMEDIATELY (POWER ON)



### 4.2 List of faults and alarms

81: Safe Brake Adapter: Fault in "brake closed" state.
82: Safe Brake Adapter: Fault for the operation "open brake".
83: Safe Brake Adapter: Fault for the operation "close brake".
84, 85:
Safe Brake Adapter:
Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
90:
Brake released for service purposes (X4).
91:
Fault in "open holding brake" operation.

- No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 $=0(\mathrm{SBC}$ deactivated)).

Remedy: $\quad$\begin{tabular}{l}

- check parameter p1278 (for SBC, only p1278 = 0 is permissible). <br>
- select Safe Torque Off and de-select again. <br>
- check the motor holding brake connection. <br>
- check the function of the motor holding brake. <br>
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module <br>
involved and, if required, carry out a diagnostics routine for the faults identified. <br>
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the <br>
motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are <br>
tightly screwed to the housing). <br>
- replace the Motor Module involved. <br>
Operation with Safe Brake Module or Safe Brake Adapter: <br>
- check the Safe Brake Module or Safe Brake Adapter connection. <br>
- Replace the Safe Brake Module or Safe Brake Adapter. <br>
Note: <br>
MM: Motor Module <br>
SBC: Safe Brake Control <br>
SI: Safety Integrated
\end{tabular}


## F30631

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## A30640 (F)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Brake control: External release active

External measured value / signal state outside the permissible range (16)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
For mounting purposes, the brake is supplied with voltage via terminal X4.1 and released.
If required, again remove the power supply at X4.1.

## SI P2: Fault in the shutdown path of the second channel

\%1
Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
NONE
The Motor Module has detected a communication error with the higher-level control or the TM54F to transfer the safety-relevant information or there is a communication error between Motor Modules connected in parallel.
Note:
This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: For the higher-level control, the following applies:

- check the PROFIsafe address in the higher-level control and Motor Modules and if required, align.
- save all parameters ( $\mathrm{p} 0977=1$ ).
- carry out a POWER ON (power off/on) for all components.

	For TM54F, carry out the following steps:
	- start the copy function for the node identifier (p9700 = 1D hex).
	- acknowledge hardware CRC (p9701 = EC hex).
	- save all parameters (p0977 = 1).
	- carry out a POWER ON (power off/on) for all components.
	For a parallel connection, the following applies:
	- check the PROFIsafe address in both monitoring channels and if required, align.
	- save all parameters (p0977 = 1).
	- carry out a POWER ON (power off/on) for all components.
	The following generally applies:
	- upgrade the Motor Module software.
	Note:
	MM: Motor Module
	SI: Safety Integrated
	See also: p9810 (SI PROFIsafe address (Motor Module))
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
F30649	SI P2: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software in monitoring channel 2 has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- re-commission the Safety Integrated function and carry out a POWER ON.
	- upgrade the Motor Module/Hydraulic Module software.
	- contact the Hotline.
	- replace the Motor Module/Hydraulic Module.
	Note:
	MM: Motor Module
	SI: Safety Integrated
F30650	SI P2: Acceptance test required
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The "Safety Integrated" function on monitoring channel 2 requires an acceptance test.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	130: Safety parameters for monitoring channel 2 not available.
	Note:
	This fault value is always output when Safety Integrated is commissioned for the first time.
	1000: Reference and actual checksum in monitoring channel 2 are not identical (booting).
	- as a result of the changed current controller sampling time ( $\mathrm{p} 0115[0]$ ), the clock cycle time for the Safety Integrated Basic Functions (r9880) was adapted.
	- Safety parameters set offline and loaded into the Control Unit.

### 4.2 List of faults and alarms

- a download was made to the SINAMICS, whose firmware versions in monitoring channel 2 did not correspond to the latest version. The request to switch off the DRIVE-CLiQ component A1007 was present after the download.
- at least one checksum-checked piece of data is defective.

2000: Reference and actual checksum in monitoring channel 2 are not identical (commissioning mode).

- reference checksum on monitoring channel 2 incorrectly entered (p9899 not equal to r9898).

2003: Acceptance test is required as a safety parameter has been changed.
2005: The safety logbook has identified that the safety checksums have changed. An acceptance test is required.
3003: Acceptance test is required as a hardware-related safety parameter has been changed.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.

Remedy:

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

For fault value $=130$ :

- carry out safety commissioning routine.

For fault value =1000:

- check the Safety Integrated Basic Functions (r9880) and adapt the reference checksum (p9899).
- again carry out safety commissioning routine.
- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
- switch off and switch on the drive unit and DRIVE-CLiQ components. If A30650 is still present, repeat the download.
- replace the memory card or Control Unit.

For fault value $=2000$ :

- check the safety parameters on monitoring channel 2 and adapt the reference checksum (p9899).

Re fault value = 2003, 2005:

- Carry out an acceptance test and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
For fault value $=3003$ :

- carry out the function checks for the modified hardware and generate an acceptance report.

The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
For fault value $=9999$ :

- carry out diagnostics for the other safety-related fault that is present.

Note:
MM: Motor Module
SI: Safety Integrated
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

## SI P2: Synchronization with Control Unit unsuccessful

## \%1

Hardware / software error (1)
VECTOR G
OFF2
IMMEDIATELY (POWER ON)
The drive-integrated "Safety Integrated" function requires synchronization of the safety time slices in both monitoring channels. This synchronization routine was unsuccessful.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.

- upgrade the Motor Module/Hydraulic Module software.
- upgrade the Control Unit software.

	Note:   MM: Motor Module   SI: Safety Integrated
F30652	SI P2: Illegal monitoring clock cycle
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Safety Integrated monitoring clock cycle cannot be maintained due to the communication conditions requested in the system.   Note:   This fault results in a STOP A that cannot be acknowledged.   Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
Remedy:	- if fault F01652 simultaneously occurs, apply the remedy/countermeasure described there.   - upgrade the firmware of the Motor Module/Hydraulic Module to a later version.   Note:   MM: Motor Module   SI: Safety Integrated
F30655	SI P2: Align monitoring functions
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions of both monitoring channels. No common set of supported SI monitoring functions was able to be determined.   - there is either a DRIVE-CLiQ communication error or communication has failed.   - Safety Integrated software releases on the Control Unit and Motor Module/Hydraulic Module are not compatible with one another.   Note:   This fault results in a STOP A that cannot be acknowledged.   Fault value (r0949, interpret hexadecimal):   Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.   - upgrade the Motor Module/Hydraulic Module software.   - upgrade the Control Unit software.   - check the electrical cabinet design and cable routing for EMC compliance   Note:   CU: Control Unit   MM: Motor Module   SI: Safety Integrated
F30656	SI P2: Motor Module parameter error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for monitoring channel 2 in the non-volatile memory, an error has occurred.   Note:   This fault results in a STOP A that can be acknowledged.

### 4.2 List of faults and alarms

Fault value (r0949, interpret decimal):
129:

- safety parameters for monitoring channel 2 corrupted.
- drive with enabled safety functions was possibly copied offline using the commissioning software and the project downloaded.
131: Internal software error on the Control Unit.
255: Internal Motor Module/Hydraulic Module software error.
Remedy: - re-commission the safety functions.
- upgrade the Control Unit software.
- upgrade the Motor Module/Hydraulic Module software.
- replace the memory card or Control Unit.

For fault value = 129:

- activate the safety commissioning mode (p0010 = 95).
- adapt the PROFIsafe address (p9610).
- start the copy function for SI parameters (p9700 = D0 hex).
- acknowledge data change (p9701 = DC hex).
- exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON (power off/on) for all components.

Note:
MM: Motor Module
SI: Safety Integrated

## F30657

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI P2: PROFIsafe telegram number invalid

Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
POWER ON
The PROFIsafe telegram number set in p9811 is not valid.
When PROFIsafe is enabled ( $\mathrm{p} 9801.3=1$ ), then a telegram number greater than zero must be entered in p9811.
Note:
This fault does not result in a safety stop response.
See also: p9611 (SI PROFIsafe telegram selection (Control Unit)), p60022 (PROFIsafe telegram selection)
Remedy: $\quad$ Check the telegram number setting (p9811).

## F30659

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

SI P2: Write request for parameter rejected
\%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The write request for one or several Safety Integrated parameters in monitoring channel 2 was rejected.
Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the safe motion monitoring function with the higher-level control, although this
cannot be supported.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be
supported.
16: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the
version of the PROFIsafe driver used on both monitoring channels is different.
18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.

	19: For ESR, an attempt was made to enable the delay for pulse suppression, although this cannot be supported.   27: An attempt was made to activate the Basic Functions by controlling via TM54F although this cannot be supported.   See also: r9771 (SI common functions (Control Unit)), r9871 (SI common functions (Motor Module)
Remedy:	Re fault value $=10,11,13,14,15,16,18,19$ :   - check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.   - use a Motor Module that supports the required function.   - upgrade the Motor Module software.   - upgrade the Control Unit software.   For fault value $=33$ :   - Deselect motion monitoring functions without selection integrated in drive (p9601.5, p9801.5) and select safety functions that are supported (see p9771/p9871), or:   - use a Motor Module that supports the required function.   - upgrade the Motor Module software.   - upgrade the Control Unit software.   Note:   CU: Control Unit   ESR: Extended Stop and Retract   MM: Motor Module   SBC: Safe Brake Control   SI: Safety Integrated   SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)   STO: Safe Torque Off / SH: Safe standstill
F30664	Error while booting
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, HUB, TB30, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error has occurred during booting.   Fault value (r0949, interpret hexadecimal):   Only for internal Siemens troubleshooting.   - carry out a POWER ON (power off/on).   - upgrade firmware to later version.   - contact the Hotline.
F30665	SI P2: System is defective
Message value:	\%1
Message class:	
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).   Fault value (r0949, interpret hexadecimal):   200000 hex, 400000 hex:   - Fault in the actual booting/operation.   2 hex:   - parameters p9500 and p9300 are not the same (if Safety message C30711 is displayed at the same time).   Additional values:   - defect before the last time that the system booted.

### 4.2 List of faults and alarms

Remedy: $\quad$ - carry out a POWER ON (power off/on). $\quad$ - upgrade firmware to later version. $\quad$ - contact the Hotline.

A30666 (F)	SI Motion P2: Steady-state (static) 1 signal at the F-DI for safe acknowledgment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F-DI configured in p10106 for more than 10 seconds.
	If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy:	Set the fail-safe digital input (F-DI) to a logical 0 signal (p10106).
	Note:
	F-DI: Failsafe Digital Input
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F30672	SI P2: Control Unit software incompatible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The existing Control Unit software does not support the safe drive-based motion monitoring function.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check whether there are faults in the safety function alignment between the two monitoring channels (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	- use a Control Unit that supports the safe motion monitoring function.
	- upgrade the Control Unit software.
	Note:
	SI: Safety Integrated
F30674	SI Motion P2: Safety function not supported by PROFIsafe telegram
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The monitoring function enabled in p9301 and p9801 is not supported by the currently set PROFIsafe telegram (p9811).
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret bitwise binary):
	Bit 24 = 1:
	Transfer SLS (SG) limit value via PROFIsafe not supported (p9301.24).


	Bit 25 = 1:
	Transfer safe position via PROFIsafe is not supported (p9301.25).
	Bit $26=1$ :
	Gearbox stage switchover via PROFIsafe is not supported (p9301.26).
Remedy:	- deselect the monitoring function involved (p9301, p9801).
	- set the matching PROFIsafe telegram (p9811).
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed
	SP: Safe Position
F30680	SI Motion P2: Checksum error safety monitoring functions
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual checksum calculated by the Motor Module/Hydraulic Module and entered in r9398 over the safetyrelevant parameters does not match the reference checksum saved in p9399 at the last machine acceptance.
	Safety-relevant parameters have been changed or a fault is present.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	0: Checksum error for SI parameters for motion monitoring.
	1: Checksum error for SI parameters for component assignment.
Remedy:	- check the safety-relevant parameters and if required, correct.
	- set the reference checksum to the actual checksum.
	- execute the function "Copy RAM to ROM".
	- perform a POWER ON if safety parameters requiring a POWER ON have been modified.
	- carry out an acceptance test.
F30681	SI Motion P1: Incorrect parameter value
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The parameter cannot be parameterized with this value.
	Note:
	This message does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
	yyyy $=0$ :
	No information available.
	xxxx = 9301:
	It is not permissible to enable the function " n < nx hysteresis and filtering" ( p 9301.16 ) in conjunction with the function "Extended functions without selection" (p9801.5).
	xxxx $=9301$ and yyyy = 8:
	Referencing via SCC ( $\mathrm{p} 9301.27=1$ ) is enabled without enabling absolutes motion monitoring functions ( p 9301.1 or p9301.2).
	xxxx $=9334$ or 9335:
	The limit values of SLP have been set too high (absolute values).
	xxxx = 9385:
	For Safety without encoder and synchronous motor, p9385 must be set to 4.

### 4.2 List of faults and alarms

$x x x x=9801$ and $y y y y=1$ :
If motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without selection (p9801.5 $=1$ ) are activated, then PROFIsafe (p9801.3 = 1) is not possible.
xxxx $=9801$ and yyyy $=2$ :
Extended functions without selection ( $\mathrm{p} 9801.5=1$ ) are enabled without enabling motion monitoring functions integrated in the drive (p9801.2).
$x x x x=9801$ and yyyy $=3$ :
Onboard F-DI are enabled without enabling motion monitoring functions integrated in the drive (p9801.2).
$x x x x=9801$ and yyyy $=5$ :
Transfer of the SLS limit value via PROFIsafe (p9301.24) has been enabled, without enabling PROFIsafe.
$x x x x=9801$ and yyyy $=6$ :
Transfer of the safe position via PROFIsafe (p9301.25) has been enabled without enabling PROFIsafe.
xxxx = 9801 and yyyy $=7$ :
Safe switchover of the gearbox stages ( $\mathrm{p} 9301.26=1$ ) has been enabled without enabling PROFIsafe.
Remedy: Correct parameter (if required, also on another monitoring channel, p9601).
Note:
For different values in the two monitoring channels, start the copy function for SI parameters on the drive (p9700 = 57
hex).
If $x x x x=9301$ :
Correct parameters p9501.16 and p9301.16 or deselect the extended functions without selection (p9801.5).
If $x x x x=9501$ and $y y y y=8$ :
Inhibit referencing via SCC (p9501.27 = 1) or enable an absolute motion monitoring function (p9501.1 or p9501.2).
If $\mathrm{xxxx}=9317$ :
Further, p9316.0 should be checked.
If $\mathrm{xxxx}=9334$ or 9335 :
Reduce the limit values (absolute values) of SLP.
If $\mathrm{xxxx}=9801$ :
yyyy $=1$ :
Only enable motion monitoring functions integrated in the drive (p9801.2 = 1) and extended functions without selection (p9801.5 = 1) - or only PROFIsafe (p9801.3 = 1).
yyyy = 2, 3:
Enable motion monitoring functions integrated in the drive (p9801.2 = 1).
yyyy $=5$ :
To transfer the SLS limit values via PROFIsafe (p9301.24 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive (p9801.2 = 1).
yyyy = 6:
For the safe position via PROFIsafe (p9301.25 = 1), also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive ( $\mathrm{p} 9801.2=1$ ).

## yyyy = 7:

For safe switchover of gearbox stages (p9301.26 = 1) also enable PROFIsafe (p9801.3 =1) and motion monitoring functions integrated in the drive ( $p 9801.2=1$ ).

## F30682

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

```
SI Motion P2: Monitoring function not supported
%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The monitoring function enabled in p9301, p9501, p9601, p9801, p9307 or p9507 is not supported in this firmware
version.
Note:
This message does not result in a safety stop response.
Fault value (r0949, interpret decimal):
1:Monitoring function SLP not supported (p9301.1).
2: Monitoring function SCA not supported (p9301.7 and p9301.8 ... 15).
3: Monitoring function SLS override not supported (p9301.5).
```

	4: Monitoring function external ESR activation not supported (p9301.4).
	5: Monitoring function F-DI in PROFIsafe not supported (p9301.30).
	6: Enable actual value synchronization not supported (p9301.3).
	9: Monitoring function not supported by the firmware or enable bit not used.
	12: This Control Unit does not support operation of safety functions with a higher-level control (e.g. SINUMERIK).
	24: Monitoring function SDI not supported.
	26: Hysteresis and filtering for SSM monitoring function without an encoder not supported (p9301.16).
	27: This hardware does not support onboard F-DI and F-DO.
	30: The firmware version of the Motor Module is older than the version of the Control Unit.
	33: Safety functions without selection not supported (p9601.5, p9801.5).
	34: This module does not support safe position via PROFIsafe.
	36: Function "SS1E" not supported.
	39: This module or software version of the CU/MM does not support safe gearbox stage switchover (p9501.26).
	44: This module/this software version does not support referencing via the safety control channel (p9501.27).
	50: Shortening the switchover times for SOS (p9569/p9369, p9567/p9367) is not supported.
Remedy:	- de-select the monitoring function involved (p9301, p9501, p9601, p9801, p9307, p9507).
	- Upgrade the Motor Module firmware.
	Note:
	ESR: Extended Stop and Retract
	SCA: Safe Cam / SN: Safe software cam
	SDI: Safe Direction (safe motion direction)
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SP: Safe Position
	SS1E: Safe Stop 1 external (Safe Stop 1 with external stop)
	See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit)), p9601 (SI enable functions integrated in the drive (Control Unit)), p9801 (SI enable functions integrated in the drive (Motor Module)), r9871 (SI common functions (Motor Module)
F30683	SI Motion P2: SOS/SLS enable missing
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The safety-relevant basic function "SOS/SLS" is not enabled in p9301 although other safety-relevant monitoring functions are enabled.
	Note:
	This message does not result in a safety stop response.
Remedy:	Enable the function "SOS/SLS" (p9301.0) and carry out a POWER ON.
	Note:
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	SOS: Safe Operating Stop / SBH: Safe operating stop
	See also: p9301 (SI Motion enable safety functions (Motor Module))
F30684	SI Motion P2: Safely limited position limit values interchanged
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the function "Safely Limited Position" (SLP), a lower value is in p9334 than in p9335.

### 4.2 List of faults and alarms

	Note:
	This fault does not result in a safety stop response.
	Fault value (ro949, interpret decimal):
	1: Limit values SLP1 interchanged.
	2: Limit values SLP2 interchanged.
	See also: p9334 (SI Motion SLP upper limit values (Motor Module)), p9335 (SI Motion SLP lower limit values (Motor
	Module))
Remedy:	- correct the lower and upper limit values (p9335, p9334).
	- carry out a POWER ON (power off/on).
	Note:
	SI: Safety Integrated
	SLP: Safely-Limited Position / SE: Safe software limit switches

## F30692

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
SI Motion P2: Parameter value not permitted for encoderless
Parameter: \%1
Error in the parameterization / configuration / commissioning procedure (18)

VECTOR_G

OFF2

IMMEDIATELY (POWER ON)

The parameter cannot be parameterized with this value if encoderless motion monitoring functions have been

parameterized in p9306

Note:

This message does not result in a safety stop response.

Fault value (r0949, interpret decimal):

Parameter number with the incorrect value.

See also: p9301 (SI Motion enable safety functions (Motor Module))

- Correct the parameter specified in the fault value.
- If necessary, de-select encoderless motion monitoring functions (p9306).

See also: p9301 (SI Motion enable safety functions (Motor Module)), p9501 (SI Motion enable safety functions

(Control Unit))

## A30693 (F)

Message value:
Message class: Drive object: Reaction: Acknowledge: Cause:

SI P2: Safety parameter settings changed, warm restart/POWER ON required \%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
NONE
NONE
Safety parameters have been changed; these will only take effect following a warm restart or POWER ON. Notice:
All changed parameters of the safety motion monitoring functions will only take effect following a warm restart or POWER ON

Alarm value (r2124, interpret decimal):
Parameter number of the safety parameter which has changed, necessitating a warm restart or POWER ON.
Remedy: $\quad$ - carry out a warm restart ( $\mathrm{p} 0009=30, \mathrm{p} 0976=2,3$ ).

- carry out a POWER ON (power off/on) for all components.

Note:
Before performing an acceptance test, a POWER ON must be carried out for all components.
Reaction upon F: NONE (OFF1, OFF2, OFF3)
Acknowl. upon F: POWER ON

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P2: STOP A initiated

Safety monitoring channel has identified an error (10)
VECTOR_G
OFF2
IMMEDIATELY (POWER ON)
The drive is stopped via a STOP A (STO via the safety shutdown path of the Control Unit).
Possible causes:

- stop request from the Control Unit.
- STO not active after a parameterized time (p9357) after test stop selection.
- subsequent response to the message C30706 "SI Motion MM: SAM/SBR limit exceeded".
- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
- subsequent response to the message C30701 "SI Motion MM: STOP B initiated".
- subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".
- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".


### 4.2 List of faults and alarms

Remedy:	- remove the cause to the fault on the Control Unit.
	- check the value in p9357, if required, increase the value.
	- check the shutdown path of the Control Unit (check DRIVE-CLiQ communication).
	- carry out a diagnostics routine for message C30706.
	- carry out a diagnostics routine for message C30714.
	- carry out a diagnostics routine for message C30701.
	- carry out a diagnostics routine for message C30715.
	- carry out a diagnostics routine for message C30716.
	- replace the Motor Module, Power Module or Hydraulic Module.
	- replace Control Unit.
	This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
	Note:
	SAM: Safe Acceleration Monitor (safe acceleration monitoring)
	SBR: Safe Brake Ramp (safe brake ramp monitoring)
	SI: Safety Integrated

## C30701

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P2: STOP B initiated

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE (OFF3)
IMMEDIATELY (POWER ON)
The drive is stopped via a STOP B (braking along the OFF3 ramp).
As a result of this fault, after the time parameterized in p9356 has expired or after the speed threshold parameterized in p9360 has been fallen below, message C30700 "SI Motion MM: STOP A initiated" is output.
Possible causes:

- stop request from the Control Unit.
- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
- subsequent response to the message C30711 "SI Motion MM: Defect in a monitoring channel".
- subsequent response to the message C30707 "SI Motion MM: tolerance for safe operating stop exceeded".
- subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".
- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".


## Remedy:

- remove the cause to the fault on the Control Unit.
- carry out a diagnostics routine for message C30714.
- carry out a diagnostics routine for message C30711.
- carry out a diagnostics routine for message C30707.
- carry out a diagnostics routine for message C30715.
- carry out a diagnostics routine for message C30716.

This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe. Note:
SI: Safety Integrated

## C30706

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P2: SAM/SBR limit exceeded

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
Motion monitoring functions with encoder (p9306 = 0) or encoderless with set acceleration monitoring (SAM, p9306 = 3):

- after initiating STOP B (SS1) or STOP C (SS2), the speed has exceeded the selected tolerance.

Motion monitoring functions encoderless with set brake ramp monitoring (SBR p9306 = 1):

- after initiating STOP B (SS1) or SLS changeover to the lower speed stage, the speed has exceeded the selected tolerance.
The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated".

Remedy:	Check the braking behavior and, if necessary, adapt the parameterization of the parameter settings of the "SAM" or the "SBR" function.   This message can be acknowledged without a POWER ON as follows:   - motion monitoring functions integrated in the drive: via Terminal Module 54F (TM54F) or PROFIsafe   Note:   SAM: Safe Acceleration Monitor (safe acceleration monitoring)   SBR: Safe Brake Ramp (safe ramp monitoring)   SI: Safety Integrated   See also: p9348, p9381, p9382, p9383, p9548
C30707	SI Motion P2: Tolerance for safe operating stop exceeded
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C30701 "SI Motion MM: STOP B initiated".
Remedy:	- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.   - check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.   This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.   Note:   SI: Safety Integrated   SOS: Safe Operating Stop / SBH: Safe operating stop   See also: p9530 (SI Motion standstill tolerance (Control Unit))
C30708	SI Motion P2: STOP C initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	STOP2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP C (braking along the OFF3 ramp).   "Safe Operating Stop" (SOS) is activated after the parameterized time has expired.   Possible causes:   - stop request from the higher-level control.   - subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".   - subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".   - subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".   See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy:	- remove the cause of the fault at the control.   - carry out a diagnostics routine for messages C30714, C30715, C30716.   This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.   Note:   SI: Safety Integrated   SOS: Safe Operating Stop / SBH: Safe operating stop
C30709	SI Motion P2: STOP D initiated
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive is stopped via a STOP D (braking along the path). "Safe Operating Stop" (SOS) is activated after the parameterized time has expired.

### 4.2 List of faults and alarms

Possible causes:

- stop request from the Control Unit.
- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
- subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".
- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".

See also: p9353 (SI Motion transition time STOP D to SOS (Motor Module)), p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))

Remedy:	- remove the cause of the fault at the control.
	- carry out a diagnostics routine for messages C30714, C30715, C30716.
	This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
	Note:
	SI: Safety Integrated
	SOS: Safe Operating Stop / SBH: Safe operating stop

## C30710

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P2: STOP E initiated

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
The drive is stopped via a STOP E (retraction motion).
"Safe Operating Stop" (SOS) is activated after the parameterized time has expired.
Possible causes:

- stop request from the higher-level control.
- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
- subsequent response to the message C01715 "SI Motion CU: Safely-limited position exceeded".
- subsequent response to the message C30716 "SI Motion MM: tolerance for safe motion direction exceeded".

See also: p9354 (SI Motion transition time STOP E to SOS (Motor Module)), p9554 (SI Motion transition time STOP E to SOS (SBH) (Control Unit))
Remedy: - remove the cause of the fault at the control.

- carry out a diagnostics routine for messages C30714, C30715, C30716.

This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

## C30711

Message value:
Message class:

## Drive object:

Reaction:
Acknowledge: Cause:
SI Motion P2: Defect in a monitoring channel
\%1
Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
When cross-comparing the two monitoring channels, the drive detected a difference between the input data or results
of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e.
safe operation is no longer possible.
If at least one monitoring function is active, then after the parameterized timer has expired, the message C30701 "SI
Motion: STOP B initiated" is output. The message is output with message value 1031 when the Sensor Module
hardware is replaced.

The following message values may also occur in the following cases if the cause that is explicitly mentioned does not apply:

- differently parameterized cycle times (p9500/p9300, p9511/p9311).
- differently parameterized axis types (p9502/p9302).
- excessively fast cycle times (p9500/p9300, p9511/p9311).
- incorrect synchronization.

Message value (r9749, interpret decimal):
0 ... 999:
Number of the cross-compared data that resulted in this message.
The significance of the individual message values is described in safety message C01711 of the Control Unit. 1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1002:
User agreement after the timer has expired different.
The user agreement is not consistent. After a time of 4 s has expired, the status of the user agreement is different in both monitoring channels.
1003: Reference tolerance exceeded. When the user agreement is set, the difference between the new reference point that has been determined after power up (absolute encoder) or reference point approach (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance (p9344). In this case, the user agreement is withdrawn.
1004:
Plausibility error for user agreement.

1. If the user agreement has already been set, then setting is initiated again. In this case, the user agreement is withdrawn.
2. The user agreement was set, although the axis has still not been referenced.

1005:

- For safe motion monitoring functions without encoder: pulses already suppressed for test stop selection.
- For safe motion monitoring functions with encoder: STO already active for test stop selection.

1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1015: Gearbox switchover (bit 27 in PROFIsafe Telegram (takes longer than 2 min.
1020: Cyc. communication failure between the monit. cycles.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1023: Error in the effectiveness test in the DRIVE-CLiQ encoder
1024: Sign-of-life error for HTL/TTL encoders.
1030: Encoder fault detected from another monitoring channel.
1031: Data transfer error between the monitoring channel and the Sensor Module (p9526/p9326).
1040: Pulses suppressed with active encoderless monitoring functions.
1041: Current absolute value too low (encoderless)
1042: Current/voltage plausibility error
1043: Too many acceleration phases
1044: Actual current values plausibility error.
1045: CRC of the standstill position incorrect.
5000 ... 5140:
PROFIsafe message values.
For these message values, the failsafe control signals (failsafe values) are transferred to the safety functions.
The significance of the individual message values is described in safety message C01711 of the Control Unit. 6000 ... 6166:
PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
For these message values, the failsafe control signals (failsafe values) are transferred to the safety functions.
The significance of the individual message values is described in safety fault F01611 of the Control Unit. 7000 ... 7002:

Message values of the "Safe position via PROFIsafe" function.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion diagnostics STOP F)
Remedy: Re message value $=1002$ :

- Perform safe acknowledgment, set the user agreement in both monitoring channels simultaneously (within 4 s ). Re message value $=1003$ :
- check the mechanical system of the axis. It is possible that the axis was shifted when switched-off, and the last saved actual position no longer corresponds with the new actual position after the system has been powered up again.
- Increase the tolerance for the actual value comparison when referencing (p9344).

Then check the actual values, perform a POWER ON and set the user agreement again.

Re message value $=1004$ :
For 1., the following applies: Perform safe acknowledgment. Set the user agreement again.
For 2., the following applies: Perform safe acknowledgment. Only set the user agreement again if the axis has been referenced

Re message value $=1005$ :

- For safe motion monitoring functions without encoder: check the conditions for pulse enable.
- For safe motion monitoring functions with encoder: check the conditions for STO deselection.

Note:
For a power module, the test stop should always be performed for pulse enable (independent of whether with encoder or without encoder).
Re message value $=1012$ :

- upgrade the Sensor Module firmware to a more recent version.
- for 1-encoder systems, the following applies: check the encoder parameters for equality (p9515/p9315, p9519/p9319, p9523/p9323, p9524/p9324, p9525/p9325, p9529/p9329).
- For a 1-encoder system and 2-encoder system the following applies: in order to correctly copy the encoder parameters from p04xx, p9700 must be set to 46 and p9701 must be set to 172 .
- For DQI encoders the following applies: If required, upgrade the firmware version of the Control Unit to a more recent version, which is released for DQI encoders.
- check the electrical cabinet design and cable routing for EMC compliance
- carry out a POWER ON (power off/on) for all components or a warm restart ( $p 0009=30$, p0976 = 2, 3).
- replace the hardware.

Re message value $=1024$ :

- check the communication link.
- increase the monitoring cycle clock settings (p9500, p9511).
- carry out a POWER ON (power off/on) for all components.
- replace the hardware.

Re message value $=1030$ :

- check the encoder connection.
- if required, replace the encoder.

Re message value $=1031$ :
When replacing a Sensor Module, carry out the following steps:

- start the copy function for the node identifier on the drive (p9700 = 1D hex).
- acknowledge the hardware CRC on the drive (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.

The following always applies:

- check the encoder connection.
- if required, replace the encoder.

Re message value $=1040$ :

- de-select encoderless monitoring functions, select and de-select STO.
- if monitoring function is active, issue "SLS" pulse enable within 5 s of de-selecting STO.

Re message value $=6000 \ldots 6999$ :

- The significance of the individual message values is described in safety fault F01611 of the Control Unit. Re other message values:
- the significance of the individual message values is described in safety message C01711.

Note:
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

C30712	SI Motion P2: Defect in F-IO processing
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When cross checking and comparing the two monitoring channels, the drive detected a difference between parameters or results of the F-IO processing and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
	The safety message C30711 with message value 0 is also displayed due to initiation of STOP F. If at least one monitoring function is active, the safety message C30701 "SI Motion: STOP B initiated" is output after the parameterized timer has expired.
	Message value (r9749, interpret decimal):
	Number of the cross-compared data that resulted in this message.
	Refer to the description of the message values in safety message C01712.
Remedy:	- check parameterization in the parameters involved and correct if required.
	- ensure equality by copying the SI data to the second channel and then carry out an acceptance test.
	- check monitoring clock cycle for equality (p9500, p9300).
	Note:
	This message can be acknowledged via F-DI or PROFlsafe.
	See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))
C30714	SI Motion P2: Safely-Limited Speed exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive had moved faster than that specified by the velocity limit value (p9331). The drive is stopped as a result of the configured stop response (p9363).
	Message value (r9749, interpret decimal):
	100: SLS1 exceeded.
	200: SLS2 exceeded.
	300: SLS3 exceeded.
	400: SLS4 exceeded.
	1000: Encoder limit frequency exceeded.
Remedy:	- check the traversing/motion program in the control.
	- check the limits for "SLS" function and if required, adapt (p9331).
	Note:
	This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
	SI: Safety Integrated
	SLS: Safely-Limited Speed / SG: Safely reduced speed
	See also: p9331 (SI Motion SLS limit values (Motor Module)), p9363 (SI Motion SLS stop response (Motor Module))
C30715	SI Motion P2: Safely-Limited Position exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The axis has moved past a parameterized position that is monitored by the "SLP" function.
	Message value (r9749, interpret decimal):
	10: SLP1 violated.
	20: SLP2 violated.

### 4.2 List of faults and alarms

Remedy:	- check the traversing/motion program in the control.   - check the limits for "SLP" function and if required, adapt (p9534, p9535).   This message can be acknowledged as follows:   - motion monitoring functions with SINUMERIK: Via the machine control panel   Note:   SI: Safety Integrated   SLP: Safely-Limited Position / SE: Safe software limit switches   See also: p9334 (SI Motion SLP upper limit values (Motor Module)), p9335 (SI Motion SLP lower limit values (Motor Module))
C30716	SI Motion P2: Tolerance for safe motion direction exceeded
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The tolerance for the "safe motion direction" function was exceeded. The drive is stopped as a result of the configured stop response (p9366).   Message value (r9749, interpret decimal):   0 : Tolerance for the "safe motion direction positive" function exceeded.   1: Tolerance for the "safe motion direction negative" function exceeded.
Remedy:	- check the traversing/motion program in the control.   - check the tolerance for "SDI" function and if required, adapt (p9364).   This message can be acknowledged as follows:   - Deselect the "SDI" function and select again.   - Perform a safe acknowledgment via F-DI or PROFIsafe.   Note:   SDI: Safe Direction (safe motion direction)   SI: Safety Integrated   See also: p9364 (SI Motion SDI tolerance (Motor Module)), p9365 (SI Motion SDI delay time (Motor Module)), p9366 (SI Motion SDI stop response (Motor Module))
C30730	SI Motion P2: Reference block for dynamic safely limited speed invalid
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The reference block transferred via PROFIsafe is negative.   A reference block is used to generate a referred velocity limit value based on the reference quantity "Velocity limit value SLS1" (p9331[0]).   The drive is stopped as a result of the configured stop response (p9363[0]).   Message value (r9749, interpret decimal):   requested, invalid reference block.
Remedy:	In the PROFIsafe telegram, input data S_SLS_LIMIT_IST must be corrected.   This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.   Note:   SI: Safety Integrated   SLS: Safely-Limited Speed

## C30770

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## SI Motion P2: Discrepancy error of the fail-safe inputs/outputs

 \%1Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
The fail-safe digital inputs/digital outputs (F-DI/F-DO) show a different state longer than that parameterized in p10002 /p10102.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
xxxx: Discrepancy error for fail-safe digital inputs (F-DI).
Bit 0: Discrepancy error for F-DI 0
Bit 1: Discrepancy error for F-DI 1
yyyy: Discrepancy error for fail-safe digital outputs (F-DO).
Bit 0: Discrepancy error for F-DO 0

Note
If several discrepancy errors occur consecutively, then this message is only signaled for the first error that occurs.
Remedy:

- check the wiring of the F-DI (contact problems).

Note:
This message can be acknowledged via F-DI or PROFIsafe.
Discrepancy errors of an F-DI can only be completely acknowledged if safe acknowledgement was carried out once the cause of the error was resolved (p10006 or acknowledgment via PROFIsafe). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state internally.
For cyclic switching operations at the F-DI, it may be necessary to adapt the discrepancy time to the switching frequency.
If the period of a cyclic switching pulse corresponds to twice the value of p 10002 , then the following formulas should be checked:

- p10002 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time)
- p10002 >= p9500 (discrepancy time must be no less than p9500)
- p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply)
td = possible actual discrepancy time (in ms) that can occur with a switching operation. This must correspond to at least 1 SI monitoring cycle (see p9500).
tp = period for a switching operation in ms.
When debounce p 10017 is active, the discrepancy time is directly specified by the debounce time.
If the period of a cyclic switching pulse corresponds to twice the debounce time, then the following formulas should be checked.
- p10002 < p10017 + 1 ms - td
- p10002 > td
-p10002 >= p9500
Example:
For a 12 ms SI monitoring cycle and a switching frequency of $110 \mathrm{~ms}(\mathrm{p} 10017=0$ ), the maximum discrepancy time which can be set is as follows:
p10002 <= ( $110 / 2 \mathrm{~ms}$ ) - $12 \mathrm{~ms}=43 \mathrm{~ms}$
Rounded-off, p10002 <= 36 ms is obtained (since the discrepancy time can only be accepted as a whole SI monitoring cycle, the value will need to be rounded up or down to a whole SI monitoring cycle if the result is not an exact multiple of an SI monitoring cycle).
Note:
F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

A30772	SI Motion P2: Test stop failsafe inputs/outputs active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The test stop for the fail-safe digital inputs (F-DI) and/or fail-safe digital outputs (F-DO) is presently being perform Note:
	F-DI: Failsafe Digital Input
	F-DO: Failsafe Digital Output
Remedy:	The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the te stop.
F30773	SI Motion P2: Test stop fault Motor Module
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on the MM side during the test stop for the fail-safe outputs.
	Fault value (r0949, interpret hexadecimal):
	RRRVWXYZ hex:
	R : Reserved.
	V: Actual state of the DO channel concerned (see X) on the CU (corresponds to the states read back from the hardware, bit $0=D O$, bit $1=\mathrm{DO} 1$, etc.).
	W: Required state of the DO channel concerned (see X, bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
	X : DO channels involved, which indicate an error (bit $0=\mathrm{DO} 0$, bit $1=\mathrm{DO} 1$, etc.).
	Y: Reason for the test stop fault.
	Z: State of the test stop in which the fault has occurred.
	Y: Reason for the test stop fault
	$Y=1$ : MM side in incorrect test stop state (internal fault).
	$\mathrm{Y}=2$ : Expected states of the DOs were not fulfilled (CU305: readback via DI 22 / CU240 readback DI 2).
	$\mathrm{Y}=3$ : Incorrect timer state on CU side (internal fault)
	$\mathrm{Y}=4$ : Expected states of the diag DOs were not fulfilled (CU305: internal readback on MM channel).
	$Y=5$ : Expected states of the second diag DOs were not fulfilled (CU305: internal readback on CU channel).
	X and V indicate the DI or Diag-DO state dependent upon the reason for the fault ( 2,4 or 5 ).
	In the event of multiple test stop faults, the first one that occurred is shown.
	Z: Test stop state and associated test actions
	$\mathrm{Z}=0 \ldots 3$. Synchronization phase of test stop between CU and Motor Module no switching operations
	$Z=4: D O+O F F$ and DO - OFF
	$Z=5$ : Check to see if states are as expected
	$Z=6: D O+O N$ and DO - ON
	$\mathrm{Z}=7$ : Check to see if states are as expected
	Z = 8: DO + OFF and DO-ON
	$Z=9$ : Check to see if states are as expected
	$Z=10: D O+O N$ and DO - OFF
	$\mathrm{Z}=11$ : Check to see if states are as expected
	$Z=12:$ DO + OFF and DO- OFF
	$Z=13$ : Check to see if states are as expected
	$Z=14:$ End of test stop

Diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: 0/-/-/1
7: 0/-/-/0
9: 0/-/-/0
11: 1/-/-/1
13: 0/-/-/1
Second diag expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/-/-/1
7: -/--/0
9: -/-/-/1
11: -/-/-/0
13: --/-/-1
DI expected states in table format:
Test stop state: Expectation Mode 1 / Mode 2 / Mode 3 / Mode 4
5: -/1/1/-
7: -/0/0/-
9: -/0/1/-
11: -/0/1/-
13: -/1/1/-

## Example:

Fault F01773 (CU) is signaled with fault value $=0001 _0127$ and fault $\mathrm{F} 30773(\mathrm{MM})$ is signaled with fault value 0000_0127.
This means that in state $7(Z=7)$ the state of the external readback signal was not set correctly $(Y=2)$ after DO-0 (X $=1$ ) was switched to ON/ON
Fault value 0001_0127 indicates that 0 was expected $(W=0)$ and $1(V=1)$ was read back from the hardware.
Fault value 0000_0127 on the MM indicates that the states were as expected.
In the case of fault F30773, W and $V$ are always identical; a value of 0 always means that 0 was expected at the readback input but was not present on the other channel (CU).

Remedy:
Check the wiring of the F-DOs and restart the test stop.
Note:
The fault is withdrawn if the test stop is successfully completed.
In the event of multiple test stop faults, the first one that occurred is shown.
Once the test stop has been restarted the next queued test stop fault will be signaled (if there is one).

A30788	Automatic test stop: wait for STO deselection via SMM
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The STO function is selected via Safety Extended Functions or a safety message is present, which results in STO.
	The automatic test stop was not able to be carried out since the power up.
	The automatic test stop is performed after deselecting STO.
Remedy:	- Deselect STO via Safety Extended Functions.
	- Remove the cause of the safety message and acknowledge the fault.
C30797	SI Motion P2: Axis not safely referenced
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The standstill position saved before powering down does not match the actual position determined at power-up.

### 4.2 List of faults and alarms

Message value (r9749, interpret decimal):
1: Axis not safely referenced.
2: User agreement missing.
If safe automatic referencing is not possible the user must issue a user agreement for the new position using the
softkey. This mean that this position is then designated as safety-relevant.
Note:
SI: Safety Integrated

## C30798

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

## SI Motion P2: Test stop running

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
The test stop is active.
Not necessary.
The message is withdrawn when the test stop is finished.
Note:
SI: Safety Integrated

## C30799

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause: <br> Cause:

## SI Motion P2: Acceptance test mode active

Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
IMMEDIATELY (POWER ON)
The acceptance test mode is active.
This means the following:

- the setpoint velocity limiting is deactivated (r9733).
- the standard limit switches are deactivated during the acceptance test for function SLP (for EPOS internal, otherwise via r10234).


## Remedy:

Not necessary.
The message is withdrawn when exiting the acceptance test mode.
Note:
SI: Safety Integrated
SLP: Safely-Limited Position

## N30800 (F)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Reaction upon F:
Acknowl. upon F:

Remedy: Evaluate the other messages that are presently available.
Power unit: Group signal

Power electronics faulted (5)
B_INF, VECTOR_G
OFF2
NONE
The power unit has detected at least one fault.

OFF2
IMMEDIATELY

## F30801

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Power unit DRIVE-CLiQ: Sign-of-life missing

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
The computing time load might be too high.

	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- remove DRIVE-CLiQ components that are not required.
	- de-select functions that are not required.
	- if required, increase the sampling times (p0112, p0115).
	- replace the component involved.
F30802	Power unit: Time slice overflow
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred.
	Fault value (r0949, interpret decimal):
	xx: Time slice number xx
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
F30804 (N, A)	Power unit: CRC
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF2 (OFF1, OFF3)
	Infeed: OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A CRC error has occurred for the power unit.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F30805	Power unit: EEPROM checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.

### 4.2 List of faults and alarms

F30809
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Power unit: Switching information not valid

Hardware / software error (1)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
For 3P gating unit, the following applies:
The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found.

- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

A30810 (F)	Power unit: Watchdog timer
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
Reaction upon F:	NONE (OFF2)
Acknowl. upon F:	IMMEDIATELY

## F30820

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Power unit DRIVE-CLiQ: Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.

	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F30835	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x$ x = error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F30836	Power unit DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
F30837	Power unit DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.

### 4.2 List of faults and alarms

```
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
```

A30840	Power unit DRIVE-CLiQ: error below the signaling threshold
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ error has occurred below the signaling threshold.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	10 (= OA hex):
	The sign-of-life bit in the receive telegram is not set.
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	16 (= 10 hex):
	The receive telegram is too early.
	32 (= 20 hex):
	Error in the telegram header.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.


	64 (= 40 hex):
	Timeout in the telegram send list.
	65 (= 41 hex):
	Telegram type does not match send list.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F30845	Power unit DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit concerned.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON (power off/on).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F30850	Power unit: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace power unit.
	- if required, upgrade the firmware in the power unit.
	- contact the Hotline.
F30851	Power unit DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.

### 4.2 List of faults and alarms

Fault cause:
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: Upgrade the firmware of the component involved.

A30853	Power unit: Sign-of-life error cyclic data
Message value:	-
Message class:	General drive fault (19)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected that the cyclic setpoint telegrams of the Control Unit have not been updated on time. At   least two sign-of-life errors have occurred within the window set in p7788.   Remedy:
	- check the electrical cabinet design and cable routing for EMC compliance   - reduce the size of the window (p7788) for monitoring.


F30860
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Power unit DRIVE-CLiQ (CU): Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.

22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause

Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F30875	Power unit DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the
	supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
- carry out a POWER ON (power off/on).	
- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).	
- check the dimensioning of the power supply for the DRIVE-CLiQ component.	

## F30885

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## CU DRIVE-CLiQ (CU): Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
OFF2
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause

### 4.2 List of faults and alarms

Remedy:	- check the power supply voltage of the component involved.   - carry out a POWER ON.   - replace the component involved.   See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F30886	PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. Data were not able to be sent.   Fault cause: $65 \text { (= } 41 \text { hex): }$   Telegram type does not match send list.   Note regarding the message value:   The individual information is coded as follows in the message value (r0949/r2124):   0000yyxx hex: $y y=$ component number, $x x=$ error cause
Remedy:	Carry out a POWER ON.
F30887	Power unit DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded.   Fault cause: $32 \text { (= } 20 \text { hex): }$   Error in the telegram header. $35 \text { (= } 23 \text { hex): }$   Receive error: The telegram buffer memory contains an error. $66 \text { (= } 42 \text { hex): }$   Send error: The telegram buffer memory contains an error. $67 \text { (= } 43 \text { hex): }$   Send error: The telegram buffer memory contains an error. $96 \text { (= } 60 \text { hex): }$   Response received too late during runtime measurement. $97 \text { (= } 61 \text { hex): }$   Time taken to exchange characteristic data too long.   Note regarding the message value:   The individual information is coded as follows in the message value (r0949/r2124):   0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).   - check the electrical cabinet design and cable routing for EMC compliance   - if required, use another DRIVE-CLiQ socket (p9904).   - replace the component involved.


F30895	PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
Remedy:	0000yyx hex: yy = component number, xx = error cause
	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

## F30896 <br> Message value:

Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:

Remedy:

## Power unit DRIVE-CLiQ (CU): Inconsistent component properties

Component number: \%1
Internal (DRIVE-CLiQ) communication error (12)
B INF, VECTOR G
Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Infeed: OFF2 (NONE, OFF1)
MMEDIATELY
The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced
Fault value (r0949, interpret decimal):
Component number.

- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

F30899 (N, A)	Power unit: Unknown fault
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F30903	Power unit: I2C bus error occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or A/D converter.
	Fault value (r0949, interpret hexadecimal):
	80000000 hex:
	- internal software error.
	00000001 hex ... 0000FFFF hex:
	- module fault.
Remedy:	Re fault value $=80000000$ hex:
	- upgrade firmware to later version.
	Re fault value $=00000001$ hex ... 0000FFFF hex:
	- replace the module.
F30907	Power unit: FPGA configuration unsuccessful
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	During initialization within the power unit, an internal software error has occurred.
Remedy:	- if required, upgrade the firmware in the power unit.
	- replace power unit.
	- contact the Hotline.


A30920 (F)	Power unit: Temperature sensor fault
Message value:	\%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected (KTY: $\mathrm{R}>1630$ Ohm, PT100: $\mathrm{R}>375$ Ohm).
	2: Measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT100: $R<30$ Ohm). Note:
	A temperature sensor is connected to the following terminals:
	- "Booksize" format: X21.1/.2 or X22.1/.2
	- "Chassis" format: X41.4/.3
	Information on temperature sensors is provided in the following literature for example:
	SINAMICS S120 Function Manual Drive Functions
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A30930 (N)	Power unit: Component trace has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Trace data was saved in the component.
Remedy:	Not necessary.
	Note:
	For p7792= 1, the trace data of the component can be written to the memory card.
	See also: p7792 (Upload component trace data)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


F30950	Power unit: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):               Information about the fault source.   Only for internal Siemens troubleshooting.      - If necessary, upgrade the firmware in the power unit to a later version.    - contact the Hotline.


A30999 (F, N)	Power unit: Unknown alarm
Message value:	New message: \%1
Message class:	Power electronics faulted (5)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
Remedy:	If required, the significance of this new alarm can be read about in a more recent description of the
	- replace the firmware on the power unit by an older firmware version (r0128).
Reaction upon F:	- upgrade the firmware on the Control Unit (r0018).
	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Infeed: NONE (OFF1, OFF2)	
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE
F31100 (N, A)	Encoder 1: Zero mark distance error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	Infeed: NONE (OFF1, OFF2)
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.

### 4.2 List of faults and alarms

	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 31101 \text { (N, A) }}$	Encoder 1: Zero mark failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected ( 4 increments $=1$ encoder pulse).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- when p0437.1 is active, check p4686.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F31103 (N, A) Encoder 1: Amplitude error track R

Message value: $\quad \mathrm{R}$ track: \%1
Message class: Position/speed actual value incorrect or not available (11)
Drive object
Reaction:

Acknowledge:
Cause:
B_INF, ENC, VECTOR_G
Vector: ENCODER (IASC/DCBRK, NONE)
Infeed: NONE
PULSE INHIBIT
The amplitude of the reference track signal (track $R$ ) does not lie within the tolerance bandwidth for encoder 1. The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is undershot.

Remedy:	- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range   - check that the encoder cables and shielding are routed in compliance with EMC.   - check the plug connections and contacts of the encoder cable.   - check the encoder type (encoder with zero marks).   - check whether the zero mark is connected and the signal cables RP and RN have been connected correctly.   - replace the encoder cable.   - if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31110 (N, A)	Encoder 1: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE) Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Fault value (r0949, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.   Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for $\mathrm{F} 3 \times 135(x=1,2,3)$ is described.

### 4.2 List of faults and alarms



	yyyy $=1$ :
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	For yyyy = 0:
	Re fault value, bit $0=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit 1 = 1:
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $2=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $3=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	Re fault value, bit $4=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	Re fault value, bit $5=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $6=1$ :
	The battery must be changed (only for encoders with battery back-up).
	For yyyy = 1:
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 31112 \text { (N, A) }}$	Encoder 1: Error bit set in the serial protocol
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The encoder sends a set error bit via the serial protocol.
	Fault value (r0949, interpret binary):
	Bit 0: Fault bit in the position protocol.
Remedy:	For fault value, bit $0=1$ :
	In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F31115 (N, A)	Encoder 1: Amplitude error track A or B (A^2 + B^2)
Message value:	A track: \%1, B-track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $\left.A^{\wedge} 2+B^{\wedge} 2\right)$ for encoder 1 exceeds the permissible tolerance.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are < 170 mV (observe the frequency response of the encoder) and > 750 mV .
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV (2.0 Vrms). The response thresholds are $<1070 \mathrm{mV}$ and>3582 mV.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	The following applies to measuring systems without their own bearing system:
	- adjust the scanning head and check the bearing system of the measuring wheel.
	The following applies for measuring systems with their own bearing system:
	- ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

F31116 (N, A) Encoder 1: Amplitude error monitoring track A + B
Message value: A track: \%1, B-track: \%2
Message class: Position/speed actual value incorrect or not available (11)
Drive object:
Reaction:

Acknowledge:
Cause:
B_INF, ENC, VECTOR_G
Vector: ENCODER (IASC/DCBRK, NONE)
Infeed: NONE

## IMMEDIATELY

The amplitude of the rectified encoder signals $A$ and $B$ and the amplitude from the roots of $A^{\wedge} 2+B^{\wedge} 2$ for encoder 1 are not within the tolerance bandwidth.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy $=$ Signal level, track $B$ (16 bits with sign).
xxxx = Signal level, track $A$ (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
The response thresholds are $<130 \mathrm{mV}$ (observe the frequency response of the encoder) and $>955 \mathrm{mV}$.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex $=21299 \mathrm{dec}$.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.   - check the plug connections.   - replace the encoder or encoder cable.   - check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31117 (N, A)	Encoder 1: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals $A^{*}, B^{*}$ and $R^{*}$ are not inverted with respect to signals $A$, $B$ and $R$.
	Fault value (r0949, interpret binary):
	Bits 0 ... 15: Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (order no.. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies:
	A square-wave encoder without track R is used and track monitoring (p0405.2 = 1) is activated.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- Check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies: - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track $R$, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31118 (N, A)	Encoder 1: Speed difference outside the tolerance range
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Encoder 1 is used as motor encoder and can be effective has fault response to change over to encoderless operation.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0491 (Motor encoder fault response ENCODER), p0492

### 4.2 List of faults and alarms

Remedy:	- check the tachometer feeder cable for interruptions.   - check the grounding of the tachometer shielding.   - if required, increase the maximum speed difference per sampling cycle (p0492).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31120 (N, A)	Encoder 1: Power supply voltage fault
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	A power supply fault was detected for encoder 1.
	Fault value (r0949, interpret binary):
	Bit 0: Undervoltage condition on the sense line.
	Bit 1: Overcurrent condition for the encoder power supply.
	Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
	Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
	Bit 4: The 24 V power supply through the Power Module (PM) is overloaded.
	Bit 5: Overcurrent at the EnDat connection of the converter.
	Bit 6: Overvoltage at the EnDat connection of the converter.
	Bit 7: Hardware fault at the EnDat connection of the converter.
	Note:
	If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Re fault value, bit $0=1$ :
	- correct encoder cable connected?
	- check the plug connections of the encoder cable.
	- SMC30: Check the parameterization (p0404.22).
	Re fault value, bit $1=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	Re fault value, bit $2=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	Re fault value, bit $3=1$ :
	- correct encoder cable connected?
	- replace the encoder or encoder cable.
	Re fault value, bit $5=1$ :
	- Measuring unit correctly connected at the converter?
	- Replace the measuring unit or the cable to the measuring unit.
	Re fault value, bit 6, $7=1$ :
	- Replace the defective EnDat 2.2 converter.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31121 (N, A)	Encoder 1: Coarse position error
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	For the actual value sensing, an error was detected on the module.
	As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position. See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31122	Encoder 1: Internal power supply voltage faulty
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER
	Infeed: NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault in internal reference voltage of ASICs for encoder 1.
	Fault value (r0949, interpret decimal):
	1: Reference voltage error.
	2: Internal undervoltage.
	3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
F31123 (N, A)	Encoder 1: Signal level A/B unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Either AP or AN outside the tolerance.
	Bit $16=1$ : Either BP or BN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are < 1700 mV and>3300 mV.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- Monitoring active (p0437.31 = 1).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.   - check the plug connections and contacts of the encoder cable.   - check the short-circuit of a signal cable with mass or the operating voltage.   - replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


Reaction upon A : Acknowl upon A	NONE NONE
F31125 (N, A)	Encoder 1: Amplitude error track A or B overcontrolled
Message value:	A track: \%1, B-track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude of track A or B for encoder 1 exceeds the permissible tolerance band.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is > 3582 mV .
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31126 (N, A)	Encoder 1: Amplitude AB too high
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\left.\|A\|+\|B\|\right)$ for encoder 1 exceeds the permissible tolerance.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold for ( $\|A\|+\|B\|$ ) is > 1120 mV or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
	The angle 0 ... FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.   - replace the encoder or encoder cable.


Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31129 (N, A)	Encoder 1: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The error for track C/D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360{ }^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A31429.
	Fault value (r0949, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31130 (N, A)	Encoder 1: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
	When initializing via track $C / D$ ( p 0404 ) then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
	When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D).
	xxxx: Deviation of the zero mark from the expected position as electrical angle.
	Scaling: $32768 \mathrm{dec}=180^{\circ}$
	See also: p0491 (Motor encoder fault response ENCODER)

### 4.2 List of faults and alarms

Remedy:	- Check p0431 and, if necessary, correct (trigger via p1990 = 1 if necessary).   - check that the encoder cables are routed in compliance with EMC.   - check the plug connections.   - if the Hall sensor is used as an equivalent for track C/D, check the connection.   - Check the connection of track C or D.   - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31131 (N, A)	Encoder 1: Deviation position incremental/absolute too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2) Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder:
	When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
	Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
	- other encoders: 15 pulses = 60 quadrants.
	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants (1 pulse = 4 quadrants).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check whether the coding disk is dirty or there are strong ambient magnetic fields.
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31135	Encoder 1: Fault when determining the position
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The encoder supplies status information bit by bit in an internal status/fault word.

Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Note regarding the bit designation:
The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting).
Bit 3: Reserved (signal amplitude).
Bit 4: Reserved (position value).
Bit 5: Reserved (overvoltage).
Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x=1, 2, 3).
Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $x=1,2,3$ ).
Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x=1, 2, 3).
Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, $x=1,2,3$ ).
Bit 11: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
Bit 12: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
Bit 14: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
Bit 15: Internal communication error ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
Bit 17: Signal amplitude (--> F3x135, x=1, 2, 3).
Bit 18: Singleturn position 1 (--> F3x135, x=1, 2, 3).
Bit 19: Overvoltage (--> F3x135, x=1, 2, 3).
Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ).
Bit 21: Overcurrent (--> F3x135, x=1, 2, 3).
Bit 22: Temperature exceeded (--> F3x405, $x=1,2,3$ ).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3).
Bit 25: Singleturn power down (-->F3x135, x=1, 2, 3).
Bit 26: Multiturn position 1 (--> $F 3 \times 136, x=1,2,3$ ).
Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$ ).
Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ ).
Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3).
Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.

- replace the encoder if necessary.

Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/on) is necessary to acknowledge the fault.

## F31136

## Message value:

Message class:
Drive object:
Reaction:

Acknowledge:
Cause:

## Encoder 1: Error when determining multiturn information

Fault cause: \%1 bin
Position/speed actual value incorrect or not available (11)
B_INF, ENC, VECTOR_G
Vector: ENCODER (IASC/DCBRK, NONE)
Infeed: NONE
PULSE INHIBIT
The encoder supplies status information bit by bit in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Note regarding the bit designation:
The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.

Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting).
Bit 3: Reserved (signal amplitude).
Bit 4: Reserved (position value).
Bit 5: Reserved (overvoltage).
Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $x=1,2,3$ ).
Bit 8: Reserved (battery)/overcurrent EnDat supply ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, x $=1,2,3$ ).
Bit 11: Reserved/internal communication error ( $-->\mathrm{F} 3 \times 110, x=1,2,3$ ).
Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
Bit 13: Reserved/internal communication error ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 14: Reserved/internal communication error (--> $F 3 \times 110, x=1,2,3$ ).
Bit 15: Internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
Bit 17: Signal amplitude (--> $3 \times 135, x=1,2,3$ ).
Bit 18: Singleturn position 1 (--> F3x135, $x=1,2,3$ ).
Bit 19: Overvoltage (--> $\operatorname{F} 3 \times 135, x=1,2,3$ ).
Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ).
Bit 21: Overcurrent (--> F3x135, x=1, 2, 3).
Bit 22: Temperature exceeded ( - -> F3x405, $x=1,2,3$ ).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> F3x135, x=1, 2, 3).
Bit 25: Singleturn power down (--> F3x135, x $=1,2,3$ ).
Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ).
Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$ ).
Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ ).
Bit 29: Multiturn power down (--> $\mathrm{F} 3 \times 136, \mathrm{x}=1,2,3$ ).
Bit 30: Multiturn overflow/underflow (--> F3x136, x=1,2,3).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.

- replace the encoder if necessary.

Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/on) is necessary to acknowledge the fault.

## F31137

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause: A position determination fault has occurred in the DRIVE-CLiQ encoder.
Fault value (r0949, interpret binary):
yyxxxxxx hex: yy = encoder version, xxxxxx = bit coding of the fault cause
For yy $=08$ hex (bit $27=1$ ), the following bit definition applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) fault position word 1.
Bit 9: F2 (safety status display) fault position word 2.
Bit 16: LED monitoring iC-LG (opto ASIC).

Bit 17: Fault in the multiturn.
Bit 23: Temperature outside the limit values.
Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F31138	Encoder 1: Internal error when determining multiturn information
Message value:	Fault cause: \%1 bin
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	A position determination fault has occurred in the DRIVE-CLiQ encoder.
	Fault value (r0949, interpret binary):
	yyxxxxxx hex: yy = encoder version, $x$ xxxxx = bit coding of the fault cause
	For yy $=08$ hex (bit $27=1$ ), the following bit definition applies:
	Bit 1: Signal monitoring (sin/cos).
	Bit 8: F1 (safety status display) fault position word 1.
	Bit 9: F2 (safety status display) fault position word 2.
	Bit 16: LED monitoring iC-LG (opto ASIC).
	Bit 17: Fault in the multiturn.
	Bit 23: Temperature outside the limit values.
	Note:
	For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy:	- determine the detailed cause of the fault using the fault value.
	- if required, replace the DRIVE-CLiQ encoder.
F31142 (N, A)	Encoder 1: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31150 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 is not operating correctly.

### 4.2 List of faults and alarms

	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
	See also: p0404 (Encoder configuration effective), p0491 (Motor encoder fault response ENCODER)
Remedy:	- Check that p0404 is correctly set.
	- check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.
	- if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31151 (N, A)	Encoder 1: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, de-activate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F31152 (N, A)	Encoder 1: Maximum input frequency exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: ENCODER (NONE, OFF1, OFF2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum input frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual input frequency in Hz.
	See also: p0408 (Rotary encoder pulse number)
Remedy:	- Reduce the speed.
Reaction upon N:	- Use an encoder with a lower pulse number (p0408).
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F31153 (N, A) Encoder 1: Identification error

Message value: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object: B_INF, ENC, VECTOR_G
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: An error has occurred when identifying the encoder (waiting) p0400=10100.
The connected encoder was not able to be identified.

	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31160 (N, A)	Encoder 1: Analog sensor channel A failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value = 1:
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31161 (N, A)	Encoder 1: Analog sensor channel B failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value $=1$ :
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4675).
	For fault value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F31163 (N, A)	Encoder 1: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: ENCODER (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of -0.5 ... +0.5.
	Fault value (r0949, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
	For fault value $=1:$
Remedy:	- Check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For fault value $=2:$
	- check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A31400 (F, N)	Encoder 1: Alarm threshold zero mark distance error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31401 (F, N)	Encoder 1: Alarm threshold zero mark failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 1.5 x parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).


	Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder
pulse).	
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- replace the encoder or encoder cable.
Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	


A31410 (F, N)	Encoder 1: Serial communications
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31411 (F, N)	Encoder 1: Absolute encoder signals internal alarms
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$ :
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy = 1:
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR_converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace encoder.


Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31412 (F, N)	Encoder 1: Error bit set in the serial protocol
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder sends a set error bit via the serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31414 (F, N)	Encoder 1: Amplitude error track Cor $\mathrm{D}^{\left(\mathrm{C}^{\wedge} 2+\mathrm{D}^{\wedge} 2\right)}$
Message value:	C track: \%1, D track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude ( $C^{\wedge} 2+D^{\wedge} 2$ ) of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track D (16 bits with sign).
	xxxx = Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N31415 (F, A)	Encoder 1: Amplitude alarm track A or B ( $\left.\mathbf{A}^{\wedge} \mathbf{2}+\mathrm{B}^{\wedge} \mathbf{2}\right)$
Message value:	Amplitude: \%1, Angle: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 1 exceeds the permissible tolerance.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Angle
	$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder).
	A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650 \mathrm{dec}$.
	The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response threshold is < $1414 \mathrm{mV}(1.0 \mathrm{Vrms})$.
	A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A31418 (F, N)	Encoder 1: Speed difference per sampling rate exceeded
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
	- if required, increase the setting of p 0492 .
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31419 (F, N)	Encoder 1: Track A or B outside tolerance
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude/phase/offset correction for track A or B is at the limit.
	Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: $+/-140 \mathrm{mV}$
	SMC10: Offset correction: +/-650 mV
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track $B$
	xxxx2: Maximum of the offset correction, track B
	xxx1x: Minimum of the offset correction, track $A$
	$x x x 2 x$ : Maximum of the offset correction, track $A$
	$x x 1 x x$ : Minimum of the amplitude correction, track B/A
	xx2xx: Maximum of the amplitude correction, track B/A
	$x 1 x x x$ : Minimum of the phase error correction
	x2xxx: Maximum of the phase error correction
	1xxxx: Minimum of the cubic correction
	$2 x x x x$ : Maximum of the cubic correction
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).   - check the plug connections (also the transition resistance).   - check the encoder signals.   - replace the encoder or encoder cable.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31421 (F, N)	Encoder 1: Coarse position error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
	Alarm value (r2124, interpret decimal):
	3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:	Re alarm value $=3$ :
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31422 (F, N)	Encoder 1: Pulses per revolution square-wave encoder outside tolerance bandwidth
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684.
	The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).
	Alarm value (r2124, interpret decimal):
	accumulated differential pulses in encoder pulses.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31429 (F, N)	Encoder 1: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error for track $\mathrm{C} / \mathrm{D}$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	Alarm value (r2124, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31431 (F, N)	Encoder 1: Deviation position incremental/absolute too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants (1 pulse = 4 quadrants).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31432 (F, N)	Encoder 1: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For track $A / B$, pulses have been lost or too many have been counted. These pulses are presently being corrected.
	Alarm value (r2124, interpret decimal):
	Last measured deviation of zero mark in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check encoder limit frequency.
	- adapt the parameter for the distance between zero marks (p0424, p0425).
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31442 (F, N)	Encoder 1: Battery voltage pre-alarm
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no longer be buffered if the battery voltage drops even further.


Remedy:	Replace battery.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31443 (F, N)	Encoder 1: Unipolar CD signal level outside specification
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance.
	Alarm value (r2124, interpret binary):
	Bit $0=1$ : Either CP or CN outside the tolerance.
	Bit $16=1$ : Either DP or DN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- Monitoring active (p0437.31 = 1).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?   - replace the encoder cable.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A31460 (N)	Encoder 1: Analog sensor channel A failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	Re alarm value = 1:
	- check the output voltage of the analog sensor.
	Re alarm value = 2:
	- check the voltage setting for each encoder period (p4673).
	Re alarm value = 3:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A31461 (N)	Encoder 1: Analog sensor channel B failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.   Alarm value (r2124, interpret decimal):   1: Input voltage outside detectable measuring range.   2: Input voltage outside the measuring range set in (p4675).   3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	Re alarm value $=1$ :   - check the output voltage of the analog sensor.   Re alarm value $=2$ :   - check the voltage setting for each encoder period (p4675).   Re alarm value $=3$ :   - check the range limit setting and increase it if necessary ( p 4676 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31462 (N)	Encoder 1: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:   Remedy:	Channel $A$ and $B$ are not activated for the analog sensor.   - activate channel A and/or channel B (p4670).   - check the encoder configuration (p0404.17).   See also: p4670 (Analog sensor configuration)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31463 (N)	Encoder 1: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Alarm value (r2124, interpret decimal):   1: Position value from the LVDT sensor.   2: Position value from the encoder characteristic.
Remedy:	Re alarm value $=1$ :   - Check the LVDT ratio (p4678).   - check the reference signal connection at track B.   Re alarm value $=2$ :   - check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE

### 4.2 List of faults and alarms

A31470 (F, N)	Encoder 1: Soiling detected
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	- replace the encoder or encoder cable.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31500 (N, A)	Encoder 1: Position tracking traversing range exceeded
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
	For $00411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 \mathrm{x}$ ) of p0421.
	For p0411.3 $=1$, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is $+/$-p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
Remedy:	The fault should be resolved as follows:
	- select encoder commissioning (p0010 = 4).
	- reset the position tracking as follows (p0411.2 = 1).
	- de-select encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F31501 (N, A)	Encoder 1: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
	Fault value (r0949, interpret decimal):
	Deviation (difference) to the last encoder position in increments of the absolute value.
	The sign designates the traversing direction.
	Note:
	The deviation (difference) found is also displayed in r0477.
	See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)


Remedy:	Reset the position tracking as follows:   - select encoder commissioning ( $\mathrm{p} 0010=4$ ).   - reset the position tracking as follows (p0411.2 = 1).   - de-select encoder commissioning ( $\mathrm{p} 0010=0$ ).   The fault should then be acknowledged and, if necessary, the absolute encoder adju See also: p0010
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31502 (N, A)	Encoder 1: Encoder with measuring gear without valid signals
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (OFF2, OFF3)
	Infeed: OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide vaid
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31503 (N, A)	Encoder 1: Position tracking cannot be reset
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:   - select encoder commissioning (p0010 = 4).   - reset the position tracking as follows (p0411.2 = 1).   - de-select encoder commissioning (p0010 = 0).
	The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A31700	Encoder 1: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	Bit $x=1$ : Effectivity test $x$ unsuccessful.
Remedy:	Replace encoder.


N31800 (F)	Encoder 1: Group signal
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Evaluate the other messages that are presently available.
Reaction upon F:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowl. upon F:	IMMEDIATELY
F31801 (N, A)	Encoder 1 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124): $0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31802 (N, A)	Encoder 1: Time slice overflow
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 1.
	Fault value (r0949, interpret hexadecimal):
	$y x$ hex: $y=$ function involved (Siemens-internal fault diagnostics), $x=$ time slice involved $x=9$ :
	Time slice overflow of the fast (current controller clock cycle) time slice. $\mathrm{x}=\mathrm{A}$ :
	Time slice overflow of the average time slice.
	$\mathrm{x}=\mathrm{C}$ :
	Time slice overflow of the slow time slice.


	$y x=3 E 7$ :
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx20 with order number 6SL3055-0AA00-5xA3 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31804 (N, A)	Encoder 1: Checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Memory area involved.
	xxxx: Difference between the checksum at POWER ON and the actual checksum.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31805 (N, A)	Encoder 1: EEPROM checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Replace the module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31806 (N, A)	Encoder 1: Initialization error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0 , 1: Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.
	Bit 9: Mid-voltage matching for track R unsuccessful.
	Bit 10: The difference in mid-voltages between A and B is too great ( $>0.5 \mathrm{~V}$ )
	Bit 11: The difference in mid-voltages between C and D is too great ( $>0.5 \mathrm{~V}$ )
	Bit 12: The difference in mid-voltages between safety A and safety B is too great (>0.5 V)
	Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great (>0.5 V )
	Bit 15: The standard deviation of the calculated mid-voltages is too great ( $>0.3 \mathrm{~V}$ )
	Bit 16: Internal fault - fault when reading a register (CAFE)
	Bit 17: Internal fault - fault when writing a register (CAFE)
	Bit 18: Internal fault: No mid-voltage matching available
	Bit 19: Internal error - ADC access error.
	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits $2 . . .9$ 9 Check encoder power supply.
	Bits $2 . . .14$ : Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit 29 ... 31: Replace the defective measuring unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A31811 (F, N)	Encoder 1: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 $=401$ ) or third-party motors (p0300 = 2).
	Cause 1:
	- The encoder was replaced.
	Cause 2:
	- A third-party, built-in or linear motor was re-commissioned.
	Cause 3:
	- The motor with integrated and adjusted encoder was replaced.
	Cause 4:
	- The firmware was updated to a version that checks the encoder serial number.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset ( $\mathrm{p} 2507=1$ ).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441 $=$ FF, p0442 $=0$, p0443 $=0$, p0444 $=0, \mathrm{p} 0445=0$.
	- parameterize F07414 as message type N (p2118, p2119).
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Re causes 1, 2:
	Carry out an automatic adjustment using the pole position identification routine. Acknowledge fault. Initiate the pole position identification routine with p1990 $=1$. Then check that the pole position identification routine is correctly executed.
	SERVO:
	If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.
	or
	Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
	Re causes 3, 4:
	Accept the new serial number with p0440 $=1$.
Reaction upon F:	Vector: NONE (ENCODER, OFF2)
	Infeed: OFF2 (NONE)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31812 (N, A)	Encoder 1: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported.
	Fault value (r0949, interpret decimal):
	0 : Application cycle is not supported.
	1: DRIVE-CLiQ cycle is not supported.

### 4.2 List of faults and alarms

	2: Distance between RX and TX instants in time too low.   3: TX instant in time too early.
Remedy:	Carry out a POWER ON (power off/on) for all components.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31813	Encoder 1: Hardware logic unit failed
Message value:	Fault cause: \%1 bin
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE
Acknowledge:	PULSE INHIBIT
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	Bit 0: ALU watchdog has responded.
	Bit 1: ALU has detected a sign-of-life error.
Remedy:	Replace encoder.
F31820 (N, A)	Encoder 1 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
	See also: p0491 (Motor encoder fault response ENCODER)


Remedy:	- carry out a POWER ON (power off/on).   - check the electrical cabinet design and cable routing for EMC compliance   - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).   See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31835 (N, A)	Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31836 (N, A)	Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

### 4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
F31837 (N, A)	Encoder 1 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A31840	Encoder 1 DRIVE-CLiQ: error below the signaling threshold
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ error has occurred below the signaling threshold.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex ):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.


	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	16 (= 10 hex):
	The receive telegram is too early.
	32 (= 20 hex):
	Error in the telegram header.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	64 (= 40 hex):
	Timeout in the telegram send list.
	65 (= 41 hex):
	Telegram type does not match send list.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F31845 (N, A)	Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	Carry out a POWER ON (power off/on).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F31850 (N, A)	Encoder 1: Encoder evaluation internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the Sensor Module of encoder 1.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2. Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted. 11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: Communication with AD converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.
	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F31851 (N, A) Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing
Message value: Component number: \%1, fault cause: \%2
Message class: Internal (DRIVE-CLiQ) communication error (12)
Drive object: B_INF, ENC, VECTOR_G
Reaction: Vector: ENCODER (IASC/DCBRK, NONE)
Infeed: NONE (OFF1, OFF2)
Acknowledge:
Cause:
IMMEDIATELY

Cause:	RIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	- Upgrade the firmware of the component involved.
	- carry out a POWER ON (power off/on) for the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A :	NONE


F31860 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
	20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F31875 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: OFF2
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31885 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A :	NONE


F31886 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $y \mathrm{y}=$ component number, $x x=$ error cause
Remedy:	- carry out a POWER ON.
	- check whether the firmware version of the encoder (r0148) matches the firmware version of Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31887 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 1). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F31895 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31896 (N, A)	Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: OFF2 (ENCODER, IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F31899 (N, A)	Encoder 1: Unknown fault
Message value:	New message: \%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.


	Note:
	If required, the significance of this new fault can be read about in a more recent description of
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A31902 (F, N)	Encoder 1: SPI-BUS error occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A31903 (F, N)	Encoder 1: I2C-BUS error occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.
Reaction upon F :	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
$\overline{\mathrm{F} 31905}$ (N, A)	Encoder 1: Parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 1 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.

### 4.2 List of faults and alarms

The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter
xxxx = 421:
For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
yyyy = 0:
No information available.
yyyy = 1 :
The component does not support HTL level $(p 0405.1=0)$ combined with track monitoring $A / B<>-A / B(p 0405.2=1)$.
yyyy $=2$ :
A code number for an identified encoder has been entered into p0400, however, no identification was carried out.
Please start a new encoder identification.
yyyy = 3 :
A code number for an identified encoder has been entered into p0400, however, no identification was carried out.
Please select a listed encoder in p0400 with a code number < 10000.
yyyy $=4$ :
This component does not support SSI encoders (p0404.9 = 1) without track A/B.
yyyy $=5$ :
For SQW encoder, value in p4686 greater than in p0425.
yyyy $=6$ :
DRIVE-CLiQ encoder cannot be used with this firmware version.
yyyy = 7:
For an SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks.
yyyy = 8:
The motor pole pair width is not supported by the linear scale being used.
yyyy $=9$ :
The length of the position in the EnDat protocol may be a maximum of 32 bits.
yyyy = 10:
The connected encoder is not supported.
yyyy = 11:
The hardware does not support track monitoring.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check whether the connected encoder type matches the encoder that has been parameterized.

- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number $=314$ :
- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).

Reaction upon N :
Acknowl. upon N :
Reaction upon A:
Acknowl. upon A:

NONE
NONE
NONE
NONE

## F31912

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:

## Cause:

## Encoder 1: Device combination is not permissible

\%1
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, ENC, VECTOR_G
Vector: ENCODER (IASC/DCBRK, NONE)
Infeed: ENCODER (NONE)
PULSE INHIBIT
The selected device combination is not supported.
Fault value (r0949, interpret decimal):
1003:
The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.

1005:
The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
1006:
The maximum duration ( $31.25 \mu \mathrm{~s}$ ) of the EnDat transfer was exceeded.
2001:
The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
2002:
The resolution of the linear measuring unit does not match the pole pair width of the linear motor
Remedy: $\quad$ Re fault value $=1003,1005,1006$ :

- Use a measuring unit that is permissible.

For fault value = 2001:

- Set a permissible cycle combination (if required, use standard settings).

For fault value $=2002$ :

- Use a measuring unit with a lower resolution (p0422).

A31915 (F, N)	Encoder 1: Configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 1 is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Re-parameterization between fault/alarm is not permissible.
	419:
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:	Re alarm value $=1$ :
	No re-parameterization between fault/alarm.
	Re alarm value $=419$ :
	Reduce the fine resolution (p0419) or deactivate the monitoring (p0437.25), if the complete multiturn range is not required.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F31916 (N, A)	Encoder 1: Parameterization fault
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 1 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
	See also: p0491 (Motor encoder fault response ENCODER)

### 4.2 List of faults and alarms

Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.   - correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F31916 (N, A)	Encoder 1: Parameterization fault
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	ENC
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 1 was detected as being incorrect.
	In the case of the ENCODER drive object, the selected encoder type (rotary/linear) might not match the function module setting (r0108.12).
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- if a linear encoder has been selected in parameter p0400/p0404, the "linear encoder" function module has to be activated (r0108.12 = 1)
	- if a rotary encoder has been selected in parameter p0400/p0404, the "linear encoder" function module should not be activated (r0108.12 = 0)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A31920 (F, N)	Encoder 1: Temperature sensor fault
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
	2 (= 02 hex):
	Measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm).
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = channel number, $x x=$ error cause
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- check that the encoder cable is the correct type and is correctly connected.
	- check the temperature sensor selection in p0600 to p0603.
	- replace the Sensor Module (hardware defect or incorrect calibration data).


Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)   Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A31930 (N)	Encoder 1: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the activated function "Data logger" (p0437.0 $=1$ ) a fault has occurred with the Sensor Module. This alarm   indicates that the diagnostics data corresponding to the fault was saved on the memory card.
	The diagnostics data is saved in the following folder:
	IUSER/SINAMICS/DATA/SMTRC00.BIN


A31940 (F, N)	Encoder 1: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Fault value (r0949, interpret decimal):
	Signal level from sensor S1.
	Note:
	A signal level of 500 mV corresponds to the numerical value 500 dec.
	- Check the clamped tool.
	- Check the tolerance and if required, adapt (p5040).
	- Check the thresholds and if required, adapt (p5041).
	- Check analog sensor S1 and connections.
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

### 4.2 List of faults and alarms

F31950	Encoder 1: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	ENCODER (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	The fault value contains information regarding the fault source.
	Only for internal Siemens troubleshooting.   - If necessary, upgrade the firmware in the Sensor Module to a later version.
Remedy:	- contact the Hotline.


A31999 (F, N)	Encoder 1: Unknown alarm
Message value:	New message: \%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	B_INF, ENC, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A alarm has occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
	See also: p0491 (Motor encoder fault response ENCODER)
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Vector: NONE (ENCODER, IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F32100 (N, A) Encoder 2: Zero mark distance error
Message value: $\% 1$
Message class: Position/speed actual value incorrect or not available (11)
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - check that the encoder cables are routed in compliance with EMC.
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
PULSE INHIBIT
The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments ( 4 increments $=1$ encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.

- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.

Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F32101 (N, A) Encoder 2: Zero mark failed

## Message value: \%1

Message class: Position/speed actual value incorrect or not available (11)
Drive object:
Reaction:
Acknowledge:
Cause:

	pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).	
- adapt the parameter for the clearance between zero marks (p0425).	
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable.	
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F32103 (N, A) Encoder 2: Amplitude error track R

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: $\quad$\begin{tabular}{l}

- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be <br>
sufficient for the speed range <br>
- check that the encoder cables and shielding are routed in compliance with EMC. <br>
- check the plug connections and contacts of the encoder cable. <br>
- check the encoder type (encoder with zero marks). <br>
- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly.
\end{tabular}


### 4.2 List of faults and alarms

	- replace the encoder cable.   - if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32110 (N, A)	Encoder 2: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Fault value (r0949, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for $\mathrm{F} 3 \times 135(x=1,2,3)$ is described.
Remedy:	Re fault value, bit $0=1$ :
	- Enc defect F31111 may provide additional details.
	Re fault value, bit $1=1$ :
	- Incorrect encoder type / replace the encoder or encoder cable.
	Re fault value, bit $2=1$ :

- Incorrect encoder type / replace the encoder or encoder cable.

Re fault value, bit $3=1$ :

- EMC / connect the cable shield, replace the encoder or encoder cable.

Re fault value, bit $4=1$ :

- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.

Re fault value, bit $5=1$ :

- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.

Re fault value, bit $6=1$ :

- Update Sensor Module firmware.

Re fault value, bit $7=1$ :

- Incorrect encoder type / replace the encoder or encoder cable.

Re fault value, bit $8=1$ :

- Check parameterization (p0429.2).

Re fault value, bit $9=1$ :

- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $10=1$ :
- Check parameterization (p0429.2, p0449).

	Re fault value, bit $11=1$ :
	- Check parameterization (p0436).
	Re fault value, bit $12=1$ :
	- Check parameterization (p0429.6).
	Re fault value, bit $13=1$ :
	- Check data line.
	Re fault value, bit $14=1$ :
	- Incorrect encoder type / replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32111 (N, A)	Encoder 2: Absolute encoder internal fault
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The absolute encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy = 0:
	Bit 0: Lighting system failed.
	Bit 1: Signal amplitude too low.
	Bit 2: Position value incorrect.
	Bit 3: Encoder power supply overvoltage condition.
	Bit 4: Encoder power supply undervoltage condition.
	Bit 5: Encoder power supply overcurrent condition.
	Bit 6: The battery must be changed.
	yyyy = 1:
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	For yyyy = 0:
	Re fault value, bit $0=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $1=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $2=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $3=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	Re fault value, bit $4=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.

### 4.2 List of faults and alarms

	When using a motor with DRIVE-CLiQ: Replace the motor.
	Re fault value, bit $5=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $6=1$ :
	The battery must be changed (only for encoders with battery back-up).
	For yyyy = 1 :
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32115 (N, A)	Encoder 2: Amplitude error track A or B (A^2 + B^2)
Message value:	A track: \%1, B-track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2$ ) for encoder 2 exceeds the permissible tolerance.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	$x x x x=$ Signal level, track A ( 16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<170 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response thresholds are $<1070 \mathrm{mV}$ and>3582 mV.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	The following applies to measuring systems without their own bearing system:
	- adjust the scanning head and check the bearing system of the measuring wheel.
	The following applies for measuring systems with their own bearing system:
	- ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F32116 (N, A) Encoder 2: Amplitude error monitoring track A + B

Message value: A track: \%1, B-track: \%2
Message class: Position/speed actual value incorrect or not available (11)
Drive object:
Reaction:
Acknowledge:
Cause:

## VECTOR_G

OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
IMMEDIATELY
The amplitude of the rectified encoder signals $A$ and $B$ and the amplitude from the roots of $A^{\wedge} 2+B^{\wedge} 2$ for encoder 2 are not within the tolerance bandwidth.

	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	$x x x x=$ Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are < 130 mV (observe the frequency response of the encoder) and > 955 mV .
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32117 (N, A)	Encoder 2: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals $A^{*}, B^{*}$ and $R^{*}$ are not inverted with respect to signals $A$, $B$ and $R$.
	Fault value (r0949, interpret binary):
	Bits 0 ... 15: Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (order no.. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies:
	A square-wave encoder without track R is used and track monitoring ( $\mathrm{p} 0405.2=1$ ) is activated.
Remedy:	- Check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies: - check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track $R$, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A :	NONE


F32118 (N, A)	Encoder 2: Speed difference outside the tolerance range
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Fault value (ro949, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: po492
	- check the tachometer feeder cable for interruptions.
Remedy:	- check the grounding of the tachometer shielding.


	Re fault value, bit 6, $7=1$ :   - Replace the defective EnDat 2.2 converter.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32121 (N, A)	Encoder 2: Coarse position error
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For the actual value sensing, an error was detected on the module.
	As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32122	Encoder 2: Internal power supply voltage faulty
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	Fault in internal reference voltage of ASICs for encoder 2.
	Fault value (r0949, interpret decimal):
	1: Reference voltage error.
	2: Internal undervoltage.
	3: Internal overvoltage.
Remedy:	Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
F32123 (N, A)	Encoder 2: Signal level A/B unipolar outside tolerance
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The unipolar level (AP/AN or BP/BN) for encoder 2 is outside the permissible tolerance.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Either AP or AN outside the tolerance.
	Bit 16 = 1: Either BP or BN outside the tolerance.
	The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
	The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- Monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
	- check the plug connections and contacts of the encoder cable.
	- check the short-circuit of a signal cable with mass or the operating voltage.
	- replace the encoder cable.

### 4.2 List of faults and alarms

Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

## F32125 (N, A) Encoder 2: Amplitude error track A or B overcontrolled

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

Reaction upon N :
Acknowl. upon N :
Reaction upon A: Acknowl. upon A:

A track: \%1, B-track: \%2
Position/speed actual value incorrect or not available (11)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
PULSE INHIBIT
The amplitude of track A or B for encoder 2 exceeds the permissible tolerance band.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
$x x x x=$ Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex $=21299 \mathrm{dec}$.
Note for Sensor Modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is $>3582 \mathrm{mV}$.
A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

## F32126 (N, A) Encoder 2: Amplitude AB too high

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

NONE
NONE
NONE
NONE

Amplitude: \%1, Angle: \%2
Position/speed actual value incorrect or not available (11)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
PULSE INHIBIT
The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $\left.|A|+|B|\right)$ for encoder 2 exceeds the permissible tolerance.

Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Angle
$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
The response threshold for $(|A|+|B|)$ is $>1120 \mathrm{mV}$ or the root of $\left(\mathrm{A}^{\wedge} 2+\mathrm{B}^{\wedge} 2\right)>955 \mathrm{mV}$.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy: - check that the encoder cables and shielding are routed in compliance with EMC.

- replace the encoder or encoder cable.

Reaction upon N: NONE
Acknowl. upon N: NONE

Reaction upon $A$ : Acknowl. upon A :	NONE NONE
$\overline{\mathrm{F} 32129 \text { (N, A) }}$	Encoder 2: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track $\mathrm{C} / \mathrm{D}$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360{ }^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A32429.
	Fault value (r0949, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32130 (N, A)	Encoder 2: Zero mark and position error from the coarse synchronization
Message value:	Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
	When initializing via track $\mathrm{C} / \mathrm{D}$ ( p 0404 ) then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
	When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Determined mechanical zero mark position (can only be used for track C/D).
	xxxx: Deviation of the zero mark from the expected position as electrical angle.
	Scaling: $32768 \mathrm{dec}=180^{\circ}$
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- if the Hall sensor is used as an equivalent for track C/D, check the connection.
	- Check the connection of track C or D.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


Reaction upon A :   Acknowl. upon A:	NONE NONE
F32131 (N, A)	Encoder 2: Deviation position incremental/absolute too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder:
	When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
	Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
	- other encoders: 15 pulses $=60$ quadrants.
	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants (1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check whether the coding disk is dirty or there are strong ambient magnetic fields.
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary ( p 0438 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32135	Encoder 2: Fault when determining the position
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
	Fault value (r0949, interpret binary):
	Bit 0: F1 (safety status display).
	Bit 1: F2 (safety status display).
	Bit 2: Reserved (lighting).
	Bit 3: Reserved (signal amplitude).
	Bit 4: Reserved (position value).
	Bit 5: Reserved (overvoltage).
	Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, $x=1,2,3$ ).

Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
Bit 9: Reserved/overvoltage EnDat supply ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 11: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
Bit 13: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
Bit 14: Reserved/internal communication error (--> F3x110, $x=1,2,3$ ).
Bit 15: Internal communication error (--> $3 \times 110, x=1,2,3$ ).
Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
Bit 17: Signal amplitude (--> $3 \times 135, x=1,2,3$ ).
Bit 18: Singleturn position 1 (--> F3x135, $x=1,2,3$ ).
Bit 19: Overvoltage (--> $\operatorname{F3x} 135, x=1,2,3$ ).
Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ).
Bit 21: Overcurrent (--> F3x135, x=1, 2, 3).
Bit 22: Temperature exceeded ( $-->F 3 \times 405, x=1,2,3$ ).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> F3x135, x=1,2,3).
Bit 25: Singleturn power down (--> F3x135, $x=1,2,3$ ).
Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ).
Bit 27: Multiturn position $2(-->F 3 \times 136, x=1,2,3)$.
Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ ).
Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3).
Bit 30: Multiturn overflow/underflow (--> F3x136, x=1,2,3).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.

- replace the encoder if necessary.

Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/on) is necessary to acknowledge the fault.

## F32136

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Encoder 2: Error when determining multiturn information

## Fault cause: \%1 bin

Position/speed actual value incorrect or not available (11)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
PULSE INHIBIT
The encoder supplies status information bit by bit in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Note regarding the bit designation:
The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting).
Bit 3: Reserved (signal amplitude).
Bit 4: Reserved (position value).
Bit 5: Reserved (overvoltage).
Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $x=1,2,3$ ).
Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
Bit 9: Reserved/overvoltage EnDat supply (--> $F 3 \times 110, x=1,2,3$ ).
Bit 11: Reserved/internal communication error (--> $F 3 \times 110, x=1,2,3$ ).
Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).

```
 Bit 13: Reserved/internal communication error (--> F3x110, x=1, 2, 3).
 Bit 14: Reserved/internal communication error (--> F3x110, x=1, 2, 3).
 Bit 15: Internal communication error (--> F3x110, x=1, 2, 3).
 Bit 16: Lighting (--> F3x135,x=1, 2, 3).
 Bit 17: Signal amplitude (--> F3x135,x=1, 2, 3).
 Bit 18: Singleturn position 1 (--> F3x135, x=1, 2, 3).
 Bit 19: Overvoltage (--> F3x135, x = 1, 2, 3).
 Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3).
 Bit 21: Overcurrent (--> F3x135, x=1, 2, 3).
 Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3).
 Bit 23: Singleturn position 2 (safety status display).
 Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3).
 Bit 25: Singleturn power down (--> F3x135, x=1, 2, 3).
 Bit 26: Multiturn position 1 (--> F3x136, x=1, 2, 3).
 Bit 27: Multiturn position 2 (--> F3x136,x=1, 2, 3).
 Bit 28: Multiturn system (--> F3x136, x=1, 2, 3).
 Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3).
 Bit 30: Multiturn overflow/underflow (--> F3x136, x=1, 2, 3).
 Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.
 - replace the encoder if necessary.
 Note:
 An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
 If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON
 (switch-off/on) is necessary to acknowledge the fault.
```

F32137
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.


## F32138

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Encoder 2: Internal error when determining multiturn information

## Fault cause: \%1 bin

Hardware / software error (1)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) PULSE INHIBIT
A position determination fault has occurred in the DRIVE-CLiQ encoder.

Fault value (r0949, interpret binary):
yyxxxxxx hex: yy = encoder version, xxxxxx = bit coding of the fault cause
For yy $=08$ hex (bit $27=1$ ), the following bit definition applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) fault position word 1.
Bit 9: F2 (safety status display) fault position word 2.
Bit 16: LED monitoring iC-LG (opto ASIC).
Bit 17: Fault in the multiturn.
Bit 23: Temperature outside the limit values.
Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.
Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F32142 (N, A)	Encoder 2: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32150 \text { ( } \mathrm{N}, \mathrm{A})}$	Encoder 2: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 is not operating correctly.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:	- Check that p0404 is correctly set.   - check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.   - if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32151 (N, A)	Encoder 2: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.

### 4.2 List of faults and alarms

Remedy:	Reduce the speed of the encoder accordingly during initialization. If necessary, de-activate monitoring (p0437.29).   See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32152 (N, A)	Encoder 2: Maximum input frequency exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum input frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual input frequency in Hz.
	See also: p0408 (Rotary encoder pulse number)
Remedy:	- Reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32153 (N, A)	Encoder 2: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) p0400=10100.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE

## F32160 (N, A) Encoder 2: Analog sensor channel A failed

Message value: \%1
Message class: Position/speed actual value incorrect or not available (11)
Drive object: VECTOR_G
Reaction:
Acknowledge
Cause:

OFF1 (IASC/DCBRK, NONE)
PULSE INHIBIT
The input voltage of the analog sensor is outside the permissible limits.
Fault value (r0949, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside the measuring range set in (p4673).
3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).

Remedy:	For fault value =1:   - check the output voltage of the analog sensor.   For fault value $=2$ :   - check the voltage setting for each encoder period (p4673).   For fault value $=3$ :   - check the range limit setting and increase it if necessary ( $p 4676$ ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32161 (N, A)	Encoder 2: Analog sensor channel B failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.   Fault value (r0949, interpret decimal):   1: Input voltage outside detectable measuring range.   2: Input voltage outside the measuring range set in (p4675).   3: The absolute value of the input voltage has exceeded the range limit ( p 4676 ).
Remedy:	For fault value =1:   - check the output voltage of the analog sensor.   For fault value $=2$ :   - check the voltage setting for each encoder period (p4675).   For fault value $=3$ :   - check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32163 (N, A)	Encoder 2: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, interpret decimal):   1: Position value from the LVDT sensor.   2: Position value from the encoder characteristic.
Remedy:	For fault value $=1$ :   - Check the LVDT ratio (p4678).   - check the reference signal connection at track B.   For fault value $=2$ :   - check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


A32400 (F, N)	Encoder 2: Alarm threshold zero mark distance error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32401 (F, N)	Encoder 2: Alarm threshold zero mark failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 1.5 x parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder
	pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
Reaction upon F:	- replace the encoder or encoder cable.
NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F32405 (N, A) Encoder 2: Temperature in the encoder evaluation inadmissible
Message value: \%1
Message class: Overtemperature of the electronic components (6)
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:	Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon A:	NONE


A32410 (F, N)	Encoder 2: Serial communications
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32411 (F, N)	Encoder 2: Absolute encoder signals internal alarms
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set.
	Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy = 0:
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyy = 1:
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
Bit 6: Internal error identified at the error pin (nErr).	
Bemedy:	Bit 7: Temperature threshold exceeded or fallen below.
Reaction upon F:	Replace encoder.
NoNE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Reaction upon N:	IMMEDIATELY
NONE	
Acknowl. upon N:	NONE


A32412 (F, N)	Encoder 2: Error bit set in the serial protocol
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder sends a set error bit via the serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.
	- carry out a POWER ON (power off/on) for all components.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A32414 (F, N)	Encoder 2: Amplitude error track C or $\mathrm{D}\left(\mathrm{C}^{\wedge} \mathbf{2}+\mathrm{D}^{\wedge} \mathbf{2}\right)$
Message value:	C track: \%1, D track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude ( $\left.C^{\wedge} 2+D^{\wedge} 2\right)$ of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track D (16 bits with sign).
	xxxx = Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are < 230 mV (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

## N32415 (F, A) Encoder 2: Amplitude alarm track A or B (A^2 + B^2)

Message value: Amplitude: \%1, Angle: \%2
Message class: Position/speed actual value incorrect or not available (11)
Drive object
Reaction:
Acknowledge:
Cause:
Remedy: $\quad$ - check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not $\quad$ sufficient for the speed range.

### 4.2 List of faults and alarms

	- check the Sensor Module (e.g. contacts).   - if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A32418 (F, N)	Encoder 2: Speed difference per sampling rate exceeded
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492. The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time. Alarm value (r2124, interpret decimal):   Only for internal Siemens troubleshooting.   See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.   - check the grounding of the tachometer shielding.   - if required, increase the setting of p0492.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32419 (F, N)	Encoder 2: Track A or B outside tolerance
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude/phase/offset correction for track A or B is at the limit.
	Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: $+/-140 \mathrm{mV}$
	SMC10: Offset correction: +/-650 mV
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track B
	$x x x x 2$ : Maximum of the offset correction, track $B$
	$x \mathrm{xx1x}$ : Minimum of the offset correction, track $A$
	$x x x 2 x$ : Maximum of the offset correction, track $A$
	$x \times 1 x x$ : Minimum of the amplitude correction, track B/A
	$x x 2 x x$ : Maximum of the amplitude correction, track B/A
	$x 1 x x x$ : Minimum of the phase error correction
	$x 2 x x x$ : Maximum of the phase error correction
	1 xxxx : Minimum of the cubic correction
	$2 x x x x$ : Maximum of the cubic correction
Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).   - check the plug connections (also the transition resistance).   - check the encoder signals.   - replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY


Reaction upon N : Acknowl. upon N :	NONE NONE
A32421 (F, N)	Encoder 2: Coarse position error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.   Alarm value (r2124, interpret decimal):   3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:	Re alarm value $=3$ :   - For a standard encoder with cable, contact the manufacturer where relevant.   - correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with $A^{*}$ and $B$ with $B^{*}$ ) or, for a programmable encoder, check the zero offset of the position.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32422 (F, N)	Encoder 2: Pulses per revolution square-wave encoder outside tolerance bandwidth
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.   This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684.   The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).   Alarm value (r2124, interpret decimal):   accumulated differential pulses in encoder pulses.
Remedy:	- check that the encoder cables are routed in compliance with EMC.   - check the plug connections.   - check the encoder type (encoder with equidistant zero marks).   - adapt the parameter for the distance between zero marks (p0424, p0425).   - replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32429 (F, N)	Encoder 2: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error for track C/D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.   One period of track C/D corresponds to $360^{\circ}$ mechanical.   One period of the Hall signal corresponds to $360^{\circ}$ electrical.

### 4.2 List of faults and alarms

The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).

## Remedy:

Reaction upon $F$ : Acknowl. upon F: Reaction upon N : Acknowl. upon N :

- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
IMMEDIATELY
NONE
NONE

A32431 (F, N)	Encoder 2: Deviation position incremental/absolute too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants ( 1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A32432 (F, N)	Encoder 2: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.
	Alarm value (r2124, interpret decimal):
	Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check encoder limit frequency.
	- adapt the parameter for the distance between zero marks (p0424, p0425).

```
Reaction upon F: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE
```

A32442 (F, N)	Encoder 2: Battery voltage pre-alarm
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The multiturn information can no
	longer be buffered if the battery voltage drops even further.
Remedy:	Replace battery.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

A32443 (F, N) Encoder 2: Unipolar CD signal level outside specification
Message value: Fault cause: \%1 bin
Message class: Position/speed actual value incorrect or not available (11)
Drive object: VECTOR_G
Reaction: NONE
Acknowledge:
Cause: $\quad$ The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance
Alarm value (r2124, interpret binary):
Bit $0=1$ : Either CP or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range $2500 \mathrm{mV}+/-500 \mathrm{mV}$.
The response thresholds are $<1700 \mathrm{mV}$ and $>3300 \mathrm{mV}$.
Note:
The signal level is not evaluated unless the following conditions are satisfied
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
Remedy: - check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts of the encoder cable.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.
Reaction upon F: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE

A32460 (N)	Encoder 2: Analog sensor channel A failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p4676).

### 4.2 List of faults and alarms

Remedy:	Re alarm value $=1$ :   - check the output voltage of the analog sensor.   Re alarm value $=2$ :   - check the voltage setting for each encoder period (p4673).   Re alarm value $=3$ :   - check the range limit setting and increase it if necessary ( p 4676 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32461 (N)	Encoder 2: Analog sensor channel B failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.   Alarm value (r2124, interpret decimal):   1: Input voltage outside detectable measuring range.   2: Input voltage outside the measuring range set in (p4675).   3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	Re alarm value $=1$ :   - check the output voltage of the analog sensor.   Re alarm value $=2$ :   - check the voltage setting for each encoder period (p4675).   Re alarm value $=3$ :   - check the range limit setting and increase it if necessary ( p 4676 ).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32462 (N)	Encoder 2: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:   Remedy:	Channel $A$ and $B$ are not activated for the analog sensor.   - activate channel A and/or channel B (p4670).   - check the encoder configuration (p0404.17).   See also: p4670 (Analog sensor configuration)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32463 (N)	Encoder 2: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Alarm value (r2124, interpret decimal):   1: Position value from the LVDT sensor.   2: Position value from the encoder characteristic.
Remedy:	Re alarm value $=1$ :   - Check the LVDT ratio (p4678).   - check the reference signal connection at track B.


	Re alarm value $=2$ :   - check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32470 (F, N)	Encoder 2: Soiling detected
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections.
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

## F32500 (N, A) Encoder 2: Position tracking traversing range exceeded

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

Acknowl. upon N :
Reaction upon $A$ :
Acknowl. upon A:

Position/speed actual value incorrect or not available (11)
VECTOR_G
OFF1 (NONE, OFF2, OFF3)
IMMEDIATELY
For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
For $p 0411.0=1$, the maximum traversing range for the configured linear axis is defined to be $64 x(+/-32 x)$ of $p 0421$.
For p0411.3 = 1, the maximum traversing range for the configured linear axis is pre-set (default value) to the highest possible value and is $+/-$ p0412/2 (rounded off to complete revolutions). The highest possible value depends on the pulse number (p0408) and the fine resolution (p0419).
The fault should be resolved as follows:

- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning ( $\mathrm{p} 0010=0$ ).

The fault should then be acknowledged and the absolute encoder adjusted.

F32501 (N, A) Encoder 2: Position tracking encoder position outside tolerance window
Message value: \%1
Message class: Position/speed actual value incorrect or not available (11)
Drive object: VECTOR_G
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge:

## Cause:

NONE
NONE
NONE
NONE

### 4.2 List of faults and alarms

Remedy:	Reset the position tracking as follows:   - select encoder commissioning (p0010 = 4).   - reset the position tracking as follows (p0411.2 = 1).   - de-select encoder commissioning (p0010 = 0).   The fault should then be acknowledged and, if necessary, the absolute encoder adjusted ( p 2507 ).   See also: p0010
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32502 (N, A)	Encoder 2: Encoder with measuring gear without valid signals
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32503 (N, A)	Encoder 2: Position tracking cannot be reset
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:   - select encoder commissioning (p0010 = 4).   - reset the position tracking as follows (p0411.2 = 1).   - de-select encoder commissioning ( $p 0010=0$ ).   The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A32700	Encoder 2: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	Bit $x=1$ : Effectivity test $x$ unsuccessful.
Remedy:	Replace encoder.


N32800 (F)	Encoder 2: Group signal
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F32801 (N, A)	Encoder 2 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32802 \text { (N, A) }}$	Encoder 2: Time slice overflow
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 2.
	Fault value (r0949, interpret hexadecimal):
	$y x$ hex: $\mathrm{y}=$ function involved (Siemens-internal fault diagnostics), $\mathrm{x}=$ time slice involved
	$x=9: 3$
	Time slice overflow of the fast (current controller clock cycle) time slice.
	$x=A$ :
	Time slice overflow of the average time slice.
	$\mathrm{x}=\mathrm{C}$ :
	Time slice overflow of the slow time slice.
	$\mathrm{yx}=3 \mathrm{E} 7$ :
	Timeout when waiting for SYNO (e.g. unexpected return to non-cyclic operation).
Remedy:	Increase the current controller sampling time
	Note:
	For a current controller sampling time $=31.25 \mu \mathrm{~s}$, use an SMx 20 with order number 6SL3055-0AA00-5xA3 .
Reaction upon N :	NONE
Acknowl. upon N :	NONE

### 4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
F32804 (N, A)	Encoder 2: Checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	POWER ON (IMMEDIATELY)
Cause:	A checksum error has occurred when reading-out the program memory on the Sensor Module.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex
	yyyy: Memory area involved.
	xxxx: Difference between the checksum at POWER ON and the actual checksum.
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version (>= V2.6 HF3, >= V4.3 SP2, >= V4.4).
	- check whether the permissible ambient temperature for the component is maintained.
	- replace the Sensor Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32805 (N, A)	Encoder 2: EEPROM checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32806 (N, A)	Encoder 2: Initialization error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0,1 : Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.


Remedy:	Acknowledge fault.
If the fault cannot be acknowledged:	
	Bits $2 \ldots 9$ : Check encoder power supply.
	Bits $2 \ldots$ 14: Check the corresponding cable.
	Bit 15 with no other bits: Check track R , check settings in p0404.
	Bit $28:$ Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit $29 \ldots 31$ : Replace the defective measuring unit.
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE


A32811 (F, N)	Encoder 2: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).   - The encoder was replaced.   Note:   With closed-loop position control, the serial number is accepted when starting the adjustment ( $\mathrm{p} 2507=2$ ).   When the encoder is adjusted ( $\mathrm{p} 2507=3$ ), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).   Proceed as follows to hide serial number monitoring:   - set the following serial numbers for the corresponding Encoder Data Set: p0441 $=$ FF, p0442 $=0$, p0443 $=0$, p0444 $=0, \mathrm{p} 0445=0$.
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 $=1$.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F32812 (N, A)	Encoder 2: Requested cycle or RX-/TX timing not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A cycle requested from the Control Unit or RX/TX timing is not supported.
	Fault value (r0949, interpret decimal):
	0: Application cycle is not supported.
	1: DRIVE-CLiQ cycle is not supported.
	2: Distance between RX and TX instants in time too low.
	3: TX instant in time too early.
	Carry out a POWER ON (power off/on) for all components.
Remedy:	NONE
Reaction upon N:	
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32813	


	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 32835 \text { (N, A) }}$	Encoder 2 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32836 (N, A)	Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause


Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32837 (N, A)	Encoder 2 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A32840	Encoder 2 DRIVE-CLiQ: error below the signaling threshold
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ error has occurred below the signaling threshold.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.

```
7(= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
16 (= 10 hex):
The receive telegram is too early.
32 (= 20 hex):
Error in the telegram header.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
64 (= 40 hex):
Timeout in the telegram send list.
65 (= 41 hex):
Telegram type does not match send list.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
\begin{tabular}{ll}
\hline F32845 (N, A) & Encoder 2 DRIVE-CLiQ: Cyclic data transfer error \\
Message value: & Component number: \%1, fault cause: \%2 \\
Message class: & Internal (DRIVE-CLiQ) communication error (12) \\
Drive object: & VECTOR_G \\
Reaction: & OFF1 (IASC/DCBRK, NONE, OFF2, OFF3) \\
Acknowledge: & IMMEDIATELY \\
Cause: & A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. \\
& Fault cause: \\
& 11 (= 0B hex): \\
& Synchronization error during alternating cyclic data transfer. \\
& Note regarding the message value: \\
& The individual information is coded as follows in the message value (r0949/r2124): \\
Remedy: & 0000yyx hex: yy = component number, xx = error cause \\
& Carry out a POWER ON (power off/on). \\
Reaction upon N: & See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave) \\
Acknowl. upon N: & NONE \\
Reaction upon A: & NONE \\
Acknowl. upon A: & NONE
\end{tabular}
```

F32850 (N, A)	Encoder 2: Encoder evaluation internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the Sensor Module of encoder 2.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
	11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: Communication with AD converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.
	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F32851 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- Upgrade the firmware of the component involved.
	- carry out a POWER ON (power off/on) for the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F32860 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early. 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early.
	22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A :	NONE


F32875 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32885 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 ( $=40$ hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F32886 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32887 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 2). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F32895 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32896 (N, A)	Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F32899 (N, A)	Encoder 2: Unknown fault
Message value:	New message: \%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).


Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
A32902 (F, N)	Encoder 2: SPI-BUS error occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Fault value (r0949, interpret hexadecimal):
Remedy:	Only for internal Siemens troubleshooting.
	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
Reaction upon F:	- contact the Hotline.
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

## F32905 (N, A) Encoder 2: Parameterization error

Message value: Parameter: \%1, supplementary information: \%2
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Reaction:

## Acknowledge:

## Cause:

OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
IMMEDIATELY
A parameter of encoder 2 was detected as being incorrect
It is possible that the parameterized encoder type does not match the connected encoder
The parameter involved can be determined as follows:

- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, $x x x x=$ parameter
$x x x x=421$
For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
yyyy $=0$ :
No information available.
yyyy = 1 :
The component does not support HTL level $(p 0405.1=0)$ combined with track monitoring $A / B<>-A / B(p 0405.2=1)$. yyyy = 2 :
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
yyyy = 3:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out Please select a listed encoder in p0400 with a code number $<10000$.
yyyy $=4$ :
This component does not support SSI encoders (p0404.9 = 1) without track A/B.
yyyy $=5$ :
For SQW encoder, value in p4686 greater than in p0425.
yyyy $=6$ :
DRIVE-CLiQ encoder cannot be used with this firmware version
yyyy = 7:
For an SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks.

### 4.2 List of faults and alarms

	yyyy = 8:
	The motor pole pair width is not supported by the linear scale being used.
	yyyy = 9:
	The length of the position in the EnDat protocol may be a maximum of 32 bits.
	yyyy = 10:
	The connected encoder is not supported.
	yyyy = 11:
	The hardware does not support track monitoring.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- re parameter number $=314$ :
	- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F32912	Encoder 2: Device combination is not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, interpret decimal):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter. 1006:
	The maximum duration ( $31.25 \mu \mathrm{~s}$ ) of the EnDat transfer was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
Remedy:	Re fault value $=1003,1005,1006$ :
	- Use a measuring unit that is permissible.
	For fault value = 2001:
	- Set a permissible cycle combination (if required, use standard settings).
	For fault value = 2002:
	- Use a measuring unit with a lower resolution (p0422).


A32915 (F, N)	Encoder 2: Configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 2 is incorrect.
	Alarm value (r2124, interpret decimal):
	$1:$
	Re-parameterization between fault/alarm is not permissible.


	419:
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:	Re alarm value $=1$ :
	No re-parameterization between fault/alarm.
	Re alarm value $=419$ :
	Reduce the fine resolution ( p 0419 ) or deactivate the monitoring ( p 0437.25 ), if the complete multiturn range is not required.
Reaction upon F:	NONE (IASC/DCBRK)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F32916 (N, A)	Encoder 2: Parameterization fault
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 2 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A32920 (F, N)	Encoder 2: Temperature sensor fault
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
	2 (= 02 hex):
	Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	$0000 y y x x$ hex: $\mathrm{yy}=$ channel number, $\mathrm{xx}=$ error cause
Remedy:	- check that the encoder cable is the correct type and is correctly connected.
	- check the temperature sensor selection in p0600 to p0603.
	- replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY

### 4.2 List of faults and alarms

Reaction upon N : Acknowl. upon N :	NONE NONE
A32930 (N)	Encoder 2: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the activated function "Data logger" (p0437.0 = 1) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.   The diagnostics data is saved in the following folder:   /USER/SINAMICS/DATA/SMTRC00.BIN   /USER/SINAMICS/DATA/SMTRC07.BIN   /USER/SINAMICS/DATA/SMTRCIDX.TXT   The following information is contained in the TXT file:   - Display of the last written BIN file.   - Number of write operations that are still possible (from 10000 downwards).   Note:   Only Siemens can evaluate the BIN files.
Remedy:	Not necessary.   The alarm disappears automatically.   The data logger is ready to record the next fault case.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A32940 (F, N)	Encoder 2: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.   Fault value (r0949, interpret decimal):   Signal level from sensor S1.   Note:   A signal level of 500 mV corresponds to the numerical value 500 dec .
Remedy:	- Check the clamped tool.   - Check the tolerance and if required, adapt (p5040).   - Check the thresholds and if required, adapt (p5041).   - Check analog sensor S1 and connections.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F32950	Encoder 2: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.



F33101 (N, A)	Encoder 3: Zero mark failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Fault value (r0949, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected (4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
	- when p0437.1 is active, check p4686.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33103 (N, A)	Encoder 3: Amplitude error track R
Message value:	R track: \%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 3.
	The fault can be initiated when the unipolar voltage level is exceeded (RP/RN) or if the differential amplitude is undershot.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy $=0, \mathrm{xxxx}=$ Signal level, track R (16 bits with sign)
	The response thresholds of the unipolar signal levels of the encoder are between < 1400 mV and>3500 mV.
	The response threshold for the differential signal level of the encoder is <-1600 mV.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog value of the amplitude error is not measured at the same time with the hardware fault output by the Sensor Module.
	The fault value can only be represented between -32768 ... $32767 \mathrm{dec}(-770 \ldots 770 \mathrm{mV}$ ).
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- Monitoring active (p0437.31 = 1).
Remedy:	- check the speed range; frequency characteristic (amplitude characteristic) of the measuring equipment might not be sufficient for the speed range
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections and contacts of the encoder cable.
	- check the encoder type (encoder with zero marks).
	- check whether the zero mark is connected and the signal cables RP and RN have been connected correctly.   - replace the encoder cable.
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


Reaction upon A :   Acknowl. upon A:	NONE NONE
$\overline{\mathrm{F} 33110 \text { (N, A) }}$	Encoder 3: Serial communications error
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Fault value (r0949, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms ).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 7: Timeout for the register communication.
	Bit 8: Protocol is too long (e.g. > 64 bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.
	Bit 11: Parity error.
	Bit 12: Data line signal level error during the monoflop time.
	Bit 13: Data line incorrect.
	Bit 14: Fault for the register communication.
	Bit 15: Internal communication error.
	Note:
	For an EnDat 2.2 encoder, the significance of the fault value for $\mathrm{F} 3 \times 135(x=1,2,3)$ is described.
Remedy:	Re fault value, bit $0=1$ :
	- Enc defect F31111 may provide additional details.
	Re fault value, bit $1=1$ :
	- Incorrect encoder type / replace the encoder or encoder cable.
	Re fault value, bit $2=1$ :
	- Incorrect encoder type / replace the encoder or encoder cable.
	Re fault value, bit $3=1$ :
	- EMC / connect the cable shield, replace the encoder or encoder cable.
	Re fault value, bit $4=1$ :

- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $5=1$ :
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $6=1$ :
- Update Sensor Module firmware.

Re fault value, bit $7=1$ :

- Incorrect encoder type / replace the encoder or encoder cable.

Re fault value, bit $8=1$ :

- Check parameterization (p0429.2).

Re fault value, bit $9=1$ :

- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module. Re fault value, bit $10=1$ :
- Check parameterization (p0429.2, p0449).

Re fault value, bit $11=1$ :

- Check parameterization (p0436).

Re fault value, bit $12=1$ :

- Check parameterization (p0429.6).


### 4.2 List of faults and alarms

	Re fault value, bit $13=1$ :   - Check data line.   Re fault value, bit $14=1$ :   - Incorrect encoder type / replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33111 (N, A) }}$	Encoder 3: Absolute encoder internal fault
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The absolute encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$ :
	Bit 0: Lighting system failed.
	Bit 1: Signal amplitude too low.
	Bit 2: Position value incorrect.
	Bit 3: Encoder power supply overvoltage condition.
	Bit 4: Encoder power supply undervoltage condition.
	Bit 5: Encoder power supply overcurrent condition.
	Bit 6: The battery must be changed.
	yyyy = 1:
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	For yyyy = 0:
	Re fault value, bit $0=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $1=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $2=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
	Re fault value, bit $3=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
	Re fault value, bit $4=1$ :
	5 V power supply voltage fault.
	When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
	When using a motor with DRIVE-CLiQ: Replace the motor.
	Re fault value, bit $5=1$ :
	Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.


	Re fault value, bit $6=1$ :
	The battery must be changed (only for encoders with battery back-up).
	For yyyy = 1:
	Encoder is defective. Replace encoder.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33112 (N, A)	Encoder 3: Error bit set in the serial protocol
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder sends a set error bit via the serial protocol.
	Fault value (r0949, interpret binary):
	Bit 0: Fault bit in the position protocol.
Remedy:	For fault value, bit $0=1$ :
	In the case of an EnDat encoder, F31111 may provide further details.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
$\overline{\text { F33115 (N, A) }}$	Encoder 3: Amplitude error track A or B (A^2 + $\mathbf{B}^{\wedge} \mathbf{2}$ )
Message value:	A track: \%1, B-track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 3 exceeds the permissible tolerance.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<170 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response thresholds are $<1070 \mathrm{mV}$ and>3582 mV.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note: $\quad$
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	The following applies to measuring systems without their own bearing system:
	- adjust the scanning head and check the bearing system of the measuring wheel.
	The following applies for measuring systems with their own bearing system:
	- ensure that the encoder housing is not subject to any axial force.
Reaction upon N :	NONE
Acknowl. upon N :	NONE


Reaction upon A :   Acknowl. upon A:	NONE NONE
F33116 (N, A)	Encoder 3: Amplitude error monitoring track A + B
Message value:	A track: \%1, B-track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The amplitude of the rectified encoder signals $A$ and $B$ and the amplitude from the roots of $A^{\wedge} 2+B^{\wedge} 2$ for encoder 3 are not within the tolerance bandwidth.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy $=$ Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are < 130 mV (observe the frequency response of the encoder) and > 955 mV .
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33117 (N, A)	Encoder 3: Inversion error signals A/B/R
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For a square-wave encoder (bipolar, double ended) signals $\mathrm{A}^{*}, \mathrm{~B}^{*}$ and $\mathrm{R}^{*}$ are not inverted with respect to signals A , $B$ and $R$.
	Fault value (r0949, interpret binary):
	Bits 0 ... 15: Only for internal Siemens troubleshooting.
	Bit 16: Error track A.
	Bit 17: Error track B.
	Bit 18: Error track R.
	Note:
	For SMC30 (order no.. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), CUA32, and CU310, the following applies:
	A square-wave encoder without track R is used and track monitoring (p0405.2 $=1$ ) is activated.
Remedy:	- Check the encoder/cable.
	- Does the encoder supply signals and the associated inverted signals?
	Note:
	For SMC30 (order no. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1 only), the following applies:
	- check the setting of p0405 (p0405.2 = 1 is only possible if the encoder is connected at X520).
	For a square-wave encoder without track R, the following jumpers must be set for the connection at X520 (SMC30) or X23 (CUA32, CU310):
	- pin 10 (reference signal R) <--> pin 7 (encoder power supply, ground)
	- pin 11 (reference signal R inverted) <--> pin 4 (encoder power supply)


Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F33118 (N, A)	Encoder 3: Speed difference outside the tolerance range
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.   The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Fault value (r0949, interpret decimal):   Only for internal Siemens troubleshooting.
	See also: p0492   - check the tachometer feeder cable for interruptions.
Remedy:	- check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).	
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F33120 (N, A) Encoder 3: Power supply voltage fault

## Message value: Fault cause: \%1 bin

Message class: Position/speed actual value incorrect or not available (11)
Drive object: VECTOR_G
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: A power supply fault was detected for encoder 3.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Bit 2: Overcurrent condition for encoder power supply on cable resolver excitation negative.
Bit 3: Overcurrent condition for encoder power supply on cable resolver excitation positive.
Bit 4: The 24 V power supply of the Power Module (PM) is overloaded.
Bit 5: Overcurrent at the EnDat connection of the converter.
Bit 6: Overvoltage at the EnDat connection of the converter.
Bit 7: Hardware fault at the EnDat connection of the converter.
Note:
If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.
Remedy: $\quad$ Re fault value, bit $0=1$ :

- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).

Re fault value, bit $1=1$ :

- correct encoder cable connected?
- replace the encoder or encoder cable.

Re fault value, bit $2=1$ :

- correct encoder cable connected?
- replace the encoder or encoder cable.


### 4.2 List of faults and alarms



	Note:
	The signal level is not evaluated unless the following conditions are satisfied:
	- Sensor Module properties available (r0459.31 = 1).
	- Monitoring active (p0437.31 = 1).
Remedy:	- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
	- check the plug connections and contacts of the encoder cable.
	- check the short-circuit of a signal cable with mass or the operating voltage.
	- replace the encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33125 (N, A)	Encoder 3: Amplitude error track A or B overcontrolled
Message value:	A track: \%1, B-track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The amplitude of track A or B for encoder 3 exceeds the permissible tolerance band.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track B (16 bits with sign).
	xxxx = Signal level, track A (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response threshold is $>750 \mathrm{mV}$. This fault also occurs if the A/D converter is overcontrolled.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note for Sensor Modules for resolvers (e.g. SMC10):
	The nominal signal level is at 2900 mV ( 2.0 Vrms ). The response threshold is $>3582 \mathrm{mV}$.
	A signal level of 2900 mV peak value corresponds to the numerical value $6666 \mathrm{hex}=26214 \mathrm{dec}$.
	Note: $\quad$
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F33126 (N, A) Encoder 3: Amplitude AB too high

Message value: Amplitude: \%1, Angle: \%2
Message class: Position/speed actual value incorrect or not available (11)
Drive object:
Reaction:
Acknowledge:
Cause:
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
PULSE INHIBIT
The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ or $|A|+|B|$ ) for encoder 3 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Angle
$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
The response threshold for $(|A|+|B|)$ is $>1120 \mathrm{mV}$ or the root of $\left(A^{\wedge} 2+B^{\wedge} 2\right)>955 \mathrm{mV}$.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex $=10650 \mathrm{dec}$.
The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the negative zero crossover of track $B$.

### 4.2 List of faults and alarms

	Note:
	The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.
Remedy:	- check that the encoder cables and shielding are routed in compliance with EMC.
	- replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33129 (N, A)	Encoder 3: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The error for track $\mathrm{C} / \mathrm{D}$ is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than $+/-60^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360{ }^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A33429.
	Fault value (r0949, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

## F33130 (N, A) Encoder 3: Zero mark and position error from the coarse synchronization

Message value:
Angular deviation, electrical: \%1, angle, mechanical: \%2
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Position/speed actual value incorrect or not available (11)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
PULSE INHIBIT
After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
When initializing via track C/D ( 0404 ) then it is checked whether the zero mark occurs in an angular range of $+/-18^{\circ}$ mechanical.
When initializing via Hall sensors ( p 0404 ) or pole position identification ( p 1982 ) it is checked whether the zero mark occurs in an angular range of $+/-60^{\circ}$ electrical.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
yyyy: Determined mechanical zero mark position (can only be used for track C/D).
xxxx: Deviation of the zero mark from the expected position as electrical angle.
Scaling: $32768 \mathrm{dec}=180^{\circ}$

Remedy:	- check that the encoder cables are routed in compliance with EMC.   - check the plug connections.   - if the Hall sensor is used as an equivalent for track C/D, check the connection.   - Check the connection of track $C$ or $D$.   - replace the encoder or encoder cable.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33131 \text { ( } \mathrm{N}, \mathrm{A})}$	Encoder 3: Deviation position incremental/absolute too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Absolute encoder:
	When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
	Limit value for the deviation:
	- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI $1325>2$ quadrants, EQN $1325>50$ quadrants).
	- other encoders: 15 pulses $=60$ quadrants.
	Incremental encoder:
	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Fault value (r0949, interpret decimal):
	Deviation in quadrants ( 1 pulse $=4$ quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check whether the coding disk is dirty or there are strong ambient magnetic fields.
	- adapt the parameter for the clearance between zero marks (p0425).
	- if message output above speed threshold, reduce filter time if necessary (p0438).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33135	Encoder 3: Fault when determining the position
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder supplies status information bit by bit in an internal status/fault word.
	Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
	Note regarding the bit designation:
	The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.

Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting).
Bit 3: Reserved (signal amplitude).
Bit 4: Reserved (position value).
Bit 5: Reserved (overvoltage).
Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x = 1, 2, 3).
Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, $x=1,2,3$ ).
Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x $=1,2,3$ ).
Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, x $=1,2,3$ ).
Bit 11: Reserved/internal communication error ( $-->\mathrm{F} 3 \times 110, x=1,2,3$ ).
Bit 12: Reserved/internal communication error (--> $\mathrm{F} 3 \times 110, x=1,2,3$ ).
Bit 13: Reserved/internal communication error ( $-->\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 14: Reserved/internal communication error (--> $F 3 \times 110, x=1,2,3$ ).
Bit 15: Internal communication error (--> $\mathrm{F} 3 \times 110, \mathrm{x}=1,2,3$ ).
Bit 16: Lighting (--> F3x135, $x=1,2,3$ ).
Bit 17: Signal amplitude (--> $3 \times 135, x=1,2,3$ ).
Bit 18: Singleturn position 1 (--> F3x135, $x=1,2,3$ ).
Bit 19: Overvoltage (--> $\operatorname{F} 3 \times 135, x=1,2,3$ ).
Bit 20: Undervoltage (--> F3x135, $x=1,2,3$ ).
Bit 21: Overcurrent (--> F3x135, x=1, 2, 3).
Bit 22: Temperature exceeded ( - -> F3x405, $x=1,2,3$ ).
Bit 23: Singleturn position 2 (safety status display).
Bit 24: Singleturn system (--> $\operatorname{F3x135}, \mathrm{x}=1,2,3$ ).
Bit 25: Singleturn power down (--> F3x135, x $=1,2,3$ ).
Bit 26: Multiturn position 1 (--> F3x136, $x=1,2,3$ ).
Bit 27: Multiturn position 2 (--> F3x136, $x=1,2,3$ ).
Bit 28: Multiturn system (--> F3x136, $x=1,2,3$ ).
Bit 29: Multiturn power down (--> F3x136, $x=1,2,3$ ).
Bit 30: Multiturn overflow/underflow (--> F3x136, $x=1,2,3$ ).
Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.

- replace the encoder if necessary.

Note:
An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON (switch-off/on) is necessary to acknowledge the fault.

## F33136

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Encoder 3: Error when determining multiturn information

## Fault cause: \%1 bin

Position/speed actual value incorrect or not available (11)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
PULSE INHIBIT
The encoder supplies status information bit by bit in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Note regarding the bit designation:
The first designation is valid for DRIVE-CLiQ encoders, the second for EnDat 2.2 encoders.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display).
Bit 1: F2 (safety status display).
Bit 2: Reserved (lighting).
Bit 3: Reserved (signal amplitude).

```
 Bit 4: Reserved (position value).
 Bit 5: Reserved (overvoltage).
 Bit 6: Reserved (undervoltage)/hardware fault EnDat supply (--> F3x110, x=1, 2, 3).
 Bit 7: Reserved (overcurrent)/EnDat encoder withdrawn when not in the parked state (--> F3x110, x=1, 2, 3).
 Bit 8: Reserved (battery)/overcurrent EnDat supply (--> F3x110, x = 1, 2, 3).
 Bit 9: Reserved/overvoltage EnDat supply (--> F3x110, x=1, 2, 3).
 Bit 11: Reserved/internal communication error (--> F3x110, x=1, 2, 3).
 Bit 12: Reserved/internal communication error (--> F3x110, x=1, 2, 3).
 Bit 13: Reserved/internal communication error (--> F3x110, x = 1, 2, 3).
 Bit 14: Reserved/internal communication error (--> F3x110, x=1, 2, 3).
 Bit 15: Internal communication error (--> F3x110, x = 1, 2, 3).
 Bit 16: Lighting (--> F3x135, x = 1, 2, 3).
 Bit 17: Signal amplitude (--> F3x135, x=1, 2, 3).
 Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3).
 Bit 19: Overvoltage (--> F3x135, x = 1, 2, 3).
 Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3)
 Bit 21: Overcurrent (--> F3x135, x=1, 2, 3).
 Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3).
 Bit 23: Singleturn position 2 (safety status display).
 Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3).
 Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3).
 Bit 26: Multiturn position 1 (--> F3x136, x=1, 2, 3).
 Bit 27: Multiturn position 2 (--> F3x136, x = 1, 2, 3).
 Bit 28: Multiturn system (--> F3x136, x=1, 2, 3).
 Bit 29: Multiturn power down (--> F3x136, x=1, 2, 3)
 Bit 30: Multiturn overflow/underflow (--> F3x136, x=1, 2, 3).
 Bit 31: Multiturn battery (reserved).
Remedy: - determine the detailed cause of the fault using the fault value.
 - replace the encoder if necessary
 Note:
 An EnDat 2.2 encoder may only be removed and inserted in the "Park" state.
 If an EnDat 2.2 encoder was removed when not in the "Park" state, then after inserting the encoder, a POWER ON
 (switch-off/on) is necessary to acknowledge the fault.
```

F33137
Message value:
Message class:
Drive object:
Reaction: Acknowledge: Cause:

Encoder 3: Internal fault when determining the position
Fault cause: \%1 bin
Hardware / software error (1)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
PULSE INHIBIT
A position determination fault has occurred in the DRIVE-CLiQ encoder.
Fault value (r0949, interpret binary):
yyxxxxxx hex: yy = encoder version, $x x x x x x=$ bit coding of the fault cause
For yy $=08$ hex (bit $27=1$ ), the following bit definition applies:
Bit 1: Signal monitoring (sin/cos).
Bit 8: F1 (safety status display) fault position word 1.
Bit 9: F2 (safety status display) fault position word 2.
Bit 16: LED monitoring iC-LG (opto ASIC).
Bit 17: Fault in the multiturn.
Bit 23: Temperature outside the limit values.
Note:
For an encoder version that is not described here, please contact the encoder manufacturer for more detailed information on the bit coding.

- determine the detailed cause of the fault using the fault value.
- if required, replace the DRIVE-CLiQ encoder.


## F33138

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - determine the detailed cause of the fault using the fault value.

- if required, replace the DRIVE-CLiQ encoder.

F33142 (N, A)	Encoder 3: Battery voltage fault
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33150 (N, A)	Encoder 3: Initialization error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	Encoder functionality selected in p0404 is not operating correctly.
	Fault value (r0949, interpret hexadecimal):
	Encoder malfunction.
	The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:	- Check that p0404 is correctly set.
	- check the encoder type used (incremental/absolute) and for SMCxx, the encoder cable.
	- if relevant, note additional fault messages that describe the fault in detail.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F33151 (N, A)	Encoder 3: Encoder speed for initialization AB too high
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder speed is too high while initializing the Sensor Module.
Remedy:	Reduce the speed of the encoder accordingly during initialization.
	If necessary, de-activate monitoring (p0437.29).
	See also: p0437 (Sensor Module configuration extended)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33152 (N, A)	Encoder 3: Maximum input frequency exceeded
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum input frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, interpret decimal):
	Actual input frequency in Hz .
	See also: p0408 (Rotary encoder pulse number)
Remedy:	- Reduce the speed.
	- Use an encoder with a lower pulse number (p0408).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33153 (N, A)	Encoder 3: Identification error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when identifying the encoder (waiting) p0400=10100.
	The connected encoder was not able to be identified.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Data length incorrect
	See also: p0400 (Encoder type selection)
Remedy:	Manually configure the encoder according to the data sheet.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F33160 (N, A)	Encoder 3: Analog sensor channel A failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value = 1:
	- check the output voltage of the analog sensor.
	For fault value $=2$ :
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3$ :
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


F33161 (N, A)	Encoder 3: Analog sensor channel B failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	For fault value = 1:
Remedy:	- check the output voltage of the analog sensor.
	For fault value = 2:
	- check the voltage setting for each encoder period (p4675).
	For fault value = 3:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

## F33163 (N, A) Encoder 3: Analog sensor position value exceeds limit value

Message value: \%1
Message class: Position/speed actual value incorrect or not available (11)
Drive object: VECTOR_G
Reaction:
Acknowledge
Cause:

OFF1 (IASC/DCBRK, NONE)
PULSE INHIBIT
The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
Fault value (r0949, interpret decimal):
1: Position value from the LVDT sensor.
2: Position value from the encoder characteristic.

Remedy:	For fault value $=1$ :   - Check the LVDT ratio (p4678).   - check the reference signal connection at track B.   For fault value $=2$ :   - check the coefficients of the characteristic (p4663 ... p4666).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A33400 (F, N)	Encoder 3: Alarm threshold zero mark distance error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder). Alarm value (r2124, interpret decimal):
	Last measured zero mark distance in increments (4 increments $=1$ encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33401 (F, N)	Encoder 3: Alarm threshold zero mark failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The $1.5 \times$ parameterized zero mark distance was exceeded.
	The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
	Alarm value (r2124, interpret decimal):
	Number of increments after POWER ON or since the last zero mark that was detected ( 4 increments $=1$ encoder pulse).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the clearance between zero marks (p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

### 4.2 List of faults and alarms

F33405 (N, A)	Encoder 3: Temperature in the encoder evaluation inadmissible
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.     The fault threshold is $125^{\circ} \mathrm{C}$.
	Alarm value (r2124, interpret decimal):
	Measured board/module temperature in $0.1^{\circ} \mathrm{C}$.


A33410 (F, N)	Encoder 3: Serial communications
Message value:	Fault cause: \%1 bin
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Serial communication protocol transfer error between the encoder and evaluation module.
	Alarm value (r2124, interpret binary):
	Bit 0: Alarm bit in the position protocol.
	Bit 1: Incorrect quiescent level on the data line.
	Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
	Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
	Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
	Bit 5: Internal error in the serial driver: An illegal mode command was requested.
	Bit 6: Timeout when cyclically reading.
	Bit 8: Protocol is too long (e.g. > $>6$ bits).
	Bit 9: Receive buffer overflow.
	Bit 10: Frame error when reading twice.


	Bit 11: Parity error.
Remedy:	Bit 12: Data line signal level error during the monoflop time.   - check that the encoder cables are routed in compliance with EMC.   - check the plug connections.   - replace encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33411 (F, N)	Encoder 3: Absolute encoder signals internal alarms
Message value:	Fault cause: \%1 bin, additional information: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute encoder fault word includes alarm bits that have been set. Alarm value (r2124, interpret binary):
	yyyyxxxx hex: yyyy = supplementary information, xxxx = fault cause
	yyyy $=0$ :
	Bit 0: Frequency exceeded (speed too high).
	Bit 1: Temperature exceeded.
	Bit 2: Control reserve, lighting system exceeded.
	Bit 3: Battery discharged.
	Bit 4: Reference point passed.
	yyyy = 1:
	Bit 0: Signal amplitude outside the control range.
	Bit 1: Error multiturn interface
	Bit 2: Internal data error (singleturn/multiturn not with single steps).
	Bit 3: Error EEPROM interface.
	Bit 4: SAR converter error.
	Bit 5: Fault for the register data transfer.
	Bit 6: Internal error identified at the error pin (nErr).
	Bit 7: Temperature threshold exceeded or fallen below.
Remedy:	Replace encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33412 (F, N)	Encoder 3: Error bit set in the serial protocol
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder sends a set error bit via the serial protocol.
	Alarm value (r2124, interpret binary):
	Bit 0: Fault bit in the position protocol.
	Bit 1: Alarm bit in the position protocol.
Remedy:	- carry out a POWER ON (power off/on) for all components.   - check that the encoder cables are routed in compliance with EMC.   - check the plug connections.   - replace encoder.

### 4.2 List of faults and alarms

```
Reaction upon F: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F: IMMEDIATELY
Reaction upon N: NONE
Acknowl. upon N: NONE
```

A33414 (F, N)	Encoder 3: Amplitude error track Cor D (C^2 + D^2)
Message value:	C track: \%1, D track: \%2
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude $\left(C^{\wedge} 2+D^{\wedge} 2\right)$ of track $C$ or $D$ of the encoder or from the Hall signals, is not within the tolerance bandwidth.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex:
	yyyy = Signal level, track D (16 bits with sign).
	xxxx = Signal level, track C (16 bits with sign).
	The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
	The response thresholds are $<230 \mathrm{mV}$ (observe the frequency response of the encoder) and $>750 \mathrm{mV}$.
	A signal level of 500 mV peak value corresponds to the numerical value $5333 \mathrm{hex}=21299 \mathrm{dec}$.
	Note:
	If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- check the Hall sensor box.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE

N33415 (F, A) Encoder 3: Amplitude alarm track A or B (A^2 + B^2)
Message value: Amplitude: \%1, Angle: \%2
Message class: Position/speed actual value incorrect or not available (11)
Drive object: VECTOR_G
Reaction: NONE
Acknowledge: NONE
Cause: $\quad$ The amplitude (root of $A^{\wedge} 2+B^{\wedge} 2$ ) for encoder 3 exceeds the permissible tolerance.
Alarm value (r2124, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Angle
$x x x x=$ Amplitude, i.e. root from $A^{\wedge} 2+B^{\wedge} 2$ (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV ( $500 \mathrm{mV}-25 /+20 \%$ ).
The response threshold is $<230 \mathrm{mV}$ (observe the frequency response of the encoder).
A signal level of 500 mV peak value corresponds to the numerical value 299A hex $=10650$ dec.
The angle $0 \ldots$ FFFF hex corresponds to $0 \ldots 360$ degrees of the fine position. Zero degrees is present at the
negative zero crossover of track B.
Note for Sensor Modules for resolvers (e.g. SMC10):
The nominal signal level is at $2900 \mathrm{mV}(2.0 \mathrm{Vrms})$. The response threshold is $<1414 \mathrm{mV}$ ( 1.0 Vrms ).
A signal level of 2900 mV peak value corresponds to the numerical value $3333 \mathrm{hex}=13107 \mathrm{dec}$.
Note:

The analog values of the amplitude error are not measured at the same time with the hardware fault output by the Sensor Module.

Remedy:	- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not
sufficient for the speed range.	
	- check that the encoder cables and shielding are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- check the Sensor Module (e.g. contacts).
	- if the coding disk is soiled or the lighting aged, replace the encoder.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon $F:$	IMMEDIATELY
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A33418 (F, N)	Encoder 3: Speed difference per sampling rate exceeded
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
	The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
	See also: p0492
Remedy:	- check the tachometer feeder cable for interruptions.
	- check the grounding of the tachometer shielding.
Reaction upon F:	- if required, increase the setting of p0492.
NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)	
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33419 (F, N)	Encoder 3: Track A or B outside tolerance
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The amplitude/phase/offset correction for track $A$ or $B$ is at the limit.
	Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
	Phase: <84 degrees or >96 degrees
	SMC20: Offset correction: +/-140 mV
	SMC10: Offset correction: +/-650 mV
	Alarm value (r2124, interpret hexadecimal):
	xxxx1: Minimum of the offset correction, track B
	xxxx2: Maximum of the offset correction, track $B$
	xxx1x: Minimum of the offset correction, track $A$
	$x x x 2 x$ : Maximum of the offset correction, track $A$
	xx1xx: Minimum of the amplitude correction, track B/A
	xx2xx: Maximum of the amplitude correction, track B/A
	$x 1 x x x$ : Minimum of the phase error correction
	x2xxx: Maximum of the phase error correction
	1xxxx: Minimum of the cubic correction
	$2 x x x x$ : Maximum of the cubic correction

### 4.2 List of faults and alarms

Remedy:	- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
	- check the plug connections (also the transition resistance).
	- check the encoder signals.
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33421 (F, N)	Encoder 3: Coarse position error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
	Alarm value (r2124, interpret decimal):
	3: The absolute position of the serial protocol and track $A / B$ differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy:	Re alarm value $=3$ :
	- For a standard encoder with cable, contact the manufacturer where relevant.
	- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33422 (F, N)	Encoder 3: Pulses per revolution square-wave encoder outside tolerance bandwidth
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The measured zero mark distance does not correspond to the parameterized zero mark distance.
	This alarm is triggered with active square-wave encoder PPR correction and re-parameterized fault 31131 if the accumulator contains larger values than p4683 or p4684.
	The zero mark distance for zero mark monitoring is set in p0425 (rotary encoder).
	Alarm value (r2124, interpret decimal):
	accumulated differential pulses in encoder pulses.
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- check the encoder type (encoder with equidistant zero marks).
	- adapt the parameter for the distance between zero marks (p0424, p0425).
	- replace the encoder or encoder cable.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33429 (F, N)	Encoder 3: Position difference hall sensor/track C/D and A/B too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error for track C/D is greater than $+/-15^{\circ}$ mechanical or $+/-60^{\circ}$ electrical or the error for the Hall signals is greater than +/-60 ${ }^{\circ}$ electrical.
	One period of track C/D corresponds to $360^{\circ}$ mechanical.
	One period of the Hall signal corresponds to $360{ }^{\circ}$ electrical.
	The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
	Alarm value (r2124, interpret decimal):
	For track C/D, the following applies:
	Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
	For Hall signals, the following applies:
	Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to $1^{\circ}$ ).
Remedy:	- track C or D not connected.
	- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
	- check that the encoder cables are routed in compliance with EMC.
	- check the adjustment of the Hall sensor.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A33431 (F, N)	Encoder 3: Deviation position incremental/absolute too large
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the zero pulse is passed, a deviation in the incremental position was detected.
	For equidistant zero marks, the following applies:
	- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
	For distance-coded zero marks, the following applies:
	- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
	Alarm value (r2124, interpret decimal):
	Deviation in quadrants (1 pulse = 4 quadrants).
Remedy:	- check that the encoder cables are routed in compliance with EMC.
	- check the plug connections.
	- replace the encoder or encoder cable.
	- Clean coding disk or remove strong magnetic fields.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33432 (F, N)	Encoder 3: Rotor position adaptation corrects deviation
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.
	Alarm value (r2124, interpret decimal):   Last measured deviation of zero mark in increments (4 increments = 1 encoder pulse).
	The sign designates the direction of motion when detecting the zero mark distance.
	- check that the encoder cables are routed in compliance with EMC.

## A33443 (F, N) Encoder 3: Unipolar CD signal level outside specification

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

Remedy: - check that the encoder cables and shielding are routed in compliance with EMC.

- check the plug connections and contacts of the encoder cable.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.

Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33460 (N)	Encoder 3: Analog sensor channel A failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	Re alarm value = 1:
Remedy:	- check the output voltage of the analog sensor.
	Re alarm value = 2:
	- check the voltage setting for each encoder period (p4673).
	Re alarm value = 3:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A33461 (N)	Encoder 3: Analog sensor channel B failed
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	Re alarm value = 1:
Remedy:	- check the output voltage of the analog sensor.
	Re alarm value = 2:
	- check the voltage setting for each encoder period (p4675).
	Re alarm value = 3:
	- check the range limit setting and increase it if necessary (p4676).
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A33462 (N)	Encoder 3: Analog sensor no channel active
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel A and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).
	See also: p4670 (Analog sensor configuration)


Reaction upon N:	NONE
Acknowl. upon N:	NONE
A33463 (N)	Encoder 3: Analog sensor position value exceeds limit value
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of -0.5 ... +0.5.
	Alarm value (r2124, interpret decimal):   1: Position value from the LVDT sensor.
2: Position value from the encoder characteristic.	


Reaction upon A: Acknowl. upon A:	NONE NONE
F33501 (N, A)	Encoder 3: Position tracking encoder position outside tolerance window
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.   Fault value (r0949, interpret decimal):   Deviation (difference) to the last encoder position in increments of the absolute value.   The sign designates the traversing direction.   Note:   The deviation (difference) found is also displayed in r0477.   See also: p0413 (Measuring gear position tracking tolerance window), r0477 (Measuring gear position difference)
Remedy:	Reset the position tracking as follows:   - select encoder commissioning (p0010 = 4).   - reset the position tracking as follows (p0411.2 = 1).   - de-select encoder commissioning (p0010 = 0).   The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).   See also: p0010
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33502 (N, A)	Encoder 3: Encoder with measuring gear without valid signals
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The encoder with measuring gear no longer provides any valid signals.
Remedy:	It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33503 (N, A)	Encoder 3: Position tracking cannot be reset
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The position tracking for the measuring gear cannot be reset.
Remedy:	The fault should be resolved as follows:   - select encoder commissioning (p0010 = 4).   - reset the position tracking as follows (p0411.2 = 1).   - de-select encoder commissioning (p0010 = 0).   The fault should then be acknowledged and the absolute encoder adjusted.
Reaction upon N :	NONE
Acknowl. upon N :	NONE

### 4.2 List of faults and alarms

Reaction upon A: Acknowl. upon A:	NONE NONE
A33700	Encoder 3: Effectivity test does not supply the expected value
Message value:	Fault cause: \%1 bin
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
	Fault value (r0949, interpret binary):
	Bit $\mathrm{x}=1$ : Effectivity test x unsuccessful.
Remedy:	Replace encoder.
N33800 (F)	Encoder 3: Group signal
Message value:	-
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	NONE
Cause:	The motor encoder has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.
Reaction upon F:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
F33801 (N, A)	Encoder 3 DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause: $10 \text { (= 0A hex): }$
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33802 (N, A)	Encoder 3: Time slice overflow
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred in encoder 3.



F33806 (N, A)	Encoder 3: Initialization error
Message value:	\%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	PULSE INHIBIT
Cause:	The encoder was not successfully initialized.
	Fault value (r0949, interpret hexadecimal):
	Bit 0,1 : Encoder initialization with the motor rotating has failed (deviation involving coarse and fine position in encoder pulses/4).
	Bit 2: Mid-voltage matching for track A unsuccessful.
	Bit 3: Mid-voltage matching for track B unsuccessful.
	Bit 4: Mid-voltage matching for acceleration input unsuccessful.
	Bit 5: Mid-voltage matching for track safety A unsuccessful.
	Bit 6: Mid-voltage matching for track safety B unsuccessful.
	Bit 7: Mid-voltage matching for track C unsuccessful.
	Bit 8: Mid-voltage matching for track D unsuccessful.
	Bit 9: Mid-voltage matching for track R unsuccessful.
	Bit 10: The difference in mid-voltages between $A$ and $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 11: The difference in mid-voltages between C and D is too great ( $>0.5 \mathrm{~V}$ )
	Bit 12: The difference in mid-voltages between safety A and safety B is too great ( $>0.5 \mathrm{~V}$ )
	Bit 13: The difference in mid-voltages between $A$ and safety $B$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 14: The difference in mid-voltages between $B$ and safety $A$ is too great ( $>0.5 \mathrm{~V}$ )
	Bit 15: The standard deviation of the calculated mid-voltages is too great ( $>0.3 \mathrm{~V}$ )
	Bit 16: Internal fault - fault when reading a register (CAFE)
	Bit 17: Internal fault - fault when writing a register (CAFE)
	Bit 18: Internal fault: No mid-voltage matching available
	Bit 19: Internal error - ADC access error.
	Bit 20: Internal error - no zero crossover found.
	Bit 28: Error while initializing the EnDat 2.2 measuring unit.
	Bit 29: Error when reading out the data from the EnDat 2.2 measuring unit.
	Bit 30: EEPROM checksum of the EnDat 2.2 measuring unit incorrect.
	Bit 31: Data of the EnDat 2.2 measuring unit inconsistent.
	Note:
	Bit 0, 1: Up to 6SL3055-0AA00-5*A0
	Bits 2 ... 20: 6SL3055-0AA00-5*A1 and higher
Remedy:	Acknowledge fault.
	If the fault cannot be acknowledged:
	Bits 2 ... 9: Check encoder power supply.
	Bits $2 . . .14$ : Check the corresponding cable.
	Bit 15 with no other bits: Check track R, check settings in p0404.
	Bit 28: Check the cable between the EnDat 2.2 converter and the measuring unit.
	Bit 29 ... 31: Replace the defective measuring unit.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A33811 (F, N)	Encoder 3: Encoder serial number changed
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat
	encoders).
	- The encoder was replaced.
	Note:
	With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
	When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment
	is reset (p2507 = 1).
	Proceed as follows to hide serial number monitoring:
	- set the following serial numbers for the corresponding Encoder Data Set: p0441= FF, p0442 = 0 , p0443 = 0 , p0444
	$=0, p 0445=0$.
Remedy:	Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.
Reaction upon F:	NONE (OFF1, OFF2, OFF3)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N:	NONE
Acknowl. upon N:	NONE

F33812 (N, A) Encoder 3: Requested cycle or RX-/TX timing not supported
Message value: \%1
Message class: Error in the parameterization / configuration / commissioning procedure (18)
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:
Reaction upon N :
Acknowl. upon N : VECTOR_G

OFF2
MMEDIATELY
A cycle requested from the Control Unit or RX/TX timing is not supported. Fault value (r0949, interpret decimal):
0 : Application cycle is not supported.
1: DRIVE-CLiQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.

Reaction upon A: NONE
Acknowl. upon A: NONE

## F33813

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Encoder 3: Hardware logic unit failed

Fault cause: \%1 bin
Hardware / software error (1)
VECTOR_G
OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
PULSE INHIBIT
The DRIVE-CLiQ encoder fault word supplies fault bits that have been set
Fault value (r0949, interpret binary):
Bit 0: ALU watchdog has responded.
Bit 1: ALU has detected a sign-of-life error.
Replace encoder.

F33820 (N, A)	Encoder 3 DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	8 (= 08 hex):
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33835 (N, A)	Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder concerned. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 ( $=40 \mathrm{hex}$ ):
	Timeout in the telegram send list.


	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33836 (N, A)	Encoder 3 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33837 (N, A)	Encoder 3 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.


Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon $\mathrm{A}:$	NONE
Acknowl. upon $\mathrm{A}:$	NONE

A33840
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Encoder 3 DRIVE-CLiQ: error below the signaling threshold

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
VECTOR_G
NONE
NONE
A DRIVE-CLiQ error has occurred below the signaling threshold.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
16 (= 10 hex):
The receive telegram is too early.
32 (= 20 hex):
Error in the telegram header.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
64 (= 40 hex):
Timeout in the telegram send list.
65 (= 41 hex):
Telegram type does not match send list.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.

	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
$\overline{\mathrm{F} 33845 \text { (N, A) }}$	Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	Carry out a POWER ON (power off/on).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33850 (N, A)	Encoder 3: Encoder evaluation internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the Sensor Module of encoder 3.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.
	10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
	11000 ... 11499: Descriptive data from EEPROM incorrect.
	11500 ... 11899: Calibration data from EEPROM incorrect.
	11900 ... 11999: Configuration data from EEPROM incorrect.
	12000 ... 12008: Communication with AD converter faulted.
	16000: DRIVE-CLiQ encoder initialization application error.
	16001: DRIVE-CLiQ encoder initialization ALU error.
	16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
	16003: DRIVE-CLiQ encoder safety initialization error.
	16004: DRIVE-CLiQ encoder internal system error.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F33851 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- Upgrade the firmware of the component involved.
	- carry out a POWER ON (power off/on) for the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F33860 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.


	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early. 22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
	25 (= 19 hex):
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33875 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33885 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.

### 4.2 List of faults and alarms

	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F33886 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F33887 (N, A)	Encoder 3 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 3). Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.


	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33895 \text { (N, A) }}$	Encoder 3 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x$ = error cause
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
$\overline{\mathrm{F} 33896 \text { (N, A) }}$	Encoder 3 DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Sensor Module for encoder 3), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE


F33899 (N, A)	Encoder 3: Unknown fault
Message value:	New message: \%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
	-replace the firmware on the Sensor Module by an older firmware version (r0148).
Remedy:	- upgrade the firmware on the Control Unit (r0018).
	NONE
Reaction upon N:	NON
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


A33902 (F, N)	Encoder 3: SPI-BUS error occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal SPI bus.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.   - contact the Hotline.
Reaction upon F :	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33903 (F, N)	Encoder 3: I2C-BUS error occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when operating the internal I2C bus.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- replace the Sensor Module.
	- if required, upgrade the firmware in the Sensor Module.
	- contact the Hotline.


F33905 (N, A)	Encoder 3: Parameterization error
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 3 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
	xxxx = 421:
	For an EnDat/SSI encoder, the absolute position in the protocol must be less than or equal to 30 bits.
	yyyy = 0:
	No information available.
	yyyy $=1$ :
	The component does not support HTL level ( $\mathrm{p} 0405.1=0$ ) combined with track monitoring $A / B<>-A / B(p 0405.2=1)$.
	yyyy $=2$ :
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
	yyyy = 3:
	A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
	yyyy = 4:
	This component does not support SSI encoders (p0404.9 = 1) without track A/B.
	yyyy = 5:
	For SQW encoder, value in p4686 greater than in p0425.
	yyyy = 6:
	DRIVE-CLiQ encoder cannot be used with this firmware version.
	yyyy = 7:
	For an SQW encoder, the Xact1 correction (p0437.2) is only permitted with equidistant zero marks.
	yyyy = 8:
	The motor pole pair width is not supported by the linear scale being used.
	yyyy = 9:
	The length of the position in the EnDat protocol may be a maximum of 32 bits.
	yyyy = 10:
	The connected encoder is not supported.
	yyyy = 11:
	The hardware does not support track monitoring.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.
	- correct the parameter specified by the fault value (r0949) and p0187.
	- re parameter number $=314$ :
	- check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A :	NONE

## F33912

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## Encoder 3: Device combination is not permissible

\%1
Error in the parameterization / configuration / commissioning procedure (18)
VECTOR_G
OFF1 (IASC/DCBRK, NONE)
PULSE INHIBIT
The selected device combination is not supported.
Fault value (r0949, interpret decimal):
1003:
The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
1005:
The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
1006:
The maximum duration $(31.25 \mu \mathrm{~s})$ of the EnDat transfer was exceeded.
2001:
The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
2002:
The resolution of the linear measuring unit does not match the pole pair width of the linear motor
Remedy: $\quad$ Re fault value $=1003,1005,1006$ :

- Use a measuring unit that is permissible.

For fault value $=2001$ :

- Set a permissible cycle combination (if required, use standard settings).

For fault value $=2002$ :

- Use a measuring unit with a lower resolution (p0422).

A33915 (F, N)	Encoder 3: Configuration error
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 3 is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Re-parameterization between faultalarm is not permissible.
	419:
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:	Re alarm value $=1$ :
	No re-parameterization between fault/alarm.
	Re alarm value $=419$ :
	Reduce the fine resolution (p0419) or deactivate the monitoring (p0437.25), if the complete multiturn range is not required.
Reaction upon F:	NONE (IASC/DCBRK)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F33916 (N, A)	Encoder 3: Parameterization fault
Message value:	Parameter: \%1, supplementary information: \%2
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	A parameter of encoder 3 was detected as being incorrect.
	It is possible that the parameterized encoder type does not match the connected encoder.
	The parameter involved can be determined as follows:
	- determine the parameter number using the fault value (r0949).
	- determine the parameter index (p0187).
	Fault value (r0949, interpret decimal):
	Parameter number.
Remedy:	- check whether the connected encoder type matches the encoder that has been parameterized.   - correct the parameter specified by the fault value (r0949) and p0187.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A33920 (F, N)	Encoder 3: Temperature sensor fault
Message value:	Fault cause: \%1, channel number: \%2
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Fault cause:
	1 (= 01 hex):
	Wire breakage or sensor not connected (KTY: $\mathrm{R}>1630$ Ohm).
	2 (= 02 hex):
	Measured resistance too low (PTC: $\mathrm{R}<20 \mathrm{Ohm}, \mathrm{KTY}$ : $\mathrm{R}<50 \mathrm{Ohm}$ ).
	Additional values:
	Only for internal Siemens troubleshooting.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124): $0000 y y x x$ hex: $y y=$ channel number, $x x=$ error cause
Remedy:	- check that the encoder cable is the correct type and is correctly connected.
	- check the temperature sensor selection in p0600 to p0603.
	- replace the Sensor Module (hardware defect or incorrect calibration data).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A33930 (N)	Encoder 3: Data logger has saved data
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	For the activated function "Data logger" (p0437.0 $=1$ ) a fault has occurred with the Sensor Module. This alarm   indicates that the diagnostics data corresponding to the fault was saved on the memory card.
	The diagnostics data is saved in the following folder:             USER/SINAMICS/DATA/SMTRC00.BIN

### 4.2 List of faults and alarms

	...
	/USER/SINAMICS/DATA/SMTRC07.BIN
	The following information is contained in the TXT file:
	- Display of the last written BIN file.
	- Number of write operations that are still possible (from 10000 downwards).
	Note:
	Only Siemens can evaluate the BIN files.
Remedy:	Not necessary.
	The alarm disappears automatically.
	The data logger is ready to record the next fault case.
Reaction upon $\mathrm{N}: \quad$	NONE
Acknowl. upon $\mathrm{N}: \quad \mathrm{NONE}$	


A33940 (F, N)	Encoder 3: Spindle sensor S1 voltage incorrect
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Fault value (r0949, interpret decimal):
	Signal level from sensor S1.
	Note:
	A signal level of 500 mV corresponds to the numerical value 500 dec .
Remedy:	- Check the clamped tool.
	- Check the tolerance and if required, adapt (p5040).
	- Check the thresholds and if required, adapt (p5041).
	- Check analog sensor S1 and connections.
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F33950	Encoder 3: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- If necessary, upgrade the firmware in the Sensor Module to a later version - contact the Hotline.


A33999 (F, N)	Encoder 3: Unknown alarm
Message value:	New message: \%1
Message class:	Position/speed actual value incorrect or not available (11)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE

Cause: A alarm has occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.

	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Sensor Module by an older firmware version (r0148).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F34207 (N, A)	VSM: Temperature fault threshold exceeded
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3668).
	Note:
	This fault can only be initiated if the temperature evaluation was activated ( $\mathrm{p} 3665=2$ for a KTY sensor or p3665 $=1$ for a PTC sensor).
	Fault value (r0949, interpret decimal):
	yyxxxx dec:
	yy: Component number of the component which detected the fault.
Remedy:	- check the fan.
	- reduce the power.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A34211 (F, N)	VSM: Temperature alarm threshold exceeded
Message value:	\%1
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3667).
	Alarm value (r2124, interpret decimal):
	The hundred-thousands and ten-thousands position specifies the component number of the VSM which detected the fault.
Remedy:	- check the fan.
	- reduce the power.
Reaction upon F:	Vector: NONE
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


N34800 (F)	VSM: Group signal
Message value:	-
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	NONE
Cause:	The Voltage Sensing Module (VSM) has detected at least one fault.
Remedy:	Evaluates other actual messages.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowl. upon F:	IMMEDIATELY
F34801	VSM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	VECTOR_G
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ connection.
	- replace the component involved.
F34801	VSM DRIVE-CLiQ: Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM), Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ connection.
	- replace the Voltage Sensing Module (VSM).
F34802	VSM: Time slice overflow
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred on the Voltage Sensing Module.
Remedy:	Replace the Voltage Sensing Module.


F34803	VSM: Memory test
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred during the memory test on the Voltage Sensing Module.
Remedy:	- check whether the permissible ambient temperature for the Voltage Sensing Module is being maintained.  
	- replace the Voltage Sensing Module.


F34804 (N, A)	VSM: CRC
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error has occurred when reading-out the program memory on the Voltage Sensing Module (VSM).
Remedy:	- check whether the permissible ambient temperature for the component is maintained.
	-replace the Voltage Sensing Module.
Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE

F34805 VSM: EEPROM checksum error
Message value: \%1
Message class: Hardware / software error (1)
Drive object: B_INF, VECTOR_G
Reaction: Vector: NONE (OFF1, OFF2, OFF3)
Infeed: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Voltage Sensing Module (VSM).

## F34806

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause:
Remedy:

VSM: Initialization

Hardware / software error (1)
B_INF, VECTOR_G
Vector: NONE (OFF1, OFF2, OFF3)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY
For the Voltage Sensing Module (VSM), a fault has occurred while initializing.
Replace the Voltage Sensing Module.

A34807 (F, N)	VSM: Sequence control time monitoring
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error, timeout in the sequence control on the Voltage Sensing Module (VSM).
Remedy:	Replace the Voltage Sensing Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

## F34820

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause:

## VSM DRIVE-CLiQ: Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, VECTOR_G
Vector: NONE (OFF1, OFF2)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module involved.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F34835	VSM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $y \mathrm{y}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
F34836	VSM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F34837	VSM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.

### 4.2 List of faults and alarms

67 (= 43 hex):
Send error: The telegram buffer memory contains an error.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
$0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause
Remedy:

- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

A34840	VSM DRIVE-CLiQ: error below the signaling threshold
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ error has occurred below the signaling threshold.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):

The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
10 (= OA hex):
The sign-of-life bit in the receive telegram is not set.
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
16 (= 10 hex):
The receive telegram is too early.
32 (= 20 hex):
Error in the telegram header.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
64 (= 40 hex):
Timeout in the telegram send list.
65 (= 41 hex):
Telegram type does not match send list.

	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F34845	VSM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F34850	VSM: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error in the Voltage Sensing Module (VSM) has occurred.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.
Remedy:	- replace the Voltage Sensing Module (VSM).
	- if required, upgrade the firmware in the Voltage Sensing Module.
	- contact the Hotline.
F34851	VSM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.

### 4.2 List of faults and alarms

Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
$0000 y y x x$ hex: $y y=$ component number, $x x=$ error cause
Remedy:
Upgrade the firmware of the component involved.

## F34860

Message value:
Message class:
Drive object:
Reaction:

Acknowledge: Cause:

Remedy:

## VSM DRIVE-CLiQ (CU): Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, TM150, TM31, VECTOR_G
Vector: NONE (OFF1, OFF2)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

F34875	VSM DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $x x=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
F34885	VSM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the power supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)


F34886	VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F34887	VSM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.

### 4.2 List of faults and alarms

F34895	VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module involved (VSM) to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F34896	VSM DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
$\overline{\text { F34899 (N, A) }}$	VSM: Unknown fault
Message value:	New message: \%1
Message class:	Infeed faulted (13)
Drive object:	B_INF, VECTOR_G
Reaction:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the Voltage Sensing Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Voltage Sensing Module by an older firmware version (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A :	NONE


A34903 (F, N)	VSM: I2C bus error occurred
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred when accessing the module-internal I2C bus.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A34903 (F, N)	VSM: I2C bus error occurred
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred when accessing the module-internal I2C bus.
Remedy:	Replace the Voltage Sensing Module (VSM).
Reaction upon F:	NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A34904 (F, N)	VSM: EEPROM
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Voltage Sensing Module (VSM).
Reaction upon F:	Vector: NONE
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A34905 (F, N)	VSM: Parameter access
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Voltage Sensing Module (VSM).
Remedy:	- check whether the firmware version of the VSM (r0158) matches the firmware version of Control Unit (r0018).
	- if required, replace the Voltage Sensing Module.
	Note:
	The firmware versions that match each other are in the readme.txt file on the memory card.
Reaction upon F:	Vector: NONE
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)

\(\left.\begin{array}{ll}Reaction upon N: \& NONE <br>

Acknowl. upon N: \& NONE\end{array}\right]\)| F34920 (N, A) | VSM: Temperature sensor fault |
| :--- | :--- |
| Message value: | \%1 |
| Message class: | External measured value / signal state outside the permissible range (16) |
| Drive object: | B_INF, VECTOR_G |
| Reaction: | Vector: NONE |
| Infeed: NONE (OFF1, OFF2) |  |


F35000	TM54F: Sampling time invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	The set sampling time is invalid.
	- not a multiple integer of the DP clock cycle.
	Fault value (r0949, floating point):
	Recommended valid sampling time.
Remedy:	Adapt the sampling time (e.g. set the recommended valid sampling time).
	See also: p10000 (SI TM54F communication clock cycle)
F35001	TM54F: Parameter value invalid
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The functionality of the basic functions via TM54F is used.
	TM54F has been incorrectly parameterized (incorrect parameter assignment).
	Fault value (r0949, interpret binary):
	Bits 0 ... 3 specifies for which drive group illegal F-DIs were parameterized:
	Bit $0=1$ : drive group 1 error
	Bit 1 = 1 : drive group 2 error
	Bit 2 = 1 : drive group 3 error
	Bit 3 = 1 : drive group 4 error
	p10024 ... p10038 must be 0, p10039 may only use signals from Basic Safety Functions.
	Bits $4 \ldots 7$ specifies for which F-DOs incorrect links were specified:
	Bit $4=1$ : F-DO 0 error (p10042)
	Bit 5 = 1 : F-DO 1 error (p10043)
	Bit $6=1$ : F-DO 2 error (p10044)
	Bit 7 = 1 : F-DO 3 error (p10045)
	Note:
	Only the following signals may be parameterized:
	"STO active"
	"SS1 active"
	"internal event"
	"Safe state"
Remedy:	- activate the safety commissioning mode TM54F (change parameter).
	- check p10042 ... p10045 and if required, correct.
	- check p10024 ... p10039 and if required, correct.
	- copy the parameters.
	- activate the settings.
F35002	TM54F: Commissioning not possible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The commissioning mode activation was rejected because at least one drive belonging to the TM54F is enabled for operation.
	Fault value (r0949, interpret decimal):
	Drive object number of the first drive found without pulse suppression/power inhibit.

Remedy: Withdraw the operating enable for the drive specified in the fault value.

F35003	TM54F: Acknowledgement on the Control Unit is required
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault on the Terminal Module 54F (TM54) was acknowledged using the safe acknowledgement (p10006).
	An additional acknowledgement is also required at the Control Unit.
Remedy:	- acknowledge all faults on the Control Unit (BI: p2102).
	or                  - acknowledge all faults on the drive object TM54F (BI: p2103, p2104 or p2105).     A fault acknowledgement is triggered with a 0/1 signal.

## F35004

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

### 4.2 List of faults and alarms

Remedy:	For a fault value in the range from bit 0 ... 5 :   - First check that all drives are entered in p10010, extended safety functions or basic functions have been enabled via TM54F.   - Execute the copy function for $\operatorname{TM} 54 F(p 9700=87)$.   - adapt the checksums for $\operatorname{TM} 54 F(p 9701=172)$.   - copy RAM to ROM.   - carry out a POWER ON.

For a fault value in the range from bit $16 \ldots 21$ :
Increase the current controller sampling time of the corresponding drive, in order to avoid faults in operation.

- Execute the copy function for $\operatorname{TM} 54 F(p 9700=87)$.
- adapt the checksums for $\operatorname{TM} 54 F(p 9701=172)$.
- copy RAM to ROM.
- carry out a POWER ON.

F35005
Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:

## TM54F:parallel connection not supported

Fault cause: \%1 bin
Safety monitoring channel has identified an error (10)
VECTOR_G
NONE
POWER ON
The TM54F function with Basic Safety Functions is used. This function is not supported when power units are connected in parallel.
All drives of the TM54F assume fail safe values, and are not enabled.
See also: p10010 (SI TM54F drive object assignment)
Remedy: - deactivate parallel connection or TM54F with Basic Functions.

- copy RAM to ROM.
- carry out a POWER ON (power off/on).


## F35006

Message value:
TM54F: drive groups invalid
\%1
Message class:

Drive object:
Reaction:
Acknowledge:

## Cause:

## Remedy:

B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE

## POWER ON

The functionality of the basic functions via TM54F is used.
Drive groups have been incorrectly parameterized (incorrect parameter assignment).
Fault value (r0949, interpret binary):
The value specifies in which drive group Basic Safety drives are mixed with Extended Safety drives.
Bit $0=1$ : drive group 1 error
Bit $1=1$ : drive group 2 error
Bit 2 = 1 : drive group 3 error
Bit 3 = 1 : drive group 4 error

As long as this fault is present, fail safe values are activated in TM54F. All the drives are not enabled.

## Note:

-this error is also signaled if a drive controlled with TM54F is parameterized so that the basic functions are controlled via TM54F and simultaneously extended safety functions or ncSI have been parameterized.

Corresponding to the fault value, p10011 should be checked to ensure that no Basic Safety drives are mixed with Extended Safety drives in a drive group.

F35009	TM54F: Safety commissioning drive incomplete
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	B_INF, TM54F_MA, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	In the configuration of the TM54F, a drive object of the TM54F was assigned, that has no safety functions or has incorrectly parameterized safety functions.
	The fault value specifies which drive (refer to p10010) has been incorrectly parameterized (p9601 p9501).
	Bit $0=1$ : drive 1 error
	Bit 1 = 1 : drive 2 error
	Bit 2 = 1 : drive 3 error
	Bit 3 = 1 : drive 4 error
	Bit 4 = 1 : drive 5 error
	Bit 5 = 1 : drive 6 error
Remedy:	Carry out the safety commissioning of the drive involved and enable the safety functions for TM54F.
	Then commission the TM54F and then just set $\mathrm{p} 9700=87 \mathrm{~d}$ and $\mathrm{p} 9701=172 \mathrm{~d}$.
F35011	TM54F: Drive object number assignment illegal
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A drive object number was assigned twice. Each drive object number can be assigned only once.
Remedy:	Correct the assignment of the drive object numbers.
	See also: p10010 (SI TM54F drive object assignment)
A35012	TM54F: Test stop active
Message value:	-
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The test stop for the Terminal Module 54F (TM54F) is presently being executed.
	Note:
	Fault F35013 is output if a fault occurs during the test stop.
Remedy:	The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop.
F35013	TM54F: Test stop error
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error was detected when carrying out the test stop on the TM54F. Failsafe control signals (failsafe values) are transferred to the safety functions.
	Fault value (r0949, interpret hexadecimal):   aaaabbcc hex:
	aaaa: DO or F-DI (dependent on test step cc), where the expected state was not assumed (bit $0=F-D I 0$ or F-DO 0 , bit 1 = F-DI 1 or F-DO 1, etc.).
	bb : Fault cause
	$\mathrm{bb}=01$ hex: Internal fault.
	$\mathrm{bb}=02$ hex: Fault when comparing the switching signals of the two channels (F-DI or DI ).
	$\mathrm{bb}=03$ hex: Internal fault.

### 4.2 List of faults and alarms

$\mathrm{bb}=04$ hex: Fault when comparing the switching signals of the two channels (Diag-DO).
cc: State of the test stop in which the fault has occurred.
The display format is as follows:
Slave fault state: (test actions)(test actions) | corresponding step for the master: (test actions)(test actions) | Description
00 hex: (L1+OFF)(L2+ON) | OA hex: ()()|Synchronization / switching step
OA hex: (L1+OFF)(L2+ON) | 15 hex: ( )()| Wait step
15 hex: (L1+OFF)(L2+OFF)| 20 hex :( )( ) | 1.) F-DI 0 ... 4 check for 0 V 2 .) Switch step to new level
20 hex: (L1+OFF)(L2+OFF)| 2B hex: ()()| Wait step
2B hex: (L1+ON)(L2+ON)| 36 hex: ( )( )| 1.) F-DI 5 ... 9 check for 0 V 2.) Switch step to new level
36 hex: (DO OFF)( )| 41 hex: (DO OFF)( ) | Wait step / switching step
41 hex: (DO OFF)( )|4C hex: (DO OFF)( ) | Wait step
4C hex: (DO ON)( )|57 hex: (DO ON)( )| 1.) Check diag-DO or diag-DI 2.) Switch step to new level
57 hex: (DO ON)()| 62 hex: (DO ON)( ) | Wait step
62 hex: (DO OFF)( )|6D hex: (DO ON)( )| 1.) Check diag-DO or diag-DI 2.) Switch step
6D hex: (DO OFF)( )| 78 hex: (DO ON)( ) | Wait step
78 hex: (DO ON)( )| 83 hex: (DO OFF)( )| 1.) Check diag-DO or diag-DI 2.) Switch step
83 hex: (DO ON)( ) | 8E hex: (DO OFF)( ) | Wait step
8E hex: (DO OFF)( )| 99 hex: (DO OFF)( )| 1.) Check diag-DO or diag-DI 2.) Switch step
99 hex: (DO OFF)( )|A4 hex: (DO OFF)()| Wait step
A4 hex: (DO OFF)()|AF hex: (DO OFF)( )| Check Diag-DO or Diag-DI
AF hex: (DO original state)()| C5 hex: (DO original state)() | Switching step
C5 hex: End of test

The expected states to be checked depend on the parameterized test mode (p10047).
The following expected states are tested in the test steps when testing the F-DOs:
The display format is as follows:
Test step (SL MA): Expected Diag-DO mode 1 | Expected DI 20 ... 23 mode 2 | Expected DI 20 ... 23 mode 3
( 4 C hex 57 hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=24 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
( 62 hex 6D hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=0 \mathrm{~V}| \mathrm{DI}=0 \mathrm{~V}$
( 78 hex 83 hex): $D i a g-D O=0 \vee|D I=0 V| D I=24 V$
( 8 E hex 99 hex): Diag-DO $=24 \mathrm{~V}|\mathrm{DI}=0 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
(A4 hex AF hex): Diag-DO $=0 \mathrm{~V}|\mathrm{DI}=24 \mathrm{~V}| \mathrm{DI}=24 \mathrm{~V}$
Example:
If an error with fault causes $\mathrm{bb}=02$ hex or 04 hex occurs in a test stop step, the test action for the fault took place in the previous test stop step. The expected states are tested in the next step.
Master signals fault value 0001_04AF and slave signals fault value 0001_04A4.
aaaa $=1$--> F-DO 0 is involved.
$\mathrm{bb}=04$ hex --> the test of the Diag-DO was unsuccessful.
$\mathrm{cc}=$ The expected states were tested in test stop step AF on the master and A4 on the slave.
The expected state Diag-DO $=0 \mathrm{~V}$ was checked in the table, i.e. Diag-DO was at 0 V instead of the expected 24 V . The associated test action took place in the previous step ( 99 hex DO OFF, A4 hex DO OFF). Both DOs were switched to OFF.
Remedy: Check the wiring of the F-DIs and F-DOs and restart the test stop.
Note:
The fault is withdrawn if the test stop is successfully completed.
For fault value = CCCCCCCC hex, DDDDDDDD hex, EEEEEEEE hex the following applies:
These fault values occur together with fault F35152. In this case, all parameters for the test stop should be checked.
You should also check whether the firmware version of the TM54F matches that of the Control Unit.
You also need to check p10001, p10017, p10046 and p10047.
A POWER ON must be carried out after correcting the parameters.

A35014
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## TM54F: Test stop required

Safety monitoring channel has identified an error (10)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
NONE

- after powering up the drive, a test stop has still not been carried out.
- a new test stop is required after commissioning.
- the time to carry out the forced checking procedure (test stop) has expired ( p 10003 ).


## Remedy:

## A35015

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

Initiate test stop (BI: p10007).

## TM54F: Motor/Hydraulic Module replaced or configuration inconsistent

Fault cause: \%1 bin
Error in the parameterization / configuration / commissioning procedure (18)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
NONE
Cyclic communication of at least one drive with the Terminal Module 54F (TM54F) is not active.

Possible causes:

- at least one Motor Module/Hydraulic Module was replaced (e.g. hardware was replaced).
- The parameterization of theTM54F ( p 10010 ) is inconsistent with the number of drives, which have drive-based motion monitoring functions activated with TM54F.
- For the signaled drive, it is not permissible that the "Safe motion monitoring without selection" (p9601.5 = 1) is parameterized.
- And activated drive has no communication via DRIVE-CLiQ.
- p10010 of the TM54F master module is not the same as p10010 of the TM54F slave module (in this case, F35051 is also output).
- In p10010 of the TM54F master or slave module, the number of a drive object was entered several times.
- the control of the Basis Functions via TM54F was parameterized, and simultaneously the Extended Safety Functions or ncSI were parameterized.

Fault value (r0949, interpret binary):
yyyy yyyy xxxx xxxx bin
xxxx xxxx bin: inconsistent configuration
Bit $0=1$ : No communication with drive 1 .

Bit $5=1$ : No communication with drive 6.
yyyy yyyy bin: Motor Module/Hydraulic Module replaced or a DRIVE-CLiQ cable of a Motor Module/Hydraulic Module not inserted.
Bit 8 = 1: Motor Module/Hydraulic Module from drive 1 was replaced or does not communicate.
...
Bit 13 = 1: Motor Module/Hydraulic Module from drive 6 was replaced or does not communicate.

Note:
When this fault is present, none of the drives listed in the fault value, which have drive-based motion monitoring functions operating with TM54F, are enabled.
For fault value $=0$ :
The number of drive objects specified in p10010 is not equal to the number of drives that have drive-based motion monitoring functions that have been enabled.
See also: p10010 (SI TM54F drive object assignment)

### 4.2 List of faults and alarms

Remedy: For all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
Check as to whether F35051 is also output and remove the cause.
Check whether each drive object number is listed only once in the indices of p10010.
Note:
If a drive was deactivated and activated without first having established the DRIVE-CLiQ connection, then this alarm is also output.
When replacing a Motor Module/Hydraulic Module, carry out the following steps:

- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.

For SINUMERIK, the following applies:
HMI supports the replacement of components with Safety functions (operating area "Diagnostics" --> Softkey "Alarm list" --> Softkey "Confirm SI HW" etc.).
The precise procedure is given in the following document:
SINUMERIK Function Manual Safety Integrated

## A35016

Message value:
Message class:
Drive object:
Reaction:
Acknowledge: Cause:

## TM54F: Net data communication with drive not established

Internal (DRIVE-CLiQ) communication error (12)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
NONE
The cyclic net data communication within the Terminal Module 54F (TM54F) is still not active for at least one drive. Note:
This message is output after the TM54F master and TM54F slave have booted and is automatically withdrawn as soon as communications have been established.
Remedy: When replacing a Motor Module/Hydraulic Module, carry out the following steps:

- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.

The following always applies:

- for all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
- check whether fault F35150 is present and if required, remove the cause of the fault.

Note:
If this message is displayed, in p10055 you can read which drives have not established communication. Together with parameter p10010, the corresponding drive objects of the Control Unit can be identified.
See also: r10055 (SI TM54F communication status drive-specific)

## F35040

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## TM54F: 24 V undervoltage

Fault cause: \%1 bin
Supply voltage fault (undervoltage) (3)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
IMMEDIATELY
For the 24 V power supply for the Terminal Module 54F (TM54F) an undervoltage condition was detected.
As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret binary):
Bit $0=1$ : Power supply undervoltage at connection X524.
Bit 1 = 1: Power supply undervoltage at connection X514.

- check the 24 V DC power supply for the TM54F.
- carry out safe acknowledgment (p10006).


## F35043

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## TM54F: 24 V overvoltage

Supply voltage fault (undervoltage) (3)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
MMEDIATELY
For the 24 V power supply for the Terminal Module 54F (TM54F) an overvoltage condition was detected As fault response fail-safe input terminal signals are transferred to the motion monitoring functions

- check the 24 V DC power supply for the TM54F.
- carry out safe acknowledgment (p10006).


## F35051

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

TM54F: Defect in a monitoring channel
\%1
Safety monitoring channel has identified an error (10)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
IMMEDIATELY
The Terminal Module 54F (TM54F) has identified an error in the crosswise data comparison between the two control channels.
This can be the result of incorrect parameterization. However, a fault may have occurred, which was identified by the Safety Integrated software (e.g. defective hardware).
Perform the steps listed under "Remedy" in order to rule out any defective hardware.
As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret hexadecimal):
aaaabbcc hex
aaaa: A value greater than zero indicates an internal software error
bb: Data to be cross-compared that resulted in the error.
If specified, check the specified parameters to ensure that they are the same for both the TM54F master and TM54F slave.
bb $=00$ hex: p10000[0]
bb $=01$ hex: p10001
bb = 02 hex: p10002
bb = 03 hex: p10006
bb $=04$ hex: p10008
bb = 05 hex: p10010
bb = 06 hex: p10011
bb $=07$ hex: p10020
bb = 08 hex: p10021
bb = 09 hex: p10022
bb = 0A hex: p10023
bb = 0B hex: p10024
bb = 0C hex: p10025
bb = 0D hex: p10026
bb $=0 \mathrm{E}$ hex: p10027
bb $=0 \mathrm{~F}$ hex: p 10028
bb = 10 hex: p10036
bb = 11 hex: p10037
bb = 12 hex: p10038
bb = 13 hex: p10039
bb = 14 hex: p10040
bb = 15 hex: p10041
bb = 16 hex: p10042
bb $=17$ hex: p 10043
bb $=18$ hex: p10044
bb $=19$ hex: p10045

### 4.2 List of faults and alarms

```
bb = 1A hex: p10046
bb = 1B hex: p10041
bb}=1C\mathrm{ hex: p10046
bb = 1D ... 1F hex: p10017, p10002, p10000
bb = 20 ... 2A hex: p10040, p10046, p10047
bb}=2B\mathrm{ hex: error in the data for test stop initialization
bb}=2\textrm{C}\mathrm{ hex: error in the data for initializing the input/output calculation
bb = 2D ... 45 hex: error in the data for the output calculation p10042 ... p10045
bb}=46\ldots63\mathrm{ hex: error in the data for the calculation of drive group 1
bb = 64 ... 81 hex: error in the data for the calculation of drive group 2
bb = 82 ... 9F hex: error in the data for the calculation of drive group 3
bb = A0 ... BD hex: error in the data for the calculation of the drive group 4
bb = BE hex: debounce time of the fail-safe inputs (F-DI) p10017
bb}=\textrm{BF}\mathrm{ hex: debounce time of the single-channel inputs (DI) p10017
bb = C0 hex: debounce time of the Diag inputs p10017
bb = C1 hex: error in the internal data for p10030 SDI positive
bb = C2 hex: error in the internal data for p10031 SDI negative
bb = C3 ... CA hex: error in the data to calculate the drive groups p10030 ... p10031
bb = CB hex: p10032
bb = CC hex: p10033
bb = CD hex: p10009
bb = CE ... CF error in the data for drive group 1 SLP parameter p10032 ... p10033
bb = D0 ... D1 error in the data for drive group 2 SLP parameter p10032 ... p10033
bb = D2 ... D3 error in the data for drive group 3 SLP parameter p10032 ... p10033
bb = D4 ... D5 error in the data for drive group 4 SLP parameter p10032 ... p10033
bb = D6 error in the data for initializing the retract function
bb = D7 error in the data for the retract function SLP
bb = D8 error in parameter p10000[1..5]
bb = D9..E3 error in the internal data of the axis communication
bb = E4..F2 error in the internal data of the discrepancy check
```

cc: indicates the index of the data to be cross-compared that resulted in the error.

## Remedy:

Carry out the following steps on the TM54F:

- check the specified parameters for incorrect parameterization.
- activate the safety commissioning mode (p0010 = 95).
- start the copy function for SI parameters (p9700 = 57 hex).
- acknowledge complete data change (p9701 = AC hex).
- exit the safety commissioning mode ( $\mathrm{p} 0010=0$ ).
- save all parameters ( $\mathrm{p} 0977=1$ ).
- carry out safe acknowledgment (p10006).

For an internal software error (aaaa >0):

- For TM54F, upgrade the firmware to a later version.
- contact the Hotline.
- replace the TM54F.


## F35052 (A)

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

TM54F: Internal hardware error
\%1
Hardware / software error (1)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
IMMEDIATELY (POWER ON)
An internal software/hardware error has been detected on the Terminal Module 54F (TM54F). Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- upgrade TM54F firmware to more recent version.      - contact the Hotline.   - replace the TM54F.
Reaction upon A:	NONE
Acknowl. upon A:	NONE
F35053	TM54F: Temperature fault threshold exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to
initiate this fault.	


A35054	TM54F: Temperature alarm threshold exceeded
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to   initiate this alarm.   - allow the TM54F to cool down.   Remedy:
	- carry out safe acknowledgment (p10006).

## A35075 (F) <br> Message value: <br> Message class: <br> Drive object: <br> Reaction: <br> Acknowledge:

## Cause:

TM54F: Error during internal communication \%1
Hardware / software error (1)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
NONE
An internal communications error has occurred in the Terminal Module 54F (TM54F).
This message is also output in the following cases:

- The TM54F exists and no safety function of the TM54F has yet been parameterized.
- Parameter p10000 (TM54F master) is not set the same as p10000 (TM54F slave).
- Parameter p10010 (TM54F master) is not set the same as p10010 (TM54F slave).

Alarm value (r2124, interpret decimal):
Only for internal Siemens diagnostics.
Remedy: If TM54F exists and no safety function has yet been parameterized:

- Not necessary. The alarm disappears automatically after a safety function of the TM54F has been parameterized.

For p10010/p10000 from the TM54F master not equal to the TM54F slave:

- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.

For internal communication errors:

- check the electrical cabinet design and cable routing for EMC compliance
- upgrade the software on the TM54F.

	- contact the Hotline.   - replace the TM54F.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
A35080 (F)	TM54F: Checksum error safety parameters
Message value:	\%1
Message class:	Safety monitoring channel has identified an error (10)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The calculated checksum entered in r10004 over the safety-relevant parameters does not match the reference checksum saved in p10005 at the last machine acceptance.
	Fault value (r0949, interpret binary):
	Bit $0=1$ : Checksum error for functional SI parameters.
	Bit 1 = 1: Checksum error for SI parameters for component assignment.
Remedy:	- check the safety-relevant parameters and if required, correct.
	- set the reference checksum to the actual checksum.
	- acknowledge the hardware replacement.
	- carry out a POWER ON (power off/on).
	- carry out an acceptance test.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)


A35081 (F)	TM54F: Static (steady state) 1 signal at the F-Dl for safe acknowledgment
Message value:	-
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A logical 1 signal is present at the F-DI configured in p10006 for more than 10 seconds.
	If, at the F-DI no acknowledgment was performed for safe acknowledgment, then a steady-state logical and 0 signal must be present. This avoids unintentional safety-relevant acknowledgement (or the "Internal Event Acknowledge" signal) if a wire breaks or one of the two digital inputs bounces.
Remedy:	Set the fail-safe digital input (F-DI) to a logical 0 signal ( p 10006 ).
	Note:
	F-DI: Failsafe Digital Input
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
F35150	TM54F: Communication error
Message value:	\%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A communication error between the TM54F master and Control Unit or between the TM54F slave and the Motor Module/Hydraulic Module was detected.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	When replacing a Motor Module/Hydraulic Module, carry out the following steps:
	- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
	- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
	- save all parameters (p0977 = 1).
	- carry out a POWER ON (power off/on) for all components.

The following always applies:

- check the electrical cabinet design and cable routing for EMC compliance
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.


## F35151

Message value:
Message class:
Drive object:
Reaction:
Acknowledge
Cause:

## TM54F: Discrepancy error

 \%1Error in the parameterization / configuration / commissioning procedure (18)
B_INF, TM54F_MA, TM54F_SL, VECTOR_G
NONE
IMMEDIATELY
The safety input terminals or output terminals show a different state longer than that parameterized in p10002.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex
xxxx: The safety-relevant input terminals F-DI indicate a discrepancy.
Bit 0: Discrepancy for F-DI 0

Bit 9: Discrepancy for F-DI 9
yyyy: The safety-relevant output terminals F-DO indicate a discrepancy.
Bit 0: Discrepancy for F-DO 0

Bit 3: Discrepancy for F-DO 3
Note:
If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs.
The following options are available to analyze all of the discrepancy errors:

- Using the commissioning software, evaluate the input states and output states of the TM54F. All discrepancy errors are displayed here.
- Compare parameters p10051 and p10052 from the TM54F master and TM54F slave for discrepancy.

Remedy: Check the wiring of the corresponding F-DI (contact problems).
Discrepancy errors in the fail-safe digital inputs (F-DI) can only be completely acknowledged if, after the cause of the error was resolved, safe acknowledgement was carried out (see p10006). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state internally.

Sets the discrepancy time for cyclic switching operations at the F-Dls:
For cyclic switching operations at the fail-safe digital inputs (F-DI), it may be necessary to adapt the discrepancy time to the switching frequency:
If the period of a cyclic switching pulse corresponds to twice the value of p 10002 , then the following formulas should be checked:

- p10002 < (tp / 2) - td (discrepancy time must be less than half the period minus the actual discrepancy time)
- p10002 >= p10000 (discrepancy time must be no less than p10000)
- p10002 > td (discrepancy time must be greater than the switch discrepancy time which may actually apply)
td: possible actual discrepancy time (in ms) that can occur with a switching operation. This must correspond to at least 1 SI sampling cycle (see p10000).
tp: period for a switching operation in ms.
For cyclic switching operations and when debounce (p10017) is active, the discrepancy time is directly specified by the debounce time.

If the period of a cyclic switching pulse corresponds to twice the debounce time, then the following formulas should be checked.

- p10002 < p10017 + 1ms - td
p10002 > td
- p10002 >= p10000


### 4.2 List of faults and alarms

	Example:
	If the SI sampling cycle is 12 ms and the switching frequency is 110 ms ( $\mathrm{p} 10017=0$ ), the maximum discrepancy time which can be set is as follows:
	p10002 <= 110/2 ms - $12 \mathrm{~ms}=43 \mathrm{~ms} \mathrm{-->} \mathrm{rounded-off} ,\mathrm{the} \mathrm{following} \mathrm{is} \mathrm{obtained} \mathrm{p10002} \mathrm{<=} 36 \mathrm{~ms}$
	Since the discrepancy time can only be accepted as a whole SI sampling time, the value will need to be rounded up or down to a whole SI sampling time value if it is not an exact integer multiple of an SI sampling time.
	Basic secondary condition to set the discrepancy time:
	The discrepancy time of the FDIs must always be set higher than the highest value p9780 (the drives that use safety with TM54F).
	F-DI: Failsafe Digital Input
	F-DO: Failsafe Digital Output
F35152	TM54F: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred in the Terminal Module 54F (TM54F).
	The fail-safe digital inputs and digital outputs (F-DI, F-DO) on the TM54F have been set to the safe state.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
	Note:
	F-DI: Failsafe Digital Input
	F-DO: Failsafe Digital Output
Remedy:	Check that the firmware version of the TM54F matches the Control Unit's firmware version.
	The automatic firmware update must be activated in the project.
	Note:
	This signal will also appear, for example, in conjunction with fault F35013. In this case you should check all the parameters for the test stop on the TM54F (p10001, p10003, p10007, p10041, p10046, p10047). In this case, a POWER ON is required after the parameters have been corrected.


A35200 (F, N)	TM: Calibration data
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected in the calibration data of the Terminal Module.
	Alarm value (r2124, interpret decimal):
	ddcbaa dec: $\mathrm{dd}=$ component number, $\mathrm{c}=\mathrm{Al} / \mathrm{AO}, \mathrm{b}=$ fault type, $\mathrm{aa}=$ number
	$\mathrm{c}=0$ : analog input (AI, Analog Input)
	c = 1: analog output (AO, Analog Output)
	$b=0$ : No calibration data available.
	$b=1$ : Offset too high (> 100 mV ).
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- Replace the component if necessary.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


F35207 (N, A)	TM: Temperature fault/alarm threshold channel 0 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[0], $\mathrm{p} 4103[0]$ ).
	or
	- fault threshold exceeded (p4102[1]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[0] = 1, 4), the following applies: - if r 4101 [0] > 1650 ohms, the temperature $\mathrm{r} 4105[0]=250^{\circ} \mathrm{C}$
	- if r 4101 [0] <= 1650 ohms, the temperature $\mathrm{r} 4105[0]=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[0] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[1] - hysteresis (5 K, for TM150, can be set using p4118[0]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35208 (N, A)	TM: Temperature fault/alarm threshold channel 1 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[2], $\mathrm{p} 4103[1]$ ).
	or
	- fault threshold exceeded (p4102[3]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies:   - if r4101[1] > 1650 ohms, the temperature $\mathrm{r} 4105[1]=250^{\circ} \mathrm{C}$   - if r 4101 [1] <= 1650 ohms, the temperature $\mathrm{r} 4105[1]=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[1] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].

### 4.2 List of faults and alarms

Remedy:	- allow the temperature sensor to cool down to below p4102[3] - hysteresis (5 K, for TM150, can be set using p4118[1]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35209 (N, A)	TM: Temperature fault/alarm threshold channel 2 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[4], $\mathrm{p} 4103[2]$ ).
	or
	- fault threshold exceeded (p4102[5]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies:
	- if r4101[2] > 1650 ohms, the temperature r4105[2] = $250{ }^{\circ} \mathrm{C}$
	- if r 4101 [2] <= 1650 ohms, the temperature $\mathrm{r4105}[2]=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output $4105[2]$ and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[5] - hysteresis ( 5 K , for TM150, can be set using p4118[2]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F35210 (N, A)	TM: Temperature fault/alarm threshold channel 3 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module (TM), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[6], p4103[3]).
	or
	- fault threshold exceeded (p4102[7]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] = 1, 4), the following applies:
	- if r4101[3] > 1650 ohms, the temperature r4105[3] $=250{ }^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[3]<=1650$ ohms, the temperature $\mathrm{r} 4105[3]=-50^{\circ} \mathrm{C}$


Remedy:	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
	- allow the temperature sensor to cool down to below p4102[7] - hysteresis (5 K, for TM150, can be set using         - if required, set the fault response to NONE (p2100, p2101).   See also: p4102
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE
Reaction upon A:	NONE
Acknowl. upon $\mathrm{A}:$	NONE


A35211 (F, N)	TM: Temperature alarm threshold channel 0 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[0]) has exceeded the threshold value to initiate this alarm (p4102[0]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[0] = 1, 4), the following applies: - if $\mathrm{r} 4101[0]>1650$ ohms, the temperature $\mathrm{r} 4105[0]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r4101}$ [0] <= 1650 ohms, the temperature $\mathrm{r} 4105[0]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[0] - hysteresis (5 K); for TM150, can be set using p4118[0].
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35212 (F, N)	TM: Temperature alarm threshold channel 1 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[1]) has exceeded the
	threshold value to initiate this alarm (p4102[2]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[1] = 1, 4), the following applies:
	- if r4101[1] > 1650 ohms, the temperature r4105[1] = $250{ }^{\circ} \mathrm{C}$
	- if r4101[1] <= 1650 ohms, the temperature $\mathrm{r} 4105[1]=-50{ }^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
	- allow the temperature sensor to cool down to below p4102[4] - hysteresis (5 K); for TM150, can be set using
Remedy:	p4118[1].
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)

### 4.2 List of faults and alarms

Reaction upon N : Acknowl. upon N :	NONE NONE
A35213 (F, N)	TM: Temperature alarm threshold channel 2 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[2]) has exceeded the threshold value to initiate this alarm (p4102[4]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[2] = 1, 4), the following applies: - if r 4101 [2] > 1650 ohms, the temperature $\mathrm{r} 4105[2]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r4101}$ [2] <= 1650 ohms, the temperature r4105[2] $=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[4] - hysteresis (5 K); for TM150, can be set using p4118[2].
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35214 (F, N)	TM: Temperature alarm threshold channel 3 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105[3]) has exceeded the threshold value to initiate this alarm (p4102[6]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[3] = 1, 4), the following applies:
	- if r4101[3] > 1650 ohms, the temperature $\mathrm{r} 4105[3]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[3]<=1650$ ohms, the temperature $\mathrm{r} 4105[3]=-50{ }^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[6] - hysteresis (5 K); for TM150, can be set using p4118[3].
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F35220 (N, A) TM: Frequency limit reached for signal output
Message value:
Message class: Application / technological function faulted (17)
Drive object: B_INF, TM31, VECTOR_G
Reaction:
Vector: OFF1 (NONE, OFF2, OFF3)
Infeed: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The signals output from the Terminal Module 41 (TM41) for tracks A/B have reached the limit frequency. The output signals are no longer in synchronism with the specified setpoint.

SIMOTION (p4400 = 0) operating mode:

- If the TM41 has been configured as the technology project, this fault is also output in response to short-circuited $A / B$ signals in X520.
SINAMICS $(p 4400=1)$ operating mode:
- the fine resolution of TM41 in p0418 does not match that of the connector input that was interconnected at p4420
- the encoder position actual value r0479 interconnected at connector input p4420 has an excessively high actual speed
- the output signals correspond to a speed, which is greater than the maximum speed (r1082 of TM41).

Remedy:
SIMOTION (p4400 = 0) operating mode:

- enter a lower speed setpoint (p1155).
- reduce the encoder pulse number (p0408).
- check track A/B for short-circuits.

SINAMICS (p4400 = 1) operating mode:

- enter a lower speed setpoint (p1155).
- reduce the encoder pulse number (p0408).

Notice:
The output signal is no longer monitored after changing the message type to "Alarm" (A).
Reaction upon N :
Acknowl. upon N :
Reaction upon A:
Acknowl. upon A:
NONE
NONE
NONE
(

NONE
F35221 (N, A) TM: Setpoint - actual value deviation outside the tolerance range
Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
-

Cause: The deviation between the setpoint and the output signals (track $A / B$ ) exceeds the tolerance of $+/-3 \%$. The deviation between the internal and external measured value is too high (> 1000 pulses).
Remedy: - reduce the basic clock cycle (p0110, p0111).

- if required, replace the component (e.g. internal short-circuit).

Reaction upon N :
NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A35222 (F, N)	TM: Encoder pulse number not permissible
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The encoder pulse number entered does not match the permissible pulse number from a hardware perspective.
	Fault value (r0949, interpret decimal):
	1: Encoder pulse number is too high.
	2: Encoder pulse number is too low.
	4: Encoder pulse number is less than the zero mark offset (p4426).
Remedy:	- enter the encoder pulse number in the permissible range (p0408).
	- if necessary, replace TM41 SAC with TM41 DAC.
	Note:
	TM41 SAC: order no. = 6SL3055-0AA00-3PA0
	TM41 DAC: order no. = 6SL3055-0AA00-3PA1
	The following applies for TM41 SAC:
	- minimum/maximum value for p0408: 1000/8192

### 4.2 List of faults and alarms

	The following applies for TM41 DAC:   - minimum/maximum value for p0408: 1000/16384
	See also: p0408 (Rotary encoder pulse number)
Reaction upon F:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35223 (F, N)	TM: Zero mark offset not permissible
Message value:	\%1
Message class:	Application / technological function faulted (17)
Drive object:	B_INF, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The entered zero mark offset is not permissible.
	Fault value (r0949, interpret decimal):
	1: Zero mark offset is too high.
Remedy:	Enter the zero mark offset in the permissible range (p4426).
Reaction upon F:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F35230	TM: Hardware fault
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	Vector: NONE
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	POWER ON
Cause:	The Terminal Module (TM) used has signaled internal errors.
	Signals from this module may not be evaluated because they are very likely to be incorrect.
Remedy:	If required, replace the Terminal Module.
F35233	DRIVE-CLiQ component function not supported
Message value:	\%1
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A function requested by the Control Unit is not supported by a DRIVE-CLiQ component.
	Fault value (r0949, interpret decimal):
	1: Terminal Module 31 does not support the function "Timer for temperature evaluation" (X522.7/8, p4103 > 0.000).
	4: The improved actual value resolution is not supported (p4401.4).
	5: The improved setpoint resolution is not supported (p4401.5).
	6: The residual value handling in the setpoint channel cannot be deactivated (p4401.6).
	7: Output frequencies greater than 750 kHz cannot be activated (p4401.7).
Remedy:	For fault value = 1:
	- De-activate timer for temperature evaluation (X522.7/8) (p4103 = 0.000).
	- Use Terminal Module 31 and the relevant firmware version to enable the "Timer for temperature evaluation" function (Order No. 6SL3055-0AA00-3AA1, firmware version 2.6 and higher).   See also: p4103


F35400 (N, A)	TM: Temperature fault/alarm threshold channel 4 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[8], p4103[4]).
	or
	- fault threshold exceeded (p4102[9]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[4] = 1, 4), the following applies:
	- if r4101[4] > 1650 ohms, the temperature r4105[4] $=250{ }^{\circ} \mathrm{C}$
	- if $\mathrm{r4101}$ [4] <= 1650 ohms, the temperature r4105[4] $=-50{ }^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[4] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[9] - hysteresis (p4118[4]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35401 (N, A)	TM: Temperature fault/alarm threshold channel 5 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[10], p4103[5]).
	or
	- fault threshold exceeded (p4102[11]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies:
	- if r4101[5] > 1650 ohms, the temperature r4105[5] $=250{ }^{\circ} \mathrm{C}$
	- if $\mathrm{r4101}$ [5] <= 1650 ohms, the temperature r4105[5] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[5] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[11] - hysteresis (p4118[5]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102

### 4.2 List of faults and alarms

Reaction upon N:	NONE
Acknowl. upon N:	NONE
Reaction upon A:	NONE
Acknowl. upon A:	NONE


F35402 (N, A)	TM: Temperature fault/alarm threshold channel 6 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to
	initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[12], p4103[6]).
	or
	- fault threshold exceeded (p4102[13]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies:
	- if r4101[6] > 1650 ohms, the temperature $\mathrm{r} 4105[6]=250{ }^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[6]<=1650$ ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$

The temperature actual value is displayed via connector output $\mathrm{r} 4105[6]$ and can be interconnected.
Notice:
This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
Fault value (r0949, interpret decimal):
Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy: - allow the temperature sensor to cool down to below p4102[13] - hysteresis (p4118[6]).

- if required, set the fault response to NONE (p2100, p2101).

See also: p4102
Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

## F35403 (N, A) TM: Temperature fault/alarm threshold channel 7 exceeded

Message value: $\% 1$
Message class: External measured value / signal state outside the permissible range (16)
Drive object:
Reaction:

Acknowledge:
Cause:

B_INF, TM150, VECTOR_G
Vector: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY (POWER ON)
For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:

- alarm threshold has been exceeded longer than that set in the timer (p4102[14], p4103[7]). or
- fault threshold exceeded (p4102[15]).

Note:
For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies:

- if $\mathrm{r} 4101[7]>1650$ ohms, the temperature $\mathrm{r} 4105[7]=250^{\circ} \mathrm{C}$
- if r 4101 [7] <= 1650 ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$

The temperature actual value is displayed via connector output r4105[7] and can be interconnected.
Notice:
This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.

Remedy:	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
	- allow the temperature sensor to cool down to below p4102[15] - hysteresis (p4118[7]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35404 (N, A)	TM: Temperature fault/alarm threshold channel 8 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[16], p4103[8]).
	or
	- fault threshold exceeded (p4102[17]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies:
	- if r4101[8] > 1650 ohms, the temperature r4105[8] = $250{ }^{\circ} \mathrm{C}$
	- if r 4101 [8] <= 1650 ohms, the temperature $\mathrm{r} 4105[8]=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[8] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[17] - hysteresis (p4118[8]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35405 (N, A)	TM: Temperature fault/alarm threshold channel 9 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[18], $\mathrm{p} 4103[9]$ ).
	or
	- fault threshold exceeded (p4102[19]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" ( $p 4100[9]=1,4$ ), the following applies: - if r 4101 [9] > 1650 ohms, the temperature $\mathrm{r} 4105[9]=250^{\circ} \mathrm{C}$   - if $\mathrm{r} 4101[9]<=1650$ ohms, the temperature $\mathrm{r} 4105[9]=-50^{\circ} \mathrm{C}$

### 4.2 List of faults and alarms

	The temperature actual value is displayed via connector output r4105[9] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[19] - hysteresis (p4118[9]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F35406 (N, A)	TM: Temperature fault/alarm threshold channel 10 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	Vector: OFF2 (NONE, OFF1, OFF3)
	Infeed: OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:
	- alarm threshold has been exceeded longer than that set in the timer (p4102[20], $\mathrm{p} 4103[10]$ ).
	or
	- fault threshold exceeded (p4102[21]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[10] = 1, 4), the following applies:
	- if r4101[10] > 1650 ohms, the temperature r4105[10] = $250{ }^{\circ} \mathrm{C}$
	- if r 4101 [10] <= 1650 ohms, the temperature r4105[10] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[10] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	- allow the temperature sensor to cool down to below p4102[21] - hysteresis (p4118[10]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE

F35407 (N, A) TM: Temperature fault/alarm threshold channel 11 exceeded
Message value: \%1

Drive object: B_INF, TM150, VECTOR_G
Reaction:

Acknowledge:
Cause:

Message class: External measured value / signal state outside the permissible range (16)

## \%1

Vector: OFF2 (NONE, OFF1, OFF3)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY (POWER ON)
For the temperature evaluation via the Terminal Module 150 (TM150), at least one of the following conditions to initiate this fault is fulfilled:

- alarm threshold has been exceeded longer than that set in the timer (p4102[22], $\mathrm{p} 4103[11]$ ).
or
- fault threshold exceeded (p4102[23])

	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[11] = 1, 4), the following applies:
	- if r4101[11] > 1650 ohms, the temperature $\mathrm{r} 4105[11]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r4101}$ [11] <= 1650 ohms, the temperature r4105[11] $=-50^{\circ} \mathrm{C}$
	The temperature actual value is displayed via connector output r4105[11] and can be interconnected.
	Notice:
	This fault only causes the drive to shut down if there is at least one BICO interconnection between the drive and the Terminal Module.
	Fault value (r0949, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- allow the temperature sensor to cool down to below p4102[23] - hysteresis (p4118[11]).
	- if required, set the fault response to NONE (p2100, p2101).
	See also: p4102
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
A35410 (F, N)	TM: Temperature alarm threshold channel 4 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[4]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[8]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[4] = 1, 4), the following applies:
	- if r4101[4] > 1650 ohms, the temperature r4105[4] $=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[4]<=1650$ ohms, the temperature r4105[4] $=-50{ }^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[8] - hysteresis (p4118[4]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35411 (F, N)	TM: Temperature alarm threshold channel 5 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[5]) measured using the temperature sensing of the Terminal Module 150 (TM150) has
	exceeded the threshold value to initiate this alarm (p4102[10]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[5] = 1, 4), the following applies:
	- if r4101[5] > 1650 ohms, the temperature r4105[5] = $250{ }^{\circ} \mathrm{C}$
	- if r4101[5] <= 1650 ohms, the temperature $\mathrm{r} 4105[5]=-50{ }^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[10] - hysteresis (p4118[5]).
	See also: p4102

### 4.2 List of faults and alarms

Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A35412 (F, N)	TM: Temperature alarm threshold channel 6 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[6]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[12]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[6] = 1, 4), the following applies:
	- if r4101[6] > 1650 ohms, the temperature r4105[6] $=250{ }^{\circ} \mathrm{C}$
	- if r4101[6] <= 1650 ohms, the temperature $\mathrm{r} 4105[6]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [ $\left.0.1{ }^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[12] - hysteresis (p4118[6]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35413 (F, N)	TM: Temperature alarm threshold channel 7 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[7]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[14]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[7] = 1, 4), the following applies: - if $\mathrm{r} 4101[7]>1650$ ohms, the temperature $\mathrm{r} 4105[7]=250^{\circ} \mathrm{C}$
	- if r 4101 [7] <= 1650 ohms, the temperature $\mathrm{r} 4105[7]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[14] - hysteresis (p4118[7]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35414 (F, N)	TM: Temperature alarm threshold channel 8 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[8]) measured using the temperature sensing of the Terminal Module 150 (TM150) has
	exceeded the threshold value to initiate this alarm (p4102[16]).


	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[8] = 1, 4), the following applies: - if r 4101 [8] > 1650 ohms, the temperature $\mathrm{r} 4105[8]=250^{\circ} \mathrm{C}$   - if r 4101 [8] <= 1650 ohms, the temperature $\mathrm{r} 4105[8]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[16] - hysteresis (p4118[8]). See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35415 (F, N)	TM: Temperature alarm threshold channel 9 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[9]) measured using the temperature sensing of the Terminal Module 150 (TM150) has exceeded the threshold value to initiate this alarm (p4102[18]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[9] = 1, 4), the following applies: - if r4101[9] > 1650 ohms, the temperature $\mathrm{r} 4105[9]=250^{\circ} \mathrm{C}$
	- if $\mathrm{r} 4101[9]<=1650$ ohms, the temperature $\mathrm{r} 4105[9]=-50^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation [0.1 ${ }^{\circ} \mathrm{C}$ ].
Remedy:	Allow the temperature sensor to cool down to below p4102[18] - hysteresis (p4118[9]).
	See also: p4102
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35416 (F, N)	TM: Temperature alarm threshold channel 10 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[10]) measured using the temperature sensing of the Terminal Module 150 (TM150) has
	exceeded the threshold value to initiate this alarm (p4102[20]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[10] = 1, 4), the following applies:
	- if r4101[10] > 1650 ohms, the temperature r4105[10] = $250{ }^{\circ} \mathrm{C}$
	- if r4101[10] <= 1650 ohms, the temperature $\mathrm{r} 4105[10]=-50{ }^{\circ} \mathrm{C}$
	Alarm value (r2124, interpret decimal):
	Temperature actual value at the time of initiation $\left[0.1^{\circ} \mathrm{C}\right]$.
Remedy:	Allow the temperature sensor to cool down to below p4102[20] - hysteresis (p4118[10]).
	See also: p4102
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon N:	NONE


A35417 (F, N)	TM: Temperature alarm threshold channel 11 exceeded
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r4105[11]) measured using the temperature sensing of the Terminal Module 150 (TM150) has
	exceeded the threshold value to initiate this alarm (p4102[22]).
	Note:
	For sensor type "PTC thermistor" and "Bimetallic NC contact" (p4100[11] = 1, 4), the following applies:
	- if r4101[11] > 1650 ohms, the temperature r4105[11] = $250^{\circ} \mathrm{C}$


A35802 (F, N)	TM: Time slice overflow
Message value:	-
Message class:	Hardware/ software error (1)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A time slice overflow has occurred on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE
A35803 (F, N)	TM: Memory test
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred during the memory test on the Terminal Module.
Remedy:	- check whether the permissible ambient temperature for the Terminal Module is being maintained.
Reaction upon F:	- replace the Terminal Module.
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

## F35804 (N, A) TM: CRC

Message value: \%1
Message class: Hardware / software error (1)
Drive object: B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR G
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A checksum error has occurred when reading-out the program memory on the Terminal Module.
Fault value (r0949, interpret hexadecimal):
Difference between the checksum at POWER ON and the actual checksum.
Remedy: - check whether the permissible ambient temperature for the component is maintained.

- replace the Terminal Module.

Reaction upon N: NONE
Acknowl. upon N: NONE
Reaction upon A: NONE
Acknowl. upon A: NONE

A35805 (F,N)	TM: EEPROM checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Internal parameter data is corrupted.
	Alarm value (r2124, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.

Remedy: - check whether the permissible ambient temperature for the component is maintained.

- replace the Terminal Module 31 (TM31).


### 4.2 List of faults and alarms

Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35807 (F, N)	TM: Sequence control time monitoring
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error, timeout, sequence control on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE

## F35820

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## TM DRIVE-CLiQ: Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
OFF1 (OFF2)
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set
16 (= 10 hex):
The receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F35835	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Control Unit to the Terminal Module involved. The nodes do not send and receive in synchronism.
	Fault cause:
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- carry out a POWER ON.
	- replace the component involved.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F35836	TM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module involved. Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
F35837	PTM DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.

### 4.2 List of faults and alarms

Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause
Remedy: - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

A35840	TM DRIVE-CLiQ: error below the signaling threshold
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	A DRIVE-CLiQ error has occurred below the signaling threshold.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the component in the telegram and in the receive list do not match.
	7 (= 07 hex):
	A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
	No SYNC telegram is expected - but the received telegram is one.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	16 (= 10 hex):
	The receive telegram is too early.
	32 (= 20 hex):
	Error in the telegram header.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	35 (= $23 \mathrm{hex):}$
	Receive error: The telegram buffer memory contains an error.
	64 (= 40 hex):
	Timeout in the telegram send list.
	65 (= 41 hex):
	Telegram type does not match send list.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.


	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F35845	TM DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred between the Control Unit and the Terminal Module (TM) involved.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F35850	TM: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	Vector: OFF1 (NONE, OFF2, OFF3)
	Infeed: OFF1 (NONE, OFF2)
Acknowledge:	POWER ON
Cause:	An internal software error in the Terminal Module (TM) has occurred.
	Fault value (r0949, interpret decimal):
	1: Background time slice is blocked.
	2: Checksum over the code memory is not OK.
Remedy:	- replace the Terminal Module (TM).
	- if required, upgrade the firmware in the Terminal Module.
	- contact the Hotline.
F35851	TM DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Upgrade the firmware of the component involved.

## F35860

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## TM DRIVE-CLiQ (CU): Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
OFF1 (OFF2)
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

## F35875

## Message value:

Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

F35885
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

TM DRIVE-CLiQ (CU): Supply voltage failed
Component number: \%1, fault cause: \%2
Supply voltage fault (undervoltage) (3)
B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
OFF1 (OFF2)
IMMEDIATELY
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
Fault cause:
9 (= 09 hex):
The power supply voltage for the components has failed.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy: - carry out a POWER ON (power off/on).

- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
- check the dimensioning of the power supply for the DRIVE-CLiQ component.


## TM DRIVE-CLiQ (CU): Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
OFF1 (OFF2)
IMMEDIATELY
A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit. The nodes do not send and receive in synchronism
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause

- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

### 4.2 List of faults and alarms

	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F35887	TM DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (Terminal Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F35895	TM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communication error has occurred from the Terminal Module involved (TM) to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

## F35896

Message value:
Message class:
Drive object:
Reaction:

Acknowledge:
Cause:

Remedy:

## TM DRIVE-CLiQ (CU): Inconsistent component properties

Component number: \%1
Internal (DRIVE-CLiQ) communication error (12)
B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Vector: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Infeed: OFF2 (NONE, OFF1)
IMMEDIATELY
The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.

- carry out a POWER ON.
- when a component is replaced, the same component type and if possible the same firmware version should be used.
- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).

F35899 (N, A)	TM: Unknown fault
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):

Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the Terminal Module by an older firmware version (r0158).

- upgrade the firmware on the Control Unit (r0018).

Reaction upon N
Acknowl. upon N
NONE

Reaction upon A:
Acknowl. upon A
NONE

A35903 (F, N)	TM: I2C bus error OCCurred
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred while accessing the internal I2C bus of the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35904 (F, N)	TM: EEPROM
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy:	Replace the Terminal Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35905 (F, N)	TM: Parameter access
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Control Unit attempted to write an illegal parameter value to the Terminal Module.
Remedy:	- check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit (r0018).
	- if required, replace the Terminal Module.
	Note:
	The firmware versions that match each other are in the readme.txt file on the memory card.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35906 (F, N) TM: 24 V power supply missing
Message value: \%1
Message class: Supply voltage fault (undervoltage) (3)
Drive object: B_INF, TM150, TM31, VECTOR_G
Reaction: NONE
Acknowledge: NONE
Cause: $\quad$ The 24 V power supply for the digital outputs is missing.
Alarm value (r2124, interpret hexadecimal):
01: TM17 24 V power supply for DI/DO 0 ... 7 missing.
02: TM17 24 V power supply for DI/DO 8 ... 15 missing,
04: TM15 24 V power supply for DI/DO 0 ... 7 (X520) missing.
08: TM15 24 V power supply for DI/DO 8 ... 15 (X521) missing.
10: TM15 24 V power supply for DI/DO 16 ... 23 (X522) missing.
20: TM41 24 V power supply for DI/DO 0 ... 3 missing.
Remedy: $\quad$ Check the terminals for the power supply voltage (L1+, L2+, L3+, M or +24 V_1 for TM41).
Reaction upon F
Acknowl. upon F: IMMEDIATELY (POWER ON)
Reaction upon N: NONE
Acknowl. upon N: NONE

A35907 (F, N)	TM: Hardware initialization error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Terminal Module was not successfully initialized.
	Alarm value (r2124, interpret hexadecimal):
	01: TM17 or TM41 - incorrect configuration request.
	02: TM17 or TM41 - programming not successful.
	04: TM17 or TM41-invalid time stamp
Remedy:	Carry out a POWER ON.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35910 (F, N)	TM: Module overtemperature
Message value:	-
Message class:	Overtemperature of the electronic components (6)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature in the module has exceeded the highest permissible limit.
Remedy:	- reduce the ambient temperature.
	- replace the Terminal Module.
Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon $\mathrm{N}:$	NONE
Acknowl. upon $\mathrm{N}:$	NONE


$\overline{\mathrm{A} 35911 \text { (F, N) }}$	TM: Clock synchronous operation sign-of-life missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
	When the alarm is output, the module outputs are reset up to the next synchronization.
Remedy:	- check the physical bus configuration (terminating resistor, shielding, etc.).
	- check the interconnection of the master sign-of-life (r4201 via p0915).
	- check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ... r4201.15 and trigger signal r4301.9).
	- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35920 (F, N)	TM: Error temperature sensor channel 0
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $\mathrm{R}>1630$ Ohm (TM150: R > 2170 Ohm), PT100: $\mathrm{R}>194$ Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35921 (F, N)	TM: Error temperature sensor channel 1
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 50 Ohm (TM150: R < 180 Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35922 (F, N)	TM: Error temperature sensor channel 2
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.


Reaction upon $\mathrm{F}:$	NONE
Acknowl. upon $\mathrm{F}:$	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE


A35923 (F, N)	TM: Error temperature sensor channel 3
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 1630 Ohm (TM150: R > 2170 Ohm), PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<50$ Ohm (TM150: $\mathrm{R}<180$ Ohm), PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

A35924 (F, N) TM: Error temperature sensor channel 4
Message value: \%1
Message class: External measured value / signal state outside the permissible range (16)
Drive object: B_INF, TM150, VECTOR_G
Reaction: NONE
Acknowledge:
Cause:
Remedy:

- make sure that the sensor is connected correctly.
- replace the sensor.

Reaction upon F : NONE
Acknowl. upon F: IMMEDIATELY (POWER ON)
Reaction upon N: NONE
Acknowl. upon N: NONE

A35925 (F, N)	TM: Error temperature sensor channel 5
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm

### 4.2 List of faults and alarms

Remedy:	- make sure that the sensor is connected correctly.   - replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35926 (F, N)	TM: Error temperature sensor channel 6
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35927 (F, N)	TM: Error temperature sensor channel 7
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	$2:$ Measured resistance too low.
	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35928 (F, N)	TM: Error temperature sensor channel 8
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $\mathrm{R}>2170$ Ohm, PT100: $\mathrm{R}>194$ Ohm, PT1000: $\mathrm{R}>1944$ Ohm


Remedy:	- make sure that the sensor is connected correctly.   - replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
A35929 (F, N)	TM: Error temperature sensor channel 9
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: R > 2170 Ohm, PT100: R > 194 Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
Remedy:	PTC thermistor: $\mathrm{R}<20$ Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: R < 60 Ohm, PT1000: $\mathrm{R}<603$ Ohm - make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE


A35930 (F, N)	TM: Error temperature sensor channel 10
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $\mathrm{R}>2170$ Ohm, PT100: $\mathrm{R}>194$ Ohm, PT1000: R > 1944 Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: R < 180 Ohm, PT100: R < 60 Ohm, PT1000: R < 603 Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon N:	NONE


A35931 (F, N)	TM: Error temperature sensor channel 11
Message value:	\%1
Message class:	External measured value / signal state outside the permissible range (16)
Drive object:	B_INF, TM150, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.

### 4.2 List of faults and alarms

	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY84: $\mathrm{R}>2170$ Ohm, PT100: $\mathrm{R}>194$ Ohm, PT1000: $\mathrm{R}>1944$ Ohm
	2: Measured resistance too low.
	PTC thermistor: R < 20 Ohm, KTY84: $\mathrm{R}<180$ Ohm, PT100: $\mathrm{R}<60$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N:	NONE
Acknowl. upon $\mathrm{N}:$	NONE

## F35950

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy: - If necessary, upgrade the firmware in the Terminal Module to a later version.

- contact the Hotline.

A35999 (F, N)	TM: Unknown alarm
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	B_INF, TM150, TM31, TM54F_MA, TM54F_SL, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Alarm value (r2124, interpret decimal):   Alarm number.   Note:   If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the Terminal Module by an older firmware version (r0158).   - upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2) Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE

F36207 (N, A) Hub: Overtemperature component
Message value: $\% 1$
Message class: Overtemperature of the electronic components (6)
Drive object: B_INF, HUB, VECTOR_G
Reaction:
Acknowledge:
NONE (OFF1, OFF2)
IMMEDIATELY (POWER ON)
Cause: The temperature on the DRIVE-CLiQ Hub Module has exceeded the fault threshold.
Fault value (r0949, interpret decimal):
Actual temperature in $0.1^{\circ} \mathrm{C}$ resolution.

Remedy:	- Check ambient temperature at component installation location.   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A36211 (F, N)	Hub: Overtemperature alarm component
Message value:	\%1
Message class:	Overtemperature of the electronic components (6)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature on the DRIVE-CLiQ Hub Module has exceeded the alarm threshold. Alarm value (r2124, interpret decimal):   Actual temperature in $0.1^{\circ} \mathrm{C}$ resolution.
Remedy:	- Check ambient temperature at component installation location.   - replace the component involved.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F36214 (N, A)	Hub: overvoltage fault 24 V supply
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The 24 V power supply on the DRIVE-CLiQ Hub Module has exceeded the fault threshold. Fault value (r0949, interpret decimal):   Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution
Remedy:	- check the supply voltage of the component involved.   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F36216 (N, A)	Hub: undervoltage fault 24 V supply
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the fault threshold. Fault value (r0949, interpret decimal):   Actual operating voltage in $0.1^{\circ} \mathrm{C}$ resolution
Remedy:	- check the supply voltage of the component involved.   - replace the component involved.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE


A36217 (N)	Hub: undervoltage alarm 24 V supply
Message value:	\%1
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The 24 V power supply on the DRIVE-CLiQ Hub Module has undershot the alarm threshold.     Alarm value (r2124, interpret decimal):
	Actual operating voltage in 0.1 ${ }^{\circ} \mathrm{C}$ resolution
Remedy:	- check the supply voltage of the component involved.
	- replace the component involved.

F36802 (N, A) Hub: Time slice overflow

Message value: \%1
Message class: Hardware / software error (1)
Drive object: B_INF, HUB, VECTOR_G
Reaction:
Vector: NONE
Infeed: OFF2 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A time slice overflow has occurred on the DRIVE-CLiQ Hub Module.

	Fault value (r0949, interpret decimal):   xx : Time slice number xx
Remedy:	- reduce the current controller frequency.   - carry out a POWER ON (power off/on) for all components.   - upgrade firmware to later version.   - contact the Hotline.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F36804 (N, A)	Hub: Checksum error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A checksum error has occurred when reading out the program memory on the DRIVE-CLiQ Hub Module. Alarm value (r2124, interpret hexadecimal):   Difference between the checksum at POWER ON and the actual checksum.
Remedy:	- check whether the permissible ambient temperature for the component is maintained.   - replace the DRIVE-CLiQ Hub Module.
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon A :	NONE
Acknowl. upon A:	NONE
A36805 (F, N)	Hub: EEPROM checksum incorrect
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal parameter data on the DRIVE-CLiQ Hub Module is incorrect.   Alarm value ( r 2124 , interpret hexadecimal):   01: EEPROM access error.   02: Too many blocks in the EEPROM.
Remedy:	- check whether the permissible ambient temperature for the component is maintained.   - replace the DRIVE-CLiQ Hub Module.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F36820	Hub DRIVE-CLiQ: Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.   Fault cause:   1 (= 01 hex):   Checksum error (CRC error).

### 4.2 List of faults and alarms

2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
$0000 y y x$ hex: yy = component number, xx = error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, $\ldots$ ).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)


## F36835

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:

## Cause:

## Hub DRIVE-CLiQ: Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, HUB, VECTOR_G
NONE
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. The nodes do not send and receive in synchronism.
Fault cause:
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 (= 40 hex):
Timeout in the telegram send list.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Remedy:

- carry out a POWER ON.
- replace the component involved.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

## F36836

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Hub DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, HUB, VECTOR_G
NONE
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved. Data were not able to be sent.


### 4.2 List of faults and alarms

8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
16 (= 10 hex):
The receive telegram is too early.
32 (= 20 hex):
Error in the telegram header.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
35 (= 23 hex):
Receive error: The telegram buffer memory contains an error.
64 (= 40 hex):
Timeout in the telegram send list.
65 (= 41 hex):
Telegram type does not match send list.
66 (= 42 hex):
Send error: The telegram buffer memory contains an error.
67 (= 43 hex):
Send error: The telegram buffer memory contains an error.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124): 0000yyxx hex: yy = component number, xx = error cause
Remedy: - check the electrical cabinet design and cable routing for EMC compliance

- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

## F36845

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

Remedy:

## Hub DRIVE-CLiQ: Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
B_INF, HUB, VECTOR_G
NONE
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the DRIVE-CLiQ Hub Module involved.
Fault cause:
11 (= 0B hex):
Synchronization error during alternating cyclic data transfer.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause
Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

F36851	Hub DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.
F36860	Hub DRIVE-CLiQ (CU): Telegram error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Fault cause:
	1 (= 01 hex):
	Checksum error (CRC error).
	2 (= 02 hex):
	Telegram is shorter than specified in the length byte or in the receive list.
	3 (= 03 hex):
	Telegram is longer than specified in the length byte or in the receive list.
	4 (= 04 hex):
	The length of the receive telegram does not match the receive list.
	5 (= 05 hex):
	The type of the receive telegram does not match the receive list.
	6 (= 06 hex):
	The address of the power unit in the telegram and in the receive list do not match.
	9 (= 09 hex):
	The error bit in the receive telegram is set.
	16 (= 10 hex):
	The receive telegram is too early.
	17 (= 11 hex):
	CRC error and the receive telegram is too early.
	18 (= 12 hex):
	The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
	19 (= 13 hex):
	The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early 20 (= 14 hex):
	The length of the receive telegram does not match the receive list and the receive telegram is too early.
	21 (= 15 hex):
	The type of the receive telegram does not match the receive list and the receive telegram is too early. 22 (= 16 hex):
	The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.

### 4.2 List of faults and alarms

	$25 \text { (= } 19 \text { hex): }$
	The error bit in the receive telegram is set and the receive telegram is too early.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
F36875	HUB DRIVE-CLiQ (CU): Supply voltage failed
Message value:	Component number: \%1, fault cause: \%2
Message class:	Supply voltage fault (undervoltage) (3)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
	Fault cause:
	9 (= 09 hex):
	The power supply voltage for the components has failed.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- carry out a POWER ON (power off/on).
	- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
	- check the dimensioning of the power supply for the DRIVE-CLiQ component.
F36885	Hub DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to the Control Unit.
	The nodes do not send and receive in synchronism.
	Fault cause:
	26 (= 1A hex):
	Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
	33 (= 21 hex):
	The cyclic telegram has not been received.
	34 (= 22 hex):
	Timeout in the telegram receive list.
	64 (= 40 hex):
	Timeout in the telegram send list.
	98 (= 62 hex):
	Error at the transition to cyclic operation.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the supply voltage of the component involved.
	- carry out a POWER ON.
	- replace the component involved.


F36886	Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Data were not able to be sent.
	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON.
F36887	Hub DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F36895	Hub DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.

### 4.2 List of faults and alarms

Remedy:	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
	Carry out a POWER ON.
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
F36896	Hub DRIVE-CLiQ (CU): Inconsistent component properties
Message value:	Component number: \%1
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	B_INF, HUB, TM150, TM31, VECTOR_G
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The properties of the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
	Fault value (r0949, interpret decimal):
	Component number.
Remedy:	- carry out a POWER ON.
	- when a component is replaced, the same component type and if possible the same firmware version should be used.
	- when a cable is replaced, only cables whose length is the same as or as close as possible to the length of the original cables should be used (ensure compliance with the maximum cable length).
F36899 (N, A)	Hub: Unknown fault
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A fault occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Fault value (r0949, interpret decimal):
	Fault number.
	Note:
	If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon N :	NONE
Acknowl. upon N :	NONE
Reaction upon $A$ :	NONE
Acknowl. upon A:	NONE
F36950	Hub: Internal software error
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if required, upgrade the firmware in the DRIVE-CLiQ hub module to a more recent version.   - contact the Hotline.


A36999 (F, N)	Hub: Unknown alarm
Message value:	New message: \%1
Message class:	General drive fault (19)
Drive object:	B_INF, HUB, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
	- upgrade the firmware on the Control Unit (r0018).
Reaction upon F:	Vector: NONE (IASC/DCBRK, OFF1, OFF2, OFF3, STOP2)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY (POWER ON)
Reaction upon N :	NONE
Acknowl. upon N :	NONE
F40000	Fault at DRIVE-CLiQ socket X100
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X100.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40001	Fault at DRIVE-CLiQ socket X101
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X101.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40002	Fault at DRIVE-CLiQ socket X102
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X102.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.


F40003	Fault at DRIVE-CLiQ socket X103
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X103.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40004	Fault at DRIVE-CLiQ socket X104
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X104.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
F40005	Fault at DRIVE-CLiQ socket X105
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred at the drive object at the DRIVE-CLiQ socket X105.
	Fault value (r0949, interpret decimal):
	First fault that has occurred for this drive object.
Remedy:	Evaluate the fault buffer of the specified object.
A40100	Alarm at DRIVE-CLiQ socket X100
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X100.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40101	Alarm at DRIVE-CLiQ socket X101
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.


A40102	Alarm at DRIVE-CLiQ socket X102
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X102.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.
A40103	Alarm at DRIVE-CLiQ socket X103
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X103.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.


A40104	Alarm at DRIVE-CLiQ socket X104
Message value:	\%1
Message class:	General drive fault (19)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm has occurred at the drive object at the DRIVE-CLiQ socket X104.
	Alarm value (r2124, interpret decimal):
	First alarm that has occurred for this drive object.
Remedy:	Evaluate the alarm buffer of the specified object.

A40105
Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Alarm at DRIVE-CLiQ socket X105

\%1
General drive fault (19)
All objects
NONE
NONE
An alarm has occurred at the drive object at the DRIVE-CLiQ socket X105.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.
F40799
Message value:
Message class:
CX32: Configured transfer end time exceeded

Internal (DRIVE-CLiQ) communication error (12)
Drive object:
Reaction:
Acknowledge:
Cause:
Remedy:

All objects
NONE
IMMEDIATELY
The configured transfer end time when transferring the cyclic actual values was exceeded.

- carry out a POWER ON (power off/on) for all components.
- contact the Hotline.


## F40801

Message value:
Message class:
Drive object:
Reaction:

## Acknowledge:

Cause:

Remedy:

## CX32 DRIVE-CLiQ: Sign-of-life missing

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault cause:
10 (= 0A hex):
The sign-of-life bit in the receive telegram is not set.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause

- carry out a POWER ON (power off/on).
- replace the component involved.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

## F40820

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## CX32 DRIVE-CLiQ: Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault cause:
1 (= 01 hex)
Checksum error (CRC error).
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list.
6 (= 06 hex):
The address of the component in the telegram and in the receive list do not match.
7 (= 07 hex):
A SYNC telegram is expected - but the received telegram is not a SYNC telegram.
8 (= 08 hex):
No SYNC telegram is expected - but the received telegram is one.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, xx = error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)


F40837	CX32 DRIVE-CLiQ: Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F40845	CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
	Fault cause:
	11 (= OB hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y = component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (power off/on).
	See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
F40851	CX32 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
	Fault cause:
	10 (= 0A hex):
	The sign-of-life bit in the receive telegram is not set.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: y y = component number, $\mathrm{xx}=$ error cause
Remedy:	Upgrade the firmware of the component involved.

## F40860

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## CX32 DRIVE-CLiQ (CU): Telegram error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Fault cause:
1 (= 01 hex):
Checksum error (CRC error)
2 (= 02 hex):
Telegram is shorter than specified in the length byte or in the receive list.
3 (= 03 hex):
Telegram is longer than specified in the length byte or in the receive list.
4 (= 04 hex):
The length of the receive telegram does not match the receive list.
5 (= 05 hex):
The type of the receive telegram does not match the receive list
6 (= 06 hex):
The address of the power unit in the telegram and in the receive list do not match.
9 (= 09 hex):
The error bit in the receive telegram is set.
16 (= 10 hex):
The receive telegram is too early.
17 (= 11 hex):
CRC error and the receive telegram is too early.
18 (= 12 hex):
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
19 (= 13 hex):
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
20 (= 14 hex):
The length of the receive telegram does not match the receive list and the receive telegram is too early.
21 (= 15 hex):
The type of the receive telegram does not match the receive list and the receive telegram is too early.
22 (= 16 hex):
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
25 (= 19 hex):
The error bit in the receive telegram is set and the receive telegram is too early.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: yy = component number, $x x=$ error cause

- carry out a POWER ON (power off/on).
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

## F40875

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## Remedy:

## CX32 DRIVE-CLiQ (CU): Supply voltage failed

Component number: \%1, fault cause: \%2
Supply voltage fault (undervoltage) (3)
All objects
OFF1 (OFF2)
IMMEDIATELY
The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
Fault cause:
9 (= 09 hex):
The power supply voltage for the components has failed.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause

- carry out a POWER ON (power off/on).
- check the supply voltage wiring of the DRIVE-CLiQ component (interrupted cable, contacts, ...).
- check the dimensioning of the DRIVE-CLiQ component power supply.


## F40885

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

## CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. The nodes do not send and receive in synchronism.
Fault cause:
26 (= 1A hex):
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
33 (= 21 hex):
The cyclic telegram has not been received.
34 (= 22 hex):
Timeout in the telegram receive list.
64 ( $=40$ hex):
Timeout in the telegram send list.
98 (= 62 hex):
Error at the transition to cyclic operation.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause

- check the power supply voltage of the component involved.
- carry out a POWER ON (power off/on).
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

## F40886

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:

CX32 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Component number: \%1, fault cause: \%2
Internal (DRIVE-CLiQ) communication error (12)
All objects
OFF2
IMMEDIATELY
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit. Data were not able to be sent.

	Fault cause:
	65 (= 41 hex):
	Telegram type does not match send list.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	Carry out a POWER ON (power off/on).
F40887	CX32 DRIVE-CLiQ (CU): Component fault
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault detected on the DRIVE-CLiQ component concerned. Faulty hardware cannot be excluded.
	Fault cause:
	32 (= 20 hex):
	Error in the telegram header.
	35 (= 23 hex):
	Receive error: The telegram buffer memory contains an error.
	66 (= 42 hex):
	Send error: The telegram buffer memory contains an error.
	67 (= 43 hex):
	Send error: The telegram buffer memory contains an error.
	96 (= 60 hex):
	Response received too late during runtime measurement.
	97 (= 61 hex):
	Time taken to exchange characteristic data too long.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: yy = component number, xx = error cause
Remedy:	- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
	- check the electrical cabinet design and cable routing for EMC compliance
	- if required, use another DRIVE-CLiQ socket (p9904).
	- replace the component involved.
F40895	CX32 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:	Component number: \%1, fault cause: \%2
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
	Fault cause:
	11 (= 0B hex):
	Synchronization error during alternating cyclic data transfer.
	Note regarding the message value:
	The individual information is coded as follows in the message value (r0949/r2124):
	0000yyxx hex: $\mathrm{yy}=$ component number, $\mathrm{xx}=$ error cause
Remedy:	Carry out a POWER ON (power off/on).
	See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)


F49150	Cooling unit: Fault occurred
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The cooling unit signals a general fault.
Remedy:	- check the wiring between the cooling unit and the input terminal (Terminal Module).     - check the external control device for the cooling unit.
	See also: p0266 (Cooling unit feedback signals signal source)


F49154 (A)	Cooling unit: Liquid leak is present
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The liquid leakage monitoring function has responded.
	Caution:
	If this fault is re-parameterized as an alarm then using other monitoring functions it must be ensured that when cooling water is lost, the drive is powered down!
	See also: r0267 (Cooling unit status word)
Remedy:	- check the cooling system for leaks in the cooling circuit.
	- check the wiring of the input terminal (Terminal Module) used to monitor leaking fluid.
Reaction upon A :	NONE
Acknowl. upon A:	NONE
F49155	Cooling unit: Power Stack Adapter, firmware version too old
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The firmware version in the Power Stack Adapter (PSA) is too old and does not support the liquid cooling.
Remedy:	Upgrade the firmware. Check EEPROM data.
F49156	Cooling unit: Cooling liquid temperature has exceeded the fault threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The cooling liquid intake temperature has exceeded the specified fault threshold.
	Note:
	The value for the fault threshold depends on the power unit (hardware descriptive data, e.g. $52 \ldots 55^{\circ} \mathrm{C}$ ).
Remedy:	Check the cooling system and the ambient conditions.
A49170	Cooling unit: Alarm has occurred
Message value:	- Ausilary uni fauted (20)
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cooling unit signals a general alarm.
Remedy:	- check the wiring between the cooling unit and the input terminal (Terminal Module).   - check the external control device for the cooling unit.

## A49171

Message value:
Message class:
Drive object:
Reaction:
Acknowledge:
Cause:
Cooling unit: Conductivity has exceeded the alarm threshold

Auxiliary unit faulted (20)
VECTOR_G
NONE
NONE
Conductivity monitoring is set for the cooling liquid (r0267.7, from p0266[7]).
See also: p0261 (Cooling unit starting time 2), p0262 (Cooling unit fault conductivity delay time), p0266 (Cooling unit feedback signals signal source), r0267 (Cooling unit status word)

Remedy: $\quad$ Check the device to de-ionize the cooling liquid.

A49171	Cooling unit: Conductivity has exceeded the alarm threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF
Reaction:	NONE
Acknowledge:	NONE
Cause:	The conductivity of the cooling liquid has exceeded the selected alarm threshold (p0269[1]).
	Note:
	The threshold cannot be set higher than the fault threshold specified in the equipment description.
Remedy:	Check the device to de-ionize the cooling liquid.


A49172	Cooling unit: Conductivity actual value is not valid
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When monitoring the conductivity of the cooling liquid, there is a fault in the wiring or in the sensor.
Remedy:	- check the wiring between the cooling unit and the Power Stack Adapter (PSA).  


A49173	Cooling unit: Cooling liquid temperature has exceeded the alarm threshold
Message value:	-
Message class:	Auxiliary unit faulted (20)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cooling liquid intake temperature has exceeded the specified alarm threshold.
	Note:
	The value for the alarm threshold depends on the power unit (hardware descriptive data, e.g. $\left.42 \ldots 50^{\circ} \mathrm{C}\right)$.
Remedy:	Check the cooling system and the ambient conditions.

## F49200

Message value:
Excitation group signal fault

Message class: $\quad$ General drive fault (19)
Drive object:
Reaction:
Acknowledge:
Cause:

VECTOR_G
OFF2
IMMEDIATELY
The excitation sequence control signals a fault. Fault value (r0949, interpret hexadecimal):
Bit 0:
When powered down or when powering down the excitation, the signal "excitation ready feedback signal" was not received within the monitoring time.
Bit 1:
After an ON command, the signal "excitation ready feedback signal" was not received within the monitoring time.
Bit 2:
After the pulses were enabled, the signal "excitation operational feedback signal" was not received within the monitoring time.
Bit 3:
The "excitation group signal fault" signal is present.
Bit 4:
The switch-on command for the excitation was reset, although pulse enable (r0899.11) is still available, or the excitation current actual value has still not fallen below a minimum value.

Remedy:	Note: message can also come from p6500[59].
- check the excitation.	
- check commands, feedback signals and BICO interconnections.	
- re bit 4: increase the switch-off delay time p1647	


A49201 (F)	Excitation group signal alarm
Message value:	-
Message class:	General drive fault (19)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "excitation group signal alarm" signal is present.
	Note: message can come from p6500[58].
Remedy:	Check the excitation equipment.
Reaction upon F:	NONE
Acknowl. upon F:	IMMEDIATELY


A49204 (N)	Excitation switch-off alarm
Message value:	-
Message class:	Hardware / software error (1)
Drive object:	VECTOR_G
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switching off the excitation, after the delay time p1647 has expired, the excitation current has still not decayed
	to zero.   Remedy:
	Extend the switch-off delay time in p1647. The alarm is reset if p1647 is adapted.   Reaction upon $\mathrm{N}:$
See also: p1647 (Excitation switch-off delay time)	
Acknowl. upon $\mathrm{N}:$	NONE


A49998	Recorder trigger event occurred
Message value:	\%1
Message class:	Hardware / software error (1)
Drive object:	B_INF, VECTOR_G
Reaction:	NONE
Acknowledge:	NONE

Cause: A recorder trigger event has occurred. The data are then written to the memory card, specifying the event number. Alarm value (r2124, interpret decimal):
Event number.
Remedy: Not necessary.
This message disappears automatically.

A50001 (F)	PN/COMM BOARD: Configuration error
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20:
	A PROFINET controller attempts to establish a connection using an incorrect configuring telegram. The "Shared
	Device" function has been activated (p8829 = 2).
	Alarm value (r2124, interpret decimal):
	10: A CPU sends a PROFIsafe telegram.
	11: F CPU sends a PZD telegram.
	12: F CPU without an A CPU.

### 4.2 List of faults and alarms

13: F CPU with more PROFIsafe subslots than activated with p9601.3.	
14: F CPU with fewer PROFIsafe subslots than activated with p9601.3.	
15: PROFIsafe telegram of the F-CPU does not match the setting in p60022.	
See also: p8829 (CBE2x remote controller number), p9601 (SI enable functions integrated in the drive (Control Unit))	
Remedy:	CBE20:
Check the configuration of the PROFINET controllers as well as the p8829 and p9601.3 setting.	
Reaction upon F: $\quad$Vector: NONE (OFF1, OFF2, OFF3)   Infeed: NONE (OFF1, OFF2)	
Acknowl. upon F: $\quad$ IMMEDIATELY	


A50002 (F)	COMM BOARD: Alarm 2
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A specific telegram word (send) is being used twice.
	Alarm value (r2124, interpret decimal):
	Telegram word used twice
	See also: p8871 (SINAMICS Link send telegram word PZD)
Remedy:	CBE20 SINAMICS Link:
	Correct the parameter assignment.
	See also: p8871 (SINAMICS Link send telegram word PZD)
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A50003 (F)	COMM BOARD: Alarm 3
Message value:	Info. 1: \%1, info. 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	A specific telegram word (receive) is being used twice.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Address of sender
	Info. 2 (decimal) = Receive telegram word
	See also: p8870 (SINAMICS Link receive telegram word PZD), p8872 (SINAMICS Link address receive PZD)
Remedy:	CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A50004 (F)	COMM BOARD: Alarm 4
Message value:	Info. 1: \%1, info. 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	- telegram word (receive) and address of sender inconsistent. Both values have to be either equal to zero or not equal to zero.
	- drive object number p8872 > 16 with p8811 = 16.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Drive object number from p8870, p8872
	Info. 2 (decimal) = Index from p8870, p8872
	See also: p8870 (SINAMICS Link receive telegram word PZD), p8872 (SINAMICS Link address receive PZD)
Remedy:	In the case of CBE20 SINAMICS Link:
	Correct the parameter assignment.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A50005 (F)	COMM BOARD: Alarm 5
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	Sender not found on SINAMICS Link.
	Alarm value (r2124, interpret decimal):
	Address of sender that cannot be located   See also: p8872 (SINAMICS Link address receive PZD)
Remedy:	CBE20 SINAMICS Link:
	Check the connection to the sender.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A50006 (F)	COMM BOARD: Alarm 6
Message value:	Info. 1: \%1, info. 2: \%2
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20 SINAMICS Link:
	The parameter assignment indicates that the sender and the receiver are one and the same. This is not permitted.
	Alarm value (r2124, interpret hexadecimal):
	yyyyxxxx hex: yyyy = info. 1, xxxx = info. 2
	Info. 1 (decimal) = Drive object number from p8872
	Info. 2 (decimal) = Index from p8872
	See also: p8836 (SINAMICS Link address), p8872 (SINAMICS Link address receive PZD)
	In the case of CBE20 SINAMICS Link:
Remedy:	Correct the parameter assignment. All p8872[index] must be set to a value not equal to p8836.

Reaction upon F: Vector: NONE (OFF1, OFF2, OFF3)
Infeed: NONE (OFF1, OFF2)
Acknowl. upon F: IMMEDIATELY

A50010 (F)	PN/COMM BOARD: Station name invalid
Message value:	\%1
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20:
	PROFINET Name of Station is invalid.
Remedy:	CBE20:
	Correct the name of the station (p8940) and activate (p8945 = 2).
	See also: p8940 (CBE2x Name of Station)
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY


A50020 (F)	PNCOMM BOARD: Second controller missing
Message value:	-
Message class:	Communication error to the higher-level control system (9)
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	CBE20:
	The PROFINET function "Shared Device" has been activated (p8829 = 2). However, only the connection to a
	PROFINET controller is present.
	See also: p8829 (CBE2x remote controller number)
Remedy:	CBE20:
	Check the configuration of the PROFINET controllers as well as the p8829 setting.
Reaction upon F:	Vector: NONE (OFF1, OFF2, OFF3)
	Infeed: NONE (OFF1, OFF2)
Acknowl. upon F:	IMMEDIATELY

## Appendix

## Content

A. 1 ASCII table (characters that can be displayed) ..... 1810
A. 2 List of abbreviations ..... 1813
A. 3 References ..... 1822

## A. 1 <br> ASCII table (characters that can be displayed)

The following table includes the decimal and hexadecimal notation of ASCII characters that can be displayed (printable).

Table A-1 ASCII table (characters that can be displayed)

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
$($	40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2 C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2F	Slash, slant
0	48	30	Digit 0
1	49	31	Digit 1
2	50	32	Digit 2
3	51	33	Digit 3
4	52	34	Digit 4
5	53	35	Digit 5
6	54	36	Digit 6
7	55	37	Digit 7
8	56	38	Digit 8
9	57	39	Digit 9
:	58	3A	Colon
,	59	3B	Semicolon
<	60	3C	Less than
=	61	3D	Equals
>	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
A	65	41	Capital letter A
B	66	42	Capital letter B
C	67	43	Capital letter C
D	68	44	Capital letter D
E	69	45	Capital letter E
F	70	46	Capital letter F
G	71	47	Capital letter G
H	72	48	Capital letter H
1	73	49	Capital letter I
$J$	74	4A	Capital letter J
K	75	4B	Capital letter K
L	76	4C	Capital letter L
M	77	4D	Capital letter M
N	78	4E	Capital letter N
0	79	4F	Capital letter O
P	80	50	Capital letter P
Q	81	51	Capital letter Q
R	82	52	Capital letter R
S	83	53	Capital letter S
T	84	54	Capital letter T
U	85	55	Capital letter U
V	86	56	Capital letter V
W	87	57	Capital letter W
X	88	58	Capital letter X
Y	89	59	Capital letter Y
Z	90	5A	Capital letter Z
[	91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
$\wedge$	94	5E	Circumflex
-	95	5F	Underline
-	96	60	Opening single quotation mark
a	97	61	Small letter a
b	98	62	Small letter b
c	99	63	Small letter c
d	100	64	Small letter d

## A. 1 ASCII table (characters that can be displayed)

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
e	101	65	Small letter e
f	102	66	Small letter f
g	103	67	Small letter g
h	104	68	Small letter h
i	105	69	Small letter i
j	106	6A	Small letter j
k	107	6B	Small letter k
1	108	6C	Small letter I
m	109	6D	Small letter m
n	110	6E	Small letter n
$\bigcirc$	111	6F	Small letter o
p	112	70	Small letter p
q	113	71	Small letter q
$r$	114	72	Small letter r
s	115	73	Small letter s
t	116	74	Small letter t
u	117	75	Small letter u
v	118	76	Small letter v
w	119	77	Small letter w
x	120	78	Small letter x
y	121	79	Small letter y
z	122	7A	Small letter z
\{	123	7B	Opening brace
\|	124	7 C	Vertical line
\}	125	7D	Closing brace
$\sim$	126	7E	Tilde

## A. 2 List of abbreviations

## Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

Abbreviation	Source of abbreviation	Meaning
A		
A...	Alarm	Alarm
AC	Alternating Current	Alternating current
ADC	Analog Digital Converter	Analog-digital converter
AI	Analog Input	Analog input
AIM	Active Interface Module	Active Interface Module
ALM	Active Line Module	Active Line Module
AO	Analog Output	Analog output
AOP	Advanced Operator Panel	Advanced Operator Panel
APC	Advanced Positioning Control	Advanced Positioning Control
AR	Automatic Restart	Automatic restart
ASC	Armature Short-Circuit	Armature short-circuit
ASCII	American Standard Code for Information Interchange	American standard code for information interchange
AS-i	AS-Interface (Actuator Sensor Interface)	AS-interface (open bus system in automation technology)
ASM	Asynchronmotor	Induction motor
B		
BB	Betriebsbedingung	Operating condition
BERO	-	Proximity switch
BI	Binector Input	Binector input
BIA	Berufsgenossenschaftliches Institut für Arbeitssicherheit	BG-Institute for Occupational Safety and Health
BICO	Binector Connector Technology	Binector connector technology
BLM	Basic Line Module	Basic Line Module
BO	Binector Output	Binector output
BOP	Basic Operator Panel	Basic Operator Panel
C		
C	Capacitance	Capacitance
C...	-	Safety message
CAN	Controller Area Network	Serial bus system
CBC	Communication Board CAN	Communication Board CAN
CBE	Communication Board Ethernet	Communication Board PROFINET (Ethernet)
CD	Compact Disk	Compact disk
CDS	Command Data Set	Command data set
CF card	CompactFlash card	CompactFlash card
Cl	Connector Input	Connector input


Abbreviation	Source of abbreviation	Meaning
CLC	Clearance Control	Clearance control
CNC	Computer Numerical Control	Computer-supported numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output / Binector Output	Connector/binector output
COB ID	CAN Object Identification	CAN object identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a changeover relay	Center contact on a changeover contact
COMM	Commissioning	Commissioning
CP	Communications Processor	Communications processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC MASTER	Control Unit DC MASTER
D		
DAC	Digital Analog Converter	Digital-analog converter
DC	Direct Current	Direct current
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	DC braking
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input / Digital Output	Bidirectional digital input/output
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed peripherals
DPRAM	Dual Ported Random Access Memory	Dual-port random access memory
DQ	DRIVE-CLiQ	DRIVE-CLiQ
DRAM	Dynamic Random Access Memory	Dynamic random access memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DTC	Digital Time Clock	Timer
E		
EASC	External Armature Short-Circuit	External armature short-circuit
EDS	Encoder data set	Encoder data set
EEPROM	Electrically Erasable Programmable Read-Only Memory	Electrically Erasable Programmable Read-Only-Memory


Abbreviation	Source of abbreviation
EGB	Elektrostatisch gefährdete Baugruppen
ELCB	Earth Leakage Circuit-Breaker
ELP	Earth Leakage Protection
EMC	Electromagnetic Compatibility
EMF	Electromotive Force
EMK	Elektromotorische Kraft
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
EnDat	Encoder-Data-Interface
EP	Enable Pulses
EPOS	Einfachpositionierer
ES	Engineering System
ESB	Ersatzschaltbild
ESD	Electrostatic Sensitive Devices
ESM	Essential Service Mode
ESR	Extended Stop and Retract
F	
F...	Fault
FAQ	Frequently Asked Questions
FBLOCKS	Free Blocks
FCC	Function Control Chart
FCC	Flux Current Control
FD	Function Diagram
F-DI	Fail-safe Digital Input
F-DO	Fail-safe Digital Output
FEM	Fremderregter Synchronmotor
FEPROM	Flash EPROM
FG	Function Generator
FI	-
FOC	Fiber-Optic Cable
FP	Funktionsplan
FPGA	Field Programmable Gate Array
FW	Firmware
G	
GB	Gigabyte
GC	Global Control
GND	Ground
GSD	Generic Station Description
GSV	Gate Supply Voltage
GUID	Globally Unique Identifier

## Meaning

Electrostatic sensitive devices
Residual current operated circuit breaker
Ground-fault monitoring
Electromagnetic compatibility
Electromotive force
Electromotive force
Electromagnetic compatibility
European standard
Encoder interface
Enable pulses
Basic positioner
Engineering system
Equivalent circuit diagram
Electrostatic sensitive devices
Essential service mode
Extended stop and retract

Fault
Frequently asked questions
Free function blocks
Function control chart
Flux current control
Function diagram
Fail-safe digital input
Fail-safe digital output
Separately excited synchronous motor
Non-volatile write and read memory
Function generator
Residual current
Fiber-optic cable
Function diagram
Field programmable gate array
Firmware

## Gigabyte

Global control telegram (broadcast telegram)
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as M)

Generic Station Description: Describes the features of a PROFIBUS slave
Gate supply voltage
Globally unique identifier

Abbreviation	Source of abbreviation	Meaning
H		
HF	High Frequency	High frequency
HFD	Hochfrequenzdrossel	High-frequency reactor
HLA	Hydraulic Linear Actuator	Hydraulic linear drive
HLG	Hochlaufgeber	Ramp-function generator
HM	Hydraulic Module	Hydraulic Module
HMI	Human Machine Interface	Human machine interface
HTL	High-Threshold Logic	Logic with high fault threshold
HW	Hardware	Hardware
1		
i. V.	In Vorbereitung	Under development: This property is currently not available
1/O	Input/Output	Input/output
I2C	Inter-Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
IBN	Inbetriebnahme	Commissioning
ID	Identifier	Identification
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	International Electrotechnical Commission
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Bipolar transistor with insulated control electrode
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated control electrode
IL	Impulslöschung	Pulse suppression
IP	Internet Protocol	Internet protocol
IPO	Interpolator	Interpolator
IT	Isolé Terre	Non-grounded three-phase line supply
IVP	Internal Voltage Protection	Internal voltage protection
$J$		
JOG	Jogging	Jogging
K		
KDV	Kreuzweiser Datenvergleich	Data cross-check
KHP	Know-How Protection	Know-how protection
KIP	Kinetische Pufferung	Kinetic buffering
Kp	-	Proportional gain
KTY	-	Special temperature sensor
L		
L	-	Symbol for inductance
LED	Light Emitting Diode	Light-emitting diode
LIN	Linear motor	Linear motor
LR	Lageregler	Position controller
LSB	Least Significant Bit	Least significant bit
LSC	Line-Side Converter	Line-side converter


Abbreviation	Source of abbreviation
LSS	Line-Side Switch
LU	Length Unit
LWL	Lichtwellenleiter
M	
M	-
M	Mass
MB	Megabyte
MCC	Motion Control Chart
MDI	Manual Data Input
MDS	Motor Data Set
MLFB	Maschinenlesbare Fabrikatebezeichnung
MM	Motor Module
MMC	Man-Machine Communication
MMC	Micro Memory Card
MSB	Most Significant Bit
MSC	Motor-Side Converter
MSCY_C1	Master Slave Cycle Class 1
MSR	Motorstromrichter
MT	Messtaster
N	
N. C.	Not Connected
N...	No Report
NAMUR	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie
NC	Normally Closed (contact)
NC	Numerical Control
NEMA	National Electrical Manufacturers Association
NM	Nullmarke
NO	Normally Open (contact)
NSR	Netzstromrichter
NVRAM	Non-Volatile Random Access Memory
0	
OA	Open Architecture
OAIF	Open Architecture Interface
OASP	Open Architecture Support Package
OC	Operating Condition
OEM	Original Equipment Manufacturer

## Meaning

Line-side switch
Length unit
Fiber-optic cables

Symbol for torque
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND)

Megabyte
Motion Control Chart
Manual data input
Motor data set
Machine-readable product code
Motor Module
Man-machine communication
Micro memory card
Most significant bit
Motor-side converter
Cyclic communication between master (class 1) and slave

Motor-side converter
Probe

## Not connected

No report or internal message
Standardization association for measurement and control in chemical industries

NC contact
Numerical control
Standardization body in the US
Zero mark
NO contact
Line-side converter
Non-volatile read/write memory

Software component (technology package) which provides additional functions for the SINAMICS drive system
Version of the SINAMICS firmware from which the OA-application can be used
Expands the STARTER commissioning tool by the corresponding OA-application
Operating condition
Original equipment manufacturer

Abbreviation	Source of abbreviation	Meaning
OLP	Optical Link Plug	Bus connector for fiber-optic cable
OMI	Option Module Interface	Option Module Interface
P		
p...	-	Setting parameters
P1	Processor 1	CPU 1
P2	Processor 2	CPU 2
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Master control
PD	PROFIdrive	PROFIdrive
PDS	Power unit Data Set	Power unit data set
PE	Protective Earth	Protective ground
PELV	Protective Extra-Low Voltage	Safety extra-low voltage
PEM	Permanenterregter Synchronmotor	Permanent-magnet synchronous motor
PG	Programmiergerät	Programming device
PI	Proportional Integral	Proportional integral
PID	Proportional Integral Differential	Proportional integral differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-Locked Loop	Phase-locked loop
PM	Power Module	Power Module
PN	PROFINET	PROFINET
PNO	PROFIBUS Nutzerorganisation	PROFIBUS user organization
PPI	Point-to-Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power Stack Adapter
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point-To-Point	Point-to-point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Prozessdaten	Process data
Q		
R		
r ...	-	Display parameters (read only)
RAM	Random Access Memory	Read/write memory
RCCB	Residual Current Circuit Breaker	Residual current operated circuit breaker
RCD	Residual Current Device	Residual current operated circuit breaker
RCM	Residual Current Monitor	Residual current monitor
RFG	Ramp-Function Generator	Ramp-function generator
RJ45	Registered Jack 45	Term for an 8-pin socket system for data transmission with shielded or non-shielded multiwire copper cables
RKA	Rückkühlanlage	Cooling unit
RLM	Renewable Line Module	Renewable Line Module


Abbreviation	Source of abbreviation
RO	Read Only
ROM	Read-Only Memory
RPDO	Receive Process Data Object
RS 232	Recommended Standard 232
RS485	Recommended Standard 485
RTC	Real-Time Clock
RZA	Raumzeigerapproximation
S	
S1	-
S3	-
SAM	Safe Acceleration Monitor
SBC	Safe Brake Control
SBH	Sicherer Betriebshalt
SBR	Safe Brake Ramp
SBT	Safe Brake Test
SCA	Safe Cam
SD Card	SecureDigital Card
SDI	Safe Direction
SE	Sicherer Software-Endschalter
SG	Sicher reduzierte Geschwindigkeit
SGA	Sicherheitsgerichteter Ausgang
SGE	Sicherheitsgerichteter Eingang
SH	Sicherer Halt
SI	Safety Integrated
SIL	Safety Integrity Level
SLM	Smart Line Module
SLP	Safely-Limited Position
SLS	Safely-Limited Speed
SLVC	Sensorless Vector Control
SM	Sensor Module
SMC	Sensor Module Cabinet
SME	Sensor Module External
SMI	Sensor Module Integrated
SMM	Single Motor Module
SN	Sicherer Software-Nocken
SOS	Safe Operating Stop
SP	Service Pack
SP	Safe Position
SPC	Setpoint Channel

## Meaning

Read only
Read-only memory
Receive process data object
Interface standard for cable-connected serial data transmission between a sender and receiver (also known as EIA232)
Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of senders and receivers, also known as EIA485)

Real-time clock
Space vector approximation

Continuous duty
Intermittent duty
Safe acceleration monitoring
Safe brake control
Safe operating stop
Safe brake ramp monitoring
Safe brake test
Safe cam
Secure digital memory card
Safe motion direction
Safe software limit switches
Safely-limited speed
Safety-related output
Safety-related input
Safe standstill
Safety Integrated
Safety integrity level
Smart Line Module
Safely limited position
Safely-limited speed
Vector control without encoder
Sensor Module
Sensor Module Cabinet
Sensor Module External
SINAMICS Sensor Module Integrated
Single Motor Module
Safe software cam
Safe operating stop
Service pack
Safe position
Setpoint channel

Abbreviation	Source of abbreviation
SPI	Serial Peripheral Interface
SPS	Speicherprogrammierbare Steuerung
SS1	Safe Stop 1
SS2	Safe Stop 2
SSI	Synchronous Serial Interface
SSM	Safe Speed Monitor
SSP	SINAMICS Support Package
STO	Safe Torque Off
STW	Steuerwort
T	
TB	Terminal Board
TIA	Totally Integrated Automation
TM	Terminal Module
TN	Terre Neutre
Tn	-
TPDO	Transmit Process Data Object
TT	Terre Terre
TTL	Transistor-Transistor Logic
Tv	-
U	
UL	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply
USV	Unterbrechungsfreie Stromversorgung
UTC	Universal Time Coordinated
V	
VC	Vector Control
Vdc	-
VdcN	-
VdcP	-
VDE	Verband Deutscher Elektrotechniker
VDI	Verein Deutscher Ingenieure
VPM	Voltage Protection Module
Vpp	Volt peak to peak
VSM	Voltage Sensing Module
W	
WEA	Wiedereinschaltautomatik
WZM	Werkzeugmaschine
X	
XML	Extensible Markup Language

## Meaning

Serial peripheral interface
Programmable Logic Controller
Safe stop 1
(monitored for time and ramp)
Safe stop 2
Synchronous serial interface
Safe feedback from speed monitor
SINAMICS support package
Safe torque off
Control word

Terminal Board
Totally Integrated Automation
Terminal Module
Grounded three-phase line supply Integral-action time
Transmit process data object
Grounded three-phase line supply
Transistor-transistor logic
Derivative action time

Underwriters Laboratories Inc.
Uninterruptible power supply
Uninterruptible power supply
Universal time coordinated

Vector control
DC-link voltage
Partial DC-link voltage, negative
Partial DC-link voltage, positive
Association of German Electrical Engineers
Association of German Engineers
Voltage Protection Module
Volt peak-to-peak
Voltage Sensing Module

Automatic restart
Machine tool

Extensible Markup Language (standard language for Web publishing and document management)

Abbreviation	Source of abbreviation	Meaning
$\mathbf{Y}$		
$\mathbf{Z}$		
ZK	Zwischenkreis	DC link
ZM	Zero Mark	Zero mark
SW	Zustandswort	Status word

## A. 3 References

## Documentation for SINAMICS

## Catalogs

ID 31/ SINAMICS and Motors for Single-Axis Drives
Order number: E86060-K5531-A101-A1 Edition: 2012
/D 31 N/ SINAMICS Inverters for Single-Axis Drives and SIMOTICS Motors
Order number: E86060-E5531-A101-A1 Edition: 01/2013
ID 11/ SINAMICS G130 Drive Converter Chassis Units
SINAMICS G150 Drive Converter Cabinet Units
Order number: E86060-K5511-A101-A5
Edition: 2011
/PM 21/ SIMOTION, SINAMICS S120 and SIMOTICS, Equipment for Production Machines
Order number: E86060-K4921-A101-A3 Edition: 2013
ID 21.3/ SINAMICS S120 Chassis Format Units and Cabinet Modules SINAMICS S150 Converter Cabinet Units

Order number: E86060-K5521-A131-A3
Edition: 2011
/D 35/
Inverters for Pumps, Fans, Compressors SINAMICS G120P and SINAMICS G120P Cabinet

Order number: E86060-K5535-A101-A1
Edition: 2014

## Related catalogs

IST 70/ SIMATIC Products for Totally Integrated Automation
Order number: E86060-K4670-A101-B4
Edition: 2013
/NC 61/ SINUMERIK \& SINAMICS, Equipment for Machine Tools
Order number: E86060-K4461-A101-A3 Edition: 2010
/NC 61 N/ SINUMERIK \& SINAMICS, Equipment for Machine Tools
Order number: E86060-K4461-E101-A1 Edition: 08/2012
/NC 62/ SINUMERIK 840D sl Type 1B, Equipment for Machine Tools
Order number: E86060-K4462-A101-A1 Edition: 2012
/NC 81.1/ SINUMERIK 808, Equipment for Machine Tools
Order number: E86060-K4481-A111-A2-7600
Edition: 2013

## /NC 82/

## SINUMERIK 828, Equipment for Machine Tools

Order number:
E86060-K4482-A101-A2-7600
Edition: 2013

## Interactive catalogs

/CA 01
Products for Automation and Drives
DVD
Order number: E86060-D4001-A500-D2
Edition: 10/2013
/Mall/
Industry Mall,
Catalog and Ordering System for Automation and Drives
http://www.siemens.com/industrymall

## Electronic documentation

/CD2/
SINAMICS Manual Collection (DOCONCD)
SINAMICS DOCUMENTATION
Order number: A5E33959456 / 6SL3097-4CA00-0YG3
Edition: 06/2014

## User documentation

## /BA1/ SINAMICS G150

Operating instructions
Order number: On request Edition: 04/2014
/BA2/ SINAMICS G130
Operating instructions
Order number: On request Edition: 04/2014
/BA3/ SINAMICS S150
Operating instructions
Order number: On request Edition: 04/2014
/GH1/ SINAMICS S120
Control Units and Additional System Components Manual
Order number: 6SL3097-4AH00-0?P
Edition: 04/2014
/GH2/
SINAMICS S120
Booksize Power Units Manual
Order number: 6SL3097-4AC00-0?P6
Edition: 04/2014
/GH3/ SINAMICS S120
Chassis Power Units Equipment Manual Air-Cooled
Order number: 6SL3097-4AE00-0?P4
Edition: 04/2014


/MA1/	SINAMICS/SINUMERIK	
	Machine Configuration Guidelines	
	Order number: 6FC5397-6CP10-0?A2	Edition: 01/2013
/SH1/	SINAMICS S120 and SIMODRIVE 611	
	Control Cabinet Integration Guidelines	
	Order number: 6SL3097-0AT00-0?P0	Edition: 09/2007
/SH2/	SINAMICS S120 High Frequency Drive	
	System Manual	
	Order number: 6SL3097-4AH10-0?P2	Edition: 01/2013
/PFK7S/	SINAMICS 1FK7 Synchronous Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD16-0?P4	Edition: 10/2011
/PFT6S/	SINAMICS 1FT6 Synchronous Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD12-0?P0	Edition: 12/2004
/PFT7S/	SINAMICS 1FT7 Synchronous Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD13-0?P4	Edition: 07/2011
/APH4S/	SINAMICS 1PH4 Induction Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD64-0?P1	Edition: 08/2008
/APH7P/	SINAMICS 1PH7 Induction Motors (PM)	
	Production Machines Configuration Manual	
	Order number: 6SN1197-0AC71-0?P0	Edition: 05/2007
/APH7W/	SINAMICS 1PH7 Induction Motors (MT)	
	Machine Tools Configuration Manual	
	Order number: 6SN1197-0AD72-0?P0	Edition: 04/2009
/PPMS/	SINAMICS 1PM4/1PM6 Hollow-Shaft Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD23-0?P0	Edition: 04/2008
/PKTS/	SINAMICS 1FW3 Complete Torque Motors	
	Configuration Manual	
	Order number: 6SN1197-0AD70-0?P6	Edition: 04/2012
/1FW6_BE2/	SIMOTICS 1FW6 Built-in Torque Motors	
	Operating instructions	
	Order number: 6SN1197-0AF02-0?P0	Edition: 02/2013


/PJTMS2/	SIMOTICS 1FW6 Built-in Torque Motors		
	Configuration Manual		
	Order number:	6SN1197-OAE01-0?P0	Edition: 02/2013
/PMH2/	SINAMICS SIMAG H2 Hollow-Shaft Measuring System		
	Configuration Manual		
	Order number:	6SN1197-0AB31-0?P8	Edition: 01/2011
/PH8S/	SINAMICS 1PH8 Synchronous/Induction Motors		
	Configuration Manual		
	Order number:	6SN1197-0AD74-0?P1	Edition: 08/2012
/PH1/	EMC Installation Guidelines		
	Configuration Manual		
	Order number:	6FC5297-0AD30-0?P3	Edition: 01/2012

## Documentation for PROFIBUS/PROFINET/PROFlenergy

/P1/ PROFIBUS-DP/DPV1 IEC 61158
Basics, Tips and Tricks for Users
Hüthig; Manfred Popp, 2nd Edition
ISBN 3-7785-2781-9
/P2I PROFIBUS-DP, Getting Started
PROFIBUS Nutzerorganisation e.V.; Manfred Popp
Order number: 4.071
/P3/ Distributed Layouts using PROFIBUS-DP
Architecture and Fundamentals, Configuration and Use of PROFIBUS-DP with SIMATIC S7 SIEMENS; Publicis MCD Verlag; Josef Weigmann, Gerhard Kilian

Order number: A19100-L531-B714
ISBN 3-89578-074-X
IP4/ Manual for PROFIBUS Networks, SIEMENS
Order number: 6GK1970-5CA20-0BA0
IP5/ PROFIBUS and PROFINET, PROFIdrive Profile Drive Technology
PROFIBUS Nutzerorganisation e. V.
Haid-und-Neu-Straße 7, D-76131 Karlsruhe, Germany
http://www.profibus.com - http://www.profinet.com
Order number:
3.172

Version 4.0 August 2005
/P6/ The PROFINET IO Book
Basics and Tips for Successful Use
VDE-Verlag Berlin; Manfred Popp
ISBN:
978-3-8007-3274-6
2nd Edition, 2010

```
/P7/
/IK PI/
/PDP/
PROFlenergy, Common Application Profile
Technical Specification for PROFINET
PROFIBUS Nutzerorganisation e. V.
Haid-und-Neu-Straße 7, D-76131 Karlsruhe
http://www.profibus.com - http://www.profinet.com
Order number: 3.802
Version 1.1 August 2012
Industrial Communication for Automation and Drives Catalog
Order number: E86060-K6710-A101-B7
Edition: 2012
```


## IPDP/ PROFIBUS Installation Guidelines

```
Installation Guideline for PROFIBUS FMS/DP
Installation and Wiring Recommendation for RS 485 Transmission
Order number \(\quad 2.111\) (German)
2.112 (English)
Version 1.0
```


## Documentation for Safety Equipment

## Note

For more information on technical documentation in and around the topic of "Safety Integrated", please follow the link below:
http://www.siemens.com/safety
The following list contains some of the safety-related documentation available.

/LV1/ SIRIUS-SENTRON-SIVACON Low-Voltage Controls and Distribution			
	Catalog		
	Order number:	E86060-K1002-A101-A5	Edition: 2006


/MRL/	Machinery Directive	
	Bundesanzeiger-Verlags GmbH	Edition: 2006
/SISH/	Safety Integrated	
	System Manual	
	Order number: 6ZB5000-0AA01-0BA1	5th Edition
	System Manual Appendix to 5th Edition	
	Order number: 6ZB5000-0AB01-0BA0	
/SICD/	Safety Integrated CD-ROM	
	Order number: E20001-F500-P210	tion: 04/2008

## Index

## Numbers

1020
Explanation of the symbols (part 1), 1035
1021
Explanation of the symbols (part 2), 1036
1022
Explanation of the symbols (part 3), 1037
1030
Handling BICO technology, 1038
2119
CU320-2 Overview, 1040
2120
CU320-2 digital inputs, electrically isolated
(DI 0 ... DI 3, DI 16, DI 17), 1041
2121
CU320-2 digital inputs, electrically isolated
(DI 4 ... DI 7, DI 20, DI 21), 1042
2130
CU320-2 digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 1043
2131
CU320-2 digital inputs/outputs, bidirectional
(DI/DO 10 ... DI/DO 11), 1044
2132
CU320-2 digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 1045
2133
CU320-2 digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 1046
2381
Control commands / interrogation commands, 1048 2382

States, 1049
2401
PROFIdrive overview, 1052

## 2410

PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 1053
2415
Standard telegrams and process data 1, 1054
2416
Standard telegrams and process data 2, 1055
2419
Manufacturer-specific telegrams and process data 1, 1056

2420
Manufacturer-specific telegrams and process data 2, 1057
2421
Manufacturer-specific telegrams and process data 3, 1058
2422
Manufacturer-specific telegrams and process data 4, 1059
2423
Manufacturer-specific/free telegrams and process data, 1060
2425
STW1_BM control word, metal industry interconnection, 1061
2426
STW2_BM control word, metal industry interconnection, 1062
2427
E_STW1_BM control word, infeed metal industry intercōnnection, 1063
2428
ZSW1_BM status word, metal industry interconnection, 1064
2429
ZSW2_BM status word, metal industry interconnection, 1065
2430
E_ZSW1_BM status word, infeed metal industry interconnection, 1066
2439
PZD receive signals interconnection, profile-specific, 1067
2440
PZD receive signals interconnection, manufacturerspecific, 1068
2441
STW1 control word interconnection (p2038 = 2), 1069
2442
STW1 control word interconnection (p2038 = 0), 1070
2444
STW2 control word interconnection (p2038 = 0), 1071
2447
E_STW1 control word infeed interconnection, 1072

## 2449

PZD send signals interconnection, profile-specific, 1073
2450
PZD send signals interconnection, manufacturerspecific, 1074
2451
ZSW1 status word interconnection (p2038 = 2), 1075

## 2452

ZSW1 status word interconnection (p2038 = 0), 1076 2454

ZSW2 status word interconnection (p2038 = 0), 1077 2457

E_ZSW1 status word, infeed interconnection, 1078 2468

IF1 receive telegram, free interconnection via BICO (p0922 = 999), 1079
2470
IF1 send telegram, free interconnection via BICO
(p0922 = 999), 1080
2472
IF1 status words, free interconnection, 1081

## 2481

IF1 receive telegram, free interconnection via BICO
(p0922 = 999), 1082
2483
IF1 send telegram, free interconnection via BICO
(p0922 = 999), 1083
2485
IF2 receive telegram, free interconnection, 1084 2487

IF2 send telegram, free interconnection, 1085 2489

IF2 status words, free interconnection, 1086 2491

IF2 receive telegram, free interconnection, 1087 2493

IF2 send telegram, free interconnection, 1088 2495

CU_STW1 control word 1, Control Unit interconnection, 1089
2496
CU_ZSW1 status word 1, Control Unit interconnection, 1090
2497
A_DIGITAL interconnection, 1091 2498

E_DIGITAL interconnection, 1092 2499

A_DIGITAL_1 interconnection, 1093
2500
E_DIGITAL_1 interconnection, 1094 2501

Control word, sequence control, 1096

2503
Status word, sequence control, 1097 2505

Control word, setpoint channel, 1098 2520

Control word, speed controller, 1099
2522
Status word, speed controller, 1100
2526
Status word, closed-loop control, 1101
2530
Status word, closed-loop current control, 1102
2534
Status word, monitoring functions 1, 1103 2536

Status word, monitoring functions 2, 1104 2537

Status word, monitoring functions 3,1105 2546

Control word, faults/alarms, 1106
2548
Status word, faults/alarms 1 and 2, 1107
2610
Sequencer, 1109
2634
Missing enable signals, line contactor control, logic operation, 1110
2701
Basic brake control (r0108.14 = 0), 1112 2704

Extended brake control, zero-speed detection (r0108.14 = 1), 1113
2707
Extended brake control, open/close brake (r0108.14 = 1), 1114
2711
Extended brake control, signal outputs (r0108.14 = 1), 1115
2800
Basic Functions, parameter manager, 1117 2802

Monitoring functions and faults/alarms, 1118
2804
SI status CU, MM, CU + MM, group STO, 1119 2806

S_STW1/2 Safety control word 1/2, S_ZSW1/2 Safety status word $1 / 2,1120$
2810
STO (Safe Torque Off), SS1 (Safe Stop 1), 1121
2811
STO (Safe Torque Off), safe pulse suppression, 1122

## 2814

SBC (Safe Brake Control), SBA (Safe Brake Adapter), 1123
2818
SI Extended Functions, parameter manager, 1125
2819
SS1, SS2, SOS, internal STOP B, C, D, F, 1126 2820

SLS (Safely-Limited Speed), 1127
2821
Safe referencing, 1128
2822
SLP (Safely-Limited Position), 1129
2823
SSM (Safe Speed Monitor), 1130
2824
SDI (Safe Direction), 1131
2836
SBT (Safe Brake Test), 1132
2837
Selection of active control word, 1133
2840
SI Motion drive-integrated control signals/status signals, 1134
2842
S_STW1 Safety control word 1, S_ZSW1 Safety status word 1, 1135
2843
S_STW2 Safety control word 2, S_ZSW2 Safety status word 2, 1136
2846
TM54F overview, 1137
2847
TM54F parameter manager, 1138
2848
TM54F configuration, F-DI/F-DO test, 1139
2850
TM54F (F-DI 0 ... F-DI 4), 1140
2851
TM54F (F-DI 5 ... F-DI 9), 1141
2853
TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23), 1142
2855
TM54F control interface
(p9601.2 = 1 \& p9601.3 = 0), 1143
2856
TM54F Safe State selection, 1144
2857
TM54F assignment (F-DO 0 ... F-DO 3), 1145 2915

Standard telegrams, 1147
2917
Manufacturer-specific telegrams, 1148
3001
Setpoint channel overview, 1150

3010
Fixed speed setpoints, 1151
3020
Motorized potentiometer, 1152
3030
Main/supplementary setpoint, setpoint scaling, jogging, 1153
3040
Direction limitation and direction reversal, 1154
3050
Skip frequency bands and speed limitations, 1155 3060

Basic ramp-function generator, 1156
3070
Extended ramp-function generator, 1157
3080
Ramp-function generator selection, -status word, -tracking, 1158
4702
Encoder evaluation overview, 1160
4704
Raw signal sensing, 1161
4715
Speed actual value and pole pos. sensing, motor encoder ASM/SM (encoder 1), 1162
6020
Speed control and generation of the torque limits, overview, 1164
6030
Speed setpoint, droop, 1165
6031
Pre-control balancing, reference/ acceleration model, 1166
6040
Speed controller with/without encoder, 1167
6050
Speed controller adaptation
(Kp_n/Tn_n adaptation), 1168
6060
Torque setpoint, 1169
6220
Vdc_max controller and Vdc_min controller, 1170 6300

U/f control, overview, 1171
6301
U/f characteristic and voltage boost, 1172
6310
Resonance damping and slip compensation, 1173
6320
Vdc_max controller and Vdc_min controller (U/f), 1174
6490
Speed control configuration, 1175
6491
Flux control configuration, 1176

## 6630

Upper/lower torque limit, 1177
6640
Current/power/torque limits , 1178
6700
Current control, overview, 1179
6710
Current setpoint filter, 1180
6714
Iq and Id controllers, 1181
6721
Id setpoint (PEM, p0300 = 2), 1182
6722
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 1183
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 1184
6724
Field weakening controller (PEM, p0300 = 2), 1185
6730
Interface to the Motor Module (ASM, p0300 = 1), 1186
6731
Interface to the Motor Module (PEM, p0300 = 2), 1187
6799
Display signals, 1188
7010
Friction characteristic, 1190
7014
External Armature Short-Circuit (EASC, p0300 $=2 \mathrm{xx}$ or 4 xx ), 1191
7016
Internal Armature Short-Circuit (IASC, p0300 $=2 x x$ or $4 x x$ ), 1192
7017
DC brake (p0300 = 1xx), 1193
7020
Synchronization, 1194
7033
Essential service mode (ESM), 1195
7950
Fixed value selection binary (r0108.16 = 1 and p2216[D] = 2), 1197
7951
Fixed value selection direct (r0108.16 = 1 and p2216 = 1), 1198
7954
Motorized potentiometer (r0108.16 = 1), 1199

## 7958

Closed-loop control (r0108.16 = 1), 1200
7960
DC link voltage controller (r0108.16=1), 1201

8005
Signals and monitoring functions overview, 1203
8010
Speed signals 1, 1204
8011
Speed signals 2, 1205
8012
Torque signals, motor blocked/stalled, 1206
8013
Load monitoring (r0108.17 = 1), 1207
8014
Thermal monitoring, power unit, 1208
8016
Thermal monitoring, motor, 1209
8017
Thermal motor models, 1210
8050
Diagnostics overview, 1212
8060
Fault buffer, 1213
8065
Alarm buffer, 1214
8070
Faults/alarms trigger word (r2129), 1215
8075
Faults/alarms configuration, 1216
8134
Measuring sockets (T0, T1, T2), 1217
8560
Command Data Sets (CDS), 1219
8565
Drive Data Sets (DDS), 1220
8570
Encoder Data Sets (EDS), 1221
8575
Motor data sets (MDS), 1222
8580
Power unit Data Sets (PDS), 1223
8710
Basic Infeed overview, 1225
8720
Control word, sequence control infeed, 1226
8726
Status word,
sequence control infeed, 1227
8732
Sequencer, 1228
8734
Missing enable signals, line contactor control, 1229
8750
Interface to the Basic Infeed power unit (control signals, actual values), 1230
8760
Signals and monitoring functions ( $\mathrm{p} 3400=0$ ), 1231

## 9099

TB30 overview, 1233
9100
TB30 digital inputs, electrically isolated (DI 0 to DI 3), 1234
9102
TB30 digital outputs, electrically isolated (DO 0 ... DO 3), 1235
9104
TB30 analog inputs (AI $0 \ldots \mathrm{Al} 1$ ), 1236
9106
TB30 analog outputs (AO $0 \ldots$ AO 1), 1237
9204
Receive telegram, free PDO mapping (p8744 = 2), 1239
9206
Receive telegram, Predefined Connection Set (p8744 = 1), 1240
9208
Send telegram, free PDO mapping (p8744 = 2), 1241
9210
Send telegram, Predefined Connection Set (p8744 = 1), 1242
9220
Control word, CANopen, 1243
9226
Status word, CANopen, 1244
9549
TM31 overview, 1246
9550
TM31 digital inputs, electrically isolated
(DI 0 to DI 3), 1247
9552
TM31 digital inputs, electrically isolated (DI 4 to DI 7), 1248
9556
TM31 digital relay outputs, electrically isolated (DO 0 to DO 1), 1249
9560
TM31 digital inputs/outputs, bidirectional (DI/DO 8 to DI/DO 9), 1250
9562
TM31 digital inputs/outputs, bidirectional (DI/DO 10 to DI/DO 11), 1251
9566
TM31 analog input 0 (AI 0), 1252
9568
TM31 analog input 1 (AI 1), 1253
9572
TM31 analog outputs (AO 0 to AO 1), 1254
9576
TM31 temperature evaluation (KTY/PTC), 1255

9625
TM150 Temperature evaluation structure (channels 0 ... 11), 1257
9626
TM150 Temperature evaluation $1 \times 2$, 3, 4 wire (channels 0 ... 5), 1258
9627
TM150 Temperature evaluation $2 \times 2$ wire (channel 0 ... 11), 1259
9880
VSM analog inputs (AI 0 ... AI 3), 1261
9886
VSM temperature evaluation, 1262
9912
BOP20 control word interconnection, 1264

## A

Access level (parameter), 22
Acknowledgement
Adjustable, 1275
Default, 1275
IMMEDIATELY, 1269
POWER ON, 1269
PULSE INHIBIT, 1269
Active (parameter, C1(x), C2(x), U, T), 21
Address
PROFIBUS, 1053
PROFINET, 1053
Technical Support, 7
Adjustable parameters, 17
Alarm
Cause, 1276
Display, 1266
Drive object, 1275
Explanation of list, 1271
Fault location, 1272
General information, 1266
How to distinguish an alarm from a fault, 1266
List of all alarms, 1279
Message class, 1272
Message value, 1272
Name, 1272
Number, 1271
Number range, 1277
Remedy, 1276
Alarm buffer, 1211
Alarm value, 1276
Analog inputs
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245
Analog outputs
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245
ASCII table, 1810
Axxxx, 1271

## B

Basic Infeed, 1224
Control word, sequence control, 1226
Interface (control signals, actual values), 1230
Missing enable signals, line contactor control, 1229
Overview, 1225
Sequencer, 1228
Signals and monitoring functions, 1224, 1231
Status word, sequence control, 1227
Table of contents, 1224
Basic Operator Panel (BOP), 1263
Basic/extended brake control, 1111
BI, Binector Input, 18
BICO technology, 1038
Binector
Input (BI), 18
Output (BO), 18
Bit field (parameter), 29
BO, Binector Output, 18
Brake control
Basic, 1111
Extended, 1111

## C

C1(x) - State commissioning device, 21
C2(x) - State commissioning drive, 21
Calculated (parameter), 22
Can be changed (parameter, C1(x), C2(x), U, T), 21
Catalogs, 1822
CDS, (Command Data Set), 24, 1218, 1219
CI, Connector Input, 18
CO, Connector Output, 18
CO/BO, Connector/Binector Output, 18
Command data sets, 1218
Communication
CANopen, 1238
Communication Board CAN 10 (CBC10), 1238
Connector
Input (CI), 18
Output (CO), 18
Control
Basic Infeed, 1224
Technology controller, 1200
Vector, 1163
Control Unit 320-2 (CU320-2)
Digital inputs, 1039
Digital inputs/outputs, 1039
Control words, 1050
Internal, 1095
Standard telegrams, 1050
Converter
Binector/connector, 1081, 1086
Connector/binector, 1079, 1082, 1084, 1087
Cxxxxx, 1271

## D

Data Set, 24
Command data set, CDS, 24
Drive Data Set, DDS, 24
Encoder Data Set, EDS, 24
Motor Data Set, MDS, 24
Power unit Data Set, PDS, 24
Data set, 24
Data sets, 1218
Command data set, 24
Drive data set, 24
Encoder data set, 24
Motor data set, 24
Power unit data set, 24
Data type (parameter, signal source), 23
DCBRK, 1268
DDS, (Drive Data Set), 1218, 1220
DDS, drive data set, 24
Dependency (parameter), 29
Description (parameter), 28
Digital inputs
Control Unit 320-2 (CU320-2), 1039
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245
Digital inputs/outputs
Control Unit 320-2 (CU320-2), 1039
Terminal Module 31 (TM31), 1245
Digital outputs
Control Unit 320-2 (CU320-2), 1039
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245
Direction limitation, 1149
Direction reversal, 1149
Directory
ASCII table, 1810
Complete table of contents, 9
Index, 1829
List of abbreviations, 1813
References, 1822
Table of contents, function diagrams, 1027
Display
Alarms, 1266
Faults, 1266
Display parameters, 17
DO, Drive Object, 18
Drive data sets, 1218
Drive object, 18
DSC (Dynamic Servo Control), 1149

## E

EDS, (Encoder Data Set), 24, 1218, 1221
ENCODER, 1268
Encoder data sets, 1218
Encoder evaluation, 1159
Essential service mode (ESM), 1195

Expert list, 28
Explanations
on function diagrams, 1034

## F

Factory setting, 27
Fault
Acknowledgement, 1269, 1275
Cause, 1276
Display, 1266
Drive object, 1275
Explanation of list, 1271
Fault location, 1272
Fault reaction, 1267, 1275
General information, 1266
How to distinguish a fault from an alarm, 1266
List of all faults, 1279
Message class, 1272
Message value, 1272
Name, 1272
Number, 1271
Number range, 1277
Remedy, 1276
Save when switching off, 1270
Fault buffer, 1211
Configuration, 1212, 1213
Save when switching off, 1270
Fault value, 1276
Faults/alarms configuration, 1211
Faults/alarms triggering (r2129), 1211
Fixed speed setpoints, 1149
Fixed values, 1036, 1197, 1198
Free interconnection via BICO, 1050
Free interconnection, status words, 1081, 1086
Friction characteristic, 1190
Function (parameter), 28
Function diagrams, Basic Infeed
Control word,
sequence control infeed, 1226
Interface to the Basic Infeed power unit (control signals, actual values), 1230
Missing enable signals, line contactor control, 1229
Overview, 1225
Sequencer, 1228
Signals and monitoring functions (p3400 = 0), 1231
Status word, sequence control infeed, 1227
Function diagrams, Basic Operator Panel 20 (BOP20)
Control word BOP20 interconnection, 1264

Function diagrams, brake control
Basic brake control (r0108.14 = 0), 1112
Extended brake control, open/close brake (r0108.14 = 1), 1114
Extended brake control, signal outputs (r0108.14 = 1), 1115
Extended brake control, zero-speed detection (r0108.14 = 1), 1113
Function diagrams, Communication Board CAN
Control word, CANopen, 1243
Receive telegram, free PDO mapping (p8744 = 2), 1239
Receive telegram, Predefined Connection Set (p8744 = 1), 1240
Send telegram, free PDO mapping (p8744 = 2), 1241
Send telegram, Predefined Connection Set (p8744 = 1), 1242
Status word, CANopen, 1244
Function diagrams, CU320-2 input/output terminals
Digital inputs, electrically isolated (DI 0 to DI 3, DI 16, DI 17), 1041
Digital inputs, electrically isolated (DI $4 \ldots$ DI 7, DI 20, DI21), 1042
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 1044
Digital inputs/outputs, bidirectional (DI/DO 12 ... DI/DO 13), 1045
Digital inputs/outputs, bidirectional (DI/DO 14 ... DI/DO 15), 1046
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 1043
Overview, 1040
Function diagrams, data sets
Command Data Sets (CDS), 1219
Drive Data Sets (DDS), 1220
Encoder Data Sets (EDS), 1221
Motor data sets (MDS), 1222
Power unit Data Sets (PDS), 1223
Function diagrams, diagnostics
Alarm buffer, 1214
Fault buffer, 1213
Faults/alarms configuration, 1216
Faults/alarms trigger word (r2129), 1215
Measuring sockets (T0, T1, T2), 1217
Overview, 1212
Function diagrams, encoder evaluation
Overview, 1160
Raw signal sensing, 1161
Speed actual value and pole pos. sensing, motor encoder ASM/SM (encoder 1), 1162

Function diagrams, explanations
Explanation of the symbols (part 1), 1035
Explanation of the symbols (part 2), 1036
Explanation of the symbols (part 3), 1037
Handling BICO technology, 1038
Function diagrams, internal control/status words
Control word, faults/alarms, 1106
Control word, sequence control, 1096
Control word, setpoint channel, 1098
Control word, speed controller, 1099
Status word, closed-loop control, 1101
Status word, closed-loop current control, 1102
Status word, faults/alarms 1 and 2, 1107
Status word, monitoring functions 1, 1103
Status word, monitoring functions 2, 1104
Status word, monitoring functions 3, 1105
Status word, sequence control, 1097
Status word, speed controller, 1100
Function diagrams, PROFIdrive
A_DIGITAL interconnection, 1091
A_DIGITAL_1 interconnection, 1093
CU_STW1 control word 1, Control Unit interconnection, 1089
CU_ZSW1 status word 1, Control Unit interconnection, 1090
E_DIGITAL interconnection, 1092
E_DIGITAL_1 interconnection, 1094
E_STW1 control word infeed interconnection, 1072
E_STW1_BM control word, infeed metal industry interconnection, 1063
E_ZSW1 status word, infeed interconnection, 1078
E_ZSW1_BM status word, infeed metal industry interconnection, 1066
IF1 receive telegram, free interconnection via BICO (p0922 = 999), 1079, 1082
IF1 send telegram, free interconnection via BICO (p0922 = 999), 1080, 1083
IF1 status words, free interconnection, 1081
IF2 receive telegram, free interconnection, 1084, 1087
IF2 send telegram, free interconnection, 1085, 1088
IF2 status words, free interconnection, 1086
Manufacturer-specific telegrams and process data 1, 1056
Manufacturer-specific telegrams and process data 2, 1057
Manufacturer-specific telegrams and process data 3, 1058
Manufacturer-specific telegrams and process data 4, 1059

Manufacturer-specific/free telegrams and process data, 1060
Overview, 1052
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 1053
PZD receive signals interconnection, manufacturerspecific, 1068
PZD receive signals interconnection, profile-specific, 1067
PZD send signals interconnection, manufacturerspecific, 1074
PZD send signals interconnection, profile-specific, 1073
Standard telegrams and process data 1, 1054
Standard telegrams and process data 2, 1055
STW1 control word interconnection (p2038 = 0), 1070
STW1 control word interconnection (p2038 = 2), 1069
STW1_BM control word, metal industry interconnection, 1061
STW2 control word interconnection (p2038 = 0), 1071
STW2_BM control word, metal industry interconnection, 1062
ZSW1 status word interconnection (p2038 = 0), 1076
ZSW1 status word interconnection (p2038 = 2), 1075
ZSW1_BM status word, metal industry interconnection, 1064
ZSW2 status word interconnection (p2038 = 0), 1077
ZSW2_BM status word, metal industry interconnection, 1065
Function diagrams, PROFlenergy
Control commands / interrogation commands, 1048
States, 1049
Function diagrams, sequence control
Missing enable signals, line contactor control, logic operation, 1110
Sequencer, 1109
Function diagrams, setpoint channel
Direction limitation and direction reversal, 1154
Fixed speed setpoints, 1151
Main/supplementary setpoint, setpoint scaling, jogging, 1153
Motorized potentiometer, 1152
Overview, 1150
Ramp-function generator (basic), 1156
Ramp-function generator (extended), 1157
Ramp-function generator selection, -status word, -tracking, 1158
Skip frequency bands and speed limitations, 1155

Function diagrams, SI Basic Functions
Monitoring functions and faults/alarms, 1118
Parameter manager, 1117
S_STW1/2 Safety control word 1/2, 1120
S_ZSW1/2 Safety status word 1/2, 1120
SBC (Safe Brake Control),
SBA (Safe Brake Adapter), 1123
SI status CU, MM, CU + MM, group STO, 1119
STO (Safe Torque Off),
safe pulse suppression, 1122
STO (Safe Torque Off),
SS1 (Safe Stop 1), 1121
Function diagrams, SI Extended Functions
Parameter manager, 1125
S_STW1 Safety control word 1, 1135
S_STW2 Safety control word 2, 1136
S_ZSW1 Safety status word 1, 1135
S_ZSW2 Safety status word 2, 1136
Safe referencing, 1128
SBT (Safe Brake Test), 1132
SDI (Safe Direction), 1131
Selection of active control word, 1133
SI Motion drive-integrated control signals/status signals, 1134
SLP (Safely-Limited Position), 1129
SLS (Safely-Limited Speed), 1127
SS1, SS2, SOS, internal STOP B, C, D, F, 1126
SSM (Safe Speed Monitor), 1130
TM54F (F-DI 0 ... F-DI 4), 1140
TM54F (F-DI 5 ... F-DI 9), 1141
TM54F (F-DO 0 ... F-DO 3, DI 20 ... DI 23), 1142
TM54F assignment (F-DO 0 ... F-DO 3), 1145
TM54F configuration, F-DI/F-DO test, 1139
TM54F control interface
(p9601.2 = 1 \& p9601.3 = 0), 1143
TM54F overview, 1137
TM54F parameter manager, 1138
TM54F Safe State selection, 1144
Function diagrams, SI PROFIsafe
Manufacturer-specific telegrams, 1148
Standard telegrams, 1147
Function diagrams, signals and monitoring functions
Load monitoring (r0108.17 = 1), 1207
Overview, 1203
Speed signals 1, 1204
Speed signals 2, 1205
Thermal monitoring, motor, 1209
Thermal monitoring, power unit, 1208
Thermal motor models, 1210
Torque signals, motor blocked/stalled, 1206

Function diagrams, TB30
Analog inputs (AI 0 to Al 1 ), 1236
Analog outputs (AO 0 ... AO 1), 1237
Digital inputs, electrically isolated (DI 0 ... DI 3), 1234
Digital outputs, electrically isolated (DO 0 ... DO 3), 1235
Overview, 1233
Function diagrams, technology controller
Closed-loop control (r0108.16 = 1), 1200
DC link voltage controller (r0108.16 = 1), 1201
Fixed value selection binary (r0108.16=1 and p2216[D] = 2), 1197
Fixed value selection direct ( $\mathrm{r} 0108.16=1$ and p2216 = 1), 1198
Motorized potentiometer (r0108.16 = 1), 1199
Function diagrams, technology functions
DC brake ( $\mathrm{p} 0300=1 \mathrm{xx}$ ), 1193
Essential service mode (ESM), 1195
External Armature Short-Circuit (EASC, p0300 $=2 x x$ or $4 x x$ ), 1191
Friction characteristic, 1190
Internal Armature Short-Circuit (IASC, p0300 = 2xx or $4 x x$ ), 1192
Synchronization, 1194
Function diagrams, TM150
Temperature evaluation $1 \times 2,3,4$ wire (channels 0 ... 5), 1258
Temperature evaluation $2 x 2$ wire (channels 0 ... 11), 1259
Temperature evaluation structure (channels 0 ... 11), 1257
Function diagrams, TM31
Analog input 0 (AI 0), 1252
Analog input 1 (AI 1), 1253
Analog outputs (AO 0 ... AO 1), 1254
Digital inputs, electrically isolated (DI 0 ... DI 3), 1247
Digital inputs, electrically isolated (DI 4 ... DI 7), 1248
Digital inputs/outputs, bidirectional (DI/DO 10 ... DI/DO 11), 1251
Digital inputs/outputs, bidirectional (DI/DO 8 ... DI/DO 9), 1250
Digital relay outputs, electrically isolated (DO 0 ... DO 1), 1249
Overview, 1246
Temperature evaluation (KTY/PTC), 1255

Function diagrams, vector control
Current control, overview, 1179
Current setpoint filter, 1180
Current/power/torque limits , 1178
Display signals, 1188
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 1183
Field weakening controller (PEM, p0300 = 2), 1185
Field weakening controller, flux controller (ASM, p0300 = 1), 1184
Flux control configuration, 1176
Id setpoint (PEM, p0300 = 2), 1182
Interface to the Motor Module (ASM, p0300 = 1), 1186
Interface to the Motor Module (PEM, p0300 = 2), 1187
Iq and Id controllers, 1181
Pre-control balancing, reference/ acceleration model, 1166
Resonance damping and slip compensation, 1173
Speed control and generation of the torque limits, overview, 1164
Speed control configuration, 1175
Speed controller adaptation
(Kp_n/Tn_n adaptation), 1168
Speed controller with/without encoder, 1167
Speed setpoint, droop, 1165
Torque setpoint, 1169
U/f characteristic and voltage boost, 1172
U/f control, overview, 1171
Upper/lower torque limit, 1177
Vdc_max controller and Vdc_min controller, 1170
Vdc_max controller and Vdc_min controller (U/f), 1174
Function diagrams, VSM
Analog inputs (AI 0 to Al 3 ), 1261
Temperature evaluation, 1262
Function module, 18
Fxxxx, 1271

## G

General information
about parameters, 16
on faults and alarms, 1266
on function diagrams, 1034

## H

Holding brake, 1111
Hotline, 7

## I

IASC, 1268
Index
Factory setting, 29
Parameters, 17, 29
Industrial security, 13
Information
Hotline, 7
Product information, 5
Technical Support, 7
Input terminals
Control Unit 320-2 (CU320-2), 1039
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245
Internal control/status words, 1095

## J

Jogging, 1149, 1153

## L

Line contactor control, 1110, 1224
Linked parameters, 17
List
Abbreviations, 1813
ASCII table, 1810
Faults and alarms, 1279
Message ranges, 1277
Parameter ranges, 30
Parameters for command data sets, 1002
Parameters for drive data sets, 1004
Parameters for encoder data sets, 1012
Parameters for motor data sets, 1014
Parameters for power unit data sets, 1017
Parameters for write protection and know-how protection, 1019

## M

Main/supplementary setpoint, 1149
Manufacturer-specific telegrams, 1050
MDS, (Motor Data Set), 1218, 1222
MDS, Motor Data Set, 24
Measuring sockets, 1211
Message buffer, 1211
Message class, 1272
Message value, 1272
Missing enable signals
Basic Infeed, 1229
Drive, 1110
Monitoring functions, 1202
Motor data sets, 1218
Motor holding brake, 1111
Motorized potentiometer, 1149, 1199

## N

Name
Alarm, 1272
Fault, 1272
Parameters, 18
Not for motor type, 28
Number
Alarm, 1271
Fault, 1271
Parameters, 17
Number range
Alarms, 1277
Faults, 1277
Parameters, 30

## 0

Object, 18
OFF1, 1267
OFF1_DELAYED, 1267
OFF2, 1267
OFF3, 1268
Output terminals
Control Unit 320-2 (CU320-2), 1039
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245

## P

Parameters
Access level, 22
Calculated, 22
Can be changed, 21
Data type, 23
Description, 28
Dynamic index, 24
Expert list, 28
Full name, 18
Function, 28
Index, 17, 29
Linked parameters, 17
List of all parameters, 33
List of parameters for command data sets, 1002
List of parameters for drive data sets, 1004
List of parameters for encoder data sets, 1012
List of parameters for motor data sets, 1014
List of parameters for power unit data sets, 1017
Name, 18
Not for motor type, 28
Number, 17
Number range, 30
P-Group, 24
Safety guidelines, 29
Scaling, 28
Short name, 18
Unit, 24
Unit group, 24
Unit selection, 24
Values, 28
Password for access level 4, 22
PDS (Power unit Data Set), 24
PDS, (Power unit Data Set), 1218, 1223
P-Group (parameter), 24
PID controller ( $\mathrm{p} 0108.16=1$ ), 1196
Power unit data sets, 1218
Process data, 1050
Product information, 5
PROFIdrive, 1050
PROFlenergy, 1047
pxxxx, 17

## R

Ramp-function generator, 1149
Reaction to faults, 1267
References, 1822
Relay outputs, 1245
Resetting faults, 1275
rxxxx, 17

## S

Safety instructions
Fundamental, 11
General, 12
Industrial security, 13
Safety instructions (parameter), 29
Safety Integrated
Basic Functions, 1116
Extended Functions, 1124
PROFIsafe, 1146
Scaling, 28
Search tools for this manual, 7
Sequence control, 1108
Servo control
Encoder evaluation, 1159
Setpoint channel, 1149
Signal path in function diagrams, 1035
Signals, 1202
Skip frequency bands, 1149
Speed control
Vector, 1163
Speed signals, 1202
Status words
Internal, 1095
Standard telegrams, 1050
STOP2, 1268
Support, 7
Support Request, 7
Synchronization, 1194

## T

T - Ready state, 21
Target group, 6
Technical Support, 7
Technology controller (p0108.16 = 1), 1196
Technology functions, 1189
Telegrams, 1050
Temperature evaluation
Terminal Module 150 (TM150), 1256
Terminal Module 31 (TM31), 1245
Terminal Board 30 (TB30), 1232
Terminal Module 150 (TM150), 1256
Terminal Module 31 (TM31), 1245
Terminals
Control Unit 320-2 (CU320-2), 1039
Terminal Board 30 (TB30), 1232
Terminal Module 31 (TM31), 1245

Thermal monitoring, 1202
Torque signals, 1202

## U

U - Operation state, 21
U/f control
Vector, 1172
Unit (parameter), 24
Usage phases, 6

## V

Values (parameter), 28
Vector control
Current setpoint filter, 1180
Droop, 1165
Encoder evaluation, 1159
Field weakening characteristic, Id setpoint, 1183
Flux control, 1176
Iq and Id controllers, 1181
Kp_n-/Tn_n adaptation, 1168
Resonance damping and slip compensation, 1173
Speed control configuration, 1175
Speed controller with/without encoder, 1167
Table of contents, 1163
Torque setpoint, 1169
V/f characteristic, 1172
Vdc_max controller and Vdc_min controller, 1170, 1174
Version
List of all parameters, 33
List of faults and alarms, 1279
List of parameters for command data sets, 1002
List of parameters for drive data sets, 1004
List of parameters for encoder data sets, 1012
List of parameters for motor data sets, 1014
List of parameters for power unit data sets, 1017
Voltage Sensing Module (VSM)
Analog inputs, 1260
Sensor monitoring KTY/PTC, 1260
Temperature evaluation, 1260
ac.maher.co.ir


[^0]:    Description: Sets the sampling times for the control loops.
    The default setting is made using p0112 and can only be individually changed for p0112 $=0$ (expert).

[^1]:    Description:
    Sets the signal source for terminal DI/DO 13 (X132.10 / X131.2).

[^2]:    Description: Sets the filter time constant of the DC link voltage used to calculate the modulation depth

[^3]:    09 Pulse frequency reduction (speed Yes No dependent) stage 2
    10 Activate pulse-locking/pulse-dropping Pulse-Dropping Pulse-Locking function
    12 Pulse freq. can be asynchronously set to
    Yes curr. ctrl clock cycle
    13 Pulse freq. reduction before optimized pulse
    Yes
    No patterns for $500 \mu \mathrm{~s}$
    14 Deactivate maximum angular difference
    Yes
    No adaptation
    15 Increase overmodulation range Yes
    No

    Dependency: Notice:

    ## Note:

    If bit 2 is set from 1 to $0, \mathrm{p} 1811=0$ is set.
    Bit $1=0$ can only be set under a pulse inhibit and for r0192.14 $=1$.
    Bit 2 can only be set to 1 subject to the following prerequisites:

    - Pulse inhibit
    - r0192.16 = 1
    - p1800 < $2 \times 1000 / p 0115[0]$

    Bit 12 can only be changed subject to the following prerequisites:

    - preconditions, the same as bit $2=1$
    - p1810.3 = 0

    For fast current changes, bit $15=1$ together with p1802 $=0,2$ and p1803 $>106 \%$ result in a significant increase in the torque ripple. As a consequence, increasing the modulation limit must be checked on an application for application basis.
    Re bit $00=0$ :
    Voltage limitation from the minimum of the DC link voltage (lower ripple in the output current, reduced output voltage).
    Re bit $00=1$ :
    Voltage limitation from averaged DC link voltage (higher output voltage with increased ripple in the output current).
    The selection is only valid if the DC link compensation is not performed in the Control Unit (bit $1=0$ ).
    Re bit $01=0$ :
    DC link voltage compensation in the modulator.
    Re bit $01=1$ :
    DC link voltage compensation in the current control.
    Re bit $02=0$ :
    A gating unit that does not permit wobbulation is used.
    Edge modulation is not possible for a parallel connection with a single-winding system (p7003 =0).
    Bit 02 cannot be set to 0 if bit $12=1$.
    Re bit $02=1$ :
    A gating unit that permits wobbulation is used.
    For a wobbulation amplitude $\mathrm{p} 1811=0$, the maximum possible pulse frequency in $\mathrm{p} 1800=2 \times 1000 / \mathrm{p} 0115[0]$.
    For a wobbulation amplitude p1811>0, the maximum possible pulse frequency in p1800 $=1000 / p 0115[0]$.
    If optimized pulse patterns has been activated ( $\mathrm{p} 1802>6$ ), then a parameter save is required and switch-off and switch-on again. This is displayed using a fault message (F01040).
    Re bit $03=1$ :
    The actual current value sensing and the determination of the valve ON times takes place with a double current controller clock cycle and phase offset.
    The activation is only possible with r0192.23 = 1 and p1810.12 $=0$ - and takes effect the next time the system is powered up.
    Re bit $08=1$ :
    Above the frequency threshold r1836[0], the pulse frequency is switched to the value in p1800. Below r1836[0] (minus the hysteresis), the pulse frequency is reduced to the next possible pulse frequency (see r0114).
    Re bit $09=1$ :
    Above the frequency threshold r1836[1], the pulse frequency is increased to the next possible value. Below r1836[1] (minus the hysteresis), the pulse frequency is reduced to the next possible pulse frequency.
    If bit 8 is set to 0 , bit 9 is automatically reset.
    Re bit $10=0$ :
    Pulse-locking function activated.

[^4]:    Access level: 2
    Func. diagram: 7020
    Unit selection: -
    Expert list: 1
    Factory setting

[^5]:    Description: Sets the second trigger threshold for trigger via tolerance band
    Index:
    $[0]=$ Trace 0
    $[1]=$ Trace 1

[^6]:    Description: Service parameter to internally document repairs.
    After a component has been replaced, this must be confirmed using p7786.x $=0 / 1$.

[^7]:    Description: Parameter to display a DSA signal in the signed-integer format.
    The associated signal number is represented at the appropriate index in r7831.

[^8]:    - 

[^9]:    <1> When selecting a standard telegram or a manufacturer-specific telegram via p0922, these interconnection parameters of the command data set CDSO are automatically set

[^10]:    ןяиоэ әуеля 8 غ

[^11]:    

[^12]:    

[^13]:    
    

[^14]:    

[^15]:    

[^16]:    
    

[^17]:    

[^18]:    so!̣souße!ด 8L'

[^19]:    рәәли э!seg 0乙`غ
    

[^20]:    рәәди э!seg 0乙'غ

[^21]:    

[^22]:    
    swe„бе!р uо!ŋวun」 \&

