

SINAMICS S150

Converter cabinet units 75 kW to 1200 kW

Operating instructions •03/2011

SINAMICS

SIEMENS

	Safety information	
	Device overview	2
SINAMICS Mechanical installation		
SINAMICS S150 Converter cabinet units	Electrical installation	4
	Commissioning	5
Operating InstructionsOperation		
	Setpoint channel and closedloop control	7
	Output terminals	8
	Functions, monitoring, and protective functions	9
	Diagnosis / faults and alarms	0
	Maintenance and servicing	1
	Technical specifications	12
	Appendix	A

Control version V4.4

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the relevant information is not taken into account.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ${ }^{\circledR}$ are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

User documentation

WARNING

Before installing and commissioning the converter, make sure that you read all the safety notes and warnings carefully, including the warning labels on the equipment itself. The warning labels must always be legible. Missing or damaged labels must be replaced.

Structure of this documentation

The customer documentation comprises general and individual documentation.
The general documentation describes the topics that apply to all cabinet units:

- Operating Instructions

The Operating Instructions consist of the following sections:

- Device description
- Mechanical installation
- Electrical installation
- Commissioning guide
- Description of function
- Maintenance instructions
- Technical data
- Overview diagrams

These provide a general overview of the functionality of the cabinet units.

- Basic function diagrams

These provide an overview of the basic functions of the cabinet unit for simple applications.

- List Manual

The List Manual consists of the following sections:

- Parameter list
- Function diagrams
- Fault / warning list
- Documentation for Drive Control Chart (DCC)
- Programming and Operating Manual: DCC Editor description
- Function Manual: Description of the standard DCC blocks

The individual documentation describes precisely one customized cabinet unit and contains the following:

- Dimension drawing

The dimension drawing documents the dimensions of the ordered cabinet unit.

- Layout diagram

The components installed in the ordered cabinet units are shown in the layout diagram with the equipment and location codes.

- Circuit diagram

The circuit diagram shows the electrical components installed in the ordered cabinet unit with the equipment and location codes, their interconnections and the customer interfaces.

- Terminal diagram

The terminal diagram shows all the customer terminals in the ordered cabinet unit, and the associated internal wiring in the cabinet unit. This diagram documents the line-side target wiring.

- Spare parts list

All of the available spare parts for the ordered cabinet units are listed in the spare parts list with the equipment and the location codes.

- Additional operating instructions

The instructions for OEM components installed in the ordered cabinet unit are supplied as OEM documentation.

Technical support

Time zone Europe/Africa	
Phone	$+49(0) 9118957222$
Fax	$+49(0) 9118957223$
Internet	http://www.siemens.com/automation/support-request

Time zone America	
Phone	+14232622522
Fax	+14232622200
Internet	techsupport.sea@siemens.com

Time zone Asia/Pacific	
Phone	+861064757575
Fax	+861064747474
Internet	support.asia.automation@siemens.com

Spare parts

You will find spare parts on the Internet at:
http://support.automation.siemens.com/WW/view/en/16612315.

Internet address

Information about SINAMICS can be found on the Internet at the following address: http://www.siemens.com/sinamics

Table of contents

Preface 3
1 Safety information 17
1.1 Warnings 17
1.2 Safety and operating instructions 18
1.3 Components that can be destroyed by electrostatic discharge (ESD) 19
2 Device overview. 23
2.1 Chapter content 23
2.2 Applications, features 23
2.2.1 Applications 23
2.2.2 Features, quality, service 24
2.3 Structure 25
2.4 Wiring principle. 28
2.5 Type plate 29
3 Mechanical installation 33
$3.1 \quad$ Chapter content 33
3.2 Transportation and storage 34
3.3 Installation 36
3.3.1 Mechanical installation: checklist 37
3.3.2 Preparation 38
3.3.2.1 Requirements on the installation location 38
3.3.2.2 Requirements on the levelness of the floor 39
3.3.2.3 Shipping and handling monitors. 40
3.3.2.4 Unpacking 42
3.3.2.5 Required tools 42
3.3.3 Installation 43
3.3.3.1 Lifting the cabinet off the transport pallet. 43
3.3.3.2 Removing the crane transport aids 44
3.3.3.3 Installation 46
3.3.4 Fitting additional canopies (option M21) or hoods (option M23, M43, M54) 46
3.3.5 Line connection from above (option M13), motor connection from above (option M78) 49
4 Electrical installation 51
4.1 Chapter content 51
4.2 Checklist for electrical installation 52
4.3 Important safety precautions 58
4.4 Introduction to EMC 59
4.5 EMC-compliant design 61
4.6 Power connections 63
4.6.1 Connection cross-sections, cable lengths 64
4.6.2 Connecting the motor and power cables 65
4.6.3 Adjusting the fan voltage (-G1 -T10, -T1 -T10) 66
4.6.4 Adjusting the internal power supply (-T10) 68
4.6.5 Removing the connecting clip for the interference suppression capacitor for operation on an ungrounded supply/IT system 69
4.7 External supply of the auxiliary supply from a secure line 73
4.8 Signal connections 74
4.8.1 Control Unit CU320-2 DP 74
4.8.2 Customer terminal module TM31 (-A60) (Option G60). 88
4.9 Other connections 96
4.9.1 Infeed module rated one level lower (option L04). 97
4.9.2 dV/dt filter compact plus Voltage Peak Limiter (Option L07) 101
4.9.3 dv/dt filter plus Voltage Peak Limiter (option L10) 104
4.9.4 Sine-wave filter (option L15) 107
4.9.5 Connection for external auxiliary equipment (Option L19). 109
4.9.6 Main switch incl. fuses or main circuit breaker (option L26) 111
4.9.7 EMERGENCY OFF pushbutton installed in the cabinet door (option L45) 113
4.9.8 Cabinet illumination with service socket (option L50) 114
4.9.9 Cabinet anti-condensation heating (option L55) 114
4.9.10 EMERGENCY OFF category 0; 230 V AC or 24 V DC (option L57) 115
4.9.11 EMERGENCY STOP category 1; 230 V AC (option L59) 117
4.9.12 EMERGENCY STOP category 1; 24 V DC (option L60) 118
4.9.13 25 kW braking unit (option L61/L64); 50 kW braking unit (option L62/L65) 119
4.9.13.1 Installing the braking resistor 119
4.9.13.2 Commissioning. 122
4.9.13.3 Diagnosis and duty cycles. 124
4.9.13.4 Threshold switch 125
4.9.14 Thermistor motor protection unit (option L83/L84). 128
4.9.15 PT100 evaluation unit (option L86) 129
4.9.16 Insulation monitor (option L87) 130
4.9.17 Communication Board Ethernet CBE20 (option G33) 132
4.9.18 CBC10 CAN Communication Board (option G20) 135
4.9.19 SMC10 Sensor Module Cabinet-Mounted (option K46) 138
4.9.19.1 Description 138
4.9.19.2 Connection 139
4.9.19.3 Connection example 140
4.9.20 SMC20 Sensor Module Cabinet-Mounted (option K48) 142
4.9.20.1 Description 142
4.9.20.2 Connection 143
4.9.20.3 Connection example 144
4.9.21 SMC30 Sensor Module Cabinet-Mounted (option K50) 146
4.9.21.1 Description 146
4.9.21.2 Connection 150
4.9.21.3 Connection examples. 152
4.9.22 Voltage Sensing Module for determining the actual motor speed and the phase angle (option K51) 153
4.9.23 Customer terminal block (option G60) 153
4.9.24 Additional customer terminal block TM31 (option G61) 154
4.9.25 Terminal Board TB30 (option G62) 155
4.9.26 Safety license for 1 axis (option K01) 162
4.9.27 Terminal module for activation of "Safe Torque Off" and "Safe STOP 1" (option K82). 163
4.9.28 Terminal Module TM54F (option K87) 164
4.9.29 Safe Brake Adapter SBA 230 V AC (option K88) 166
4.9.30 Safe Brake Adapter SBA 24 V DC (option K89) 168
4.9.31 Control Unit CU320-2 PN (option K95) 170
4.9.32 NAMUR terminal block (option B00) 181
4.9.33 Electrically separate 24 V DC power supply for NAMUR (option B02) 183
4.9.34 Outgoing section for external auxiliary equipment for NAMUR (option B03) 183
5 Commissioning 185
5.1 Chapter content 185
5.2 STARTER commissioning tool. 186
5.2.1 Installing STARTER 187
5.2.2 The STARTER user interface 188
5.3 Procedure for commissioning via STARTER 189
5.3.1 Creating a project 189
5.3.2 Configuring the drive unit 196
5.3.3 Transferring the drive project 219
5.3.4 Commissioning with STARTER via Ethernet 221
5.4 The AOP30 operator panel 226
5.5 First commissioning with the AOP30 227
5.5.1 First commissioning 227
5.5.2 Basic commissioning 229
5.6 Status after commissioning 238
5.7 Commissioning an encoder with gear factor 239
5.8 Parameter reset to factory settings 240
6 Operation 243
6.1 Chapter content 243
6.2 General information about command and setpoint sources 244
6.3 Basic information about the drive system 245
6.3.1 Parameters 245
6.3.2 Drive objects 248
6.3.3 Data sets 249
6.3.4 BICO technology: Interconnecting signals 256
6.4 Command sources 261
6.4.1 "Profidrive" default setting 261
6.4.2 "TM31 terminals" default setting 263
6.4.3 "NAMUR" default setting 265
6.4.4 "PROFIdrive NAMUR" default setting 267
6.5 Setpoint sources 269
6.5.1 Analog inputs 269
6.5.2 Motorized potentiometer 271
6.5.3 Fixed speed setpoints 272
6.6 Control via the operator panel 274
6.6.1 Operator panel (AOP30) overview and menu structure 274
6.6.2 Menu: Operation screen 276
6.6.3 Menu: Parameterization 277
6.6.4 Menu: Fault/alarm memory 279
6.6.5 Menu: Commissioning / service 280
6.6.5.1 Drive commissioning 280
6.6.5.2 Device commissioning 280
6.6.5.3 AOP30 settings 280
6.6.5.4 Lists of signals for the operation screen 281
6.6.5.5 AOP30 diagnosis 286
6.6.6 Language/Sprache/Langue/Idioma/Lingua 287
6.6.7 Operation via the operator panel (LOCAL mode) 287
6.6.7.1 LOCAL/REMOTE key 288
6.6.7.2 ON key / OFF key 288
6.6.7.3 Switching between clockwise and counter-clockwise rotation 289
6.6.7.4 Jog 289
6.6.7.5 Increase setpoint / decrease setpoint 289
6.6.7.6 AOP setpoint 290
6.6.7.7 Timeout monitoring 291
6.6.7.8 Operator input inhibit / parameterization inhibit 291
6.6.8 Faults and alarms 293
6.6.9 Saving the parameters permanently 294
6.6.10 Parameterization errors 295
6.7 Communication according to PROFIdrive 296
6.7.1 General information 296
6.7.2 Application classes 298
6.7.3 Cyclic communication 303
6.7.3.1 Telegrams and process data 303
6.7.3.2 Structure of the telegrams 306
6.7.3.3 Overview of control words and setpoints 307
6.7.3.4 Overview of status words and actual values 308
6.7.4 Acyclic communication. 308
6.7.4.1 Structure of requests and responses 310
6.7.4.2 Determining the drive object numbers 316
6.7.4.3 Example 1: Reading parameters 316
6.7.4.4 Example 2: Writing parameters (multi-parameter request) 318
6.7.5 Further information about PROFIdrive communication 322
6.8 Communication via PROFIBUS DP 323
6.8.1 PROFIBUS connection 323
6.8.2 Control via PROFIBUS 327
6.8.3 Monitoring: Telegram failure 329
6.8.4 Creating an S150 in SIMATIC Manager 330
6.8.5 Further information about communication via PROFIBUS DP 332
6.9 Communication via PROFINET IO 333
6.9.1 Activating online operation: STARTER via PROFINET IO 333
6.9.2 General information about PROFINET IO 337
6.9.2.1 General information about PROFINET IO for SINAMICS 337
6.9.2.2 Real-time (RT) and isochronous real-time (IRT) communication 338
6.9.2.3 Addresses 339
6.9.2.4 Data transmission 341
6.9.3 Further information about communication via PROFINET IO 341
6.10 Communication via SINAMICS Link 342
6.10.1 Basic principles of SINAMICS Link 342
6.10.2 Topology 343
6.10.3 Configuring and commissioning 343
6.10.4 Example 345
6.10.5 Diagnostics 348
6.10.6 Parameter 348
6.11 Parallel operation of communication interfaces 349
6.12 Engineering Software Drive Control Chart (DCC) 353
7 Setpoint channel and closed-loop control 355
7.1 Content of this chapter. 355
7.2 Setpoint channel 356
7.2.1 Setpoint addition 356
7.2.2 Direction of rotation changeover 357
7.2.3 Skip frequency bands and minimum speed 358
7.2.4 Speed limitation 359
7.2.5 Ramp-function generator 360
7.3 V/f control 363
7.3.1 Voltage boost 366
7.3.2 Resonance damping 370
7.3.3 Slip compensation. 371
7.4 Vector speed/torque control with/without encoder 372
7.4.1 Vector control without encoder 373
7.4.2 Vector control with encoder 378
7.4.3 Speed controller 379
7.4.3.1 Examples of speed controller settings 381
7.4.3.2 Speed controller pre-control (integrated pre-control with balancing) 383
7.4.3.3 Reference model. 386
7.4.3.4 Speed controller adaptation 387
7.4.3.5 Droop Function 389
7.4.3.6 Open actual speed value 390
7.4.4 Closed-loop torque control 392
7.4.5 Torque limiting 394
7.4.6 Permanent-field synchronous motors 396
8 Output terminals 401
8.1 Content of this chapter 401
8.2 Analog outputs 402
8.2.1 Lists of signals for the analog outputs 403
8.3 Digital outputs 406
9 Functions, monitoring, and protective functions 409
9.1 Chapter content 409
9.2 Active Infeed functions. 410
9.2.1 Line and DC link identification. 410
9.2.2 Harmonics controller 411
9.2.3 Variable power factor (reactive power compensation) 412
Converter cabinet units
9.2.4 Settings for the infeed (Active Infeed) under difficult line conditions 413
9.3 Drive functions 415
9.3.1 Motor identification and automatic speed controller optimization 415
9.3.1.1 Standstill measurement. 416
9.3.1.2 Rotating measurement and speed controller optimization 419
9.3.2 Efficiency optimization 422
9.3.3 Fast magnetization for induction motors 423
9.3.4 Vdc control 425
9.3.5 Automatic restart function 429
9.3.6 Flying restart 433
9.3.6.1 Flying restart without encoder 434
9.3.6.2 Flying restart with encoder 435
9.3.6.3 Parameters 436
9.3.7 Motor changeover/selection 437
9.3.7.1 Description 437
9.3.7.2 Example of changing over between two motors 437
9.3.7.3 Function diagram 439
9.3.7.4 Parameters 439
9.3.8 Friction characteristic curve 439
9.3.9 Armature short-circuit braking, internal voltage protection, DC braking 441
9.3.9.1 General 441
9.3.9.2 External armature short-circuit braking 442
9.3.9.3 Internal armature short-circuit braking 443
9.3.9.4 Internal voltage protection 444
9.3.9.5 DC braking 445
9.3.10 Increasing the output frequency. 447
9.3.10.1 Increasing the pulse frequency 448
9.3.10.2 Parameters 449
9.3.11 Pulse frequency wobbling 449
9.3.12 Runtime (operating hours counter) 451
9.3.13 Simulation operation 452
9.3.14 Direction reversal 453
9.3.15 Unit changeover 454
9.3.16 Derating behavior at increased pulse frequency. 456
9.3.17 Simple brake control 458
9.3.18 Energy saving indicator for pumps, fans, and compressors 461
9.3.19 Tolerant encoder monitoring 464
9.3.19.1 Tolerant encoder monitoring 464
9.3.19.2 Encoder track monitoring 465
9.3.19.3 Zero mark tolerance 466
9.3.19.4 Freezing the actual speed for $\mathrm{dn} / \mathrm{dt}$ errors 466
9.3.19.5 Adjustable hardware filter. 467
9.3.19.6 Edge evaluation of the zero mark 468
9.3.19.7 Signal edge evaluation ($1 \mathrm{x}, 4 \mathrm{x}$) 468
9.3.19.8 Setting the measuring time to evaluate speed " 0 " 469
9.3.19.9 Sliding averaging of the speed actual value 470
9.3.19.10 Rotor position adaptation 470
9.3.19.11 Pulse number correction for faults 471
9.3.19.12 "Tolerance band pulse number" monitoring 472
9.3.19.13 Troubleshooting, causes and remedies 473
9.3.19.14 Tolerance window and correction 475
9.3.19.15 Overview of important parameters 476
9.4 Extended functions 477
9.4.1 Technology controller. 477
9.4.2 Bypass function 480
9.4.2.1 Bypass with synchronizer with degree of overlapping (p1260 = 1) 481
9.4.2.2 Bypass with synchronizer without degree of overlapping (p1260 = 2) 484
9.4.2.3 Bypass without synchronizer ($\mathrm{p} 1260=3$) 486
9.4.2.4 Function diagram 487
9.4.2.5 Parameters 488
9.4.3 Extended brake control 489
9.4.4 Extended monitoring functions. 493
9.4.5 Closed-loop position control 496
9.4.5.1 Actual position value preparation 497
9.4.5.2 Closed-loop position controller 507
9.4.5.3 Monitoring functions 508
9.4.5.4 Measurement probe evaluation and reference mark search 511
9.4.6 Basic positioner 512
9.4.6.1 Mechanical system 514
9.4.6.2 Limitations 517
9.4.6.3 Basic positioner and Safely-Limited Speed 521
9.4.6.4 Referencing 522
9.4.6.5 Traversing blocks 532
9.4.6.6 Traversing to fixed stop 538
9.4.6.7 Direct setpoint specification (MDI) 542
9.4.6.8 Jog 544
9.4.6.9 Status signals. 545
9.5 Monitoring and protective functions 548
9.5.1 Protecting power components 548
9.5.2 Thermal monitoring and overload responses 549
9.5.3 Blocking protection 551
9.5.4 Stall protection (only for vector control) 552
9.5.5 Thermal motor protection. 553
9.5.5.1 Description 553
9.5.5.2 Temperature sensor connection at the customer terminal block TM31 (option G60) 553
9.5.5.3 Temperature sensor connection to a Sensor Module (options K46, K48, K50) 554
9.5.5.4 Temperature sensor connection directly at the Control Interface Module 554
9.5.5.5 Temperature sensor evaluation 555
9.5.5.6 Function diagram 556
9.5.5.7 Parameters. 557
10 Diagnosis / faults and alarms 559
10.1 Chapter content 559
10.2 Diagnosis 560
10.2.1 Diagnostics via LEDs 560
10.2.2 Diagnostics via parameters. 571
10.2.3 Indicating and rectifying faults 575
10.3 Overview of warnings and faults 576
10.3.1 "External alarm 1" 576
10.3.2 "External fault 1". 577
10.3.3 "External fault 2". 577
10.3.4 "External fault 3". 578
10.4 Service and Support 578
10.4.1 Spare parts 578
11 Maintenance and servicing 579
11.1 Chapter content. 579
11.2 Maintenance 580
11.2.1 Cleaning 580
11.3 Maintenance. 581
11.3.1 Installation device 582
11.3.2 Using crane lifting lugs to transport power blocks 583
11.4 Replacing components. 585
11.4.1 Replacing the filter mats 586
11.4.2 Replacing the Control Interface Module, frame size FX 587
11.4.3 Replacing the Control Interface Module, frame size GX 589
11.4.4 Replacing the Control Interface Module, frame size HX 591
11.4.5 Replacing the Control Interface Module, frame size JX 593
11.4.6 Replacing the power block (frame size FX) 595
11.4.7 Replacing the power block (frame size GX) 597
11.4.8 Replacing the power block (frame size HX) 599
11.4.9 Replacing the power block (frame size JX) 603
11.4.10 Replacing the fan (frame size FX) 605
11.4.11 Replacing the fan (frame size GX) 607
11.4.12 Replacing the fan (frame size HX) 609
11.4.13 Replacing the fan (frame size JX). 613
11.4.14 Replacing the fan in the Active Interface Module (frame size FI) 615
11.4.15 Replacing the fan in the Active Interface Module (frame size GI). 617
11.4.16 Replacing the fan in the Active Interface Module (frame size HI)_S150 619
11.4.17 Replacing the fan in the Active Interface Module (frame size JI) 621
11.4.18 Replacing the fan fuses (-R2-F101/F102, -G1-F10/F11, -T1 -F10/F11). 623
11.4.19 Replacing the fuse for the auxiliary power supply (-F11/-F12) 623
11.4.20 Replacing the main fuses 623
11.4.21 Replacing the cabinet operator panel 624
11.4.22 Replacing the Backup Battery for the Cabinet Operator Panel 624
11.5 Forming the DC link capacitors 626
11.6 Messages after replacing DRIVE-CLiQ components 627
11.7 Upgrading the cabinet unit firmware 628
11.8 Loading the new operator panel firmware from the PC 629
12 Technical specifications 631
12.1 Chapter content 631
12.2 General technical specifications 632
12.2.1 Derating data 633
12.2.2 Overload capability 638
12.3 Technical specifications 639
12.3.1 Cabinet unit version A, 380 V - 480 V 3 AC 640
12.3.2 Cabinet unit version A, 500 V - 690 V 3 AC 648
A Appendix 661
A. 1 List of abbreviations 661
A. 2 Parameter macros 663
Index 675

Safety information

1.1 Warnings

Harardous voltages are present when electrical equipment is in operation.
Hazaral
Severe personal injury or substantial material damage may result if these warnings are not
observed.
Only qualified personnel are permitted to work on or around the equipment.
This personnel must be thoroughly familiar with all warning and maintenance procedures
described in these operating instructions.
The successful and safe operation of this device is dependent on correct transport, proper
storage and installation, as well as careful operation and maintenance.
National safety guidelines must be observed.

\} DANGER
Five safety rules
When carrying out any kind of work on electrical devices, the "five safety rules" according to EN 50110 must always be observed:

1. Disconnect the system.
2. Protect against reconnection.
3. Make sure that the equipment is de-energized.
4. Ground and short-circuit.
5. Cover or enclose adjacent components that are still live.

Certification

The following certificates:

- EC declaration of conformity
- Certificate of compliance with order
can be found under "Safety and Operating Instructions" in the documentation folder.

1.2 Safety and operating instructions

! DANGER
This equipment is used in industrial high-voltage installations. During operation, this equipment contains rotating and live, bare parts. For this reason, they could cause severe injury or significant material damage if the required covers are removed, if they are used or operated incorrectly, or have not been properly maintained.
When the machines are used in non-industrial areas, the installation location must be protected against unauthorized access (protective fencing, appropriate signs).

Prerequisites

Those responsible for protecting the plant must ensure the following:

- The basic planning work for the plant and the transport, assembly, installation, commissioning, maintenance, and repair work is carried out by qualified personnel and/or checked by experts responsible.
- The operating manual and machine documentation are always available.
- The technical specifications regarding the applicable installation, connection, environmental, and operating conditions are always observed.
- The plant-specific assembly and safety guidelines are observed and personal protection equipment is used.
- Unqualified personnel are forbidden from using these machines and working near them.

This operating manual is intended for qualified personnel and only contain information and notes relating to the intended purpose of the machines.

The operating manual and machine documentation are written in different languages as specified in the delivery contracts.

Note

We recommend engaging the support and services of your local Siemens service center for all planning, installation, commissioning and maintenance work.

1.3 Components that can be destroyed by electrostatic discharge (ESD)

\. CAUTION
 The board contains components that can be destroyed by electrostatic discharge. These components can be easily destroyed if not handled properly. If you do have to use electronic boards, however, please observe the following:
 - You should only touch electronic boards if absolutely necessary.
 - When you touch boards, however, your body must be electrically discharged beforehand.
 - Boards must not come into contact with highly insulating materials (such as plastic parts, insulated desktops, articles of clothing manufactured from man-made fibers).
 - Boards must only be placed on conductive surfaces.
 - Boards and components should only be stored and transported in conductive packaging (such as metalized plastic boxes or metal containers).
 - If the packaging material is not conductive, the boards must be wrapped with a conductive packaging material (such as conductive foam rubber or household aluminum foil).

The necessary ESD protective measures are clearly illustrated in the following diagram:

- $a=$ conductive floor surface
- $b=E S D$ table
- $\mathrm{c}=\mathrm{ESD}$ shoes
- $d=E S D$ overall
- e = ESD wristband
- $f=$ cabinet ground connection
- $g=$ contact with conductive flooring

Figure 1-1 ESD protective measures
1.3 Components that can be destroyed by electrostatic discharge (ESD)

Residual risks of power drive systems

When carrying out a risk assessment of the machine/plant in accordance with the EU Machinery Directive, the machine manufacturer/plant operator must consider the following residual risks associated with the control and drive components of a power drive system (PDS).

1. Unintentional movements of driven machine components during commissioning, operation, maintenance, and repairs caused by, for example:

- Hardware defects and/or software errors in the sensors, controllers, actuators, and connection technology
- Response times of the controller and drive
- Operating and/or ambient conditions not within the scope of the specification
- Parameterization, programming, cabling, and installation errors
- Use of radio devices / cellular phones in the immediate vicinity of the controller
- External influences / damage

2. Exceptional temperatures as well as emissions of light, noise, particles, or gas caused by, for example:

- Component malfunctions
- Software errors
- Operating and/or ambient conditions not within the scope of the specification
- External influences / damage

3. Hazardous shock voltages caused by, for example:

- Component malfunctions
- Influence of electrostatic charging
- Induction of voltages in moving motors
- Operating and/or ambient conditions not within the scope of the specification
- Condensation / conductive contamination
- External influences / damage

4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc. if they are too close.
5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly.

For more information about residual risks of the Power Drive System components, see the relevant chapters in the technical user documentation.

1 WARNING

Electromagnetic fields "electro smog"
Electromagnetic fields are generated by the operation of electrical power engineering installations such as transformers, converters or motors.

Electromagnetic fields can interfere with electronic devices, which could cause them to malfunction. For example, the operation of heart pacemakers can be impaired, potentially leading to damage to a person's health or even death. It is therefore forbidden for persons with heart pacemakers to enter these areas.

The plant operator is responsible for taking appropriate measures (labels and hazard warnings) to adequately protect operating personnel and others against any possible risk.

- Observe the relevant nationally applicable health and safety regulations. In Germany, "electromagnetic fields" are subject to regulations BGV B11 and BGR B11 stipulated by the German statutory industrial accident insurance institution.
- Display adequate hazard warning notices.

- Place barriers around hazardous areas.
- Take measures, e.g. using shields, to reduce electromagnetic fields at their source.
- Make sure that personnel are wearing the appropriate protective gear.
1.3 Components that can be destroyed by electrostatic discharge (ESD)

Device overview

2.1 Chapter content

This chapter provides information on the following:

- Introduction to the cabinet units
- The main components and features of the cabinet unit
- The cabinet unit wiring
- Explanation of the type plate

2.2 Applications, features

2.2.1 Applications

SINAMICS S150 drive converter cabinet units are used for variable-speed drives with exacting demands regarding performance, and include drives with:

- High dynamic requirements
- Frequent braking cycles and high braking energy
- Four-quadrant operation

Typical applications for SINAMICS S150 include:

- Test bay drives
- Centrifuges
- Elevators and cranes
- Paper and rolling mill drives
- Cross cutters and shears
- Conveyor belts
- Presses
- Cable winches

2.2.2 Features, quality, service

Features

The self-commutating, pulsed feed/feedback unit, which is based on IBGT technology and is equipped with a clean-power filter, makes the minimum of demands on the line:

- The innovative clean-power filter minimizes line-side harmonics
- Power feedback (four-quadrant operation)
- Tolerant vis-à-vis fluctuations in the supply voltage
- Operation on weak lines
- Reactive power compensation is possible (inductive or capacitive)
- High drive dynamics

In addition, factors have been considered to ensure easy handling of the drive from the planning and design phase through to operation. These factors include:

- Compact, modular, service-friendly design
- Straightforward planning/design and commissioning using the SIZER and STARTER tools
- Ready to connect to facilitate the installation process
- Quick, menu-driven commissioning with no complex parameterization
- Clear and convenient drive monitoring/diagnostics, commissioning and operation via a user-friendly graphic operator panel with measured values displayed in plain text or in a quasi-analog bar display.
- SINAMICS is an integral part of Totally Integrated Automation (TIA). The TIA concept offers an optimized range of products for automation and drive technology. This concept is characterized by planning / design, communication, and data management procedures that are consistent throughout the product range. SINAMICS is fully integrated in the TIA concept.
Separate S7/PCS7 blocks and faceplates for WinCC are available.
- Integration in SIMATIC H systems is possible via a Y link.
- Drive Control Chart (DCC)

Drive Control Chart (DCC) expands the facility for the simplest possible configuring of technological functions for the SINAMICS drive system.
The block library encompasses a large selection of closed-loop, arithmetic and logic function blocks, as well as more comprehensive open-loop and closed-loop control functions. The user-friendly DCC editor enables easy graphical configuration and a clear representation of control loop structures as well as a high degree of reusability of existing diagrams. DCC is an add-on to the STARTER commissioning tool.

Quality

The SINAMICS S150 drive converter cabinet units are manufactured to meet high standards of quality and exacting demands.

This results in a high level of reliability, availability, and functionality for our products.
The development, design, and manufacturing processes, as well as order processing and the logistics supply center have been certified to DIN ISO 9001 by an independent authority.

Service

Our worldwide sales and service network offers our customers consulting services tailored to their needs, provides support with planning and design, and offers a range of training courses.

For detailed contact information and the current link to our Internet pages, refer to chapter "Diagnosis / faults and alarms", section "Service and Support".

2.3 Structure

The SINAMICS S150 drive converter cabinet units are characterized by their compact, modular, and service-friendly design.

Line and motor-side components as well as additional monitoring devices can be installed in the converter cabinet units.

A wide range of electrical and mechanical components enable the drive system to be optimized in line with prevailing requirements.
The cabinet unit comprises up to two cabinet panels with a total width of between 1400 mm and 2800 mm , depending on the output.

Figure 2-1 Example of the cabinet drive (e.g., $132 \mathrm{~kW}, 400 \mathrm{~V} 3 \mathrm{AC}$) - (layout and components shown may vary according to version)

Figure 2-2 Example of the cabinet drive (e.g., $132 \mathrm{~kW}, 400 \mathrm{~V} 3 \mathrm{AC}$) - (layout and components shown may vary according to version)

$2.4 \quad$ Wiring principle

Wiring principle: version A

${ }^{1)}$ Main switch with fuses only for output currents $<800 \mathrm{~A}$
2) Main contactor for rated ouptut current < 800 A , or circuit breaker for rated ouptut current $>800 \mathrm{~A}$ included in standard version.

Figure 2-3 Wiring principle of the cabinet unit

NOTICE
The PE connection at the motor must be fed back directly to the cabinet unit.

2.5 Type plate

Specifications on the type plate

SIEMENS

Figure 2-4 Type plate for the cabinet unit

Type plate specifications (from type plate above)

Position	Specification	Value	Description
(1)	Input	3 AC $380-480 \mathrm{~V}$ 197 A	Three-phase connection Rated input voltage Rated input current
(2)	Output	3 AC $0-480 \mathrm{~V}$ 210 A	Three-phase connection Rated output voltage Rated output current
(3)	Temperature range	$0-40^{\circ} \mathrm{C}$	Ambient temperature range within which the enclosed drive can operate under 100 \% load
(4)	Degree of protection	IP20	Degree of protection
(5)	Duty class		
load class	I	I: Duty class I to EN 60146-1-1 = 100 \% (continuously) (with the specified current values, the cabinet unit can operate continuously under 100 \% load)	
(6)	Cooling method	AF	A: Cooling medium: air F: Circulation method: forced cooling, drive unit (fan) in the device
(7)	Weight	708 kg	Weight of the enclosed drive

Date of manufacture

The date of manufacture can be determined as follows:

Table 2-1 Production year and month

Letter/numbe r	Year of manufacture	Letter/number	Month of manufacture
W	2008		1 to 9
X	2009	O	January to September
A	2010	N	October
B	2011		D
C	2012		December
D	2013		
E	2014		

Explanation of the option short codes

Table 2-2 Explanation of the option short codes

Input options	
L00	Line filter for use in the first environment to EN 61800-3, category C2 (TN/TT systems)
L04	Infeed module rated one level lower
L26	Main circuit breaker incl. fuses for output currents < 800 A
Output options	
L07	dV/dt filter compact plus Voltage Peak Limiter
L08	Motor reactor
L10	dv/dt filter plus Voltage Peak Limiter
L15	Sine-wave filter (only for 380 V - 480 V 3 AC, max. 250 kW)
Input and output options	
M70	EMC shield bus
Motor protection and safety functions	
L45	EMERGENCY OFF pushbutton installed in the cabinet door
L57	EMERGENCY OFF category 0, 230 V AC or 24 V DC
L59	EMERGENCY STOP category 1, 230 V AC
L60	EMERGENCY STOP category 1, 24 V AC
L83	Thermistor motor protection unit with PTB approval
L84	Thermistor motor protection unit with PTB approval
L86	PT100 evaluation unit
L87	Insulation monitoring
M60	Additional shock protection
Increase in degree of protection	
M21	Degree of protection IP21
M23	Degree of protection IP23
M43	Degree of protection IP43
M54	Degree of protection IP54
Mechanical options	
M06	Base 100 mm high, RAL 7022
M07	Cable compartment 200 mm high, RAL 7035
M13	Line connection from above
M78	Motor connection from above
M90	Crane transport assembly (top-mounted)
Other options	
G20	CBC10 Communication Board
G33	CBE20 Communication Board
G60	TM31 customer terminal block
G61	TM31 additional customer terminal block
K56	Sensor Module Cabinet-Mounted SMC10

Device overview

2.5 Type plate

K51	VSM10 Voltage Sensing Module Cabinet-Mounted
K82	Terminal module for controlling the "Safe Torque Off" and "Safe Stop 1" safety functions
L19	Connection for external auxiliary equipment
L50	Cabinet illumination with service socket
L55	Cabinet anti-condensation heating
L61	$25 \mathrm{~kW} / 125 \mathrm{~kW}$ braking unit ($380 \mathrm{~V}-480 \mathrm{~V}, 660 \mathrm{~V}-690 \mathrm{~V}$)
L62	$50 \mathrm{~kW} / 250 \mathrm{~kW}$ braking unit ($380 \mathrm{~V}-480 \mathrm{~V}, 660 \mathrm{~V}-690 \mathrm{~V}$)
L64	$25 \mathrm{~kW} / 125 \mathrm{~kW}$ braking unit ($500 \mathrm{~V}-600 \mathrm{~V}$)
L65	$50 \mathrm{~kW} / 250 \mathrm{~kW}$ braking unit ($500 \mathrm{~V}-600 \mathrm{~V}$)
Y09	Special paint finish for cabinet
Documentation (standard: English / German)	
D02	Customer documentation (circuit diagram, terminal diagram, layout diagram) in DXF format
D04	Customer documentation as hard copy
D14	Draft of customer documentation
D58	Documentation language: English / French
D60	Documentation language: English / Spanish
D80	Documentation language: English / Italian
Languages (standard: English / German)	
T58	Rating plate data in English / French
T60	Rating plate data in English / Spanish
T80	Rating plate data in English / Italian
Industry-specific options (chemicals)	
B00	NAMUR terminal block
B02	Separate 24 V power supply (PELV)
B03	Outgoing section for external auxiliary equipment (uncontrolled)
Options specific to the shipbuilding industry	
M66	Marine version
E11	Individual certificate from Germanischer Lloyd (GL)
E21	Individual certificate from Lloyds Register (LR)
E31	Individual certificate from Bureau Veritas (BV)
E51	Individual certificate from Det Norske Veritas (DNV)
E61	Individual certificate from American Bureau of Shipping (ABS)
Converter acceptance on customer absence (not shown on the type plate)	
F03	Visual acceptance
F71	Function test of the converter without motor connected
F75	Function test of the converter with test bay motor (no load)
F77	Insulation test on converter
F97	Customer-specific converter acceptance inspections (on request)

Mechanical installation

3.1 Chapter content

This chapter provides information on the following:

- The conditions for transporting, storing, and installing the cabinet unit
- Preparing and installing the cabinet unit

3.2 Transportation and storage

Transportation

WARNING

The following must be taken into account when the devices are transported:

- The devices are heavy or generally top heavy. The center of gravity is marked on the devices.
- Suitable hoisting gear operated by trained personnel is essential due to the weight of the devices.
- The devices must only be transported in the upright position indicated. The devices must not be transported upside down or horizontally.
- Serious injury or even death and substantial material damage can occur if the devices are not lifted or transported properly.

Note

Notes regarding transportation

- The devices are packaged by the manufacturer in accordance with the climatic conditions and stress encountered during transit and in the recipient country.
- The notes on the packaging for transportation, storage, and proper handling must be observed.
- For transportation using forklifts, the devices must be set down on a wooden pallet.
- When the devices are unpacked, they can be transported using the optional transport eyebolts (option M90) or rails on the cabinet unit. The load must be distributed evenly. Heavy blows or impacts must be avoided during transit and when the devices are being set down, for example.
- Shock / tilt indicators are affixed to the packaging to detect unacceptable impact or tilting of the cabinet unit during transport (see Chapter "Transport Indicators").
- Permissible ambient temperatures: Ventilation: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, class 2 K 3 to IEC $60721-3-2$ Down to $-40^{\circ} \mathrm{C}$ for max. 24 hours

Note

Notes regarding damage in transit

- Carry out a thorough visual inspection of the device before accepting the delivery from the transportation company.
- Ensure that you have received all the items specified on the delivery note.
- Notify the transportation company immediately of any missing components or damage.
- If you identify any hidden defects or damage, contact the transportation company immediately and ask them to examine the device.
- If you fail to contact them immediately, you may lose your right to claim compensation for the defects and damage.
- If necessary, you can request the support of your local Siemens office.

!WARNING
Damage in transit indicates that the device was subject to unreasonable stress. The
electrical safety of the device can no longer be ensured.
Non-observance can result in death, severe personal injury or substantial property damage.

Storage

The devices must be stored in clean, dry rooms. Temperatures between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$ are permissible. Temperature variations greater than 20 K per hour are not permitted.

If the cabinet is stored for a prolonged period once it has been unpacked, cover it or take other appropriate measures to ensure that it does not become dirty and that it is protected against environmental influences. If such measures are not taken, the warranty becomes invalid in the event of a claim for damages.

WARNING

The device should not be stored for more than two years. If the device is stored for more than two years, the DC link capacitors of the devices must be reformed during commissioning.
The reforming procedure is described in "Maintenance and servicing".

CAUTION

Do not apply mechanical loads to the hoods!
The hoods are delivered separately and must be installed on site.
The hoods must not be subjected to mechanical loads; otherwise they could be destroyed.

3.3 Installation

Abstract

! WARNING To ensure that the devices operate safely and reliably, they must be properly installed and commissioned by qualified personnel, taking into account the warnings provided in these operating instructions.

In particular, the general and national installation and safety guidelines for high-voltage installations (e.g. VDE - the Union of German Technical Engineers) as well as the guidelines relating to the proper use of tools and personal protective equipment must be observed.

Death, serious injury, or substantial material damage can result if these factors are not taken into account

3.3.1 Mechanical installation: checklist

Use the following checklist to guide you through the mechanical installation procedure for the cabinet unit. Read the "Safety instructions" section at the start of these Operating Instructions before you start working on the device.

Note

Check the boxes accordingly in the right-hand column if the activity applies to the cabinet unit in your scope of supply. In the same way, check the boxes once you have finished the installation procedure to confirm that the activities are complete.

Item	Activity	Yes	Completed
1	Check the shipping and handling monitors prior to assembly. See "Mechanical installation / Shipping and handling monitors".	\square	\square
2	The ambient conditions must be permissible. See "Technical specifications/General technical specifications". The cabinet unit must be firmly attached to the fixing points provided. The cooling air can flow unobstructed.	\square	\square
3	The minimum ceiling height (for unhindered air outlet) specified in the Operating Instructions must be observed. The cooling air supply must be not be obstructed (see "Mechanical installation/preparation").	\square	\square
4	Components that are supplied separately for transport reasons (canopy or hood) must be fitted (see "Mechanical installation/Fitting additional canopies (option M21) or hoods (option M23/M43/M54)").	\square	\square
5	The clearance around an open door (escape route) specified in the applicable accident prevention guidelines must be observed.	\square	
6	With option M13/M78: Choose the required metric screw connections or conduit thread connections on the basis of the cable cross-section and drill the required holes in the blanking plates. When the cable is fed in from above, ensure that enough room is available if the cable has to be bent because of the cable feeder and cross-sections. The cable entries should be fed in vertically to minimize transverse forces on the entries (see "Mechanical installation / line connection from above (option M13), motor connection from above (option M78)").	\square	\square

3.3.2 Preparation

3.3.2.1 Requirements on the installation location

The cabinet units are designed for installation in closed, electrical operating areas in compliance with EN 61800-5-1. A closed electrical operating area is a room or area containing electrical equipment that can be accessed by trained personnel only. Access is controlled by a door or other form of barrier that can be opened only by means of a key or other tool. The room or area is also clearly marked with appropriate warning notices.
The operating areas must be dry and free of dust. The air supplied must not contain any electrically conductive gas, vapors, or dust, which could impair operation. It may be necessary to filter the air supplied to the room where the equipment is installed. If the air contains dust, filter mats (option M54) can be installed in front of the ventilation grills of the cabinet doors and also in front of the optional hoods. Option M54 offers additional protection against water sprayed against the housing from any direction and corresponds to degree of protection IP54.

The permissible values for climatic ambient conditions must be taken into account.
At temperatures $>40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and altitudes $>2000 \mathrm{~m}$, the devices must be derated.
The basic version of the cabinet units complies with the IP20 degree of protection in accordance with EN 60529.

Installation is realized in accordance with the dimension drawings supplied. The clearance between the top of the cabinet and the ceiling is also specified in the dimension drawings.
The cooling air for the power unit is drawn in from the front through the ventilation grills in the lower part of the cabinet doors. The hot air is discharged through the perforated top cover or the ventilation grilles in the top cover (with option M13/M23/M43/M54/M78). Cooling air can also be supplied from below through raised/intermediate floors or air ducts, for example. To allow this, openings must be made in the 3-section bottom panel or individual bottom panels must be removed.

According to EN 61800-3, the cabinet units are not intended for use in low-voltage public line supplies that supply residential buildings. High-frequency interference may occur if it is used in this type of line supply.
Additional measures (e.g. line filter, option LOO) can be fitted for use in the first environment to EN 61800--3 Category C2.

3.3.2.2 Requirements on the levelness of the floor

The foundation at the installation location of the cabinet devices must be level to ensure proper functioning of the cabinet units.

- Care must be taken to ensure that the doors can be opened and closed and that the locking systems work properly.
- Flat sections (such as doors, side panels and hoods) must be sealed correctly to ensure compliance with the specified degree of protection.
- When cabinets are connected (e.g., transport units), air must be prevented from entering through the gaps.

Figure 3-1 Requirements on the levelness of the floor
The following points must be observed to ensure full functionality of the cabinet units:

- The foundation must be level.
- Irregularities must be leveled out.
- Gaps where air can enter caused by leveling measures (e.g.: (1) in the diagram) must be sealed.

3.3.2.3 Shipping and handling monitors

The cabinet units are equipped with tilt and shock indicators to monitor for damage during transit.

Figure 3-2 Tilt indicator

Figure 3-3 Shock indicator

Position of the shipping and handling monitors

The tilt indicators are affixed to the top of the cabinet unit inside the doors.
The shock indicators are affixed to the bottom of the cabinet unit inside the doors.

Checking the shipping and handling monitors prior to commissioning

It is essential to check the shipping and handling monitors prior to commissioning the converter.

Figure 3-4 Tilt indicator tripped
The tilt indicator provides immediate visible evidence of whether the cabinet units have been handled and stored upright. Blue-colored quartz sand begins to flow into the arrow-shaped indicator area. The tilt indicator has tripped when the blue color extends beyond the middle line of the arrowhead.

Figure 3-5 Shock indicator tripped
The shock indicator shows if an acceleration has exceeded $98.1 \mathrm{~m} / \mathrm{s}^{2}(10 \times \mathrm{g})$ and indicates the direction of acceleration. The black color of the arrows indicates that an impermissible shock load has occurred in the direction of the arrow.

WARNING

Inform Technical Support (hotline)
Commissioning must not be carried out, if an indicator has tripped. Contact Technical Support immediately.
The contact data are provided in the preface to this document.
If commissioning is carried out without prior inspection of the indicators, safe operation of the converter cannot be guaranteed. This can result in death, serious personal injury or material damage.

Removing the shipping and handling monitors prior to commissioning

CAUTION

The shipping and handling monitors must be removed before commissioning the converter.
Failure to observe the transport indicators during operation of the converter may cause damage to the equipment.

3.3.2.4 Unpacking

Unpacking

Check the delivery against the delivery note to ensure that all the items have been delivered. Check that the cabinet is intact and has not been damaged.

The packaging material must be disposed of in accordance with the applicable countryspecific guidelines and rules.

3.3.2.5 Required tools

To install the connections, you will require:

- Spanner or socket spanner (w/f 10)
- Spanner or socket spanner (w/f 13)
- Spanner or socket spanner (w/f 16/17)
- Spanner or socket spanner (w/f 18/19)
- Hexagon-socket spanner (size 8)
- Torque wrench from 5 Nm to 50 Nm
- Screwdriver, size 2
- Screwdriver Torx T20
- Screwdriver Torx T30

A socket wrench kit with two long extensions is recommended.

3.3.3 Installation

3.3.3.1 Lifting the cabinet off the transport pallet

Lifting the cabinet off the transport pallet

The applicable local guidelines regarding the transportation of the cabinet from the transport palette to the installation location must be observed.

A crane transport assembly (option M90) can also be fitted on the top of the cabinet.
The fixing screws of the transport pallets can be removed without having to lift the cabinet unit. The positions of the fixing screws are indicated by red markings on the outside of the pallets.

Figure 3-6 Lifting from the transport pallet (left: without base; right: with base)
For cabinet units without base (in the figure on the left), the fixing screws of the transport pallets must be removed from the underside of the pallet.
For cabinet units with base (in the figure on the right), the fixing screws of the transport pallet are accessible only after the cover is opened. They can then be loosened and removed directly from the front.

WARNING

The weight specified on the packaging and the designated center of gravity must always be taken into account when the cabinet is lifted and transported.

Particular attention must be paid to this potential danger once you have unscrewed the cabinet units from the transport pallet.

Center of gravity of cabinet

The diagram below shows the center of gravity of the cabinet (for all sizes), which must always be taken into account when lifting and installing the cabinet.

Figure 3-7 Center of gravity of the cabinet

Note

A label with the precise position of the center of gravity of the cabinet is attached to each cabinet or each transport unit.

3.3.3.2 Removing the crane transport aids

With option M90 (crane transport aids), the cabinet units are equipped with either transport eyebolts or beams.

Removal

The transport eyebolts can be unscrewed and removed. Depending on the length of the cabinet or transport unit, the support rails can have a varying number of fastening screws. These must be unscrewed and removed before the rails can be removed.

\. Warning

The support rails are heavy and must be removed very carefully.
Screws can fall into the unit as it is disassembled and cause serious damage when the equipment is started up.

Original roof screws

Figure 3-9 Original roof screws, accessory kit
After removing the crane transport aids, the removed transport eyebolts or the fixing screws of the transport beam must be replaced by the original roof screws from the accessories pack supplied in order to ensure compliance with the degree of protection and proper grounding of the cabinet.

Figure 3-10 Delivery state (left), original roof screws (right)

3.3.3.3 Installation

Installation

Four holes for M12 screws are provided on each cabinet panel to secure the cabinet to the ground. The fixing dimensions are specified on the dimension drawings enclosed.

3.3.4 Fitting additional canopies (option M21) or hoods (option M23, M43, M54)

To increase the degree of protection of the cabinets from IP20 (standard) to IP21, IP23, IP43, or IP54, additional canopies or hoods are supplied. These must be fitted once the cabinets have been installed.

Description

The degree of protection can be increased to IP21 by fitting an additional canopy. The canopy is mounted protruding above the cabinet on spacers, 250 mm above the top cover of the cabinet. As a result, cabinets with a canopy are 250 mm higher.

Cabinet units with degree of protection IP23 are supplied with additional hoods, as well as plastic ventilation grilles and braided plastic in the air inlet (doors) and outlet (hoods). The hoods are flush with the cabinets at the side and front and have a recess at the rear so that air can escape even if the cabinet is wall mounted. Air escapes from the front and back. The hood is secured via the four crane hook holes in the cabinet. Hoods increase the height of the cabinet by 400 mm .

Cabinet units with degree of protection IP43 are supplied with additional hoods, as well as plastic ventilation grilles and close-meshed braided plastic in the air inlet (doors) and outlet (hoods). The hoods are flush with the cabinets at the side and front and have a recess at the rear so that air can escape even if the cabinet is wall mounted. Air escapes from the front and back. The hood is secured via the four crane hook holes in the cabinet. Attaching the hoods increases the height of the cabinet units by 400 mm .
Compliance with degree of protection IP43 requires an intact filter medium, which must be serviced on a regular basis according to the prevailing ambient conditions.

Cabinet units with degree of protection IP54 are supplied with additional hoods, plastic ventilation grilles, and a filter medium in the air inlet (doors) and outlet (hoods). The hoods are flush with the cabinets at the side and front and have a recess at the rear so that air can escape even if the cabinet is wall mounted. Air escapes from the front and back. The hood is secured via the four crane hook holes in the cabinet. Hoods increase the height of the cabinet by 400 mm .
Compliance with degree of protection IP54 requires an intact filter medium, which must be replaced on a regular basis according to the prevailing ambient conditions. Filters can be fitted and replaced from outside the cabinet relatively easily.

Note

Installing the canopy or hood at a an early stage!
It is recommended to attach the canopy or hood at an early stage to prevent foreign matter entering the cabinet devices.

Attaching a canopy to increase the degree of protection to IP21 (option M21)

Figure 3-11 Fitting a canopy
The canopy (2) can be mounted variably in both directions (on the side and, to the front and back) on the top of the cabinet.
The arrangement can be adapted to the various installation conditions for the cabinets. This produces an adjustable protrusion of the canopy at the front (1)and back (3). In this way, it is possible to have a circumferential protrusion of the canopy, or direct contact with the wall or between the canopies in back-to-back installation. If necessary, the contact point with the wall or back-to-back installation must be sealed.

- Remove any existing crane transport assemblies.
- Attach the spacers (A) to the roof of the cabinet at the positions specified.

Tighten the screws (4) with contact discs applied from the bottom through the protective guard (tightening torque: 13 Nm for M6).

Note

The protective guard is fastened to the cabinet unit from the top using four screws. To facilitate assembly, it may be necessary to remove the protective guard, which must be reattached on completion of assembly work.

- Attach the canopy (B) to the spacers.

Tighten the screws (5) with contact discs applied from the top through the canopy (tightening torque: 13 Nm for M 6).

NOTICE

There are overlaps on the sides of the canopies to prevent water dripping into the spaces between cabinet units connected in series. When fitting the canopies, make sure these overlaps interlock.

Fitting a hood to increase the degree of protection to IP23/IP43/IP54 (option M23/M43/M54)

Figure 3-12 Attaching a hood

1. Remove the crane transport assembly (if fitted).
2. Make sure that a perforated top cover is not fitted on the top of the cabinet (depending on production requirements, this can be fitted at a later stage).
3. Options M43 and M54 only:

Use the sealing tape provided to attach the contact surfaces of the hood to the top of the cabinet.
4. Fit the hood to the roof of the cabinet at the positions specified (fixing points for the crane transport assembly).
5. Assemble original roof screws M12 (1) from above.
6. M6 screw and washers (order: Attach the screw, spring-lock element, small washer, large washer) (2) from below.
7. If the hood is very wide, use additional screws (3).

3.3.5 Line connection from above (option M13), motor connection from above (option M78)

Description

With options M13 and M78, the cabinet unit is equipped with an additional hood. The connection straps for the power cables, the clamping bar for mechanically securing the cables, an EMC shield bus, and a PE busbar are located within the hood.

The hood adds an extra 405 mm to the cabinet height. The busbars for connection from above are fully mounted when the system is delivered. For transport reasons, the hoods are delivered separately and must be mounted on site. With options M23, M43 and M54, plastic ventilation grilles and filter mats are also supplied.

A 5 mm aluminum mounting plate (with no holes) is fitted in the roof of the cover for feeding in the cables. Depending on the number of cables and the cross-sections used, holes for attaching cable glands for feeding in the cables must be drilled in this mounting plate on site.

Note

The control cables and optional brake resistors are connected as before from below.

Attaching the Hood

1. Remove the crane transport assembly (if fitted).
2. Options M43 and M54 only:

Use the sealing tape provided to attach the contact surfaces of the hood to the top of the cabinet.
3. Fit the hood to the roof of the cabinet at the positions specified (fixing points for the crane transport assembly).
4. To secure the power cables, remove the front panel of the hood.

Figure 3-13 Attaching the hood with M13 / M78

Electrical installation

4.1 Chapter content

This chapter provides information on the following:

- Establishing the electrical connections for the cabinet unit
- Adjusting the fan voltage and the internal power supply to local conditions (supply voltage)
- The customer terminal block and its interfaces
- The interfaces for additional options

4.2 Checklist for electrical installation

Use the following checklist to guide you through the electrical installation procedure for the cabinet unit. Read the "Safety instructions" section at the start of these Operating Instructions before you start working on the device.

Note

Check the boxes accordingly in the right-hand column if the activity applies to the cabinet unit in your scope of supply. In the same way, check the boxes once you have finished the installation procedure to confirm that the activities are complete.

Item	Activity	Yes	Completed
Power connections			
1	The line-side and motor-side power cables must be dimensioned and routed in accordance with the ambient and routing conditions. The maximum permissible cable lengths between the converter and motor must be observed depending on the type of cable used (see "Electrical installation / Power connections / Connection cross-sections and cable lengths"). The PE ground at the motor must be fed back directly to the cabinet unit. The cables must be properly connected with a torque of 50 Nm to the cabinet unit terminals. The cables for the motor and low-voltage switchgear must also be connected with the required torques.		
2	The cables between the low-voltage switchgear and the cabinet unit must be protected with line fuses to provide adequate conductor protection (DIN VDE 100, Part 430 and/or IEC 60364-4-43) See "Technical data" for the appropriate fuses.		\square
3	For strain relief, the cables must be clamped on the cable propping bar (C-type mounting bar).		
4	When EMC-shielded cables are used, screwed glands that connect the shield to ground with the greatest possible surface area must be provided on the motor terminal box. On the cabinet, the cables must be grounded with the clips supplied with the EMC shield bus with the greatest possible surface area (shield bus supplied with option LOO or can be ordered separately with option M70 - see "Electrical installation / EMC-compliant installation").		\square
5	The cable shields must be properly applied and the cabinet properly grounded at the appropriate points (see "Electrical installation / EMC-compliant installation").		\square
6	The voltage of the fan transformers in the Active Line Module (-G1-T10) and in the Motor Module (-T1 -T10) and the internal power supply (-T10) must be set. Larger cabinet units have 2 fan transformers each in the Active Line Module and in the Motor Module (-G1-T10/-T20) and (-T10/-T20), which must be set jointly (see section "Electrical installation / Power connections / Adjusting the fan voltage (-G1-T10, -T1-T10)" and "Electrical installation / Power connections / Adjusting the internal power supply (-T10)").	\square	\square

Item	Activity	Yes	Completed
7	Before the cabinet is operated from an ungrounded supply/IT system, the connecting clip for the interference suppression capacitor on the Active Interface Module (-R2) must be removed (see "Electrical installation / Removing the connection bracket for the interference suppression capacitor for operation on an ungrounded supply/IT system").	\square	\square
8	The type plate can be used to ascertain the date of manufacture. If the period from the date of manufacture to initial commissioning or the cabinet unit downtime is less than two years, the DC link capacitors do not have to be re-formed. If the unit has been non-operational for longer than two years, reforming must be carried out (see "Maintenance and Servicing/Forming of DC Link Capacitors").	\square	\square
9	With an external auxiliary supply, the cable for the 230 V AC supply must be connected to terminal -X40 (see "Electrical installation / Power connections / External supply of the auxiliary supply from a secure line").	\square	\square
10	Option L07 dV/dt filter compact plus Voltage Peak Limiter	During commissioning, the filter must be selected via STARTER or AOP30. You are advised to check the selection by ensuring that p0230 is set to 2. The required parameters are set automatically (see "Electrical installation / Other connections / dv/dt filter compact plus Voltage Peak Limiter (option LO7)").	\square

4.2 Checklist for electrical installation

Item	Activity		Yes	Completed
15	Option L50 Cabinet illumination with service socket	The 230 V auxiliary supply for the cabinet illumination with an integrated service socket must be connected to terminal -X390 and protected with a fuse (max. 10 A) on the line side (see "Electrical installation / Other connections / Cabinet illumination with service socket (option L50)").	\square	\square
16	Option L55 Cabinet anticondensation heating	The 230 V auxiliary supply for the anti-condensation heating for the cabinet ($230 \mathrm{~V} / 50 \mathrm{~Hz}, 100 \mathrm{~W} /$ or $230 \mathrm{~V} / 50 \mathrm{~Hz} 2 \times 100 \mathrm{~W}$ for cabinets with a width of 800 to 1200 mm) must be connected to terminals -X240: 1 to 3 and protected with fuses (max. 16 A) (see "Electrical installation / Other connections / Anticondensation heating for cabinet (option L55)").	\square	\square
Signal connections				
17	Cabinet unit operation by higher-level controller / control room. The control cables must be connected in accordance with the interface assignment and the shield applied. Taking into account electrical interference and the distance from power cables, the digital and analog signals must be routed with separate cables.		\square	\square
18	Option G60 TM31 customer terminal block	Terminal Module TM31 is used to extend the customer terminals. This provides the following additional interfaces: - 8 digital inputs - 4 bidirectional digital inputs/outputs - 2 relay outputs with changeover contact - 2 analog inputs - 2 analog outputs - 1 temperature sensor input (KTY84-130/PTC) Integration of the interfaces takes place using preinterconnections prepared in the factory, which can be selected during commissioning. When the analog inputs on the TM31 are used as current or voltage inputs, selectors S 5.0 and S5.1 must be set accordingly (see "Electrical installation / Signal connections / Customer terminal module (-A60)").	\square	\square
19	Option K46 Sensor Module Cabinet- Mounted SMC10	The SMC10 encoder module is used to simultaneously record the motor actual speed and the rotor position angle. The following encoders are supported by the SMC10 Sensor Module: - Resolver, 2 pole - Resolver, multi-pole. The motor temperature can also be detected using KTY84-130 or PTC thermistors (see section "Electrical installation / Other connections / Sensor Module Cabinet-Mounted SMC10 (Option K46)").	\square	\square

| Item | Activity | Yes | Completed |
| :---: | :--- | :--- | :--- | :--- |
| 20 | Option K48
 Sensor Module
 Cabinet-
 Mounted
 SMC20 | The SMC20 encoder module is used to simultaneously record the
 motor actual speed and the path angle.
 The following encoders are supported by the SMC20 Sensor
 Module:
 - Incremental encoder sin/cos 1Vpp
 - Absolute encoder EnDat
 The motor temperature can also be detected using KTY84-130 or
 PTC thermistors (see section "Electrical installation / Other
 connections / Sensor Module Cabinet-Mounted SMC20 (Option
 K48)"). | \square |

4.2 Checklist for electrical installation

Item	Activity		Yes	Completed
25	Option L60 EMERGENCY STOP category 1, 24 V AC	EMERGENCY STOP category 1 stops the drive in a controlled manner. No additional wiring is necessary when implemented in conjunction with option L45. If the cabinet unit is integrated in an external safety circuit, however, the contact must be looped in via terminal block -X120. The timer relay at -K120 must be adapted to match system requirements (see "Electrical installation / Other connections / EMERGENCY STOP category 1, 24 V AC (option L60)").		\square
26	Option L61/L62/L64/L6 5 25 kW/125 kW 50 kW/250 kW braking unit	The connecting cables and ground for the braking resistor must be connected to terminal block -X5: 1/2. A connection must be established between the braking resistor thermostatic switch and customer terminal block -A60 or the Control Unit. When commissioning via AOP30, the settings for evaluating "external fault $3^{\prime \prime}$ must be made. The settings for evaluating the thermostatic switch as "external fault 2" must be made (see "Electrical installation / Other connections / Braking unit 25 kW / 125 kW (option L61 / L64); braking unit 50 kW / 250 kW (option L62 / L65)").	\square	\square
27	Option L83 Thermistor motor protection device (alarm)	The PTC thermistor sensors (PTC resistor type A) must be connected to the thermistor motor protection unit -F127 at terminals T1 and T2 for alarms (see "Electrical installation / Other connections / Thermistor motor protection device (option L83/L84)").	\square	\square
28	Option L84 Thermistor motor protection device (shutdown)	The PTC thermistor sensors (PTC resistor type A) must be connected to the thermistor motor protection unit -F125 at terminals T1 and T2 for shutdown (see "Electrical installation / Other connections / Thermistor motor protection device (option L83/L84)").	\square	7
29	Option L86 PT100 evaluation unit	The resistor thermometers must be connected to evaluation units -B140, -B141 for the PT100 evaluation. A two-wire or three-wire system can be used here to connect the PT100 sensors. The sensors are divided into two groups (see "Electrical installation / Other connections / PT100 evaluation unit (option L86)"). This must be taken into account for the evaluation (factory setting).	\square	\square
30	Option L87 Insulation monitoring	The insulation monitor can only be operated from an insulated network. Only one insulation monitor can be used in an electrically-connected network. For line-side control, the signaling relays must be connected accordingly or, with individual drives (the cabinet unit is fed via a converter transformer assigned to the cabinet unit), integrated in the cabinet unit alarm train (see "Electrical installation / Other connections / Insulation monitoring (option L87)"). Step 7 must also be noted: "Before the drive is operated on an ungrounded supply / IT system, the connecting clip to the basic interference suppression device must be removed" (see "Electrical installation/Power connections/Removing the link to the interference suppression capacitor for operation on ungrounded supplies / IT systems").	\square	\square

Item	Activity	Yes	Completed
Safety Integrated			
31	Option K82 "Safe Torque Off" and "Safe Stop 1" safety functions	The terminal block -X41 must be connected line-side, the safety functions must be activated prior to use via parameter assignment, in addition an acceptance test must be performed and an acceptance log must be created (see section "Electrical installation / Other connections / Terminal module for activating "Safe Torque Off" and "Safe Stop 1" (option K82)").	\square

Required tools

To install the connections, you will require:

- Spanner or socket spanner (w/f 10)
- Spanner or socket spanner (w/f 13)
- Spanner or socket spanner (w/f 16/17)
- Spanner or socket spanner (w/f 18/19)
- Hexagon-socket spanner (size 8)
- Torque wrench up to 50 Nm
- Screwdriver, size 2
- Screwdriver Torx T20
- Screwdriver Torx T30

4.3 Important safety precautions

\1 WARNING
The cabinet units are operated with high voltages.
All connection procedures must be carried out when the cabinet is de-energized.
All work on the device must be carried out by trained personnel only.
Non-observance of these warning notices can result in death, severe personal injury or substantial property damage.
Work on an open device must be carried out with extreme caution because external supply voltages may be present. The power and control terminals may be live even when the motor is not running.
Dangerously high voltage levels are still present in the device up to five minutes after it has been disconnected due to the DC link capacitors. For this reason, the unit should not be opened until a reasonable period of time has elapsed.
Reforming the DC link capacitors:
The storage period should not exceed two years. If the device is stored for more than two years, the DC link capacitors of the devices must be reformed during commissioning. The reforming procedure is described in "Maintenance and servicing".

The operator is responsible for ensuring that the motor, converter, and other devices are installed and connected in accordance with recognized engineering practice in the country of installation and in compliance with applicable regional regulations. Special attention should be paid to cable dimensioning, fuses, grounding, shutdown, disconnection, and overcurrent protection.

If an item of protective gear trips in a branch circuit, a fault current may have been disconnected. To reduce the risk of fire or an electric shock, the current-conducting parts and other components in the cabinet unit should be inspected and damaged parts replaced. When an item of protective gear trips, the cause of the trip must be identified and rectified.

Note

The standard version of the cabinet units includes touch protection according to BGV A3 in accordance with EN 50274.

The version with option M60 features additional protective covers that offer a higher level of touch protection for current-conducting parts when the cabinet doors are open. These protective covers may have to be removed during installation and connection procedures. Once work has been completed, the protective covers must be properly refitted.

Note

On systems with a grounded phase conductor and a line voltage >600 V AC, line-side components should be installed to limit overvoltages to overvoltage category II in accordance with IEC 61800-5-1.

CAUTION

Only original DRIVE-CLiQ cables may be used for wiring the DRIVE-CLiQ nodes.

4.4 Introduction to EMC

What is meant by EMC?

Electromagnetic compatibility (EMC) describes the capability of an electrical device to function satisfactorily in an electromagnetic environment without itself causing interference unacceptable for other devices in the environment.
EMC therefore represents a quality feature for the

- Internal noise immunity: Resistance to internal electrical disturbances
- External noise immunity: resistance against external electromagnetic disturbances
- Noise emission level: environmental effects caused by electromagnetic emissions

To ensure that the cabinet unit functions satisfactorily in the system, the environment subject to interference must not be neglected. For this reason, special requirements exist regarding the structure and the EMC of the system.

Operational reliability and noise immunity

In order to achieve the greatest possible operational reliability and immunity to noise of a complete system (converter, automation, drive machines etc.), measures must be taken by the converter manufacturer and the user. Only when all these measures are fulfilled can the faultless functioning of the converter be guaranteed and the specified legal requirements (2004/108/EC) be met.

Product standard EN 61800-3 outlines the EMC requirements for variable-speed drive systems. It specifies requirements for converters with operating voltages of less than 1000 V . Different environments and categories are defined depending on where the drive system is installed.

Figure 4-1 Definition of the first and second environments

First environment	C 1	
	C 2	

Figure 4-2 Definition of categories C1 to C4

Table 4-1 Definition of the first and second environments

	Definition of the first and second environments
First environment	Residential buildings or locations at which the drive system is connected to a public low-voltage supply network without a transformer.
Second environment	Industrial locations supplied by a medium-voltage network via a separate transformer.

Table 4-2 Definition of categories C1 to C4

Definition of categories C1 to C4	
Category C1	Rated voltage $<1000 \mathrm{~V}$; unrestricted use in the first environment.
Category C2	Rated voltage for stationary drive systems $<1000 \mathrm{~V}$; for use in the second environment. For use in the first environment only when sold and installed by skilled personnel.
Category C3	Rated voltage $<1000 \mathrm{~V}$; use in the second environment only.
Category C4	Rated voltage $\geq 1000 \mathrm{~V}$ or for rated currents $\geq 400 \mathrm{~A}$ in complex systems in the second environment.

4.5 EMC-compliant design

The following section provides some basic information and guidelines that will help you comply with the EMC and CE guidelines.

cabinet assembly

- Connect painted or anodized metal components using toothed self-locking screws or remove the insulating layer.
- Use unpainted, de-oiled mounting plates.
- Establish a central connection between ground and the protective conductor system (ground).

Shield gaps

- Bridge shield gaps (at terminals, circuit-breakers, contactors, and so on) with minimum impedance and the greatest possible surface area.

Using large cross-sections

- Use underground and grounding cables with large cross-sections or, better still, with litz wires or flexible cables.

Laying the motor supply cable separately

- The distance between the motor cable and signal cable should be $>20 \mathrm{~cm}$. Do not lay signal cables and motor cables in parallel to each other.

Laying the equipotential bonding cable

- It is recommended to lay the equipotential bonding cable parallel to the control lines with a minimum cross-section of $16 \mathrm{~mm}^{2}$.

Use anti-interference elements

- If relays, contactors, and inductive or capacitive loads are connected, the switching relays or contactors must be provided with anti-interference elements.

Cable installation

- Cables that are subject to or sensitive to interference should be laid as far apart from each other as possible.
- All cables are to be laid as close as possible to grounded enclosure parts such as mounting plates or cabinet frames. This reduces both noise radiation and interference injection.
- Reserve cores of signal and data cables must be grounded at both ends to achieve an additional shielding effect.
- Long cables should be shortened or laid in noise resistant areas to avoid additional connecting points.
- If it is impossible to avoid crossing cables, conductors or cables that carry signals of different classes must cross at right angles, especially if they carry sensitive signals that are subject to interference.
- Class 1:
unshielded cables for $\leq 60 \mathrm{~V}$ DC
unshielded cables for $\leq 25 \mathrm{~V}$ AC
shielded analog signal cables shielded bus and data cables operator panel interfaces, incremental/absolute encoder lines
- Class 2 :
unshielded cables for $>60 \mathrm{~V}$ DC and $\leq 230 \mathrm{~V}$ DC
unshielded cables for $>25 \mathrm{~V}$ AC and $\leq 230 \mathrm{~V}$ AC
- Class 3:
unshielded cables for $>230 \mathrm{~V}$ AC/DC and $\leq 1000 \mathrm{~V} \mathrm{AC/DC}$

Shield connection

- Shields must not be used to conduct electricity. In other words, they must not simultaneously act as neutral or PE conductors.
- Apply the shield so that it covers the greatest possible surface area. You can use ground clamps, ground terminals, or ground screw connections.
- Avoid extending the shield to the grounding point using a wire (pigtail) because this will reduce the effectiveness of the shield by up to 90%.
- Attach the shield to a shield bar directly after the line inlet into the cabinet. Insulate the entire shielded cable and route the shield up to the device connection, but do not connect it again.

I/O interfacing

- Create a low-impedance ground connection for additional cabinets, system components, and distributed devices with the largest possible cross-section (at least $16 \mathrm{~mm}^{2}$).
- Ground unused lines at one end in the cabinet.
- Choose the greatest possible clearance between the power and signal cables (at least 20 $\mathrm{cm})$. The greater the distance over which the cables are routed in parallel, the greater the clearance must be. If a sufficient clearance cannot be maintained, you must install additional shields.
- Avoid unnecessarily long cable loops.

Filtering cables

- Line supply cables and power supply cables for devices and modules may have to be filtered in the cabinet to reduce incoming or outgoing disturbances.
- To reduce emissions, the device is equipped with a radio interference suppression filter as standard (in accordance with the limit values defined in category C3). Optional filters can be fitted for use in the first environment (category C2).

Protective ground conductors

- According to EN 61800-5-1, Section. 6.3.6.7, the minimum cross-section of the protective ground conductor must conform to the local safety regulations for protective ground conductors for equipment with a high leakage current.

4.6 Power connections

WARNING

Swapping the input and output terminals can destroy the device!
Swapping or short-circuiting the DC link terminals can destroy the device!
The contactor and relay operating coils that are connected to the same supply network as the device or are located near the device must be connected to overvoltage limiters (e.g. RC elements).
The device must not be operated via a ground-fault circuit interrupter (EN 61800-5-1).

4.6.1 Connection cross-sections, cable lengths

Connection cross-sections

The connection cross-sections for the line connection, motor connection, and ground connection for your device are specified in the tables provided in the "Technical specifications" section.

Cable lengths

The maximum permissible cable lengths are specified for standard cable types or cable types recommended by SIEMENS. Longer cables can only be used after consultation.

The listed cable length represents the actual distance between the converter and the motor, taking account factors such as parallel laying, current-carrying capacity, and the laying factor.

- Unshielded cable (e.g. Protodur NYY): max. 450 m
- Shielded cable (e.g., Protodur NYCWY, Protoflex EMV 3 Plus): max. 300 m.

Note

The cable lengths specified are also valid if a motor choke is in use (option L08).

Note

The PROTOFLEX-EMV-3 PLUS shielded cable recommended by Siemens is the protective conductor and comprises three symmetrically-arranged protective conductors. The individual protective conductors must each be provided with cable eyes and be connected to ground. The cable also has a concentric flexible braided copper shield. To comply with EN 61800-3 regarding radio interference suppression, the shield must be grounded at both ends with the greatest possible surface area.

On the motor side, cable glands that contact the shield with the greatest possible surface area are recommended for the terminal boxes.

4.6.2 Connecting the motor and power cables

Connecting the motor and power cables on the cabinet unit

Note

The location of the connections is indicated in the layout diagrams provided in section 3.

1. Open the cabinet, remove the covers (if necessary) in front of the connection panel for motor cables (terminals U2/T1, V2/T2, W2/T3; X2) and power cables (terminals U1/L1, V1/L2, W1/L3; X1).
2. Move or remove the bottom plate below the connection panel in order to feed through the motor and power cables.
3. Screw the protective earth (PE) into the appropriate terminal (with earth symbol) (50 Nm for M12) at the points provided in the cabinet.
4. Connect the motor and power cables to the terminals.

Make sure that you connect the conductors in the correct sequence: U2/T1, V2/T2, W2/T3 and U1/L1, V1/L2, W1/L3.

CAUTION

Tighten the screws with the appropriate torque (50 Nm for M 12), otherwise the terminal contacts could be destroyed by burning during operation.

Note

The motor ground must be fed back directly to the cabinet unit and connected.

Direction of motor rotation

EN 60034-7 defines the two ends of an electric motor as follows:

- D (Drive End): Usually the drive end of the motor
- N (Non-Drive End): Usually the non-drive end of the motor

An electric motor rotates clockwise if the shaft rotates in the clockwise direction when viewing the D -end.

For electric motors with 2 shaft ends, the direction of rotation must be determined based on the shaft end specified as the drive end.
For clockwise rotation, the electric motor must be connected according to the following table.

Table 4-3 Cabinet unit and motor connection terminals

Cabinet unit (connection terminals)	Motor (connection terminals)
U2/T1	U
V2/T2	V
W2/T3	W

In contrast to the connection for the clockwise phase sequence, two phases have to be reversed with a counter-clockwise phase sequence (looking at the drive shaft).

Note

If an incorrect phase sequence was connected when the motor was connected, p1821 (phase sequence direction reversal) can be used to correct the incorrect phase sequence without physically changing it over (see "Functions, monitoring and protective functions/direction reversal").

With motors that can be star-connected or delta-connected, it must be ensured that the windings are interconnected consistent with the operating voltage indicated on the type plate or in the motor documentation. Make sure that the winding insulation of the connected motor has sufficient insulation strength to meet the requirements for converter operation.

4.6.3 Adjusting the fan voltage (-G1-T10, -T1 -T10)

The power supply for the device fans (230 V 1 AC) in the Active Line Module (-G1-T10) and in the Motor Module (-T1 -T10) is generated from the main supply system by means of transformers.
The locations of the transformers are indicated in the layout diagrams supplied. The transformers are fitted with primary taps so that they can be fine-tuned to the rated supply voltage.
If necessary, the connection fitted in the factory, shown with a dashed line, must be reconnected to the actual line voltage.

Note

Two transformers (-G1-T10 and -T20 or -T1 -T10 and -T20) are installed in the following cabinet units. The two primary terminals on these devices must be set together.

- With 380 V -480 V 3 AC:

6SL3710-7LE36-1AAx, 6SL3710-7LE37-5AAx, 6SL3710-7LE38-4AAx, 6SL3710-7LE41-0AAx, 6SL3710-7LE41-2AAx, 6SL3710-7LE41-4AAx

- With $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$:

6SL3710-7LG34-1AAx, 6SL3710-7LG34-7AAx, 6SL3710-7LG35-8AAx, 6SL3710-7LG37-4AAx, 6SL3710-7LG38-1AAx, 6SL3710-7LG38-8AAx, 6SL3710-7LG41-0AAx, 6SL3710-7LG41-3AAx

Figure 4-3 Setting terminals for the fan transformers ($380 \mathrm{~V}-480 \vee 3 \mathrm{AC} / 500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$)
The line voltage assignments for making the appropriate setting on the fan transformer are indicated in the following tables.

Note

With the $500 \mathrm{~V}-690 \mathrm{~V} 3$ AC fan transformer, a jumper is inserted between the " 600 V " terminal and "CON" terminal. The " 600 V " and "CON" terminals are for internal use.

NOTICE

If the terminals are not reconnected to the actual line voltage:

- The required cooling capacity cannot be provided because the fan rotates too slowly.
- The fan fuses may blow due to an overcurrent.

Note

The order numbers for fan fuses that have blown can be found in the spare parts list.

Table 4-4 Line voltage assignments for setting the fan transformer ($380 \mathrm{~V}-480 \mathrm{~V} 3 \mathrm{AC}$)

Line voltage	Taps of the fan transformer (-G1 -T10, -T1 -T10)
$380 \mathrm{~V} \pm 10 \%$	380 V
$400 \mathrm{~V} \pm 10 \%$	400 V
$440 \mathrm{~V} \pm 10 \%$	440 V
$480 \mathrm{~V} \pm 10 \%$	480 V

Table 4-5 Line voltage assignments for setting the fan transformer ($500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$)

Line voltage	Taps of the fan transformer (-G1 -T10, -T1 -T10)
$500 \mathrm{~V} \pm 10 \%$	500 V
$525 \mathrm{~V} \pm 10 \%$	525 V
$575 \mathrm{~V} \pm 10 \%$	575 V
$600 \mathrm{~V} \pm 10 \%$	600 V
$660 \mathrm{~V} \pm 10 \%$	660 V
$690 \mathrm{~V} \pm 10 \%$	690 V

4.6.4 Adjusting the internal power supply (-T10)

A transformer (-T10) is installed in the Line Connection Module for the internal 230 V AC power supply for the cabinet unit. The location of the transformer is indicated in the layout diagrams supplied.

When delivered, the taps are always set to the highest level. The line-side terminals of the transformer may need to be reconnected to the existing line voltage.

The line voltage assignments for making the appropriate setting on the transformer for the internal power supply are indicated in the following tables.

NOTICE

If the terminals are not reconnected to match the actual line voltage, faults may result.

Table 4-6 Line voltages and corresponding internal power supply ($380 \mathrm{~V}-480 \mathrm{~V} 3 \mathrm{AC}$)

Line voltage range	Tap	Taps of voltage adaptation transformer (-T10) LH1 - LH2
$342 \mathrm{~V}-390 \mathrm{~V}$	380 V	$1-2$
$391 \mathrm{~V}-410 \mathrm{~V}$	400 V	$1-3$
$411 \mathrm{~V}-430 \mathrm{~V}$	415 V	$1-4$
$431 \mathrm{~V}-450 \mathrm{~V}$	440 V	$1-5$
$451 \mathrm{~V}-470 \mathrm{~V}$	460 V	$1-6$
$471 \mathrm{~V}-528 \mathrm{~V}$	480 V	$1-7$

Table 4-7 Line voltages and corresponding internal power supply ($500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$)

Line voltage range	Tap	Taps of voltage adaptation transformer (-T10) LH1 - LH2
$450 \mathrm{~V}-515 \mathrm{~V}$	500 V	$1-8$
$516 \mathrm{~V}-540 \mathrm{~V}$	525 V	$1-9$
$541 \mathrm{~V}-560 \mathrm{~V}$	550 V	$1-10$
$561 \mathrm{~V}-590 \mathrm{~V}$	575 V	$1-11$
$591 \mathrm{~V}-630 \mathrm{~V}$	600 V	$1-12$
$631 \mathrm{~V}-680 \mathrm{~V}$	660 V	
$681 \mathrm{~V}-759 \mathrm{~V}$	690 V	$1-14$, terminals 12 and 13 are jumpered

4.6.5 Removing the connecting clip for the interference suppression capacitor for operation on an ungrounded supply/IT system

If the cabinet unit is operated from an ungrounded supply/IT system, the connection bracket for the interference-suppression capacitor of the active interface modules (-R2) must be removed.

Release the M4 screws (Torx T20) and remove the connecting link

Figure 4-4 Removing the connection bracket to the noise suppression capacitor in the Active Interface Module for frame size FI

Figure 4-5 Removing the connection bracket to the noise suppression capacitor in the Active Interface Module for frame size GI

Figure 4-6 Removing the connection bracket to the noise suppression capacitor in the Active Interface Module for frame size HI

Figure 4-7 Removing the connection bracket to the noise suppression capacitor in the Active Interface Module for frame size JI

\} WARNING

Failing to remove the connecting clip for the interference suppression capacitor on a ungrounded supply/IT system can cause significant damage to the cabinet unit.

4.7 External supply of the auxiliary supply from a secure line

Description

An external auxiliary supply is always recommended if communication and closed-loop control are to be independent of the supply system. An external auxiliary supply is particularly recommended for low-power lines susceptible to short-time voltage dips or power failures.

With an external supply independent of the main supply, warnings and fault messages may still be displayed on the operator panel and internal protection and monitoring devices if the main supply fails.

DANGER

When the external auxiliary supply is connected, dangerous voltages are present in the cabinet unit even when the main circuit breaker is open.

NOTICE

An external auxiliary supply (infeed) must always be used if the automatic restart (WEA) function is to be used with integrated EMERGENCY STOP option (L57, L59, L60). Otherwise, the automatic restart function does not work.

The fuse must not exceed 16 A .
The connection is protected inside the cabinet with a 5 A fuse.

Connection

- On terminal block -X40, remove the jumpers between terminals 1 and 2 as well as 5 and 6.
- Connect the external 230 V AC supply to terminals $2(\mathrm{~L} 1)$ and $6(\mathrm{~N})$.

Maximum connectable cross-section: $4 \mathrm{~mm}^{2}$

4.8 Signal connections

4.8.1 Control Unit CU320-2 DP

In the standard version, the cabinet unit contains a CU320-2 DP control unit, which handles the communication and open-loop/closed-loop control functions.

A PROFIBUS interface is available for higher-level communication.

Connection overview

1) LED reserved

Figure 4-8 Connection overview of the CU320-2 DP Control Unit (without cover)

Figure 4-9 Interface X140 and measuring sockets T0 to T2-CU320-2 DP (view from below)

\triangle Caution

An equipotential bonding conductor with a cross-section of at least $25 \mathrm{~mm}^{2}$ must be used between components in a system that are located a considerable distance from each other. If a potential bonding conductor is not used, high leakage currents that could destroy the Control Unit or other PROFIBUS nodes can be conducted via the PROFIBUS cable.

CAUTION

The CompactFlash card may only be inserted or removed when the Control Unit is in a novoltage condition.

If not observed, this can result in a loss of data during operation and possibly a plant standstill.

CAUTION

The CompactFlash card is an electrostatic sensitive component. ESD regulations must be observed when inserting and removing the card.

CAUTION

The Option Board may only be inserted and removed when the Control Unit and Option Board are disconnected from the power supply.

Wiring diagram

Figure 4-10 Wiring diagram of the CU320-2DP

Note

In the circuit example, the power for the digital inputs (terminals -X122 and -X132) is supplied from the internal 24 V supply of the control unit (terminal -X124).

The two groups of digital inputs (optocoupler inputs) each have a common reference potential (ground reference M1 or M2). To close the circuit when the internal 24 V supply is used, the reference grounds $\mathrm{M} 1 / \mathrm{M} 2$ are connected to internal ground M .

If power is not supplied from the internal 24 V supply (terminal -X124), the jumper between grounds M 1 and M or M 2 and M must be removed in order to avoid potential rounding. The external ground must then be connected to terminals M1 and M2.

X100 - X103: DRIVE-CLiQ interface

Table 4-8 DRIVE-CLiQ interface X100 - X103

	Pin	Signal name	Technical data
	1	TXP	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	
	5	Reserved, do not use	
	6	RXN	Receive data -
	7	Reserved, do not use	
	8	Reserved, do not use	
	A	+ (24 V)	Power supply
	B	$\mathrm{M}(0 \mathrm{~V})$	Electronics ground
Connector type: RJ45 socket Blanking plate for DRIVE-CLiQ interfaces (50 pcs.) Order number: 6SL3066-4CA00-0AA0			

X122: Digital inputs/outputs

Table 4-9 Terminal block X122

1) DI: digital input; DI/DO: Bidirectional digital input/output; M: Electronics ground M1: Ground reference
${ }^{2)}$ The rapid inputs can be used as probe inputs or as inputs for the external zero mark.
2) Data for: $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}$; load 48Ω; high ("1") $=90 \% \mathrm{~V}_{\text {out; }}$ low ("0") $=10 \% \mathrm{~V}_{\text {out }}$

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

X132: Digital inputs/outputs

Table 4-10 Terminal block X132

${ }^{1)}$ DI: digital input; DI/DO: Bidirectional digital input/output; M: Electronics ground; M2: Ground reference
2) The rapid inputs can be used as probe inputs or as inputs for the external zero mark.
3) Data for: $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}$; load 48Ω; high ("1") $=90 \% \mathrm{Vout}^{\text {; }}$ low $(" 0 ")=10 \% \mathrm{~V}_{\text {out }}$

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

X126: PROFIBUS connection

The PROFIBUS is connected by means of a 9-pin SUB D socket (X126). The connections are electrically isolated.

Table 4-11 PROFIBUS interface X126

	Pin	Signal name	Meaning	Range
	1	-	Not assigned	
	2	M24_SERV	Power supply for teleservice, ground	0 V
	3	RxD/TxD-P	Receive/transmit data P (B)	RS485
	4	CNTR-P	Control signal	TTL
	5	DGND	PROFIBUS data reference potential	
	6	VP	Supply voltage plus	$5 \mathrm{~V} \pm 10 \%$
	7	P24_SERV	Power supply for teleservice, + (24 V)	24 V (20.4 V - 28.8 V)
	8	RxD/TxD-N	Receive/transmit data N(A)	RS485
	9	-	Not assigned	

Note

A teleservice adapter can be connected to the PROFIBUS interface (X126) for remote diagnosis purposes.
The power supply for the teleservice terminals 2 and 7 withstands a max. load and continued short-circuit current of 150 mA .

\ caution

No CAN cables must be connected to interface X126.
If CAN cables are connected, the Control Unit and other CAN bus nodes may be destroyed.

\} Caution
 An equipotential bonding conductor with a cross-section of at least $25 \mathrm{~mm}^{2}$ must be used between components in a system that are located a considerable distance from each other. If a potential bonding conductor is not used, high leakage currents that could destroy the Control Unit or other PROFIBUS nodes can be conducted via the PROFIBUS cable.

Connectors

The cables must be connected via PROFIBUS connectors as they contain the necessary terminating resistors.

The figure below shows suitable PROFIBUS connectors with/without a PG/PC connector.

PROFIBUS connector without PG/PC connection 6ES7972-0BA41-0XA0

PROFIBUS connector with PG/PC connection 6ES7972-0BB41-0XA0

Bus terminating resistor

The bus terminating resistor must be switched on or off depending on its position in the bus, otherwise the data will not be transmitted properly.

The terminating resistors for the first and last nodes in a line must be switched on; the resistors must be switched off at all other connectors.

The cable shield must be connected at both ends over large-surface area contacts.

Figure 4-11 Position of the bus terminating resistors

PROFIBUS address switches

The PROFIBUS address is set as a hexadecimal value via two rotary coding switches. Values between $0_{\text {dec }}\left(00_{\text {hex }}\right)$ and $127_{\text {dec }}\left(7 \mathrm{~F}_{\text {hex }}\right)$ can be set as the address. The upper rotary coding switch (H) is used to set the hexadecimal value for 16^{1} and the lower rotary coding switch (L) is used to set the hexadecimal value for 16°.

Table 4-12 PROFIBUS address switches

Rotary coding switches	Significance	Examples		
		21dec	$35_{\text {dec }}$	126 dec
		$15_{\text {hex }}$	23nex	7Enex
	$16^{1}=16$	1	2	7
	$16^{0}=1$	5	3	E

Setting the PROFIBUS address

The factory setting for the rotary coding switches is $0_{\text {dec }}\left(00_{\text {nex }}\right)$.
There are two ways to set the PROFIBUS address:

1. Via p0918

- To set the bus address for a PROFIBUS node using STARTER, first set the rotary code switches to $0_{\text {dec }}\left(00_{\text {hex }}\right.$) and 127 dec ($7 F_{\text {hex }}$).
- Then use parameter p0918 to set the address to a value between 1 and 126.

2. Via the PROFIBUS address switches on the Control Unit

- The address is set manually to values between 1 and 126 using the rotary coding switches. In this case, p0918 is only used to read the address.

The address switch is behind the blanking plate. The blanking plate is part of the scope of supply.

X127: LAN (Ethernet)

Table 4-13 X127 LAN (Ethernet)

	Pin	Designation	Technical data
	1	TXP	Ethernet transmit data +
	2	TXN	Ethernet transmit data -
	3	RXP	Ethernet receive data +
	4	Reserved, do not use	
	5	Reserved, do not use	
	6	RXN	Ethernet receive data -
	7	Reserved, do not use	
	8	Reserved, do not use	
Connector type: RJ45 socket			

Note

The X127 interface supports commissioning and diagnostic functions. It must not be connected for normal operation.

For diagnostic purposes, the X127 LAN interface features a green and a yellow LED. These LEDs indicate the following status information:

Table 4-14 LED statuses for the X127 LAN interface

LED	State	Description
Green	On	10 or 100 Mbit link available
	Off	Missing or faulty link
	On	Sending or receiving
	Off	No activity

X140: serial interface (RS232)

The AOP30 operator panel for operating/parameterizing the device can be connected via the serial interface. The interface is located on the underside of the Control Unit.

Table 4-15 Serial interface (RS232) X140

	Pin	Designation	Technical specifications
	2	RxD	Receive data
	3	5	TxD

CAUTION

The connection cable to AOP30 may only contain the three contacts which are shown in the drawing; a completely allocated cable may not be used.

T0, T1, T2: Measuring sockets

Table 4-16 Measuring sockets T0, T1, T2

	Socket	Function	Technical specifications
	T0	Measuring socket 0	Voltage: 0 V to 5 V Resolution: 8 bits Load current: max. 3 mA Continued-short-circuit-proof The reference potential is terminal M
	T1	Measuring socket 1	
	T2	Measuring socket 2	
	M	Ground	
The measurement sockets are only suitable for bunch pin plugs with a diameter of 2 mm .			

Note

The measuring sockets support commissioning and diagnostic functions. It must not be connected for normal operation.

Slot for the CompactFlash card

Figure 4-12 CompactFlash card slot

CAUTION

The CompactFlash card may only be removed and inserted when the Control Unit is in a voltage-free state; doing this during operation instead could result in a loss of data and, where applicable, a plant standstill.
The CompactFlash card may only be inserted as shown in the photo above (arrow at top right).

CAUTION

The CompactFlash card is an electrostatic sensitive component. ESD regulations must be observed when inserting and removing the card.

NOTICE

When returning a defective Control Unit, remove the CompactFlash card and keep it for insertion in the replacement unit. This is important otherwise the data on the CompactFlash card (parameters, firmware, licenses, and so on) may be lost.

Note

Please note that only SIEMENS CompactFlash cards can be used to operate the Control Unit.

4.8.2 Customer terminal module TM31 (-A60) (Option G60)

Note

The factory setting and description of the customer terminal blocks can be found in the circuit diagrams.
The location of the customer terminal block in the cabinet unit is indicated in the layout diagram.

Shield connection

The shield connection of shielded control cables on the customer terminal block -A60 is established in the immediate vicinity of the terminal block. For this purpose, the customer terminal block -A60 and the mounting plates have cut-out sections which are used to snap the enclosed shield springs into place. The shields of incoming and outgoing cables must be applied directly to these shield connections. It is important here to establish the greatest possible area of contact and a good conductive connection.

Note

These shield springs can be used for all control cables in the cabinet unit because all the shield connections are identical in design.

Figure 4-13 Shield connection

Overview

Figure 4-14 Customer terminal block TM31

Figure 4-15 Connection overview of TM31 customer terminal block

Note

The digital inputs (terminals -X520 and -X530) in the example are powered by the internal 24 V supply of the customer terminal block (terminal -X540).
The two groups of digital inputs (optocoupler inputs) have a common reference potential for each group (ground reference M1 or M2). To close the circuit when the internal 24 V supply is used, the ground references $\mathrm{M} 1 / \mathrm{M} 2$ must be connected to internal ground (M).

If power is not supplied from the internal 24 V supply (terminal -X540), the jumper between ground M 1 and M or M 2 and M must be removed in order to avoid potential rounding. The external ground must then be connected to terminals M1 and M2.

X520: 4 digital inputs

Table 4-17 Terminal block X520

	Terminal	Designation ${ }^{1)}$	Technical specifications
	1	DI 0	Voltage: -3 V to 30 V Typical current consumption: 10 mA at 24 V Reference potential is always terminal M1 Level: - high level: 15 V to 30 V - low level: -3 V to 5 V
	2	DI 1	DI 2
	4	DI 3	Ground reference
	5	M 1	Electronics ground

${ }^{1)}$ DI: digital input; M1: ground reference; M: Electronics ground
Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

Note

An open input is interpreted as "low".

X530: 4 digital inputs

Table 4-18 Terminal block X530

	Terminal	Designation ${ }^{1)}$	Technical specifications
	1	DI 4	Voltage: - 3 V to 30 V
Typical current consumption: 10 mA at 24 V			
	2	DI 5	Reference potential is always terminal M2 Level:
	3	DI 6	- high level: 15 V to 30 V
- low level: -3 V to 5 V			

${ }^{1)}$ DI: digital input; M2: ground reference; M: Electronics ground
Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

Note

An open input is interpreted as "low".

X521: 2 analog inputs (differential inputs)

Table 4-19 Terminal block X521

	Terminal	Designation 1)	Technical specifications
	1	$\mathrm{Al} 0+$	As voltage input:
	2	$\mathrm{Al} 0-$	$-10 \mathrm{~V}-+10 \mathrm{~V}, \mathrm{Ri}=100 \mathrm{k} \Omega$
Resolution: $11 \mathrm{bits}+$ sign			

${ }^{1)} \mathrm{Al}$: analog input; $\mathrm{P} 10 / \mathrm{N} 10$: auxiliary voltage, M : Ground reference
Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

CAUTION

If the analog inputs are connected as current inputs, the input current must not exceed 35 mA .

S5: Selector for voltage/current AIO, AI1

Table 4-20 Selector for voltage/current S5

	Switch	Function
国	S5.0	Selector voltage (V) / current (I) Al0
	S5.1	Selector voltage (V) / current (I) Al1

Note

When delivered, both switches are set to current measurement (switch set to "I").

X522: 2 analog outputs, temperature sensor connection

Table 4-21 Terminal block X522

	Terminal	Designation ${ }^{1)}$	Technical specifications
	1	AO 0V+	$\begin{array}{\|l} -10 \mathrm{~V}-+10 \mathrm{~V}(\text { max. } 3 \mathrm{~mA}) \\ +4 \mathrm{~mA}-+20 \mathrm{~mA}(\text { max. load resistance } \leq 500 \Omega) \\ -20 \mathrm{~mA}-+20 \mathrm{~mA}(\text { max. load resistance } \leq 500 \Omega) \\ 0 \mathrm{~mA}-+20 \mathrm{~mA}(\text { max. load resistance } \leq 500 \Omega) \end{array}$$\text { Resolution: } 11 \text { bits + sign }$continued short-circuit proof
	2	AO 0-	
	3	AO 0C+	
	4	AO 1V+	
	5	AO 1-	
	6	AO 1C+	
	7	+Temp	Temperature sensor connection:
	8	-Temp	- KTY84-1C130 - PTC

1) $\mathrm{AO} x \mathrm{~V}$: analog output voltage; AO xC : Analog output current

Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

\} DANGER

Risk of electric shock!

Only temperature sensors that meet the electrical separation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

Note

The following sensors can be connected to the temperature sensor connection:

- KTY84-1C130
- PTC

NOTICE
The KTY temperature sensor must be connected with the correct polarity.

CAUTION
The permissible back EMF at the outputs is $\pm 15 \mathrm{~V}$.

X540: Joint auxiliary voltage for the digital inputs

Table 4-22 Terminal block X540

	Terminal	Designation	Technical specifications
	8	P24	24 V DC Max. total load current of +24 V auxiliary voltage of terminal blocks X540 and X541 combined: 150 mA continued short-circuit proof
	7	P24	
	6	P24	
	5	P24	
	4	P24	
	3	P24	
	2	P24	
	1	P24	

Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

Note

This voltage supply is only for powering the digital inputs.

X541: 4 non-floating digital inputs/outputs

Table 4-23 Terminal strip X541

	Terminal	Designation ${ }^{1)}$	Technical specifications
	6	M	Electronics ground
	5	DI/DO 11	As input:
	4	DI/DO 10	Voltage: -3 V to 30 V
	3	DI/DO 9	Typical current consumption: 10 mA at 24 V DC
	2	DI/DO 8	As output: The summation current of the four outputs (including the currents of the inputs) is limited to 100 mA (continued short-circuit proof) in the delivery condition.
	1	P24	Auxiliary voltage: +24 V DC Max. total load current of +24 V auxiliary voltage of terminal blocks X540 and X541 combined: 150 mA

1) DI/DO: Digital input/output: M: Electronics ground

Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

Note

An open input is interpreted as "low".
When externally generated 24 V DC signals are connected to a digital input, the ground reference of the external signal must also be connected.

CAUTION

Due to the limitation of the aggregate of the output currents an over-current can cause a short circuit on an output terminal or even intrusion of the signal of a different terminal.

X542: 2 relay outputs (two-way contact)

Table 4-24 Terminal block X542

	Terminal	Designation ${ }^{1)}$	Technical specifications
$\left[\begin{array}{l} -E \\ -E \\ -E \\ -E \square \\ -E D \end{array}\right.$	1	DO 0.NC	Contact type: Changeover contact max. load current: 8 A Max. switching voltage: 250 V AC, 30 V DC Max. switching voltage: - at 250 V AC: 2000 VA $(\cos \phi=1)$ - at 250 V AC: $750 \mathrm{VA}(\cos \phi=0.4)$ - at 30 V DC: 240 W (ohmic load) Required minimum current: 100 mA
	2	DO 0.COM	
	3	DO 0.NO	
	4	DO 1.NC	
	5	DO 1.COM	
	6	DO 1.NO	

${ }^{1)}$ DO: digital output, NO: normally-open contact, NC: normally-closed contact, COM: mid-position contact
Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Note

If 230 V AC is applied to the relay outputs, the Terminal Module must also be grounded via a $6 \mathrm{~mm}^{2}$ protective conductor.

$4.9 \quad$ Other connections

Depending on the options installed, further connections have to be established, for example, dv/dt filter plus Voltage Peak Limiter, sine-wave filter, connection for external auxiliary equipment, main circuit-breaker including fuses or circuit-breaker, EMERGENCY OFF button, cabinet illumination with service socket, anti-condensation heating for cabinet, contactor combination (EMERGENCY OFF / EMERGENCY STOP), thermistor motor protection unit, braking unit, PT100 evaluation unit, insulation monitor, communication modules, encoder evaluator, and NAMUR option.

Detailed information on connecting individual options with interfaces can be found on the customer DVD supplied with the device.

4.9.1 Infeed module rated one level lower (option LO4)

Description

With this option, an infeed (Active Line Module / Active Interface Module) rated one power level lower than the Motor Module (inverter) is used.

The option is suitable for the following applications, for example:

- If the Motor Module is operated with pulse frequencies greater than the rated pulse frequencies, thereby reducing the output power (current derating as a function of the pulse frequency).
- If the rated power is required in regenerative mode and the system losses are covered by the Motor Module.
- With motors that have a higher efficiency and/or a lower power factor compared to typical standard induction motors.
- The maximum current of the Motor Module is requested below the maximum power of the unit, e.g. drives that have a high breakaway torque.

Availability

Option L04 is available for the following cabinet units:

Voltage [V]	Order number	Unit rating [kW]	Rated output current $[\mathrm{A}]$
3 AC 380-480	6SL3710-7LE33-1AAx	160	310
3 AC 380-480	6SL3710-7LE35-0AAx	250	490
3 AC 380-480	6SL3710-7LE36-1AAx	315	605
3 AC 380-480	6SL3710-7LE37-5AAx	400	745
3 AC 380-480	6SL3710-7LE41-0AAx	560	985

Constraint

Since the infeed is the element that limits the output power achievable when Option L04 is used, the following constraints must be observed:

- The rated output current of the Motor Module is available only as long as the infeed (Active Line Module) is not loaded at rated power.
- The output power is reduced proportional to the line voltage in the event of line supply undervoltage.
- The unit should be operated with a line power factor $\cos \varphi=1$ and should only provide the active power. An additional compensation of reactive line power is not expedient. This operating mode with $\cos \varphi=1$ corresponds to the factory setting.

Note

If these restrictions are not heeded, a fault trip may occur in the event of an overload (of the infeed). To remedy this, adapt the current and/or torque limits in the Motor Module to match the infeed.

Commissioning

For offline commissioning with STARTER, option LO4 must be selected in the options list. This ensures that a smaller infeed is selected during configuration.

Note

Failing to select option L04 will produce inconsistencies and prevent downloading of the project to the drive object.

No additional settings are required for commissioning via the AOP30 when Option L04 is present.

Technical data

The technical data of the cabinet units are different when Option L04 is present.

Table 4-25 Version A with option L04, 380 V - 480 V 3 AC, part 1

Order number	6SL3710	7LE33-1AAx	7LE35-0AAx	7LE36-1AAx
Unit rating - for IL at 50 Hz 400 V 1) - for l at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for I_{L} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2}$)	kW kW hp hp	$\begin{aligned} & 132 \\ & 110 \\ & 200 \\ & 175 \end{aligned}$	$\begin{aligned} & 200 \\ & 160 \\ & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 400 \\ & 300 \end{aligned}$
Output current - Rated current $I_{N A^{3}}{ }^{3)}$ - Base load current $l^{4}{ }^{4}$ - Base load current IH^{5}) - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 279(310)^{8)} \\ & 271(302)^{8)} \\ & 249(277)^{8)} \\ & 407(453)^{8)} \end{aligned}$	$\begin{aligned} & 416(490)^{8)} \\ & 405(477)^{8)} \\ & 372(438)^{8)} \\ & 607(715)^{8)} \end{aligned}$	$\begin{array}{\|l} 538(605)^{8)} \\ 525(590)^{8)} \\ 409(460)^{8)} \\ 787(885)^{8)} \\ \hline \end{array}$
Infeed/regenerative current - Rated current lNE^{6}) - Maximum current $I_{\text {max }}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 260 \\ & 390 \end{aligned}$	$\begin{aligned} & 380 \\ & 570 \end{aligned}$	$\begin{aligned} & 490 \\ & 735 \end{aligned}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz $V_{D C}$	$\begin{gathered} 380 \vee 3 \mathrm{AC}-10 \% \text { to } 480 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		

Order number	6SL3710	7LE33-1AAx	7LE35-0AAx	7LE36-1AAx
Power loss, max. - at $50 \mathrm{~Hz}, 400 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 460 \mathrm{~V}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{array}{\|l} 8,1 \\ 8,54 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 11,3 \\ 11,82 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 14,7 \\ 15,56 \end{array}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	0,83	1,19	1,61
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	72/74	72/74	73/75
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 95 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \end{aligned}$	$\begin{aligned} & 2 \times 120 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 240 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 120 \\ & 2 \times 150 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 185 \\ & 2 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} 2 \times 240 \\ 4 \times 240 \\ \mathrm{M} 12 \text { (2 holes) } \\ \hline \end{array}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (2 holes)
Max. motor cable length Shielded / unshielded	m	300 / 450	300 / 450	300 / 450
Dimensions (standard version L04) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 1400 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 2000 \\ & 600 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 600 \end{aligned}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{aligned} & \mathrm{FI} \\ & \mathrm{FX} \\ & \mathrm{GX} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{GI} \\ & \mathrm{GX} \\ & \mathrm{GX} \end{aligned}$	$\begin{aligned} & \mathrm{GI} \\ & \mathrm{GX} \\ & \mathrm{HX} \end{aligned}$
Weight (without options), approx.	kg	830	980	1220
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{aligned} & \text { 3NA3254 } \\ & 355 \\ & 2 \\ & \text { 3NE1331-2 } \\ & 350 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3NA3365 } \\ & 500 \\ & 3 \\ & \text { 3NE1334-2 } \\ & 500 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3NA3472 } \\ & 630 \\ & 3 \\ & \text { 3NE1436-2 } \\ & 630 \\ & 3 \end{aligned}$
${ }^{1)}$ Rated output of a typical 6-pole sta 2) Rated output of a typical 6-pole sta 3) The currents are based on a line p 4) The base-load current IL is based (see "Overload capability"). ${ }^{5)}$ The base-load current I_{H} is based (see "Overload capability"). ${ }^{6)}$ The current values given here are 7) The recommendations for the North (National Electrical Code) or CEC (C 8) Current for unit rating The possible output current of the in	ard induct ard induction er factor a duty cyc a duty cyc sed on the American adian Electric ter is stated	motor based motor based $\cos \varphi=1$. of 110% for 6 of 150% for 60 rated output cu arket in AWG or rical Code) sta in brackets.	at 400 V 3 AC at 460 V 3 AC $\%$ for 10 s with $\%$ for 10 s with ust be taken fr	cle duration of cle duration of propriate NEC

4.9 Other connections

Table 4-26 Version A, $380 \mathrm{~V}-480 \vee 3 \mathrm{AC}$, part 2

Order number	6SL3710	7LE37-5AAx	7LE41-0AAx	
Unit rating - for IL at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$	kW kW hp hp	$\begin{array}{\|l\|} \hline 315 \\ 250 \\ 500 \\ 350 \\ \hline \end{array}$	$\begin{aligned} & 450 \\ & 400 \\ & 700 \\ & 600 \end{aligned}$	
Output current - Rated current $\left.\ln ^{3}{ }^{3}\right)$ - Base load current IL ${ }^{4}$) - Base load current lH ${ }^{5}$) - Max. current $I_{\max A}$	$\begin{array}{\|l} \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{~A} \end{array}$	$\begin{array}{\|l} 655(745)^{8)} \\ 638(725)^{8)} \\ 501(570)^{8)} \\ 956(1087)^{8)} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 925(985)^{8)} \\ 902(960)^{8)} \\ 808(860)^{8)} \\ 1353(1440)^{8)} \\ \hline \end{array}$	
Infeed/regenerative current - Rated current INE^{6}) - Maximum current $I_{\max } E$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 605 \\ 907 \end{array}$	$\begin{array}{\|l\|} \hline 840 \\ 1260 \end{array}$	
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 380 \text { V } 3 \text { AC }-10 \% \text { to } 480 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. - at $50 \mathrm{~Hz}, 400 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 460 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \hline \end{aligned}$	$\begin{aligned} & 18,53 \\ & 19,65 \\ & \hline \end{aligned}$	$\begin{array}{r} 23,45 \\ 24,85 \\ \hline \end{array}$	
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	1,96	2,28	
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	dB(A)	77/79	77/79	
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} \hline 2 \times 240 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{aligned} & 4 \times 150 \\ & 8 \times 240 \\ & \mathrm{M} 12 \text { (} 4 \text { holes) } \\ & \hline \end{aligned}$	
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 300 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \times 185 \\ & 6 \times 240 \\ & \text { M12 (3 holes) } \\ & \hline \end{aligned}$	
Protective conductor connection Fixing screw		M12 (10 holes)	M12 (18 holes)	
Max. motor cable length Shielded / unshielded	m	300 / 450	300 / 450	
Dimensions (standard version L04) - Width - Height - Depth	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$ mm	$\begin{aligned} & 2200 \\ & 2000 \\ & 600 \end{aligned}$	$\begin{aligned} & 2400 \\ & 2000 \\ & 600 \end{aligned}$	
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{HX} \end{aligned}$	$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{JX} \end{aligned}$	
Weight (without options), approx.	kg	1716	2040	

Order number	6SL3710	7LE37-5AAx	7LE41-0AAx	
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A A	$\begin{aligned} & \text { 3NA3475 } \\ & 800 \\ & 4 \\ & \text { 3NE1438-2 } \\ & 800 \\ & 3 \end{aligned}$	Circuit breaker Circuit breaker	
1) Rated output of a typical 6-pole sta 2) Rated output of a typical 6-pole sta 3) The currents are based on a line po ${ }^{4)}$ The base-load current IL_{L} is based on (see "Overload capability"). ${ }^{5)}$ The base-load current lt is based (see "Overload capability"). 6) The current values given here are 7) The recommendations for the North (National Electrical Code) or CEC (C 8) Current for unit rating The possible output current of the inv	ard induct ard induct er factor of a duty cyc a duty cyc sed on the American adian Elec ter is state	motor base n motor base $\cos \varphi=1$. of 110% for of 150% for rated output c arket in AWG rical Code) st in brackets.	at 400 V 3 AC at 460 V 3 AC $\%$ for 10 s with $\%$ for 10 s with ust be taken fro	cle duration of 300 s ycle duration of 300 s propriate NEC

4.9.2 $\quad \mathrm{dV} / \mathrm{dt}$ filter compact plus Voltage Peak Limiter (Option L07)

Description

The $\mathrm{dV} / \mathrm{dt}$ filter compact plus Voltage Peak Limiter comprises two components: the $\mathrm{dV} / \mathrm{dt}$ reactor and the voltage-limiting network (Voltage Peak Limiter), which cuts off the voltage peaks and feeds back the energy into the DC link. The dV/dt filter compact plus Voltage Peak Limiter is designed for use with motors for which the voltage strength of the insulation system is unknown or insufficient.

The dV/dt filter compact plus Voltage Peak Limiter limits the voltage load on the motor cables to values in accordance with the limit value curve A in compliance with IEC/TS 60034-25:2007.

The rate of voltage rise is limited to $<1600 \mathrm{~V} / \mu \mathrm{s}$, the peak voltages are limited to $<1400 \mathrm{~V}$.

The following constraints should be noted when a dV/dt filter compact plus Voltage Peak Limiter is used:

- The output frequency is limited to no more than 150 Hz .
- Maximum permissible motor cable lengths:
- Shielded cable: max. 100 m
- Unshielded cable: max. 150 m

! WARNING
 When a dV/dt filter compact plus Voltage Peak Limiter is used, the drive must not be continuously operated with an output frequency lower than 10 Hz .
 A maximum load duration of 5 minutes at an output frequency lower than 10 Hz is permissible, provided that the drive is operated with an output frequency higher than 10 Hz for a period of 5 minutes thereafter, or deactivated..
 Uninterrupted duty at an output frequency less than 10 Hz can produce thermal overload and destroy the $\mathrm{dV} / \mathrm{dt}$ filter.

! WARNING

When a dV/dt filter compact plus Voltage Peak Limiter is used, the pulse frequency of the Motor Module must not exceed 2.5 kHz or 4 kHz . Setting a higher pulse frequency can lead to destruction of the dV/dt filter.

CAUTION

When a dV/dt filter compact plus Voltage Peak Limiter is used, the drive must not be operated without a connected motor, otherwise the filter could be destroyed.

Note

It is permissible to set pulse frequencies in the range between the rated pulse frequency and the relevant maximum pulse frequency when a dV/dt filter compact plus Voltage Peak Limiter is used. "Current derating as a function of the pulse frequency" of the converter must be observed here (refer to the Technical data).

Table 4-27 Max. pulse frequency when a dV/dt filter compact plus Voltage Peak Limiter is used in units with a rated pulse frequency of 2 kHz

Order no. 6SL3710-...	Unit rating [kW]	Output current for a pulse frequency of 2 kHz [A]	Max. pulse frequency when a dV/dt filter compact plus Voltage Peak Limiter is used
Supply voltage 380-480 V AC			
7LE32-1AAx	110	210	4 kHz
7LE32-6AAx	132	260	4 kHz
7LE33-1AAx	160	310	4 kHz
7LE33-8AAx	200	380	4 kHz
7LE35-0AAx	250	490	4 kHz

Table 4-28 Max. pulse frequency when a dV/dt filter compact plus Voltage Peak Limiter is used in units with a rated pulse frequency of $1,25 \mathrm{kHz}$

Order no. 6SL3710-...	Unit rating [kW]	Output current for a pulse frequency of 1.25 kHz [A]	Max. pulse frequency when a dV/dt filter compact plus Voltage Peak Limiter is used	
Supply voltage $380-480 \mathrm{~V} \mathrm{AC}$				
7LE36-1AAx	315	605	2.5 kHz	
7LE37-5AAx	400	745	2.5 kHz	
7LE38-4AAx	450	840	2.5 kHz	
7LE41-0AAx	560	985	2.5 kHz	
7LE41-4AAx	710	1380	2.5 kHz	
7LE41-4AAx	800	1405	2.5 kHz	
		Supply voltage $500-690 \mathrm{~V} \mathrm{AC}$		
7LG28-5AAx	75	85	2.5 kHz	
7LG31-0AAx	90	100	2.5 kHz	
7LG31-2AAx	110	120	2.5 kHz	
7LG31-5AAx	132	150	2.5 kHz	
7LG31-8AAx	160	175	2.5 kHz	
7LG32-2AAx	200	215	2.5 kHz	
7LG32-6AAx	250	260	2.5 kHz	
7LG33-3AAx	315	330	2.5 kHz	
7LG34-1AAx	400	410	2.5 kHz	
7LG34-7AAx	450	465	2.5 kHz	
7LG35-8AAx	560	575	2.5 kHz	
7LG37-4AAx	710	735	2.5 kHz	
7LG38-1AAx	800	810	2.5 kHz	
7LG38-8AAx	900	910	2.5 kHz	
7LG41-0AAx	1000	1025	2.5 kHz	
7LG41-3AAx	1200	1270	2.5 kHz	

Commissioning

During commissioning, the dV/dt filter compact plus Voltage Peak Limiter must be logged on using STARTER or the AOP30 operator panel (p0230 = 2).

Note

When the factory settings are restored, parameter p0230 is reset.
The parameter must be reset if the system is commissioned again.

4.9.3 dv/dt filter plus Voltage Peak Limiter (option L10)

Description

The dV/dt filter plus voltage peak limiter comprises two components: the $\mathrm{dV} / \mathrm{dt}$ reactor and the Voltage Peak Limiter, which cuts off the voltage peaks and returns the energy to the DC link.

The dv/dt filters plus Voltage Peak Limiter must be used for motors for which the proof voltage of the insulation system is unknown or insufficient. Standard motors of the 1LA5, 1 LA6 and 1LA8 series only require them at supply voltages $>500 \mathrm{~V}+10 \%$.

The dv/dt filter plus Voltage Peak Limiter limits the voltage gradient to values < $500 \mathrm{~V} / \mu \mathrm{s}$ and the typical transients to the values below (with motor cable lengths of $<150 \mathrm{~m}$):

- < 1000 V at $\mathrm{U}_{\text {line }}<575 \mathrm{~V}$
- < 1250 V at $660 \mathrm{~V}<\mathrm{U}_{\text {line }}<690 \mathrm{~V}$.

Depending on the converter power, option L10 can be accommodated in the drive converter cabinet unit or an additional cabinet with a width of 400 mm or 600 mm is required.

Table 4-29 Accommodating the voltage limiting network in the cabinet or in an additional cabinet

Voltage range	Installation of the dv/dt filter plus Voltage Peak Limiter within the converter cabinet unit	Installation of the VPL in an additional cabinet, 400 mm width	Installation of the VPL in an additional cabinet, 600 mm width
380 V to 480 V 3 AC	6SL3710-7LE32-1AAx 6SL3710-7LE32-6AAx 6SL3710-7LE33-1AAx 6SL3710-7LE33-8AAx 6SL3710-7LE35-0AAx	6SL3710-7LE36-1AAx 6SL3710-7LE37-5AAx 6SL3710-7LE38-4AAx	6SL3710-7LE41-0AAx 6SL3710-7LE41-2AAx 6SL3710-7LE41-4AAx
500 V to 690 V 3 AC	6SL3710-7LG28-5AAx 6SL3710-7LG31-0AAx 6SL3710-7LG31-2AAx 6SL3710-7LG31-5AAx 6SL3710-7LG31-8AAx 6SL3710-7LG32-2AAx 6SL3710-7LG32-6AAx 6SL3710-7LG33-3AAx	6SL3710-7LG34-1AAx 6SL3710-7LG34-7AAx 6SL3710-7LG35-8AAx	6SL3710-7LG37-4AAx 6SL3710-7LG38-1AAx 6SL3710-7LG38-8AAx 6SL3710-7LG41-0AAx 6SL3710-7LG41-3AAx

Restrictions

The following restrictions should be noted when a dv/dt filter plus Voltage Peak Limiter is used:

- The output frequency is limited to no more than 150 Hz .
- Maximum permissible motor cable lengths:
- Shielded cable: max. 300 m
- Unshielded cable: max. 450 m

\. Warning

When a dV/dt filter plus Voltage Peak Limiter is used, the pulse frequency of the Motor Module must not exceed 2.5 kHz or 4 kHz . Setting a higher pulse frequency can lead to destruction of the $\mathrm{dV} / \mathrm{dt}$ filter.

CAUTION

When a dV/dt filter plus Voltage Peak Limiter is used, the drive must not be operated without a connected motor, otherwise the filter can be destroyed.

Note

It is permissible to set pulse frequencies in the range between the rated pulse frequency and the relevant maximum pulse frequency when a dV/dt filter plus Voltage Peak Limiter is used. When so doing, take into account the "Current derating as a function of the pulse frequency; see Technical data.
4.9 Other connections

Table 4-30 Max. pulse frequency when a dV/dt filter plus Voltage Peak Limiter is used in units with a rated pulse frequency of 2 kHz

Order no. 6SL3710-...	Unit rating [kW]	Output current for a pulse frequency of 2 kHz [A]	Max. pulse frequency when a dV/dt filter plus Voltage Peak Limiter is used
Supply voltage $380-480 \mathrm{~V} \mathrm{AC}$			
7LE32-1AAx	110	210	4 kHz
7LE32-6AAx	132	260	4 kHz
7LE33-1AAx	160	310	4 kHz
7LE33-8AAx	200	380	4 kHz
7LE35-0AAx	250	490	4 kHz

Table 4- 31 Max. pulse frequency when a dV/dt filter plus Voltage Peak Limiter is used in units with a rated pulse frequency of $1,25 \mathrm{kHz}$

$\begin{aligned} & \text { Order no. } \\ & \text { 6SL3710-... } \end{aligned}$	Unit rating [kW]	Output current for a pulse frequency of 1.25 kHz [A]	Max. pulse frequency when a dV/dt filter plus Voltage Peak Limiter is used
Supply voltage 380-480 V AC			
7LE36-1AAx	315	605	2.5 kHz
7LE37-5AAx	400	745	2.5 kHz
7LE38-4AAx	450	840	2.5 kHz
7LE41-0AAx	560	985	2.5 kHz
7LE41-4AAx	710	1380	2.5 kHz
7LE41-4AAx	800	1405	2.5 kHz
Supply voltage 500-690 V AC			
7LG28-5AAx	75	85	2.5 kHz
7LG31-0AAx	90	100	2.5 kHz
7LG31-2AAx	110	120	2.5 kHz
7LG31-5AAx	132	150	2.5 kHz
7LG31-8AAx	160	175	2.5 kHz
7LG32-2AAx	200	215	2.5 kHz
7LG32-6AAx	250	260	2.5 kHz
7LG33-3AAx	315	330	2.5 kHz
7LG34-1AAx	400	410	2.5 kHz
7LG34-7AAx	450	465	2.5 kHz
7LG35-8AAx	560	575	2.5 kHz
7LG37-4AAx	710	735	2.5 kHz
7LG38-1AAx	800	810	2.5 kHz
7LG38-8AAx	900	910	2.5 kHz
7LG41-0AAx	1000	1025	2.5 kHz
7LG41-3AAx	1200	1270	2.5 kHz

Commissioning

During commissioning, the dv/dt filter plus Voltage Peak Limiter must be logged on using STARTER or the AOP30 operator panel (p0230 = 2).

Note

When the factory settings are restored, parameter p0230 is reset.
The parameter must be reset if the system is commissioned again.

4.9.4 Sine-wave filter (option L15)

Description

The sine-wave filter limits the voltage gradient and the capacitive charge/discharge currents which usually occur with inverter operation. It also prevents additional noise caused by the pulse frequency. The service life of the motor is as long as that attained with direct mains operation.

CAUTION

If a sine-wave filter is connected to the converter, the converter must be activated during commissioning to prevent the filter from being destroyed (see "Commissioning").

CAUTION

When using a sine-wave filter, the drive must not be operated without a connected motor as otherwise the filter could be destroyed.

Restrictions

The following restrictions must be taken into account when a sine-wave filter is used:

- The output frequency is limited to no more than 150 Hz .
- The modulation type is permanently set to space-vector modulation without overmodulation.
- The maximum output frequency is limited to 85% of the input frequency.
- Maximum permissible motor cable lengths:
- Unshielded cable: max. 450 m
- Shielded cable: max. 300 m
- During commissioning, the pulse frequency rises to double the factory setting. This induces current derating, which must be applied to the cabinet unit rated currents listed in the technical specifications.

Note

If a filter cannot be parameterized $(\mathrm{p} 0230 \neq 3)$, this means that a filter has not been provided for the cabinet unit. In this case, the cabinet unit must not be operated with a sine-wave filter.

Table 4-32 Technical specifications for sine-wave filters with SINAMICS S150

Order no. SINAMICS S150	Voltage $[\mathrm{V}]$	Pulse frequency $[\mathrm{kHz}]$	Output current $[\mathrm{A}]$ 1)
6SL3710-7LE32-1AA0	3 AC $380-480$	4	172 A
6SL3710-7LE32-6AA0	3 AC $380-480$	4	216 A
6SL3710-7LE33-1AA0	3 AC $380-480$	4	273 A
6SL3710-7LE33-8AA0	3 AC $380-480$	4	331 A
6SL3710-7LE35-0AA0	3 AC $380-480$	4	382 A

${ }^{1)}$ The values apply to operation with a sine-wave filter and do not correspond with the rated current on the type plate.

Commissioning

When commissioning using the STARTER or AOP30, the sine-wave filter must be activated by means of appropriate selection screenforms or dialog boxes ($\mathrm{p} 0230=3$), see section "Commissioning".

The following parameters are changed automatically during commissioning.

Table 4-33 Parameter settings for sine-wave filters with SINAMICS S150

Parameter	Name	Setting
p0230	Drive filter type, motor side	3: Siemens sine-wave filter
p0233	Power unit motor reactor	Filter inductance
p0234	Power unit sine-wave filter capacitance	Filter capacitance
p0290	Power unit overload response	Disable pulse frequency reduction
p1082	Maximum speed	Fmax filter / pole pair number
p1800	Pulse frequency	Nominal pulse frequency of the filter (see previous table)
p1802	Modulator mode	Space-vector modulation without overmodulation
p1909	Motor data identification, control word	Rs measurement only

Note

When the factory settings are restored, parameter p0230 is reset.
The parameter must be reset if the system is commissioned again.

4.9.5 Connection for external auxiliary equipment (Option L19)

Description

This option includes an outgoing circuit fused at max. 10 A for external auxiliary equipment (e.g. separately-driven fan for motor). The voltage is tapped at the converter input upstream of the main contactor/circuit-breaker and, therefore, has the same level as the supply voltage. The outgoing circuit can be switched within the converter or externally.

Connection

Table 4-34 Terminal block X155-Connection for external auxiliary equipment

Terminal	Designation ${ }^{1)}$	Technical specifications
1	L1	380-480 V 3 AC
2	L2	500-690 V 3 AC
3	L3	
11	Contactor control	230 V AC
12		
13	NO: Checkback motor circuit breaker	230 V AC / 0.5 A
14		24 V DC / 2 A
15	NO: Checkback from contactor	240 V AC / 6 A
16		
PE	PE	PE

1) NO: NO contact

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

Note

The connection for external auxiliary equipment must be set in accordance with the connected consumer (-Q155).

Circuit proposal for controlling the auxiliary contactor from within the converter
Circuit proposal as standard
A free digital output of the Control Unit can be used to control the auxiliary contactor; it uses a line-side relay to control auxiliary contactor -K155.
Signal r0899.11 (pulses enabled) must also be interconnected to the selected digital output of the Control Unit.

Figure 4-16 Circuit proposal for control via the Control Unit

Circuit proposal with customer terminal module TM31 (option G60)

The following circuit proposal can be used to control the auxiliary contactor for example. The "Pulses enabled" signal at terminal-X542 of the TM31 is then no longer available for other purposes.

Figure 4-17 Circuit proposal for control via the TM31

Note

If 230 VAC is applied to the relay outputs, the TM31 must also be grounded via a $6 \mathrm{~mm}^{2}$ protective conductor.

4.9.6 Main switch incl. fuses or main circuit breaker (option L26)

Description

For rated currents up to 800 A , a load interrupter with externally-mounted fuses is used as the main circuit breaker. For rated currents above 800 A , the standard circuit breaker is used to disconnect the voltage and provide overload and short-circuit protection. The circuit breaker is controlled and supplied within the converter.

\triangle caution

Switching at input

Cabinet units with circuit breaker may be powered up only once every 3 minutes. Failure to observe this rule can cause damage to the cabinet unit.

Connection

Table 4-35 Terminal block X50 - checkback contact "main/circuit breaker closed"

Terminal	Designation ${ }^{1)}$	Technical data
1	NO	Max. load current: 10 A 2
3	NC	Max. switching voltage: 250 VAC Max. switching capacity: 250 VA Required minimum load: $\geq 1 \mathrm{~mA}$

${ }^{1)}$ NO: normally-open contact, NC: normally-closed contact, COM: mid-position contact
Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

\} \DANGER

For rated currents of more than 800 A and with a live line voltage, dangerous voltages are present in the cabinet unit even when the circuit breaker is open. The cabinet unit must be completely deenergized when carry out work (observe the 5 safety rules).

Setting the release current for the circuit breaker
When delivered, the circuit breakers are set to the rated current of the cabinet unit on the line side. Depending on the plant configuration, it can make sense to set lower values. The appropriate specifications are given in the operating instructions supplied with the circuit breaker.

In the delivery condition, the tripping current is set as follows:

Table 4-36 Delivery condition of the overcurrent tripping unit

Order number	Output current	Overcurrent trip (L)	Short-circuit trip, non-delayed (I)
6SL3710-7LE38-4AAx	840 A	0.9	2
6SL3710-7LE41-0AAx	985 A	0.85	2
6SL3710-7LE41-2AAx	1260 A	0.8	2
6SL3710-7LE41-4AAx	1405 A	0.9	2
6SL3710-7LG38-1AAx	810 A	0.85	2
6SL3710-7LG38-8AAx	910 A	1.0	2
6SL3710-7LG41-0AAx	1025 A	0.9	2
6SL3710-7LG41-3AAx	1270 A	0.85	2

CAUTION

The settings specified above should be checked. Incorrect settings can cause unwanted or delayed tripping of the circuit breaker and result in damage to the cabinet unit.

Diagnostics

Messages output during operation and in the event of faults are described in the Operating Instructions in the customer DVD supplied with the device.

4.9.7 EMERGENCY OFF pushbutton installed in the cabinet door (option L45)

Description

The EMERGENCY OFF pushbutton with protective collar is integrated in the door of the cabinet unit. The contacts of the pushbutton are connected to terminal block -X120. In conjunction with options L57, L59, and L60, EMERGENCY OFF of category 0 and EMERGENCY STOP of category 1 can be activated.

Note

When the EMERGENCY OFF pushbutton is pressed, the motor coasts to a standstill and the main motor voltage is disconnected (to EN 60204-1 (VDE 0113)) in conjunction with options L57, L59 and L60. Auxiliary voltages (e.g. for separately-driven fans or anti-condensation heating) may still be present. Certain sections of the converter (e.g., the closed-loop controller or any auxiliary equipment) may also remain live. If all the voltages have to be completely disconnected, the EMERGENCY OFF pushbutton must be integrated in a protection concept, which must be implemented on the line side. For this purpose, an NC contact is installed at terminal block -X120.

Connection

Table 4-37 Terminal block X120 -checkback contact "EMERGENCY OFF pushbutton in the cabinet door"

Terminal	Designation ${ }^{1)}$	Technical specifications
1	NC 1	Checkback contacts of EMERGENCY OFF pushbutton in
cabinet door		

1) NC: normally-closed contact
2) Factory setting in converter for options L57, L59, and L60

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

4.9.8 Cabinet illumination with service socket (option L50)

Description

Option L50 includes a universal lamp with integrated service socket for grounding socketoutlet (connector type F) according to CEE 7/4. The power supply for the cabinet illumination and socket must be provided externally and fused at max. 10 A . The cabinet illumination is switched on manually via a slide switch or automatically by means of an integrated motion detector (delivery condition). The mode is selected via the switch on the light.

Connection

Table 4-38 Terminal block X390 - connection for cabinet illumination with service socket

Terminal	Designation	Technical data
1	L 1	230 V AC
2	N	power supply
3	PE	Protective conductor

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

4.9.9 Cabinet anti-condensation heating (option L55)

Description

The anti-condensation heating is used at low ambient temperatures and high levels of humidity to prevent condensation forming.

One 100 W heater is installed for a 400 mm and 600 mm cabinet panel, and two 100 W heaters for an 800/1000 and 1200 mm cabinet panel. The power supply for the heating ($110 \mathrm{~V}-230 \mathrm{~V}$ AC) must be provided externally and fused at max. 16 A .
! DANGER
When the supply voltage for the cabinet anti-condensation heating is connected, dangerous voltages are present in the cabinet unit even when the main circuit breaker is open.

Connection

Table 4-39 Terminal block X240 - connection for cabinet anti-condensation heating

Terminal	Designation	Technical specifications
1	L1	$110 \mathrm{~V}-230 \mathrm{~V} \mathrm{AC}$
Voltage supply		
2	N	Protective conductor
3	PE	

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

4.9.10 EMERGENCY OFF category 0; 230 V AC or 24 V DC (option L57)

Description

EMERGENCY OFF category 0 for uncontrolled stop according to EN 60204-1. This function disconnects the cabinet unit from the power supply via the line contactor, while bypassing the electronics by means of a safety combination according to EN 60204-1. The motor then coasts to a stop. To prevent the main contactor from switching under load, an OFF2 is triggered simultaneously. The operational status is indicated by means of three LEDs (K120).
When delivered, the type with 230 V AC pushbutton circuit is set.

Note

When the EMERGENCY OFF pushbutton is pressed, an uncontrolled stop of the motor takes place and the main motor voltage is disconnected in accordance with EN 60204-1. Auxiliary voltages (e.g. for separately-driven fans or anti-condensation heating) may still be present. Certain sections of the converter (e.g., the closed-loop controller or any auxiliary equipment) also remain live. If all the voltages have to be completely disconnected, the EMERGENCY OFF pushbutton must be integrated in a protection concept, which must be implemented on the line side. For this purpose, an NC contact is installed at terminal -X120.

Connection

Table 4-40 Terminal block X120 - connection for EMERGENCY OFF category 0, 230 V AC and 24 V DC

Terminal	230 V AC and 24 V DC button circuit
4	Jumper wired in the factory
5	Loop in EMERGENCY OFF button from line side, remove jumpers 7-8 and connect button
7	Jumper wired in the factory
8	Jumper wired in the factory
9	Jumper wired in the factory
10	"On" for monitored start:
11	Remove jumpers 15-16 and connect button.
14	NO 1): Checkback "trip safety combination"
12	
13	
15	

1) $\mathrm{NO}: \mathrm{NO}$ contact

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

Reconnection to the 24 V DC Button Circuit

When using the 24 V DC pushbutton circuit, you must remove the following jumpers at terminal block -X120:

- 4-5, 9-10, and 11-14

You must also insert the following jumpers at terminal block -X120:

- 4-11, 5-10, and 9-14

Diagnostics

Messages output during operation and in the event of faults (meaning of LEDs on -K120) are described in the "Additional Operating Instructions" of the Operating Instructions.

4.9.11 EMERGENCY STOP category 1; 230 V AC (option L59)

Description

EMERGENCY STOP category 1 for controlled stopping according to EN 60204-1. This function stops the drive by means of a quick stop along a deceleration ramp that must be parameterized. The cabinet unit is then disconnected from the power supply via the line contactor, while bypassing the electronics by means of a safety combination (according to EN 60204-1).
The operating state and the function are indicated by eight LEDs (-K120, -K121).

Connection

Table 4-41 Terminal block X120 - connection for EMERGENCY STOP category 1 (230 V AC)

Terminal	Technical data
4	Jumper wired in the factory
5	Loop in EMERGENCY OFF button from line side, remove jumpers 7-8 and connect button
7	Jumper wired in the factory
8	Jumper wired in the factory
9	Jumper wired in the factory
10	"On" for monitored start:
11	Remove jumpers 15-16 and connect button.
14	NO 1): Checkback "trip safety combination"
12	
13	
15	
16	

1) NO: NO contact

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

Setting

The time (0.5 to 30 s) set for the contactor safety combination (-K121) should be longer than (or at least equal to) the time that the drive requires to reach a standstill via the quick stop (OFF3 ramp-down time, p1135), as the converter is disconnected from the power supply when the time expires (at -K121).

Diagnostics

Messages output during operation and in the event of faults (meaning of LEDs on -K120, K121) are described in the "Additional Operating Instructions" of the Operating Instructions.

4.9.12 EMERGENCY STOP category 1; 24 V DC (option L60)

Description

EMERGENCY STOP category 1 for controlled stopping according to EN 60204-1. This function stops the drive by means of a quick stop along a deceleration ramp that must be parameterized. The cabinet unit is then disconnected from the power supply via the line contactor, while bypassing the electronics by means of a safety combination in accordance with EN 60204-1).
The operating state and the function are indicated by five LEDs (-K120).

Connection

Table 4-42 Terminal block X120 - connection for EMERGENCY STOP category 1 (24 V DC)

Terminal	Technical data
4	Jumper wired in the factory
11	Jumper wired in the factory
5	Loop in EMERGENCY OFF button from line side, remove jumpers 7-8 and connect button
10	Jumper wired in the factory
7	Jumper wired in the factory
8	"On" for monitored start:
9	Remove jumpers 15-16 and connect button.
14	NO 1): Checkback "trip safety combination"
12	
13	
15	

1) $\mathrm{NO}: \mathrm{NO}$ contact

Max. connectable cross-section: $4 \mathrm{~mm}^{2}$

Setting

The time (0.5 to 30 s) set for the contactor safety combination (-K120) should be longer than (or at least equal to) the time that the drive requires to reach a standstill via the quick stop (OFF3 ramp-down time, p1135), as the converter is disconnected from the energy supply when the time expires (at -K120).

Diagnostics

Messages output during operation and in the event of faults (meaning of LEDs on -K120) are described in the "Additional Operating Instructions" of the Operating Instructions.

4.9.13 $\quad 25 \mathrm{~kW}$ braking unit (option L61/L64); 50 kW braking unit (option L62/L65)

Description

Under normal circumstances, the braking energy is supplied back to the line. If a controlled stop is also required in the event of a power failure, however, additional braking units can be provided. The braking units comprise a chopper power unit and a load resistor, which must be attached externally. To monitor the braking resistance, a thermostatic switch integrated in the shutdown train of the cabinet unit is installed in the braking resistor.

Table 4-43 Load data for the braking units

Line voltage	Continuous chopper power P_{DB}	Peak chopper output \mathbf{P}_{15}	Chopper \mathbf{P}_{20} output \mathbf{P}_{20}	Chopper \mathbf{P}_{40} output \mathbf{P}_{40}	Braking resistor \mathbf{R}_{B}	Max. current	Option
$380 \mathrm{~V}-480 \mathrm{~V}$	25 kW	125 kW	100 kW	50 kW	$4.4 \Omega \pm 7.5 \%$	189 A	L 61
$380 \mathrm{~V}-480 \mathrm{~V}$	50 kW	250 kW	200 kW	100 kW	$2.2 \Omega \pm 7.5 \%$	378 A	L 62
$500 \mathrm{~V}-600 \mathrm{~V}$	25 kW	125 kW	100 kW	50 kW	$6.8 \Omega \pm 7.5 \%$	153 A	L 64
$500 \mathrm{~V}-600 \mathrm{~V}$	50 kW	250 kW	200 kW	100 kW	$3.4 \Omega \pm 7.5 \%$	306 A	L 65
$660 \mathrm{~V}-690 \mathrm{~V}$	25 kW	125 kW	100 kW	50 kW	$9.8 \Omega \pm 7.5 \%$	127 A	L 61
$660 \mathrm{~V}-690 \mathrm{~V}$	50 kW	250 kW	200 kW	100 kW	$4.9 \Omega \pm 7.5 \%$	255 A	L 62

4.9.13.1 Installing the braking resistor

Installing the braking resistor

The braking resistor should not be installed in the vicinity of the converter. The installation location must fulfill the following conditions:

- The braking resistors are only suitable for floor mounting.
- The maximum cable length between the cabinet unit and braking resistor is 100 m .
- Sufficient space must be available for dissipating the energy converted by the braking resistor.
- A sufficient distance from flammable objects must be maintained.
- The braking resistor must be installed as a free-standing unit.
- Objects must not be placed on or anywhere above the braking resistor.
- The braking resistor should not be installed underneath fire detection systems, since these could be triggered by the resulting heat.
- For outdoor installation, a hood must be provided to protect the braking resistor from precipitation (in accordance with degree of protection IP20).

CAUTION

A ventilation clearance of 200 m must be maintained on all sides of the braking resistor (with ventilation grilles).

Table 4-44 Dimensions of the braking resistors

	Unit	25 kW resistor (option L61/L64)	50 kW resistor (option L62/L65)
Width	mm	740	810
Height	mm	605	1325
Depth	mm	485	485

Figure 4-18 Dimension drawing for braking resistor (25 kW)

Figure 4-19 Dimension drawing for braking resistor (50 kW)

Connecting the braking resistor

WARNING

The cables must only be connected to terminal block -X5 when the cabinet unit is switched off and the DC link capacitors are discharged.

CAUTION

The cables for the braking resistor must be routed to prevent short-circuiting and ground faults in accordance with IEC 61800-5-2:2007, Table D.1.

This can be accomplished, for example, by:

- Eliminating the risk of mechanical damage to the cables
- Using cables with double insulation
- Maintaining adequate clearance, using spacers, for example
- Routing the cables in separate cable ducts or tubes

CAUTION

The maximum cable length between the cabinet unit and braking resistor is 100 m .

Table 4-45 Terminal block -X5 - connection for external braking resistor

Terminal	Description of function
1	Braking resistor connection
2	Braking resistor connection

Max. connectable cross-section: $70 \mathrm{~mm}^{2}$
Recommended cable cross-sections:

- For L61/L64 (25 kW): $35 \mathrm{~mm}^{2}$
- For L62/L65 (50 kW): $50 \mathrm{~mm}^{2}$

Connecting the thermostatic switch

Table 4-46 Installing the thermostatic switch for the external braking resistor in the monitoring circuit of the cabinet unit by connecting to the Control Unit (without option G60)

Terminal	Description of function
T1	Thermostatic switch connection: connection with terminal X132:9 (DO12)
T2	Thermostatic switch connection: connection with terminal X122:5 (DI16)

Max. connectable cross-section (due to CU320-2): $1.5 \mathrm{~mm}^{2}$

Table 4-47 Installing the thermostatic switch for the external braking resistor in the monitoring circuit of the cabinet unit by connecting to the TM31 (with option G60)

Terminal	Description of function
T1	Thermostatic switch connection: connection with terminal X541:1 (P24 V)
T2	Thermostatic switch connection: connection with terminal X541:5 (D111)

Max. connectable cross-section (due to TM31): $1.5 \mathrm{~mm}^{2}$

4.9.13.2 Commissioning

Commissioning

When commissioning via STARTER, parameters are assigned to "external fault 3" and acknowledged automatically when option L61, L62, L64, or L65 is selected.

When commissioning via AOP30, the parameter entries required have to be set subsequently.

Set the "Expert" access level on the operator panel
<Key pushbutton> - <Access level> - Set "Expert" and confirm.

Cabinet unit settings

If the thermostatic switch for the braking resistor is connected, appropriate settings have to be made so that the drive is brought to a standstill if a fault occurs.

Once the device has been successfully commissioned, you have to make the following changes:
Connect the thermostatic switch of the braking resistor to DI 16 of the Control Unit

Set the "Expert" access level on the operator panel
<Key pushbutton> - <Access level> - Set "Expert" and confirm.

Interconnect external fault 2 to DI 16 of the Control Unit.

Connect the thermostatic switch of the braking resistor to DI 11 of the TM31 (option G60)

Set the "Expert" access level on the operator panel <Key pushbutton> - <Access level> - Set "Expert" and confirm.

Interconnect external fault 2 to DI 11 of the TM31.

4.9.13.3 Diagnosis and duty cycles

Diagnosis

If the thermostat is opened due to a thermal overload on the braking resistor, fault F7861 ("External Fault 2") is triggered and the drive is switched off with OFF2.

If the brake chopper triggers a fault, fault F7862 "External fault 3" is triggered in the drive.
You can acknowledge malfunctions in the braking unit by pressing the "Acknowledge" button on the operator panel when the DC link voltage is present).

Duty cycles

Figure 4-20 Duty cycles for the braking resistors

4.9.13.4 Threshold switch

The response threshold at which the braking unit is activated and the DC link voltage generated during braking are specified in the following table.

Note

Since the braking energy is normally supplied back to the line and the braking chopper is only to be activated in the event of a power failure, the default threshold value setting should be retained rather than reduced.

\TWARNING

The threshold switch must only be used when the cabinet unit is switched off and the DC link capacitors are discharged.

Table 4-48 Response thresholds of the braking units

Rated voltage	Response threshold	Switch position	Comment
$380 \mathrm{~V}-480 \mathrm{~V}$	673 V	1	774 V is the delivery condition setting. With line voltages of between 380 V and 400 V , the response threshold can be set to 673 V to reduce the voltage stress on the motor and converter. This does, however, reduce the possible braking power with the square of the voltage $(677 / 774)^{2}=0.75$. The maximum possible braking power is, therefore, 75%.
	774 V	2	
$500 \mathrm{~V}-600 \mathrm{~V}$	841 V	1	967 V is the delivery condition setting. With a line voltage of 500 V , the response threshold can be set to 841 V to reduce the voltage stress on the motor and converter. This does, however, reduce the possible braking power with the square of the voltage $(841 / 967)^{2}=0.75$. The maximum possible braking power is, therefore, 75%.
	967 V	2	
$660 \mathrm{~V}-690 \mathrm{~V}$	1070 V	1	1158 V is the delivery condition setting. With a line voltage of 660 V , the response threshold can be set to 1070 V to reduce the voltage stress on the motor and converter. This does, however, reduce the possible braking power with the square of the voltage $(1070 / 1158)^{2}=0.85$. The maximum possible braking power is, therefore, 85%.
	1158 V	2	

Position of the threshold switch

The Braking Module is located in the top section of the cabinet unit in the discharged air duct of the Power Module. The position of the threshold switch can be taken from the figures below.

Figure 4-21 Braking Modules for frame sizes FX and GX

Figure 4-22 Braking Modules for frame sizes HX and JX

Position of the threshold switch

Note

The threshold switches for the Braking Modules are positioned on the panel as follows:

- Braking Modules for frame sizes FX and GX: position "1" is up; position " 2 " is down
- Braking Modules for frame sizes HX and JX: position "1" is back; position " 2 " is front

4.9.14 Thermistor motor protection unit (option L83/L84)

Description

This option includes the thermistor motor protection unit (with PTB approval) for PTC thermistor sensors (PTC resistor type A) for warning and shutdown. The power supply for the thermistor motor protection unit is provided inside the converter where the evaluation is also performed.

Option L83 triggers the "external alarm 1" (A7850) if a fault occurs.
Option L84 triggers the "external fault 1" (F7860) if a fault occurs.

Connection

Table 4-49 -B127/B125 - connection for thermistor motor protection device

Equipment designation	Description of function
$-\mathrm{B} 127: \mathrm{T} 1, \mathrm{~T} 2$	Thermistor motor protection (alarm)
$-\mathrm{B} 125: \mathrm{T} 1, \mathrm{~T} 2$	Thermistor motor protection (shutdown)

The PTC thermistor sensors are connected directly to terminals T1 and T2 of the evaluation unit.

Table 4-50 Maximum cable length for the sensor circuit

Line cross-section in $\mathrm{mm}^{\mathbf{2}}$	Line length in m
2,5	2×2800
1,5	2×1500
0,5	2×500

Diagnostics

Messages output during operation and in the event of faults (meaning of LEDs on -B125, B127) are described in the Operating Instructions in the customer DVD supplied with the equipment.

4.9.15 PT100 evaluation unit (option L86)

Description

Note

The PT100 evaluation unit and the parameters for the measurement channels are described in the "Additional Operating Instructions".

The PT100 evaluation unit can monitor up to six sensors. The sensors can be connected in a two or three-wire system. With the two-wire system, inputs xT 1 and xT 3 must be assigned. With the three-wire system, input xT2 must also be connected to -B140, -B141 ($x=1,2,3$). The limit values can be freely programmed for each channel. Shielded signal cables are recommended. If this is not possible, however, the sensor cables should at least be twisted in pairs.
In the delivery condition, the measurement channels are divided into two groups of 3 channels each. With motors, for example, this means that three PT100s in the stator windings and two PT100s in the motor bearings can be monitored. Unused channels can be suppressed via parameters.

The output relays are integrated in the internal fault and alarm train of the cabinet unit. The power for the PT100 evaluation unit is supplied and the evaluation itself executed within the converter.

When the temperature set for "alarm" is exceeded, "external alarm 1" (A7850) is triggered. When the temperature set for "fault" is exceeded, "external fault 1 " (F7860) is triggered.

Connection

Table 4-51 Terminals -B140, -B141 - connection for PT100 evaluation unit

Terminal	Technical specifications
$-B 140: 1 T 1-1 T 3$	$24-240 \mathrm{~V} \mathrm{AC} / D C ;$ PT100; sensor 1; group 1
$-B 140: 2 T 1-2 T 3$	$24-240 \mathrm{~V} \mathrm{AC/DC;} \mathrm{PT100;} \mathrm{sensor} \mathrm{2;} \mathrm{group} \mathrm{1}$
- B140: 3T1-3T3	$24-240 \mathrm{~V} \mathrm{AC/DC;} \mathrm{PT100;} \mathrm{sensor} \mathrm{3;} \mathrm{group} \mathrm{1}$
- B141: 1T1-1T3	$24-240 \mathrm{~V} \mathrm{AC/DC;} \mathrm{PT100;} \mathrm{sensor} \mathrm{1;} \mathrm{group} \mathrm{2}$
$-B 141: 2 T 1-2 T 3$	$24-240 \mathrm{~V} \mathrm{AC/DC;} \mathrm{PT100;} \mathrm{sensor} \mathrm{2;} \mathrm{group} \mathrm{2}$
$-B 141: 3 T 1-3 T 3$	$24-240 \mathrm{~V}$ AC/DC; PT100; sensor 3; group 2

Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Diagnostics

Messages output during operation and in the event of faults (meaning of LEDs on -B140, B141) are described in the Operating Instructions in the customer DVD supplied with the device.

4.9.16 Insulation monitor (option L87)

Description

In non-grounded systems (IT systems), the insulation monitor checks the entire electricallyconnected circuit for insulation faults. The insulation resistance as well as all the insulation faults from the mains supply to the motor in the cabinet are detected. Two response values (between $1 \mathrm{k} \Omega$ and $10 \mathrm{M} \Omega$) can be set. If a response value in undershot, an alarm is output to the terminal. A system fault is output via the signaling relay system.
When the cabinet unit is delivered, the plant configuration (one or several loads in one electrically-connected network) and the protection philosophy (immediate shutdown in the event of an insulation fault or restricted continued motion) can vary. This means that the signaling relays of the insulation monitor must be integrated by the customer in the fault and warning sequence.

Safety information

NOTICE

Only one insulation monitor can be used within the same electrically-connected network.

Note

When the insulation monitor is used, the connection bracket for the interference suppression capacitor must be removed (see "Electrical installation / Removing the connection bracket for the interference suppression capacitor with operation from an ungrounded supply").

Controls and displays on the insulation monitor

Figure 4-23 Controls and displays on the insulation monitor

Table 4-52 Meaning of the controls and displays on the insulation monitor

Position	Meaning
1	INFO key: To request standard information/ ESC key: Back menu function
2	TEST key: Call up self-test Arrow key up: Parameter change, scroll
3	RESET button: Delete insulation and fault messages Arrow key down: Parameter change, scroll
4	Menu key: Call up menu system Enter key: Confirm parameter change
5	Alarm LED 1 lights up: Insulation fault, first alarm threshold reached
6	Alarm LED 2 lights up: Insulation fault, second alarm threshold reached
7	LED lights up: System error present

Connection

Table 4-53 Connections on insulation monitor

Terminal	Technical specifications
A1	Supply voltage via 6 A melting fuse: 88 to 264 V AC, 77 to 286 V DC
A2	
L1	Connection of the 3 AC system to be monitored
L2	
AK	Connection to coupling device
KE	PE connection
T1	External test button
T2	External test button
R1	External reset key (NC contact or wire jumper otherwise the fault code is not stored)
R2	External reset key (NC contact or wire jumper)
F1	STANDBY with aid of F1, F2 function input:
F2	
M +	External $\mathrm{k} \Omega$ display, analog output ($0 \mu \mathrm{~A} \ldots 400 \mu \mathrm{~A}$)
M-	External $k \Omega$ display, analog output ($0 \mu \mathrm{~A} \ldots 400 \mu \mathrm{~A}$)
A	Serial interface RS 485 (termination by means of 120 ohm resistor)
B	
11	Signaling relay ALARM 1 (mid-position contact)
12	Signaling relay ALARM 1 (NC contact)
14	Signaling relay ALARM 1 (NO contact)
21	Signaling relay ALARM 2 (mid-position contact)
22	Signaling relay ALARM 2 (NC contact)
24	Signaling relay ALARM 2 (NO contact)

Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Diagnostics

For a description of messages output during operation and in the event of faults (meaning of LEDs on -B101), consult the Operating Instructions in the customer DVD supplied with the device.

4.9.17 Communication Board Ethernet CBE20 (option G33)

Description

Figure 4-24 Communication Board Ethernet CBE20

Interface module CBE20 is used for communication via PROFINET.
The module is inserted in the option slot of the Control Unit at the factory.
4 Ethernet interfaces are available on the module. Diagnosis of the function mode and communication are possible via LEDs.

Interface overview

Figure 4-25 Communication Board Ethernet CBE20

MAC address

The MAC address of the Ethernet interfaces is indicated on the upper side of the CBE20. The plate is not visible when the module is installed.

Note

Remove the module from the option slot of the Control Unit and note down the MAC address so that it is available during subsequent commissioning.

Removal/installation

CAUTION

The Option Board may only be inserted and removed when the Control Unit and Option Board are disconnected from the power supply.

Figure 4-26 Removing the CBE20 from the option slot on the Control Unit

X1400 Ethernet interface

Table 4-54 Connector X1400, port 1-4

	Pin	Signal name	Technical specifications
	1	RX+	Receive data +
	2	RX-	Receive data -
	3	TX+	Transmit data +
	---	Reserved, do not use	
	5	--	Reserved, do not use
	6	TX-	Transmit data -
7	---	Reserved, do not use	
	8	--	Reserved, do not use
	Screened backshell	M_EXT	Screen, permanently connected

4.9.18 CBC10 CAN Communication Board (option G20)

Description

Figure 4-27 CAN CBC10 Communication Board
The CBC10 CANopen communication board (CAN Communication Board) is used to connect drives in the SINAMICS drive system to higher-level automation systems with a CAN bus.

The CANopen Option Board uses two 9-pin sub D connectors for the connection to the CAN bus system.

The connectors can be used as inputs or outputs. Unused pins are plated through.
Among others, the following transmission rates are supported: 10, 20, 50, 125, 250, 500, 800 kBaud, and 1 Mbaud.

CAUTION

The Option Board may only be inserted and removed when the Control Unit and Option Board are disconnected from the power supply.
The CBC10 must only be operated by qualified personnel. The ESD notices must be observed.

The module is inserted in the option slot of the Control Unit at the factory.

Interface overview

Figure 4-28 CAN CBC10 Communication Board

CAN bus interface -X451

Table 4-55 CAN bus interface -X451

	Pin	Designation	Technical specifications
	1	Reserved, do not use	
	2	CAN_L	CAN signal (dominant low)
	3	CAN_GND	CAN ground
	4	Reserved, do not use	
	5	CAN_SHLD	Optional shield
	6	GND	CAN ground
	7	CAN_H	CAN signal
	8	Reserved, do not use	
	9	Reserved, do not use	

Type: 9-pin sub D socket

CAN bus interface -X452

Table 4-56 CAN bus interface -X452

	Pin	Designation	Technical specifications
	1	Reserved, do not use	
	2	CAN_L	CAN signal (dominant low)
	3	CAN_GND	CAN ground
	4	Reserved, do not use	
	5	CAN_SHLD	Optional shield
	6	GND	CAN ground
	7	CAN_H	CAN signal
	8	Reserved, do not use	
	9	Reserved, do not use	
: 9-pin sub			

Further information about communication via CAN bus

Note

Detailed and comprehensive instructions and information for the CANopen interface can be found in the accompanying Function Manual. This manual is available as additional documentation on the accompanying customer DVD.

4.9.19 SMC10 Sensor Module Cabinet-Mounted (option K46)

4.9.19.1 Description

The SMC10 Sensor Module is used for determining the actual motor speed and the rotor position angle. The signals received from the resolver are converted here and made available to the closed-loop controller via the DRIVE-CLiQ interface for evaluation purposes.

The following encoders can be connected to the SMC10 Sensor Module:

- Resolver 2 pole
- Multipole resolver
- KTY or PTC temperature sensor

Figure 4-29 SMC10 Sensor Module

4.9.19.2 Connection

X520: Encoder connection

Table 4-57 Encoder connection X520

	Pin	Signal name	Technical specifications
	1	Reserved, do not use	
	2	Reserved, do not use	
	3	S2	Resolver signal A (sin+)
	4	S4	Inverted resolver signal A (sin-)
	5	Ground	Ground (for internal shield)
	6	S1	Resolver signal B (cos+)
	7	S3	Inverted resolver signal B (cos-)
	8	Ground	Ground (for internal shield)
	9	R1	Resolver excitation positive
	10	Reserved, do not use	
	11	R2	Resolver excitation negative
	12	Reserved, do not use	
	13	+ Temp	Temperature sensor KTY84-1C130 / PTC
	14	Reserved, do not use	
	15	Reserved, do not use	
	16	Reserved, do not use	
	17	Reserved, do not use	
	18	Reserved, do not use	
	19	Reserved, do not use	
	20	Reserved, do not use	
	21	Reserved, do not use	
	22	Reserved, do not use	
	23	Reserved, do not use	
	24	Ground	Ground (for internal shield)
	25	- Temp	Temperature sensor KTY84-1C130 / PTC

Connector type: 25 -pin sub D connector (pin)

TDANGER
Risk of electric shock!
Only temperature sensors that meet the electrical separation specifications contained in
EN $61800-5-1$ may be connected to terminals "+Temp" and "-Temp".
If these instructions are not complied with, there is a risk of electric shock!

NOTICE
The KTY temperature sensor must be connected with the correct polarity.

Note

The maximum signal cable length is 130 m .

4.9.19.3 Connection example

Connection example: Resolver, 8 pole

Figure 4-30 Connection example: Resolver, 8 pole

Parameter settings

Table 4-58 Parameter settings for 8-pole resolver on SMC10

Parameters	Name	Value
$p 0400[0]$	Enc type selection	Resolver 4 speed (1004)
$p 0404[0]$	Encoder configuration effective	$800010(\mathrm{hex})$
$p 0404[0] .0$	Linear encoder	No
$p 0404[0] .1$	Absolute encoder	No
$p 0404[0] .2$	Multiturn encoder	No
$p 0404[0] .3$	Track A/B square-wave	No
$p 0404[0] .4$	Track A/B sinusoidal	Yes
$p 0404[0] .5$	Track C/D	No
$p 0404[0] .6$	Hall sensor	No
$p 0404[0] .8$	EnDat encoder	No
$p 0404[0] .9$	SSI encoder	No
$p 0404[0] .12$	Equidistant zero mark	No
$p 0404[0] .13$	Irregular zero mark	No
$p 0404[0] .14$	Distance-coded zero mark	No
$p 0404[0] .15$	Commutation with zero mark	No
$p 0404[0] .16$	Acceleration	No
$p 0404[0] .17$	Track A/B analog	No
$p 0404[0] .20$	Voltage level 5 V	No
$p 0404[0] .21$	Voltage level 24 V	No
$p 0404[0] .22$	Remote sense (only SMC30)	No
$p 0404[0] .23$	Resolver excit.	Yes
$p 0405[0]$	Square-wave signal encoder A/B track	$0($ hex
$p 0408[0]$	Rotary encoder pulse No.	4

4.9.20 SMC20 Sensor Module Cabinet-Mounted (option K48)

4.9.20.1 Description

Description

The SMC20 Sensor Module is used for determining the actual motor speed and the path length. The signals emitted by the rotary pulse encoder are converted here and made available to the closed-loop controller via the DRIVE-CLiQ interface for evaluation purposes.

The following encoders can be connected to the SMC20 Sensor Module:

- Incremental encoder sin/cos 1 Vpp
- Absolute encoder for EnDat and SSI (with 5 V operating voltage)
- KTY or PTC temperature sensor

Figure 4-31 SMC20 Sensor Module

4.9.20.2 Connection

X520: Encoder connection

Table 4-59 Encoder connection X520

	Pin	Signal name	Technical specifications		
\|			1	P encoder	Encoder supply
	2	M encoder	Ground for encoder power supply		
	3	A	Incremental signal A		
	4	A*	Inverse incremental signal A		
	5	Ground	Ground (for internal shield)		
	6	B	Incremental signal B		
	7	B*	Inverse incremental signal B		
	8	Ground	Ground (for internal shield)		
	9	Reserved, do not use			
	10	Clock	Clock, EnDat interface, SSI clock		
	11	Reserved, do not use			
	12	Clock*	Inverted clock, EnDat interface, inverted SSI clock		
	13	+Temp	Temperature sensor KTY84-1C130 / PTC		
	14	P sense	Sense input encoder power supply		
	15	Data	Data, EnDat interface, SSI data		
	16	M sense	Ground sense input encoder power supply		
	17	R	Reference signal R		
	18	R*	Inverse reference signal R		
	19	C	Absolute track signal C		
	20	C*	Inverted absolute track signal C		
	21	D	Absolute track signal D		
	22	D*	Inverted absolute track signal D		
	23	Data*	Inverted data, EnDat interface, inverted SSI data		
	24	Ground	Ground (for internal shield)		
	25	-Temp	Temperature sensor KTY84-1C130 / PTC		

Connector type: 25 -pin sub D connector (pin)

DANGER

Risk of electric shock!

Only temperature sensors that meet the electrical separation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

NOTICE
The KTY temperature sensor must be connected with the correct polarity.

Note

The maximum signal cable length is 100 m .

4.9.20.3 Connection example

Connection example: Incremental encoder sin/cos 1 Vpp, 2048

Figure 4-32 Connection example: Incremental encoder sin/cos 1 Vpp, 2048

Parameter settings

Table 4-60 Parameter settings for incremental encoder sin/cos on SMC20

Parameters	Name	Value
$p 0400[0]$	Enc type selection	$2048,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R} \mathrm{(2002)}$
$p 0404[0]$	Encoder configuration effective	$101010(\mathrm{hex})$
$p 0404[0] .0$	Linear encoder	No
$p 0404[0] .1$	Absolute encoder	No
$p 0404[0] .2$	Multiturn encoder	No
$p 0404[0] .3$	Track A/B square-wave	No
$p 0404[0] .4$	Track A/B sinusoidal	Yes
$p 0404[0] .5$	Track C/D	No
$p 0404[0] .6$	Hall sensor	No
$p 0404[0] .8$	EnDat encoder	No
$p 0404[0] .9$	SSI encoder	No
$p 0404[0] .12$	Equidistant zero mark	Yes
$p 0404[0] .13$	Irregular zero mark	No
$p 0404[0] .14$	Distance-coded zero mark	No
$p 0404[0] .15$	Commutation with zero mark	No
$p 0404[0] .16$	Acceleration	No
$p 0404[0] .17$	Track A/B analog	No
$p 0404[0] .20$	Voltage level 5 V	Yes
$p 0404[0] .21$	Voltage level 24 V	No
$p 0404[0] .22$	Remote sense (only SMC30)	No
$p 0404[0] .23$	Resolver excit.	Yes
$p 0405[0]$	Square-wave signal encoder A/B track	$0(h e x)$
$p 0407[0]$	Linear encoder scale	0
$p 0408[0]$	Rotary encoder pulse No.	2048
$p 0410[0]$	Encoder inversion actual value	$0(h e x)$
$p 0425[0]$	Encoder, rotary zero mark distance	2048

4.9.21 SMC30 Sensor Module Cabinet-Mounted (option K50)

4.9.21.1 Description

The SMC30 Sensor Module is used for determining the actual motor speed. The signals emitted by the rotary pulse encoder are converted here and made available to the closedloop controller via the DRIVE-CLiQ interface for evaluation purposes.

The following encoders can be connected to the SMC30 Sensor Module:

- TTL encoder
- HTL encoder
- SSI encoder
- KTY or PTC temperature sensor

Table 4-61 Connectable encoders with supply voltage

Encoder type	X520 (D-Sub)	X521 (terminal)	X531 (terminal)	Open-circuit monitoring	Remote sense
HTL bipolar 24 V	Yes	Yes	Yes	Yes	No
HTL unipolar 24 V	Yes	Yes	Yes	No	No
TTL bipolar 24 V	Yes	Yes	Yes	Yes	No
TTL bipolar 5 V	Yes	Yes	Yes	Yes	To X520
TTL unipolar	No	No	No	No	No
SSI 24 V/5 V	Yes	Yes	Yes	No	No

Table 4-62 Maximum signal cable lengths

Encoder type	Maximum signal cable length in m
TTL	100
HTL unipolar	100
HTL bipolar	300
SSI	100

Note

Because the physical transmission media is more robust, the bipolar connection should always be used for HTL encoders. The unipolar connection should only be used if the encoder type does not output push-pull signals.

NOTICE

Only one encoder system may be connected to the encoder module, either at X520 or at X521/X531. The corresponding unused interface must not be used.

Table 4-63 Specification of measuring systems that can be connected

Parameter	Designation	Threshold 4)	Min.	Max.	Unit
High signal level (TTL bipolar at X520 or X521/X531) ${ }^{1)}$	$U_{\text {Hdiff }}$		2	5	V
Low signal level (TTL bipolar at X520 or X521/X531) ${ }^{1)}$	ULdiff		-5	-2	V
High signal level (HTL unipolar)	$\mathrm{UH}^{4}{ }^{4}$	High	17	Vcc	V
		Low	10	Vcc	V
Low signal level (HTL unipolar)	$\left.\mathrm{UL}^{4}\right)$	High	0	7	V
		Low	0	2	V
High signal level (HTL bipolar) ${ }^{2)}$	$U_{\text {Hdiff }}$		3	Vcc	V
Low signal level (HTL bipolar) ${ }^{2)}$	ULdiff		-Vcc	-3	V
High signal level (SSI bipolar at X520 or X521/X531) ${ }^{1)}$	$U_{\text {Hdiff }}$		2	5	V
Low signal level (SSI bipolar at X520 or X521/X531) ${ }^{1)}$	ULdiff		-5	-2	V
Signal frequency	f_{5}		-	300	kHz
Edge clearance	$t_{\text {min }}$		100	-	ns
Zero pulse inactive time (before and after $\mathrm{A}=\mathrm{B}=$ high)	tıo		640	$\left(\mathrm{t}_{\text {ALo-BHi }}-\mathrm{thil}^{\text {i }}\right.$ /2 ${ }^{\text {3) }}$	ns
Zero pulse active time (while $A=B=$ high and beyond)	$\mathrm{thii}^{\text {i }}$		640	$\mathrm{t}_{\text {ALo-BHi }}-2 \mathrm{xt} \mathrm{t}^{\text {a }}{ }^{3}$	ns

1) Other signal levels according to the RS 422 standard.
2) The absolute level of the individual signals varies between 0 V and V_{cc} of the measuring system.
${ }^{3)} t_{\text {ALo-BHi }}$ is not a specified value, but is the time between the falling edge of track A and the next but one rising edge of track B.
${ }^{4)}$ The threshold can be set via p0405.04 (switching threshold); the setting on delivery is "Low".

Figure 4-33 Signal characteristic of the A and B track between two edges: Time between two edges with pulse encoders

Figure 4-34 Position of the zero pulse to the track signals
For encoders with a 5 V supply at $\mathrm{X} 521 / \mathrm{X} 531$, the cable length is dependent on the encoder current (this applies cable cross-sections of $0.5 \mathrm{~mm}^{2}$):

Figure 4-35 Signal cable length as a function of the sensor current consumption

For encoders without Remote Sense the permissible cable length is restricted to 100 m (reason: the voltage drop depends on the cable length and the encoder current).

Figure 4-36 SMC30 Sensor Module

4.9.21.2 Connection

X520: Encoder connection 1 for HTL/TTL/SSI encoder with open-circuit monitoring

Table 4-64 Encoder connection X520

	Pin	Signal name	Technical specifications
	1	+Temp	Temperature sensor connection KTY84-1C130/PTC
	2	Clock	SSI clock
	3	Clock*	Inverse SSI clock
	4	P encoder $5 \mathrm{~V} / 24 \mathrm{~V}$	Encoder supply
	5	P encoder $5 \mathrm{~V} / 24 \mathrm{~V}$	Encoder supply
	6	P sense	Sense input encoder power supply
	7	M encoder (M)	Ground for encoder power supply
	8	-Temp	Temperature sensor connection KTY84-1C130/PTC
	9	M sense	Ground sense input
	10	R	Reference signal R
	11	R*	Inverse reference signal R
	12	B*	Inverse incremental signal B
	13	B	Incremental signal B
	14	A*/data*	Inverted incremental signal A / inverted SSI data
	15	A/data	Incremental signal A / SSI data

Connector type: 15-pin socket

DANGER

Risk of electric shock!
Only temperature sensors that meet the electrical separation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

CAUTION

The encoder power supply can be parameterized to 5 V or 24 V . The encoder may be destroyed if you enter the wrong parameter.

NOTICE

The KTY temperature sensor must be connected with the correct polarity.

X521 / X531: Encoder connection 2 for HTL/TTL/SSI encoder with open-circuit monitoring

Table 4-65 Encoder connection X521

	Terminal	Signal name	Technical specifications
	1	A	Incremental signal A
	2	A*	Inverse incremental signal A
	3	B	Incremental signal B
	4	B*	Inverse incremental signal B
	5	R	Reference signal R
	6	R*	Inverse reference signal R
	7	CTRL	Control signal
	8	M	Ground via inductivity

Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

Note

When unipolar HTL encoders are used, A^{*}, B^{*}, and R^{*} must be jumpered on the terminal block with M encoder (X531).

Table 4-66 Encoder connection X531

	Terminal	Signal name	Technical specifications
	1	P encoder $5 \mathrm{~V} / 24 \mathrm{~V}$	Encoder supply
	2	M encoder	Ground for encoder power supply
	3	-Temp	Temperature sensor connection KTY84-1C130/PTC
	4	+Temp	
	5	Clock	SSI clock
	6	Clock*	Inverse SSI clock
	7	Data	SSI data
	8	Data*	Inverted SSI data

Max. connectable cross-section: $1.5 \mathrm{~mm}^{2}$

danger

Risk of electric shock!
Only temperature sensors that meet the electrical separation specifications contained in EN 61800-5-1 may be connected to terminals "+Temp" and "-Temp".

If these instructions are not complied with, there is a risk of electric shock!

Note

Note that when the encoder is connected via terminals, the cable shield must be applied to the module.

NOTICE
The KTY temperature sensor must be connected with the correct polarity.

4.9.21.3 Connection examples

Connection example 1: HTL encoder, bipolar, without zero marker -> p0405 = 9 (hex)

Figure 4-37 Connection example 1: HTL encoder, bipolar, without zero marker

Connection example 2: TTL encoder, unipolar, without zero marker -> p0405 = A (hex)

Figure 4-38 Connection example 2: TTL encoder, unipolar, without zero marker

4.9.22 Voltage Sensing Module for determining the actual motor speed and the phase angle (option K51)

Voltage recording module VSM10 is used to operate a permanent-field synchronous machine without encoder with the requirement for switching to a machine which is already running (capture function).

The terminals on the Voltage Sensing Module (-B51) are pre-assigned in the factory and must not be changed by the customer.

To commission the function, the permanent-field synchronous machine without encoder must be input and "Flying restart" activated with p1200.

4.9.23 Customer terminal block (option G60)

Description

With option G60, a TM31 interface module (customer terminal block -A60) is already installed in the cabinet unit. This provides the following interfaces:

- 8 digital inputs
- 4 bidirectional digital inputs/outputs
- 2 relay outputs with changeover contact
- 2 analog inputs
- 2 analog outputs
- 1 temperature sensor input (KTY84-130/PTC)

The description of the interfaces is given in the Chapter "Electrical Installation/Signal connections"

Integration of the interfaces takes place using pre-interconnections prepared in the factory, which can be selected during commissioning.

4.9.24 Additional customer terminal block TM31 (option G61)

Description

With option G60, a TM31 interface module (customer terminal block -A60) is already installed in the cabinet unit. A second module (-A61) provides the following additional digital and analog inputs/outputs in the drive system:

- 8 digital inputs
- 4 bidirectional digital inputs/outputs
- 2 relay outputs with changeover contact
- 2 analog inputs
- 2 analog outputs
- 1 temperature sensor input (KTY84-130/PTC)

The second TM31 must be installed on the system side. Default settings are not provided.

4.9.25 Terminal Board TB30 (option G62)

Description

Figure 4-39 TB30 Terminal Board
The TB30 Terminal Board supports the addition of digital inputs/digital outputs and analog inputs/analog outputs to the Control Unit.

The following are located on the TB30 Terminal Board:

- Power supply for digital inputs/digital outputs
- 4 digital inputs
- 4 digital outputs
- 2 analog inputs
- 2 analog outputs

The TB30 Terminal Board plugs into the option slot on the Control Unit.
A shield connection for the signal cable shield is located on the Control Unit.

CAUTION

The Option Board may only be inserted and removed when the Control Unit and Option Board are disconnected from the power supply.

The module is inserted in the option slot of the Control Unit at the factory.

Interface overview

X424
Power supply for
Digital outputs

X481
Digital inputs/outputs

X482
Analog inputs/outputs

Figure 4-40 TB30 terminal board interface overview

Connection overview

Figure 4-41 Connection overview TB30 Terminal Board

X424 power supply, digital outputs

Table 4-67 Terminal block X424

	Terminal	Function	Technical specifications
	+	Power supply	Voltage: 24 V DC (20.4 V-28.8 V) Current consumption: Max. 4 A (per digital output max. 0.5 A) Max. current via jumper in connector: 20 A at $55^{\circ} \mathrm{C}$
	+	Power supply	
	M	Ground	
	M	Ground	
x x. connect	le cross-s	2.5 mm²	

Note

The two "+" and " M " terminals are jumpered in the connector. This ensures that the supply voltage is looped through.
This power supply is required for the digital outputs only. The electronics power supply and the power supply for the analog inputs/outputs are drawn via the option slot of the Control Unit.

Note

The power supply of the digital outputs and the electronic power supply of the Control Unit are isolated.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

X481 Digital inputs/outputs

Table 4-68 Terminal block X481

	Terminal	Designation 1)	Technical specifications
		DI 0	Voltage: - 3 V to 30 V
Typical current consumption: 10 mA at 24 VDC			
Ground reference: X424. M			
Input delay:			
- for "0" to "1": $20 ~ \mu \mathrm{~s}$			
- for "1" to "0": $100 \mu \mathrm{~s}$			
Level (incl. ripple)			
High level: 15 V to 30 V			
Low level: -3 V to 5 V			

${ }^{1)}$ DI: digital input, DO: Digital output

Note

An open input is interpreted as "low".
The power supply and the digital inputs/outputs are isolated from the Control Unit.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

X482 Analog inputs/outputs

Table 4-69 Terminal block X482

${ }^{1)} \mathrm{AI}$: analog input, AO : Analog output

Note

An open input is interpreted as approximately " 0 V ".
The power supply of the analog inputs/outputs is drawn via the option slot of the Control Unit and not via X424.

The shield is connected to the Control Unit.

CAUTION

The common-mode range must not be infringed.
The analog differential voltage signals can have a maximum offset voltage of $+/-30 \mathrm{~V}$ with respect to the ground potential. If the range is infringed, incorrect results may occur during analog/digital conversion.

Shield connection of the TB30 on the Control Unit

Figure 4-42 TB30 shield connection
The permissible bending radii for the cables must not be exceeded when the cables are being installed.

4.9.26 Safety license for 1 axis (option K01)

Description

The Safety Integrated Basic functions do not require a license. A license is, however, required for each axis with safety functions in the case of Safety Integrated Extended functions. It is irrelevant which safety functions are used and how many.

With option K01, the Safety license for 1 axis is included on the CompactFlash Card and activated.

Licenses

The required license can optionally be ordered with the CompactFlash card.
Subsequent licensing is realized in the Internet using the "WEB License Manager" by generating a license key:
http://www.siemens.com/automation/license

Activation

The associated license key is entered into parameter p9920 in the ASCII code. The license key can be activated via parameter p9921=1.

Diagnostics

An insufficient license is indicated via the following alarm and LED:

- Alarm A13000 \rightarrow License not sufficient
- LED READY \rightarrow Flashes green/red at 0.5 Hz

Note

Safety Integrated Function Manual

Detailed and comprehensive instructions and information for the Safety Integrated functions can be found in the accompanying Function Manual. This manual is available as additional documentation on the customer DVD supplied with the device.

4.9.27 Terminal module for activation of "Safe Torque Off" and "Safe STOP 1" (option K82)

Description

Option K82 (terminal module for activating "Safe Torque Off" and "Safe Stop 1") is used for isolated activation via a variable control-voltage range of the safety functions already present in the standard version, which can also be used without option K82.

Use option K82 to control the following Safety Integrated functions (terminology according to draft IEC 61800-5-2):

- Safe torque off (STO)
- Safe Stop 1 (SS1, time-controlled)

Note

The integrated safety functions, starting from the Safety Integrated (SI) input terminals of the SINAMICS components (Control Unit, Motor Module), satisfy the requirements according to EN 61800-5-2, EN 60204-1, EN ISO 13849-1 category 3 (formerly EN 954-1) for Performance Level (PL) d and EN 61508 SIL 2.

In combination with option K82, the requirements specified in EN 61800-5-2, EN 60204-1 as well as in EN ISO 13849-1 Category 3 (formerly EN 954-1) are satisfied for Performance Level (PL) d and EN 61508 SIL 2.

Note

Detailed and comprehensive instructions and information for the Safety Integrated functions can be found in the accompanying Function Manual. This manual is available as additional documentation on the customer DVD supplied with the device.

4.9.28 Terminal Module TM54F (option K87)

Figure 4-43 Terminal Module TM54F (option K87)

Description

The TM54F Terminal Module is a terminal expansion module with safe digital inputs and outputs for controlling the Safety Integrated Extended functions of SINAMICS.

The TM54F is directly connected to a Control Unit via DRIVE-CLiQ.
TM54F features the following interfaces:

Table 4-70
Overview of the TM54F interfaces

Type	Quantity
Fail-safe digital outputs (F-DO)	4
Fail-safe digital inputs (F-DI)	10
Sensor ${ }^{1}$) power supplies, dynamic response supported ${ }^{2}$)	2
Sensor ${ }^{11}$ power supply, no dynamic response	1
Digital inputs to check F_DO for a test stop	4

1) Sensors: Fail-safe devices to issue commands and sense, for example, emergency stop pushbuttons and safety locks, position switches and light arrays/light curtains.
${ }^{2)}$ Dynamic response: The sensor power supply is switched on and off by the TM54F when the forced dormant error detection is active for the sensors, cable routing, and the evaluation electronics.

The TM54F provides 4 fail-safe digital outputs and 10 fail-safe digital inputs. A fail-safe digital output consists of a 24 V DC switching output, a ground switching output, and a digital input for checking the switching state. A fail-safe digital input comprises two digital inputs.

Note

The rated values of the F-DO meet the requirements of EN 61131-2 for digital DC outputs with 0.5 A rated current.

The operating ranges of the F-DI meet the requirements of EN 61131-2 for Type 1 digital inputs.

Note

Please note that the F-Dls must take the form of shielded cables if they are $>30 \mathrm{~m}$ in length.

Note

Safety Integrated Function Manual

Detailed and comprehensive instructions and information for the Safety Integrated functions can be found in the accompanying Function Manual. This manual is available as additional documentation on the customer DVD supplied with the device.

4.9.29 Safe Brake Adapter SBA 230 V AC (option K88)

Description

Safe Brake Control (SBC) is a safety function that is used in safety-related applications. In the no-current state, the brake acts on the motor of the drive using spring force. The brake is released (opened) when current flows through it (=low active).

The Safe Brake Adapter 230 V AC is installed in the cabinet unit in the factory. An infeed is connected to terminal -X12 on the Safe Brake Adapter for the power supply. For control, a connection is established between the Safe Brake Adapter and the Control Interface Module using a cable harness installed in the factory.

For controlling the brake, on the plant side, a connection must be established between terminal -X14 on the Safe Brake Adapter and the brake.

\} WARNING
 If, on the plant site, a 24 V DC brake is connected to option K88, Safe Brake Adapter 230 V AC, then this can damage the Safe Brake Adapter. This can result in the following undesirable effects:
 - Closing the brake is not displayed on the LEDS.
 - The fuse is ruptured.
 - The contact service life of the relay is reduced.

! WWARNING
 Maximum cable length of the brake control
 The maximum permissible cable length of 300 m between the Safe Brake Adapter 230 V $A C$ and the brake must be observed. To accurately calculate the maximum cable length, see the SINAMICS Low Voltage Engineering Manual on the customer DVD supplied with the device.

Fast de-energization

In some cases, DC brakes are operated with an upstream brake rectifier (230 V AC input side) for fast de-energization. Some brake rectifier types are equipped with two additional connections for switching the brake load on the DC side. This allows the brake coil to be quickly de-energized, i.e. braking starts earlier.

The Safe Brake Adapter supports such fast de-energization using the two additional connections -X15:1 and -X15:2, which are designed to control a contactor. In turn, the relay is responsible for switching the brake current on the DC side. This function does not belong to safe brake control.

Notes

Note

Replacement fuses

The order numbers for spare fuses can be taken from the spare parts list supplied.

Note

The integrated safety functions, starting from the Safety Integrated (SI) input terminals of the SINAMICS components (Control Unit, Motor Module), satisfy the requirements according to EN 61800-5-2, EN 60204-1, DIN EN ISO 13849-1 Category 3 (formerly EN 954-1) for Performance Level (PL) d and IEC 61508 SIL2.
With the Safe Brake Adapter (option K88), the requirements specified in EN 61800-5-2, EN 60204-1, DIN EN ISO 13849-1 Category 3 (formerly EN954-1) as well as for Performance Level (PL) d and IEC 61508 SIL 2 are fulfilled.

Note

Safety Integrated Function Manual

Detailed and comprehensive instructions and information for the Safety Integrated functions can be found in the accompanying Function Manual. This manual is available as additional documentation on the customer DVD supplied with the device.

4.9.30 Safe Brake Adapter SBA 24 V DC (option K89)

Description

Safe Brake Control (SBC) is a safety function that is used in safety-related applications. In the no-current state, the brake acts on the motor of the drive using spring force. The brake is released (opened) when current flows through it (=low active).

The Safe Brake Adapter 24 V DC is installed in the cabinet unit in the factory. An infeed is connected to terminal -X13 on the Safe Brake Adapter to provide the necessary power. For control, a connection is established between the Safe Brake Adapter and the Control Interface Module using a cable harness installed in the factory.

For controlling the brake, on the plant side, a connection must be established between terminal -X14 on the Safe Brake Adapter and the brake.

> | MWARNING |
| :--- |
| Maximum cable length of the brake control |
| The maximum permissible cable length of 30 m between the Safe Brake Adapter 24 V DC |
| and the brake must be observed. To accurately calculate the maximum cable length, see |
| the SINAMICS Low Voltage Engineering Manual on the customer DVD supplied with the |
| device. |

Notes

Note

Replacement fuses
The order numbers for spare fuses can be taken from the spare parts list supplied.

Note

The integrated safety functions, starting from the Safety Integrated (SI) input terminals of the SINAMICS components (Control Unit, Motor Module), satisfy the requirements according to EN 61800-5-2, EN 60204-1, DIN EN ISO 13849-1 Category 3 (formerly EN 954-1) for Performance Level (PL) d and IEC 61508 SIL2.

With the Safe Brake Adapter (option K89), the requirements specified in EN 61800-5-2, EN 60204-1, DIN EN ISO 13849-1 Category 3 (formerly EN954-1) as well as for Performance Level (PL) d and IEC 61508 SIL 2 are fulfilled.

Note

Safety Integrated Function Manual

Detailed and comprehensive instructions and information for the Safety Integrated functions can be found in the accompanying Function Manual. This manual is available as additional documentation on the customer DVD supplied with the device.

4.9.31 Control Unit CU320-2 PN (option K95)

With Option K95, the cabinet unit contains a CU320-2 PN control unit, which handles the communication and open-loop/closed-loop control functions.
A PROFINET interface is available for higher-level communication.

Connection overview

1) LED reserved

Figure 4-44 Connection overview of CU320-2 PN Control Unit (without cover)

Figure 4-45 Interface X140 and measuring sockets T0 to T2 - CU320-2 PN (view from below)

CAUTION

The CompactFlash card may only be inserted or removed when the Control Unit is in a novoltage condition.
If not observed, this can result in a loss of data during operation and possibly a plant standstill.

CAUTION

The CompactFlash card is an electrostatic sensitive component. ESD regulations must be observed when inserting and removing the card.

CAUTION

The Option Board may only be inserted and removed when the Control Unit and Option Board are disconnected from the power supply.

Figure 4-46 Connection example of a CU320-2 PN Control Unit

Note

In the circuit example, the power for the digital inputs (terminals -X122 and -X132) is supplied from the internal 24 V supply of the control unit (terminal -X124).

The two groups of digital inputs (optocoupler inputs) each have a common reference potential (ground reference M1 or M2). To close the circuit when the internal 24 V supply is used, the reference grounds $\mathrm{M} 1 / \mathrm{M} 2$ are connected to internal ground M .

If power is not supplied from the internal 24 V supply (terminal -X124), the jumper between grounds M 1 and M or M 2 and M must be removed in order to avoid potential rounding. The external ground must then be connected to terminals M1 and M2.

X100 - X103: DRIVE-CLiQ interface

Table 4-71 DRIVE-CLiQ interface X100-X103

	Pin	Signal name	Technical data
	1	TXP	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	
	5	Reserved, do not use	
	6	RXN	Receive data -
	7	Reserved, do not use	
	8	Reserved, do not use	
	A	+ (24 V)	Power supply
	B	M (0 V)	Electronics ground
Connector ty Blanking pla	RJ45 sock or DRIVE-	erfaces (50 pcs.) Order numb	A00-0AAO

X122: Digital inputs/outputs

Table 4-72 Terminal block X122

1) DI: digital input; DI/DO: Bidirectional digital input/output; M: Electronics ground M1: Ground reference
2) The rapid inputs can be used as probe inputs or as inputs for the external zero mark.
3) Data for: $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}$; load 48Ω; high ("1") $=90 \% \mathrm{~V}_{\text {out; }}$ low ("0") $=10 \% \mathrm{~V}_{\text {out }}$

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

X132: Digital inputs/outputs

Table 4-73 Terminal block X132

1) DI: digital input; DI/DO: Bidirectional digital input/output; M : Electronics ground; M2: Ground reference
${ }^{2)}$ The rapid inputs can be used as probe inputs or as inputs for the external zero mark.
2) Data for: $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}$; load 48Ω; high ("1") $=90 \% \mathrm{~V}_{\text {out; }}$ low ("0") $=10 \% \mathrm{~V}_{\text {out }}$

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

X127: LAN (Ethernet)

Table 4-74 X127 LAN (Ethernet)

	Pin	Designation	Technical data
	1	TXP	Ethernet transmit data +
	2	TXN	Ethernet transmit data -
	3	RXP	Ethernet receive data +
	4	Reserved, do not use	
	5	Reserved, do not use	
	6	RXN	Ethernet receive data -
	7	Reserved, do not use	
	8	Reserved, do not use	
Connector type: RJ45 socket			

Note

The X127 interface supports commissioning and diagnostic functions. It must not be connected for normal operation.

For diagnostic purposes, the X127 LAN interface features a green and a yellow LED. These LEDs indicate the following status information:

Table 4-75 LED statuses for the X127 LAN interface

LED	State	Description
Green	On	10 or 100 Mbit link available
	Off	Missing or faulty link
Yellow	On	Sending or receiving
	Off	No activity

X140: serial interface (RS232)

The AOP30 operator panel for operating/parameterizing the device can be connected via the serial interface. The interface is located on the underside of the Control Unit.

Table 4-76 Serial interface (RS232) X140

	Pin	Designation	Technical specifications
	2	RxD	Receive data
	3	TxD	Transmit data
			Ground

CAUTION

The connection cable to AOP30 may only contain the three contacts which are shown in the drawing; a completely allocated cable may not be used.

X150 P1/P2 PROFINET interface

Table 4-77 X150 P1 and X150 P2 PROFINET

	Pin	Signal name	Technical data
	1	RXP	Receive data +
	2	RXN	Receive data -
	3	TXP	Transmit data +
	4	Reserved, do not use	
	5	Reserved, do not use	
	6	TXN	Transmit data -
	7	Reserved, do not use	
	8	Reserved, do not use	
onnector ty able type:	RJ45 sock OFINET		

Note

The PROFINET interfaces support Auto MDI(X). It is therefore possible to use both crossover and non-crossover cables to connect the devices.

For diagnostic purposes, the two PROFINET interfaces are each equipped with a green and a yellow LED. These LEDs indicate the following status information:

Table 4-78 LED states on the X150 P1/P2 PROFINET interface

LED	Color	State	Description
Link port	-	Off	Missing or faulty link
	Green	Continuous light	10 or 100 Mbit link available
	-	Off	No activity
	Yellow	Flashing light	Data is being received or sent at port x

T0, T1, T2: Measuring sockets

Table 4-79 Measuring sockets T0, T1, T2

	Socket	Function	Technical specifications
T 0		Measuring socket 0	Voltage: 0 V to 5 V
Resolution: 8 bits			

Note

The measuring sockets support commissioning and diagnostic functions. It must not be connected for normal operation.

Slot for the CompactFlash card

Figure 4-47 CompactFlash card slot

CAUTION

The CompactFlash card may only be removed and inserted when the Control Unit is in a voltage-free state; doing this during operation instead could result in a loss of data and, where applicable, a plant standstill.
The CompactFlash card may only be inserted as shown in the photo above (arrow at top right).

CAUTION

The CompactFlash card is an electrostatic sensitive component. ESD regulations must be observed when inserting and removing the card.

NOTICE
 When returning a defective Control Unit, remove the CompactFlash card and keep it for insertion in the replacement unit. This is important otherwise the data on the CompactFlash card (parameters, firmware, licenses, and so on) may be lost.

Note

Please note that only SIEMENS CompactFlash cards can be used to operate the Control Unit.

4.9.32 NAMUR terminal block (option B00)

Description

The terminal block is designed in accordance with the requirements and guidelines defined by the standards association for measurement and control systems in the chemical industry (NAMUR - recommendation NE37), that is, certain device functions are assigned to fixed terminals. The inputs and outputs assigned to the terminals fulfill PELV ("protective extra-low voltage and protective separation") requirements.
The terminal block only contains the necessary functions. Unlike the NAMUR recommendation, optional terminals are not available.

The 24 V DC is supplied on the line side via terminals $-\times 2: 1-3$ (protected with 1 A within the converter). You must ensure that the PELV safety requirements (protective extra-low voltage with protective separation) are fulfilled.

To monitor the temperature of explosion-proof motors, option B00 features a PTC thermistor release mechanism with PTB approval. Shutdown if limit value is exceeded. The associated PTC sensor is connected to terminal -X3:90, 91.

The terminal block is divided into three sections:

- -X1; -X2: for the power connections
- -X2: for signal cables, which must fulfill PELV requirements with electrical separation.
- -X3: for connecting the motor PTC thermistor detector

Connection

Table 4-80 Terminal block -X2 - connection 24 V supply

Terminal	Designation	Default	Comment
1	M	Reference conductor	
2	P24 V	24 V DC supply	Protected internally with fuse (1 A)
3	P24 V	24 V DC outgoing circuit	

Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Table 4-81 Terminal block -X2 - connection NAMUR control terminal block

Terminal	Designation	Default	Comment
10	DI	ON/OFF (dynamic)/ ON/OFF (static)	Effective operation can be coded by a wire jumper on terminal -X400:9;10 (delivery condition: jumper inserted): jumper inserted: ON/OFF (dynamic)/ jumper removed: ON/OFF (static)
11	DI	OFF (dynamic)	
12	DI	Faster	Motorized potentiometer
13	DI	Slower	Motorized potentiometer
14	DI	RESET	Acknowledge error
15	DI	Interlock	OFF2
16	DI	Counterclockwise	" 0 " signal: CW phase sequence "1" signal: CCW phase sequence
17	DI	Power Disconnection	EMERGENCY OFF circuit
18			" 0 " signal: Power disconnection "1" signal: No power disconnection
30	DO (COM)	Ready for operation	Relay output (NO contact)
31	DO (NO)		
32	DO (COM)	Motor turning	Relay output (NO contact)
33	DO (NO)		
34	DO (NO)	Fault	Relay output (two-way contact)
35	DO (COM)		
36	DO (NC)		
50/51	Al 0/4-20 mA	Speed setpoint	Default: 4 to 20 mA
60/61	AO 0/4-20 mA	Motor frequency	Default: 4-20 mA (defaulted with motor frequency, can be reparameterized for other variables)
62/63	AO 0/4-20 mA	Motor current	Default: 4-20 mA (defaulted with motor current, can be reparameterized for other variables)

Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Table 4-82 Terminal block -X3 - connection for the motor PTC thermistor sensor

Terminal	Designation	Default	Comment
$90 / 91$	AI	Connection for a PTC thermistor	Shutdown if limit value is exceeded.

Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Adapting the analog inputs and outputs

If the setting ranges of the analog inputs and outputs are to be changed, the associated interface converters (-T401 / -T402 / -T403) must be set. The corresponding interface converter must be removed for this purpose and the rotary switch on the side ("S1") turned to the corresponding position.

Table 4-83 Terminal block -X2 - Adaptation of analog inputs and outputs

Terminal	Designation	Item code of interface converter	Settings on rotary switch S1
$50 / 51$	AI	T 401	$2: 0-20 \mathrm{~mA}$ $4: 4-20 \mathrm{~mA}$ (preassignment)
$60 / 61$	AO	T 402	$1: 0-20 \mathrm{~mA}$ $2: 4-20 \mathrm{~mA}$ (preassignment)
$62 / 63$			$1: 0-20 \mathrm{~mA}$ $2: 4-20 \mathrm{~mA}$ (preassignment)

4.9.33 Electrically separate 24 V DC power supply for NAMUR (option B02)

Description

If the customer cannot provide a separate 24 V DC supply (PELV), this option enables a second power supply to be installed to provide the PELV (terminal assignment as option B00, 24 V infeed at terminal -X1:1,2,3 no longer needed).

4.9.34 Outgoing section for external auxiliary equipment for NAMUR (option B03)

Description

If power is to be supplied to a motor fan on site, option B03 provides an uncontrolled fuseprotected (10 A) outgoing section. As soon as the supply voltage is present at the converter input, it is also present at these terminals. The voltage corresponds to the converter input voltage. You must take this into account when configuring the separately driven fan.

Connection

Table 4-84 Terminal block -X1 - uncontrolled power outlet (10 A) for supplying a separately driven motor fan

Terminal	Default	Comment
$1,2,3, \mathrm{PE}$	Outgoing section for separately driven motor fan	$\mathrm{U}=\mathrm{U}_{\text {line }}$

Max. connectable cross-section: $2.5 \mathrm{~mm}^{2}$

Commissioning

5.1 Chapter content

This chapter provides information on the following:

- An overview of the operator panel functions
- Initial commissioning of the cabinet unit (initialization) with STARTER and AOP30
- Entering the motor data (drive commissioning)
- Entering the most important parameters (basic commissioning), concluding with motor identification
- Data backup
- Parameter reset to factory settings

Important information prior to commissioning

The cabinet unit offers a varying number of internal signal interconnections depending on the delivery condition and the options installed. For the converter control to be able to process the signals correctly, several software settings must be made.

During initial power-up of the Control Unit and during first commissioning, parameter macros are executed and the necessary settings made.
The settings are documented in the Appendix.
After initial power-up, first commissioning, and also following a "Parameter reset to factory settings", individual parameter values deviate from the factory settings stated in the List Manual.

5.2 STARTER commissioning tool

Description

You can use the STARTER commissioning tool to configure and commission SINAMICS drives and drive systems. The drive can be configured using the STARTER drive configuration wizard.

Note

This chapter shows you how to carry out commissioning using STARTER. STARTER features a comprehensive online help function, which provides detailed explanations of all the processes and available system settings.
For this reason, this chapter only describes the individual commissioning steps.

Prerequisite: STARTER Version

The following STARTER version is required for commissioning SINAMICS with firmware V4.4:

- STARTER V4.2

Prerequisites for installing STARTER

Hardware

The following minimum requirements must be complied with:

- PG or PC
- Pentium III, at least 1 GHz , (> 1 GHz recommended)
- 1 GB work memory (2 GB recommended)
- Screen resolution 1024×768 pixels, 16 -bit color depth
- Free hard disk space >3 GB

Software

The following minimum prerequisites must be observed when using STARTER without an existing STEP-7 installation:

- Microsoft Windows 2000 SP4 *)
- Microsoft Windows 2003 Server SP2
- Microsoft Windows 2008 Server
- Microsoft Windows XP Professional SP2 *) and SP3
- Microsoft Windows VISTA Business SP1 **)
- Microsoft Windows VISTA Ultimate SP1 **)
- Microsoft Windows 7 Professional (32-bit)
- Microsoft Windows 7 Ultimate (32-bit)
- Microsoft Internet Explorer V6.0 or higher
*) Restricted test scope
${ }^{* *}$) Significantly restricted test scope, i.e., installation at your own risk after acknowledging a corresponding warning message
STARTER setup is possible with native Windows XP versions with Asian languages only if the Windows XP or Windows 7 software is an MUI version.

Acrobat Reader V5.0 or higher is required to open the function diagrams in the online help.

Note

If STARTER is used in combination with other STEP7 components, the prerequisites for the S7 components shall apply.

5.2.1 Installing STARTER

STARTER is installed using the "setup" file on the customer DVD supplied. When you double-click the "Setup" file, the installation Wizard guides you through the process of installing STARTER.

5.2.2 The STARTER user interface

STARTER features four operating areas:

Figure 5-1 STARTER operating areas

Operating area	Explanation
1: Toolbars	In this area, you can access frequently used functions via the icons.
2: Project navigator	The elements and projects available in the project are displayed here.
3: Working area	In this area, you can change the settings for the drive units.
4: Detail view	Detailed information about faults and alarms, for example, is displayed this area.

5.3 Procedure for commissioning via STARTER

Basic procedure using STARTER

STARTER uses a sequence of dialog screens for entering the required drive unit data.

NOTICE

These dialog screens contain default settings, which you may have to change according to your application and configuration.

This is intentional because
By taking time to consider what configuration data you enter, you can prevent inconsistencies between the project data and drive unit data (identifiable in online mode).

5.3.1 Creating a project

Click the STARTER icon on the desktop, or select the menu command Start > SIMATIC > STEP 7 > STARTER in the Windows Start menu to open the STARTER commissioning tool.
The first time you run the software, the main screen (shown below) appears with the following windows:

- STARTER Getting Started Drive Commissioning
- STARTER Project Wizard

The commissioning steps are listed below as a numbered step sequence.

Accessing the STARTER project wizard

Figure 5-2 Main screen of the STARTER parameterization and commissioning tool
\Rightarrow Close the "STARTER Getting Started Drive Commissioning" screen by choosing HTML Help > Close.

Note

When you deactivate the Display wizard during start checkbox, the project wizard is no longer displayed the next time you start STARTER.

You can call up the project wizard by choosing Project > New with Wizard.
To deactivate the online help for Getting Started, follow the instructions provided in Help.
You can call up the online help at any time by choosing Help > Getting Started.
STARTER features a detailed online help function.

The STARTER project wizard

Figure 5-3 STARTER project wizard
\Rightarrow Click Arrange drive units offline... in the STARTER project wizard.

Figure 5-4 Create new project
\Rightarrow Enter a project name and, if necessary, the author, memory location and a comment.
\Rightarrow Click Continue > to set up the PG/PC interface.

Figure 5-5 Set up interface
\Rightarrow Click Change and test... and set up the interface in accordance with your device configuration.
The Properties..., Copy... and Select... pushbuttons are now active.

Figure 5-6 Setting the interface

Note
To parameterize the interface, you must install the appropriate interface card (e.g.: PC Adapter (PROFIBUS))

Figure 5-7 Setting the interface - properties

NOTICE

You must activate PG/PC is the only master on bus if no other master (PC, S7, etc.) is available on the bus.

Note

Projects can be created and PROFIBUS addresses for the drive objects assigned even if a PROFIBUS interface has not been installed on the PC.

To prevent bus addresses from being assigned more than once, only the bus addresses available in the project are proposed.
\Rightarrow Once you have done this, click OK to confirm the settings and return to the project wizard.

Figure 5-8 Setting the interface
\Rightarrow Click Continue $>$ to set up a drive unit in the project wizard.

Figure 5-9 Inserting the drive unit
\Rightarrow Choose the following data from the list fields:
Device: Sinamics
Type: S150 CU320-2 DP or S150 CU320-2 PN for option K95
Version: 4.4
Bus address: the corresponding bus address for the cabinet unit The entry in Name: field is user defined.
\Rightarrow Click Insert
The selected drive unit is displayed in a preview window in the project wizard.

Figure 5-10 Inserting the drive unit
\Rightarrow Click Continue >
A project summary is displayed.

Figure 5-11 Summary
\Rightarrow Click Complete to finish creating a new drive unit project.

5.3.2 Configuring the drive unit

In the project navigator, open the component that contains your drive unit.

Figure 5-12 Project navigator - Configure drive unit
\Rightarrow In the project navigator, click the plus sign next to the drive unit that you want to configure. The plus sign becomes a minus sign and the drive unit configuration options are displayed as a tree below the drive unit.
\Rightarrow Double-click Configure the drive unit.

Configuring the drive unit

Figure 5-13 Configuring the drive unit
\Rightarrow Under Connection voltage, choose the correct voltage. Under Cooling type: choose the correct cooling type for your drive unit.

Note

In this step, you make a preliminary selection of the cabinet units. You do not define the line voltage yet.
\Rightarrow A list is now displayed under Drive unit selection:. Choose the corresponding drive unit according to type (order no.) (see type plate).
\Rightarrow Click Continue >

Choosing the options

Figure 5-14 Choosing the options
\Rightarrow From the combination box Options selection: select the options belonging to your drive unit by clicking on the corresponding check box (see type plate).

CAUTION

If a sine-wave filter (option L15) is connected, it must be activated when the options are selected to prevent the filter from being destroyed.

NOTICE

During option selection it is essential to activate any motor reactor (option L08) or $\mathrm{dV} / \mathrm{dt}$ filter (option L10) present, otherwise the motor control will not perform at its best.

Note

Check your options carefully against the options specified on the type plate.
Since the wizard establishes internal interconnections on the basis of the options selected, you cannot change the selected options by clicking < Back .
If you make an incorrect entry, delete the entire drive unit from the project navigator and create a new one.
\Rightarrow Check your options carefully and then click Continue >

Configure the infeed

Figure 5-15 Configure the infeed
\Rightarrow Choose whether the line and DC link identification function is to be activated during initial start-up.
(Recommendation: "Activate identification" = "Yes")
\Rightarrow Specify the Device connection voltage.
\Rightarrow Click Continue >
5.3 Procedure for commissioning via STARTER

Selecting the control structure

Figure 5-16 Selecting the control structure
\Rightarrow Select the required data:

- Function modules:
- Technology controller
- Basic positioner
- Extended messages/monitoring
- Control method:
choose one of the following open-loop/closed-loop control types:
- 0: V/f control with linear characteristic
- 1: V/f control with linear characteristic and FCC
- 2: V/f control with parabolic characteristic
- 3: V/f control with parameterizable characteristic
- 4: V/f control with linear characteristic and ECO
- 5: V/f control for drive requiring a precise frequency (e.g. textiles)
- 6: V/f control for drive requiring a precise frequency and FCC
- 7: V/f control with parabolic characteristic and ECO
- 15: Operation with braking resistor
- 18: I/f control with fixed current
- 19: V/f control with independent voltage setpoint
- 20: Speed control (without encoder)
- 21: Speed control (with encoder)
- 22: Torque control (without encoder)
- 23: Torque control (with encoder)
\Rightarrow Click Continue >

Configuring the drive unit properties

Figure 5-17 Configuring the drive unit properties
\Rightarrow Under Standard:, choose the appropriate standard for your motor, whereby the following is defined:

- IEC motor (50 Hz , SI unit): Line frequency 50 Hz , motor data in kW
- NEMA motor (60 Hz , US unit): Line frequency 60 Hz , motor data in hp
\Rightarrow Under Supply voltage: the DC link voltage of the cabinet unit is specified (this should not be changed).
\Rightarrow Click Continue >

Configuring the motor - Selecting the motor type

Figure 5-18 Configuring the motor - Selecting the motor type
\Rightarrow In the Name field, enter a name of your choice for the motor.
\Rightarrow From the selection box next to Motor type: select the appropriate motor for your application
\Rightarrow In the Parallel connection motor field, enter the number of motors connected in parallel, if necessary. Motors connected in parallel must be of the same type and size.

Note

The steps described below also apply to commissioning an induction motor.
When commissioning a permanent-magnet synchronous motor, there are a few special conditions that apply, which are detailed in a separate chapter (see "Setpoint channel and closed-loop control / permanent-magnet synchronous motors").
\Rightarrow Click Continue >

Configuring the motor - Entering motor data

Figure 5-19 Configuring the motor - Entering motor data
\Rightarrow Enter the motor data (see motor type plate).
\Rightarrow If necessary, check Do you want to enter the optional data?
\Rightarrow If necessary, activate Do you want to enter the equivalent circuit diagram data?

Note

Click Template to open another selection screenform where you can choose the motor used in your application from a long list of standard motor types. Select a motor from the list to enter the data stored in the system for that motor automatically in the data fields.

NOTICE

You should only check the "Do you want to enter equivalent circuit diagram data?" box if the data sheet with equivalent circuit diagram data is available. If any data is missing, an error message will be output when the system attempts to load the drive project to the target system.
\Rightarrow Click Continue >

Configuring the motor - Entering optional data

Figure 5-20 Entering optional motor data
\Rightarrow If necessary, enter the optional motor data.
\Rightarrow Click Continue >

Configuring the motor - Entering the equivalent circuit diagram data

Figure 5-21 Entering equivalent circuit diagram data
\Rightarrow Select one of the equivalent circuit diagram data representations:

- System of units, physical
- System of units, referenced
\Rightarrow Enter the equivalent circuit diagram data completely.
\Rightarrow Click Continue >

Calculating the motor/controller data

Figure 5-22 Calculating the motor/controller data
\Rightarrow In Calculation of the motor/controller data, select the appropriate default settings for your device configuration.

Note

If the equivalent circuit diagram data was entered manually (see "Entering the equivalent circuit diagram data"), the motor/controller data should be calculated without calculating the equivalent circuit diagram data.
\Rightarrow Click Continue >

Configuring the motor holding brake

Figure 5-23 Configuring the motor holding brake
\Rightarrow Under Holding brake configuration: choose the appropriate setting for your device configuration:

- 0: No motor holding brake being used
- 1: Motor holding brake like sequence control
- 2: Motor holding brake always open
- 3: Motor holding brake like sequence control, connection via BICO
\Rightarrow When a motor holding brake is selected, you can also activate the "Extended brake control" function module.
\Rightarrow Click Continue >

Entering the encoder data (option K46 / K48 / K50)

Note
If you have specified option K46, K48, or K50 (SMC10, SMC20, or SMC30 Sensor Module), the following screen is displayed in which you can enter the encoder data.

Figure 5-24 Entering the encoder data (option K46)

Figure 5-25 Entering the encoder data (option K48)

Figure 5-26 Entering the encoder data (option K50)
\Rightarrow In the Encoder name: field, enter a name of your choice.
\Rightarrow Click the Select standard encoder from list radio button and select one of the available encoders.

- Standard encoders with code numbers 1xxx are provided for selection when encoder module SMC10 is fitted (option K46).
- Standard encoders with code numbers $2 x x x$ are provided for selection when encoder module SMC20 is fitted (option K48).
- Standard encoders with code numbers $3 x x x$ are provided for selection when encoder module SMC30 is fitted (option K50).
\Rightarrow To enter special encoder configurations, click the Enter data radio button and then the Encoder data button. The following screen (in this case an example for the HTL encoder) is displayed in which you can enter the required data.
5.3 Procedure for commissioning via STARTER

Figure 5-27 Entering encoder data - user-defined encoder data - example: HTL encoder
\Rightarrow Enter the required encoder data.
\Rightarrow Under the Details tab, special encoder properties can be set, for example, gear ratio, fine resolution, inversion, load gear position tracking.
\Rightarrow Click OK.

CAUTION

Option K50: once the encoder has been commissioned, the supply voltage ($5 / 24 \mathrm{~V}$) set for the encoder is activated on the SMC30 module. If a 5 V encoder is connected and the supply voltage has not been set correctly, the encoder may be damaged.

Default settings for setpoints/command sources

Figure 5-28 Default settings for setpoints/command sources
\Rightarrow Under Command sources:, choose and Setpoint sources: choose the appropriate settings for your device configuration.

The following command and setpoint source options are available:

Command sources:	PROFIdrive (default) TM31 terminals
NAMUR	
Setpoint sources:	PROFIdrive NAMUR
	PROFIdrive (default)
	TM31 terminals
	Motorized potentiometer
	Fixed setpoint

Note

With SINAMICS S150, only CDS0 is normally used as a default setting for the command and setpoint sources.

Make sure that the selected default setting is compatible with the actual system configuration.

Note

The choice "no selection" is also available as default setting for the command and setpoint sources; if selected, no default settings are applied for the command and setpoint sources.
\Rightarrow Check your default settings carefully and then click Continue >

Defining the technological application/motor identification

Figure 5-29 Defining the technological application/motor identification
\Rightarrow Select the required data:

- Technological application:
- "(0) Standard drive (VECTOR)"(default setting)

Edge modulation is not enabled.
The dynamic voltage reserve is increased (10 V), which reduces the maximum output voltage.

- "(1) Pumps and fans"

Edge modulation is enabled.
The dynamic voltage reserve is reduced (2 V), which increases the maximum output voltage.

- "(2) Sensorless control down to $\mathrm{f}=0$ (passive loads)"

Closed-loop controlled operation down to zero speed is possible for passive loads. These include applications in which the load cannot produce a regenerative torque on startup and the motor comes to a standstill when pulses are inhibited.

- Motor identification:
- (0): Disabled
- (1): Motor data identification at standstill and when the motor is rotating
- (2): Motor data identification at standstill
- (3): Motor data identification when the motor is rotating

Note

"Motor data identification at standstill and with motor running" is normally the appropriate default setting for SINAMICS S150, especially if an encoder is used for speed control. This measurement is normally only performed when the motor is not coupled.

\} 1 DANGER

When the rotating measurement is selected, the drive triggers movements in the motor that can reach the maximum motor speed. The EMERGENCY OFF functions must be fully operational during commissioning. To protect the machines and personnel, the relevant safety regulations must be observed.
\Rightarrow Click Continue >

Selecting the PROFIdrive telegram type

Figure 5-30 Selecting the PROFIdrive telegram type
= Under PROFIdrive telegram type: select the PROFIdrive telegram type.

Message frame types

- 1: Standard telegram 1
- 2: Standard telegram 2
- 3: Standard telegram 3
- 4: Standard telegram 4
- 20: SIEMENS telegram 20 (VIK-NAMUR)
- 220: SIEMENS telegram 220 (metal industry)
- 352: SIEMENS telegram 352 (PCS7)
- 999: Free telegram configuration with BICO
\Rightarrow Click Continue >

Entering important parameters

Figure 5-31 Important parameters
\Rightarrow Enter the required parameter values.

Note

STARTER provides tool tips if you position your cursor on the required field without clicking in the field.
\Rightarrow Click Continue >

Summary of the drive unit data

Figure 5-32 Summary of the drive unit data
\Rightarrow You can use the Copy to clipboard function to copy the summary of the drive unit data displayed on the screen to a word processing program for further use.
\Rightarrow Click Finish.
\Rightarrow Save your project to the hard disk by choosing Project > Save.

5.3.3 Transferring the drive project

You have created a project and saved it to your hard disk. You now have to transfer your project configuration data to the drive unit.

Specifying the online access point

To connect to the target system, the chosen access point must be specified.
In the menu bar, select Target system > Select target devices ...; the following dialog screen appears.

Figure 5-33 Target device selection and access points
The dialog screen lists all existing devices in the project.

Specify access point:

- Select S7ONLINE access for a device, if the connection to the programming device or PC is established via PROFINET or PROFIBUS.
- Select DEVICE access for a device if the connection to the programming device or PC is established via the Ethernet interface.

Transferring the STARTER project to the drive unit

To transfer the STARTER project you created offline to the drive unit, carry out the following steps:

Step		Selection in toolbar
1	Choose Project > Connect to target system	
2	Choose Target system > Load project to target system	

NOTICE

The project has now been loaded to the drive unit. The data is currently only stored in the volatile memory of the drive unit and not on the CompactFlash card.

To store the project data on the CompactFlash card so that it is protected in the event of a power failure, carry out the following step.

Step		Selection in toolbar
3	Choose Target system > Copy from RAM to ROM	

Note

The Copy from RAM to ROM icon is only active when the drive unit is selected in the project navigator.

Results of the previous steps

- You have created a drive unit project offline using STARTER.
- You have saved the project data to the hard disk on your PC.
- You have transferred the project data to the drive unit.
- You have saved your project data to the CompactFlash card so that it is backed up in the event of a power failure.

Note

The STARTER commissioning tool supports complex drive system operations.
If you are confronted with any system conditions in online mode that are beyond your control, you are advised to delete the drive project from the project navigator and carefully create a new project in STARTER using the appropriate configuration data for your application.

5.3.4 Commissioning with STARTER via Ethernet

Description

The Control Unit can be commissioned using PG/PC via the integrated Ethernet Interface. This interface is provided for commissioning purposes only and cannot be used to control the drive in operation.

Preconditions

- STARTER from version 4.1.5 or higher
- Control Unit CU320-2 DP with device version "C"

STARTER via Ethernet (example)

Figure 5-34 STARTER via Ethernet (example)

Procedure for establishing online operation via Ethernet

1. Installing the Ethernet interface in the PG/PC according to the manufacturer's specifications
2. Setting the IP address in Windows XP.

The PG/PC is assigned a free IP address (e.g. 169.254.11.1). The factory setting of the internal Ethernet interface -X127 of the Control Unit is 169.254.11.22.
3. Setting the online interface in STARTER.
4. Assigning the IP address and the name via STARTER (node initialization).

The Ethernet interface must be initialized so that the STARTER can establish communication. Selecting online mode in STARTER.

Setting the IP address in Windows XP

On your desktop, right-click "Network environment" -> Properties -> double-click on the network card and choose -> Properties -> Internet Protocol (TCP/IP) -> Properties -> Enter the IP addresses and the subnet mask.

Figure 5-35 Internet Protocol (TCP/IP) properties

Assigning the IP address and the name via STARTER, "Accessible nodes" function

Use the STARTER to assign an IP address and a name to the Ethernet interface.

- Connect the PG/PC and the Control Unit using an Ethernet cable.
- Switch on the Control Unit.
- Open STARTER.
- Either create a new project or open an existing project
- A search is performed for available nodes in Ethernet via Project -> Accessible nodes or the "Accessible nodes" button.
- The SINAMICS drive object is detected and displayed as a bus node with IP address 169.254.11.22 and without name.

Figure 5-36 Accessible nodes

- Mark the bus node entry and select the displayed menu item "Edit Ethernet node" with the right mouse button.
- In the following "Edit Ethernet node" screen, enter the device name for the Ethernet interface (e.g. "drive1") and click the "Assign name" button. Enter the IP address (e.g. 169.254.11.10) in the IP configuration and specify the subnet screen (e.g. 255.255.255.0). Then click the "Assign IP configuration" button and close the mask.

Note

ST (Structured Text) conventions must be satisfied for the name assignment of IO devices in Ethernet (SINAMICS components). The names must be unique within Ethernet.
The characters "-" and "." are not permitted in the name of an IO device.

Figure 5-37 Edit Ethernet Node

- Pressing the "Update (F5)" button displays the IP address and name in the entry for the bus node. If not, close the "Accessible nodes" screen and perform another search for accessible nodes.
- If the Ethernet interface is displayed as bus node, mark the entry and press the "Accept" button.
- The SINAMICS drive is displayed as drive object in the project navigator.
- You can now configure the drive unit (see Chapter "Configuring the drive unit").

Note

The IP address and device name are stored on the memory card of the Control Unit (nonvolatile)..

Parameters

Parameters can also be used to modify and/or display the properties of the Ethernet interface.

- p8900 IE name of the station
- p8901 IE IP address of the station
- p8902 IE default gateway of station
- p8903 IE subnet mask of station
- p8904 IE DHCP mode
- p8905 IE interface configuration
- r8910 IE name of station active
- r8911 IE IP address of station active
- r8912 IE default gateway of station active
- r8913 IE subnet mask of station active
- r8914 IE DHCP mode of station active
- r8915 IE MAC address of station

5.4 The AOP30 operator panel

Description

An operator panel is located in the cabinet door of the cabinet unit for operating, monitoring, and commissioning tasks. It has the following features:

- Graphical, back-lit LCD for plain-text display and a "bar display" of process variables
- LEDs for indicating the operating modes
- Help function describing causes of and remedies for faults and alarms
- Keypad for controlling drives during operation
- LOCAL/REMOTE switchover for selecting the control terminal (master control assigned to operator panel or Customer Terminal Block / PROFIBUS)
- Numeric keypad for entering setpoint or parameter values
- Function keys for prompted navigation through the menus
- Two-stage security concept to protect against accidental or unauthorized changes to settings
- Degree of protection IP 54 (when installed)

Figure 5-38 Components of the cabinet unit operator panel (AOP30)

5.5 First commissioning with the AOP30

5.5.1 First commissioning

Start screen

When the system is switched on for the first time, the Control Unit is initialized automatically. The following screen is displayed:

Figure 5-39 Initial screen
When the system boots up, the parameter descriptions are loaded into the operating field from the CompactFlash card.

Figure 5-40 Load the parameter descriptions while booting up the system

Selecting the language

When the system is first booted up, a screen for selecting the language appears.

You can select the language in the dialog screen.

To change the language, choose <F2> or <F3>.
To select the language, choose <F5>.

Once the language has been selected, the booting up process continues.
Once the system has successfully ramped up, the drive has to be commissioned when the system is switched on for the first time after it has been delivered. The converter can then be switched on.

When the system is then ramped up again, it can be operated immediately.

Navigation within the interactive screens

Within an interactive screen, the selection boxes can usually be selected using the <F2> and/or <F3> keys. Selection fields are generally texts surrounded by a frame. When they are selected, they are highlighted with a white text on a black background.
The present value of a highlighted selection box can usually be changed by pressing <F5> "OK" and/or "Change". Another entry box then appears and the value you want is entered directly using the numerical keypad or can be selected from a list.

You can change from one interactive screen to the next or previous screen by selecting the "Next" or "Previous" selection boxes and then confirming by pressing <F5> "OK". If a screen contains particularly important parameters, the selection field "Continue" only appears at the bottom of the screen. This is because every single parameter in this interactive screen has to be checked and/or corrected thoroughly before the next interactive screen can be accessed.

5.5.2 Basic commissioning

Entering the motor data

During initial commissioning, you have to enter motor data using the operator panel. Use the data shown on the motor type plate.

Figure 5-41 Example of a motor type plate

Table 5-1 Motor data

	Parameter no.	Values	Unit
System of units for line frequency and entering motor data	p0100	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	IEC [50 Hz / kW] NEMA [60 Hz / hp]
Motor: Rated voltage Rated current Rated power Rated power factor $\cos \phi$ (at p0100 = 0 only) Rated efficiency η (at p0100 = 1only) Rated frequency Rated speed	$\begin{aligned} & \text { p0304 } \\ & \text { p0305 } \\ & \text { p0307 } \\ & \text { p0308 } \\ & \text { p0309 } \\ & \text { p0310 } \\ & \text { p0311 } \end{aligned}$		[V] [A] [kW] / [hp] [\%] [Hz] [min-1] / [rpm]

5.5 First commissioning with the AOP30

First commissioning: infeed

Table 5-2 Entering the infeed data

\{2:A_INF\} First IBN feed-in	
p0210 Supply voltage	400.00 Veff
p0211 Rated line frequency	50.00 Hz
p3410 INF Ident_type	5:Res ID RegA
p0840cON/OFF1	\{03\}0863.01
Help+ - $\boldsymbol{\sim}$	Chan

Line data ident.
If necessary, start with LOCAL and ON key

Enter the line infeed voltage in V and the line frequency in Hz .
Select the line identification (do not change the default setting).
Entry for the origin of the ON/OFF1 command.

Navigate within the selection fields with <F2> and <F3>.

Activate your selection with <F5>.
Once you have entered the final value, choose "Continue" to exit the screen.

Basic commissioning: Selecting the motor type and entering the motor data

You can select the motor standard and type in the dialog screen.
The following is defined for the motor standard:

0 : Line frequency 50 Hz , motor data in kW 1: Line frequency 60 Hz , motor data in hp The following selection options are available for the motor type:
1: Induction motor
2: Permanent-magnet synchronous motor
5: Synchronous motor (separately-excited)
To navigate through the selection fields, choose <F2> or <F3>.
To activate a selection, choose <F5>.
Entering motor data specified on the type plate
To navigate through the selection fields, choose <F2> or <F3>.
To activate a selection, choose <F5>.
To change a parameter value, navigate to the required selection field and activate with <F5>.
The system displays another window in which you can:

- Enter the value directly, or
- select the value from a list.

When you have finished entering the motor data, choose "Continue" underneath the final parameter value and activate with <F5>.

Note

The steps described below also apply to commissioning an induction motor.
When commissioning a permanent-magnet synchronous motor ($\mathrm{p} 0300=2$), there are a few special conditions that apply, which are detailed in a separate chapter (see "Setpoint channel and closed-loop control/Permanent-magnet synchronous motors").

Basic commissioning: Entering the encoder data (if available)

When the SMC10/SMC20/SMC30 is connected for encoder evaluation (with options K46, K48, and K50), it is recognized by the AOP30 and a screen is displayed in which you can enter the encoder data.
Navigate within the selection fields with <F2> and <F3>.

Activate your selection with <F5>.

Predefined encoders can be easily set by selecting parameter p0400 (encoder type selection):

Encoders for SMC10:
1001: Resolver 1 speed
1002: Resolver 2 speed
1003: Resolver 3 speed
1004: Resolver 4 speed
Encoders for SMC20:
2001: 2048, 1 Vpp, A/B C/D R
2002: 2048, 1 Vpp, A/B R
2003: 256, 1 Vpp, A/B R
2004: $400,1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$
2005: \quad 512, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} \mathrm{R}$
2006: 192, 1 Vpp, A/B R
2007: 480, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B} R$
2008: 800, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R
2010: 18000, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R interval-coded
2051: 2048, 1 Vpp, A/B, EnDat, Multiturn 4096
2052: 32, 1 Vpp, A/B, EnDat, Multiturn 4096
2053: 512, 1 Vpp, A/B, EnDat, Multiturn 4096
2054: 16, 1 Vpp, A/B, EnDat, Multiturn 4096
2055: 2048, 1 Vpp, A/B, EnDat, Singleturn

2081:
2048, 1 Vpp, A/B, SSI, Singleturn
2082:
2048, 1 Vpp, A/B, SSI, Multiturn 4096
2083: 2048, 1 Vpp, A/B, SSI, Singleturn, error bit
2084: 2048, $1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}, \mathrm{SSI}$, Multiturn 4096, error bit
2110: $\quad 4000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R interval-coded
2111: $20000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R interval-coded
2112: $\quad 40000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$ R interval-coded
2151: $\quad 16000 \mathrm{~nm}, 1 \mathrm{Vpp}, \mathrm{A} / \mathrm{B}$, EnDat, resolution 100 nm
Encoders for SMC30:
3001: $\quad 1024$ HTL A/B R
3002: $\quad 1024$ TTL A/B R
3003: 2048 HTL A/B R
3005: $\quad 1024$ HTL A/B
3006: $\quad 1024$ TTL A/B
3007: $\quad 2048$ HTL A/B
3008: $\quad 2048$ TTL A/B
3009: $\quad 1024$ HTL A/B unipolar
3011: 2048 HTL A/B unipolar
3020: $\quad 2048$ TTL A/B R with sense
3081: SSI, Singleturn, 24 V
3082: SSI, Multiturn 4096, 24 V
3090: 4096, HTL, A/B, SSI, Singleturn
3109: $\quad 2000 \mathrm{~nm}$, TTL, A/B R interval-coded

Note

The chapter ("Electrical installation") contains connection examples for standard encoders.

Note

If a predefined encoder type is selected using p0400, then the settings of the following parameters p0404, p0405 and p0408 cannot be changed.

If the connected encoder does not match any of the encoders predefined in p0400, follow the simple procedure below for entering the encoder data:

- Via p0400, select an encoder type whose data is similar to that of the connected encoder.
- Select "User-defined encoder" (p0400 = 9999). Previously set values are stored here.
- Adjust the bit fields of p0404, p0405, and p0408 to the data for the connected encoder.

Table 5-3 Meaning of the bit settings for p0404

Bit	Meaning	Value 0	Value 1
20	Voltage 5 V	No	Yes
21	Voltage 24 V	No	Yes

Table 5-4 Meaning of the bit settings for p0405

Bit	Meaning	Value 0	Value 1
0	Signal	Unipolar	Bipolar
1	Level	HTL	TTL
2	Track monitoring	None	A/B <> -A/B
3	Zero pulse	24 V unipolar	Same as A/B track
4	Switching threshold	Low	High
5	Pulse/direction	No	Yes

CAUTION

Once the encoder has been commissioned, the supply voltage ($5 / 24 \mathrm{~V}$) set for the encoder is activated on the SMC30 module. If a 5 V encoder is connected and the supply voltage has not been set correctly via p0404 (bit $20=$ "Yes", bit $21=$ "No"), the encoder may be damaged.

Basic commissioning: Entering the basic parameters

Final confirmation

Back

Permanent parameter transfer execute with "continue" and OK.

Entering the basic commissioning parameters:

If a sine-wave filter (option L15) is connected, it must be activated in p0230 (p0230 = 3) otherwise it could be destroyed.
p0700: Preset command source
5: PROFIdrive
6: TM31 terminals
7: Namur
10: PROFIdrive Namur
p1000: Preset setpoint source
1: PROFIdrive
2: TM31 terminals
3: Motorized potentiometer
4: Fixed setpoint
Once a setpoint source has been selected (p 1000), the main setpoint p1070 is defaulted accordingly.
To navigate through the selection fields, choose <F2> or <F3>.
To activate a selection, choose $<\mathrm{F} 5>$.
To change a parameter value, navigate to the required selection field and activate with <F5>.
Another window appears in which you can

- enter the required value directly, or
- select the value from a list.

Final confirmation

Confirm the basic parameters to save them.
Once you have selected "Continue" and activated your entries with <F5>, the basic parameters you entered are permanently saved and the calculations required for closed-loop control are carried out.

NOTICE

If a filter is present on the motor side, it must be entered in p0230 (option L07-dV/dt-filter compact plus Voltage Peak Limiter: p0230 = 2, option L08 - motor reactor: p0230 = 1, option L10 - dV/dt filter plus Voltage Peak Limiter: p0230 = 2, option L15 - sine-wave filter: p0230 = 3). Motor control will not otherwise function properly.
When p0230 = 4 "Sine-wave filter, third-party", a separate sine-wave filter can be entered.
An input screen then appears in which the specific filter can be entered.

Note

The choice "no selection" is also available as default setting for the command and setpoint sources; if selected, no default settings are applied for the command and setpoint sources.

Basic commissioning: Motor identification

\{3:VECTOR $\}$ motor identification
Select the type of identification
Stationary and rotating
Only stationary
No identification
Number of phases to be identified

\{3:VECTOR\} motor identification
NOTE
Start the drive
with LOCAL and ON key

Help			Cancel	
F1	F2	F3	F4	F5

Selecting motor identification

To navigate through the selection fields, choose <F2> or <F3>.
To activate a selection, choose <F5>.
Stationary measurement increases the control performance, as this minimizes deviations in the electrical characteristic values due to variations in material properties and manufacturing tolerances. Rotary measurement determines the data required (e.g., moment of inertia) for setting the speed controller. It also measures the magnetization characteristic and rated magnetization current of the motor.
Number of phases to be identified:

- For identification with one phase, the measurement time is significantly reduced.
- For identification with several phases, the measurement results are averaged.
To activate this function, press the LOCAL key (wait until the LED in the LOCAL key lights up) and then ON.
If motor identification is not carried out, the motor control uses the motor characteristic values calculated from the type plate data rather than the measured values.

Note

When motor identification has been completed, press the OFF key to cancel the power-on inhibit.

DANGER

When the rotating measurement is selected, the drive triggers movements in the motor that can reach the maximum motor speed. The EMERGENCY OFF functions must be fully operational during commissioning. To protect the machines and personnel, the relevant safety regulations must be observed.
5.6 Status after commissioning

Note

Make sure that the necessary enable signals have been assigned; otherwise motor identification cannot be carried out.

Note

If a fault is present when selecting the stationary or rotary measurement, motor identification cannot be carried out.
To rectify the fault, you must choose "No identification" to close the screen, then eliminate the fault.
After this, motor identification can be selected again via <MENU> -
<Commissioning/service> - <Drive commissioning> - <Motor identification>.

5.6 Status after commissioning

LOCAL mode (control via operator panel)

- You switch to LOCAL mode by pressing the "LOCAL/REMOTE" key.
- Control (ON/OFF) is carried out via the "ON" and "OFF" keys.
- You can specify the setpoint using the "increase" and "decrease" keys or by entering the appropriate numbers using the numeric keypad.

Analog outputs (with option G60 "Customer terminal module TM31")

- The actual speed (r0063) is output as a current output in the range 0 to 20 mA at analog output 0 (X522:2 and 3).
A current of 20 mA is equal to the maximum speed in p 1082 .
- The actual current value (r0068) is output as a current output in the range 0 to 20 mA at analog output 1 (X522:5 and 6).
A current of 20 mA corresponds to the current limit (p0640), which is set to 1.5 times the rated motor current (p0305).

Digital outputs (with option G60 "Customer terminal module TM31")

- The "enable pulses" signal is output at digital output 0 (X542:2 and 3).
- The "no fault active" signal is output at digital output 1 (X542:5 and 6) (protection against wire break).
- The "ready for power up" signal is output at digital output 8 (X541:2).

5.7 Commissioning an encoder with gear factor

Description

When encoders are commissioned ($\mathrm{p} 0010=4$), a gearbox must be parameterized by means of parameters p0432 (counter), p0433 (denominator), and p0410 (sign).
To ensure that the commutation position can be accurately determined from the encoder angle, the following applies:

- For resolvers:
$\frac{z_{p_{-} \text {Motor }}}{z_{p_{-} \text {Resolver }}} \times \frac{1}{n} \geq 1$, Integer
, zp = no. of poles
- For all other absolute encoders:

$$
\frac{{ }^{\mathrm{z}_{\mathrm{p}} \text { Motor }}}{\mathrm{n}} \geq 1 \text {, Integer }
$$

, zp = no. of poles

- Where n is the gear factor

$$
\mathrm{n}=\frac{\text { Encoder speed }}{\text { Motor speed }}=\frac{\mathrm{p} 0432}{\mathrm{p} 0433}
$$

The encoder commissioning program ensures that this uniqueness condition is observed and, if necessary, prevents the system from exiting the commissioning program or outputs an error message.

Sign bit p0410 inverts the calculated encoder angle and the speed, thereby yielding a negative gear factor.

$5.8 \quad$ Parameter reset to factory settings

The factory settings represent the defined original status of the device on delivery.
Resetting the parameters to the factory settings means that all the parameter settings made since the system was delivered are reset.

Resetting Parameters via AOP30

Table 5-5 Procedure for resetting parameters to the factory settings with AOP30

Setting the "Extended" access level on the operator panel <Key pushbutton> - <Access level> - Set "Extended"

Setting the parameter filter to "Parameter reset" <MENU> <Commissioning/Service> <Device commissioning> <OK> <30: Parameter Reset> <OK>

Reset all parameters to factory settings

The factory settings for all the device parameters are restored.

Parameter reset via STARTER

With STARTER, the parameters are reset in online mode. The required steps are described below:

Step	Selection in toolbar
Choose Project > Connect to target system	
Click the drive unit whose parameters you want to reset to the factory settings and click Restore factory settings icon in the toolbar.	

Step	Selection in toolbar
To confirm, click OK.	
 IT [rmpl	
Choose Target system > Copy from RAM to ROM	

Note

The Copy from RAM to ROM icon is only active when the drive unit is selected in the project navigator.

When the parameters have been reset to the factory settings, initial commissioning needs to be carried out.
5.8 Parameter reset to factory settings

Operation

6.1 Chapter content

This chapter provides information on the following:

- Basic information about the drive system
- Command source selection via
- PROFIdrive
- terminal block
- NAMUR terminal block
- Setpoint input via
- PROFIdrive
- analog inputs
- motorized potentiometer
- fixed setpoints
- Control via the AOP30 operator panel
- Communication according to PROFIdrive
- Communication via
- PROFIBUS DP
- PROFINET IO
- SINAMICS Link

6.2 General information about command and setpoint sources

Description

Four default settings are available for selecting the command sources and four for selecting the setpoint sources for the SINAMICS S150 cabinet unit. The choice "no selection" is also available; if selected, no default settings are applied for the command and setpoint sources.

Command sources

- PROFIdrive
- TM31 terminals
- NAMUR
- PROFIdrive NAMUR

Setpoint sources

- PROFIdrive
- Analog inputs
- Motorized potentiometer
- Fixed setpoints

The various assignments are explained in the following sections.

Note

Make sure that the default settings you choose during commissioning are compatible with the cabinet configuration (see "Commissioning")
Emergency STOP signals (L57, L59, and L60) and motor protection signals (L83 and L84) are always active (regardless of the command source).

Function diagrams

To supplement these operating instructions, the customer DVD contains simplified function diagrams describing the operating principle.
The diagrams are arranged in accordance with the chapters in the Operating Instructions. The page numbers $(6 x x)$ describe the functionality in the following chapter.

At certain points in this chapter, reference is made to function diagrams with a 4-digit number. These are stored on the customer DVD in the "SINAMICS S120/S150 List Manual", which provides experienced users with detailed descriptions of all the functions.

6.3 Basic information about the drive system

6.3.1 Parameters

Overview

The drive is adapted to the relevant drive task by means of parameters. Each parameter is identified by a unique parameter number and by specific attributes (e.g. read, write, BICO attribute, group attribute, and so on).

The parameters can be accessed via the following means:

- PC with the "STARTER" commissioning tool via PROFIBUS
- The user-friendly AOP30 Operator Panel

Parameter types

The following adjustable and display parameters are available:

- Adjustable parameters (write/read)

These parameters have a direct impact on the behavior of a function.
Example: Ramp-up and ramp-down time of a ramp-function generator

- Display parameters (read-only)

These parameters are used to display internal variables.
Example: current motor current

Figure 6-1 Parameter types
All these drive parameters can be read and changed via PROFIBUS using the mechanisms defined in the PROFIdrive profile.

Parameter categories

The parameters for the individual drive objects (see "Drive objects") are categorized according to data sets as follows (see "Operation/data sets"):

- Data-set-independent parameters

These parameters exist only once per drive object.

- Data-set-dependent parameters

These parameters can exist several times for each drive object and can be addressed via the parameter index for reading and writing. A distinction is made between various types of data set:

- CDS: Command data set

By parameterizing several command data sets and switching between them, the drive can be operated with different pre-configured signal sources.

- DDS: Drive data set

The drive data set contains the parameters for switching between different drive control configurations.

The CDS and DDS can be switched over during normal operation. Further types of data set also exist, however these can only be activated indirectly by means of a DDS changeover.

- EDS: encoder data set
- MDS: Motor data set

Figure 6-2 Parameter categories

6.3.2 Drive objects

A drive object is a self-contained software function with its own parameters and, if necessary, its own faults and alarms. Drive objects can be provided as standard (e.g. I/O evaluation), or you can add single (e.g. option board) or multiple objects (e.g. drive control).

Figure 6-3 Drive objects

Standard drive objects

- Infeed: Infeed control for Active Line Module If an Active Line Module is used for the infeed in a drive system, open-loop/closed-loop control is implemented on the Control Unit within a corresponding drive object.
- Drive control

Drive control handles closed-loop control of the motor. 1 Motor Module and at least 1 motor and up to 3 sensors are assigned to the drive control.

- Control Unit, inputs/outputs

The inputs/outputs on the Control Unit are evaluated within a drive object.

Optionally installed drive objects

- Option board evaluation

A further drive object handles evaluation of an installed option board. The specific method of operation depends on the type of option board installed.

- Terminal Module evaluation

A separate drive object handles evaluation of the respective optional Terminal Modules.

Properties of a drive object

- Separate parameter space
- Separate window in STARTER
- Separate fault/alarm system (for CU, VECTOR, A_INF)
- Separate PROFIdrive telegram for process data (for CU, VECTOR, A_INF)

Configuring drive objects

When you commission the system for the first time using the STARTER tool, you will use configuration parameters to set up the software-based "drive objects" which are processed on the Control Unit. Various drive objects can be created within a Control Unit.
The drive objects are configurable function blocks and are used to execute specific drive functions.

If you need to configure additional drive objects or delete existing ones after initial commissioning, the drive system must be switched to configuration mode.

The parameters of a drive object cannot be accessed until the drive object has been configured and you have switched from configuration mode to parameterization mode.

Note

Each installed drive object is allocated a number between 0 and 63 during initial commissioning for unique identification.

Parameters

- p0101 Drive object numbers
- r0102 Number of drive objects
- p0107 Drive object type
- p0108 Drive object configuration

6.3.3 Data sets

Description

For many applications, it is beneficial if more than one parameter can be changed simultaneously by means of one external signal during operation/when the system is ready for operation.

This can be carried out using indexed parameters, whereby the parameters are grouped together in a data set according to their functionality and indexed. Indexing allows several different settings, which can be activated by switching the data set, to be defined in each parameter.

Note

The command and drive data sets can be copied in STARTER (Drive -> Configuration -> "Command data sets" or "Drive data sets" tab).
The displayed command and drive data sets can be selected in the associated STARTER screen forms..

CDS: Command data set

The BICO parameters (binector and connector inputs) are grouped together in a command data set. These parameters are used to interconnect the signal sources of a drive (see "Operation/BICO technology: Interconnecting signals").
By parameterizing several command data sets and switching between them, the drive can be operated with different pre-configured signal sources.
A command data set contains the following (examples):

- Binector inputs for control commands (digital signals)
- ON/OFF, enable signals (p0844, etc.)
- Jog (p1055, etc.)
- Connector inputs for setpoints (analog signals)
- Voltage setpoint for V/f control (p1330)
- Torque limits and scaling factors (p1522, p1523, p1528, p1529)

In the delivery condition, two command data sets are available; this number can be increased to a maximum of four using p0170 (number of command data sets (CDS)).
The following parameters are available for selecting command data sets and for displaying the currently selected command data set:

Table 6-1 Command data set: selection and display

CDS	Select bit 1	Select bit 0 p0811	p0810	Display	
	0		selected (r0836)	active (r0050)	
0	0	1	0	0	
1	1	0	1	1	
2	1	1	2	2	
3		3	3		

If a command data set, which does not exist, is selected, the current data set remains active.

Figure 6-4 Example: Switching between command data set 0 and 1

DDS: Drive data set

A drive data set contains various adjustable parameters that are relevant with respect to open and closed-loop drive control:

- Numbers of the assigned motor and encoder data sets:
- p0186: Assigned motor data set (MDS)
- p0187 to p0189: up to 3 assigned encoder data sets (EDS)
- Various control parameters, e.g.:
- Fixed speed setpoints (p1001 to p1015)
- Speed limits min./max. (p1080, p1082)
- Characteristic data of ramp-function generator (p1120 ff)
- Characteristic data of controller (p1240 ff)
- ...

The parameters that are grouped together in the drive data set are identified in the SINAMICS parameter list by "Data set DDS" and are assigned an index [0..n].

It is possible to parameterize several drive data sets. You can switch easily between different drive configurations (control type, motor, encoder) by selecting the corresponding drive data set.

One drive object can manage up to 32 drive data sets. The number of drive data sets is configured with p0180.

Binector inputs p0820 to p0824 are used to select a drive data set. They represent the number of the drive data set (0 to 31) in binary format (where p0824 is the most significant bit).

- p0820 BI: Drive data set selection DDS, bit 0
- p0821 BI: Drive data set selection DDS, bit 1
- p0822 BI: Drive data set selection DDS, bit 2
- p0823 BI: Drive data set selection DDS, bit 3
- p0824 BI: Drive data set selection DDS, bit 4

Supplementary conditions and recommendations

- Recommendation for the number of DDS in a drive The number of DDS in a drive should correspond with the number of changeover options; in other words
p0180 (DDS) \geq p0130 (MDS).
- Max. number of DDS for one drive object $=32$ DDS

EDS: Encoder data set

An encoder data set contains various adjustable parameters describing the connected encoder for the purpose of configuring the drive.

- Adjustable parameters, e.g.:
- Encoder interface component number (p0141)
- Encoder component number (p0142)
- Encoder type selection (p0400)

The parameters that are grouped together in the encoder data set are identified in the SINAMICS parameter list by "Data set EDS" and are assigned an index [0..n].
A separate encoder data set is required for each encoder controlled by the Control Unit. Up to 3 encoder data sets are assigned to a drive data set via parameters p0187, p0188, and p0189.

An encoder data set can only be changed using a DDS changeover.
Each encoder may only be assigned to one drive and within a drive must - in each drive data set - either always be encoder 1, always encoder 2 or always encoder 3.

One application for the EDS changeover would be a power component with which several motors are operated in turn. A contactor circuit is used to changeover between these motors. Each of the motors can be equipped with an encoder or be operated without an encoder. Each encoder must be connected to its own SMx.

If encoder 1 (p 0187) is changed over via DDS, then an MDS must also be changed over.
One drive object can manage up to 16 encoder data sets. The number of encoder data sets configured is specified in p 0140 .

When a drive data set is selected, the assigned encoder data sets are selected automatically.

MDS: Motor data set

A motor data set contains various adjustable parameters describing the connected motor for the purpose of configuring the drive. It also contains certain display parameters with calculated data.

- Adjustable parameters, e.g.:
- Motor component number (p0131)
- Motor type selection (p0300)
- Rated motor data (p0304 ff)
- ...
- Display parameters, e.g.:
- Calculated rated data (p0330 ff)
- ...

The parameters that are grouped together in the motor data set are identified in the SINAMICS parameter list by "Data set MDS" and are assigned an index [0..n].
A separate motor data set is required for each motor that is controlled by the Control Unit via a Motor Module. The motor data set is assigned to a drive data set via parameter p0186.
A motor data set can only be changed using a DDS changeover.
The motor data set changeover is, for example, used for:

- Changing over between different motors
- Changing over between different windings in a motor (e.g. star-delta changeover)
- Motor data adaptation

If several motors are operated alternately on one Motor Module, a corresponding number of drive data sets must be created. See "Functions / Drive functions" for additional information and instructions on changing over motors.
One drive object can manage up to 16 motor data sets. The number of motor data sets in p0130 may not exceed the number of drive data sets in p0180.

Example of data set assignment

Table 6-2 Example, data set assignment

DDS	Motor (p0186)	Encoder 1 (p0187)	Encoder 2 (p0188)	Encoder 3 (p0189)
DDS 0	MDS 0	EDS 0	EDS 1	EDS 2
DDS 1	MDS 0	EDS 0	EDS 3	--
DDS 2	MDS 0	EDS 0	EDS 4	EDS 5
DDS 3	MDS 1	EDS 0	--	--

Copying the command data set (CDS)

Set parameter p0809 as follows:

1. $\mathrm{p} 0809[0]=$ number of the command data set to be copied (source)
2. p0809[1] = number of the command data to which the data is to be copied (target)
3. $p 0809[2]=1$

Start copying.
Copying is finished when p0809[2] $=0$.

Copying the drive data set (DDS)

Set parameter p0819 as follows:

1. $\mathrm{p} 0819[0]=$ Number of the drive data set to be copied (source)
2. $\mathrm{p} 0819[1]=$ Number of the drive data set to which the data is to be copied (target)
3. $p 0819[2]=1$

Start copying.
Copying is finished when $\mathrm{p} 0819[2]=0$.

Copy motor data set (MDS)

Set parameter p0139 as follows:

1. p0139[0] = Number of the motor data set that is to be copied (source)
2. p0139[1] = Number of the motor data set which should be copied into (target)
3. $p 0139[2]=1$

Start copying.
Copying has been completed, if $\mathrm{p} 0139[2]=0$.

Function diagram

FP 8560	Command data sets (CDS)
FP 8565	Drive data set (DDS)
FP 8570	Encoder data set (EDS)
FP 8575	Motor data sets (MDS)

Parameters

- p0120 Power Module data sets (PDS) number
- p0130 Motor data sets (MDS) number
- p0139[0...2] Copy motor data set (MDS)
- p0140
- p0170

Encoder data sets (EDS) number

- p0180

Command data set (CDS) number

- p0180

Drive data set (DDS) number

- p0186 Assigned motor data set (MDS)
- p0187[0...n] Encoder 1 encoder data set number
- p0188[0...n] Encoder 2 encoder data set number
- p0189[0...n] Encoder 3 encoder data set number
- p0809 Copy command data set CDS
- p0810 BI: Command data set selection CDS bit 0
- p0811 BI: Command data set selection CDS bit 1
- p0819[0...2] Copy drive data set DDS
- p0820 BI: Drive data set selection, bit 0
- p0821 BI: Drive data set selection, bit 1
- p0822 BI: Drive data set selection, bit 2
- p0823 BI: Drive data set selection, bit 3
- p0824

BI: Drive data set selection, bit 4

6.3.4 BICO technology: Interconnecting signals

Description

Every drive contains a large number of interconnectable input and output variables and internal control variables.

BICO technology (Binector Connector Technology) allows the drive to be adapted to a wide variety of conditions.

Digital signals, which can be connected freely by means of BICO parameters, are identified by the prefix $\mathrm{BI}, \mathrm{BO}, \mathrm{Cl}$ or CO in their parameter name. These parameters are identified accordingly in the parameter list or in the function diagrams.

Note

The STARTER parameterization and commissioning tool is recommended when using BICO technology.

Binectors, BI: binector input, BO: Binector output
A binector is a digital (binary) signal without a unit which can assume the value 0 or 1.
Binectors are subdivided into binector inputs (signal sink) and binector outputs (signal source).

Table 6-3 Binectors

Abbreviation and symbol	Name	Description
	Binector input Binector Input (signal sink)	Can be interconnected to a binector output as source. The number of the binector output must be entered as a parameter value.
\square	Binector output Binector output (signal source)	Can be used as a source for a binector input.

Connectors, Cl : connector input, CO: Connector output

A connector is a digital signal e.g. in 32-bit format. It can be used to emulate words (16 bits), double words (32 bits) or analog signals. Connectors are subdivided into connector inputs (signal sink) and connector outputs (signal source).

The options for interconnecting connectors are restricted to ensure that performance is not adversely affected.

Table 6-4 Connectors

Abbreviation and symbol	Name	Description
	Connector input Connector input (signal sink)	Can be interconnected to a connector output as source. The number of the connector output must be entered as a parameter value.
\square	Connector output Connector output (signal source)	Can be used as a source for a connector input.

Interconnecting signals using BICO technology

To interconnect two signals, a BICO input parameter (signal sink) must be assigned to the desired BICO output parameter (signal source).
The following information is required in order to connect a binector/connector input to a binector/connector output:

- Binectors:
- Connectors with no index:
- Connectors with index: Parameter number, index, and drive object ID

Figure 6-5 Interconnecting signals using BICO technology

Note

A connector input (CI) cannot be interconnected with any connector output (CO, signal source). The same applies to the binector input (BI) and binector output (BO).
"Data type" in the parameter list provides information about the data type of the parameter and the data type of the BICO parameter for each Cl und BI parameter.
For CO and BO parameters, only the data type of the BICO parameter is given.

Notation:

- Data type BICO input: Data type parameter / Data type BICO parameter Example: Unsigned32 / Integer16
- Data type BICO output: Data type BICO parameter

Example: FloatingPoint32

The possible interconnections between BICO input (signal sink) and BICO output (signal source) are described in the List Manual in the table "Possible combinations for BICO interconnections" in the section "Explanations on the parameter list".

The BICO parameter interconnection can be implemented in different data sets (CDS, DDS, MDS, etc.). The different interconnections in the data sets are activated by switching the data sets. Interconnections across drive objects are also possible.

Internal encoding of the binector/connector output parameters

The internal codes are needed, for example, to write BICO input parameters via PROFIdrive.

Figure 6-6 Internal encoding of the binector/connector output parameters

Example 1: interconnecting digital signals

Suppose you want to operate a drive via terminals DI 0 and DI 1 on the Control Unit using jog 1 and jog 2.

Figure 6-7 Interconnection of digital signals (example)

Example 2: connection of OC/OFF3 to several drives

The OFF3 signal is to be connected to two drives via terminal DI 2 on the Control Unit.
Each drive has a binector input 1. OFF3 and 2. OFF3. The two signals are processed via an AND gate to STW1.2 (OFF3).

Figure 6-8 Connection of OFF3 to several drives (example)

BICO interconnections to other drives

The following parameters are available for BICO interconnections to other drives:

- r9490 Number of BICO interconnections to other drives
- r9491[0...15] $\mathrm{BI} / \mathrm{Cl}$ of BICO interconnections to other drives
- r9492[0...15] BO/CO of BICO interconnections to other drives
- p9493[0...15] Reset BICO interconnections to other drives
6.3 Basic information about the drive system

Binector-connector converters and connector-binector converters

Binector-connector converter

- Several digital signals are converted to a 32-bit integer double word or to a 16-bit integer word.
- p2080[0...15] BI: PROFIdrive PZD send bit-serial

Connector-binector converter

- A 32-bit integer double word or a 16-bit integer word is converted to individual digital signals.
- p2099[0...1] CI PROFIdrive PZD selection receive bit-serial

Fixed values for interconnection using BICO technology
The following connector outputs are available for interconnecting any fixed value settings:

- p2900[0...n] CO: Fixed value_\%_1
- p2901[0...n] CO: Fixed value_\%_2
- p2930[0...n] CO: Fixed Value_M_1

Example:

These parameters can be used to interconnect the scaling factor for the main setpoint or to interconnect an additional torque.

6.4 Command sources

6.4.1 "Profidrive" default setting

Prerequisites

The "PROFIdrive" default setting was chosen during commissioning:

- STARTER: "PROFIdrive"
- AOP30: "5: PROFIdrive"

Command sources

Figure 6-9 Command sources - AOP30 \leftrightarrow PROFIdrive

Priority

The command source priorities are shown in the diagram "Command sources - AOP30 \leftrightarrow PROFIdrive".

Note

The emergency OFF and motor protection signals are always active (regardless of the command source).

All of the supplementary setpoints are deactivated for LOCAL master control.

TM31 terminal assignment with "PROFIdrive" default setting (if option G60 is present)
When you choose the "PROFIdrive" default setting, use the following terminal assignment for TM31:

Figure 6-10 TM31 terminal assignment with "PROFIdrive" default setting
Control word 1
The bit assignment for control word 1 is described in "Description of the control words and setpoints".

Status word 1
The bit assignment for status word 1 is described in "Description of the status words and actual values".

Switching the command source

The command source can be switched using the LOCAL/REMOTE key on the AOP30.

6.4.2 "TM31 terminals" default setting

Prerequisites

The customer terminal module option (G60) is installed in the cabinet unit.
The "TM31 Terminals" default setting was chosen during commissioning:

- STARTER: "TM31 Terminals"
- AOP30: "6: TM31 terminals

Command sources

Figure 6-11 Command sources - AOP30 $\leftrightarrow \rightarrow$ terminal TM31

Priority

The priority of the command sources is shown in the diagram "Command sources - AOP30 \leftrightarrow terminal TM31".

Note

The emergency OFF and motor protection signals are always active (regardless of the command source).

All of the supplementary setpoints are deactivated for LOCAL master control.
6.4 Command sources

TM31 terminal assignment with "TM31 Terminals" default setting
When you choose the "TM31 Terminals" default setting, the terminal assignment for TM31 is as follows:

Figure 6-12 TM31 terminal assignment with "TM31 Terminals" default setting

Switching the command source

The command source can be switched using the LOCAL/REMOTE key on the AOP30.

6.4.3 "NAMUR" default setting

Prerequisites

The NAMUR terminal block (option B00) is installed in the cabinet unit.
The "NAMUR" default setting was chosen during commissioning:

- STARTER: "NAMUR"
- AOP30: "7: NAMUR"

Command sources

Figure 6-13 Command sources - AOP30 \longleftrightarrow NAMUR terminal block

Priority

The priority of the command sources is shown in the diagram "Command sources - AOP30 \leftrightarrow NAMUR terminal block".

Note

The EMERGENCY STOP and motor protection signals are always active (regardless of the command source).

For LOCAL master control, all of the supplementary setpoints are deactivated.

Terminal Assignment with the "NAMUR" Default Setting

When you choose the "NAMUR" default setting, the terminal assignment is as follows (as with option B00):

Figure 6-14 Terminal assignment with "NAMUR terminal block" default setting

Switching the command source

The command source can be switched using the LOCAL/REMOTE key on the AOP30.

6.4.4 "PROFIdrive NAMUR" default setting

Prerequisites

The NAMUR terminal block (option B00) is installed in the cabinet unit.
The "PROFIdrive" default setting was chosen during commissioning:

- STARTER: "PROFIdrive Namur"
- AOP30: "10: PROFIdrive Namur"

Command sources

Figure 6-15 Command sources - AOP30 \longleftrightarrow PROFIdrive NAMUR

Priority

The priority of the command sources is shown in the diagram "Command sources - AOP30 \leftrightarrow PROFIdrive NAMUR".

Note

The EMERGENCY STOP and motor protection signals are always active (regardless of the command source).

All of the supplementary setpoints are deactivated for LOCAL master control.

Terminal assignment for the "PROFIdrive NAMUR" default setting

When you choose the "PROFIdrive NAMUR" default setting, the terminal assignment is as follows (as with option B00):

Figure 6-16 Terminal assignment for the "PROFIdrive NAMUR" default setting

Control word 1

The bit assignment for control word 1 is described in "Description of the control words and setpoints".

Status word 1

The bit assignment for status word 1 is described in "Description of the status words and actual values".

Switching the command source

The command source can be switched using the LOCAL/REMOTE key on the AOP30.

6.5 Setpoint sources

6.5.1 Analog inputs

Description

The customer terminal block TM31 features two analog inputs for specifying setpoints for current or voltage signals.

In the factory setting, analog input 0 (terminal $\mathrm{X} 521: 1 / 2$) is used as a current input in the range 0 to 20 mA .

Prerequisites

The default setting for analog inputs was chosen during commissioning:

- STARTER: "TM31 Terminals"
- AOP30: "2: TM31 terminals

Figure 6-17 Signal flow diagram: analog input 0

Function diagram

$$
\begin{array}{ll}
\text { FP } 9566 & \text { TM31 - analog input } 0(\mathrm{Al} 0) \\
\text { FP } 9568 & \text { TM31 - analog input } 1(\mathrm{Al} 1)
\end{array}
$$

Parameters

- r4052 Actual input voltage/current
- p4053 Analog inputs smoothing time constant
- r4055 Current referenced input value
- p4056 Analog inputs type
- p4057 Analog inputs, characteristic value x1
- p4058 Analog inputs, characteristic value y1
- p4059 Analog inputs, characteristic value x2
- p4060 Analog inputs, characteristic value y2
- p4063 Analog inputs offset

Note

In the factory setting and after basic commissioning, an input current of 20 mA is equal to the main setpoint 100% reference speed (p 2000), which has been set to the maximum speed (p1082).

Example: Changing Analog Input 0 from Current to Voltage Input -10 to +10 V

Table 6-5 Example: setting analog input 0

Note

The change to the analog input must then be stored on the CompactFlash card so that it is protected in the event of a power failure.

F3505 - Fault: "Analog input wire break"

This fault is triggered when the analog input type (p4056) is set to 3 ($4 \ldots 20 \mathrm{~mA}$ with opencircuit monitoring) and the input current of 2 mA has been undershot.

The fault value can be used to determine the analog input in question.

Table 6-6 Fault screen

6.5.2 Motorized potentiometer

Description

The digital motorized potentiometer enables you to set speeds remotely using switching signals (+/- keys). It is activated via terminals or PROFIBUS. As long as a logical 1 is present at signal input "MOP raise" (setpoint higher), the internal numerator integrates the setpoint. You can set the integration time (time taken for the setpoint to increase) using parameter p1047. In the same way, you can decrease the setpoint using signal input "MOP lower". The deceleration ramp can be set using parameter p1048.
Configuration parameter p1030.0 $=1$ (default setting $=0$) is used to activate that the actual motorized potentiometer is saved in a non-volatile fashion when powering-down the drive unit. When powering-up the drive unit, the starting (initial) value of the motorized potentiometer is set to the last, actual value that was present when the drive unit was powered-down.

Prerequisites

The default setting for the motorized potentiometer was chosen during commissioning:

- STARTER: "Motorized potentiometer"
- AOP30: "3: Motorized potentiometer"

Signal flow diagram

Figure 6-18 Signal flow diagram: Motorized potentiometer

Function diagram

FD 3020 Motorized potentiometer

Parameters

- p1030 Motorized potentiometer, configuration
- p1037 Motorized potentiometer, maximum speed
- p1038 Motorized potentiometer, minimum speed
- p1047 Motorized potentiometer, ramp-up time
- p1048 Motorized potentiometer, ramp-down time
- r1050 Motorized potentiometer, setpoint after the ramp-function generator

6.5.3 Fixed speed setpoints

Description

A total of 15 variable fixed speed setpoints are available.
The default setting specified for the setpoint sources during commissioning via STARTER or the operating panel makes 3 fixed speed setpoints available. They can be selected via terminals or PROFIBUS.

Requirement

The default setting for the fixed speed setpoints was chosen during commissioning:

- STARTER: "Fixed setpoint"
- AOP30: "4: Fixed setpoint"

Signal flow diagram

Figure 6-19 Signal flow diagram: Fixed speed setpoints

Function diagram

FP $3010 \quad$ Fixed speed setpoints

Parameter

- p1001 Fixed speed setpoint 01
- p1002 Fixed speed setpoint 02
- p1003 Fixed speed setpoint 03
- r1024 Fixed speed setpoint effective

Note

Other fixed speed setpoints are available using p1004 to p1015. They can be selected using p1020 to p1023.

6.6 Control via the operator panel

6.6.1 Operator panel (AOP30) overview and menu structure

Description

The operator panel can be used for the following activities:

- Parameterization (commissioning)
- Monitoring status variables
- Controlling the drive
- Diagnosing faults and alarms

All the functions can be accessed via a menu.
Your starting point is the main menu, which you can always call up using the yellow MENU key:

Dialog screen for the main menu:
It can be accessed at any time with the "MENU" key.
Press "F2" or "F3" to navigate through the menu options in the main menu.

Note

AOP reset
If the AOP no longer reacts, you can trigger an AOP reset by simultaneously pressing the key and OFF buttons (longer than two seconds) and then releasing the OFF button.

Menu structure of the operator panel

Figure 6-20 Menu structure of the operator panel

6.6.2 Menu: Operation screen

Description

The operation screen displays the most important status variables for the drive unit:
In the delivery condition, it displays the operating state of the drive, the direction of rotation, the time, as well as four drive variables (parameters) numerically and two in the form of a bar display for continuous monitoring.
You can call up the operation screen in one of two ways:

1. After the power supply has been switched on and the system has ramped up.
2. By pressing the MENU key twice and then F5 "OK".

Figure 6-21 Operation screen
If a fault occurs, the system automatically displays the fault screen (see "Faults and alarms"). In LOCAL control mode, you can choose to enter the setpoint numerically (F2: setpoint).
The "Define operation screen" menu can be selected directly using F3 "Change".
The individual parameters of the operation screen can be selected using F4 "Sel. par". The corresponding parameter number of the short identifier is displayed using F1 "Help+" and a description of the parameter can be called up.

Settings

When you choose Commissioning / service \rightarrow AOP settings \rightarrow Define operation screen, you can adjust the display type and the values displayed as required (see "Operation / AOP30 settings").

6.6.3 Menu: Parameterization

You can adjust the device settings in the Parameterization menu.
The drive software is modular. The individual modules are called DOs ("drive objects").
The following DOs are available in the SINAMICS S150:

- CU: General parameters for the Control Unit
- A_INF Regulated infeed
- VECTOR: Drive control
- TM31: Terminal module TM31 (option G60)

Parameters with identical functions may exist with the same parameter number in more than one DO (e.g. p0002).

The AOP30 is used for operating devices that comprise more than one drive (in this respect, a regulated infeed is also a "drive") so that attention is focused on one drive (i.e. the "current" drive). You can switch between the drives either in the operation screen or in the main menu. The corresponding function key is labeled "Drive".

This drive determines the following:

- Operation screen
- Fault and alarm displays
- The controller (ON, OFF, ...) of a drive

Depending on your requirements, you can choose between two AOP display types:

1. All parameters

All the parameters present in the device are listed here. The DO to which the parameter currently selected belongs (inverted) is displayed in curly brackets in the top left of the screen.
2. DO selection

In this display, you can pre-select a DO Only the parameters for this DO are then listed.
(The expert list display in STARTER only uses this DO view)
In both cases, the set access level governs which parameters are displayed. You can set the access level in the menu for inhibit functions, which can be called up using the key button.
The parameters for access levels 1 and 2 are sufficient for simple applications.
At access level 3 "Expert", you can change the structure of the function by interconnecting BICO parameters.

In the data set selection menu, you can choose which of the data sets chosen is currently DISPLAYED.
Data set parameters are indicated by a "c", "d", "m", "e", or "p" between the parameter number and parameter designator.
When a data set parameter is changed, the data set selection dialog appears.

Figure 6-22 Data set selection
Explanation of the operator control dialog

- "Max" shows the maximum number of data sets parameterized (and thereby available for selection) in the drive.
- "Drive" indicates which data set is currently active in the drive.
- "AOP" indicates which particular data set is currently being displayed in the operator panel.

6.6.4 Menu: Fault/alarm memory

When you select the menu, a screen appears containing an overview of faults and alarms that are present.
For each drive object, the system indicates whether any faults or alarms are present. ("Fault" or "Alarm" appears next to the relevant drive object).

In the graphic below, you can see that at least one active fault/alarm is present for the "VECTOR" drive object. No faults/alarms are indicated for the other drive objects.

Fault/alarm memory

When you navigate to the line with active alarms/faults and then press the F5 <Diag> key, the system displays a screen in which you have to select the current or old alarms/faults.

Display diagnosis

When you navigate to the required line and then press the F5 <OK> key, the corresponding faults/alarms are displayed. The list of current faults is selected here as an example.

Display of current faults

A maximum of eight current faults are displayed along with their fault number and name of the fault.
To display additional help regarding the cause of the problem and how to solve it, choose F1 <Help>.
To acknowledge the faults, choose F5 <Ack.>. If a fault cannot be acknowledged, the fault remains.
6.6 Control via the operator panel

6.6.5 Menu: Commissioning / service

6.6.5.1 Drive commissioning

This option enables you to re-commission the drive from the main menu.

Basic Commissioning

Only the basic commissioning parameters are queried and stored permanently.

Complete commissioning

Complete commissioning with motor and encoder data entry is carried out. Following this, key motor parameters are recalculated from the motor data. The parameter values calculated during previous commissioning are lost.

In a subsequent motor identification procedure, the calculated values are overwritten.

Motor identification
The selection screen for motor identification appears.

Resetting the fan runtime

After a fan replacement, the time counter for monitoring the fan runtime must be reset.

6.6.5.2 Device commissioning

Device commissioning

In this menu, you can enter the device commissioning status directly. This is the only way that you can reset parameters to the factory setting for example.

6.6.5.3 AOP30 settings

Control settings

This defines the settings for the control keys in LOCAL mode (see "Operation / Control via the operator panel / Operation via the operator panel").

Display settings

In this menu, you set the lighting, brightness, and contrast for the display.

Defining the operation screen

In this menu, you can switch between five operation screens. You can set the parameters that are to be displayed.

Figure 6-23 Defining the operation screen
The following image shows how the entries are assigned to the screen positions:

OPERATION		Entry 02
Entry 01	Entry 04	
Entry 03	Entry 06	
Entry 05	Entry 08	
Entry 07	Entry 10	
Entry 09		

OPERATION	Entry 02	$12: 25: 30 \mathrm{~S}$
Entry 01	Entry 04	
Entry 03	Entry 06	
Entry 05	Entry 08	
Entry 07		50%
Entry 09	0%	100%

OPERATION		Entry 02	$12: 25: 30 \mathrm{~S}$
Entry 01		Entry 04	
Entry 03		50%	100%
Entry 05	0%	50%	100%
Entry 06	0%		

OPERATION	
Entry 01	Entry 02

Figure 6-24 Layout of the entries in the operation screen

6.6.5.4 Lists of signals for the operation screen

The following tables list some of the main signals for the operation screen along with the associated reference variables and default settings for fast commissioning.

VECTOR object

Table 6-7 List of signals for the operation screen - VECTOR object

Signal		Parameters	Short name	Unit	Scaling (100 \%=...) See table below
Factory setting (entry no.)					
Speed setpoint upstream of ramp-function generator	(1)	r1114	NSETP	1/min	p2000
Output frequency	(2)	r0024	F_OUT	Hz	Reference frequency
Power smoothed	(3)	r0032	PACTV	kW	r2004
DC link voltage smoothed	(4)	r0026	U_DC	V	p2001
Actual speed value smoothed	(5)	r0021	N_ACT	1/min	p2000
Absolute actual current smoothed	(6)	r0027	I_IST	A	p2002
Motor temperature	(7)	r0035 1)	T_MOT	${ }^{\circ} \mathrm{C}$	Reference temperature
Converter temperature	(8)	r0037	T_LT	${ }^{\circ} \mathrm{C}$	Reference temperature
Actual torque smoothed	(9)	r0031	M_ACT	Nm	p2003
Converter output voltage smoothed	(10)	r0025	C_OUT	V	p2001
For diagnostic purposes					
Speed setpoint smoothed		r0020	NSETP	1/min	p2000
Control factor smoothed		r0028	AUSST	\%	Reference modulation depth
Field-producing current component		r0029	IDACT	A	p2002
Torque-producing current component		r0030	IQACT	A	p2002
Converter overload Degree of thermal overload		r0036	LTI2T	\%	100 \% = Shutdown
Speed actual value motor encoder		r0061	N_ACT	1/min	p2000
Speed setpoint after filter		r0062	NSETP	1/min	p2000
Actual speed smoothed		r0063	N_ACT	1/min	p2000
Control deviation		r0064	NDIFF	1/min	p2000
Slip frequency		r0065	FSCHL	Hz	Reference frequency
Output frequency		r0066	F_OUT	Hz	Reference frequency
Output voltage		r0072	UACT	V	p2001
Control factor		r0074	AUSST	\%	Reference modulation depth
Torque-generating actual current		r0078	IQACT	A	p2002
Actual torque value		r0080	M_ACT	Nm	p2003
For further diagnostic purposes					
Fixed speed setpoint effective		r1024		1/min	p2000
Active motorized potentiometer setpoint		r1050		1/min	p2000
Resulting speed setpoint		r1119	NSETP	1/min	p2000
Speed controller output		r1508	NREGY	Nm	p2003
I component of speed controller		r1482	NREGI	Nm	p2003
PROFIBUS setpoint		r2050	PBSOL	1/min	p2000

1) If a temperature sensor has not been installed, a value of $-200^{\circ} \mathrm{C}$ is displayed.

Normalization for VECTOR object

Table 6-8 Normalization for VECTOR object

Size	Scaling parameter	Default for quick commissioning
Reference speed	$100 \%=\mathrm{p} 2000$	p2000 $=$ Maximum speed $(\mathrm{p} 1082)$
Reference voltage	$100 \%=$ p2001	p2001 $=1000 \mathrm{~V}$
Reference current	$100 \%=$ p2002	p2002 = Current limit $(\mathrm{p} 0640)$
Reference torque	$100 \%=\mathrm{p} 2003$	$\mathrm{p} 2003=2 \times$ rated motor torque
Reference power	$100 \%=\mathrm{r} 2004$	$\mathrm{r} 2004=(\mathrm{p} 2003 \times \mathrm{p} 2000 \times \mathrm{\pi}) / 30$
Reference frequency	$100 \%=\mathrm{p} 2000 / 60$	
Reference modulation depth	$100 \%=$ Maximum output voltage without overload	
Reference flux	$100 \%=$ Rated motor flux	
Reference temperature	$100 \%=100^{\circ} \mathrm{C}$	

Object A_INF

Table 6-9 List of signals for the operation screen - object A_INF

Signal		Parameters	Short name	Unit	Scaling (100 \%=...) See table below
DC link voltage smoothed	(1)	r0026	U_DC	V	p2001
Input voltage	(2)	r0025	U_IN	V	p2001
Active current	(3)	r0030	IACTV	A	p2002
Line frequency	(4)	r0024	FLINE	Hz	p2000
Active power	(5)	r0032	PACTV	kW	r2004
Actual value of current	(6)	r0027	I_IST	A	p2002
Temperature of power unit	(7)	r0037	T_LT	${ }^{\circ} \mathrm{C}$	Reference temperature
Power factor, smoothed	(8)	r0032	PACTV	kW	r2004
Modulation depth, smoothed	(9)	r0028	AUSST	$\%$	Reference modulation
Reactive current component smoothed	(10)	r0029	IREAC	A	p2002

6.6 Control via the operator panel

Scalings for object A_INF

Table 6-10 Scalings for object A_INF

Variable	Scaling parameter	Default for quick commissioning
Reference frequency	$100 \%=\mathrm{p} 2000$	$\mathrm{p} 2000=\mathrm{p} 0211$
Reference voltage	$100 \%=\mathrm{p} 2001$	$\mathrm{p} 2001=\mathrm{r} 0206 / \mathrm{r0207}$
Reference current	$100 \%=\mathrm{p} 2002$	$\mathrm{p} 2002=\mathrm{r} 0207$
Reference power	$100 \%=\mathrm{r} 2004$	$\mathrm{r} 2004=\mathrm{r} 0206$
Reference modulation depth	$100 \%=$ Maximum output voltage without overload	
Reference temperature	$100 \%=100^{\circ} \mathrm{C}$	

TM31 object

Table 6-11 List of signals for the operation screen - TM31 object

Signal	Parameter	Short name	Unit	Scaling $(100 \%=\ldots)$
Analog input 0 [V, mA]	r4052[0]	Al_UI	V, mA	V : $100 \mathrm{~V} / \mathrm{mA}: 100 \mathrm{~mA}$
Analog input 1 [V, mA]	r4052[1]	AI_UI	V , mA	V : $100 \mathrm{~V} / \mathrm{mA}$: 100 mA
Analog input 0, scaled	r4055[0]	AI_\%	\%	as set in p200x
Analog input 1, scaled	r4055[1]	AI_\%	\%	as set in p 200 x

Setting the date/time (for date stamping of error messages)

In this menu, you set the date and time.
You can also set whether and/or how the AOP and drive unit are to be synchronized. Synchronization of the AOP with the drive enables error messages to be date- and timestamped.

Note

The drive unit displays the time in parameter r3102 in the UTC format (days/milliseconds since 01/01/1970).

- None (factory setting)

The times for the AOP and drive unit are not synchronized.

- AOP -> Drive
- If you activate this option, the AOP and drive unit are synchronized immediately whereby the current AOP time is transferred to the drive unit.
- The current AOP time is transferred to the drive unit every time the AOP is started.
- At 02:00 (AOP time) every day, the current AOP time is transferred to the drive unit.

Note

If the AOP detects a difference between RAM and ROM during synchronization to the drive unit, this is indicated by a flashing " S " at the top right in the display or, if operator input and/or parameter assignment has been disabled, by a flashing key symbol.

- Drive -> AOP
- If you activate this option, the AOP and drive unit are synchronized immediately whereby the current drive unit time is transferred to the AOP.
- The current drive unit time is transferred to the AOP every time the AOP is started.
- At 02:00 (AOP time) every day, the current drive unit time is transferred to the AOP.

Date format

In this menu, the date format can be set:

- DD.MM.YYYY: European date format
- MM/DD/YYYY: North American data format

DO name display mode

In this menu, you can switch the display of the DO name between the standard abbreviation (e.g. VECTOR) and a user-defined DO name (e.g. Motor_1).

User-defined DO name (factory setting: NO)

- Yes: The "User-defined DO name" stored in parameter p0199 is displayed, instead of the standard DO abbreviation.
- No: The standard DO abbreviation is displayed.

Resetting AOP settings

When you choose this menu option, the AOP factory settings for the following are restored:

- Language
- Display (brightness, contrast)
- Operation screen
- Control settings

NOTICE

When you reset parameters, all settings that are different to the factory settings are reset immediately. This may cause the cabinet unit to switch to a different, unwanted operational status.

For this reason, you should always take great care when resetting parameters.

6.6.5.5 AOP30 diagnosis

Software/database version

You can use this menu to display the firmware and database versions.
The database version must be compatible with the drive software status (you can check this in parameter r0018).

Battery status

In this menu, you can display the battery voltage numerically (in Volts) or as a bar display. The battery ensures that the data in the database and the current time are retained.

When the battery voltage is represented as a percentage, a battery voltage of $\leq 2 \mathrm{~V}$ is equal to 0%, and a voltage of $\geq 3 \mathrm{~V}$ to 100%.
The data is secure up to a battery voltage of 2 V .

- If the battery voltage is $\leq 2.45 \mathrm{~V}$, the message "Replace battery" is displayed in the status bar.
- If the battery voltage is $\leq 2.30 \mathrm{~V}$, the system displays the following message: "Warning: weak battery".
- If the battery voltage is $\leq 2 \mathrm{~V}$, the system displays the following message: "Caution: The battery is dead".
- If the time and/or database are not available after the system has been switched off for a prolonged period due to the voltage being too low, the loss is established by means of a CRC check when the system is switched on again. This triggers a message instructing the user to replace the battery and then load the database and/or set the time.
For instructions on how to change the battery, see "Maintenance and servicing".

Keyboard test

In this screen, you can check that the keys are functioning properly. Keys that you press are represented on a symbolic keyboard on the display. You can press the keys in any order you wish. You cannot exit the screen (F4 - "back") until you have pressed each key at least once.

Note

You can also exit the key test screen by pressing any key and keeping it pressed.

LED test

In this screen, you can check that the 4 LEDs are functioning properly.

6.6.6 Language/Sprache/Langue/Idioma/Lingua

The operator panel downloads the texts for the different languages from the drive.
You can change the language of the operator panel via the
"Language/Sprache/Langue/Idioma/Lingua" menu.

Note

Additional languages for the display
Languages in addition to the current available languages in the display are available on request.

6.6.7 Operation via the operator panel (LOCAL mode)

You activate the control keys by switching to LOCAL mode. If the green LED in the LOCAL/REMOTE key does not light up, the key is not active.

Note

If the "OFF in REMOTE" function is activated, the LED in the LOCAL-REMOTE key flashes.

For LOCAL master control, all of the supplementary setpoints are de-activated.
After the master control has been transferred to the operator panel, the BICO interconnections at bit 0 to bit 10 of the control word of the sequence control are not effective (refer to function diagram 2501).

6.6.7.1 LOCAL/REMOTE key

Activate LOCAL mode: Press the LOCAL key.
11.TIT
LOCAL mode: LED lights up
REMOTE mode: LED does not light up: the ON, OFF, JOG, direction reversal, faster, and slower keys are not active.

Settings: Menu - Commissioning / Service - AOP Settings - Control Settings

Save LOCAL mode (factory setting: yes)

- Yes: The "LOCAL" or "REMOTE" operating mode is saved when the power supply is switched off and restored when the power supply is switched back on.
- No: "LOCAL" or "REMOTE" operating mode is not saved. "REMOTE" is active when the supply voltage is switched back on.
OFF in REMOTE (factory setting: no)
- Yes: The OFF key functions in REMOTE mode even if the drive is being controlled by external sources (PROFIBUS, customer terminal strip, NAMUR terminal strip). WARNING This function is not an EMERGENCY STOP function!
- No: The OFF key is only effective in LOCAL mode.

LOCAL/REMOTE also during operation (factory setting: no)

- Yes: You can switch between LOCAL and REMOTE when the drive is switched on (motor is running).
- No: Before the system switches to LOCAL, a check is carried out to determine whether the drive is in the operational status. If so, the system does not switch to LOCAL and outputs the message "Local not possible". Before the system switches to REMOTE, the drive is switched off and the setpoint is set to 0 .

6.6.7.2 ON key / OFF key

ON key: always active in LOCAL when the operator input inhibit is deactivated.
OFF key: in the factory setting, acts as OFF1 = ramp-down at the deceleration ramp (p1121); when $n=0$: voltage disconnection (only if a main contactor is installed) The OFF key is effective in the LOCAL mode and when the "OFF in REMOTE" function is active.

Settings: Menu - Commissioning / Service - AOP Settings - Control Settings
Red OFF key acts as: (factory setting: OFF1)

- OFF1: Ramp-down on the deceleration ramp (p1121)
- OFF2: Immediate pulse block, motor coasts to a standstill
- OFF3: Ramp-down on the emergency stop ramp (p1135)

6.6.7.3 Switching between clockwise and counter-clockwise rotation

Settings: Menu - Commissioning / Service - AOP Settings - Control Settings
Switching between CCW/CW (factory setting: no)

- Yes: Switching between CW/CCW rotation by means of the CW/CCW key possible in LOCAL mode
- No: The CW/CCW key has no effect in LOCAL mode

For safety reasons, the CW/CCW key is disabled in the factory setting (pumps and fans must normally only be operated in one direction).

In the operation status in LOCAL mode, the current direction of rotation is indicated by an arrow next to the operating mode.

Note

You have to make additional settings when switching between CW/CCW rotation.

6.6.7.4 Jog

Settings: Menu - Commissioning / Service - AOP Settings - Control Settings

JOG key active (factory setting: no)

- Yes: The jog key is effective in the LOCAL mode in the state "ready to power-up" (not in "operation"). The speed that is set in parameter p1058 is approached.
- No: The JOG key has no effect in LOCAL mode

6.6.7.5 Increase setpoint / decrease setpoint

You can use the increase and decrease keys to set the setpoint with a resolution of $1 \mathrm{~min}^{-1}$ of the maximum speed.
You can also enter the setpoint numerically. To do so, press F2 in the operation screen. The system displays an field for entering the required speed. Enter the required value using the numeric keypad. Press F5 "OK" to confirm the setpoint.
When you enter values numerically, you can enter any speed between the minimum speed (p 1080) and the maximum speed (p 1082).

Setpoint entry in LOCAL mode is unipolar. You can change the direction of rotation by pressing the key that allows you to switch between CW/CCW rotation.

- CW rotation and "Increase key" mean: The displayed setpoint is positive and the output frequency is increased.
- CCW rotation and "Increase key" mean:

The displayed setpoint is negative and the output frequency is increased.

6.6.7.6 AOP setpoint

Settings: MENU - Commissioning/Service - AOP Settings - Control Settings

Save AOP setpoint (factory setting: no)

- Yes: In LOCAL mode, the last setpoint (once you have released the INCREASE or DECREASE key or confirmed a numeric entry) is saved.
The next time you switch the system on in LOCAL mode, the saved value is selected. This is also the case if you switched to REMOTE in the meantime or the power supply was switched off.
When the system is switched from REMOTE to LOCAL mode while the drive is switched on (motor is running), the actual value that was last present is set as the output value for the motorized potentiometer setpoint and saved.
If the system is switched from REMOTE to LOCAL mode while the drive is switched off, the motorized potentiometer setpoint that was last saved is used.
- No: On power-up in LOCAL mode, the speed is always set to the value entered under "AOP starting setpoint". When the system is switched from REMOTE to LOCAL mode while the drive is switched on (motor is running), the actual value that was last present is set as the output value for the AOP setpoint.

AOP setpoint ramp-up time (factory setting: 10 s)
AOP setpoint ramp-down time (factory setting: 10 s)

- Recommendation: set as ramp-up/ramp-down time (p1120 / p1121).

Changing the ramp-up/ramp-down times does not affect the settings for parameters p1120 and p1121 because this is an AOP-specific setting.

AOP starting setpoint (factory setting: 0.000 rpm)

Note

The internal drive ramp-function generator is always active.

Settings: MENU - Commissioning/Service - AOP Settings - Control Settings
Save AOP local mode (factory setting: no)

- Yes: Deactivates the "Control via operator panel" function, thereby disabling the LOCAL/REMOTE key.
- No: Activates the LOCAL/REMOTE key.

Note

LOCAL functionality can also be locked on the drive by means of the p0806 parameter (BI: Lock master control).

Settings: MENU - Commissioning/Service - AOP Settings - Control Settings

Acknowledge error from the AOP (factory setting: yes)

- Yes: Errors can be acknowledged via the AOP.
- No: Errors cannot be acknowledged via the AOP.

6.6.7.7 Timeout monitoring

In "LOCAL" mode or if "OFF in REMOTE" is active, the drive is shut down after 1 s if the data cable between the AOP and drive is disconnected.

6.6.7.8 Operator input inhibit / parameterization inhibit

To prevent users from accidentally actuating the control keys and changing parameters, you can activate an operator input / parameters disable using a key pushbutton. Two key icons appear in the top right of the display when these inhibit functions are enabled.

Table 6-12 Display of operator input/parameters disable

Inhibit type	Online operation	Offline operation
No inhibit	\square	
Operator input inhibit	\square	
Parameters disable		
Operator input inhibit + parameters disable		

Settings

Figure 6-25 Set inhibit functions

The "Operator input inhibit" setting can be changed directly via <F5> "Change" once you have selected the selection field.

When "Parameterization inhibit" is activated, you have to enter a numeric password (repeat this entry). You must also enter this password when deactivating "Parameterization inhibit".

Operator input inhibit (factory setting: not active)

- Active: The parameters can still be viewed, but a parameter value cannot be saved (message: "Note: operator input inhibit active"). The OFF key (red) is enabled. The LOCAL, REMOTE, ON (green), JOG, CW/CCW, INCREASE, and DECREASE keys are disabled.

Parameterization inhibit (factory setting: not active)

- Active: Parameters cannot be changed unless a password is entered. The parameterization process is the same as with the operator input inhibit. If you try and change parameters, the message "Note: Parameterization inhibit active" is displayed. All the control keys can, however, still be actuated.

Access level (factory setting: Expert):
The different parameters required for this complex application are filtered so that they can be displayed as clearly as possible. You select them according to the access level.
An expert level, which must only be used by expert personnel, is required for certain actions.

Note

A "Copy RAM to ROM" is carried out automatically if the operator input inhibit or parameterization inhibit are activated; this saves the parameter settings in a non-volatile memory on the memory card.

6.6.8 Faults and alarms

Indicating faults and alarms

If a fault occurs, the drive displays the fault and/or alarm on the operator panel. Faults are indicated by the red "FAULT" LED and a fault screen is automatically displayed. You can use the F1 Help function to call up information about the cause of the fault and how to remedy it. You can use F5 Ack. to acknowledge a stored fault.
Alarms are indicated by means of the yellow "ALARM" LED. The system also displays a note in the status bar providing information on the cause.

What is a fault?

A fault is a message from the drive indicating an error or other exceptional (unwanted) status that causes the drive to shutdown. This could be caused by a fault within the converter or an external fault triggered, for example, by the winding temperature monitor for the motor. The faults are displayed and can be reported to a higher-level control system via PROFIBUS. In the factory default setting, the message "converter fault" is also sent to a relay output. Once you have rectified the cause of the fault, you have to acknowledge the fault message.

What is an alarm?

An alarm is the response to a fault condition identified by the drive. It does not result in the drive being switched off and does not have to be acknowledged. Alarms are "self acknowledging", that is, they are reset automatically when the cause of the alarm has been eliminated.

Fault and alarm displays

Every fault and alarm is entered in the fault/alarm buffer along with time the error occurred. The time stamp refers to the system time (r2114).

You can call up an overview screen that displays the current status of faults and/or alarms for every drive object in the system by choosing MENU - Fault memory / alarm memory.

A context menu featuring the "Back" and "Quit" options appears when you press F4 "Next". The function required can be selected using F2 and F3 and executed by pressing F5 "OK". The "Acknowledge" function sends an acknowledgement signal to each drive object. The red FAULT LED extinguishes once all the faults have been acknowledged.
6.6 Control via the operator panel

Figure 6-26 Fault screen
You can use F5 Ack. to acknowledge a stored fault.

Figure 6-27 Alarm screen
Alarms that are no longer active are removed from the alarm memory with F5 Clear.

6.6.9 Saving the parameters permanently

Description

If parameters have been changed using the operator panel (confirm with OK in the Parameter Editor), the new values are initially stored in the volatile memory (RAM) of the converter. An "S" flashes in the top right of the AOP display until they are saved to a permanent memory. This indicates that at least 1 parameter has been changed and not yet stored permanently.

Two methods are available for permanently saving parameters that have been changed:

- To store the parameters permanently, choose <MENU> <Parameterization> <OK> <Permanent parameter transfer>.
- When confirming a parameter setting with OK, press the OK key for $>1 \mathrm{~s}$. The system displays a message asking you whether the setting is to be saved in the EEPROM. If you press "Yes", the system saves the setting in the EEPROM. If you press "No", the setting is not saved permanently and the " S " starts flashing.

In both cases, all changes that have not yet been saved permanently are stored in the EEPROM.

6.6.10 Parameterization errors

If a fault occurs when reading or writing parameters, a popup window containing the cause of the problem is displayed.
The system displays:

Parameter write error (d)pxxxx.yy:0xnn

and a plain-text explanation of the type of parameterization error.

6.7 Communication according to PROFIdrive

6.7.1 General information

PROFIdrive V4.1 is the PROFIBUS and PROFINET profile for drive technology with a wide range of applications in production and process automation.

PROFIdrive is independent of the bus system used (PROFIBUS, PROFINET).

Note

PROFINET for drive technology is standardized and described in the following document:

- PROFIBUS Profile PROFIdrive - Profile Drive Technology, Version V4.1, May 2006, PROFIBUS User Organization e. V.
Haid-und-Neu-Straße 7, D-76131 Karlsruhe, http://www.profibus.com Order Number 3.172, spec. Chp. 6
- IEC 61800-7

Controller, Supervisor, and Drive Unit

- Properties of the Controller, Supervisor, and Drive Unit

Table 6-13 Properties of the Controller, Supervisor, and Drive Unit

Properties	Controller, Supervisor	Drive Unit
As bus node	Active	Passive
Sending messages	Permitted without external request	Only possible at the request of the controller
Receiving messages	Possible with no restrictions	Only receiving and acknowledging permitted

- Controller (PROFIBUS: Master Class 1, PROFINET IO: IO controller)

This is typically a higher-level controller in which the automation program runs.
Example: SIMATIC S7 and SIMOTION

- Supervisor (PROFIBUS: Master Class 2, PROFINET IO: IO Supervisor)

Devices for configuration, commissioning, and operator control and monitoring during bus operation. Devices that exchange data with drive units and controllers acylically only.

Examples: Programming devices, operator control and monitoring devices

- Drive Unit (PROFIBUS: Slave, PROFINET IO: IO Device)

With reference to PROFIdrive, SINAMICS is a drive unit.

Interface IF1 and IF2

The control unit can communicate via two different interfaces (IF1 and IF2).

Table 6-14 Properties of IF1 and IF2

	IF1	IF2
PROFIdrive	Yes	No
Standard telegrams	Yes	No
Isochronous mode	Yes	Yes
DO types	All	All
Can be used for	PROFINET IO, PROFIBUS	PROFINET IO, PROFIBUS, CANopen
Cyclic operation possible	Yes	Yes
PROFIsafe possible	Yes	Yes

Note

For additional information on the IF1 and IF2 interfaces, see section "Parallel operation of communication interfaces".

6.7.2 Application classes

Description

There are different application classes for PROFIdrive according to the scope and type of the application processes. PROFIdrive features a total of 6 application classes, 4 of which are discussed here.

Application class 1 (standard drive)

In the most basic case, the drive is controlled via a speed setpoint by means of PROFIBUS/PROFINET. In this case, speed control is fully handled in the drive controller. Typical application examples include simple frequency converters for controlling pumps and fans.

Figure 6-28 Application class 1

Application class 2 (standard drive with technology function)

The overall process is subdivided into a number of small subprocesses and distributed among the drives. This means that the automation functions no longer reside exclusively in the central automation device but are also distributed in the drive controllers. Of course, this distribution assumes that communication is possible in every direction, i.e., also cross-communication between the technology functions of the individual drive controllers. Specific applications include setpoint cascades, winding drives, and speed synchronization applications for continuous processes with a continuous web.

Figure 6-29 Application class 2

Application class 3 (positioning drive)

In addition to the drive control, the drive also includes a positioning control, which means that it operates as a self-contained single-axis positioning drive while the higher-level technological processes are performed in the controller. Positioning requests are transmitted to the drive controller via PROFIBUS/PROFINET and launched. Positioning drives have a very wide range of applications, e.g., screwing and unscrewing caps in a bottle filling plant or positioning cutters on a foil cutting machine.

Figure 6-30 Application class 3

Application class 4 (central motion control)

This application class defines a speed setpoint interface, where the speed control is realized in the drive and the positioning control in the control system, such as is required for robotics and machine tool applications with coordinated motion sequences on multiple drives.

Motion control is primarily implemented using a central numerical controller (CNC). The position control loop is closed via the bus. The synchronization of the position control cycles in the open-loop and closed-loop controllers in the drives requires clock synchronization of the kind provided by PROFIBUS DP and PROFINET IO with IRT.

Figure 6-31 Application class 4

Selection of telegrams as a function of the application class

The telegrams listed in the table below can be used in the following application classes:

Table 6-15 Selection of telegrams as a function of the application class

Telegram $($ p0922 $=\mathrm{x})$	Description	Class 1	Class 2	Class 3	Class 4
1	Speed setpoint, 16 bit	x	x		
2	Speed setpoint, 32 bit	x	x		
3	Speed setpoint, 32 bit with 1 position encoder		x		x
4	Speed setpoint, 32 bit with 2 position encoders				x
5	Speed setpoint, 32 bit with 1 position encoder and DSC				x
6	Speed setpoint, 32 bit with 2 position encoders and DSC				x
7	Positioning, telegram 7 (basic positioner)			x	
9	Positioning, telegram 9 (basic positioner with direct input)			x	
20	Speed setpoint, 16 bit VIK-NAMUR	x	x		
81	Encoder telegram, 1 encoder channel				x

6.7 Communication according to PROFIdrive

Telegram $(\mathrm{p} 0922=x)$	Description	Class 1	Class 2	Class 3	Class 4
82	Extended encoder telegram, 1 encoder channel + speed actual value 16 bits				X
83	Extended encoder telegram, 1 encoder channel + speed actual value 32 bits				X
102	Speed setpoint, 32 bit with 1 position encoder and torque reduction				x
103	Speed setpoint, 32 bit with 2 position encoder and torque reduction				x
105	Speed setpoint, 32 bit with 1 position encoder, torque reduction and DSC				X
106	Speed setpoint, 32 bit with 2 position encoders, torque reduction and DSC				X
110	Basic positioner with MDI, override and XIST_A			x	
111	Basic positioner in the MDI mode			x	
116	Speed setpoint, 32 bit with 2 position encoders, torque reduction and DSC, plus actual load, torque, power and current values				x
118	Speed setpoint, 32 bit with 2 external position encoders, torque reduction and DSC, as well as actual load, torque, power, and current values				X
125	DSC with torque feedforward control, 1 position encoder (encoder 1)				x
126	DSC with torque feedforward control, 2 position encoders (encoder 1 and encoder 2)				X
136	136 DSC with torque feedforward control, 2 position encoders (encoder 1 and encoder 2), 4 trace signals				x
139	Closed-loop speed/position control with DSC and torque feedforward control, 1 position encoder, clamping status, supplementary actual values				x
220	Speed setpoint, 32 bit for the metal industry	x			
352	Speed setpoint, 16 bit, PCS7	x	x		
370	Infeed	X	X	x	x
371	Infeed, metal industry	x			
390	Control unit with digital inputs/outputs	X	X	x	x
391	Control unit with digital inputs/outputs and 2 probes	x	x	x	x
392	Control unit with digital inputs/outputs and 6 probes	x	x	x	x
393	Control unit with digital inputs/outputs and 8 probes	X	X	X	x
394	Control unit with digital inputs/outputs	x	x	x	x
700	Safety info channel	x	x	X	x
999	Free telegrams	x	X	x	x

6.7.3 Cyclic communication

Cyclic communication is used to exchange time-critical process data.

6.7.3.1 Telegrams and process data

General information

Selecting a telegram via CU parameter p0922 determines which process data is transferred between the master and slave.

From the perspective of the slave (SINAMICS), the received process data comprises the receive words and the process data to be sent the send words.

The receive and send words comprise the following elements:

- Receive words: Control words and setpoints
- Send words: Status words and actual values

Default setting "Profidrive"

When the "Profidrive" default setting is chosen for command and setpoint selection (see "Command sources / "Profidrive" default settings"), "Free telegram" (p0922 = 999) is selected.

The receive message frame is parameterized as follows as a result of the default setting (plan 622):

STW1	NSOLL_A

The send telegram is parameterized as follows (factory setting, plan 623):

ZSW1	NIST_GLATT	IAIST_GLATT	MIST_GLATT	PIST_GLATT	FAULT_CODE

You do not have to make any further settings in order to use these telegrams.

User-defined telegram selection

a. Standard telegrams

Standard telegrams are structured in accordance with PROFIdrive profile or internal company specifications. Internal interconnection of process data is performed automatically in accordance with the telegram number setting in parameter p0922.
The following standard telegrams can be set via parameter p0922:

- p0922 = $1 \quad$-> Speed setpoint, 16 bit
- p0922 $=2 \quad$-> Speed setpoint, 32 bit
- p0922 $=3 \quad->$ Speed setpoint 32 bit with 1 position controller
- p0922 = $4 \quad->$ Speed setpoint 32 bit with 2 position controller
- p0922 = $7 \quad$-> Positioning telegram 7
- p0922 $=20 \quad->$ Speed setpoint, 16 bit VIK-NAMUR
- p0922 = 352 -> Speed setpoint, 16 bit PCS7

Depending on the setting in p0922, the interface mode of the control and status word is automatically set:

- p0922 = 1, 352, 999:

STW 1/ZSW 1: Interface Mode SINAMICS / MICROMASTER, p2038 = 0

- p0922 = 20:

STW 1/ZSW 1: Interface Mode PROFIdrive VIK-NAMUR, p2038 = 2
b. Manufacturer-specific telegrams

The manufacturer-specific telegrams are structured in accordance with internal company specifications. The internal process data links are set up automatically in accordance with the telegram number setting.

The following vendor-specific telegrams can be set via p0922:

- p0922 = 110 Positioning telegram 110
- p0922 = 220 Speed setpoint 32 bit, metal industry
- p0922 = 371 Infeed for metal industry
c. Free telegrams $(p 0922=999)$

Send and receive telegrams can be configured as required by using BICO technology to interconnect the send and receive words. The default process data assigned under a) is retained during the changeover to p0922 $=999$, although it can be changed or supplemented at any time.

To maintain compliance with the PROFIdrive profile, however, the following assignments should be retained:

- Interconnect PZD receive word 1 as control word 1 (STW 1)
- Interconnect PZD send word 1 as status word 1 (STW 1)

For more information about possible interconnections, see function diagrams FP2460 and FP2470 and the simplified diagrams 620 to 622.

Telegram interconnections

After changing p0922 $=999$ (factory setting) to p0922 $=999$, the telegrams are interconnected and blocked automatically.

Note

Telegrams 20 and 352 are the exceptions. Here, the PZD06 in the send telegram and PZD03 to PZD06 in the receive telegram can be interconnected as required.

When you change p0922 $\ddagger 999$ to p0922 $=999$, the previous telegram interconnection is retained and can be changed.

Note

If p0922 = 999, a telegram can be selected in p2079. A telegram interconnection is automatically made and blocked. However, the telegram can also be extended.
This is an easy method of creating extended telegram interconnections on the basis of existing telegrams.
6.7 Communication according to PROFIdrive

6.7.3.2 Structure of the telegrams

Table 6-16 Structure of the telegrams

6.7.3.3 Overview of control words and setpoints

Table 6-17 Overview of control words and setpoints

Abbreviation	Description	Parameters	Function diagram
STW1	Control word 1 (interface mode SINAMICS, p2038 = 0)	See table "Control word 1 (interface mode SINAMICS, p2038 = 0)"	FP2442
STW1	Control word 1 (interface mode VIK- NAMUR, p2038 = 2)	See table "Control word 1 (interface mode VIK-NAMUR, p2038 = 2)"	FP2441
STW1_BM	Control word 1, metal industry (interface mode SINAMICS, p2038 = 0)	See table "Control word 1, metal industry (interface mode SINAMICS, p2038 = 0)"	FP2425
STW2	Control word 2 (interface mode SINAMICS, p2038 = 0)	See table "Control word 2 (interface mode SINAMICS, p2038 = 0)"	FP2444
STW2_BM	Control word 2, metal industry (interface mode SINAMICS, p2038 = 0)	See table "Control word 2, metal industry (interface mode SINAMICS, p2038 = 0)"	FP2426
E_STW1	Control word 1 for infeeds	See table: "Control word 1 for infeeds"	FP2447
E_STW1_BM	Control word 1 for infeeds, metal industry	See table: "Control word 1 for infeeds, metal industry"	FP2427
NSOLL_A	Speed setpoint A (16-bit)	p11570	FP3030
NSOLL_B	Speed setpoint B (32-bit)	FP3080	
PCS7_x	PCS7-specific setpoints		

6.7.3.4 Overview of status words and actual values

Table 6-18 Overview of status words and actual values

Abbreviation	Description	Parameters	Function diagram
ZSW1	Status word 1 (interface mode SINAMICS, p2038 = 0)	See table "Status word 1 (interface mode SINAMICS, p2038 = 0)"	FP2452
ZSW1	Status word 1 (interface mode VIKNAMUR, p2038 = 2)	See table "Status word 1 (interface mode VIK-NAMUR, p2038 = 2)"	FP2451
ZSW1_BM	Status word 1, metal industry (interface mode SINAMICS, p2038 = 0)	See table "Status word 1, metal industry (interface mode SINAMICS, p2038 = 0)"	FP2428
ZSW2	Status word 2 (interface mode SINAMICS, p2038 = 0)	See table "Status word 2 (interface mode SINAMICS, p2038 = 0)"	FP2454
ZSW2_BM	Status word 2 , metal industry (interface mode SINAMICS, p2038 = 0)	See table "Status word 2, metal industry (interface mode SINAMICS, p2038 = 0)"	FP2429
E_ZSW1	Status word 1 for infeeds	See table: "Status word 1 for infeeds"	FP2457
E_ZSW1_BM	Status word 1 for infeeds, metal industry	See table: "Status word 1 for infeeds, metal industry"	FP2430
NIST_A	Speed setpoint A (16 bit)	r0063[0]	FP4715
NIST_B	Speed setpoint B (32 bit)	r0063	FP4710
IAIST	Actual value of current	r0068[0]	FP6714
MIST	Actual torque value	r0080[0]	FP6714
PIST	Actual power value	r0082[0]	FP6714
NIST_GLATT	Actual speed value smoothed	r0063[1]	FP4715
IAIST_GLATT	Current actual value, smoothed	r0068[1]	FP6714
MIST_GLATT	Torque actual value, smoothed	r0080[1]	FP6714
PIST_GLATT	Power actual value, smoothed	r0082[1]	FP6714
MELD_NAMUR	VIK-NAMUR message bit bar	r3113, see table "NAMUR message bit bar"	--
WARN_CODE	Alarm code	r2132	FP8065
ERROR_CODE	Error code	r2131	FP8060

6.7.4 Acyclic communication

Acyclic communication, as opposed to cyclic communication, means data is transferred only when an explicit request is made (e.g., in order to read and write parameters).

The "Read data record" and "Write data record" services are available for acyclic communication.

The following options are available for reading and writing parameters:

- S7 protocol

The STARTER commissioning tool use this protocol, for example, in the online mode via PROFIBUS.

- PROFIdrive parameter channel with the following data records:
- PROFIBUS: Data block 47 (0x002F)

The DPV1 services are available for master class 1 and master class 2.

- PROFINET: Data block 47 and 0xB02F as global access, data block 0xB02E as local access

Note

Refer to the following documentation for a detailed description of acyclic communication: Reference: PROFIdrive Profile V4.1, May 2006, Order No: 3.172

Addressing:

- PROFIBUS DP, addressing is carried out via the logical address or the diagnostics address.
- PROFINET IO, addressing is carried out exclusively via a diagnostics address that is assigned to a module starting from slot 1. Parameters cannot be accessed using slot 0 .

Figure 6-32 Reading and writing data

Characteristics of the parameter channel

- One 16-bit address each for parameter number and subindex.
- Simultaneous access by several additional PROFIBUS masters (master class 2) or PROFINET IO Supervisor (e.g., commissioning tool).
- Transfer of different parameters in one access operation (multiple parameter request).
- Transfer of complete arrays or part of an array possible.
- Only one parameter request is processed at a time (no pipelining).
- A parameter request/response must fit into one data record (max. 240 bytes).
- The request and response header are counted as user data.

6.7.4.1 Structure of requests and responses

Structure of parameter request and parameter response

Table 6-19 Structure of the parameter request

	Parameter request			Offset
Values for write access only	Request header	Request reference	Request ID	0
		Axis	Number of parameters	2
	1. Parameter address	Attribute	Number of elements	4
		Parameter number		6
		Subindex		8
	\ldots			
	nth parameter address	Attribute	Number of elements	
		Parameter number		
		Subindex		
	1. parameter value(s)	Format	Number of values	
		Values		
		...		
	...			
	nth parameter value(s)	Format	Number of values	
		Values		
		...		

Table 6-20 Structure of the parameter response

	Parameter response			Offset
Values for read access only Error values for negative response only	Response header	Request reference mirrored	Response ID	0
		Axis mirrored	Number of parameters	2
	1. Parameter value(s)	Format	Number of values	4
		Values or error values		6
		...		
	\ldots			
	nth parameter value(s)	Format	Number of values	
		Values or error values		
		...		

Description of fields in DPV1 parameter request and response

Table 6-21 Fields in DPV1 parameter request and response

Field	Data type	Values	Remark
Request reference	Unsigned8	0x01 ... 0xFF	
	Unique identification of the request/response pair for the master. The master changes the request reference with each new request. The slave mirrors the request reference in its response.		
Request ID	Unsigned8	$\begin{aligned} & \hline 0 \times 01 \\ & 0 \times 02 \end{aligned}$	Read request Write request
	Specifies the type of request. In the case of a write request, the changes are made in a volatile memory (RAM). A save operation is needed in order to transfer the modified data to the non-volatile memory (p0971, p0977).		
Response ID	Unsigned8	$\begin{aligned} & 0 \times 01 \\ & 0 \times 02 \\ & 0 \times 81 \\ & 0 \times 82 \end{aligned}$	Read request (+) Write request (+) Read request (-) Write request (-)
	Mirrors the request ID and specifies whether request execution was positive or negative. Negative means: Cannot execute part or all of request. The error values are transferred instead of the values for each subresponse.		
Drive object number	Unsigned8	0x00 ... 0xFF	Number
	Setting for the drive object number of a drive unit with more than one drive object. Different drive objects with separate parameter number ranges can be accessed via the same DPV1 connection.		
Number of parameters	Unsigned8	0x01 ... 0×27	No. 1 ... 39 Limited by DPV1 telegram length
	Defines the number of following areas for the parameter address and/or parameter value for multi-parameter requests. The number of parameters $=1$ for single requests.		
Attribute	Unsigned8	$\begin{array}{\|l} \hline 0 \times 10 \\ 0 \times 20 \\ 0 \times 30 \\ \hline \end{array}$	Value Description Text (not implemented)

6.7 Communication according to PROFIdrive

Field	Data type	Values	Remark
	Type of parameter element accessed.		
Number of elements	Unsigned8	$\begin{aligned} & 0 \times 00 \\ & 0 \times 01 \ldots 0 \times 75 \end{aligned}$	Special function No. 1 ... 117 Limited by DPV1 telegram length
	Number of array elements accessed.		
Parameter number	Unsigned16	0x0001 ... 0xFFFF	No. $1 . .65535$
	Addresses the parameter to be accessed.		
Subindex	Unsigned16	0x0000 ... 0xFFFF	No. 0 ... 65535
	Addresses the first array element of the parameter to be accessed.		
Format	Unsigned8	0×02 0×03 0×04 0×05 0×06 0×07 0×08 Other values	Data type integer8 Data type integer16 Data type integer32 Data type unsigned8 Data type unsigned16 Data type unsigned32 Data type floating point See PROFIdrive profile V3.1
		$\begin{aligned} & 0 \times 40 \\ & 0 \times 41 \\ & 0 \times 42 \\ & 0 \times 43 \\ & 0 \times 44 \end{aligned}$	Zero (without values as a positive subresponse of a write request) Byte Word Double word Error
	The format and number specify the adjoining space containing values in the telegram. For write access, it is preferable to specify data types according to the PROFIdrive profile. Bytes, words and double words are also possible as a substitute.		
Number of values	Unsigned8	0x00 ... 0xEA	No. 0 ... 234 Limited by DPV1 telegram length
	Specifies the number of subsequent values.		
Error values	Unsigned16	0x0000 ... 0x00FF	Meaning of error values --> see following table
	The error values in the event of a negative response. If the values make up an odd number of bytes, a zero byte is attached. This ensures the integrity of the word structure of the telegram.		
Values	Unsigned16	0x0000 ... 0x00FF	
	The values of the parameter for read or write access. If the values make up an odd number of bytes, a zero byte is attached. This ensures the integrity of the word structure of the telegram.		

Error values in DPV1 parameter responses

Table 6-22 Error values in DPV1 parameter responses

Error value	Meaning	Remark	Additional info
0x00	Illegal parameter number.	Access to a parameter that does not exist.	-
0x01	Parameter value cannot be changed.	Modification access to a parameter value that cannot be changed.	Subindex
0x02	Lower or upper value limit exceeded.	Modification access with value outside value limits.	Subindex
0×03	Invalid subindex.	Access to a subindex that does not exist.	Subindex
0x04	No array.	Access with subindex to an unindexed parameter.	-
0x05	Wrong data type.	Modification access with a value that does not match the data type of the parameter.	-
0x06	Illegal set operation (only reset allowed)	Modification access with a value not equal to 0 in a case where this is not allowed.	Subindex
0x07	Description element cannot be changed	Modification access to a description element that cannot be changed.	Subindex
0×09	No description data available	Access to a description that does not exist (the parameter value exists).	-
0x0B	No parameter change rights.	Modification access with no parameter change rights.	-
$0 \times 0 \mathrm{~F}$	No text array exists	Access to a text array that does not exist (the parameter value exists).	-
0×11	Request cannot be executed due to operating status.	Access is temporarily not possible for unspecified reasons.	-
0x14	Illegal value.	Modification access with a value that is within the limits but is illegal for other permanent reasons (parameter with defined individual values).	Subindex
0x15	Response too long.	The length of the present response exceeds the maximum transfer length.	-
0x16	Illegal parameter address.	Illegal or unsupported value for attribute, number of elements, parameter number, subindex or a combination of these.	-
0x17	Illegal format.	Write request: illegal or unsupported parameter data format.	-
0×18	Number of values inconsistent.	Write request: a mismatch exists between the number of values in the parameter data and the number of elements in the parameter address.	-
0x19	Drive object does not exist.	You have attempted to access a drive object that does not exist.	-
0×65	Parameter presently deactivated.	You have tried to access a parameter that, although available, does not currently perform a function (e.g., n control set and access to a V/f control parameter).	-
0x6B	Parameter \%s [\%s]: no write access for the enabled controller.	-	-
0x6C	Parameter \%s [\%s]: unit unknown.	-	-
0x6D	Parameter \%s [\%s]: write access only in the commissioning state, encoder (p0010 = 4).	-	-

6.7 Communication according to PROFIdrive

Error value	Meaning	Remark	Additional info
0x6E	Parameter \%s [\%s]: write access only in the commissioning state, motor (p0010 = 3).	-	-
0x6F	Parameter \%s [\%s]: write access only in the commissioning state, power module (p0010 = 2).	-	-
0x70	Parameter \%s [\%s]: write access only in quick commissioning (p0010 = 1).	-	-
0x71	Parameter \%s [\%s]: write access only in the ready state (p0010 = 0).	-	-
0x72	Parameter \%s [\%s]: write access only in the commissioning state, parameter reset (p0010 = 30).	-	-
0x73	Parameter \%s [\%s]: write access only in the commissioning state, safety (p0010 = 95).	-	-
0x74	Parameter \%s [\%s]: write access only in the commissioning state, tech. application/units (p0010 = 5).	-	-
0x75	Parameter \%s [\%s]: write access only in the commissioning state (p0010 not equal to 0).	-	-
0x76	Parameter \%s [\%s]: write access only in the commissioning state, download (p0010 = 29).	-	-
0x77	Parameter \%s [\%s] must not be written during download.	-	-
0×78	Parameter \%s [\%s]: write access only in the commissioning state, drive configuration (device: p0009 = 3).	-	-
0x79	Parameter \%s [\%s]: write access only in the commissioning state, define drive type (device: p0009 = 2).	-	-
0x7A	Parameter \%s [\%s]: write access only in the commissioning state, database configuration (device: p0009 = 4).	-	-
0x7B	Parameter \%s [\%s]: write access only in the commissioning state, device configuration (device: p0009 = 1).	-	-
0x7C	Parameter \%s [\%s]: write access only in the commissioning state, device download (device: p0009 = 29).	-	-
0x7D	Parameter \%s [\%s]: write access only in the commissioning state, device parameter reset (device: p0009 = 30).	-	-
0x7E	Parameter \%s [\%s]: write access only in the commissioning state, device ready (device: p0009 = 0).	-	-

Error value	Meaning	Remark	Additional info
0x7F	Parameter \%s [\%s]: write access only in the commissioning state, device (device: p0009 mot 0).	-	-
0×81	Parameter \%s [\%s] must not be written during download.	-	-
0×82	Transfer of the control authority is inhibited by BI: p0806.	-	-
0x83	Parameter \%s [\%s]: requested BICO interconnection not possible.	BICO output does not supply float values, however the BICO input requires float values.	-
0×84	Parameter \%s [\%s]: parameter change inhibited (refer to p0300, p0400, p0922)	-	-
0x85	Parameter \%s [\%s]: access method not defined.	-	-
0xC8	Below currently valid limit.	Modification request for a value that, although within "absolute" limits, is below the currently valid lower limit.	-
0xC9	Above currently valid limit.	Modification request for a value that, although within "absolute" limits, is above the currently valid upper limit (e.g., specified by the actual converter rating).	-
0xCC	Write access not permitted.	Write access is not permitted because an access code is not available.	-

6.7.4.2 Determining the drive object numbers

Further information about the drive system (e.g., drive object numbers) can be determined as follows from parameters p0101, r0102 and p0107/r0107:

1. The value of parameter r0102 ("Number of drive objects") is read via a read request from drive object 1.

The drive object with drive object number 1 is the control unit (CU), which is always present in every drive system, as a minimum.
2. Depending on the result of the initial read request, further read requests on drive object 1 are used to read the indices of parameter p0101 ("Drive object numbers"), as specified by parameter r0102.

Example:
If the number of drive objects that is read out is " 5 ", then the values of indices 0 to 4 of parameter p0101 are read out. The relevant indices can also be read at once.

Note

The first two points provide you with the following information:

- The number of drive objects present in the drive system
- The drive object numbers assigned to these drive objects

3. Following this, parameter r0107/p0107 ("Drive object type") is read for each drive object (indicated by the drive object number).

Depending on the drive object, parameter 107 can be either an adjustable parameter or a display parameter.

The value in parameter r0107/p0107 indicates the drive object type. The coding for the drive object type is specified in the parameter list.
4. From here, the list of parameters applies to the particular drive object.

6.7.4.3 Example 1: Reading parameters

Prerequisites

1. The PROFIdrive controller has been commissioned and is fully operational.
2. PROFIdrive communication between the controller and the device is operational.
3. The controller can read and write data records in conformance with PROFIdrive DPV1.

Task description

Following the occurrence of at least one fault (STW1.3 = "1") on drive 2 (also drive object number 2), the active fault codes are to be read from the fault buffer r0945[0] .. r0945[7].
The request is to be handled using a request and response data block.

Basic procedure

1. Create a request to read the parameters.
2. Initiate the parameter request.
3. Evaluate the parameter response.

Execution

1. Create a request to read the parameters

Table 6-23 Parameter request

Parameter request	Request reference $=25$ hex	Request ID $=01$ hex	Offset
	Number of parameters $=01$ hex	$0+1$	
	Axis $=02$ hex	Number of elements $=08$ hex	$4+5$
Parameter address	Attribute $=10$ hex	6	
	Parameter no. $=945 \mathrm{dec}$	8	
	Subindex $=0$ dec	8	

Information about the parameter request:

- Request reference:

The value is selected at random from the valid value range. The request reference establishes the relationship between request and response.

- Request ID:

01 hex \rightarrow This identifier is required for a read request.

- Axis:

02 hex \rightarrow Drive 2, fault buffer with drive- and device-specific faults

- Number of parameters:

01 hex \rightarrow One parameter is read.

- Attribute:

10 hex \rightarrow The parameter values are read.

- Number of elements:

08 hex \rightarrow The actual fault case with 8 faults is to be read.

- Parameter number:
$945 \mathrm{dec} \rightarrow \mathrm{p} 0945$ (fault code) is read.
- Subindex:

0 dec \rightarrow Reading starts from index 0 .
2. Initiate parameter request

If STW1.3 = "1" \rightarrow Initiate parameter request
3. Evaluate the parameter response

Table 6-24 Parameter response

Parameter response			Offset
Response header	Request reference mirrored $=25 \text { hex }$	Response ID = 01 hex	$0+1$
	Axis mirrored $=02$ hex	Number of parameters $=01$ hex	$2+3$
Parameter value	Format = 06 hex	Number of values $=08$ hex	$4+5$
	1. value $=1355 \mathrm{dec}$		6
	2. value $=0 \mathrm{dec}$		8
	\ldots		...
	8. value $=0 \mathrm{dec}$		20

Information about the parameter response:

- Request reference mirrored:

This response belongs to the request with request reference 25.

- Response ID:

01 hex \rightarrow Read request positive, values available starting from 1st value

- Axis mirrored, number of parameters:

The values correspond to the values from the request.

- Format:

06 hex \rightarrow Parameter values are in the unsigned16 format.

- Number of values:

08 hex $\rightarrow 8$ parameter values are available.

- 1. value ... 8th value

A fault is only entered in value 1 of the fault buffer for drive 2.

6.7.4.4 Example 2: Writing parameters (multi-parameter request)

Prerequisites

1. The PROFIdrive controller has been commissioned and is fully operational.
2. PROFIdrive communication between the controller and the device is operational.
3. The controller can read and write data records in conformance with PROFIdrive DPV1. Special requirements for this example:
4. Control type: Vector control (with extended setpoint channel)

Task description

Jog 1 and 2 are to be set up for drive 2 (also drive object number 2) via the input terminals of the control unit. A parameter request is to be used to write the corresponding parameters as follows:

- BI: p1055 = r0722.4
- BI: p1056 = r0722.5
- $\mathrm{p} 1058=300 \mathrm{rpm}$
- $\mathrm{p} 1059=600 \mathrm{rpm}$

Jog bit 0
Jog bit 1
Jog 1 speed setpoint
Jog 2 speed setpoint

The request is to be handled using a request and response data block.

Input in BI: p1055 and BI: p1056
Object
0: Device
1: CU320
63: Wiring on itself

Figure 6-33 Task description for multi-parameter request (example)

Basic procedure

1. Create a request to write the parameters.
2. Initiate the parameter request.
3. Evaluate the parameter response.

Execution

1. Create a request to write the parameters

Table 6-25 Parameter request

Parameter request			Offset
Request header	Request reference $=40$ hex	Request ID = 02 hex	$0+1$
	Axis = 02 hex	Number of parameters = 04 hex	$2+3$
1. Parameter address	Attribute $=10$ hex	Number of elements $=01$ hex	$4+5$
	Parameter no. $=1055 \mathrm{dec}$		6
	Subindex $=0$ dec		8
2. Parameter address	Attribute $=10$ hex	Number of elements $=01$ hex	$10+11$
	Parameter no. $=1056 \mathrm{dec}$		12
	Subindex $=0$ dec		14
3. Parameter address	Attribute $=10$ hex	Number of elements $=01$ hex	$16+17$
	Parameter no. $=1058 \mathrm{dec}$		18
	Subindex $=0$ dec		20
4. Parameter address	Attribute $=10$ hex	Number of elements $=01$ hex	$22+23$
	Parameter no. $=1059 \mathrm{dec}$		24
	Subindex $=0 \mathrm{dec}$		26
1. Parameter value(s)	Format = 07 hex	Number of values $=01$ hex	$28+29$
	Value $=02 \mathrm{D} 2$ hex		30
	Value $=0404$ hex		32
2. Parameter value(s)	Format $=07$ hex	Number of values $=01$ hex	$34+35$
	Value = 02D2 hex		36
	Value $=0405$ hex		38
3. Parameter value(s)	Format $=08$ hex	Number of values = 01 hex	$40+41$
	Value $=4396$ hex		42
	Value $=0000$ hex		44
4. Parameter value(s)	Format $=08$ hex	Number of values = 01 hex	$46+47$
	Value $=4416$ hex		48
	Value $=0000$ hex		50

Information about the parameter request:

- Request reference:

The value is selected at random from the valid value range. The request reference establishes the relationship between request and response.

- Request ID:

02 hex \rightarrow This identifier is required for a write request.

- Axis:

02 hex \rightarrow The parameters are written to drive 2.

- Number of parameters 04 hex \rightarrow The multi-parameter request comprises 4 individual parameter requests.

1st parameter address ... 4th parameter address

- Attribute:

10 hex \rightarrow The parameter values are to be written.

- Number of elements

01 hex $\rightarrow 1$ array element is written.

- Parameter number

Specifies the number of the parameter to be written (p1055, p1056, p1058, p1059).

- Subindex:
$0 \mathrm{dec} \rightarrow$ ID of the first array element.
1st parameter value ... 4th parameter value
- Format:

07 hex \rightarrow Data type Unsigned32
08 hex \rightarrow Data type FloatingPoint

- Number of values:

01 hex $\rightarrow A$ value is written to each parameter in the specified format.

- Value:

BICO input parameter: enter signal source
Adjustable parameter: enter value
2. Initiate parameter request
3. Evaluate the parameter response

Table 6-26 Parameter response

Parameter response		Offset	
Response header	Request reference mirrored = 40 hex	Response ID $=02$ hex	0
	Axis mirrored = 02 hex	Number of parameters $=$ 04 hex	2

Information about the parameter response:

- Request reference mirrored:

This response belongs to the request with request reference 40 .

- Response ID:

02 hex \rightarrow Write request positive

- Axis mirrored:

02 hex \rightarrow The value matches the value from the request.

- Number of parameters:

04 hex \rightarrow The value matches the value from the request.

6.7.5 Further information about PROFIdrive communication

Further information about PROFIdrive communication

For more information about PROFIdrive communication, refer to "PROFIdrive communication" in the accompanying "SINAMICS S120 Function Manual".

6.8 Communication via PROFIBUS DP

6.8.1 PROFIBUS connection

Positions of PROFIBUS port, address switch, and diagnostics LED
The PROFIBUS port, address switch, and diagnostics LED are located on the Control Unit CU320-2 DP.

Figure 6-34 View of the Control Unit with PROFIBUS interface

PROFIBUS connection

The PROFIBUS is connected by means of a 9-pin SUB D socket (X126). The connections are electrically isolated.

Table 6-27 X126-PROFIBUS port

	Pin	Signal name	Meaning	Range
	1	SHIELD	Ground connection	
	2	M24_SERV	Power supply for teleservice, ground	0 V
	3	RxD/TxD-P	Receive / transmit data P (B/B')	RS485
	4	CNTR-P	Control signal	TTL
	5	DGND	PROFIBUS data reference potential (C/C')	
	6	VP	Supply voltage plus	$5 \mathrm{~V} \pm 10 \%$
	7	P24_SERV	Power supply for teleservice P, + (24 V)	24 V (20.4 V-28.8 V)
	8	RxD/TxD-N	Receive / transmit data N (A/A')	RS485
	9	-	not assigned	

Connectors

The cables must be connected via PROFIBUS connectors as they contain the necessary terminating resistors.

The figure below shows suitable PROFIBUS connectors with/without a PG/PC connector.

PROFIBUS connector without PG/PC connection 6ES7972-0BA41-0XA0

PROFIBUS connector with PG/PC connection 6ES7972-0BB41-0XA0

Bus terminating resistor

The bus terminating resistor must be switched on or off depending on its position in the bus, otherwise the data will not be transmitted properly.

The terminating resistors for the first and last nodes in a line must be switched on; the resistors must be switched off at all other connectors.

The cable shield must be connected at both ends over large-surface area contacts.

Figure 6-35 Posisition of the bus terminating resistors
6.8 Communication via PROFIBUS DP

Cable routing

Figure 6-36 Cable routing

6.8.2 Control via PROFIBUS

"DP1 (PROFIBUS)" diagnostics LED

The PROFIBUS diagnostics LED is located on the front of the Control Unit. Its states are described in the following table.

Table 6-28 Description of the LEDs

Color	State	Description
-----	OFF	Cyclic communication is not (yet) running. Note: PROFIdrive is ready for communication when the control unit is ready for operation (see RDY LED).
Green	Continuous light	Cyclic communication is taking place.
Green	0.5 Hz flashing light	Cyclic communication has still not been fully established. Possible causes: - The controller is not transmitting any setpoints. - In isochronous mode, the controller did not send a Global Control or it sent a defective Global Control (GC).
Red	0.5 Hz flashing light	PROFIBUS master is sending incorrect parameter assignment/configuration
Red	2 Hz flashing light	Cyclic bus communication has been interrupted or could not be established.

Setting the PROFIBUS Address

There are two ways to set the PROFIBUS address:

1. Via p0918

- To set the bus address for a PROFIBUS node using STARTER, first set the rotary code switches to 0 dec $\left(00_{\text {hex }}\right)$ and 127 dec ($7 F_{\text {hex }}$).
- Then use parameter p0918 to set the address to a value between 1 and 126.

2. Via the PROFIBUS address switches on the Control Unit

- The address is set manually to values between 1 and 126 using the rotary coding switches. In this case, p0918 is only used to read the address.

The address switch is behind the blanking plate. The blanking plate is part of the scope of supply.

PROFIBUS address switches

The PROFIBUS address is set as a hexadecimal value via two rotary coding switches. Values between $0_{\text {dec }}\left(00_{\text {hex }}\right)$ and 127 dec ($7 \mathrm{~F}_{\text {hex }}$) can be set as the address. The upper rotary coding switch (H) is used to set the hexadecimal value for 16^{1} and the lower rotary coding switch (L) is used to set the hexadecimal value for 16°.

Table 6-29 PROFIBUS address switches

Rotary coding switches	Significance	Examples		
		21 dec	$35_{\text {dec }}$	126dec
		$15_{\text {hex }}$	$23_{\text {hex }}$	7E ${ }_{\text {hex }}$
	$16^{1}=16$	1	2	7
	$16^{0}=1$	5	3	E

The factory setting for the rotary coding switches is $0_{\text {dec }}\left(00_{\text {hex }}\right)$.

Setting the PROFIBUS ID number

The PROFIBUS Ident Number (PNO-ID) can be set using p2042.
SINAMICS can be operated on PROFIBUS with various identities. This allows a PROFIBUS GSD that is independent of the device to be used (e.g. PROFIdrive VIK-NAMUR with Ident Number 3AAO hex).

- 0: SINAMICS S/G
- 1:VIK-NAMUR

New settings do not become active until after POWER ON, reset, or download.

Note

The advantages of Totally Integrated Automation (TIA) can only be utilized when selecting "0".

6.8.3 Monitoring: Telegram failure

Description

Following a telegram failure and after a monitoring time has elapsed ($\mathrm{t} _$An), bit r2043.0 is set to "1" and alarm A01920 is output. Binector output r2043.0 can be used for an emergency stop, for example.

Once a delay time (p2044) has elapsed, fault F01910 is output and fault reaction OFF3 (quick stop) is triggered. If no OFF response is to be triggered, the fault response can be reparameterized accordingly.
Fault F01910 can be acknowledged immediately. The drive can then be operated even without PROFIBUS.

Figure 6-37 Monitoring: Telegram failure

6.8.4 Creating an S150 in SIMATIC Manager

Once you have called up the hardware manager, you have to choose the Profibus line to which the S150 is to be connected.
In the catalog, double-click the S150 below the "Profibus-DP/Sinamics" folder. A window is displayed in which you can set the S150 bus address. It must be the same as the address on the converter (switch on CU320 or p0918).
To confirm your entries, choose OK. The "Configuration" tab is then displayed in the "DP_Slave_Properties" window.

Figure 6-38 SIMATIC screen in HWConfig: DP slave properties S150
The number 1 is entered in the first field under "Object". Standard telegram 1 is defaulted in the field under "Telegram selection".
To display a selection field in which you can select different telegram types, click the standard telegram.
To display or change details (e.g. addresses for peripheral equipment) for the selected telegram, choose the "Details" tab. If you want to use user-definable telegrams (p0922=999) instead of standard telegrams, you can also change the number of PZDs here. The number of PZDs in the send and receive direction does not have to be the same.

Once you have saved your configuration, you have to make a number of settings for the converter. A distinction is made here between using the AOP and the STARTER commissioning tool.

Using the AOP

Once you have carried out basic commissioning for the S150, you have to select the device configuration using CU parameter p0009 = 1. You then have to enter a 3 in CU parameter p0978 index 0 and a 2 in p0978 index 1 . Save the data to the EEPROM. To exit the device configuration, use p0009 $=0$. Subsequent activities for interconnecting the process data in the converter are carried out in accordance with the setting for CU parameter p0922 or on the basis of function diagrams FD2410 to FD2483.

Using the STARTER Stand ALONE commissioning tool

Once you have worked through the steps with the device Wizard in STARTER, you have to set parameter p0009 in the Control Unit expert list to 1 (device configuration). You then have to enter a 3 in CU parameter p0978 index 0 and a 2 in p0978 index 1. To exit the device configuration, use p0009 $=0$. You must ensure that the new parameters are saved to the EEPROM in online mode.

Using the STARTER and DRIVE ES software tools
If the DRIVE_ES program is installed in addition to the SIMATIC Step 7 program and the STARTER commissioning tool, you can access STARTER directly from SIMATIC Manager. You have to configure the SINAMICS S150 using the device Wizard in STARTER and then open the "Configuration" screen below the drive name.

Figure 6-39 STARTER: the "Configuration" screen when opened for the first time
In this screen, the peripheral equipment addresses created in "HWConfig" in SIMATIC Manager are assigned to the infeed rather than the drive. To swap the infeed and drive in the table, click the "down" arrow on the right-hand side of the screen. Now close the screen and open it again. The peripheral equipment addresses are now assigned to the drive. To compare this setting with SIMATIC Manager, click the "Compare with HWConfig" button. The parameters can now be loaded to the converter.

6.8.5 Further information about communication via PROFIBUS DP

Further information about communication via PROFIBUS DP
For more information about communication via PROFIBUS DP, refer to "Communication via PROFIBUS DP" in the accompanying "SINAMICS S120 Function Manual".

6.9 Communication via PROFINET IO

6.9.1 Activating online operation: STARTER via PROFINET IO

Description

Online operation with PROFINET IO is implemented using TCP/IP.

Prerequisites

- STARTER Version 4.2 or higher
- Control unit CU320-2 PN or CBE20

STARTER via PROFINET IO (example)

Figure 6-40 STARTER via PROFINET (example)

Procedure, establishing online operation with PROFINET

1. Set the IP address in Windows XP

The PC/PG is referred here to a fixed, free IP address.
2. Settings in STARTER
3. Assigning the IP address and the name

The PROFINET interface must be "baptized" so that the STARTER can establish communication.
4. Select online operation in STARTER.

Set the IP address in Windows XP

On the desktop, right-click on "Network environment" -> Properties -> double-click on Network card and choose -> Properties -> Internet Protocol (TCP/IP) -> Properties -> Enter the freely-assignable addresses.

Figure 6-41 Properties of the Internet Protocol (TCP/IP)

Settings in STARTER

The following settings are required in STARTER for communication via PROFINET:

- Extras -> Set PG/PC interface

Figure 6-42 Set the PG/PC interface

- Right-click Drive unit -> Target device -> Online access -> Module address

Figure 6-43 Activating online operation

Assigning the IP address and the name

Note

ST (Structured Text) conventions must be satisfied for the name assignment of IO devices in PROFINET (SINAMICS components). The names must be unique within PROFINET. The characters "-" and "." are not permitted in the name of an IO device.

"Accessible nodes" function

Use the STARTER to assign an IP address and a name to the PROFINET interface.

- Connect the direct Ethernet cable from the PG/PC to the PROFINET interface.
- Switch on the Control Unit.
- Open STARTER.
- A search is performed for available nodes in PROFINET via Project -> Accessible nodes or the "Accessible nodes" button.
- The SINAMICS drive object is detected and displayed as a bus node with IP address 0.0.0.0 and without a name.
- Mark the bus node entry and select the displayed menu item "Edit Ethernet node" with the right mouse button.
- In the following "Edit Ethernet node" screen, enter the device name for the PROFINET interface and click the "Assign name" button. Enter the IP address (e.g. 169.254.11.22) in the IP configuration and specify the subnet screen (e.g. 255.255.0.0). Then click the "Assign IP configuration" button. Close the screen.
- The "Update (F5)" button displays the IP address and name in the entry for the bus node. If not, close the "Accessible nodes" screen and perform another search for accessible nodes.
- If the PROFINET interface is displayed as bus node, mark the entry and click the "Accept" button.
- The SINAMICS drive is displayed as a drive object in the project tree.
- Further configurations can be performed for the drive object.
- Click "Connect to target system" and load the project to the Control Unit's memory card with Target system -> Load -> To target device.

Note

The IP address and device name for the Control Unit are stored on the memory card (non-volatile).

6.9.2 General information about PROFINET IO

6.9.2.1 General information about PROFINET IO for SINAMICS

General information

PROFINET IO is an open Industrial Ethernet standard for a wide range of production and process automation applications. PROFINET IO is based on Industrial Ethernet and observes TCP/IP and IT standards.

The following standards ensure open, multi-vendor systems:

- International standard IEC 61158

PROFINET IO is optimized for high-speed, time-critical data communication at field level.

PROFINET

Within the context of Totally Integrated Automation (TIA), PROFINET IO is the systematic development of the following systems:

- PROFIBUS DP, the established field bus, and
- Industrial Ethernet, the communications bus for the cell level.

Experience gained from both systems was and is being integrated into PROFINET IO. As an Ethernet-based automation standard defined by PROFIBUS International (PROFIBUS user organization), PROFINET IO is a manufacturer-independent communication and engineering model.

PROFINET IO defines every aspect of the data exchange between IO controllers (devices with so-called "master functionality" and the IO devices (those with so-called "slave functionality") as well as parameterization and diagnostic processes. An IO system is configured by virtually the same method used for PROFIBUS.
A PROFINET IO system is made up of the following devices:

- The IO controller controls automation tasks.
- An IO device is controlled and monitored by an IO controller. An IO device consists of several modules and submodules.
- IO supervisor is an engineering tool typically based on a PC that is used to parameterize and diagnose individual IO devices (drive units).
10 devices: Drive units with PROFINET interface
- SINAMICS S150 with CU320-2 DP and inserted CBE20
- SINAMICS S150 with CU320-2 PN

With SINAMICS S150 and CBE20 or with CU320-2 PN, communication via PROFINET IO with RT is possible.

Note

PROFINET for drive technology is standardized and described in the following document:
PROFIBUS Profile PROFIdrive - Profile Drive Technology
Version V4.1, May 2006,
PROFIBUS User Organization e. V.
Haid-und-Neu-Straße 7,
D-76131 Karlsruhe
http://www.profibus.com,
Order Number 3.172, spec. Chp. 6

- IEC 61800-7

CAUTION

The cyclic process data channel for PROFIBUS DP is initially deactivated for a CU320-2 DP and inserted CBE20. However, it can be activated again with parameter (p8839) (see "Parallel operation of communication interfaces").

6.9.2.2 Real-time (RT) and isochronous real-time (IRT) communication

Real-time communication

When communication takes place via TCP/IP, the resultant transmission times may be too long and non-deterministic to meet production automation requirements. When communicating time-critical IO user data, PROFINET IO therefore uses its own real-time channel, rather than TCP/IP.

Determinism

Determinism means that a system will react in a predictable ("deterministic") manner. With PROFINET IO, it is possible to precisely determine (predict) transmission times.

PROFINET IO with RT (Real Time)

Real time means that a system processes external events over a defined period.
Process data and alarms are always transmitted in real time (RT) within the PROFINET IO system. RT communication provides the basis for data exchange with PROFINET IO. Realtime data are treated as a higher priority than TCP(UDP)/IP data. Transmission of timecritical data takes place at guaranteed time intervals.

PROFINET IO with IRT (Isochronous Real Time)

Isochronous Real Time Ethernet: Real time property of PROFINET IO where IRT telegrams are transmitted deterministically via planned communication paths in a defined sequence to achieve the best possible synchronism and performance between the IO controller and IO device (drive unit). This is also known as time-scheduled communication and uses knowledge about the network structure.
IRT requires special line components that support a planned data transfer.
Cycle times of minimum $500 \mu \mathrm{~s}$ and a jitter accuracy of less than $1 \mu \mathrm{~s}$ can be achieved when this transmission method is implemented.

Figure 6-44 Broadband distribution/reservation, PROFINET IO IRT

Note

Operation of S7-300 stations with SINAMICS drives: communication via PROFINET IO currently only possible with RT and IRT High Flexibility.

6.9.2.3 Addresses

Definition: MAC address

Each PROFINET device is assigned a worldwide unique device identifier in the factory. This 6 -byte long device identifier is the MAC address. The MAC address is divided up as follows:

- 3 bytes manufacturer's ID and
- 3 bytes device identifier (consecutive number).

The MAC address is usually indicated on the front of the device.
e.g.: 08-00-06-6B-80-C0

IP address

To allow a PROFINET device to be addressed as a node on Industrial Ethernet, this device also requires an IP address that is unique within the network. The IP address is made up of 4 number blocks with a range of values from 0 through 255 . The number blocks are separated by a period. The IP address is made up of the following sections:

- The address of the (sub-) network and
- The address of the node (generally called the host or network node)

IP address assignment

The TCP/IP protocol is a prerequisite for establishing a connection and parameterization. This is the reason that an IP address is required.

The IP addresses of IO devices can be assigned by the IO controller and always have the same sub-network mask as the IO controller. In this case, the IP address is not stored permanently. The IP address entry is lost after POWER ON/OFF.

If the IP address is to be stored in a non-volatile memory, the address must be assigned using the Primary Setup Tool (PST) or STARTER.

This can also be carried out in HWConfig in STEP 7, where the function is called "Edit Ethernet node".

Note

If the network is part of an existing Ethernet company network, obtain the information (IP address) from your network administrator.

Device name (NameOfStation)

When it is shipped, an IO device does not have a device name. An IO device can only be addressed by an IO controller, for example, for the transfer of project engineering data (including the IP address) during startup or for user data exchange in cyclic operation, after it has been assigned a device name with the IO supervisor.

NOTICE
 The device name must be saved in a non-volatile fashion either using the Primary Setup Tool (PST) or using HW Config from STEP 7.

Replacing Control Unit (IO device)

If the IP address and device name are stored in a non-volatile memory, this data is also forwarded with the memory card (CF card) of the Control Unit.

If a complete Control Unit needs to be replaced due to a device or module defect, the new Control Unit automatically parameterizes and configures using the data on the memory card. Following this, cyclic exchange of user data is restarted. The memory card allows module exchange without an IO supervisor when a fault occurs in a PROFINET device.

6.9.2.4 Data transmission

Features

The Communication Board CBE20 supports:

- IRT - isochronous real-time Ethernet
- RT - real-time Ethernet
- Standard Ethernet services (TCP/IP, LLDP, UDP and DCP)

PROFIdrive telegram for cyclic data transmission and non-cyclic services

Telegrams to send and receive process data are available for each drive object of a drive unit with cyclic process data exchange.
In addition to cyclic data transfer, acyclic services can also be used for parameterizing and configuring the drive. These acyclic services can be utilized by the IO supervisor or IO controller.

Sequence of drive objects in the data transfer

The sequence of drive objects is displayed via a list in p0978[0...15] where it can also be changed.

Note

The sequence of drive objects in HW Config must be the same as that in the drive (p0978).

6.9.3 Further information about communication via PROFINET IO

Further information about communication via PROFINET IO

For more information about PROFINET IO communication, refer to "PROFINET IO communication" in the accompanying "SINAMICS S120 Function Manual".

6.10 Communication via SINAMICS Link

6.10.1 Basic principles of SINAMICS Link

SINAMICS Link enables data to be directly exchanged between several Control Units, which for this purpose must be equipped with the CBE20 supplementary module. Other nodes cannot be integrated into this communication. Possible applications include e.g.:

- Torque distribution for n drives
- Setpoint cascading for n drives
- Load distribution of drives coupled through a material web
- Master/slave function for infeed units

Send and receive data

The most frequently used node comprises a drive unit with a CU and a number of connected drive objects (DOs). A SINAMICS Link telegram has place holders for 16 process data (PZD). Each PZD is precisely one word long. Slots that are not required are filled with zeros

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

SINAMICS Link
Every node can send a telegram with 16 PZD. A drive object can receive up to 16 PZD from every other DO of the connected nodes as long as the transferred data within a telegram does not exceed 16 words. Single words and double words can be sent and received. Double words require 2 consecutive PZDs. It is not possible to read in your own send data.

Transmission time
A transmission time of 3.0 ms is possible when using SINAMICS Link (for a controller cycle, max. 0.5 ms ; bus cycle, 2.0 ms).

6.10.2 Topology

Only a line topology with the following structure is permitted for SINAMICS Link.

Figure 6-45 Maximum topology

- The numbers of the various nodes are entered into parameter p8836[0...63] in ascending order.
- Gaps in the numbering are not permitted.
- The node with the number 1 is automatically the sync master of the communication link.
- When configuring the communication, the NameOfStation (SINAMICSxLINKx001 ... SINAMICSxLINKx064) and the IP address (169.254.123.001 ... 169.254.123.064) of the particular node are automatically set up by allocating the node number and cannot be changed.
- For the CBE20 connection, the ports must be used as shown in the diagram above - this is mandatory. This means that Port $2(\mathrm{P} 2)$ of node n is always connected with Port $1(\mathrm{P} 1)$ of node $n+1$.

6.10.3 Configuring and commissioning

Commissioning

When commissioning, proceed as follows for the Control Unit:

- Set parameter p8835 to 3 (SINAMICS Link).
- Using parameter p8836, assign node numbers to the nodes (the first Control Unit is always assigned the number 1). Observe the specifications under "Topology". Node number 0 means that SINAMICS Link is shut down.
- Then execute a "Copy RAM to ROM".
- Perform a POWER ON (switch-off/switch-on).

Sending data

Proceed as follows to send data:

- In parameter p2051[x], for each drive object, define which data (PZDs) should be sent. p2061[x] must be used for double word quantities.
- In parameter p8871, for each drive object, assign the send parameter to the send slot of its own node. Double words (e.g. $2+3$) are assigned two consecutive send slots, e.g. $\mathrm{p} 8871[1]=2$ and $\mathrm{p} 8871[2]=3$.

Receiving data

Proceed as follows to receive data:

Note

The first word of the receive data must be a control word, where bit 10 is set. If this is not the case, then you must deactivate the evaluation of bit 10 using p2037 $=2$.

- Received data are saved in parameter r2050[x]/r2060[x].
- The address of the node from which the relevant PZD is to be read is defined in parameter p8872[0 \ldots 15] ($0 \wedge$ nothing is read in).
- In parameter p8870[0 ... 15], the PZD is defined which is read from the sent telegram and is to be stored in its own receive slot, r2050 for PZD or r2060 for double PZD ($0 \wedge$ no PZD selected).

Note

For double words, 2 PZD must be read; e.g.: Read in a 32-bit setpoint, which is located on PZD 2+3 for node 5 and map this to PZD 2+3 of its own node: p8872[1] = 5, p8870[1] $=2, p 8872[2]=5, p 8870[2]=3$

Activation

To activate SINAMICS Link connections, perform a POWER ON for all nodes. The assignments of $p 2051[x] / 2061[x]$ and the links of the read parameters $r 2050[x] / 2060[x]$ can be changed without a POWER ON.

Settings for cabinet units with rated pulse frequency 1.25 kHz

For the following cabinet units with a rated pulse frequency of 1.25 kHz , in addition parameter p0115[0] must be set from $400 \mu \mathrm{~s}$ to $250 \mu \mathrm{~s}$ or $500 \mu \mathrm{~s}$:

- 380-480 V 3 AC: All cabinet units with rated output current $I_{N} \geq 605 \mathrm{~A}$
- 500-690 V 3 AC: All cabinet units

Generally, the following conditions must be met:

1. r2064[1] bus cycle time (Tdp) must be an integer multiple of p 0115 [0] (current controller clock cycle).
2. r2064[2] master cycle time (Tmapc) must be an integer multiple of p0115[1] (speed controller cycle).

6.10.4 Example

Task

Configure SINAMICS Link for two nodes (here, in example 2, SINAMICS S120) and transfer the following values:

- Send data from node 1 to node 2
- r0898 CO/BO: Control word, drive object 1 (1 PZD), in the example PZD 1
- r0079 CO: Total torque setpoint (2 PZD), in the example PZD 2
- r1150 CO: Ramp-function generator speed setpoint at the output (2 PZD) in the example, PZD 3
- Send data from node 2 to node 1
- r0899 CO/BO: Status word, drive object 1 (1 PZD), in the example, PZD 1

Procedure

1. For all nodes, set the SINAMICS Link mode:
p8835 = 3
2. Assign node numbers for the two devices:

- Node 1: p8836 = 1 and
- Node 2: p8836=2

3. Define the send data (node 1)

- For node 1/DO VECTOR, define the PZD to be sent: p2051.0 = Drive1:r0898, p2061.1 = Drive1:r0079, p2061.3 = Drive1:r1150
- Assign this PZD to the send buffer (p8871) of its own DO: $\mathrm{p} 8871.0=1, \mathrm{p} 8871.1=2, \mathrm{p} 8871.2=3, \mathrm{p} 8871.3=4, \mathrm{p} 8871.4=5$

This means that you have defined the position of the data in the 16-word telegram of the drive unit.
4. Define the send data (node 2)

- For node 2/DO VECTOR, define the PZD to be sent: p2051.0 = Drive1:r0898
- Assign this PZD 1 to send buffer 0 (p8871) of its own DO: p8871.0 = 1

5. Define the receive data (node 1)

- Define that receive buffer 0 should be filled with data from node 2: p8872.0 = 2
- Define that PZD 1 of node 2 should be saved in this buffer: p8870.0 = 1
- r2050.0 now contains the value of PZD 1 of node 2.

6. Define the receive data (node 2)

- Define that receive buffers 0 to 4 should be filled with data from node 1: p8872.0 = 1, p8872.1 = 1, p8872.2 = 1, p8872.3 = 1, p8872.4 = 1
- Define that PZD 1, PZD 2 and PZD 3 of node 1 should be saved in these buffers: p8870.0 $=1, \mathrm{p} 8870.1=2, \mathrm{p} 8870.2=3, \mathrm{p} 8870.3=4$, p8870.4 $=5$
- r2050.0, r2060.1 and r2060.3 now contain the values from PZD 1, PZD 2 and PZD 3 of node 1.

7. For both nodes, perform a POWER ON in order to activate the SINAMICS Link connections.

SINAMICS Link
Node 1

SINAMICS Link Node 2

r1150: Speed setpoint
r0079: Torque setpoint
r0898: Control word Drive 1
r0899: Status word Drive 1

Figure 6-46 SINAMICS Link: Configuration example

6.10.5 Diagnostics

Communication failure when booting or in cyclic operation

If at least one sender does not correctly boot after commissioning or fails in cyclic operation, then alarm A50005 is output to the other nodes: "Sender was not found on the SINAMICS Link."
The message contains the number of the faulted node. After you have resolved the fault at the node involved and the system has identified the node, the system automatically withdraws the alarm.

If several nodes are involved, the message occurs a multiple number of times consecutively with different node numbers. After you have resolved all of the faults, the system automatically withdraws the alarm.

When a node fails in cyclic operation, in addition to alarm A50005, fault F08501 is output: "COMM BOARD: Monitoring time, process data expired".

6.10.6 Parameter

- r2050[0...19] CO: IF1 PROFIdrive PZD receive word
- p2051[0...14] CI: IF1 PROFIdrive PZD send word
- r2060[0...18] CO: IF1 PROFIdrive PZD receive double word
- p2061[0...26] CI: IF1 PROFIdrive PZD send double word
- p8835 CBE20 firmware selection
- p8836 SINAMICS Link address
- p8870 SINAMICS Link telegram word PZD receive
- p8871 SINAMICS Link telegram word PZD send
- p8872 SINAMICS Link address PZD receive

6.11 Parallel operation of communication interfaces

General information

Cyclic process data (setpoints/actual values) are processed using interfaces IF1 and IF2. The following interfaces are used:

- Onboard interfaces for PROFIBUS DP or PROFINET
- An additional interface (COMM board) for PROFINET (CBE20) or CANopen (CBE10) as option

Parameter r8859 "COMM board identification data" can be used to determine whether a communication module is inserted in the option slot.
With parameter p8839, the parallel use of onboard interfaces and COMM board in the SINAMICS system is set and the functionality is assigned to interfaces IF1 and IF2.

For example, the following applications are conceivable:

- PROFIBUS DP for drive control and PROFINET for the acquisition of actual values/measured values of the drive.
- PROFIBUS DP for control and PROFINET for engineering only
- Mixed mode with two masters (one for logic \& coordination and one for technology)
- SINAMICS Link via IF2 (CBE20); standard telegrams and PROFISafe via IF1
- Operation of redundant communication interfaces

Assignment of communication interfaces to cyclic interfaces

Two cyclic interfaces exist for setpoints and actual values, which differ by their parameter ranges used (BICO, etc.) and the usable functionalities. These two interfaces are designated IF1 (cyclic interface 1) and IF2 (cyclic interface 2).

Depending on their type (PROFIBUS DP, PROFINET or CANopen) the communication interfaces are assigned to one of the cyclic interfaces (IF1, IF2) by the factory setting of p8839.
For the parallel operation of the communication interfaces, the assignment to the cyclic interfaces can essentially be defined as required by the user parameterization.

Properties of the cyclic interfaces IF1 and IF2
The following table shows the different features of the two cyclic interfaces:
6.11 Parallel operation of communication interfaces

Table 6-30 Properties of the cyclic interfaces IF1 and IF2

Feature	IF1	IF2
Setpoint (BICO signal source)	r2050, r2060	r8850, r8860
Actual value (BICO signal sink)	p2051, p2061	p8851, p8861
PROFIdrive conformance	Yes	No
PROFIdrive telegram selection (p0922)	Yes	No
Clock cycle synchronization (isochronous mode) possible (p8815[0])	Yes	Yes
PROFIsafe possible (p8815[1])	Yes	Yes
Slave-to-slave communication (PROFIBUS only)	Yes	Yes
List of drive objects (p0978)	Yes	Yes
Max. PZD (16bit) setpoint / actual value SERVO	$20 / 28$	$20 / 28$
Max. PZD (16 bit) setpoint / actual value VECTOR	$32 / 32$	$32 / 32$
Max. PZD (16 bit) setpoint / actual value INFEED	$5 / 8$	$5 / 8$
Max. PZD (16bit) setpoint / actual value encoder	$4 / 12$	$4 / 12$
Max. PZD (16bit) setpoint / actual value TM31	$5 / 5$	$5 / 5$
Max. PZD (16bit) setpoint / actual value TB30	$5 / 5$	$5 / 5$
Max. PZD (16bit) setpoint / actual value CU (device)	$5 / 21$	$5 / 21$

Table 6-31 Implicit assignment of hardware to cyclic interfaces for $\mathrm{p} 8839[0]=\mathrm{p} 8839[1]=99$

Hardware interface	IF1	IF2
No option, only on-board interface (PROFIBUS, PROFINET)	Onboard	--
CU320-2 DP with PROFINET option (CBE20)	COMM board	Onboard PROFIBUS
CU320-2 PN with PROFINET option (CBE20)	PROFINET onboard	COMM board PROFINET
CAN option (CBC10)	Onboard	COMM board

The hardware interfaces are assigned to the cyclic interfaces IF1 and IF2 using parameter p8839[0...1] "PZD interface hardware assignment".

The factory setting of p8839[0] = p8839[1] = 99 enables the implicit assignment (see table above).

If the parameters settings for the assignment are impermissible or inconsistent, alarm A08550 "PZD Interface hardware assignment incorrect" is output and the assignment rejected.

The object sequence for process data exchange via IF2 depends on the object sequence of IF1 in p0978 "List of drive objects".

Parameters for IF2

The following parameters are responsible for the IF2, the meaning of " 88 xx " is identical to "20xx" of the IF1:

- Receive and send process data: r8850, p8851, r8853, r8860, p8861, r8863
- Diagnostic parameters: r8874, r8875, r8876
- Binector-connector converter p8880, p8881, p8882, p8883, p8884, r8889
- Connector-binector converter r8894, r8895, p8898, p8899

Note

It is not possible in the HW Config configuration tool to represent a PROFIBUS / PROFINET slave with two interfaces. In parallel operation, SINAMICS will therefore appear twice in the project or in two projects although there is only one physical device.

Isochronous mode, PROFIsafe and SINAMICS Link

Isochronous applications can only be run via one of the two interfaces, IF1 or IF2. The interface for isochronous mode is set using parameter p8815[0].
Applications with PROFIsafe can only be run via one of the two interfaces IF1 or IF2. The interface for PROFIsafe is set using parameter p8815[1].

SINAMICS Link usually requires isochronous mode. If SINAMICS Link is running, PROFIsafe does not work at the interface involved. In this case, PROFIsafe is possible on the other Interface, but only without isochronous mode.

Table 6-32 Versions for isochronous mode, PROFIsafe, and SINAMICS Link

Variant	Interface	Isochronous mode (p08815[0])	PROFIsafe (p08815[1])	SINAMICS Link possible
1	IF1	No	No	No
	IF2	No	No	No
2	IF1	No	No	No
	IF2	No	Yes	No
3	IF1	No	Yes	No
	IF2	No	No	No
4	IF1	No	No	No
	IF2	Yes	No	Yes (for CBE20 as IF2)
5	IF1	No	No	No
	IF2	Yes	Yes	No
6	IF1	No	Yes	No
	IF2	Yes	No	Yes (for CBE20 as IF2)
7	IF1	Yes	No	Yes (for CBE20 as IF1)
	IF2	No	No	No
8	IF1	Yes	Yes	No
	IF2	No	No	No
9	IF1	Yes	No	Yes (for CBE20 as IF1)
	IF2	No	Yes	No

Parameter

- p0922 IF1 PROFIdrive telegram selection
- p0978[0...24] List of drive objects
- p8815[0...1] IF1/IF2 PZD functionality selection
- p8839[0...1] PZD Interface hardware assignment
- r8859[0...7] COMM BOARD identification data

6.12 Engineering Software Drive Control Chart (DCC)

Graphical configuring and expansion of the device functionality by means of available closed-loop control, arithmetic, and logic function blocks

Drive Control Chart (DCC) expands the facility for the simplest possible configuring of technological functions for both the SIMOTION motion control system and the SINAMICS drive system. This provides the user with a new dimension of system adaptability for specific machine functions.
DCC does not restrict the number of functions that can be used; the only restriction is the performance of the target platform.

The user-friendly DCC Editor enables easy graphical configuration and a clear representation of control loop structures as well as a high degree of reusability of existing diagrams.
The open-loop and closed-loop control functionality is defined by using multi-instanceenabled blocks (Drive Control Blocks (DCBs)) from a pre-defined library (DCB library) that are selected and graphically linked by dragging and dropping.
Test and diagnostic functions allow verification of the program behavior, and troubleshooting in the event of a fault.

The block library encompasses a large selection of closed-loop, arithmetic and logic function blocks, as well as comprehensive open-loop and closed-loop control functions.

For combining, analyzing and acquiring binary signals, all commonly used logic functions are available for selection (AND, XOR, on/off delay, RS flipflop, counter, etc.). Numerous computation functions are available for monitoring and evaluating numerical variables; for example absolute value generation, division, min/max evaluation.
Besides drive control functions, it is also a simple matter to configure axis winding functions, PI controllers, ramp-function generators, and wobble generators.

Almost unlimited programming of control structures is possible in conjunction with the SIMOTION motion control system. These can then be combined with other program sections to form an overall program.

Drive Control Chart for SINAMICS also provides a convenient basis for resolving drive-level open-loop and closed-loop control tasks directly in the drive. This results in further adaptability of SINAMICS for the task set. On-site processing in the drive supports modular machine concepts and results in increased overall machine performance.

Note

A detailed description of the DCC Editor and the available Drive Control Blocks is given in the relevant documentation. This documentation is available on the accompanying customer DVD.

Setpoint channel and closed-loop control

7.1 Content of this chapter

This chapter provides information on the setpoint channel and closed-loop control functions.

- Setpoint channel
- Direction reversal
- Skip speed
- Minimum speed
- Speed limitation
- Ramp-function generator
- V/f control
- Vector speed control with / without encoder

Function diagrams

To supplement these operating instructions, the customer DVD contains simplified function diagrams describing the operating principle.
The diagrams are arranged in accordance with the chapters in the operating instructions. The page numbers ($7 x x$) describe the functionality in the following chapter.

At certain points in this chapter, reference is made to function diagrams with a 4-digit number. These are stored on the customer DVD in the "SINAMICS S120/S150 List Manual", which provides experienced users with detailed descriptions of all the functions.

7.2 Setpoint channel

7.2.1 Setpoint addition

Description

The supplementary setpoint can be used to enter correction values from higher-level closedloop controls. This can be implemented using the summing point of the main/supplementary setpoint in the setpoint channel. Both variables are imported simultaneously via two separate or one setpoint source and added in the setpoint channel.

Function diagram

FD 3030 Main/added setpoint, setpoint scaling, jogging

Parameters

- p1070 Main setpoint
- p1071 Main setpoint scaling
- r1073 Main setpoint effective
- p1075 Supplementary setpoint
- p1076 Supplementary setpoint scaling
- r1077 Supplementary setpoint effective
- r1078 Total setpoint effective

7.2.2 Direction of rotation changeover

Description

Due to the direction reversal in the setpoint channel the drive can be operated in both directions with the same setpoint polarity.

Use the p1110 or p1111 parameter to block negative or positive direction of rotation.

Note

If an incorrect rotating field was connected when the cables were installed, and the cabling cannot be changed, the rotating field can be corrected during drive commissioning via p1821 (rotating field direction reversal) to allow a direction reversal (see section "Direction reversal"). Modifying parameters p1821 produces a direction reversal of the motor and the encoder actual value without changing the setpoint.

Prerequisites

Direction reversal is triggered:

- via PROFIBUS by means of control word 1 , bit 11
- via the cabinet operator panel (LOCAL mode) with the "Direction reversal" key.

Note

Note that only one direction of rotation is enabled in the delivery condition when control is carried out via the AOP30.

Function diagram

FP 3040 Direction of rotation limiting and direction of rotation changeover

Parameter

- p1110 BI: Inhibit negative direction
- p1111 BI: Inhibit positive direction
- p1113 BI: Setpoint inversion

7.2.3 Skip frequency bands and minimum speed

Description

In the case of variable-speed drives, it is possible for the control range of the overall drive train to contain bending-critical speeds that the drive must not be be operated at or the vicinity of in steady-state condition. In other words, although the drive can pass through this range, it must not remain within it because resonant oscillations may be excited. The skip frequency bands allow this range to be blocked for steady-state operation. Because the points at which critical whirling speeds occur in a drive train can vary depending on age or thermal factors, a broader control range must be blocked. To prevent constant speed step changes in the vicinity of these skip frequency bands (speeds), they are provided with a hysteresis.
The skip speed values apply in the positive and negative directions of rotation.
Specifying a minimum speed allows a specific range to be disabled around speed 0 rpm for steady-state operation.

Signal flow diagram

Figure 7-1 Signal flow diagram: Skip frequency bands and minimum speed

Function diagram

FP $3050 \quad$ Skip frequency bands and speed limiting

Parameter

- p1080 Minimum speed
- p1091 Skip frequency speed 1
- p1092 Skip frequency speed 2
- p1093 Skip frequency speed 3
- p1094 Skip frequency speed 4
- p1101 Skip frequency speed bandwidth
- r1112 Speed setpoint after minimum limiting

7.2.4 Speed limitation

Description

Speed limitation aims to limit the maximum permissible speed of the entire drive train to protect the drive and load machine/process against damage caused by excessive speeds.

Signal flow diagram

Figure 7-2 Signal flow diagram: Speed limitation

Function diagram

$$
\text { FP } 3050 \quad \text { Skip frequency bands and speed limiting }
$$

Parameters

- p1082 Maximum speed
- p1083 CO: Speed limit in positive direction of rotation
- r1084 CO: Speed limit positive effective
- p1085 CI: Speed limit in positive direction of rotation
- p1086 CO: Speed limit in negative direction of rotation
- r1087 CO: Speed limit negative effective
- p1088 CI: Speed limit in negative direction of rotation
- r1119 CO: Ramp-function generator setpoint at the input

7.2.5 Ramp-function generator

Description

The ramp-function generator limits the rate at which the setpoint changes when the drive is accelerating or decelerating. This prevents excessive setpoint step changes from damaging the drive train. Additional rounding times can also be set in the lower and upper speed ranges to improve control quality and prevent load surges, thereby protecting mechanical components, such as shafts and couplings.

The ramp-up and ramp-down times each refer to the maximum speed (p1082). The rounding times that can be set can prevent the actual speed value from being overshot when the setpoint is approached, thereby improving control quality.

Notice: if rounding times are too long, this can cause the setpoint to be overshot if the setpoint is reduced abruptly during ramp-up. Rounding is also effective in the zero crossover; in other words, when the direction is reversed, the ramp-function generator output is reduced to zero via initial rounding, the ramp-down time, and final rounding before the new, inverted setpoint is approached via start rounding, the ramp-up time, and end rounding. Rounding times that can be set separately are active in the event of a fast stop (OFF3). The actual ramp-up/ramp-down times increase with active rounding.

The rounding type can be set using p1134 and separately activated/deactivated using p1151.0 in the zero point.

Note

The effective ramp-up time increases when you enter initial and final rounding times.
Effective ramp-up time $=p 1120+(0.5 \times \mathrm{p} 1130)+(0.5 \times \mathrm{p} 1131)$

Signal flow diagram

Figure 7-3 Signal flow diagram: Ramp-function generator

Ramp-function generator tracking

If the drive is in range of the torque limits, the actual speed value moves away from the speed setpoint. The ramp-function generator tracking updates the speed setpoint in line with the actual speed value and so levels the ramp.
p1145 can be used to deactivate ramp-function generator tracking (p1145 = 0) or to set the permissible deviation (p1145>1). If the permissible deviation is reached, then the speed setpoint at the ramp-function generator output will only be increased further in proportion to the speed setpoint.

Parameter r1199.5 displays whether the ramp-function generator tracking is active.

with tracking

Figure 7-4 Ramp-function generator tracking

Without ramp-function generator tracking

- $\mathrm{p} 1145=0$
- Drive accelerates to t 2 , although the setpoint after t 1 is smaller than the actual value

With ramp-function generator tracking

- At p1145 > 1 (values between 0 and 1 are not applicable), ramp-function generator tracking is activated when the torque limit is approached. The ramp-function generator output thereby only exceeds the actual speed value by the deviation value defined in p1145.
- t 1 and t 2 are almost identical

Function diagram

FP 3060 Simple ramp-function generator
FP 3070 Extended ramp-function generator
FP 3080 Ramp-function generator selection, status word, tracking

Parameter

- r1119 CO: Ramp-function generator setpoint at the input
- p1120 Ramp-function generator ramp-up time
- p1121 Ramp-function generator ramp-down time
- p1130 Ramp-function generator initial rounding time
- p1131 Ramp-function generator final rounding time
- p1134 Ramp-function generator rounding type
- p1135 OFF3 ramp-down time
- p1136 OFF3 initial rounding time
- p1137 OFF3 final rounding time
- p1140 BI: Enable ramp-function generator/disable ramp-function generator
- p1141 BI: Continue ramp-function generator/freeze ramp-function generator
- P1143 BI: Accept ramp-function generator setting value
- P1144 CI: Ramp-function generator setting value
- p1145 Ramp-function generator tracking intensity
- P1148 Ramp function generator tolerance for ramp-up and ramp-down active
- r1148 CO: Ramp-function generator acceleration
- r1150 Ramp-function generator speed setpoint at the output
- p1151 CO: Ramp-function generator configuration

7.3 V/f control

Description

The simplest solution for a control procedure is the V/f characteristic, whereby the stator voltage for the induction motor or synchronous motor is controlled proportionately to the stator frequency. This method has proved successful in a wide range of applications with low dynamic requirements, such as:

- Pumps and fans
- Belt drives
- Multi-motor drives

V/f control aims to maintain a constant flux (Φ) in the motor, whereby the flux is proportional to the magnetization current (l l) or the ratio of voltage (U) to frequency (f).

$$
\Phi \sim I \mu \sim V / f
$$

The torque (M) generated by the induction motors is, in turn, proportional to the product (or, more precisely, the vector product ($\Phi \times \mathrm{I})$) of the flux and current.
$\mathrm{M} \sim \Phi \times \mathrm{l}$
To generate as much torque as possible with a given current, the motor must function using the greatest possible constant flux. To maintain a constant flux (Φ), therefore, the voltage (V) must change in proportion to the frequency (f) to ensure a constant magnetization current $(l \mu)$. V/f characteristic control is derived from these basic premises.

The field-weakening range is above the rated motor frequency, where the maximum voltage is reached. The flux and maximum torque decrease as the frequency increases; this is illustrated in the following diagram.

Figure 7-5 Operating areas and characteristic curves for the induction motor with converter supply

Several variations of the V/f characteristic exist, which are listed in the following table.

Table 7-1 p1300 V/f characteristics

Parameter value	Meaning	Application / property
5	Precise frequency drives (textiles)	Characteristic (see parameter value 0) that takes into account the specific technological features of an application (e.g. textile applications). - The current limitation (Imax controller) only affects the output voltage and not the output frequency. - The slip compensation and resonance damping are disabled.
6	Precise frequency drives with flux current control (FCC)	Characteristic (see parameter value 1) that takes into account the specific technological features of an application (e.g. textile applications). - \quadThe current limitation (Imax controller) only affects the output voltage and not the output frequency. - The slip compensation and resonance damping are disabled. Voltage losses in the stator resistance for static / dynamic loads are also compensated (flux current control, FCC). This is particularly useful for small motors, since they have a relatively high stator resistance.
7	Parabolic characteristic and ECO	Characteristic (see parameter value 1) and ECO mode at constant operating point. - At constant operating point, the efficiency is optimized by varying the voltage. - Active slip compensation is necessary here; the scaling must be set so that the slip is fully compensated (p1335 = 100\%).
19	Independent voltage setpoint	The user can define the output voltage of the Power Module independently of the frequency using BICO parameter p1330 via the interfaces (e.g., analog input AIO of the TM31 -> p1330 = r4055[0]).

Function diagram

FP $6300 \quad$ V/f characteristic and voltage boost

Parameters

- p1300 Open-loop/closed-loop control operating mode

7.3.1 Voltage boost

Description

With low output frequencies, the V/f characteristics yield only a small output voltage.
With low frequencies, too, the ohmic resistance of the stator windings has an effect and can no longer be ignored vis-à-vis the machine reactance. With low frequencies, therefore, the magnetic flux is no longer proportional to the magnetization current or the V/f ratio.

The output voltage may, however, be too low to:

- Magnetize the induction motor.
- Maintain the load.
- Compensate for the voltage losses (ohmic losses in the winding resistors) in the system.
- Induce a breakaway / accelerating / braking torque.

You can choose whether the voltage boost is to be active permanently (p1310) or only during acceleration (p 1311). In addition, a one-off voltage boost in the first power up after pulse enable can be set via p1312.

Figure 7-6 Voltage boost total

Note

The voltage boost affects all V/f characteristics (p1300) from 0 to 7.

NOTICE

If the voltage boost value is too high, this can result in a thermal overload of the motor winding.

Permanent voltage boost (p1310)

The voltage boost is active across the entire frequency range up to the rated frequency f_{n}; at higher frequencies, the value decreases continuously.

Figure 7-7 Permanent voltage boost (example: p1300 $=0, \mathrm{p} 1310>0, \mathrm{p} 1311=\mathrm{p} 1312=0$)

Voltage boost during acceleration (p1311)

The voltage boost is only effective for one acceleration operation and only until the setpoint is reached.

Voltage boost is only effective if the signal "ramp-up active" (r1199.0 = 1) is present.
You can use parameter r0056.6 to observe whether the voltage boost is active during acceleration.

Figure 7-8 Voltage boost during acceleration (example: p1300 $=0, \mathrm{p} 1310=0, \mathrm{p} 1311>0$)

Voltage boost at startup (p1312)

The voltage boost is only effective for the first acceleration operation after pulse enable and only until the setpoint is reached.
Voltage boost is only effective if the signal "ramp-up active" (r1199.0 = 1) is present.
You can use parameter r0056.5 to observe whether the voltage boost is active at startup.

Function diagram

FP 6300
V/f characteristic and voltage boost

Parameters

- r0056.5 Voltage boost at startup active/inactive
- r0056.6 Acceleration voltage active/inactive
- p0304 Rated motor voltage
- p0305 Rated motor current
- r0395 Stator resistance, actual
- p1310 Permanent voltage boost
- p1311 Voltage boost during acceleration
- p1312 Voltage boost at start up
- r1315 Voltage boost total

7.3.2 Resonance damping

Description

Resonance damping damps oscillations in the active current, which often occur during noload operation. Resonance damping is active in the range between approximately 5% and 90% of the rated motor frequency (p 0310), up to 45 Hz at most, however.

Figure 7-9 Resonance damping

Note

At p1349 = 0 the switching limit is automatically set to 95% of the rated motor frequency, up to 45 Hz at most, however.

Function diagram

FP 6310 Resonance damping and slip compensation

Parameters

- r0066 Output frequency
- r0078 torque-generating actual current value
- p1338 Resonance damping gain
- p1339 Resonance damping filter time constant
- p1349 Resonance damping maximum frequency

7.3.3 Slip compensation

Description

Slip compensation essentially keeps the speed of induction motors constant irrespective of the load (M_{1} or M_{2}).
For an increase in the load from M_{1} to M_{2}, the setpoint frequency is automatically increased so that the resulting frequency and therefore the motor speed remains constant. For a decrease in the load from M_{2} to M_{1}, the setpoint frequency is automatically decreased accordingly.
If a motor holding brake is applied, a setting value can be specified at the slip compensation output via p1351. If parameter p1351>0 then the slip compensation is switched on automatically (p1335 = 100\%).

Figure 7-10 Slip compensation

Function diagram

FP 6310 Resonance damping and slip compensation

Parameters

- r0330 Rated motor slip
- p1334 Slip compensation start frequency
- p1335 Slip compensation p1335 $=0.0 \%$: slip compensation is deactivated.
p1335 = 100.0\%: slip is fully compensated.
- p1336 Slip compensation limit value
- r1337 Actual slip compensation
- p1351 CO: Motor holding brake start frequency

7.4 Vector speed/torque control with/without encoder

Description

Compared with V/f control, vector control offers the following benefits:

- Stability vis-à-vis load and setpoint changes
- Short rise times with setpoint changes ($->$ better command behavior)
- Short settling times with load changes (-> better disturbance characteristic)
- Acceleration and braking are possible with maximum adjustable torque
- Motor protection due to variable torque limitation in motor and regenerative mode
- Drive and braking torque controlled independently of the speed
- Maximum breakaway torque possible at speed 0

These benefits are available without speed feedback.
Vector control can be used with or without an encoder.
The following criteria indicate when an encoder is required:

- Maximum speed accuracy requirements
- Maximum dynamic response requirements
- Better command behavior
- Shortest settling times when disturbances occur
- Torque control is required in a control range greater than 1:10
- Allows a defined and/or variable torque for speeds below approx. 10\% of the rated motor frequency (p 0310) to be maintained.
- A speed controller is normally always required for applications in which an unknown speed can represent a safety risk (where a load can be dropped, e.g. lifting gear, elevators, etc).

With regard to setpoint input, vector control is divided into:

- Speed control
- Torque/current control (in short: torque control)

7.4.1 Vector control without encoder

Description

For sensorless vector control only (SLVC: Sensorless Vector Control), the position of the flux and actual speed must be determined via the electric motor model. The model is buffered by the incoming currents and voltages. At low frequencies (approx. 1 Hz), the model cannot determine the speed.

For this reason and due to uncertainties in the model parameters or inaccurate measurements, the system is switched from closed-loop to open-loop operation in this range.

The changeover between closed-loop/open-loop operation is controlled on the basis of time and frequency conditions (p 1755 , p1756, p1758-only for induction motors). The system does not wait for the time condition to elapse if the setpoint frequency at the ramp-function generator input and the actual frequency are below p1755 x (1-(p1756 / 100%)) simultaneously.
Transition from open-loop to closed-loop operation always takes place when the changeover speed in p 1755 (characteristic " 1 " in the figure below). If the speed increase is set very slow and a changeover delay time >0 is set in p1759, transition takes place after the changeover delay time (characteristic " 2 " in the figure below).

Figure 7-11 Changeover conditions
In open-loop operation, the calculated actual speed value is the same as the setpoint value. For vertical loads and acceleration processes, parameters p1610 (constant torque boost) and p1611 (acceleration torque boost) must be adjusted to the necessary maximum torque in order to generate the static or dynamic load torque of the drive. If, on induction motors, p1610 is set to 0%, only the magnetizing current r0331 is injected; at a value of 100%, the rated motor current p0305 is injected. For permanent-magnet synchronous motors, at p1610 $=0 \%$, a pre-control absolute value derived from the supplementary torque r1515 remains instead of the magnetizing current. To ensure that the drive does not stall during acceleration, p1611 can be increased or acceleration pre-control for the speed controller can be used. This is also advisable to ensure that the motor is not subject to thermal overload at low speeds.

Vector control without a speed sensor has the following characteristics at low frequencies:

- Closed-loop operation up to approx. 1 Hz output frequency
- Starting in closed-loop operation (directly after the drive has been energized) (induction motors only)

Note

In this case, the speed setpoint upstream of the ramp-function generator must be greater than the changeover speed in p1755.

Closed-loop operation up to approx. 1 Hz (settable via parameter p1755) and the ability to start or reverse at 0 Hz directly in closed-loop operation (settable via parameter p1750) result in the following benefits:

- No changeover required within closed-loop control (smooth operation, no dips in frequency).
- Stationary speed-torque control up to approx. 1 Hz .

Note

When the motor is started or reversed in closed-loop control at 0 Hz , it is important to take into account that a switchover is made from closed-loop to open-loop control automatically if the system remains in the 0 Hz range for too long (> 2 s or $>\mathrm{p} 1758$, if p1758 > 2 s).

Closed-loop operation down to standstill for passive loads

By restricting to a passive load at the starting point, it is possible to maintain stationary closed-loop operation down to zero frequency (standstill) without having to change over to open-loop operation.

Parameter p1750.2 must be set to 1 .
Closed-loop control without changeover is restricted to applications with passive load: These include applications in which the load cannot produce a regenerative torque on startup and the motor comes to a standstill when pulses are inhibited; for example, moments of inertia, brakes, pumps, fans, centrifuges, extruders, etc.

Standstill of any duration is possible without holding current, only the motor magnetization current is impressed.

Steady-state regenerative operation at a frequency close to zero is not possible.
It is also possible to select sensorless control for passive loads during commissioning by setting p0500 $=2$ (technology application = passive loads (for sensorless control down to $f=$ $0)$).

This function is activated automatically if quick commissioning is exited with p3900 >0, or if automatic calculation is called $(p 0340=1,3,5$ or $p 0578=1$).

Permanent-magnet synchronous motors

Standard procedure: open-loop controlled operation at low speeds
Normally, permanent-magnet synchronous motors are started and reversed in open-loop controlled operation. The changeover speeds are set to 10% or 5% of the rated motor speed. Changeover is not subject to any time condition (p1758 is not evaluated). Prevailing load torques (motor or regenerative) are adapted in open-loop operation, facilitating constant-torque crossover to closed-loop operation even under high static loads. Whenever the pulses are enabled, the rotor position is identified.

Figure 7-12 Zero crossing in open-loop controlled operation at low speeds
Extended procedure: closed-loop controlled operation to zero speed
By superimposing high-frequency pulses on the driving fundamental voltage and evaluating the resulting offset pulse in the machine current, it is possible to determine the continuous rotor position up to frequency zero (standstill).

1FW4 and 1PH8 series Siemens torque motors can be started from standstill with any load up to the rated torque or even hold the load at standstill.

The procedure is suitable for motors with internal magnets.

Note

If a sine-wave filter is used, the open-loop controlled procedure should be used.

The following advantages are obtained by maintaining closed-loop controlled operation:

- No switchover required within closed-loop control (smooth switching, no discontinuities in the torque).
- Closed-loop speed and torque control without encoder (sensorless) up to and including 0 Hz .
- Higher dynamic performance when compared to open-loop controlled operation.
- Encoderless operation of drive line-ups (e.g. in the paper industry, master-slave operation).
- Active (including hanging/suspended) loads down to zero frequency.

Supplementary conditions for the use of third-party motors:

- Experience shows that the procedure is very suitable for motors with magnets within the rotor core (IPMSM - Interior Permanent Magnet Synchronous Motors).
- The ratio of stator quadrature reactance (Lsq): Stator direct-axis reactance (Lsd) must be >1 (recommendation: at least > 1.5).
- The possible operating limits of the procedure depend upon up to what current the asymmetrical reactance ratio (Lsq:Lsd) is retained in the motor. If the procedure should be operable up to the rated motor torque, then the reactance ratio must be retained up to the rated motor current.

A prerequisite for optimum behavior is the entry of the following parameters:

- Enter the saturation characteristic: p0362-p0369
- Enter the load characteristic: p0398, p0399

Commissioning sequence for closed-loop controlled operation to zero speed:

- Run through the commissioning with motor identification at standstill.
- Enter the parameters for the saturation characteristic and the load characteristic.
- Activate closed-loop controlled operation to zero speed via parameter p1750 bit 5 .

Figure 7-13 Zero crossing in closed-loop controlled operation to zero speed

Function diagram

$$
\begin{array}{ll}
\text { FP } 6730 & \text { Interface to Motor Module (ASM), p0300 = 1) } \\
\text { FP } 6731 & \text { Interface to Motor Module (PEM), p0300 = 2) }
\end{array}
$$

Parameters

- p0305 Rated motor current
- r0331 Motor magnetizing current/short-circuit current
- p0362 Saturation characteristic flux 1
p0365 Saturation characteristic flux 4
- p0366 Saturation characteristic I_mag 1
p0369 Saturation characteristic I_mag 4
- p0398 Magnet angle. Decoupling (cross saturation) coefficient 1
- p0398 Magnet angle. Decoupling (cross saturation) coefficient 3
- p0500 Technology application
- p0578 Calculating technology/unit-dependent parameters
- p1605 Pulse technique pattern configuration
- r1606 CO: Actual pulse technique pattern
- p1607 Pulse technique stimulus
- r1608 CO: Pulse technique answer
- p1610 Torque setpoint static (SLVC)
- p1611 Supplementary accelerating torque (SLVC)
- p1750 Motor model configuration
- p1755 Motor model changeover speed encoderless operation
- p1756 Motor model changeover speed hysteresis
- p1758 Motor model changeover delay time, closed/open-loop control
- p1759 Motor model changeover delay time open/closed loop control
- r1762.1 Motor model deviation component 1 - deviation model 2
- p1798 Motor model pulse technique speed adaptation Kp
- p1810.3 Modulator configuration - current measurement oversampling activated (for pulse technique PEM)

7.4.2 Vector control with encoder

Description

Benefits of vector control with an encoder:

- The speed can be controlled right down to 0 Hz (standstill)
- Stable control response throughout the entire speed range
- Allows a defined and/or variable torque for speeds below approx. 10% of the rated motor speed to be maintained
- Compared with speed control without an encoder, the dynamic response of drives with an encoder is significantly better because the speed is measured directly and integrated in the model created for the current components.

Motor model change

A model change takes place between the current model and the observer model within the speed range $\mathrm{p} 1752 \times(100 \%-\mathrm{p} 1756)$ and p 1752 . In the current-model range (i.e., at lower speeds), torque accuracy depends on whether thermal tracking of the rotor resistance is carried out correctly. In the observer-model range and at speeds of less than approx. 20\% of the rated speed, torque accuracy depends primarily on whether thermal tracking of the stator resistance is carried out correctly. If the resistance of the supply cable is greater than 20% to 30% of the total resistance, this should be entered in p0352 before motor data identification is carried out ($\mathrm{p} 1900 / \mathrm{p} 1910$).

To deactivate thermal adaptation, set $\mathrm{p} 0620=0$. This may be necessary if adaptation cannot function accurately enough due to the following supplementary conditions: For example, if a KTY sensor is not used for temperature detection and the ambient temperatures fluctuate significantly or the overtemperatures of the motor (p0626 ... p0628) deviate significantly from the default settings due to the design of the motor.

Function diagram

FP 4715 Actual speed value and rotor position measurement, motor encoder
FD 6030 Speed setpoint, droop
FP 6040 Speed controller
FP 6050 Kp_n-/Tn_n adaptation
FP 6060 Torque setpoint
FP 6490 Speed control configuration

7.4.3 Speed controller

Description

Both closed-loop control techniques with and without encoder (SLVC, VC) have the same speed controller structure that contains the following components as kernel:

- PI controller
- Speed controller pre-control
- Droop Function

The torque setpoint is generated from the total of the output variables and reduced to the permissible magnitude by means of torque setpoint limitation.

The speed controller receives its setpoint (r0062) from the setpoint channel and its actual value (r0063) either directly from the speed actual value encoder (vector control with encoder) or indirectly via the motor model (encoderless vector control). The system difference is increased by the PI controller and, in conjunction with the pre-control, results in the torque setpoint.

When the load torque increases, the speed setpoint is reduced proportionately when the droop function is active, which means that the single drive within a group (two or more mechanically connected motors) is relieved when the torque becomes too great.

Figure 7-14 Speed controller
The optimum speed controller setting can be determined via the automatic speed controller optimization function (p1900 $=1$, rotating measurement).

If the moment of inertia has been specified, the speed controller (Kp, Tn) can be calculated by means of automatic parameterization ($\mathrm{p} 0340=4$). The controller parameters are defined in accordance with the symmetrical optimum as follows:
$\mathrm{Tn}=4 \times \mathrm{Ts}$
$\mathrm{Kp}=0.5 \times \mathrm{r} 0345 / \mathrm{Ts}=2 \times \mathrm{r0345} / \mathrm{Tn}$
Ts = Sum of the short delay times (includes p1442 and p1452).

If vibrations occur with these settings, the speed controller gain (Kp) will need to be reduced manually. Actual-speed-value smoothing can also be increased (standard procedure for gearless or high-frequency torsion vibrations) and the controller calculation performed again because this value is also used to calculate Kp and Tn .

The following relationships apply for optimization:

- If Kp is increased, the controller becomes faster, although overshoot is increased. However, signal ripples and vibrations in the speed control loop will increase.
- Although reducing Tn will also speed up the controller, it will increase overshoot.

When setting speed control manually, you are advised to define the dynamic response via Kp (and actual-speed-value smoothing) first, so that the integral time can subsequently be reduced as much as possible. Please remember that closed-loop control must also remain stable in the field-weakening range.

To suppress any vibrations that occur in the speed controller, it is usually only necessary to increase the smoothing time in p1452 for operation without an encoder or p1442 for operation with an encoder, or reduce the controller gain.

The integral output of the speed controller can be monitored via r1482 and the limited controller output via r1508 (torque setpoint).

Note

In comparison with speed control with an encoder, the dynamic response of drives without an encoder is significantly reduced. The actual speed is derived by means of a model calculation based on the converter output variables for current and voltage that have a corresponding interference level. To this end, the actual speed must be adjusted by means of filter algorithms in the software.

Function diagram

FP 6040 Speed controller

Parameter

- r0062 CO: Speed setpoint after the filter
- r0063 CO: Actual speed value smoothed
- p0340 Automatic calculation, control parameters
- r0345 CO: Rated motor startup time
- p1442 Speed-actual-value smoothing time (VC)
- p1452 Speed-actual-value smoothing time (encoderless VC)
- p1460 Speed controller P gain with encoder
- p1462 Speed controller integral time with encoder
- p1470 Speed controller encoderless operation P gain
- p1472 Speed controller encoderless operation integral time
- r1482 CO: Torque output I speed controller
- r1508 CO: Torque setpoint before supplementary torque
- p1960 Speed controller optimization selection

7.4.3.1 Examples of speed controller settings

Examples of speed controller settings for vector control with encoders

A number of examples of speed controller settings with vector control without encoders ($\mathrm{p} 1300=20$) are provided below. These should not be considered to be generally valid and must be checked in terms of the control response required.

- Fans (large centrifugal masses) and pumps
$K p(p 1470)=2 \ldots 10$
$\operatorname{Tn}(p 1472)=250 \ldots 500 \mathrm{~ms}$
The Kp = 2 and $\mathrm{Tn}=500 \mathrm{~ms}$ settings result in asymptotic approximation of the actual speed to the setpoint speed after a setpoint step change. During many simple control procedures, this is satisfactory for pumps and fans.
- Stone mills, separators (large centrifugal masses)
$K p(p 1470)=12 \ldots 20$
$\mathrm{Tn}(\mathrm{p} 1472)=500 \ldots 1000 \mathrm{~ms}$
- Kneader drives
$K p(p 1470)=10$
$\operatorname{Tn}(p 1472)=200 \ldots 400 \mathrm{~ms}$

Note

We recommend checking the effective speed control gain (r1468) during operation. If this value changes during operation, Kp adaptation is being used ($\mathrm{p} 1400.5=1$). Kp adaptation can, if necessary, be deactivated or its behavior changed.

Examples of speed controller settings for vector control with encoders

A number of examples of speed controller settings with vector control with encoders (p1300 $=21$) are provided below. These should not be considered to be generally valid and must be checked in terms of the control response required.

- Positioning, lifting gear, travel drives
$K p(p 1460)=10 \ldots 15$
$\operatorname{Tn}(\mathrm{p} 1462)=200 \ldots 400 \mathrm{~ms}$ (values $<=200 \mathrm{~ms}$ are useful for positioning tasks in order to avoid overshooting the limit position.)

Actual value smoothing $(\mathrm{p} 1442)=4 \ldots 10 \mathrm{~ms}$

- Sugar centrifuge (large centrifugal masses)
$K p(p 1460)=15 \ldots 22$
$\mathrm{Tn}(\mathrm{p} 1462)=500 \ldots 1000 \mathrm{~ms}$
Actual value smoothing $(\mathrm{p} 1442)=50 \mathrm{~ms}$

Note

The dynamic response may be insufficient if the specified current or torque limits are reached during acceleration or deceleration.

7.4.3.2 Speed controller pre-control (integrated pre-control with balancing)

Description

The command behavior of the speed control loop can be improved by calculating the accelerating torque from the speed setpoint and connecting it on the line side of the speed controller. This torque setpoint mv is applied to the current controller/the current controller is pre-controlled using adaptation elements directly as additive reference variable (enabled via p1496).
The torque setpoint (mv) is calculated from:
$m v=p 1496 \times J \times(d \omega / d t)=p 1496 \times p 0341 \times p 0342 \times(d \omega / d t), \omega=2 \pi f$
The motor moment of inertia p0341 is calculated when commissioning the drive system. The factor p0342 between the total moment of inertia J and the motor moment of inertia must be determined manually or by optimizing the speed controller.

Note

When speed controller optimization is carried out, the ratio between the total moment of inertia and that of the motor (p 0342) is determined and acceleration pre-control scaling (p1496) is set to 100%.
If $\mathrm{p} 1400.2=\mathrm{p} 1400.3=0$, then the pre-control balancing is automatically set.

2) only effective if p14002 = 0

Figure 7-15 Speed controller with pre-control
When correctly adapted, when accelerating, the speed controller only has to compensate disturbance variables in its control loop. This is achieved with a relatively minor controlled variable change at the controller output.

The effect of the pre-control variable can be adapted according to the application using the weighting factor p1496. For p1496 $=100 \%$, pre-control is calculated according to the motor and load moment of inertia (p0341, p0342). A balancing filter is used automatically to prevent the speed controller acting against the injected torque setpoint. The time constant of the balancing filter corresponds to the equivalent delay time of the speed control loop. Speed controller pre-control is correctly set (p1496 = 100\%, calibration using p0342) if the I component of the speed controller (r1482) does not change while ramping-up or rampingdown in the range $n>20 \% \times p 0310$. Thus, pre-control allows a new speed setpoint to be approached without overshoot (prerequisite: torque limiting does switch in and the moment of inertia remains constant).

If the speed controller is pre-controlled by means of injection, the speed setpoint (r0062) is delayed with the same smoothing time (p1442 or p1452) as the actual value (r1445). This ensures that no target/actual difference (r0064) occurs at the controller input during acceleration, which would be attributable solely to the signal propagation time.
When speed pre-control is activated, the speed setpoint must be specified continuously or without a higher interference level (avoids sudden torque changes). An appropriate signal can be generated by smoothing the speed setpoint or activating ramp-function generator rounding p1130-p1131.

The startup time r0345 ($\mathrm{T}_{\text {startup }}$) is a measure for the total moment of inertia J of the machine and describes the time during which the unloaded drive can be accelerated with the rated motor torque r0333 ($\mathrm{M}_{\text {motr,rated }}$) from standstill to the rated motor speed p 0311 ($\mathrm{n}_{\text {mot,rated }}$).
$\mathrm{r} 0345=\mathrm{T}_{\text {startup }}=\mathrm{J} \times\left(2 \times \pi \times \mathrm{n}_{\text {mot,rated }}\right) /\left(60 \times \mathrm{M}_{\text {motrated }}\right)=\mathrm{p} 0341 \times \mathrm{p} 0342 \times(2 \times \pi \times \mathrm{p} 0311) /$ (60 x r0333)

The ramp-up and ramp-down times should always be set to values larger than the startup time.

Note

The ramp-up and ramp-down times (p 1120 ; p1121) of the ramp-function generator in the setpoint channel should be set accordingly so that the motor speed can track the setpoint during acceleration and braking. This will optimize the function of speed controller precontrol.

Acceleration pre-control using a connector input (p1495) is activated by the parameter settings p1400.2 = 1 and p1400.3 $=0$. p1428 (dead time) and p1429 (time constant) can be set for balancing purposes.

Function diagram

FP 6031 Pre-control balancing reference/acceleration model

Parameter

- p0311 Rated motor speed
- r0333 Rated motor torque
- p0341 Motor moment of inertia
- p0342 Ratio between the total and motor moment of inertia
- r0345 Rated motor startup time
- p1400.2 Acceleration pre-control source
- p1428 Speed pre-control balancing dead time
- p1429 Speed pre-control balancing time constant
- p1496 Acceleration pre-control scaling
- r1518 Acceleration torque

7.4.3.3 Reference model

Description

The reference model becomes operative when p1400.3 = 1 and p1400.2 $=0$.
The reference model is used to emulate the speed control loop with a P speed controller.
The loop emulation can be set in p1433 to p1435. It becomes effective if p1437 is connected to the output of the model r1436.

The reference model delays the setpoint-actual value deviation for the integral component of the speed controller so that settling (stabilizing) operations can be suppressed.

The reference model can also be externally emulated and the external signal entered via p1437.

Figure 7-16 Reference model

Function diagram

FP 6031 Pre-control balancing reference/acceleration model

Parameters

- p1400.3 Reference model speed setpoint I component
- p1433 Speed controller reference model natural frequency
- p1434 Speed controller reference model damping
- p1435 Speed controller reference model dead time
- r1436 Speed controller reference model speed setpoint output
- p1437 Speed controller reference model I component input

7.4.3.4 Speed controller adaptation

Description

Two adaptation methods are available, namely free Kp_n adaptation and speed-dependent Kp_n/Tn_n adaptation.

Free Kp_n adaptation is also active in "operation without encoder" mode and is used in "operation with encoder" mode as an additional factor for speed-dependent Kp_n adaptation.

Speed-dependent Kp_n/Tn_n adaptation is only active in "operation with encoder" mode and also affects the Tn_n value.

Figure 7-17 Free Kp adaptation
A dynamic response reduction in the field-weakening range can be activated in encoderless operation (p 1400.0). This is activated when the speed controller is optimized in order to achieve a greater dynamic response in the base speed range.

Example of speed-dependent adaptation

Note

This type of adaptation is only active in "operation with encoder" mode.

Figure 7-18 Example of speed-dependent adaptation

Function diagram

FP $6050 \quad$ Kp_n-/Tn_n adaptation

Parameters

- p1400.5 Speed control configuration: $\mathrm{Kp} /$ Tn adaptation active

Free Kp_n adaptation

- p1455 Speed controller P gain adaptation signal
- p1456 Speed controller P gain adaptation lower starting point
- p1457 Speed amplifier P gain adaptation upper starting point
- p1458 Adaptation factor lower
- p1459 Adaptation factor upper
- p1470 Speed controller encoderless operation P gain

Speed-dependent Kp_n/Tn_n adaptation (VC only)

- p1460 Speed controller P gain adaptation speed lower
- p1461 Speed controller P gain adaptation speed upper
- p1462 Speed controller integral time adaptation speed lower
- p1463 Speed controller integral time adaptation speed upper
- p1464 Speed controller adaptation speed lower
- p1465 Speed controller adaptation speed upper
- p1466 Speed controller P gain scaling

Dynamic response reduction field weakening (encoderless VC only)

- p1400.0 Speed control configuration: Automatic Kp/Tn adaptation active

7.4.3.5 Droop Function

Description

Droop (enabled via p1492) ensures that the speed setpoint is reduced proportionally as the load torque increases.

The droop function has a torque limiting effect on a drive that is mechanically coupled to a different speed (e.g. guide roller on a goods train). In this way, a very effective load distribution can also be realized in connection with the torque setpoint of a leading speedcontrolled drive. In contrast to torque control or load distribution with overriding and limitation, with the appropriate setting, such a load distribution controls even a smooth mechanical connection.

This method is only suitable to a limited extent for drives that are accelerated and braked with significant changes in speed.

The droop feedback is used, for example, in applications in which two or more motors are connected mechanically or operate with a common shaft and fulfill the above requirements. It limits the torque differences that can occur as a result of the mechanical connection between the motors by modifying the speeds of the individual motors (drive is relieved when the torque becomes too great).

Figure 7-19 Speed controller with droop

Requirement

- All connected drives must be operated with vector and speed control (with or without speed actual value encoder).
- The setpoints at the ramp function generators of the mechanically connected drives must be identical; the ramp function generators must have identical ramp-up and ramp-down times.

Function diagram

$$
\text { FP } 6030 \quad \text { Speed setpoint, droop }
$$

Parameter

- r0079 Total speed setpoint
- r1482 Speed controller I torque output
- p1488 Droop input source
- p1489 Droop feedback scaling
- r1490 Droop feedback speed reduction
- p1492 Droop feedback enable
- r1508 Torque setpoint before supplementary torque

7.4.3.6 Open actual speed value

Description

Via parameter p 1440 (Cl : speed controller, speed actual value) is the signal source for the speed actual value of the speed controller. The unsmoothed actual speed value r0063[0] has been preset as the signal source in the factory.

Depending on the machine, parameter p1440 can be used, for example, to switch on a filter in the actual value channel or feed in an external actual speed value.

Parameter r1443 is used to display the actual speed value present at p1440.

Note

When infeeding an external actual speed value, care should be taken that the monitoring functions continue to be derived from the motor model.

Behavior for speed control with an encoder (p1300 = 21)

A motor encoder must always be available for the speed or position signal of the motor model (e.g. evaluation via SMC, see p0400). The actual speed of the motor (r0061) and the position information for synchronous motors still come from this motor encoder and are not influenced by the setting in p1440.

Interconnection of p1440:
When interconnecting connector input p1440 with an external actual speed value, ensure the speed scaling is the same (p2000).

The external speed signal should correspond to the average speed of the motor encoder (r0061).

Behavior for speed control without an encoder (p1300 = 20)

Depending on the transmission path of the external speed signal, dead times will occur; these dead times must be taken into account in the speed controller's parameter assignment ($\mathrm{p} 1470, \mathrm{p} 1472$) and can lead to corresponding losses in the dynamic performance.
Signal transmission times must therefore be minimized.
p1750.2 = 1 should be set so that the speed controller is also able to work at standstill (closed-loop controlled operation to zero frequency for passive loads). Otherwise, at low speeds it switches over to speed-controlled operation, so that the speed controller is switched off and the measured actual speed no longer has an influence.

Monitoring of the speed deviation between motor model and external speed

The external actual speed (r1443) is compared with the actual speed of the motor model (r2169). If the deviation is greater than the tolerance threshold set in p3236, after the switchoff delay time set in p3238 expires, fault F07937 (Drive: Speed deviation motor model to external speed) is generated and the drive switched-off corresponding to the set response (factory setting: OFF2).

Figure 7-20 Monitoring "Speed deviation model / external in tolerance"

Function diagram

FP 6040 Vector control - speed controller with/without encoder
FP 8012 Signals and monitoring function - Torque messages, motor blocked/stalled

Parameter

- r0063[0] Actual speed value unsmoothed
- p1440 CI: Speed controller actual speed value
- p1443 CO: Actual speed value at speed controller actual speed value input
- r2169 CO: Actual speed value smoothed messages
- r2199.7 Speed deviation model / external in tolerance
- p3236 Speed threshold 7
- p3237 Hysteresis speed 7
- p3238 Switch-off delay n_act_motor model = n_act_external

7.4.4 Closed-loop torque control

Description

For sensorless closed-loop speed control ($\mathrm{p} 1300=20$) or closed-loop speed control with encoder VC ($p 1300=21$), it is possible to change over to closed-loop torque control using BICO parameter p1501. It is not possible to change over between closed-loop speed and torque control if closed-loop torque control is directly selected with p1300=22 or 23 . The torque setpoint and/or supplementary setpoint can be entered using BICO parameter p1503 (Cl: torque setpoint) or p1511 (Cl: supplementary torque setpoint). The supplementary torque acts both for closed-loop torque as well as for the closed-loop speed control. As a result of this characteristic, a pre-control torque can be implemented for the closed-loop speed control using the supplementary torque setpoint.

Note

For safety reasons, assignments to fixed torque setpoints are currently not possible.
If energy is regenerated and cannot be injected back into the line supply, then a Braking Module with connected braking resistor must be used.

Figure 7-21 Closed-loop speed/torque control
The total of the two torque setpoints is limited in the same way as the speed control torque setpoint. Above the maximum speed (p1082), a speed limiting controller reduces the torque limits in order to prevent the drive from accelerating any further.

A "real" closed-loop torque control (with a speed that automatically sets itself) is only possible in the closed-loop control range but not in the open-loop control range of the sensorless closed-loop vector control. In the open-loop controlled range, the torque setpoint changes the setpoint speed via a ramp-up integrator (integrating time \sim p1499 x p0341 x p0342). This is the reason that sensorless closed-loop torque control close to standstill is only suitable for applications that require an accelerating torque there and no load torque (e.g. traversing drives). Closed-loop torque control with encoder does not have this restriction.

OFF responses

- OFF1 and p1300 = 22, 23
- Response as for OFF2
- OFF1, p1501 = "1" signal and p1300 $=22,23$
- No separate braking response; the braking response is provided by a drive that specifies the torque.
- The pulses are inhibited when the brake application time (p1217) expires. Standstill is detected when the speed actual value of the speed threshold (p1226) is undershot or when the monitoring time (p 1227) started when speed setpoint \leq speed threshold (p 1226) expires.
- Switching on inhibited is activated.
- OFF2
- Immediate pulse suppression, the drive coasts to standstill.
- The motor brake (if parameterized) is closed immediately.
- Switching on inhibited is activated.
- OFF3
- Switch to speed-controlled operation
- n_set = 0 is input immediately to brake the drive along the OFF3 deceleration ramp (p1135).
- When standstill is detected, the motor brake (if parameterized) is closed.
- The pulses are inhibited when the motor brake closing time (p1217) has elapsed. Standstill is detected when the speed actual value of the speed threshold (p 1226) is undershot or when the monitoring time (p 1227) started when speed setpoint \leq speed threshold (p1226) expires.
- Switching on inhibited is activated.

Function diagram

FP 6060 Torque setpoint

Parameters

- p0341 Motor moment of inertia
- p0342 Ratio between the total and motor moment of inertia
- p1300 Open-loop/closed-loop control mode
- p1499 Accelerating for torque control, scaling
- p1501 Change over between closed-loop speed/torque control
- p1503 Torque setpoint
- p1511 Supplementary torque 1
- p1512 Supplementary torque 1 scaling
- p1513 Supplementary torque 2
- p1514 Supplementary torque 2 scaling
- r1515 Supplementary torque total

7.4.5 Torque limiting

Description

Figure 7-22 Torque limiting
The value specifies the maximum permissible torque whereby different limits can be parameterized for motor and regenerative mode.

- p0640 Current limit
- p1520 CO: Torque limit, upper/motoring
- p1521 CO: Torque limit, lower/regenerative
- p1522 CI: Torque limit, upper/motoring
- p1523 CI: Torque limit, lower/regenerative
- p1524 CO: Torque limit, upper/motoring, scaling
- p1525

CO: Torque limit, lower/regenerative scaling

- p1530 Power limit, motoring
- p1531 Power limit, regenerating

The currently active torque limit values are displayed in the following parameters:

- r0067 Maximum drive output current
- r1526 Torque limit, upper/motoring without offset
- r1527 Torque limit, lower/regenerative without offset

All of the following limits act on the torque setpoint - that is either available at the speed controller output for closed-loop speed control or as torque input, for closed-loop torque control. The minimum or the maximum is used for the various limits. This minimum or maximum is cyclically calculated and is displayed in r1538 or r1539.

- r1538 Upper effective torque limit
- r1539 Lower effective torque limit

These cyclical values therefore limit the torque setpoint at the speed controller output/torque input or indicate the instantaneous max. possible torque. If the torque setpoint is limited, then this is displayed using parameter p1407.

- r1407.8 Upper torque limit active
- r1407.9 Lower torque limit active

Function diagram

FP 6060	Torque setpoint
FP 6630	Upper/lower torque limit
FP 6640	Current/power/torque limits

7.4.6 Permanent-field synchronous motors

Description

Permanent-magnet synchronous motors that are equipped with a position encoder or a pulse encoder with zero mark are supported.

Permanent-magnet synchronous motors without encoders are also supported for operation without encoders.

Typical applications include direct drives with torque motors which are characterized by high torque at low speeds, e.g. Siemens complete torque motors of the 1FW3 series. When these drives are used, gear units and mechanical parts subject to wear can be dispensed with if the application allows this. ! WWARNING

As soon as the motor starts to rotate, a voltage is generated. When work is carried out on the converter, the motor must be safely disconnected. If this is not possible, the motor must be locked by a holding brake, for example.

Features

- Field weakening of up to approx. $1.2 \times$ rated speed (depending on the supply voltage of the converter and motor data, also see supplementary conditions)
- Flying restart (during operation without encoders, only when a VSM module is used to record the motor speed and phase angle (option K51))
- Speed and torque control vector
- V/f control for diagnostics vector
- Motor identification
- Automatic rotary transducer adjustment (calibration of the encoder's zero position, not for operation without encoders)
- Speed controller optimization (rotary measurement)

Supplementary conditions

- Maximum speed or maximum torque depend on the converter output voltage available and the back EMF of the motor (calculation specifications: EMF must not exceed $U_{\text {rated }}$, converter).
- Calculating the maximum speed:
$n_{\max }=n_{n} \cdot \sqrt{\frac{3}{2}} \cdot \frac{U_{D C} \text { link max } \cdot I_{n}}{P_{n}}$
- Depending on the terminal voltage and load cycle, the maximum torque can be taken from the motor data sheets / configuration instructions.
- One of the following motor encoders must be used for operation with an encoder:
- SMC10 (option K46): all resolvers that can be connected
- SMC20 (option K48): SIN/COS encoders with C/D track, EnDat encoders
- SMC30 (option K50): HTL/TTL encoders with zero mark.
- No thermal model is available for the closed-loop control of a permanent-magnet synchronous motor. The motor can only be protected against overheating by using temperature sensors (PTC, KTY). To achieve a high level of torque accuracy, we recommend the use of a temperature sensor (KTY) to measure the motor temperature.

Commissioning

The following sequence is recommended for commissioning:

- Configure the drive

When the drive is being commissioned using STARTER or the AOP30 operator panel, the permanent-magnet synchronous motor must be selected. The motor data specified in the table below must then be entered. Finally, the motor identification routine and speed optimization (p1900) are activated. Encoder adjustment is activated automatically together with the motor identification routine.

- Motor identification (standstill measurement, p1910)
- Encoder adjustment (p1990) (not for operation without encoder) Motor Modules with field-oriented closed-loop control specify the current on permanentmagnet synchronous motors with regard to the magnetic flux in the motor. To this end, the motor encoder must provide information about the position of the rotor.

WARNING

During initial commissioning and when the encoder is replaced, the encoder must be adjusted (p1990).

- Speed controller optimization (rotary measurement, p1960)

Motor data for permanent-magnet synchronous motors

Table 7-2 Motor data type plate

Parameters	Description	Comment
p0304	Rated motor voltage	If this value is not known, the value "0" can also be entered. Entering the correct value, however, means that the stator leakage inductance (p0356, p0357) can be calculated more accurately.
p0305	Rated motor current	
p0307	Rated motor power	Rated motor frequency
p0310	Rated motor speed	If this value is not known, the value "0" can also be entered.
p0311	Motor pole pair number	If this value is not known, the value "0" can also be entered.
p0316	Motor torque constant	

If the torque constant k_{T} is not stamped on the rating plate or specified in the data sheet, you can calculate this value from the rated motor data or from the stall current l_{0} and stall torque M_{0} as follows:

$$
\mathrm{k}_{\mathrm{T}}=\frac{\mathrm{M}_{\mathrm{N}}}{\mathrm{I}_{\mathrm{N}}}=\frac{60 \frac{\mathrm{~s}}{\min } \times \mathrm{P}_{\mathrm{N}}}{2 \pi \times \mathrm{n}_{\mathrm{N}} \times \mathrm{I}_{\mathrm{N}}} \quad \text { or } \quad \mathrm{k}_{\mathrm{T}}=\frac{\mathrm{M}_{0}}{\mathrm{I}_{0}}
$$

The optional motor data can be entered if it is known. Otherwise, this data is estimated from the type plate data or determined by means of motor identification or speed controller optimization.

Table 7-3 Optional motor data

Parameters	Description	
p0320	Rated motor short-circuit current	This is used for the field weakening characteristic
p0322	Maximum motor speed	Maximum mechanical speed
p0323	Maximum motor current	De-magnetization protection
p0325	Rotor position identification current, 1st phase	-
p0327	Optional load angle	Optional otherwise leave at 90°
p0328	Reluctance torque constant	-
p0329	Rotor position identification current	-
p0341	Motor moment of inertia	For speed controller pre-control
p0344	Motor weight	-
p0350	Stator resistance, cold	-
p0356	Quadrature axis stator inductance Lq	-
p0357	In-line stator inductance Ld	-

Short-circuit protection

For short circuits that can occur in the drive converter or in the motor cable, the rotating machine would supply the short-circuit until it comes to a standstill. An output contactor can be used for protection. This should be located as close as possible to the motor. This is particularly necessary if the motor can still be driven by the load when a fault develops. The contactor must be provided with a protective circuit against overvoltage on the motor side so that the motor winding is not damaged as a result of the shutdown.
Control signal r0863.1 (VECTOR) is used to control the contactor via a free digital output; the checkback contact of the contactor is connected to parameter p0864 via a free digital input.

This means that if the drive converter develops a fault with a shutdown response, at the instant in time that the pulses are inhibited, the motor is isolated from the drive converter so that energy is not fed back to the fault location.

Function diagram

FP 4715 Actual speed value and rotor pos. meas., motor enc. ASM/SM (encoder 1)
FP 6721 Current control - Id setpoint (PEM, p0300 = 2)
FP 6724 Current control - field weakening controller (PEM, p0300 = 2)
FP 6731 Current control - interface to Motor Module (PEM, p0300 = 2)
7.4 Vector speed/torque control with/without encoder

Output terminals

8.1 Content of this chapter

This chapter provides information on:

- Analog outputs
- Digital outputs

The analog/digital outputs described are located on the TM31 customer terminal block, which is available only with option G60.
As an alternative to the analog/digital outputs of the TM31, it is possible to use the terminals on the Control Unit or on the Terminal Board TB30 (option G62).

Some of the outputs on the Control Unit and on the TM31 are pre-assigned at the factory; the outputs on the TB30 are not pre-assigned at the factory.

Function diagrams

To supplement these operating instructions, the customer DVD contains simplified function diagrams describing the operating principle.
The diagrams are arranged in accordance with the chapters in the operating manual. The page numbers ($8 x x$) describe the functionality in the following chapter.

At certain points in this chapter, reference is made to function diagrams with a 4-digit number. These are stored on the customer DVD in the "SINAMICS S120/S150 List Manual", which provides experienced users with detailed descriptions of all the functions.

8.2 Analog outputs

Description

The Customer Terminal Block features two analog outputs for outputting setpoints via current or voltage signals.

Delivery condition:

- AOO: Actual speed value: 0-20 mA
- AO1: Actual motor current: $0-20 \mathrm{~mA}$

Signal flow diagram

Figure 8-1 Signal flow diagram: analog output 0

Function diagram

FP 1840, TM31 - analog outputs (AO 0 ... AO 1)
FP 9572

Parameters

- p4071 Analog outputs, signal source
- p4073 Analog outputs, smoothing time constant
- r4074 Analog outputs, actual output voltage/current
- p4076 Analog outputs, type
- p4077 Analog outputs, characteristic value $\times 1$
- p4078 Analog outputs, characteristic value y1
- p4079 Analog outputs, characteristic value $\times 2$
- p4080 Analog outputs, characteristic value y2

8.2.1 Lists of signals for the analog outputs

Signals for the analog outputs: VECTOR object

Table 8-1 List of signals for the analog outputs - VECTOR object

Signal	Parameter	Unit	Scaling (100 \%=...) See table below
Speed setpoint before the setpoint filter	r 0060	rpm	p 2000
Motor speed unsmoothed	r 0061	rpm	p 2000
Actual speed smoothed	r 0063	rpm	p 2000
Output frequency	r 0066	Hz	Reference frequency
Output current	r 0068	Arms	p 2002
DC link voltage	r 0070	V	p 2001
Torque setpoint	r 0079	Nm	p 2003
Output power	r 0082	kW	r 2004
For diagnostic purposes			
Control deviation	r 0064	rpm	p 2000
Modulation depth	r 0074	$\%$	Reference modulation depth
Torque-generating current setpoint	r 0077	A	p 2002
Torque-generating actual current	r 0078	A	p 2002
Flux setpoint	r 0083	$\%$	Reference flux
Actual flux	r 0084	$\%$	Reference flux
For further diagnostic purposes		Nm	
Speed controller output	r 1480	Nm	p 2003
I component of speed controller	r 1482	Nm	p2003

8.2 Analog outputs

VECTOR object scalings

Table 8-2 VECTOR object scalings

Variable	Scaling parameter	Default for quick commissioning
Reference speed	$100 \%=$ p2000	p2000 = Maximum speed $(\mathrm{p} 1082)$
Reference voltage	$100 \%=\mathrm{p} 2001$	$\mathrm{p} 2001=1000 \mathrm{~V}$
Reference current	$100 \%=\mathrm{p} 2002$	$\mathrm{p} 2002=$ Current limit $(\mathrm{p} 0640)$
Reference torque	$100 \%=\mathrm{p} 2003$	$\mathrm{p} 2003=2 \times$ rated motor torque
Reference power	$100 \%=\mathrm{r2004}$	r2004 $=(\mathrm{p} 2003 \times \mathrm{p} 2000 \times \mathrm{\pi}) / 30$
Reference frequency	$100 \%=\mathrm{p} 2000 / 60$	
Reference modulation depth	$100 \%=$ Maximum output voltage without overload	
Reference flux	$100 \%=$ Rated motor flux	
Reference temperature	$100 \%=100^{\circ} \mathrm{C}$	

Signals for the analog outputs: object A_INF

Table 8-3 List of signals for the analog outputs - object A_INF

Signal	Parameter	Unit	Scaling (100 \%=...) See table below
Output current	r0068	Aeff	p2002
DC link voltage	r0070	V	p2001
Modulation depth	r0074	$\%$	Reference modulation depth
Torque-generating current setpoint	r0077	A	p2002
Torque-generating actual current	r0078	A	p2002
Output power	r0082	kW	r2004

Scalings for object A_INF

Table 8-4 Scalings for object A_INF

Variable	Scaling parameter	Default for quick commissioning
Reference frequency	$100 \%=\mathrm{p} 2000$	$\mathrm{p} 2000=\mathrm{p} 0211$
Reference voltage	$100 \%=\mathrm{p} 2001$	$\mathrm{p} 2001=\mathrm{r} 0206 / \mathrm{r} 0207$
Reference current	$100 \%=\mathrm{p} 2002$	$\mathrm{p} 2002=\mathrm{r} 0207$
Reference power	$100 \%=\mathrm{r} 2004$	$\mathrm{r} 2004=\mathrm{r} 0206$
Reference modulation depth	$100 \%=$ Maximum output voltage without overload	
Reference temperature	$100 \%=100^{\circ} \mathrm{C}$	

Example: changing analog output 0 from current to voltage output $-10 \mathrm{~V} . .+10 \mathrm{~V}$

Voltage output present at terminal 1, ground is at terminal 2

Set analog output type 0 to $-10 \ldots+10 \mathrm{~V}$.

Example: changing analog output 0 from current to voltage output $-10 \mathrm{~V} . . .+10 \mathrm{~V}$ and setting the characteristic

Voltage output present at terminal 1, ground is at terminal 2

Set TM31.AO_type [analog output 0] to -10 V ... +10 V .

Set TM31.AO_char. x1 to 0.00\%.

Set TM31.AO_char. y1 to 0.000 V .

Set TM31.AO_char. x2 to 100.00\%.

Set TM31.AO_char. y2 to 10.000 V .

8.3 Digital outputs

Description

Four bi-directional digital outputs (terminal X541) and two relay outputs (terminal X542) are available. These outputs are, for the most part, freely parameterizable.

Signal flow diagram

Figure 8-2 Signal flow diagram: Digital outputs

Delivery condition

Table 8-5 Digital outputs, delivery condition

Digital output	Terminal	Delivery condition
DO0	X542: 2.3	"Enable pulses"
DO1	X542: 5.6	"No fault"
DI/DO8	X541:2	"Ready to start"
DI/DO9	X541:3	
DI/DO10	X541:4	
DI/DO11	X541:5	

Selection of possible connections for the digital outputs

Table 8-6 Selection of possible connections for the digital outputs

Signal	Bit in status word 1	Parameters
1 = Ready to start	0	r0889.0
1 = Ready to operate (DC link loaded, pulses blocked)	1	r0889.1
1 = Operation enabled (drive follows n_set)	2	r0889.2
1 = Fault present	3	r2139.3
0 = Coast to stop active (OFF2)	4	r0889.4
0 = Fast stop active (OFF3)	5	r0889.5
1 = Power-on disable	6	r0889.6
1 = Alarm present	7	r2139.7
1 = Speed setpoint/actual deviation in the tolerance bandwidth (p2163, p2166)	8	r2197.7
1 = Control required to PLC	9	r0899.9
1 = f or n comparison value reached or exceeded ($\mathrm{p} 2141, \mathrm{p} 2142$)	10	r2199.1
1 = I, M, or P limit reached (p0640, p1520, p1521)	11	r1407.7
Reserved	12	
0 = Alarm motor overtemperature (A7910)	13	r2129.14
Reserved	14	
0 = Alarm thermal overload in power unit (A5000)	15	r2129.15
1 = Pulses enabled (inverter is clocking, drive is carrying current)		r0899.11
1 = n_act \leq p2155		r2197.1
1 = n_act > p2155		r2197.2
1 = Ramp-up/ramp-down completed		r2199.5
1 = n _act < p2161 (preferably as n_min or $\mathrm{n}=0$ message)		r2199.0
1 = Torque setpoint < p2174		r2198.10
1 = LOCAL mode active (control via operator panel or control panel)		r0807.0
0 = Motor blocked		r2198.6

Functions, monitoring, and protective functions

9.1 Chapter content

This chapter provides information on:

- Drive functions:

Motor identification, efficiency optimization, quick magnetization for induction motors, Vdc control, automatic restart, flying restart, motor changeover, friction characteristic, armature short-circuit braking, internal voltage protection, DC braking, increase in the output frequency, pulse frequency wobbling, runtime, simulation operation, direction reversal, unit changeover, derating behavior with increased pulse frequency, simple brake control, energy savings indicator for pumps, fans, and compressors

- Active Infeed functions:
line and DC link identification, harmonics controller, adjustable power factor (reactive current compensation)
- Extended functions:

Technology controller, bypass function, extended brake control, extended monitoring functions, position control, basic positioner

- Monitoring and protective functions:

Power unit protection, thermal monitoring functions and overload responses, blocking protection, stall protection, thermal motor protection.

Function diagrams

To supplement these operating instructions, the customer DVD contains simplified function diagrams describing the operating principle.
The diagrams are arranged in accordance with the chapters in the operating instructions. The page numbers (9 xx) describe the functionality in the following chapter.

At certain points in this chapter, reference is made to function diagrams with a 4-digit number. These are stored on the customer DVD in the "SINAMICS S120/S150 List Manual", which provides experienced users with detailed descriptions of all the functions.

9.2 Active Infeed functions

9.2.1 Line and DC link identification

Description

Automatic parameter identification is used to determine all the line and DC link parameters, thereby enabling the controller setting for the Line Module to be optimized.

Note

If the line environment or DC link components are changed, automatic identification should be repeated with p3410 $=4$ (e.g. once the system has been installed or the drive line-up extended).
The rated current flows during line identification, which can result in a supply-side voltage dip.

Identification methods

- 0: Identification (Id) off
- 1: Activate identification (Id)
- 2: Set controller setting
- 3: Identify and save controller setting
- 4: Identify and save controller setting with L adaptation

Note

You are advised to use this identification method.

- 5: Reset, save controller setting with L adaptation

For p3410 $=1,3,4,5$, alarm A06400 is output to indicate that the specified identification will take place after the next pulse enable.
p3410 is automatically set to 0 after an identification run has been fully completed.

Parameter

- p3410 Infeed identification method
- r3411 Infeed identified inductance
- r3412 Infeed DC-link capacitance identified
- p3421 Infeed inductance
- p3422 Infeed DC link capacitance
- p3620 Infeed current controller adaptation lower application threshold
- p3622 Infeed current controller adaptation reduction factor

9.2.2 Harmonics controller

Description

Harmonics in the supply voltage cause harmonics in the line currents. Current harmonics can be reduced by activating the harmonics controller.

Example: setting the harmonics controller

The 5th and 7th harmonic are to be compensated:

Table 9-1 Sample parameters for the harmonics controller

Index	p3624 Infeed harmonics controller order	p3625 scaling
$[0]$	5	100%
$[1]$	7	100%

0% scaling means that the harmonics controller has been deactivated.
100 \% scaling means that the harmonics controller has been activated with standard gain.
The phase currents in parameter p0069[0...2] (U, V, W) can be verified using the STARTER trace function.

Parameters

- r0069[0...6] Phase currents actual value
- p3624[0...1] Infeed harmonics controller order
- p3625[0...1] Infeed harmonics controller scaling
- r3626[0...1] Infeed harmonics controller output

9.2.3 Variable power factor (reactive power compensation)

Description

Changing the reactive current allows the power factor of the cabinet unit to be set as capacitive or inductive. The total setpoint is composed of the fixed setpoint p3610 and the dynamic setpoint via the connector input p3611.

The reactive current can be changed by specifying a parameterizable supplementary setpoint for the reactive current by means of higher-level cos control.

Note

The direction of rotation of the network is compensated automatically with reactive current control. A negative reactive current setpoint causes an inductive reactive current; a positive setpoint generates a capacitive reactive current.

Note

The closed-loop control limits the reactive current setpoint dynamically in such a way that the sum of the active current setpoint and the reactive current setpoint does not exceed the maximum device current.

Function diagram

FP 8946 Power pre-control/current controller/gating unit

Parameters

- p3610 Infeed reactive current fixed setpoint
- p3611 CI: Infeed reactive current supplementary setpoint

9.2.4 Settings for the infeed (Active Infeed) under difficult line conditions

Description

The following setting examples are taken from commissioning procedures and are not generally valid! The required control characteristics must be checked again after the settings have been made.

Example 1: Infeed to a generator functioning as an energizing supply

Infeed error during line identification, power failure (F6200, A6205)
Following procedure:

1. Exclude other sources of fault: e.g. actual power failure, wiring fault, correct supply data setting (p0210, p0211)
2. Reset the infeed parameters, re-enter the supply data
3. p0281 Line supply overvoltage, warning threshold $=150 \%$
p0283 Line supply undervoltage, shutdown (trip) threshold $=50 \%$
p0284 Line supply frequency exceeded, alarm threshold = 125\%
p0285 Min. line supply frequency not maintained, alarm threshold $=75 \%$
\rightarrow Start supply ID (p3410 = 5)
4. If 3 . is not successful, then in addition:

Reduction in excitation current p3415[0] $=4 \%, p 3415[1]=8 \%$
\rightarrow Start supply ID (p3410 = 5)
5. If 4. is not successful, then in addition (for FW ≤ 2.4 only):

Gradual increase in value of infeed inductance between supply and filter p0225 (initial value: 0.3/0.5/0.7 x p0223),
Limit p3421 to (2 x p0233)
\rightarrow Start each supply ID
6. If 5 . is not successful, then in addition:
p3463 Infeed, line angle change, phase failure detection $=20^{\circ} \ldots 40^{\circ}$
p3458[1] Infeed PLL smoothing time $=8 \mathrm{~ms}$.. 25 ms
p3472[1] Reduce infeed supply voltage smoothing time to $20 \mathrm{~ms} . . .100 \mathrm{~ms}$
(both parameters only visible at service access level)
\rightarrow Start supply ID
7. If 6 . is not successful, then in addition:

Change controller gain p3560 = 10\% .. 300% (Vdc controller)

Note

The service parameters can only be accessed by authorized Siemens personnel.
If a particular setting is not possible or special application-specific supplementary conditions are present, individual steps can also be omitted.
8. If no return feed possible in regenerative operation: p3533=1 (inhibit regenerative operation)

Example 2: Faults during operation when loading the infeed, operating on a "normal" supply.

Power failure (F6200, A6205), DC link overvoltage (F30002)
Following procedure:

1. Exclude other sources of fault: e.g. actual power failure, wiring fault, correct supply data setting (p0210, p0211)
2. If 1 . is not successful, then in addition (for FW ≤ 2.4 only):

Gradual increase in value of infeed inductance between supply and filter p0225 (initial value: $0.3 / 0.5 / 0.7 \times p 0223$),
Limit p3421 to $2 \times \mathrm{p} 0233$
\rightarrow Start each supply ID $($ p3410 = 5)
3. If 2. is not successful, then in addition:
p3463 Infeed, line angle change, phase failure detection $=15^{\circ} \ldots 30^{\circ}$
p3458[1] Infeed PLL smoothing time $=8 \mathrm{~ms}$.. 25 ms
(both parameters only visible at service access level)
\rightarrow Run load test
4. If 3 . is not successful, then in addition:

Change controller gain p3560 = 10\% .. 300\%
and, if necessary, integral action time p3562 $=50 \%$ (Vdc controller)
\rightarrow Run load test
5. If 4. is not successful, then in addition:

Change voltage setpoint p3510, increase or decrease depending on fault pattern and application
\rightarrow Run load test
6. If 5. is not successful, then in addition:
p3530 Set motorized infeed current limit to active infeed rated current (r0207).
Set p3531 Regenerating infeed current limit to the negative active infeed rated current value (r0207)
\rightarrow Run load test

Note

The service parameters can only be accessed by authorized Siemens personnel.
If a particular setting is not possible or special application-specific supplementary conditions are present, individual steps can also be omitted.

9.3 Drive functions

9.3.1 Motor identification and automatic speed controller optimization

Description

Two motor identification options, which are based on each other, are available:

- Standstill measurement with p1910 (motor identification)
- Rotating measurement with p1960 (speed controller optimization)

These can be selected more easily via p1900. p1900 $=2$ selects the standstill measurement (motor not rotating). p1900 = 1 also activates the rotating measurement; setting p1910 $=1$ and p1960 depending on the current control type (p1300).

Parameter p1960 is set depending on p1300 as follows:

- p1960 $=1$, if $\mathrm{p} 1300=20$ or 22 (encoderless control)
- p1960 $=2$, if p1300 $=21$ or 23 (control with encoder)

The measurements parameterized using p1900 are started in the following sequence after the corresponding drive has been enabled:

- Standstill (static) measurement - after the measurement has been completed, the pulses are inhibited and parameter p1910 is reset to 0 .
- Encoder adjustment - after the measurement has been completed, the pulses are inhibited and parameter p1990 is reset to 0.
- Rotating measurement - after the measurement has been completed, the pulses are inhibited and parameter p1960 is reset to 0.
- After all of the measurements activated using p1900 have been successfully completed, p1900 itself is set to 0 .

Note

To set the new controller setting permanently, the data must be saved with p0977 or p0971 in a non-volatile memory.

DANGER

During motor identification, the drive might set the motor in motion.
The EMERGENCY OFF functions must be fully operational during commissioning. To protect the machines and personnel, the relevant safety regulations must be observed.

9.3.1.1 Standstill measurement

Description

Motor identification with p1910 is used for determining the motor parameters at standstill (see also p1960: speed controller optimization):

- Equivalent circuit diagram data p1910 = 1
- Magnetization characteristic p1910 $=3$

For control engineering reasons, you are strongly advised to carry out motor identification because the equivalent circuit diagram data, motor cable resistance, IGBT on-state voltage, and compensation for the IGBT lockout time can only be estimated if the data on the type plate is used. For this reason, the stator resistance for the stability of sensorless vector control or for the voltage boost with the V/f characteristic is very important.
Motor identification is essential if long supply cables or third-party motors are used. When motor data identification is started for the first time, the following data is determined with p1910 = 1 on the basis of the data on the type plate (rated data):

Table 9-2 Data determined using p1910

	Induction motor	Permanent-magnet synchronous motor
p1910 $=1$	- Stator resistance (p0350) - Rotor resistance (p0354) - Stator leakage inductance (p0356) - Rotor leakage inductance (p0358) - Magnetizing inductance (p0360) - Drive converter valve threshold voltage (p1825) - Converter valve interlocking times (p1828 ... p1830)	- Stator resistance (p0350) - Stator resistance q axis (p0356) - Stator inductance d axis (p0357) - Drive converter valve threshold voltage (p1825) - Converter valve interlocking times (p1828 ... p1830)
p1910 $=3$	- Saturation characteristics (p0362 ... p0366)	not recommended Notice: When encoder adjustment is complete, the motor is automatically rotated approx. one revolution in order to determine the zero marker of the encoder.

Since the type plate data provides the initialization values for identification, you must ensure that it is entered correctly and consistently (taking into account the connection type (star/delta)) so that the above data can be determined.

It is advisable to enter the motor supply cable resistance (p0352) before the standstill measurement (p 1910) is performed, so that it can be subtracted from the total measured resistance when the stator resistance is calculated (p0350).
Entering the cable resistance improves the accuracy of thermal resistance adaptation, particularly when long supply cables are used. This governs behavior at low speeds, particularly during encoderless vector control.

Figure 9-1 Equivalent circuit diagram for induction motor and cable
If an output filter (see p0230) or series inductance (p0353) is used, its data must also be entered before the standstill measurement is carried out.

The inductance value is then subtracted from the total measured value of the leakage. With sine-wave filters, only the stator resistance, valve threshold voltage, and valve interlocking time are measured.

Note

Leakage values in excess of 35 to 40% of the rated motor impedance will restrict the dynamic response of speed and current control in the voltage limit range and in fieldweakening operation.

Note

Standstill measurement must be carried out when the motor is cold. In p0625, enter the estimated ambient temperature of the motor during the measurement (with KTY sensor: set p0600, p0601 and read r0035). This is the reference point for the thermal motor model and thermal $\mathrm{Rs}_{\mathrm{s}} / \mathrm{R}_{\mathrm{R}}$ adaptation.

In addition to the equivalent circuit diagram data, motor data identification (p1910 = 3) can be used for induction motors to determine the magnetization characteristic of the motor. Due to the higher accuracy, the magnetization characteristic should, if possible, be determined during rotating measurement (without encoder: p1960 = 1, 3; with encoder: p1960 = 2, 4). If the drive is operated in the field-weakening range, this characteristic should be determined for vector control in particular. The magnetization characteristic can be used to calculate the field-generating current in the field-weakening range more accurately, thereby increasing torque accuracy.

Note

In comparison with standstill measurement (p1910) for induction motors, rotating measurement (p 1960) allows the rated magnetization current and saturation characteristic to be determined more accurately.

Figure 9-2 Magnetization characteristic

Carrying out motor identification

- Enter p1910 > 0. Alarm A07991 is displayed.
- Identification starts when the motor is switched on.
- p1910 resets itself to "0" (successful identification) or fault F07990 is output.
- r0047 displays the current status of the measurement.

Note

To set the new controller setting permanently, the data must be saved with p0977 or p0971 in a non-volatile memory.

WARNING

During motor identification, the drive might set the motor in motion.
The EMERGENCY OFF functions must be fully operational during commissioning. To protect the machines and personnel, the relevant safety regulations must be observed.

9.3.1.2 Rotating measurement and speed controller optimization

Description

"Rotating measurement" can be activated via p1960 or p1900 $=1$.
The main difference between rotating measurement and standstill measurement is speed control optimization, with which the drive's moment of inertia is ascertained and speed controller is set. On induction motors, the saturation characteristic and rated magnetization current are also measured.

If rotating measurement is not to be carried out at the speed set in p 1965 , this parameter can be changed before the measurement is started. Higher speeds are recommended.

The same applies to the speed in p1961, at which the saturation characteristic is determined and the encoder test is carried out.

The speed controller is set to the symmetrical optimum in accordance with dynamic factor p1967. p1967 must be set before the optimization run and only affects the calculation of the controller parameters.

If, during the measurement, it becomes clear that the the drive cannot operate in a stable manner with the specified dynamic factor or that the torque ripples are too great, the dynamic response is reduced automatically and the result displayed in r1968. The drive must also be checked to ensure that it is stable across the entire range. The dynamic response might need to be reduced or $\mathrm{Kp} / \mathrm{Tn}$ adaptation for the speed controller parameterized accordingly.

When commissioning induction machines, you are advised to proceed as follows:

- Before connecting the load, a complete "rotating measurement" (without encoder: p1960 $=1$; with encoder: p1960 = 2) should be carried out. Since the induction machine is idling, you can expect highly accurate results for the saturation characteristic and the rated magnetization current.
- When the load is connected, speed controller optimization should be repeated because the total moment of inertia has changed. This is realized by selecting parameter p1960 (without encoder: p1960 = 3; with encoder: p1960 = 4).
During the speed optimization, the saturation characteristic recording is automatically deactivated in parameter p1959.

When permanent-magnet synchronous motors are commissioned, the speed controller should be optimized $(\mathrm{p} 1960=2 / 4)$ when the load is connected.

Carrying out the rotating measurement ($\mathrm{p} 1960=1,2$)

The following measurements are carried out when the enable signals are set and a switchon command is issued in accordance with the settings in p1959 and p1960.

- Encoder test

If a speed encoder is used, the direction of rotation and the pulse number are checked.

- Only for induction motors:
- Measurement of the magnetization characteristic (p0362 to p0369)
- Measurement of the magnetization current (p0320) and determination of the offset voltage of the converter for offset compensation
- Measurement of the saturation of the leakage inductance and setting of the current controller adaptation (p0391...p0393) This is automatically activated with 1LA1 and 1LA8 motors (p0300 = 11, 18) (see p1959.5).
- Speed controller optimization
- p1470 and p1472, if p1960 = 1 (encoderless operation)
- p1460 and p1462, if p1960 = 2 (operation with encoder)
- Kp adaptation switch-off
- Acceleration pre-control setting (p1496)
- Setting for ratio between the total moment of inertia and that of the motor (p0342)

Note

To set the new controller setting permanently, the data must be saved with p0977 or p0971 in a non-volatile memory.

DANGER

During speed controller optimization, the drive triggers movements in the motor that can reach the maximum motor speed.

The EMERGENCY OFF functions must be fully operational during commissioning. To protect the machines and personnel, the relevant safety regulations must be observed.

Note

If speed controller optimization is carried out for operation with an encoder, the control mode will be changed over to encoderless speed control automatically, in order to be able to carry out the encoder test.

Parameters

- r0047 Status identification
- p1300 Open-loop/closed-loop control operating mode
- p1900 Motor data identification and rotating measurement
- p1959 Speed controller optimization configuration
- p1960 Speed controller optimization selection
- p1961 Saturation characteristic speed to determine
- p1965 Speed controller optimization speed
- p1967 Speed controller optimization dynamic factor
- r1968 Speed controller optimization actual dynamic factor
- r1969 Speed controller optimization inertia identified
- r1973 Speed controller optimization encoder test pulse number determined
- p1980 Pole position identification procedure
- r3925 Identification complete indicator
- r3927 Motld control word
- r3928 Rotating measurement configuration

9.3.2 Efficiency optimization

Description

The following can be achieved when optimizing efficiency using p1580:

- Lower motor losses in the partial load range
- Minimization of noise in the motor

Figure 9-3 Efficiency optimization
It only makes sense to activate this function if the dynamic response requirements of the speed controller are low (e.g. pump and fan applications).
For p1580 $=100 \%$, the flux in the motor under no-load operating conditions is reduced to half of the setpoint (reference flux) ($\mathrm{p} 1570 / 2$). As soon as load is connected to the drive, the setpoint (reference) flux increases linearly with the load and, reaching the setpoint set in p 1570 at approx. $\mathrm{r} 0077=\mathrm{r} 0331 \times \mathrm{p} 1570$.
In the field-weakening range, the final value is reduced by the actual degree of field weakening. The smoothing time (p1582) should be set to approx. 100 to 200 ms . Flux differentiation (see also p1401.1) is automatically deactivated internally following magnetization.

Function diagram

FP 6722 Field weakening characteristic, Id setpoint (ASM, p0300 = 1)
FP 6723 Field weakening controller, flux controller for induction motor (p0300 = 1)

Parameters

- r0077 Current setpoints, torque-generating
- r0331 Motor magnetizing current/short-circuit current (actual)
- p1570 Flux setpoint
- p1580 Efficiency optimization

9.3.3 Fast magnetization for induction motors

Description

Fast magnetization for induction motors is used to reduce delay time during magnetization.

Features

- Rapid flux build-up by impressing a field-producing current at the current limit, which considerably reduces the magnetization time.
- If the "Flying restart" function is activated, the excitation build-up time set in p0346 is still used.

Commissioning

Parameter setting p1401.6 = 1 is necessary to activate fast magnetization.
This setting initiates the following sequence during motor starting:

- The field-producing current setpoint jumps to its limit value: 0.9^{*} r0067 ($I_{\text {max }}$).
- The flux increases as fast as physically possible with the specified current.
- The flux setpoint r0083 is made to follow accordingly.
- As soon as the flux threshold value programmed in p1573 is reached (min.: 10%, max. 200%, factory setting: 100\%), excitation ceases and the speed setpoint is enabled. The flux threshold value must not be set too low for a large load because the torqueproducing current is limited during magnetization.

Note

The flux threshold value set in parameter p1573 is effective only if the actual flux during magnetization reaches the value programmed in p1573 before the timer set in p0346 runs down.

- The flux is increased further until the flux setpoint in p1570 has been reached.
- The field-producing current setpoint is reduced by means of a flux controller with P gain (p1590) and the parameterized smoothing factor (p1616).

Notes

When quick magnetization is selected ($p 1401.6=1$), smooth starting is deactivated internally and alarm A07416 displayed.

When the stator resistance identification function is active (see p0621 "Identification of stator resistance after restart") is active, quick magnetization is deactivated internally and alarm A07416 displayed.

The parameter does not work when combined with the "flying restart" function (see p1200), i.e. flying restart is performed without quick magnetization.

Function diagram

FP 6491 Flux control configuration
FP 6722 Field weakening characteristic, Id setpoint (ASM, p0300 = 1)
FP 6723 Field weakening controller, flux controller (ASM, p0300 = 1)

Parameter

- p0320 Motor rated magnetization current/short-circuit current
- p0346 Motor excitation build-up time
- p0621 Stator resistance identification after restart
- p0640 Current limit
- p1401 Flux control configuration
- p1570 Flux setpoint
- p1573 Flux threshold value magnetization
- p1590 Flux controller P gain
- p1616 Current setpoint smoothing time

9.3.4 Vdc control

Description

The "Vdc control" function can be activated using the appropriate measures if an overvoltage or undervoltage is present in the DC link.

- Overvoltage in the DC link (not relevant to S150).
- Undervoltage in the DC link
- Typical cause:

Failure of the supply voltage or infeed for the DC link.

- Remedy:

Specify a regenerative torque for the rotating drive to compensate the existing losses, thereby stabilizing the voltage in the DC link This process is known as kinetic buffering.
Kinetic buffering is only possible as long as energy is generated by the movement of the drive.

Features

- Vdc control
- This comprises Vdc_max control and Vdc_min control (kinetic buffering), which are independent of each other.
- It includes a joint PI controller. The dynamic factor is used to set Vdc_min and Vdc_max control to a smoother or harder setting independently of each other.
- Vdc_min control (kinetic buffering)
- With this function, the kinetic energy of the motor is used for buffering the DC link voltage in the event of a momentary power failure, thereby delaying the drive.
- The motor is ramped up to its setpoint and continues to operate.
- Vdc_max control (not relevant to S150).

9.3 Drive functions

Description of Vdc_min control (kinetic buffering)

Figure 9-4 Switching Vdc_min control on/off (kinetic buffering)

Note

Kinetic buffering must only be activated in conjunction with an external power supply.

When Vdc_min control is enabled with p1240 $=2$ (p 1280), it is activated if the power fails when the Vdc_min switch-in level (r1246 (r1286)) is undershot. In general, the regenerative power (braking energy) of the drive machine generated when the motor speed is reduced is used to buffer the DC link voltage of the converter; in other words, when Vdc_min control is active, the motor speed no longer follows the main setpoint and can be reduced to zero. The SINAMICS system continues operating until the shutdown threshold of the DC link voltage is undershot (see "Switching Vdc_min control on/off" <1>).

Note

All parameter specifications in parentheses refer to V/f control.

- V/f control

The Vdc_min controller acts on the speed setpoint channel. When Vdc_min control is active, the drive setpoint speed is reduced so that the drive becomes regenerative.

- Speed control

The Vdc_min controller acts on the speed controller output and affects the torquegenerating current setpoint. When Vdc_min control is active, the torque-generating current setpoint is reduced so that the drive becomes regenerative.
If the power fails, the DC link voltage decreases due to the lack of power from the supply system. When the DC link voltage threshold set via parameter p1245 (p1285) is reached, the Vdc_min controller is activated. Due to the PID properties of the controller, the motor speed is reduced to the extent that the regenerative drive energy maintains the DC link voltage at the level set in p1245 (p1285). The kinetic energy of the drive governs the dropout characteristic of the motor speed and, in turn, the buffering duration. In centrifugal mass drives (e.g. fans), buffering can last a few seconds. In drives with a low centrifugal mass (e.g. pumps), however, buffering can last just $100-200 \mathrm{~ms}$. When the power is restored, the Vdc_min controller is deactivated and the drive is ramped up to its setpoint speed at the ramp-function generator ramp. As long as the Vdc_min controller is active, an alarm A7402 (drive: DC link voltage minimum controller active) will be issued.

If the drive can no longer generate any regenerative energy (because, for example, it is almost at a standstill), the DC link voltage continues to drop. If the minimum DC link voltage is undershot (see "Switching Vdc_min control on/off" <1>), the drive will shut down with fault F30003 (power unit: DC link undervoltage).

If a speed threshold set with parameter p1257 (p1297) for active Vdc_min control (see diagram "Switching Vdc_min control on/off" <2>) is undershot, the drive is shut down with F7405 (drive: kinetic buffering minimum speed not reached).

If a shutdown with undervoltage in the DC link (F30003) occurs without the drive coming to a standstill despite the fact that Vdc_min control is active, the controller may have to be optimized via dynamic factor p1247 (p1287). Increasing the dynamic factor in p1247 (p1287) causes the controller to intervene more quickly. The default setting for this parameter, however, should be sufficient for most applications.

Parameter p1256 = 1 (p1296) can be used to activate time monitoring for kinetic buffering. The monitoring time can be set in parameter p1255 (p1295). If buffering (i.e. the power failure) lasts longer than the time set here, the drive is switched off with fault F7406 (drive: kinetic buffering maximum time exceeded). The standard fault reaction for this fault is OFF3, which means that this function can be used for controlled drive deceleration in the event of a power failure. In this case, excess regenerative energy can only be dissipated via an additional braking resistor.

Function diagram

FP 6220 (FP 6320) Vdc_max controller and Vdc_min controller

Parameters

- p1240 (p1280) Vdc controller configuration
- p1245 (p1285) Vdc_min controller switch-in level
- r1246 (r1286) Vdc_min controller switch-in level
- p1247 (p1287) Vdc_min controller dynamic factor
- p1250 (p1290) Vdc controller proportional gain
- p1251 (p1291) Vdc controller integral action time
- p1252 (p1292) Vdc controller derivative-action time
- (p1293) Vdc_min controller output limit (V/f)
- p1255 (p1295) Vdc_min controller time threshold
- p1256 (p1296) Vdc_min controller response
- p1257 (p1297) Vdc_min controller speed threshold
- r1258 (r1298) Vdc controller output

9.3.5 Automatic restart function

Description

The automatic restart function automatically restarts the cabinet unit after an undervoltage or a power failure. The alarms present are acknowledged and the drive is restarted automatically.

The drive can be restarted using:

- The standard procedure starting from standstill, or
- The flying restart function.

For drives with low moments of inertia and load torques facilitating the stopping of the drive within a matter of seconds (e.g., pump drives with water gauges), starting from standstill is recommended.

Note

The flying restart function can also be activated for drives with large moments of inertia (such as fan drives). This enables you to switch to the motor that is still rotating.

[^0]
Automatic restart mode

Table 9-3 Automatic restart mode

p1210	Mode	Meaning
0	Disables automatic restart	Automatic restart inactive
1	Acknowledges all faults without restarting	If p1210 = 1, pending faults will be acknowledged automatically once their cause has been rectified. If further faults occur after faults have been acknowledged, these will also be acknowledged automatically. A minimum time of p1212 + 1 s must expire between successful fault acknowledgement and a fault re-occurring if the signal ON/OFF1 (control word 1, bit 0) is at a HIGH signal level. If the ON/OFF1 signal is set to LOW, the time between when a fault is acknowledged and another one occurs must be at least 1 s. If p1210 = 1, fault F07320 will not be generated if the acknowledge attempt fails (e.g., because the faults occurred too frequently).
4	Automatic restart after power failure, without additional startup attempts	If p1210 $=4$, an automatic restart will only be performed if in addition fault F30003 occurs on the Motor Module or there is a high signal at binector input p1208[1], or in the case of an infeed drive object (A Infeed), F06200 is pending. If additional faults are pending, then these faults will also be acknowledged; if this is successful, the startup attempt will be resumed. The failure of the CU's 24 V power supply will be interpreted as a line supply failure.
6	Restart after fault with additional startup attempts	If p1210 = 6, an automatic restart will be performed after any fault or at p1208[0] = 1. If the faults occur one after the other, then the number of startup attempts is defined using p1211. Monitoring over time can be set using p1213.
14	Restart after power failure after manual acknowledgement	As for p1210 = 4. But pending faults must be acknowledged manually.
16	Restart after fault after manual acknowledgement	As for p1210 = 6. But pending faults must be acknowledged manually.

Startup attempts (p 1211) and waiting time (p 1212)

p1211 is used to specify the number of startup attempts. The number is decremented internally after each successful fault acknowledgement (line supply voltage must be restored or the infeed signals that it is ready). Fault F07320 is output when the number of parameterized startup attempts is reached.

If p1211 = x, x + 1 startup attempts will be made .

Note

A startup attempt starts immediately when the fault occurs.
The faults are acknowledged automatically at intervals of half the waiting time p1212.
Following successful acknowledgement and restoration of the voltage, the system is automatically powered up again.

The startup attempt has been completed successfully once the flying restart and magnetization of the motor (induction motor) has been completed (r0056.4 = 1) and one additional second has expired. The startup counter is not reset to the initial value p1211 until this point.

If additional faults occur between successful acknowledgement and the end of the startup attempt, then the startup counter, when it is acknowledged, is also decremented.

Automatic restart monitoring time (p1213)

- $\mathrm{p} 1213[0]=$ Monitoring time for restart

The monitoring time starts when the faults are detected. If the automatic acknowledgements are not successful, the monitoring time will continue. If the drive has not successfully restarted by the time the monitoring time expires (flying restart and motor magnetization must have been completed: r0056.4 = 1), fault F07320 is output. Monitoring is deactivated by setting p1213 $=0$.
If $p 1213$ is set to a value lower than the sum of $p 1212$, the magnetization time r0346 and the additional delay time due to flying restart, then fault F07320 will be generated on every restart attempt. If, for $\mathrm{p} 1210=1$, the time in p 1213 is set to a value lower than p1212, then fault F07320 will also be generated on every restart attempt. The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged.

For p1210 = 14, 16 manual acknowledgement of the pending fault must take place within the time in p1213 index 0 . Otherwise the fault F07320 is generated after the time set.

- $\mathrm{p} 1213[1]=$ Monitoring time for resetting the starting counter

The starting counter (see r1214) is only reset to starting value p1211 once the time in p1213 index[1] has expired after a successful restart. The delay time is not effective for error acknowledgment without an automatic restart (p1210 = 1). If the power supply fails (blackout), the wait time only starts once the power has been restored and the Control Unit is ramped up. The starting counter is reset to the starting value p1211, if F07320 occurred, the switch-on command is recalled and the fault acknowledged.

If starting value p1211 or mode p1210 is changed, the starting counter is immediately updated.

Set fault number without automatic restart (p 1206)

Up to 10 fault numbers for which the automatic restart should not be effective can be selected via p1206[0...9].

The parameter is only effective if p1210 = 6 and p1210 = 16 .

Parameters

- p1206 [0...9] Set fault number without automatic restart
- p1210 Automatic restart mode
- p1211 Automatic restart, start attempts
- p1212 Automatic restart, delay time start attempts
- p1213 Automatic restart monitoring time
- r1214 Automatic restart status

Settings

To prevent the motor from switching to phase opposition when the drive is being restarted, there is a delay while the motor demagnetizes ($t=2.3 \times$ motor magnetization time constant). Once this time has elapsed, the inverter is enabled and the motor is supplied with power.

9.3.6 Flying restart

Description

The "Flying restart" function (enabled via p1200) allows the converter to switch to a motor that is still rotating. Switching on the converter without the flying restart function would not allow any flux to build up in the motor while it is rotating. Since the motor cannot generate any torque without flux, this can cause it to switch off due to overcurrent (F07801).
The flying restart function first determines the speed of the drive with which V/f or vector control is initialized so that the converter and motor frequency can be synchronized.

During the standard start-up procedure for the converter, the motor must be at a standstill. The converter then accelerates the motor to the setpoint speed. In many cases, however, the motor is not at a standstill.

Two different situations are possible here:

1. The drive rotates as a result of external influences, such as water (pump drives) or air (fan drives). In this case, the drive can also rotate against the direction of rotation.
2. The drive rotates as a result of a previous shutdown (e.g. OFF 2 or a power failure). The drive slowly coasts to a standstill as a result of the kinetic energy stored in the drive train (example: induced-draft fan with a high moment of inertia and a steeply descending load characteristic in the lower speed range).

In accordance with the setting chosen (p1200), the flying restart function is activated in the following situations:

- Once power has been restored and the automatic restart function is active
- After a shutdown with the OFF2 command (pulse inhibit) when the automatic restart function is active
- When the ON command is issued.

Note

The flying restart function must be used when the motor may still be running or is being driven by the load to prevent shutdowns due to overcurrent (F7801).

Note

If the value set for parameter p1203 (search speed factor) is higher, the search curve is flatter and, as a result, the search time is longer. A lower value has the opposite effect.

In motors with a low moment of inertia, the flying restart function can cause the drive to accelerate slightly.
In group drives, the flying restart function should not be activated due to the different coasting properties of the individual motors.

9.3.6.1 Flying restart without encoder

Description

Depending on parameter p1200, the flying restart function is started with the maximum search speed $\mathrm{n}_{\text {search,max }}$ once the de-excitation time (p0347) has elapsed (see diagram "Flying restart").
$n_{\text {Search, } \max }=1.25 \times \mathrm{n}_{\text {max }}(\mathrm{p} 1082)$
The flying restart function behaves differently with V/f control and vector control:

- V/f characteristic (p1300<20):

The search speed yielded from parameter p1203 reduces the search frequency in accordance with the motor current. The parameterizable search current (p 1202) is injected here. If the search frequency is similar to the rotor frequency, a current minimum occurs. Once the frequency has been found, the motor is magnetized. The output voltage during the magnetization time (p 0346) is increased to the voltage value yielded from the V/f characteristic (see "Flying restart").

- Vector control without encoder:

The motor speed is determined using the speed adaptation control loop for the electric motor model. To begin with, the search current (p1202) is injected and then the controller is activated starting from the maximum search frequency. The dynamic response of the controller can be altered using the search speed factor (p1203). If the deviation of the speed adaptation controller is not too great, the motor continues to be magnetized for the duration parameterized in p 0346.

Once the excitation build-up time (p0346) has elapsed, the ramp-function generator is set to the actual speed value and the motor ramped up to the current setpoint frequency.

Figure 9-5 Flying restart

WARNING

When the flying restart (p 1200) function is active, the drive may still be accelerated by the detection current despite the fact that it is at standstill and the setpoint is 0 !

For this reason, entering the area around the drive when it is in this condition can cause death, serious injury, or considerable material damage.

Flying restart without encoder for long cables

In the case of long motor cables, the procedure described above can lead to problems during a flying restart. In such cases, the following settings can improve the flying restart function:

- Enter the cable resistance in parameter p0352 before motor data identification.
- Set the parameter p1203 to at least 300%. With this setting, flying restart takes longer than for values below 300\%.

Note

To optimize the flying restart, a trace recording should be used to check the function. If necessary, you can improve the result by making settings for parameters p1202 and p1203.

9.3.6.2 Flying restart with encoder

Description

The flying restart function behaves differently with V/f control and vector control:

- V/f characteristic (p1300<20):

Flying restart without encoder (see "Flying restart without encoder")

- Vector control with encoder:

Since the speed is known from the start, the motor can be magnetized immediately at the appropriate frequency. The duration of magnetization is specified in p0346. Once the excitation build-up time has elapsed, the ramp-function generator is set to the actual speed value and the motor ramped up to the current setpoint speed.

[^1]
9.3.6.3 Parameters

- p0352 Cable resistance
- p1200 Flying restart operating mode
- 0 : Flying restart inactive
- 1: Flying restart always active (start in setpoint direction)
- 2: Flying restart active after On, error, OFF2 (start in setpoint direction)
- 3: Flying restart active after error, OFF2 (start in setpoint direction)
- 4: Flying restart always active (start only in setpoint direction)
- 5: Flying restart active after On, error, OFF2 (start only in setpoint direction)
- 6: Flying restart active after error, OFF2 (start only in setpoint direction)
- p1202 Flying restart search current
- p1203 Flying restart search speed factor
- r1204 Flying restart, V/f control status
- r1205 Flying restart, vector control status

Note

For p1200 $=1,2,3$, the following applies: Search in both directions, start only in the setpoint direction.

For p1200 $=4,5,6$, the following applies: Search only in the setpoint direction.

9.3.7 Motor changeover/selection

9.3.7.1 Description

The motor data set changeover is, for example, used for:

- Changing over between different motors
- Motor data adaptation

Note

To switch to a rotating motor, the "flying restart" function must be activated.

9.3.7.2 Example of changing over between two motors

Prerequisites

- The drive has been commissioned for the first time.
- 2 motor data sets (MDS), p0130 = 2
- 2 drive data sets (DDS), p0180 = 2
- 2 digital outputs to control the auxiliary contactors
- 2 digital inputs to monitor the auxiliary contactors
- 1 digital input to select the data set
- 2 auxiliary contactors with auxiliary contacts (1 NO contact)
- 2 motor contactors with positively-driven auxiliary contacts (1 NC contact, 1 NO contact)

Figure 9-6 Example of motor changeover
9.3 Drive functions

Table 9-4 Settings for motor changeover (example)

Parameters	Settings	
p0130	2	Configure 2 MDS
p0180	2	Configure 2 DDS
p0186[0..1]	0,1	The MDS are assigned to the DDS.
p0820	Digital input, DDS selection	The digital input to change over the motor is selected via the DDS. Binary coding is used (p0820 $=$ bit 0, etc.).
p0821 to p0824	0	Different numbers mean different thermal models.
p0826[0..1]	1,2	Assign the bit from r0830 to the MDS. If p0827[0] = 0, for example, bit r0830.0 is set via DDS0 when MDS0 is selected.
p0827[0..1]	0,1	The digital outputs for the auxiliary contactors are assigned to the bits.
r0830.0 and r0830.1	Digital outputs, auxiliary contactors	Digital inputs, auxiliary contacts
p0831[0..1]	The digital inputs for the feedback signal of the motor contactors are assigned.	
p0833.00 and .01	0,0	The drive controls the contactor circuit and pulse inhibition.

Motor changeover sequence

1. Start condition:

For synchronous motors, the actual speed must be lower than the speed at the start of field weakening. This prevents the regenerative voltage from exceeding the terminal voltage.
2. Pulse suppression:

The pulses are suppressed following the selection of a new drive data set using p0820 to p0824.
3. Open motor contactor:

Motor contactor 1 is opened $(\mathrm{rO830}=0)$ and the status bit "Motor changeover active" (r0835.0) is set.
4. Change over drive data set:

The requested data set is activated (r0051 = data set currently effective, r0837 = requested data set).
5. Energize motor contactor:

After the feedback signal (motor contactor opened) from motor contactor 1, the appropriate bit of r 0830 is set and motor contactor 2 is energized.
6. Enable pulses:

After the feedback signal (motor contactor closed) from motor contactor 2, the bit "motor data set changeover active" (r0835.0) is reset and the pulses are enabled. The motor has now been changed over.

9.3.7.3 Function diagram

FP 8565 Drive Data Set (DDS)
FP 8575 Motor Data Sets (MDS)

9.3.7.4 Parameters

- r0051 Drive data set DDS effective
- p0130 Motor data sets (MDS) number
- p0180 Drive data set (DDS) number
- p0186 Motor data sets (MDS) number
- p0819[0...2] Copy drive data set DDS
- p0820 BI: Drive data set selection DDS, bit 0
- p0821 BI: Drive data set selection DDS, bit 1
- p0822 BI: Drive data set selection DDS, bit 2
- p0823 BI: Drive data set selection DDS, bit 3
- p0824 BI: Drive data set selection DDS, bit 4
- p0826 Motor changeover, motor number
- p0827 Motor changeover status word bit number
- p0828 Motor changeover, feedback signal
- r0830 Motor changeover, status
- p0831 Motor changeover, contactor feedback signal
- p0833 Data set changeover configuration

9.3.8 Friction characteristic curve

Description

The friction characteristic is used to compensate for the frictional torque of the motor and driven load. A friction characteristic allows the speed controller to be pre-controlled and improves the control response..

10 points along the characteristic are used for the friction characteristic. The coordinates of every interpolation point are defined by a speed parameter ($p 382 x$) and a torque parameter (p383x) (point $1=$ p3820 and p3830).

Features

- There are 10 points along the characteristic to represent the friction characteristic.
- An automatic function supports the friction characteristic plot.
- A connector output (r3841) can be interconnected as friction torque (p1569).
- The friction characteristic can be activated and de-activated (p3842).

Commissioning

Speeds for making measurements as a function of the maximum speed p1082 are preassigned in p382x when commissioning the drive system for the first time. These can be appropriately changed corresponding to the actual requirements.

The automatic friction characteristic plot can be activated using p3845. The characteristic is then plotted the next time that it is enabled.

The following settings are possible:

- p3845 = 0 Friction characteristic plot de-activated
- p3845 = 1 Friction characteristic plot activated, all directions

The friction characteristic is plotted in both directions of rotation. The result of the positive and negative measurement is averaged and entered into p383x.

- p3845 $=2 \quad$ Friction characteristic plot activated, positive direction
- p3845 $=3$ Friction characteristic plot activated, negative direction
p3847 (friction characteristic plot warm-up period) can be used to set a time for the drive to warm up to the specified operating temperature. During this time, the drive is brought up to and kept at the greatest speed set for plotting the friction characteristic, so that the drive warms up to the operating temperature. Then measurement is started with the highest speed.

1 DANGER

When the friction characteristic is plotted, the drive can cause the motor to move. As a result, the motor may reach maximum speed.

When commissioning the drive, the EMERGENCY STOP functions must function perfectly. To protect the machines and personnel, the relevant safety regulations must be observed.

Function diagram

FP $7010 \quad$ Friction characteristic curve

Parameter

- p3820 Friction characteristic, value n0
- ...
- p3839 Friction characteristic, value M9
- r3840 Friction characteristic status word
- r3841 Friction characteristic, output
- p3842 Activate friction characteristic
- p3845 Activate friction characteristic plot
- p3846 Friction characteristic plot ramp-up/ramp-down time
- p3847 Friction characteristic plot warm-up period

9.3.9 Armature short-circuit braking, internal voltage protection, DC braking

9.3.9.1 General

The "External armature short-circuit" function for permanent-magnet synchronous motors initiates an external contactor which short-circuits the motor via resistors when the pulses are canceled. This reduces the kinetic energy of the motor.

The "Internal armature short-circuit braking" function for permanent-magnet synchronous motors short-circuits a half-bridge in the power unit to control the motor power consumption, thus braking the motor.

The "Internal voltage protection" function for permanent-magnet synchronous motors protects the DC link capacitors when the pulses are cancelled by short-circuiting a halfbridge in the power unit.

The "DC braking" function for induction motors injects direct current into the motor, thus braking the motor.

9.3.9.2 External armature short-circuit braking

Description

External armature short-circuit braking is only available for synchronous motors. It is mainly required when braking in a hazardous situation, if controlled braking using the drive converter is no longer possible, (e.g. in the case of power failure, EMERGENCY OFF etc.) or if no regenerative infeed is used. In this case, the motor stator windings are short-circuited via external braking resistors. This means that an additional resistance is inserted in the motor circuit that supports reducing the kinetic energy of the motor.
The external armature short-circuit is activated via p1231 = 1 (with contactor feedback signal) or p1231 $=2$ (without contactor feedback signal). It is initiated when the pulses are canceled.

This function controls an external contactor via output terminals, which then short-circuits the motor through resistors when the pulses are canceled.
A permanent-magnet synchronous motor ($\mathrm{p} 0300=2 \mathrm{xx}$) is required in order to use the external armature short-circuit.

CAUTION

Only short-circuit proof motors may be used, or suitable resistances must be used for shortcircuiting the motor.

Note

In case of incorrect parameterization (e.g. induction motor and external armature short-circuit selected), the fault F07906 "Armature short-circuit / internal voltage protection: parameterization error" is generated.

Function diagram

FP $7014 \quad$ Technology functions - External armature short circuit

Parameters

- p0300: Mot type selection
- p1230 BI: Armature short-circuit/DC brake activation
- p1231 Armature short-circuit/DC brake configuration
- 1: External armature short-circuit with contactor feedback signal
- 2: External armature short-circuit without contactor feedback signal
- p1235 BI: External armature short-circuit, contactor feedback signal
- p1236 External armature short-circuit, contactor feedback signal monitoring time
- p1237 External armature short-circuit, delay time when opening
- r1238 CO: External armature short-circuit state
- r1239 CO/BO: Armature short-circuit / DC brake status word

9.3.9.3 Internal armature short-circuit braking

Description

Internal armature short-circuit braking is only available for synchronous motors. It is mainly required when braking in a hazardous situation, if controlled braking using the drive converter is no longer possible, (e.g. in the case of power failure, EMERGENCY OFF etc.) or if no regenerative infeed is used. In this case, the motor stator windings are short-circuited via a half-bridge in the power unit. This means that an additional resistance is inserted in the motor circuit that supports reducing the kinetic energy of the motor.

The internal armature short-circuit is configured p1231 = 4 and activated via p1230. It is initiated when the pulses are canceled.

A permanent-magnet synchronous motor $(p 0300=2 x x)$ is required in order to use the internal armature short-circuit.

danger

When the armature short-circuit is active, after the pulses have been cancelled all the motor terminals are at half the DC-link potential.

CAUTION

Only short-circuit proof motors may be used.
The Power Module / Motor Module must be designed to handle 1.8 times the short-circuit current of the motor.

Function diagram

FP 7016 Technology functions - Internal armature short circuit

Parameters

- p0300: Mot type selection
- p1230 BI: Armature short-circuit/DC brake activation
- p1231 Armature short-circuit/DC brake configuration
- 4: Internal armature short-circuit/DC brake
- r1239 CO/BO: Armature short-circuit / DC brake status word

9.3.9.4 Internal voltage protection

Description

The internal voltage protection prevents the DC link capacitance from being loaded into a field weakening operated motor if the energy regeneration capability from the source voltage is missing.
Depending on the DC link voltage, the Power Module / Motor Module automatically decides whether the armature short-circuit is to be engaged. In this case, the protection remains operative even if the DRIVE-CLiQ connection between the Control Unit and the Power Module / Motor Module is interrupted.

The internal armature short-circuit is configured and activated via p1231 = 3 and activated when a device-specific DC link voltage threshold is reached. It is initiated when the pulses are canceled.

A permanent-magnet synchronous motor $(p 0300=2 x x)$ is required in order to use the internal voltage protection.

DANGER

When the internal voltage protection is active, after the pulses have been cancelled all the motor terminals are at half the DC-link potential.

CAUTION

Only short-circuit proof motors may be used.
The Power Module / Motor Module must be designed to handle 1.8 times the short-circuit current of the motor.

The internal voltage protection function cannot be interrupted by a fault response. If an overcurrent occurs while internal voltage protection is active, the Power Module / Motor Module and/or the motor may sustain irreparable damage!

With the internal voltage protection active, the motor must not be powered by an external source for an extended period of time (e.g. by pulling loads or another coupled motor).

Note

In case of incorrect parameterization (e.g. induction motor and internal voltage protection selected), the fault F07906 "Armature short-circuit / internal voltage protection: parameterization error" is generated.

Parameters

- p0300: Mot type selection
- p1231 Armature short-circuit/DC brake configuration
- 3: Internal voltage protection

9.3.9.5 DC braking

Description

DC braking is only supported for induction motors. It is mainly required when braking in a hazardous situation, if controlled braking using the drive converter is no longer possible, (e.g. in the case of power failure, EMERGENCY OFF etc.) or if no regenerative infeed is used. .

The DC brake is activated via p1231 = 4 or via p1231 = 14. It can be triggered via an input signal p1230 (signal $=1$) or a fault response.

Activation of the DC brake via input signal

p1231 = 4
If the DC brake is activated by the digital input signal, the first step is that the pulses are blocked for the demagnetization time (p0347) of the motor in order to demagnetize the motor - the parameter p1234 (Speed at the start of DC braking) is ignored.

Then the braking current (p 1232) is applied as long as the input is initiated in order to brake the motor or hold it at standstill.

$$
\text { p1231 = } 14
$$

The DC brake is released, if during operation a 1 -signal is pending at the binector input p1230 and the actual speed is below the starting speed (p1234).

After the preceding demagnetization (p0347) of the motor for the period set in p1233, the braking current p1232 is applied and subsequently switched off automatically.

Cancellation of the input signal for DC braking

If the DC brake is removed, the drive returns to its selected operating mode.
The following applies:

- With vector control (closed-loop controlled with or without encoder):

The drive is synchronized with the motor frequency if the "Flying restart" function is activated, and then returns to closed-loop controlled mode. If the "Flying restart" function is not active, the drive can only be restarted from standstill without overcurrent fault.

- In V/f mode:

With the "Flying restart" function activated, the converter frequency is synchronized with the motor frequency, and the drive will then return to V/f mode. If the "Flying restart" function is not activated, the drive can only be restarted from standstill without overcurrent fault.

DC brake as a fault response

If the DC brake is activated as a fault response, the motor is initially braked in field-oriented mode along the braking ramp up to the threshold set in p1234 (DC brake starting speed). The slope of the ramp is identical with that of the OFF1 ramp (parameterized using p1082, p1121). Subsequently, the pulses are disabled for the period in p0347 (demagnetizing time) in order to demagnetize the motor. The DC braking will start for the duration set in p1233 (DC braking period).

- If an encoder is present, braking will continue until the speed drops to below standstill threshold p1226.
- If no encoder is present, only the period in p1233 is effective.

Function diagram

FP 7017 Technology functions - DC braking

Parameters

- p0300: Mot type selection
- p1226 Standstill recognition speed threshold
- p1230 BI: Armature short-circuit/DC brake activation
- p1231 Armature short-circuit/DC brake configuration
- 4: Internal armature short-circuit/DC brake
- 14: DC braking under starting speed
- p1232 DC braking braking current
- p1233 DC braking period
- p1234 DC braking start speed
- r1239 CO/BO: Armature short-circuit / DC brake status word
- p1345 I_max voltage controller proportional gain
- p1346 I_max voltage controller integral time

9.3.10 Increasing the output frequency

In applications that require higher output frequencies, the pulse frequency of the converter may have to be increased.
It may also be necessary to change the pulse frequency to prevent resonances from occurring.

Since increasing the pulse frequency also increases the switching losses, a derating factor for the output current must be taken into account when the drive is configured.

Once the pulse frequency has been increased, the new output currents are automatically included in the calculation for power unit protection.

Note

Use of a sine-wave filter (option L15) must be selected using p0230 $=3$ when commissioning. This setting fixes the pulse frequency to 4 kHz or 2.5 kHz and it cannot be changed.

The following maximum output frequencies can be achieved with the default pulse frequencies listed below.

Table 9-5 Maximum output frequency with default pulse frequency

Converter rating $[\mathrm{kW}]$	Default pulse frequency $[\mathrm{kHz}]$	Maximum output frequency $[\mathrm{Hz}]$
Line voltage $380-480 \mathrm{~V} 3 \mathrm{AC}$		
$110-250$	2	160
$315-800$	1,25	100
$75-1200$	Line voltage $500-690 \mathrm{~V} 3 \mathrm{AC}$	
1,25		

The pulse frequencies set in the factory are also the minimum frequencies.
The scanning times for the inputs and outputs of the customer terminal block TM31 are set in the factory to $4000 \mu \mathrm{~s}$. This is also the minimum limit.

9.3.10.1 Increasing the pulse frequency

Description

The pulse frequency can be increased in a virtually continuously variable manner to between the value preassigned in the factory and the maximum pulse frequency which can be set.

Procedure

1. Parameter p0009 on the Control Unit must be set to 3 "Basic drive configuration".
2. Parameter p0112 "Sampling times default setting p0115" of the DO VECTOR must be set to 0 "Expert".
3. Use p0113 to enter any pulse frequency between 1 kHz and 2 kHz . If a higher pulse frequency is to be set (e.g. 2.2 kHz), this value must be divided by 2 or by 4 to obtain a result between 1 kHz and 2 kHz (e.g. 2.2 kHz divided by 2 is 1.1 kHz).
4. Not all pulse frequencies are accepted in parameter p0113; in such cases, the alarm "Impermissible value" is output.
5. If the frequency entered in parameter p0113 is not accepted, parameter r0114[0] recommends a different frequency that can deviate from the entered pulse frequency by several Hertz. This frequency should be entered in p0113.
6. After entering the frequency in p0113, parameter p0009 on the Control Unit must be set to 0 "Ready" again.
7. The Control Unit re-initializes. After booting, the pulse frequencies recommended in r0114[i] ($\mathrm{i}=1,2, \ldots$) can be entered in parameter p1800 "Pulse frequency" of the DO VECTOR.

NOTICE

The pulse frequency entered in p1800 must correspond precisely to the value given in r0114[i]; otherwise, the entry will be rejected.

Maximum output frequencies achieved by increasing the pulse frequency

By multiplying the basis pulse frequency (with integers), the following output frequencies can be achieved (taking into account the derating factors):

Table 9-6 Maximum output frequency achieved by increasing the pulse frequency

Pulse frequency $[\mathrm{kHz}]$	Maximum output frequency $[\mathrm{Hz}]$
1,25	100
2	160
2,5	200
4	$300^{1)}$
5	$300^{1)}$

1) The maximum output frequency is limited to 300 Hz due to the closed-loop control.

9.3.10.2 Parameters

- p0009 Device commissioning parameter filter
- p0112 Sampling times pre-setting p0115
- p0113 Selects the minimum pulse frequency
- p0115 Sampling times
- p1800 Pulse frequency

9.3.11 Pulse frequency wobbling

Description

Pulse frequency wobbling is when the pulse frequency is varied slightly according to a statistical process. The average pulse frequency value is still the value set; the statistical variation of the instantaneous value results in a modified noise spectrum.

This procedure reduces the subjectively noticeable motor noise, especially for the relatively low pulse frequencies set in the factory.

Pulse frequency wobbling is activated with p1810.2 = 1. The amplitude of the static wobbling signal can be set in the range from 0\% to 20% via p1811.

Restrictions

- Pulse frequency wobbling can only be activated under the following conditions (p1810.2 = 1):
- The drive is pulse suppressed.
- p1800 < $2 \times 1000 / p 0115[0]$
- p1811 (Pulse frequency wobbling amplitude) can only be set under the following conditions:
- p1802.2 = 1
- p0230 (output filter) < 3 (no sine-wave filter)
- When pulse frequency wobbling is activated and impulses are enabled, the maximum pulse frequency (p 1800) can be set as follows:
- For $\mathrm{p} 1811=0: \mathrm{p} 1800 \leq 2 \times 1000 / p 0115[0]$
- For p1811 > 0: p1800 $\leq 1000 / p 0115[0]$
- When pulse frequency wobbling is activated and impulses are enabled, if the maximum pulse frequency (p 1800) is set to be greater than $1000 / \mathrm{p} 0115[0]$, then p 1811 is set to 0 .
- When pulse frequency wobbling is activated and impulses are suppressed, if the maximum pulse frequency (p 1800) is set to be greater than $2 \times 1000 / \mathrm{p} 0115[0]$, then p1811 and p1810.2 are set to 0.

Note

If pulse frequency wobbling is deactivated ($\mathrm{p} 1810.2=0$) , then all the indices of parameter p1811 are set to 0 .

Parameters

- p1800 Pulse frequency setpoint
- p1810.2 Wobbling activated
- p1811[D] Pulse frequency wobbling amplitude

9.3.12 Runtime (operating hours counter)

Total system runtime

The entire system runtime is displayed in r2114 (Control Unit); it is made up of $r 2114[0$] (milliseconds) and r2114[1] (days).
Index 0 indicates the system runtime in milliseconds; after reaching 86.400 .000 ms (24 hours), the value is reset. Index 1 indicates the system runtime in days.

The value is saved when the system is switched off.
Once the drive unit has been switched on, the counter continues to run with the value that was saved the last time the drive was switched off.

Relative system runtime

The relative system runtime since the last POWER ON is displayed in p0969 (Control Unit). The value is indicated in milliseconds and the counter overflows after 49 days.

Actual motor operating hours

The motor operating hours counter p0650 (drive) resumes when the pulses are enabled. When the pulse enable is withdrawn, the counter is stopped and the value saved.

To store the value, you need a CONTROL UNIT with order number 6SL3040-....-OAA1 and version C or higher.
The counter is deactivated with p0651 $=0$.
If the maintenance interval set in p0651 is reached, alarm A01590 is triggered. Once the motor has been maintained, the maintenance interval must be reset.

Operating hours counter for the fan

The operating hours of the fan in the power unit are displayed in p 0251 (drive).
The number of hours operated can only be reset to 0 in this parameter (e.g. after a fan has been replaced).

The service life of the fan is entered in p0252 (drive).
Alarm A30042 (service life of the fan reached or exceeded) is output when this figure is reached, and also 500 hours beforehand. Evaluation of the fault value in the alarm provides details of the cause of the alarm.

Monitoring is deactivated with p0252 $=0$.

9.3.13 Simulation operation

Description

The simulation function is predominantly used to simulate the drive without a motor being connected and without a DC link voltage. In this case, it should be noted that the simulation mode can only be activated under an actual DC link voltage of 40 V . If the voltage lies above this threshold, the simulation mode is reset, and a fault message F07826 is issued.
Communications with a higher-level automation system can be tested using the simulation mode. If the drive is also to return actual values, note that it must be switched over to encoderless operation during simulation mode. This means that large parts of the SINAMICS software (e.g., software channel, sequence control, communications, technology function, etc.) can be tested in advance without requiring a motor.

Another application is to test the correct functioning of the Power Module. Especially for drive units with higher power ratings $75 \mathrm{~kW}(690 \mathrm{~V})$ and $110 \mathrm{~kW}(400 \mathrm{~V})$, after repairs, it is necessary to test the gating of the power semiconductors. This is done by injecting a low DC voltage as DC link voltage (e.g. 12 V). The drive unit is then powered-up and the pulses enabled. It must be possible to run through all of the pulse patterns of the gating unit software.

This means that the software must allow the pulses to be switched-in and various frequencies approached. If a speed encoder is not being used, then this is generally implemented using V/f control or sensorless closed-loop speed control.

Note

The following functions are de-activated in the simulation mode:

- Motor data identification
- Motor data identification, rotating without encoder
- Pole position identification

No flying restart is carried-out for V / f control and sensorless closed-loop vector control.

Commissioning

Simulation is activated using p1272 = 1; the following pre-requisites must be fulfilled:

- The drive unit must have been commissioned for the first time (default: Standard induction motors).
- The DC link voltage must lie below 40 V (observe the tolerance of the DC link voltage sensing).
Alarm A07825 (simulation mode activated) must be output during simulation operation.

Parameters

- p1272 Simulation operation

9.3.14 Direction reversal

Description

The direction of rotation of the motor can be reversed using direction reversal via p1821 without having to change the motor rotating field by interchanging two phases on the motor and inverting the encoder signals using p0410.

Reversal via p1821 can be detected from the motor direction of rotation. The speed setpoint and actual value, torque setpoint and actual value remain unchanged, as does the relative position change.
A pulse inhibit must be set prior to attempting reversal.
Reversing can be set differently for each drive data set.

Note

When changing over the drive data set to differently set reversing and with pulse approval, fault F7434 is issued.

Reversing can be observed by checking parameters r0069 (phase currents) and r0089 (phase voltage). The absolute position reference is lost on reversal.

Function diagram

FD 4704, 4715 Encoder evaluation
FD 6730, 6731 Current control

Parameters

- r0069 Phase currents actual value
- r0089 Phase voltage actual value
- p1820 Reverse output phase sequence
- p1821 Direction of rotation

9.3.15 Unit changeover

Description

Parameters and process variables for input and output can be switched to a suitable units system (SI units, US units or referenced variables (\%)) with the help of the unit changeover function.

The following constraints apply to the unit changeover:

- Unit changeover is only possible for the "VECTOR" and "A_INF" drive object.
- Parameters of the rating plate of the drive converter or the motor rating plate can be changed over between SI/US units; however, a per unit representation is not possible.
- Once the changeover parameter has been changed, all parameters that are assigned to a unit group depending on this parameter are jointly changed over to the new unit.
- A separate parameter is available for selecting technological units (p0595) for the representation of technological variables in the technology controller.
- If a changeover is made to referenced variables and the reference variable is subsequently changed, the \% value entered in a parameter will not change.
Example:
- A fixed speed of 80% corresponds, for a reference speed of 1500 rpm , to a value of 1200 rpm .
- If the reference speed is changed to 3000 rpm , the value of 80% is retained and is now 2400 rpm .

Restrictions

- When a unit changeover occurs, rounding to the decimal places is carried out. This can mean that the original value might change by up to one decimal place.
- If a referenced form is selected and the reference parameters (e.g. p2000) are changed retrospectively, the physical significance of some of the control parameters is also adjusted, which can affect the control behavior.
- If the reference variables (p2000 to p2007) are changed in the offline mode in STARTER, there is a risk that the parameter value ranges will be violated. In this case, appropriate fault messages will be displayed when the parameters are loaded to the drive unit.

Changing over the units

The units can be changed over via the AOP30 and via STARTER.

- Unit changeover via AOP30 is always carried out immediately. Once the corresponding parameters have been changed, the values affected are displayed in the new selected unit.
- If STARTER is used, unit changeover can only take place in offline mode in the configuration screen of the corresponding drive object. The new units are not displayed until after the download ("Load project to target system") and subsequent upload ("Load project to PG") have been completed.

Unit groups

Each parameter that can be switched is assigned to a unit group which can be switched within certain limits depending on the group.

This assignment and the units groups for each parameter appear in the parameter list in the SINAMICS List Manual.

The unit groups can be individually switched using 4 parameters (p0100, p0349, p0505 and p0595).

Parameters

- p0010 Commissioning parameter filter
- p0100 IEC/NEMA mot stds
- p0349 Selection of units system, motor equivalent circuit diagram data
- p0505 Selection of units system
- p0595 Selection of technological unit
- p0596 Reference variable of technological unit
- p2000 Reference frequency/speed
- p2001 Reference voltage
- p2002 Reference current
- p2003 Reference torque
- p2004 Reference power
- p2005 Reference angle
- p2007 Reference acceleration

9.3.16 Derating behavior at increased pulse frequency

Description

To reduce motor noise or to increase output frequency, the pulse frequency can be increased relative to the factory setting.

The increase in the pulse frequency normally results in a reduction of the maximum output current (see "Technical data/current derating depending on the pulse frequency").

When commissioning the converter the behavior at overload is adjusted in such a manner that the pulse frequency is variably reduced so that the required power can be obtained.

Characteristics:

- The reaction to overload depends on the setting of parameter p0290:
- p0290 = 0: Reduce output current or output frequency
- p0290 = 1: No reduction, shutdown when overload threshold is reached
- $\mathrm{p} 0290=2$: Reduce the output current or output and pulse frequency (not using $\mathrm{I}^{2} \mathrm{t}$).
- p0290 = 3: Reduce the pulse frequency (not using $\mathrm{I}^{2 \mathrm{t}}$)
- For p0290 = 2 at overload first reduce the pulse frequency (and consequently the output frequency) until it has dropped to rated pulse frequency, then reduce the output frequency if overload continues to persist.
The rated pulse frequency is half the inverse value of the current controller clock cycle: $0.5 \times 1 / p 0115[0]$.
- Reduction of the pulse frequency is executed in whole multiples based on the rated pulse frequency (5 kHz -> $2.5 \mathrm{kHz}->1.25 \mathrm{kHz}$ or $4 \mathrm{kHz}->2 \mathrm{kHz}$).
- After entering the maximum speed in p1082 the system automatically calculates whether the pulse frequency is sufficient for the entered maximum speed, if necessary the pulse frequency is increased automatically to a value that is necessary for this.
At overload, then also for $\mathrm{p} 0290=2$ or 3 , this new pulse frequency will no longer be underranged, the downstream reaction (reduce output voltage or switch off) will be triggered.

Exceptions:

- With an activated sinus filter ($\mathrm{p} 0230=3,4$), this behavior is not permitted because the factory set pulse frequency (2.5 kHz or 4 kHz) should not be changed through this measure. Consequently in this case the selection possibility for the parameter p0290 is limited to "0" and "1".

Activation of the variable pulse frequency

At commissioning the parameter p 0290 is automatically set to the value " 2 ". This activates pulse frequency reduction at overload.

Deactivation of the variable pulse frequency

By changing the parameter p0290 to " 0 " or " 1 " the variable pulse frequency is deactivated.

Function diagram

FP 8014 Signals and monitoring functions - thermal monitoring power unit

Parameter

- r0036 Power unit overload I2t
- r0037 CO: Power unit temperatures
- p0115 Sampling times for internal control loops
- p0230 Drive filter type, motor side
- p0290 Power unit overload response
- p1082 Maximum speed
- r2135.13 Fault thermal overload power unit
- r2135.15 Thermal overload in power unit alarm

9.3.17 Simple brake control

Description

The "Simple brake control" is used exclusively for the control of holding brakes. The holding brake is used to secure drives against unwanted motion when deactivated.

The control command for releasing and applying the holding brake is transmitted directly to the converter via DRIVE-CLiQ from the control unit, which logically combines the signals with the system-internal processes and monitors these signals.
The converter then performs the action and controls the output for the holding brake appropriately.
The operating principle of the holding brake can be configured using parameter p1215.

Figure 9-7 Sequence diagram, simple brake control
The start of the closing time for the brake depends on the expiration of the shorter of the two times p1227 (standstill detection monitoring time) and p1228 (pulse cancellation delay time).

WARNING

The holding brake must not be used as a service brake.
When holding brakes are used, the special technological and machine-specific conditions and standards for ensuring personnel and machine safety must be observed.

The risks involved must also be evaluated, such as risks associated with suspended axes.

Features

- Automatic activation by means of sequence control
- Standstill (zero-speed) monitoring
- Forced brake release (p0855, p1215)
- Application of brake for a 1 signal "unconditionally close holding brake" (p0858)
- Application of brake after "Enable speed controller" signal has been canceled (p0856)

Signal connections

The holding brake is controlled using free digital outputs on the Control Unit or the TM31 (for option G60). If necessary, control must be realized by means of a relay to connect a holding brake with higher voltage or with higher power demand.

For this, parameter p1215 must be set to " 3 " (motor holding brake the same as sequence control, connection via BICO) and the appropriate BICO parameters of the selected digital outputs must be interconnected.

Commissioning

If p1215 is set to " 0 " (no brake available) during initial commissioning and a connected brake is recognized, simple brake control is activated automatically (p1215=1). In this case, fault F07935 "Motor holding brake detected" appears and must be acknowledged.

CAUTION

If parameter p1215 is set to "0" (no brake available) when a brake is actually present, the drive operates against applied brake. This can destroy the brake.

Notes on setting the release (opening) time (p1216):

- The release time (p1216) should be set longer than the actual release time of the holding brake. As a result, the drive will not accelerate when the brake is closed.

Notes for setting the closing time (p1217):

- The closing time (p 1217) should be set longer than the actual closing time of the holding brake. As a result, the pulses are suppressed only after the holding brake is closed.
- If the closing time (p 1217) is set too low compared to the actual closing time of the holding brake, the load may drop suddenly.
- If the closing time (p 1217) is set too high compared to the actual closing time of the holding brake, the controller acts against the holding brake and thus reduces its service life.

Function diagram

FP $2701 \quad$ Simple brake control (r0108.14 = 0)

Parameter

- r0056.4 Magnetizing completed
- r0060 CO: Speed setpoint before the setpoint filter
- r0063[0...2] CO: Speed actual value
- r0108.14 Extended brake control
- p0855[C] BI: Unconditionally release holding brake
- p0856 BI: Speed controller enabled
- p0858 BI: Unconditionally apply holding brake
- r0899.12 BO: Holding brake open
- r0899.13 BO: Command, close holding brake
- p1215 Motor holding brake configuration
- p1216 Motor holding brake release time
- p1217 Motor holding brake closing time
- p1226 Threshold for standstill detection
- p1227 Standstill detection monitoring time
- p1228 Pulse suppression delay time
- p1278 Brake control diagnostic evaluation

9.3.18 Energy saving indicator for pumps, fans, and compressors

Function of the energy savings indicator

This function determines the amount of energy used by pumps, fans, and compressors and compares it with the interpolated energy requirement for similar equipment controlled using conventional throttle control.
The amount of energy saved is calculated over the last 100 operating hours and is displayed in kWh . For an operating time of less than 100 hours, the potential energy-saving is interpolated up to 100 operating hours.
The pump, fan, or compressor characteristic with the conventional throttle control is specified using 5 adjustable interpolation points.

Background

In a conventionally controlled pump, fan or compressor, the flow rate of the medium is controlled using valves or throttles. In so doing, the machine runs constantly at the rated speed. The system efficiency decreases significantly if the flow rate is reduced by means of valves or throttles. The pressure in the system increases. The motor even consumes energy when the valves or throttles are completely closed, i.e., with flow rate $Q=0$. In addition, undesirable process-related situations can occur; for example, cavitation in the pumps, fans, and compressors or increased temperature rise of pumps, fans, and compressors and the medium.

As a result of variable speed operation, a drive operating under partial load conditions consumes considerably less energy than with conventional process control using valves or throttles. This applies in particular for pumps, fans, and compressors with parabolic load characteristics. With SINAMICS, a closed-loop control of the flow rate or pressure is achieved by employing closed-loop speed control of the pump, fan or compressor. As a consequence, the plant or system is controlled close to its maximum efficiency over the complete operating range.

In comparison to pumps, fans, and compressors, machines with linear or constant load characteristic (e.g. conveyor drives or positive displacement pumps) have lower potential savings.

Energy saving by using a variable speed drive

When a variable speed drive is used, the flow rate of the pump, fan, or compressor is controlled as a function of speed. The flow rate changes proportionally with the speed of the continuous-flow machine. Any existing valve or throttle remains open. Therefore, the equipment works close to optimum efficiency and consumes considerably less energy, particularly in the partial load range, than equipment controlled by means of valves or throttles.
9.3 Drive functions

Figure 9-8 Potential for energy savings

Legend for top characteristic:

$\mathrm{H}[\%]=$ Head, $\mathrm{P}[\%]=$ Flow pressure, $\mathrm{Q}[\%]=$ Flow rate, $\mathrm{V}[\%]$ = Volumetric flow
Legend for bottom characteristic:
$\mathrm{P}[\%]=$ Power drawn by the conveyor motor, $\mathrm{n}[\%]=$ Speed of conveyor motor Interpolation points p3320 to p3329 for system characteristic with $n=100 \%$:
$\mathrm{P} 1 \ldots \mathrm{P} 5=$ Power drawn, n1...n5 = Speed in accordance with variable speed motor

Adapting the pump, fan, or compressor characteristic

The 5 interpolation points of the pump, fan, or compressor characteristic are entered using parameters p3320-p3329. This characteristic can be configured individually for each drive data set.

Table 9-7 Interpolation points of the pump, fan, or compressor characteristic

Interpolation point	Parameter	Factory setting: P: Power in \% n : Speed in \%
1	p3320	P1 $=25.00$
	p3321	$\mathrm{n} 1=0.00$
2	p3322	$\mathrm{P} 2=50.00$
	p3323	$\mathrm{n} 2=25.00$
3	p3324	P3 $=77.00$
	p3325	n3 $=50.00$
4	p3326	$\mathrm{P} 4=92.00$
	p3327	$\mathrm{n} 4=77.00$
5	p3328	P5 $=100.00$
	p3329	n5 $=100.00$

Note

If the interpolation points of the pump, fan, or compressor curve are not adapted, the factory setting will be used to calculate the energy saving indicator. The values of the factory setting could then deviate from the equipment characteristic and cause incorrect calculation of the actual energy savings.

Energy saving indication

The energy saving is displayed in parameter r0041.
By setting p0040 $=1$, the value of parameter r0041 is reset to 0 . Parameter p0040 is then automatically set to 0 .

9.3.19 Tolerant encoder monitoring

9.3.19.1 Tolerant encoder monitoring

The tolerant encoder monitoring offers the following options regarding evaluating encoder signals:

- Encoder track monitoring (Page 465)
- Zero mark tolerance (Page 466) (also for other sensor modules)
- Freezing the actual speed for dn/dt errors (Page 466)
- Adjustable hardware filter (Page 467)
- Edge evaluation of the zero mark (Page 468)
- Signal edge evaluation (1x, 4x) (Page 468)
- Setting the measuring time to evaluate speed "0" (Page 469)
- Sliding averaging of the speed actual value (Page 470)
- Rotor position adaptation (Page 470)
- Pulse number correction for faults (Page 471)
- Monitoring, tolerance band, pulse number (Page 472)

These additional functions make it possible to improve the evaluation of the motor encoder signals. This may be necessary if in particular cases incorrect encoder signals can occur or special properties of the signals are to be compensated.
Some of these supplementary functions can be combined with one another.

Terminology

Figure 9-9 Terminology

Commissioning

The tolerant encoder monitoring is commissioned using parameters p0437 and r0459.
r0458.12 = 1 indicates whether the hardware supports the expanded encoder properties.

Note

The tolerant encoder monitoring functions can only be parameterized when the encoder is commissioned ($\mathrm{p} 0010=4$). The encoder monitoring parameters cannot be changed while the drive is running!

The functions can only be parameterized using the expert list of STARTER.
The functions described below apply for SMC30 modules.

9.3.19.2 Encoder track monitoring

For squarewave encoders with push-pull signals, this function monitors encoder tracks $A / B \leftrightarrow-A / B$, as well as $R \leftrightarrow-R$. The encoder track monitoring monitors the most important properties of the signals (amplitude, offset, phase position).

Commissioning

The following parameters must be set as precondition for track monitoring:

- p0404.3 = 1 switches to the squarewave encoder
- $p 0405.0=1$ sets the signal to bipolar

The track monitoring is activated with p0405.2 = 1 .
If you selected your encoder from the list of parameter p0400, then the values above are pre-selected and cannot be changed (also refer to the information on p0400 in the List Manual).

Deactivating track monitoring

With activated encoder track monitoring, the function can be deactivated by setting p0437.26 $=1$.

Evaluating messages

All of the track monitoring functions can be individually evaluated. You can use both HTL as well as TTL encoders.

If a fault is detected, fault $F 3 \times 117{ }^{1}$)"Inversion signal $A / B / R$ incorrect" is output. The faulted tracks are included in the fault value bit-coded.
${ }^{1)} x=$ encoder number $(x=1,2$ or 3)

9.3.19.3 Zero mark tolerance

This function allows individual faults to be tolerated regarding the number of encoder pulses between two zero marks.

Commissioning

The "Zero mark tolerance" is activated with p0430.21 $=1$.
The permissible tolerance in encoder pulses for the zero mark distance is set using p4680.

Principle of operation

The function runs as follows:

- The "zero mark tolerance" function starts to become effective after the 2nd zero mark has been detected.
- After this, if the number of track pulses between two zero marks does not match the number of pulses configured in p4680 once, then alarms $A 3 \times 400^{1)}$ (alarm threshold, zero mark distance error) and/or A3x4011) (alarm threshold, zero mark failed) is output.
- The alarms are cleared if the next zero mark is received at the correct position.
- However, if a new zero mark position error is identified, fault F3x1001) (zero mark distance error) or F3x101 ${ }^{1)}$ (zero mark failed) is output.
$\left.{ }^{1}\right) x=$ encoder number $(x=1,2$ or 3$)$

9.3.19.4 Freezing the actual speed for $\mathrm{dn} / \mathrm{dt}$ errors

If, for high speed changes, the $\mathrm{dn} / \mathrm{dt}$ monitoring function responds, then the "Freeze speed actual value for dn/dt errors" function allows the speed actual value to be briefly "frozen" therefore equalizing the speed change.

Commissioning

The "Freeze speed actual value for dn/dt errors" function is activated with p0437.6 $=1$.

Sequence

The function runs as follows:

- If dn/dt monitoring responds (for $\mathrm{p} 0492>0$), then alarm $\mathrm{A} 3 \times 418$ " Encoder x : Speed difference per sampling rate exceeded" ${ }^{1)}$ is output.
- A frozen speed actual value limited for 3 current controller clock cycles is supplied.
${ }^{1)} x=$ encoder number $(x=1,2$ or 3$)$

9.3.19.5 Adjustable hardware filter

The adjustable hardware filter function allows an encoder signal to be filtered, therefore suppressing short interference pulses.

Commissioning

The "adjustable hardware filter" is activated with p0438 > 0.

Parameterization

- A filter time in the range from 0 to 100μ s can be entered in parameter p0438 (square wave encoder, filter time). The hardware filter only supports values 0 (no filtering), $0.04 \mu \mathrm{~s}, 0.64 \mu \mathrm{~s}, 2.56 \mu \mathrm{~s}, 10.24 \mu \mathrm{~s}$ and $20.48 \mu \mathrm{~s}$

If a value is set that does not match one of the discrete values specified above, the firmware automatically sets the next closest discrete value. The drive does not output an alarm or fault message.

- The effective filter time is displayed in parameter r0452.

Note

The zero mark alarms F3x100, F3x101 and F3x131 1), that are already output for a zero mark with a width of $1 / 4$ encoder pulse at half $n _m a x ~ s p e e d, ~ a r e ~ s u p p r e s s e d ~ w h e n ~ t h e ~$ hardware filter is activated.

Effect

The influence of the filter time on the maximum possible speed can be calculated as follows:
n_max $[\mathrm{rpm}]=60 /(\mathrm{p} 0408 \cdot 2 \cdot \mathrm{r0452})$
Here, p0408 is the pulse number of the rotary encoder.

Example

Specifications:

- $\mathrm{p} 0408=2048$
- $\mathrm{r0452}=10.24[\mu \mathrm{~s}]$
n_max is then calculated as follows:
- $n _\max =60 /\left(2048 \cdot 2 \cdot 10.24 \cdot 10^{-6}\right)=1430[\mathrm{rpm}]$

With this filter time, the motor can be operated up to a maximum of 1430 rpm .
${ }^{1)} x=$ encoder number $(x=1,2$ or 3$)$

9.3.19.6 Edge evaluation of the zero mark

This functionality is suitable for encoders, where the zero mark ≥ 1 pulse wide. In this particular case, errors would otherwise occur as a result of the edge detection of the zero mark.

For a positive direction of rotation, the positive edge of the zero mark is evaluated and for a negative direction of rotation, the negative edge. As a consequence, for encoders where the zero mark is wider than one pulse, it is possible to parameterize them with equidistant zero marks ($\mathrm{p} 0404.12=1$), i.e. the zero mark checks $\left(F 3 \times 100, F 3 \times 101^{11}\right)$) are activated.

Commissioning

The "Edge evaluation of the zero mark" is activated with p0437.1 = 1.

Parameterization

- Under unfavorable conditions, if the drive oscillates around the zero mark for one revolution, a zero mark error can occur with the rough order of magnitude of the zero mark width.
- This behavior can be avoided using the appropriate value of parameter p4686 "zero mark minimum length". Parameter p4686 can be preassigned 3/4 of the zero mark width in order to achieve the highest possible stable behavior. Parameter p4686 must be set less than p0425 "Encoder, rotary zero mark distance".
- In order that the drive, for small inaccuracies, does not output fault F3x100 (N, A) "Encoder x: Zero mark distance error" 1), a permissible deviation of the zero mark distances can be set using p4680 "Zero mark monitoring tolerance permissible". This parameter makes the system less sensitive to issuing fault F3x100 ${ }^{1)}$, if p0430.22 $=0$ (no pole position adaptation) and p0437.2 = 0 (no pulse number correction for faults) are set.
${ }^{\text {1) }} x=$ encoder number $(x=1,2$ or 3$)$

9.3.19.7 Signal edge evaluation ($1 \mathrm{x}, 4 \mathrm{x}$)

The "signal edge evaluation" function allows squarewave encoders with higher production tolerances or older encoders to be used. Using this function, a "steadier" speed actual value is calculated for encoders with an uneven pulse duty factor of the encoder signals. This means, that e.g. for plant/system modernizations and upgrades, existing motors together with the encoders can be used.

Commissioning

The "Signal edge evaluation" with p0437.4 and p0437.5 is set as follows:

p0437.4	p0437.5	Evaluation
0	0	$4 \times$ (factory setting)
0	1	Reserved
1	0	$1 \times$
1	1	Reserved

Principle of operation

For the $4 x$ evaluation, both the rising and falling edges of a contiguous pulse pair on the A and B tracks are evaluated.

For the $1 x$ evaluation, only the first or the last edge of a contiguous pulse pair on the A and B tracks are evaluated.

A $4 x$ evaluation of the pulse encoder signals allows a minimum speed to be detected which is a factor of 4 lower than for the $1 x$ evaluation. For incremental encoders with uneven pulse duty factor of the encoder signals or where the encoder signals are not precisely offset by 90°, a $4 x$ evaluation can result in a speed actual value that is somewhat less steady.
The following formula defines the lowest speed where a distinction can be made to 0 :
$n_{\text {min }}=60 /\left(x^{*}\right.$ p0408) [rpm]
with $x=1$ or 4 (x times evaluation)

Note

The reduction to 1 x evaluation is only possible in conjunction with edge zero mark or without zero mark. Detection with an accuracy of one pulse is no longer possible for zero marks with "unambiguous range" or distance-coded zero marks.

9.3.19.8 Setting the measuring time to evaluate speed "0"

This function is only necessary for slow-speed drives (up to 40 rpm rated speed) in order to be able to correctly output actual speeds close to 0 . For a stationary drive, this prevents that the I component of the speed controller slowly increases and the drive unnecessarily establishes a torque.

Commissioning

The desired measuring time is entered in parameter p0453. A speed actual value of " 0 " is output, if, within this time, no pulses are detected from the A / B track.

9.3.19.9 Sliding averaging of the speed actual value

For slow-speed drives (<40 rpm), when using standard encoders with a pulse number of 1024, a problem is encountered due to the fact that the same number of encoder pulses is not available for every current controller clock cycle (for p0430.20 $=1$: Speed calculation without extrapolation, "Incremental difference"). The different number of encoder pulses means that the speed actual value display jumps, although the encoder itself is running at a constant speed.

Commissioning

"Sliding averaging" is activated with p0430.20 $=0$ (edge time measurement).
The number of current controller clock cycles must be entered in parameter p4685, from which the average value is generated for calculating the speed. The averaging means that individual incorrect pulses, depending on the number of specified clock cycles, are smoothed.

9.3.19.10 Rotor position adaptation

For example, for a dirty encoder disk, the drive adds the missing pulses to the pole position using the zero mark that is cyclically received in order to correct the rotor position error. If, for example EMC interference causes too many pulses to be added, then these will be subtracted again every time the zero mark is crossed.

Commissioning

"Rotor position adaptation" is activated with p0430.22 $=1$.

Principle of operation

When the rotor position adaptation is activated, the incorrect pulses on the A / B track are corrected in the rotor position for commutation. The tolerance bandwidth for the zero mark is $\pm 30^{\circ}$ electrical. The rate of correction is $1 / 4$ of an encoder pulse between two zero marks; this means that sporadically missing or superfluous pulses are corrected.

Note

When the function "Commutation with zero mark" (p0404.15 = 1) is activated, then the system waits until fine synchronization has been completed before making a correction (r1992.8 = 1).

9.3.19.11 Pulse number correction for faults

Interference currents or other EMC faults can falsify encoder evaluation. However, it is possible to correct the measured signals using the zero marks.

Commissioning

"Pulse number correction for faults" is activated with p0437.2 $=1$.
The permissible tolerance for the zero mark distance in encoder pulses is a set using p4680.
The limits of the tolerance window, up to which the drive corrects the pulse number, are set using p4681 and p4682.

The minimum length of the zero mark is set using p4686.

Principle of operation

- This function completely corrects encoder pulse errors up to the tolerance window (p4681, p4682) between two zero marks. The rate of correction is $1 / 4$ encoder pulses per current controller cycle clock. As a consequence, it is possible to continually compensate for missing encoder pulses (for example, if the encoder disk is dirty). The tolerance for the deviating pulse number is set using the two parameters.

If the deviation exceeds the tolerance window size, fault $\mathrm{F} 3 \times 131{ }^{1}$) is output.

Note

When the function "Commutation with zero mark" (p0404.15 = 1) is activated, then the system waits until fine synchronization has been completed before making a correction (r1992.8 = 1).

The rotor position for commutation is also corrected. Pole position adaptation (p0430.22 $=$ 1) does not have to be activated to do this.

This function does not make any corrections in the speed sensing.

- The minimum length of the zero mark is set using p4686. With a factory setting of 1 , it is prevented that EMC faults result in a zero mark error.

Shorter zero marks are only suppressed when "Zero mark edge detection" is parameterized (p0437.1 = 1) .

- Zero mark deviations of less than the minimum zero mark length (p4686) are not corrected.
- A permanently failed zero mark is indicated using fault F3x101 "Zero mark failed" 1) or alarm A3x401 "Alarm threshold zero mark failed" 1).
${ }^{1)} x=$ encoder number $(x=1,2$ or 3$)$

9.3.19.12 "Tolerance band pulse number" monitoring

This function monitors the number of encoder pulses between two zero marks. An alarm is output if the number lies outside a tolerance band that can be selected.

Commissioning

"Monitoring tolerance band, pulse number" is activated with p0437.2 $=1$.
The upper and the lower limit values of the tolerance band can be set using p4683 and p 4684 . Within this tolerance band, the detected number of pulses is considered to be correct.

Principle of operation

- After each zero mark, it is again checked as to whether up to the next zero mark the number of pulses lies within the tolerance band. If this is not the case and "pulse number correction for faults" ($\mathrm{p} 0437.2=1$) is parameterized, then alarm $\mathrm{A} 3 \times 422^{1}$) is output for 5 seconds.
- If one of the limits has a value of 0 , then alarm $\mathrm{A} 3 \times 422^{1)}$ is deactivated.
- Display of uncorrected encoder pulses

For p0437.7 = 1, the number of corrected pulse errors is displayed in r4688 with the correct sign.
When p0437.7 = 0, the number of corrected missing pulses per zero mark distance is displayed in r4688.

For a drift after one revolution, if the tolerance band limit is not reached, an alarm is not output. A new measurement is performed if the zero mark is exceeded.

- Number of pulses outside the tolerance band

If the tolerance band is violated, then in addition to alarm $\mathrm{A} 3 \times 422{ }^{1)}$, display parameter $r 4689=1$ is set (access level 4). This value remains for 100 ms , so that a control can detect several violations in quick succession one after the other even for high-speed drives.

- The accumulated correction value can be sent to a higher-level control (e.g. : $p 2051[x]=r 4688)$. The control can then set the contents of the counter to a specific value.

Note

The "tolerance band pulse number monitoring" also functions for external encoders, which operate in a drive line-up as leading value encoder (monitoring the position value XIST1 from a direct measuring system).
${ }^{1)} x=$ encoder number $(x=1,2$ or 3$)$

9.3.19.13 Troubleshooting, causes and remedies

Table 9-8 Fault profiles, possible causes and remedies

Fault profile	Fault description	Remedy
	No fault	-
	F3x101 (zero mark failed)	Check that the connection assignment is correct (A interchanged with -A or B interchanged with -B)
	F3x100 (Zero mark distance error)	Check whether the connection assignment is correct (R interchanged with $-R$)
	Interjected zero mark	Use zero mark tolerance

Fault profile	Fault description	Remedy
	Zero mark too wide	Use edge evaluation of the zero mark
	EMC faults	Use an adjustable hardware filter
	Zero mark too early/late (interference pulse or pulse loss on the A / B track)	Use rotor position adaptation or pulse number correction in the event of faults

9.3.19.14 Tolerance window and correction

Figure 9-10 Tolerance window and correction

9.3.19.15 Overview of important parameters

Parameter

- p0404[0...n] Encoder configuration effective
- p0405[0...n] Square-wave signal encoder A/B track
- p0408[0...n] Rotary encoder pulse No.
- p0430[0...n] Sensor Module configuration
- p0437[0...n] Sensor Module extended configuration
- p0438[0...n] Square-wave encoder filter time
- r0452[0...n] Square-wave encoder filter time display
- r0458[0...n] Sensor Module properties
- r0459[0...n] Sensor Module extended properties
- p4680[0...n] Zero mark monitoring tolerance permissible
- p4681[0...n] Zero mark monitoring tolerance window limit 1 positive
- p4682[0...n] Zero mark monitoring tolerance window limit 1 negative
- p4683[0...n] Zero mark monitoring tolerance window alarm threshold positive
- p4684[0...n] Zero mark monitoring tolerance window alarm threshold negative
- p4686[0...n] Zero mark, minimum length
- r4688[0...n] CO: Zero mark monitoring, number of differential pulses
- r4689[0...n] CO: Square-wave encoder diagnostics

9.4 Extended functions

9.4.1 Technology controller

Description

The "technology controller" function module allows simple control functions to be implemented, e.g.:

- Liquid level control
- Temperature control
- Dancer position control
- Pressure control
- Flow control
- Simple control without higher-level control
- Tension control

The technology controller features:

- Two scalable setpoints
- Scalable output signal
- Separate fixed values
- Separate motorized potentiometer
- The output limits can be activated and deactivated via the ramp-function generator.
- The D component can be switched to the system deviation or actual value channel.
- The motorized potentiometer of the technology controller is only active when the drive pulses are enabled.

The technology controller is designed as a PID controller, whereby the differentiator can be switched to the control deviation channel or the actual value channel (factory setting). The P, I, and D components can be set separately.

A value of 0 deactivates the corresponding component. Setpoints can be specified via two connector inputs. The setpoints can be scaled via parameters p2255 and p2256.

A ramp-function generator in the setpoint channel can be used to set the setpoint ramp-up/ramp-down time via parameters p2257 and p2258. The setpoint and actual value channel each have a smoothing element. The smoothing time can be set via parameters p2261 and p2265.

The setpoints can be specified via separate fixed setpoints (p2201 to p2215), the motorized potentiometer, or via the field bus (e.g. PROFIBUS).
Pre-control can be integrated via a connector input.

The output can be scaled via parameter p2295 and the control direction reversed. It can be limited via parameters p2291 and p2292 and interconnected as required via a connector output (r2294).

The actual value can be integrated, for example, via an analog input on the TM31.
If a PID controller has to be used for control reasons, the D component is switched to the setpoint/actual value difference ($\mathrm{p} 2263=1$) unlike in the factory setting. This is always necessary when the D component is to be effective, even if the reference variable changes. The D component can only be activated when $\mathrm{p} 2274>0$.

Note

With the entry "0" sec. as power up time or ramp-down time for the ramp function generator of the technology controller, the current values of the respective ramp function generator will be frozen.

Commissioning

The "technology controller" function module can be activated by running the commissioning Wizard. Parameter r0108.16 indicates whether the function module has been activated.

Function diagram

FD 7950 Technology controller - fixed values, binary selection
FP 7951 Technology controller - fixed values, direct selection
FD 7954 Technology controller - motorized potentiometer
FD 7958 Technology controller - closed-loop controller

Example: liquid level control

The objective here is to maintain a constant level in the container.
This is carried out by means of a variable-speed pump in conjunction with a sensor for measuring the level.

The level is determined via an analog input (e.g. AIO TM31) and sent to the technology controller. The level setpoint is defined in a fixed setpoint. The resulting controlled variable is used as the setpoint for the speed controller.

In this example, a Terminal Module (TM31) is used.

Figure 9-11 Level control: Application

Figure 9-12 Level control: Controller structure

Key control parameters

- p1155 = r2294 CI: Speed controller speed setpoint 1 [FP 3080]
- $\mathrm{p} 2253=\mathrm{r} 2224$

Technology controller setpoint effective via fixed setpoint [FD 7950]

- $\mathrm{p} 2263=1$

D component in fault signal [FD 7958]

- $\mathrm{p} 2264=r 4055$

Actual value signal $X_{\text {actual }}$ via AIO of TM31 [FP 9566]

- $\mathrm{p} 2280=\mathrm{Kp}$

Calculate P gain by means of optimization

- p2285 = Tn Calculate integral time by means of optimization
- $\mathrm{p} 2200=1$ Technology controller enabled

9.4.2 Bypass function

The bypass function uses digital converter outputs to activate two contactors and uses digital inputs to evaluate the contactor's feedback (e.g. via TM31). This circuit allows the motor to be operated using the converter or directly on the supply line. The contactors are activated by the converter. The feedback signals for the contactor positions have to be returned to the converter.

The bypass circuit can be implemented in two ways:

- without synchronizing the motor to the supply and
- with synchronizing the motor to the supply.

The following applies to all bypass versions:

- The bypass switch is also shut down when one of the "OFF2" or "OFF3" control word signals is canceled.
- Exception: If necessary, the bypass switch can be interlocked by a higher-level controller such that the converter can be shut down completely (i.e. including the controller electronics) while the motor is operated on the supply. The protective interlocking must be implemented on the system side.
- When the converter is started up again after POWER OFF, the status of the bypass contactors is evaluated. After powering up, the converter can thereby change straight into "Ready to start and bypass" status. This is only possible if the bypass is activated via a control signal, the control signal (p 1266) is still present once the system has been ramped up, and the automatic restart function (p1200 $=4$) is active.
- Changing the converter into "Ready to start and bypass" status after powering up, is of a higher priority than switching back on automatically.
- Monitoring of the motor temperatures using temperature sensors is active while the converter is in one of two statuses "Ready to start and bypass" or "Ready for operation and bypass".
- The two motor contactors must be designed for switching under load.

Note

The examples contained in the following descriptions are only basic circuits designed to explain the basic function. The dimensions of specific circuit configurations (contactors, protective equipment) must be calculated for specific systems.

Prerequisites

The bypass function is only available for sped control without encoders (p1300 = 20) or V/fcontrol ($\mathrm{p} 1300=0 \ldots 19$) and when using an asynchronous motor.

Establishing the bypass function

The bypass function is part of the "technology controller" function module that can be activated by running the commissioning Wizard. Parameter r0108.16 indicates whether the function module has been activated.

9.4.2.1 Bypass with synchronizer with degree of overlapping (p1260 = 1)

Description

When "Bypass with synchronizer with degree of overlapping (p1260 = 1)" is activated, the synchronized motor is transferred to the supply and retrieved again. During the changeover, both contactors K1 and K2 are closed at the same time for a period (phase lock synchronization).

A reactor is used to de-couple the drive converter from the line supply - the uk value for the reactor is $10(\pm 2) \%$.

Figure 9-13 Typical circuit diagram for bypass with synchronizer with degree of overlapping

Activation

The function with synchronizer with degree of overlapping (p1260 = 1) function can only be activated using a control signal. It cannot be activated using a speed threshold or a fault.

9.4 Extended functions

Parameterization

Once the bypass with synchronizer with degree of overlapping (p1260 = 1) function has been activated, the following parameters must be set:

Table 9-9 Parameter settings for bypass function with synchronizer with degree of overlapping

Parameters	
p1266 $=$	Control signal setting when $\mathrm{p} 1267.0=1$
p1267.0 $=1$ p1267.1 $=0$	Bypass function is initiated by the control signal
p1269[0 $=$	Signal source for contactor K1 feedback
p1269[1] $=$	Signal source for contactor K2 feedback
p3800 $=1$	The internal voltages are used for synchronization.
p3802 $=r 1261.2$	Synchronizer activation is triggered by the bypass function.

Transfer process

p1266
Bypass command
r1261.2
Request to synchronize
(sent by bypass function)
r3819.2
"Synchronized"
r1261.1
Close contactor K2
p1269.1
Contactor K2 closed
$r 1261.0$
Close contactor K1
p1269.0
Contactor K1 closed

Figure 9-14 Signal diagram, bypass with synchronization with overlap

Transfer of motor to line supply
(contactors K1 and K2 are activated by the converter):

- The initial state is as follows: Contactor K1 is closed, contactor K2 is open and the motor is fed from the converter.
- The control bit "bypass command" (p1266) is set (e.g., by the higher-level automation).
- The bypass function sets the control word bit "synchronizing" (r1261.2).
- Since the bit is set while the converter is running, the "Transfer motor to line supply" synchronization process is started.
- Once motor synchronization to line frequency, line voltage and line phasing is complete, the synchronization algorithm reports this state (r3819.2).
- The bypass mechanism evaluates this signal and closes contactor K2 (r1261.1 = 1). The signal is evaluated internally - BICO wiring is not required.
- After contactor K2 has fed back the "closed" state (r1269[1] = 1), contactor K1 is opened and the converter inhibits the pulses. The converter is in "Ready for operation and bypass" state.
- If the On command is cancelled in this phase, the converter will change to "Ready to start and bypass" status. If the appropriate contactors are being used, the converter will be isolated from the line supply and the DC link discharged.

To transfer the motor back from the line supply, the sequence is simply reversed: At the start of the process, contactor K2 is closed and contactor K1 is open.

- The "Command bypass" control bit is canceled (e.g., by the higher-level automation).
- The bypass function sets the control word bit "synchronizing".
- The pulses are enabled. Since "synchronizing" is set before "pulse enable", the converter interprets this as a command to retrieve the motor from the line supply.
- Once converter synchronization to line frequency, line voltage and line phasing is complete, the synchronization algorithm reports this state.
- The bypass mechanism evaluates this signal and closes contactor K1. The signal is evaluated internally - BICO wiring is not required.
- Once contactor K1 has reported "closed" status, contactor K2 is opened and the motor returns to operation on the converter.

9.4.2.2 Bypass with synchronizer without degree of overlapping (p1260 = 2)

Description

When "Bypass with synchronizer without degree of overlapping ($\mathrm{p} 1260=2$)" is activated, contactor K2 (to be closed) is only closed when contactor K1 is opened (anticipatory type synchronization). During this time, the motor is not connected to a line supply so that its speed is determined by the load and the friction. The phase position of the motor voltage before synchronization must be set to establish a "lead" before the line supply to which the system should be synchronized. This is realized by setting the synchronization setpoint (p3809). A phase and frequency difference of around zero is produced when closing contactor K2 by braking the motor in the brief period in which both contactors are open.

For the function to run correctly, the moment of inertia of the drive and the load must be sufficiently high.

Note

A sufficiently high moment of inertia is characterized by a change in the motor speed when contactors K1 and K2 are opened, which is approximately equal to the rated slip. The electrical angular difference of the motor relative to the phase difference of the line supply may only change to the extent that it can still be compensated using p3809.

It is no longer necessary to use the de-coupling reactor after having determined the synchronizing setpoint (p3809) in the manner described above.

Figure 9-15 Example circuit for bypass with synchronizer without degree of overlapping

Activation

The bypass with synchronizer without degree of overlapping (p1260 = 2) function can only be activated using a control signal. It cannot be activated using a speed threshold or a fault.

Parameterization

Once the bypass with synchronizer without degree of overlapping (p1260 = 2) function has been activated, the following parameters must be set:

Table 9-10 Parameter settings for bypass function with synchronizer without degree of overlapping

Parameter	
$p 1266=$	Control signal setting when $\mathrm{p} 1267.0=1$
p1267.0 $=1$ p1267.1 $=0$	Bypass function is initiated by the control signal
$p 1269[0]=$	Signal source for contactor K1 feedback
$p 1269[1]=$	Signal source for contactor K2 feedback
$p 3800=1$	The internal voltages are used for synchronization.
$p 3802=r 1261.2$	Synchronizer activation is triggered by the bypass function.
$p 3809=$	Setting the phase setpoint for synchronizing the drive to the line supply

9.4.2.3 Bypass without synchronizer (p1260 = 3)

Description

When the motor is transferred to the supply, contactor K1 is opened (following converter's pulse inhibit). The system then waits for the motor excitation time to elapse after which contactor K2 is closed and the motor is run directly on the supply.
If the motor is switched on in a non-synchronized manner, when activated an equalizing current flows and this must be taken into account when designing the protective equipment (see diagram "Circuit bypass without synchronization").

When the motor is being transferred from the supply by the converter, initially contactor K2 is opened and after the excitation time, contactor K1 is closed. The converter then captures the rotating motor and the motor is operated on the converter.

Contactor K2 must be designed for switching under load.
Contactors K1 and K2 must be interlocked against closing at the same time.
The "flying restart" function must be activated (p1200 = 1).

Figure 9-16 Example circuit for bypass without synchronization

Activation

The bypass with synchronizer ($\mathrm{p} 1260=3$) can be triggered by the following signals (p 1267):

- Bypass by means of control signal (p1267.0 = 1):

The bypass can be activated by means of a digital signal (p1266) (e.g. from a higher-level automation system). If the digital signal is canceled, a changeover to converter operations is triggered once the debypass delay time (p 1263) has expired.

- Bypass at speed threshold ($\mathrm{p} 1267.1=1$):

Once a certain speed is reached, the system switches to bypass (i.e. the converter is used as a start-up converter). The bypass cannot be connected until the speed setpoint is greater than the bypass speed threshold (p 1265).
The system reverts to converter mode when the setpoint (on the input of the rampfunction generator, r1119) falls below the bypass speed threshold (p1265). The setpoint > comparison value condition prevents the bypass from being reactivated straight away if the actual speed is still above the bypass speed threshold (p1265) after switching back to converter operations.

The bypass time, debypass time, bypass speed variables and the command source for changing over are set using parameters.

Parameterization

Once the bypass without synchronizer $(\mathrm{p} 1260=3)$ function has been activated, the following parameters must be set:

Table 9-11 Parameter settings for bypass function with synchronizer without degree of overlapping

Parameter	
$p 1262=$	Bypass dead time setting
$p 1263=$	Debypass dead time setting
$p 1264=$	Bypass delay time setting
$p 1265=$	Speed threshold setting when $p 1267.1=1$
$p 1266=$	Control signal setting when p1267.0 $=1$
p1267.0 $=$ p1267.1 $=$	Trigger signal setting for bypass function
$p 1269[1]=$	Signal source for contactor K2 feedback
$p 3800=1$	The internal voltages are used for synchronization.
$p 3802=r 1261.2$	Synchronizer activation is triggered by the bypass function.
P1200 $=1$	The "flying restart" function is always active.

9.4.2.4 Function diagram

FP 7020 Synchronization

9.4.2.5 Parameters

Bypass function

- p1200 Flying restart operating mode
- p1260 Bypass configuration
- r1261 CO/BO: Bypass control/status word
- p1262 Bypass dead time
- p1263 Debypass delay time
- p1264 Bypass delay time
- p1265 Bypass speed threshold
- p1266 BI: Bypass control command
- p1267 Bypass changeover source configuration
- p1268 BI: Bypass feedback signal synchronization completed
- p1269 BI: Bypass switch feedback signal
- p1274 BI: Bypass switch monitoring time

Synchronization

- p3800 Sync-supply-drive activation
- p3801 Sync-supply-drive drive object number
- p3802 BI: Sync-supply-drive enable
- r3803 CO/BO: Sync-supply-drive control word
- r3804 CO: Sync-supply-drive target frequency
- r3805 CO: Sync-supply-drive frequency difference
- p3806 Sync-supply-drive frequency difference threshold
- r3808 CO: Sync-supply-drive phase difference
- p3809 Sync-supply-drive phase setpoint
- p3811 Sync-supply-drive frequency limitation
- r3812 CO: Sync-supply-drive correction frequency
- p3813 Sync-supply-drive phase synchronism threshold
- r3814 CO: Sync-supply-drive voltage difference
- p3815 Sync-supply-drive voltage difference threshold
- r3819 CO/BO: Sync-supply-drive status word

9.4.3 Extended brake control

Description

The "Extended brake control" function module allows complex braking control for motor holding brakes and holding brakes for example.

The brake is controlled as follows (the sequence reflects the priority):

- Via parameter p1215
- Via binector parameters p1219[0..3] and p0855
- Via zero speed detection
- Via a connector interconnection threshold value

Commissioning

The "Extended brake control" function module can be activated by running the commissioning wizard. Parameter r0108.14 indicates whether the function module has been activated.

Parameter p1215 must be set to " 3 " and the brake controlled via a digital output (for example at the customer terminal block TM31).

Example 1: Starting against applied brake

When the device is switched on, the setpoint is enabled immediately (if other enable signals are issued), even if the brake has not yet been released (p1152 = 1). The factory setting p1152 = r0899.15 must be separated here. The drive first establishes a torque against the applied brake. The brake is not released until the motor torque or current (p 1220) has exceeded braking threshold 1 (p1221).
Depending on the type and design of the brake, the time required to completely release the brake differs. It must be taken into consideration that, once the braking threshold torque has been exceeded, the operation enable signal (p0899.2) is interrupted for the time interval that the brake is being released (p 1216) to ensure that the motor current does not exceed the permissible limit values during this period and the motor torque generated does not damage the brake. Time interval p1216 must be set depending on the time the brake actually requires to release.
This configuration is used, for example, when the drive is connected to a belt that is under tension (loop accumulator in the steel industry).

Example 2: Emergency brake

If emergency braking is required, electrical and mechanical braking is to take place simultaneously. This can be achieved if OFF3 is used as a tripping signal for emergency braking:
$\mathrm{p} 1219[0]=\mathrm{r0898.2}$ and p1275.00 $=1$ (OFF3 to "apply brake immediately" and invert signal).
To prevent the converter working in opposition to the brake, the OFF3 ramp (p1135) should be set to 0 seconds. Regenerative energy may accumulate, and this must be either fed back into the supply system or converted into heat using a braking resistor.

This is often used, for example, in calendar stacks, cutting tools, running gears, and presses.

Example 3: Service brake on crane drives

For cranes with manual control, it is important that the drive responds immediately when the control lever is moved (master switch). To this end, the drive is powered up using the on command (p0840) (the pulses are enabled). Speed setpoint (p1142) and speed controller ($p 0856$) are inhibited. The motor is magnetized. The magnetization time generally applicable for three-phase motors (1-2 seconds) is, therefore, eliminated.

Now, only the brake opening time will delay the motor starting to rotate following activation of the master switch. Movement of the master switch generates a "setpoint enable from the control" (bit interconnected with p1142, p1229.2, p1224.0). The speed controller is enabled immediately and the speed setpoint is enabled once the brake opening time (p 1216) has elapsed. When the master switch is in the zero position, the speed setpoint is inhibited and the drive ramps down along the ramp-function generator's ramp-down ramp. The brake closes once the standstill limit (p1226) is undershot. Once the brake closing time (p1217) has elapsed, the speed controller is inhibited (the motor is no longer generating any force). Extended braking control is used with the modifications described below.

Figure 9-17 Example: Service brake on a crane drive

Control and status messages for extended brake control

Table 9-12 Control of extended brake control

Signal name	Binector input	Control word sequence control/interconnection parameters
Enable speed setpoint	p1142 BI: Enable speed setpoint	STWA.6
Enable setpoint 2	p1152 BI: Setpoint 2 enable	p1152 = r899.15
Unconditionally release holding brake	p0855 BI: Unconditionally release holding brake	STWA. 7
Enable speed controller	p0856 BI: Enable speed controller	STWA.12
Unconditionally apply holding brake	p0858 BI: Unconditionally apply holding brake	STWA.14

Table 9-13 Status message of extended brake control

Signal name	Parameter	Brake status word
Command, release brake (continuous signal)	r1229.1	B_STW. 1
Pulse enable, extended brake control	r1229.3	B_STW. 3
Brake does not release	r1229.4	B_STW. 4
Brake does not close	r1229.5	B_STW. 5
Brake threshold exceeded	r1229.6	B_STW. 6
Brake threshold fallen below	r1229.7	B_STW. 7
Brake monitoring time expired	r1229.8	B_STW. 8
Request, pulse enable missing/n_ctrl inhibited	r1229.9	B_STW. 9
Brake OR logic operation result	r1229.10	B_STW. 10
Brake AND logic operation result	r1229.11	B_STW. 11

Function diagram

FP 2704	Extended brake control - standstill detection $(\mathrm{r} 0108.14=1)$
FP 2707	Extended brake control - release/close brake $(\mathrm{r} 0108.14=1)$
FP 2711	Extended brake control - signal outputs $(\mathrm{r} 0108.14=1)$

Parameter

- r0108.14 Extended brake control
- r0899 CO/BO: Status word sequence control

Standstill (zero-speed) monitoring

- r0060 CO: Speed setpoint before the setpoint filter
- r0063[0...2] CO: Speed actual value
- p1224[0...3] BI: Apply motor holding brake at standstill
- p1225 CI: Standstill detection threshold value
- p1226 Standstill monitoring speed threshold
- p1227 Standstill detection monitoring time
- p1228 Standstill detection delay time
- p1276 Motor holding brake standstill detection bypass

Release/apply brake

- p0855 BI: Unconditionally release holding brake
- p0858 BI: Unconditionally apply holding brake
- p1216 Motor holding brake release time
- p1217 Motor holding brake closing time
- p1218[0...1] BI: Release motor holding brake
- p1219[0...3] BI: Immediately apply motor holding brake
- p1220 CI: Release motor holding brake, signal source, threshold
- p1221 Release motor holding brake, threshold
- p1277 Motor holding brake, delay, braking threshold exceeded
- p1279 BI: Motor holding brake OR/AND logic operation

Brake monitoring functions

- p1222 BI: Motor holding brake, feedback signal, brake closed
- p1223 BI: Motor holding brake, feedback signal, brake released

Configuration, control/status words

- p1215 Motor holding brake configuration
- r1229 CO/BO: Motor holding brake status word
- p1275 Motor holding brake control word
- p1278 Motor holding brake type

9.4.4 Extended monitoring functions

Description

The "extended monitoring functions" function module enables additional monitoring functions:

- Speed setpoint monitoring: $\mid n _$set $\mid \leq$p2161
- Speed setpoint monitoring: n_set > 0
- Load monitoring

Description of load monitoring

This function monitors power transmission between the motor and the working machine. Typical applications include V-belts, flat belts, or chains that loop around the belt pulleys or cog wheels for drive and outgoing shafts and transfer the peripheral speeds and forces. Load monitoring can be used here to identify blockages in the working machine and interruptions to the power transmission.
During load monitoring, the current speed/torque curve is compared with the programmed speed/torque curve (p2182 - p2190). If the current value is outside the programmed tolerance bandwidth, a fault or alarm is triggered depending on parameter p2181. The fault or alarm message can be delayed by means of parameter p2192 to prevent false alarms caused by brief transitional states.

Figure 9-18 Load monitoring (p2181 =1)

Commissioning

The "extended monitoring functions" function module can be activated by running the commissioning wizard. Parameter r0108.17 indicates whether it has been activated.

Function diagram

FD 8010 Speed messages 1
FP 8011 Speed messages 2
FD 8013 Load monitoring

Parameters

- p2150 Hysteresis speed 3
- p2151 CI: Speed setpoint for messages
- p2161 Speed threshold 3
- p2181 Load monitoring, response
- p2182 Load monitoring, speed threshold 1
- p2183 Load monitoring, speed threshold 2
- p2184 Load monitoring, speed threshold 3
- p2185 Load monitoring, speed threshold 1 upper
- ...
- p2190 Load monitoring, speed threshold 3 lower
- p2192 Load monitoring, delay time
- r2198.4 $\mid n _$set $\mid \leq p 2161$
- r2198.5 n_set > 0
- r2198.11 Load monitoring displays alarm
- r2198.12 Load monitoring displays fault

9.4.5 Closed-loop position control

Description

The "Closed-loop position control" function module includes:

- Position actual value conditioning (including the lower-level measuring probe evaluation and reference mark search)
- Position controller (including limitation, adaptation and pre-control calculation)
- Monitoring (including zero-speed, positioning, dynamic following error monitoring system and cam signals)
- Position tracking of the load gear (motor encoder), using absolute encoders for rotary axes (modulo) as well as for linear axes.

Commissioning

The "Closed-loop position control" function module can be activated using the drive characteristics dialog.

When the "basic positioner" function module $(r 0108.4=1)$ is activated, then the function module "position control" (r0108.3) is automatically activated.

The current configuration can be checked in parameter r0108.3.
The position controller can be parameterized in a user-friendly fashion using the screen forms in STARTER.

The "closed-loop position control" function module is essential for operating the basic positioner.

Note

If the "position control" function module is active, and to optimize the speed controller, a function generator signal is interconnected to the speed controller input p1160, then the position controller monitoring functions respond.

To prevent this from happening, the position controller must be disabled (p2550 = 0) and tracking mode must be activated ($\mathrm{p} 2655=1$, for control using PROFIdrive telegram 110 PosSTW. $0=1$). In this way, the monitoring functions are switched off and the position setpoint is tracked.

Function diagram

FP 4010 Position actual value conditioning
FP $4015 \quad$ Position controller
FP 4020 Zero-speed / positioning monitoring
FP 4025 Dynamic following error monitoring, cam controllers

9.4.5.1 Actual position value preparation

Description

The position actual value conditioning converts the actual position values into a neutral distance unit LU (Length Unit). For this purpose, the function block uses the Gn_XIST1, Gn_XIST2, Gn_STW and Gn_ZSW encoder interfaces available in the encoder evaluation/motor controller. These simply provide the position data in encoder bars and fine resolution (increments).

The position actual value is conditioned, regardless of whether the position controller is enabled immediately after the system has booted, as soon as valid values are received via the encoder interface.

Parameter p2502 (encoder assignment) defines the encoder (1, 2 or 3) used to record the actual position value.

The following connection is run automatically after assignment:

- p0480[0] (G1_STW) = encoder control word r2520[0]
- p0480[1] (G2_STW) = encoder control word r2520[1]
- p0480[2] (G3_STW) = encoder control word r2520[2]

Figure 9-19 Position actual value conditioning with rotary encoders
The link between the physical variables and the neutral length unit LU is established via parameter p2506 (LU per load revolution) for rotary encoders. Parameter p2506 along with p2504, p2505 reflect the link between encoder increments and the neutral length unit LU.

Example:

Rotary encoder, ball screw with a pitch of $10 \mathrm{~mm} /$ revolution. 10 mm should have a resolution of $1 \mu \mathrm{~m}$ (i.e. $1 \mathrm{LU}=1 \mu \mathrm{~m}$)
-> One load revolution corresponds to 10000 LU
-> p2506 = 10000

Note

The effective actual value resolution is obtained from the product of the encoder pulses (p 0408) and the fine resolution (p 0418) and a measuring gear that is possibly being used (p0402, p0432, p0433).

Figure 9-20 Position actual value conditioning
An offset can be undertaken using connector input p2513 (actual position value conditioning offset) and a positive edge at the binector input p2512 (activate offset). When the "basic positioner" function module is activated, p2513 is automatically connected with r2685 (EPOS offset) and p2515 with r2684.7 (activate offset). This interconnection enables modulo offset by EPOS, for example.

A position offset can be entered via connector input p2516. Using EPOS, p2516 is automatically interconnected to r2667. Backlash compensation is implemented using this interconnection.

Using the connector input p2515 (position setting value) and a "1" signal at binector input p2514 (set position actual value), a position setting value can be entered.

An inversion of the actual position value resulting from the encoder is undertaken using parameter p0410. An inversion of the axis motion can be entered using a negative value in p2505.

Indexed actual value acquisition

The indexed position actual value acquisition permits e.g. length measurements on parts as well as the detection of axis positions by a higher-level controller (e.g. SIMATIC S7) in addition to the position control e.g. of a belt conveyor.
Two more encoders can be operated in parallel with the encoders for actual value conditioning and position control in order to collect actual values and measured data.

The indexed acquisition of actual values can preprocess a position actual value at each of the three encoder outputs. The parameter p2502[0...3] is used to select the encoder evaluation for position control.
The parameters of the indexed actual value acquisition are indexed four times. The indexes $1 . .3$ are assigned to the encoder evaluations 1..3. The index 0 is assigned to position control.

The parameter r2521[0...3] can be used to retrieve the current actual values of all connected encoders. For example, the position actual value for position control in r2521[0] is identical with the value r2521[1] if the position control uses encoder evaluation 1. The signal source for a position offset can be set via parameter p2516[0..3].

The absolute encoder adjustment is initiated via p2507[0...3].2, and its successful completion is reported via p2507[0...3].3. The signal source "Reference point coordinate for the position controller" p2598[0] is interconnected with p2599 during basic positioning. The other signal sources are not interconnected in the standard configuration.

The measuring probe evaluation can be enabled for the encoder evaluation x, which is not assigned to position control, via p2509[x]. The signal sources are assigned via p2510[0...3], the edge evaluation is set via p2511[0...3]. The measured value is then available in r2523[x] if the status word for encoder x (encoder 0: r2526.0..9, encoder1: 2627.0..2, encoder2: r2628.0..2, encoder3: r2529.0..2) has the "Valid measurement" bit set.

The actual position values of the different encoders can be read out using parameter r2521[0...3]. These position actual values can be corrected with a signed value from p2513[0...3] after a $0 / 1$ signal from the signal source in p2512[0...3].

In addition, the velocity actual value (r2522[0...3]) and the position offset for absolute encoders p2525[0...3] can be processed for each encoder by the higher-level controller.

Load gear position tracking

Position tracking enables the load position to be reproduced when using gears. It can also be used to extend the position area.

Position tracking for load gear functions in the same way as position tracking for the measuring gear (see "Position tracking/Measuring gear"). Position tracking is activated via parameter p2720.0 = 1. The position tracking of the load gear, however, is only relevant for the motor encoder (encoder 1). The load gear ratio is entered via parameters p2504 and p2505. Position tracking can be activated with rotary axes (modulo) and linear axes.

Position tracking for the load gear can only be activated once for each motor data set MDS.
The load position actual value in r2723 (must be requested via Gn_STW.13) is made up of the following information:

- Encoder pulses per revolution (p0408)
- Fine resolution per revolution (p0419)
- Virtual number of stored revolutions of a rotary absolute encoder (p2721)
- Load gear ratio (p2504/p2505)
- Measuring gear ratio (p0433/p0432), if p0411.0 = 1

Note

The total of p0408, p0419 and p2721 is limited to 32 bits.

Example: Absolute encoder can count 8 encoder revolutions ($p 0421=8$)

Note

Load gear problems and solutions, see example in "Position tracking/Measuring gear".

Example of position area extension

With absolute encoders without position tracking, it must be ensured that the traversing range around 0 is less than half the encoder range, because beyond this range, no unique reference remains after switching on and off (see the description for parameter p2507). This traversing range can be extended using the virtual multiturn (p2721).

For reasons of presentation, an absolute encoder was selected in the figure below that can represent 8 encoder revolutions (p0412 = 8).

Extended position range with virtual multiturn (internally mapped to the EPOS range)

Figure 9-21 Position tracking, load gear $(p 2721=24)$, setting p2504 $=$ p2505 $=1($ gear factor $=1)$
In this example, this means:

- Without position tracking, the position for +/- 4 encoder revolutions about r2521 $=0$ LU can be reproduced.
- With position tracking, the position for +/- 12 encoder revolutions (+/- 12 load revolutions with load gear) can be reproduced (p2721 = 24).

Practical example:
For a linear axis, the value for p2721 is set to 262144 for an encoder with p0421 $=4096$. This means that +/- 131072 encoder revolutions or load revolutions can therefore be reproduced.

For a rotary axis, a value for p2721 = p0421 is set for an encoder.

Configuration of the load gear (p2720).

The following points can be set by configuring this parameter:

- p2720.0: Activation of position tracking
- p2720.1: Setting the axis type (linear axis or rotary axis)

Here, a rotary axis refers to a modulo axis; the modulo offset can be activated from a higher-level control or EPOS. With a linear axis, position tracking is mainly used to extend the position area (see section: Virtual multiturn encoder (p2721)).

- p2720.2: Reset position

The position values stored in a non-volatile fashion are reset for the following events:

- If encoder replacement is detected.
- If the configuration of the encoder data set (EDS) is modified.
- If the absolute encoder is re-calibrated.

Note

If position tracking of the load gear is activated with parameter p2720.0 = 1 (Load gearbox, activate position tracking) after the encoder has been adjusted (p2507=3), the adjustment will be reset.

Further adjustment of the encoder while the position tracking is activated will cause the load gear position to be reset (overflow).
The permissible range of position tracking is mapped to the reproducible EPOS encoder range.

It is possible to activate position tracking for several DDS.

Virtual multiturn encoder (p2721)

The virtual multiturn resolution is used to set the number of resolvable motor rotations for a rotary absolute encoder with activated position tracking. It can be edited only for rotary axes.
With a rotary absolute encoder ($p 0404.1=1$) with activated position tracking ($p 2720.0=1$), p2721 can be used to enter a virtual multiturn resolution.

NOTICE

If the gear factor is not equal to 1 , then p2721 always refers to the load side.
The virtual resolution, which is required for the load, is then set here.

For rotary axes, the virtual multiturn resolution (p2721) is preassigned the value of the multiturn resolution of the encoder (p 0421) and can be changed.
Example, singleturn encoder:
Parameter p0421 is preassigned "1". However, parameter p2721 can be altered subsequently, e.g. it can be set to p2721 = 5. As a result, the encoder evaluation initiates 5 load rotations before the same absolute value is achieved again.
In the case of linear axes, the virtual multiturn resolution (p2721) is preset to the value of the multiturn resolution of the encoder extended by 6 bits (p0421) (max. 32 overflows, positive/negative).
After this, the setting for p2721 cannot be changed.
Example of a multiturn encoder:
For a linear axis, for an encoder with p0421 = 4096, the value for p2721 is set to 262144. This means that +/- 131072 encoder revolutions or load revolutions can be reproduced in this way.
If, as a result of extension of the multiturn information, the displayable area of r2723 (32 bits) is exceeded, the fine resolution (p0419) must be reduced accordingly.

Tolerance window (p2722)

After switching on, the difference between the stored position and the actual position is ascertained and, depending on the result, the following is triggered:

- Difference within the tolerance window -> the position is reproduced based on the current actual encoder value.
- Difference outside the tolerance window -> an appropriate message (F07449) is output.

When p2720.0 = 1, the tolerance window is automatically preset to a quarter of the encoder range and can be changed.

ACAUTION

The position can only be reproduced if, in the powered-down state, if the encoder was moved through less than half of the range that it can represent. For the standard EQN1325 encoder, this is 2048 revolutions or half a revolution for singleturn encoders.

Note

The ratio stamped on the gear rating plate is often just a rounded-off value (e.g.1:7.34). If, for a rotary axis, it is not permissible to have any long-term drift, then the actual ratio of the gear teeth must be requested from the gear manufacturer.

Several drive data sets

Position tracking of the load gear can be activated in multiple drive data sets.

- The load gear is DDS-dependent.
- Position tracking of the load gear is calculated only for the active drive data set and is EDS-dependent.
- The position tracking memory is only available once for each EDS.
- If position tracking is to be continued in different drive data sets with the same mechanical relationships and the same encoder data sets, it must be activated explicitly in all relevant drive data sets. Possible applications for drive data set changeover with continued position tracking:
- Star/delta changeover
- Different ramp-up times / controller settings
- When the changeover between drive data sets involves a change in gear unit, the position tracking function starts from the beginning again, i.e. for a changeover, it behaves the same as for a POWER ON.
- For identical mechanical relationships and the same encoder data set, DDS changeover has no effect on the calibration status and reference point status.

Restrictions

- If an encoder data set is used as encoder 1 in several drive data sets with different gears, it is not possible to activate position tracking there. If an attempt is nevertheless made to activate position tracking, fault F07555 (drive encoder: configuration position tracking) is issued with fault value 03 hex.
Generally, it is checked whether the load gear is identical in all DDS in which this encoder data set is used.
Load gear parameters p2504[D], p2505[D], p2720[D], p2721[D] and p2722[D] must be identical in this case.
- If an encoder data set is used in one DDS as a motor encoder with position tracking and in another DDS as an external encoder, the position tracking starts from the beginning again, i.e. it behaves in the same way as for a POWER ON.
- If position tracking is reset in one drive data set, this affects all drive data sets in which this encoder data set is used.
- The maximum permissible movement of an axis in an inactive drive data sets is half the encoder range (see p2722: tolerance window).

The table below describes the changeover behavior on transition from one DDS to another. A changeover is always executed by DDSO.
An overview of DDS changeover without position tracking load gear can be found in section "Instructions for data set changeover" in chapter "Basic positioning - referencing".

9.4 Extended functions

Table 9-14 DDS changeover with load gear position tracking

DDS	p0186 (MDS)	p0187 (encoder _1)	p0188 (encoder 2)	p0189 (encoder (3)	Encoder for position control p2502	Mechan. relationships p2504/ p2505/ p2506 or p2503	Load gear position tracking	Changeover response
0	0	EDS0	EDS1	EDS2	encoder_1	xxx	enabled	---
1	0	EDS0	EDS1	EDS2	encoder_1	xxx	enabled	Switching during pulse inhibit or operation has no effect
2	0	EDS0	EDS1	EDS2	encoder_1	yyy	disabled	Pulse inhibit/operation: Ennoder adjustment and referencing bit are reset. Position tracking for EDS0 is no longer calculated and must be re-adjusted when switching back to DDS0.
3	0	EDS0	EDS1	EDS2	encoder_2	xxx	enabled	Pulse inhibit/operation: Position tracking for EDS0 is eontinued and the referencing bit is reset. 1)
4	0	EDS0	EDS3	EDS2	encoder_2	xxx	enabled	
5	1	EDS4	EDS1	EDS2	encoder_1	xxx	enabled	Pulse inhibit/operation: Position tracking for EDS4 is newly initiated and the referencing bit is reset. ${ }^{1)}$ When switching back to
6	2	EDS5	EDS6	EDS7	encoder_1	zzz	enabled	
DDS0, the same applies for								
EDS0.								

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { DDS } & \begin{array}{l}\text { p0186 } \\ \text { (MDS) }\end{array} & \begin{array}{l}\text { p0187 } \\ \text { (encoder } \\ \text { (1) }\end{array} & \begin{array}{l}\text { p0188 } \\ \text { (encoder } \\ \text { 2) }\end{array} & \begin{array}{l}\text { p0189 } \\ \text { (encoder } \\ \text { (3) }\end{array} & \begin{array}{l}\text { Encoder for } \\ \text { position } \\ \text { control } \\ \text { p2502 }\end{array} & \begin{array}{l}\text { Mechan. } \\ \text { relationships } \\ \text { p2504/ } \\ \text { p2505/ } \\ \text { p2506 or } \\ \text { p2503 }\end{array} & \begin{array}{l}\text { Load gear } \\ \text { position } \\ \text { tracking }\end{array} & \begin{array}{l}\text { Changeover response }\end{array} \\ \hline 8 & 0 & \text { EDS0 } & \text { EDS1 } & \text { EDS2 } & \text { encoder_1 } & \text { xxx } & \text { disabled } & \begin{array}{l}\text { Pulse inhibit/operation: The } \\ \text { referencing bit is reset. 1) } \\ \text { Position tracking for EDS0 is } \\ \text { no longer calculated and, as a } \\ \text { consequence, the position } \\ \text { actual value also changes (the } \\ \text { offset correction of the } \\ \text { position tracking is canceled). } \\ \text { When switching back to DDS0 }\end{array} \\ \text { the position tracking for EDS0 } \\ \text { is newly initiated and the } \\ \text { referencing bit is reset. 1) A } \\ \text { switch back to DDS0 without } \\ \text { making a re-adjustment in } \\ \text { DDS0 only makes sense if the } \\ \text { user did not make any re- } \\ \text { adjustments in DDS8 and the } \\ \text { permissible tolerance window } \\ \text { (p2722) has not been } \\ \text { exceeded. }\end{array}\right]$
${ }^{1)}$ The referencing bit (r2684.11) is reset for a DDS changeover. If, in the new DDS, the EDS already has an adjusted encoder, then the referencing bit is set again.

Definitions:

- Position tracking is continued

The behavior of the position tracking during the changeover is the same as it would have been had the data set not been changed.

- Position tracking is newly initiated (The position actual value can change when the changeover is made!)
The behavior during changeover is the same as the behavior after a POWER ON. The position value read by the absolute encoder is compared to the stored value. If the position difference is within the tolerance window (p2722), the position is corrected correspondingly; if it is outside the range, a corresponding fault message is generated.
- Position tracking is reset (The position actual value can change when the changeover is made!)
The stored absolute value is rejected and the overflow counter is reset to zero.
- Position tracking is not calculated (The position actual value changes when the changeover is made!)

The saved absolute value of the position tracking - including the offset correction from the dissolved DDS - is not used.

- www, xxx, yyy, zzz: Different mechanical conditions.
- Additional information: The position tracking memory is only available once for each EDS.

Function diagram

FP 4010 Position actual value conditioning
FP 4704 Position and temperature sensing, encoders 1... 3
FP 4710 Speed act. value and pole pos. sens., motor enc. (encoder 1)

Parameter

- p2502 LR encoder assignment
- p2503 LR length unit LU per 10 mm
- p2504 LR motor/load motor revolutions
- p2505 LR motor/load load revolutions
- p2506 LR length unit LU per load revolution
- r2520 CO: LR position actual value conditioning encoder control word
- r2521 CO: LR actual position value
- r2522 CO: LR actual velocity value
- r2523 CO: LR measured value
- r2524 CO: LR LU/revolutions
- r2525 CO: LR encoder adjustment offset
- r2526 CO/BO: LR status word
- p2720 Load gear configuration
- p2721 Load gear, absolute encoder, rotary revolutions, virtual
- p2722 Load gear, position tracking, tolerance window
- r2723 CO: Load gear absolute value
- r2724 CO: Load gear position difference

9.4.5.2 Closed-loop position controller

Description

The position controller is a PI controller. The P gain can be adapted using the product of connector input p2537 (position controller adaptation) and parameter p2538 (Kp).
Using connector input p2541 (limit), the speed setpoint of the position controller can be limited without pre-control. This connector input is pre-connected with connector output p2540.

The position controller is enabled by an AND link of the binector inputs p2549 (position controller 1 enable) and p2550 (position controller 2 enable).

The position setpoint filter (p2533 position setpoint filter time constants) is a PT1 element, the balancing filter a dead time element (p2535 balancing filter speed feedforward control (dead time)) and PT1 member(p2536 balancing filter speed feedforward control (PT1)). The speed feedforward control p2534 (speed feedforward control factor) can be deactivated using the value 0 .

Note

We recommend that only experts use the functions of the position controller without using the basic positioner.

Function diagram

$$
\text { FD } 4015 \quad \text { Position controller }
$$

Parameters

- p2533 LR position setpoint filter time constants
- p2534 LR speed feedforward control factor
- p2535 LR speed feedforward control balancing filter dead time
- p2536 LR speed feedforward control balancing filter PT1
- p2537 CI: LR position control adaptation
- p2538 LR proportional gain
- p2539 LR integral time
- p2540 CO: LR position controller output speed limit
- p2541 CI: LR position controller output speed limit signal source

9.4.5.3 Monitoring functions

Description

The position controller monitors the standstill, positioning and following error.

Figure 9-22 Zero-speed monitoring, positioning window

Zero-speed monitoring

Zero-speed monitoring is activated via binector inputs p2551 (setpoint stationary) and p2542 (zero-speed window). If the zero-speed window is not reached once the monitoring time (p2543) has lapsed, fault F07450 is triggered.

Zero-speed monitoring is deactivated with value " 0 " in p 2542 . The zero-speed window should be greater than or equal to the positioning window (p2542 \geq p2544). The zero-speed monitoring time should be less than or equal to the positioning monitoring time (p2543 \leq p2545).

Position monitoring

Positioning monitoring is activated via binector inputs p2551 (setpoint stationary), p2554 = " 0 " (travel command not active) and p2544 (positioning window). Once the monitoring time (p 2545) has elapsed, the positioning window is checked once. If this is not reached, fault F07451 is triggered.

Positioning monitoring can be deactivated with the value "0" in p2544. The zero-speed window should be greater than or equal to the positioning window (p2542 \geq p2544). The zero-speed monitoring time should be less than or equal to the positioning monitoring time (p2543 5 p 2545).

Following error monitoring

Figure 9-23 Following error monitoring
Following error monitoring is activated via p2546 (following error tolerance). If the value specified for the following error (r2563) is greater than p2546, fault F07452 is triggered and bit r2648.8 is reset.

Cam controllers

Figure 9-24 Cam controllers
The position controller has two cam controllers. If cam position p2547 or p2548 is passed in the positive direction ($\mathrm{r} 2521>\mathrm{p} 2547$ or p2548) , then cam signals r2683.8 and r2683.9 are reset.

Function diagram

FP 4020 Zero-speed / positioning monitoring
FP 4025 Dynamic following error monitoring, cam controller

Parameters

- p2530 CI: LR setpoint position
- p2532 CI: LR actual position value
- p2542 LR zero-speed window
- p2543 LR zero-speed monitoring time
- p2544 LR positioning window
- p2545 LR position monitoring time
- p2546 LR dynamic following error monitoring tolerance
- p2547 LR cam switching position 1
- p2548 LR cam switching position 2
- p2551 BI: LR setpoint message present
- p2554 BI: LR travel command message active
- r2563 CO: LR latest following error
- r2683.8 Actual position value <= cam switching position 1
- r2683.9 Actual position value <= cam switching position 2
- r2684 CO/BO: EPOS status word 2

9.4.5.4 Measurement probe evaluation and reference mark search

Description

Binector inputs p2508 (activate reference mark search) and p2509 (activate measurement probe evaluation) can be used to trigger and run the "measurement probe evaluation" and "reference mark search" functions. Binector inputs p2510 (measurement probe selection) and p2511 (measurement probe edge evaluation) define the mode for measurement probe evaluation.

The probe signals are recorded via the encoder encoder status and control word. To speed up signal processing, direct measuring probe evaluation can be activated by selecting the input terminals for probes $1 / 2$ via p2517 and p2518. Measuring probe evaluation is carried out in the position controller cycle, whereby the set send clock cycle of the controller (r2064[1]) must be an integer multiple of the position controller cycle (p0115[4]).
The system outputs a message if the same probe input is already being used (see also p0488, p0489, p0580, and p0680).

The appropriate function is started using a 0/1 edge at the appropriate input (p2508 (activate reference mark search) or p2509 (activate measuring probe evaluation)) via the encoder control word. Status bit r2526.1 (reference function active) reports the activity of the function (feedback from sensor status word). Status bit r2526.2 (measurement value valid) indicates the presence of the measurement value required r2523 (position for reference mark or measurement probe).

Once the function is complete (position determined for reference mark or measurement probe), r2526.1 (reference function active) and r2526.2 (measurement valid) continue to remain active and the measurement is provided by r2523 (reference measurement) until the corresponding input p2508 (activate reference mark searches) or p2509 (activate measurement probe evaluation) is reset (0 signal).
If the function (reference mark search or measuring probe evaluation) has still not been completed and the corresponding input p2508 or p2509 is reset, then the function is interrupted via the encoder control word and status bit r2526.1 (reference function active) is reset via the encoder status word.

Setting the two binector inputs p2508 and p2509 at the same time results in the active function being aborted and/or no functions being started. This is indicated by alarm A07495 "reference function aborted" and remains active until the activations at the binector inputs are reset. The alarm is also generated if a fault is signaled during an activated function (reference mark search or measurement probe evaluation) by the encoder status word.

If the "position controller" function module is selected, these parameters (p2508 to p2511) are preassigned with " 0 ". If the "basic positioner" function module is selected, the "reference mark search" (for search for reference point) and "measurement probe evaluation" (for the flying referencing function) functions are initiated by the "basic positioner" function module and feedback (r2526, r2523) returned to this.

Function diagram

FD 4010 Actual position value preparation
FD 4720 Encoder interface, receive signals, encoder 1... 3
FD 4730 Encoder interface, send signals, encoder 1... 3

Parameters

- p2508 BI: LR activate reference mark searches
- p2509 BI: LR activate measurement probe evaluation
- p2510 BI: LR measurement probe evaluation selection
- p2511 BI: LR measurement probe evaluation edge
- p2517 LR direct probe 1 input terminal
- p2518 LR direct probe 2 input terminal
- r2523 CO: LR measured value
- r2526 CO/BO: LR status word

9.4.6 Basic positioner

Description

The "basic positioner" function module (EPOS) is used for the absolute/relative positioning of linear and rotary axes (modulo) with motor encoders (indirect measuring system) or machine encoders (direct measuring system).

User-friendly configuration, commissioning, and diagnostic functions are also available in STARTER for the basic positioner functionality (graphic navigation). In STARTER, there is a control panel for the basic positioner and speed-controlled operation; using this control panel, the functionality can be started from a PC/PG to commission the system or carry out diagnostics.

When the basic positioner is activated (r0108.4 = 1), position control (r0108.3 = 1) must also be activated. This occurs automatically when the basic positioner is activated by the commissioning Wizard in STARTER. The required "internal connections" (BICO technology) are also established automatically.

ⒸAUTION

The basic positioner requires the position controller functions. The BICO interconnections established by the basic positioner must be changed by experienced users only.

As a result, the position control functions are also available (e.g. zero-speed monitoring, position monitoring, dynamic following error monitoring, cam controllers, modulo function, measurement probe evaluation). See "Closed-loop position control".

In addition, the following functions can be carried out using the "basic positioner" function module:

- Mechanical system (is assigned to position controller in the STARTER)
- Backlash compensation
- Modulo offset
- Position tracking of the load gearbox (motor encoder) with absolute encoders
- Limitations
- Velocity profile limitations
- Traversing range limits
- Jerk limit
- Homing or adjustment
- Setting reference point (with stationary axis)
- Homing (separate mode including reversing cam functionality, automatic reversal of direction, homing to "cams and encoder zero mark" or only "encoder zero mark" or "external zero mark (BERO)")
- Flying referencing (superimposed homing possible during "normal" traversing with the aid of the measurement probe evaluation (normally evaluation of a BERO, for example). Superimposed function for the modes "Jog", "Direct setpoint specification / MDI" and "Traversing blocks".
- Homing with incremental measuring systems
- Absolute encoder adjustment
- Traversing blocks operating mode
- Positioning by means of traversing blocks stored in the device, including continuation conditions and specific jobs for previously homed axis
- Traversing block editor using STARTER
- A traversing block contains the following information:

Job number
Task (e.g. position, wait, GOTO set jump, set binary outputs)
Motion parameters (target position, override speed for acceleration and deceleration)
Mode (e.g.: skip block, continuation conditions such as "Continue_with_stop" and "Continue_flying") Job parameters (e.g. wait time, block step conditions)

- Direct setpoint specification mode (MDI)
- Positioning (absolute, relative) and setting-up (endless closed-loop position control) using direct setpoint inputs (e.g. via the PLC or process data)
- It is always possible to influence the motion parameters during traversing (on-the-fly setpoint acceptance) as well as on-the-fly change between the Setup and Positioning modes.
- Jog mode
- Position-controlled traversing of the axis with the switchable modes "Endless positioncontrolled" or "Incremental jog" (to traverse an "increment")
- Standard PROFIdrive positioning telegrams are available (telegrams 7, 9 and 110), the selection of which automatically establishes the internal "connection" to the basic positioner.
- Control using PROFIdrive telegrams 7 and 110.

Commissioning

The "basic positioner" function module can be activated by running the commissioning Wizard. Parameter r0108.4 indicates whether the function module has been activated.

9.4.6.1 Mechanical system

Description

Figure 9-25 Backlash compensation
When mechanical force is transferred between a machine part and its drive, generally backlash occurs. If the mechanical system was to be adjusted/designed so that there was absolutely no play, this would result in high wear. Thus, backlash (play) can occur between the machine component and the encoder. For axes with indirect position sensing, mechanical backlash results in a falsification of the traversing distance, as, at direction reversal, the axis travels either too far or not far enough corresponding to the absolute value of the backlash.

Note

The backlash compensation is active under the following supplementary conditions:

- for an incremental measuring system: after the axis has been referenced (homed).
- For an absolute measuring system: after the axis has been adjusted.

In order to compensate the backlash, the determined backlash must be specified in p2583 with the correct polarity. At each direction of rotation reversal, the axis actual value is corrected dependent on the actual traversing direction and is displayed in r2667. This value is converted into the actual position value by p2516 (position offset).

If a stationary axis is referenced by setting a reference point or an adjusted axis is activated with the absolute encoder, the setting of parameter p2604 (reference point approach start direction) is relevant to activating the compensation value.

Table 9-15 Activation of compensation value depending on p2604

p2604 (start direction)	Travel direction	Activation of the compensation value
0	positive	None
	negative	immediately
1	positive	immediately
	negative	None

Modulo offset

Figure 9-26 Modulo offset
A modulo axis has an unrestricted travel range. The range of values for the position repeats following a particular parameterizable value (the modulo range and/or axis cycle), e.g. following one revolution: $360^{\circ}->0^{\circ}$. The modulo range is set in parameter p2576, the offset is activated with parameter p2577. The modulo offset is undertaken at the setpoint end. This is provided with the correct prefix via the connector output r2685 (offset value) in order to offset the actual position value accordingly. Activation of the offset is initiated by a rising edge of binector output r2684.7 (activate offset) of the "basic positioner" function module (r2685 (offset value) and r2684.7 (activate offset) are already linked to the corresponding binector/connector input of position actual value conditioning). Absolute positioning date (e.g. in a traversing block) must always be within the modulo range. The traversing range cannot be restricted by software limit switches.

With active modulo offset and the application of absolute encoders, as a result of potential encoder overflows, it must be ensured that there is an integer ratio v between the multiturn resolution and the modulo range.

The ratio v can be calculated as follows:

- Motor encoder without position tracking: $v=(p 0421 \times p 2506 \times \mathrm{p} 0433 \times \mathrm{p} 2505) /(\mathrm{p} 0432 \times \mathrm{p} 2504 \times \mathrm{p} 2576)$
- Motor encoder with position tracking for measuring gear: $\mathrm{v}=(\mathrm{p} 0412 \times \mathrm{p} 2506 \times \mathrm{p} 2505) /(\mathrm{p} 2504 \times \mathrm{p} 2576)$
- Motor encoder with position tracking for load gear: $v=(p 2721 \times p 2506 \times p 0433) /(p 0432 \times p 2576)$
- Motor encoder with position tracking for load and measuring gear: $v=(p 2721 \times p 2506) / p 2576$
- Direct encoder without position tracking: $\mathrm{v}=(\mathrm{p} 0421 \times \mathrm{p} 2506 \times \mathrm{p} 0433) /(\mathrm{p} 0432 \times \mathrm{p} 2576)$
- Direct encoder with position tracking for measuring gear: v = (p0412 x p2506) / p2576

With position tracking it is recommended to change p0412 or p2721.

Function diagram

FP 3635
Interpolator
FP $4010 \quad$ Position actual value conditioning

Parameter

- p2576
- p2577
- p2583
- r2684
- r2685

EPOS modulo offset modulo range
BI: EPOS modulo offset activation
EPOS backlash compensation
CO/BO: EPOS status word 2
CO: EPOS offset value

9.4.6.2 Limitations

Description

The velocity, acceleration and delay can be restricted and the software limit switches and STOP cams set.

The following restrictions exist:

- Velocity profile limitations
- Maximum speed (p2571)
- Maximum acceleration (p2572) / maximum delay (p2573)
- Traversing range limits
- Software limit switches (p2578, p2579, p2580, p2581, p2582)
- STOP cams (p2568, p2569, p2570)
- Jerk limit
- Jerk limitation (p2574)
- Activation of jerk limitation (p2575)

Maximum velocity

The maximum velocity of an axis is defined using parameter $p 2571$. The velocity should not be set to be greater than the maximum speeds in r1084 and r1087.

The drive is limited to this velocity if a higher velocity is specified or programmed via the override (p 2646) for the reference point approach or is programmed in the traversing block.

Parameter p2571 (maximum velocity) defines the maximum traversing velocity in units of 1000 LU/min. Changing the maximum speed restricts the velocity of an active traversing block.

This restriction is only effective in positioning mode during:

- Jog mode
- Traversing block processing
- Direct setpoint specification/MDI for positioning/setting up
- Reference point approach

Maximum acceleration/delay

Parameters p2572 (maximum acceleration) and p2573 (maximum delay) define the maximum acceleration and maximum delay. The unit in both cases is $1000 \mathrm{LU} / \mathrm{s}^{2}$.

Both values are relevant during:

- Jog mode
- Traversing block processing
- Direct setpoint specification/MDI for positioning and setting up
- Reference point approach

The parameters are of no effect if faults with the fault reactions OFF1 / OFF2 / OFF3 arise.
In the "traversing blocks" operating mode, the acceleration and/or deceleration can be set in integer steps ($1 \%, 2 \%$ to 100%) of the maximum acceleration and deceleration. In "direct setpoint input/MDI for positioning and setting up" operating mode, the acceleration/deceleration override (assignment of $4000 \mathrm{Hex}=100 \%$) is specified.

Note

A maximum acceleration and/or delay dependent on current velocity (zigzag acceleration) is not supported.

Note

When using the PROFIdrive message frame 110, the velocity override is already connected and has to be supplied by the message frame.

Software limit switch

The connector inputs p2578 (software limit switch, minus) and p2579 (software limit switch, plus) restrict the setpoint position if the following preconditions are satisfied:

- Software limit switches are activated (p2582 = "1")
- Reference point is set (r2684.11=1)
- Modulo offset is not active (p2577 = "0")

In their factory setting, the connector inputs are linked with connector output p2580 (software limit switch, minus) and/or p2581 (software limit switch, plus).

STOP cam

A traversing range can be restricted firstly by software using software limit switches and secondly the traversing range can be limited by hardware. The function of the STOP cams (hardware limit switches) is used for this purpose. The function of the STOP cams is activated by the 1 signal on binector input p2568 (activation of STOP cams).

Once enabled, the activity of binector inputs p2569 (STOP cam, minus) and p2570 (STOP cam, plus) is checked. These are low active cams, i.e. they are active if the 0 signal is present at binector input p2569 or p2570.

When a STOP cam (p2569 or p2570) is active, the current motion is stopped with OFF3 and the appropriate status bit r2684.13 (STOP cam minus active) or r2684.14 (STOP cam plus active) is set.

When an axis has approached a STOP cam, only motion that allows the axis to move away from the cam is permitted (if both STOP cams are actuated, then no motion is possible). Motion away from the STOP cam in the permitted travel direction is detected by the 0/1 edge and the corresponding status bits (r2684.13 and/or r2684.14) are therefore reset.

Jerk limit

Acceleration and deceleration can change suddenly if jerk limiting has not been activated. The diagram below shows the traversing profile when jerk limitation has not been activated.
The maximum acceleration ($a_{\max }$) and deceleration ($\mathrm{d}_{\max }$) are effective immediately. The drive accelerates until the target speed ($V_{\text {target }}$) is reached and then switches to the constant velocity phase.

Figure 9-27 Jerk limitation deactivated
Jerk limitation can be used to achieve a ramp-like change of both variables, which ensures "smooth" acceleration and braking as shown in the diagram below. Ideally, acceleration and deceleration should be linear.

Figure 9-28 Jerk limitation activated
The maximum inclination (r_{k}) can be set in parameter p2574 (Jerk limitation) in the unit LU/s ${ }^{3}$ for both acceleration and braking. The resolution is $1000 \mathrm{LU} / \mathrm{s}^{3}$. To activate the limitation permanently, set parameter p2575 (Activate jerk limitation) to 1. In this case, limitation cannot be activated or deactivated in traversing block mode by means of the command "JERK" Switching the limitation on/off in the traversing block mode requires parameter p2575 (Activate jerk limitation) to be set to zero. The status signal r2684.6 (Jerk limitation active) indicates whether or not jerk limitation is active.

Limitation is effective:

- In jog mode
- When traversing blocks are processed
- When setpoints are defined directly/MDI for positioning and setup
- during referencing
- During stop responses due to alarms

Jerk limitation is not active when messages are generated with stop responses OFF1 / OFF2 / OFF3.

Function diagram

FD $3630 \quad$ Traversing range limits

Parameter

- p2571 EPOS maximum speed
- p2572 EPOS maximum acceleration
- p2573 EPOS maximum delay
- p2646 CI: EPOS velocity override

Software limit switches:

- p2578 CI: EPOS software limit switch, minus signal source
- p2579 CI: EPOS software limit switch, plus signal source
- p2580 CO: EPOS software limit switch, minus
- p2581 CO: EPOS software limit switch, plus
- p2582 BI: EPOS software limit switch activation
- r2683 CO/BO: EPOS status word 1

STOP cams:

- p2568 BI: EPOS STOP cam activation
- p2569 BI: EPOS STOP cam, minus
- p2570 BI: EPOS STOP cam, plus
- r2684 CO/BO: EPOS status word 2

Jerk limit:

- p2574 EPOS jerk limitation
- p2575 BI: Jerk limitation activation

9.4.6.3 Basic positioner and Safely-Limited Speed

If safe speed monitoring (SLS) is also to be used at the same time as the EPOS positioning function, EPOS must be informed of the activated speed monitoring limit. Otherwise the speed monitoring limit can be violated by the EPOS setpoint input. As a result of the SLS monitoring, this violation results in the drive being stopped and thus abandoning the planned motion sequences. Here the relevant safety faults are output first, and the sequential faults created by EPOS are only output afterwards.

With its parameter r9733, the SLS function provides a setpoint limit value which, when taken into account, prevents the SLS limit value from being violated.

This means that the setpoint limit value in r9733 must therefore be transferred to the input for the maximum setpoint speed/velocity of EPOS (p2594), to prevent an SLS limit value violation as a result of the EPOS setpoint input. In this regard, you must set the delay time for SLS/SOS (p9551/p9351) so that the SLS only becomes active after the maximum required time for the speed to be reduced below the SLS limit. This required braking time is determined by the actual speed, the jerk limit in p2574 and the maximum deceleration in p2573.

Overview of important parameters

- p2573 EPOS maximum deceleration
- p2574 EPOS jerk limitation
- p2593 CI: EPOS LU/revolution LU/mm
- p2594 CI: EPOS maximum speed, externally limited
- p9351 SI Motion SLS changeover delay time (Motor Module)
- p9551 SI Motion SLS(SG) changeover delay time (Control Unit)
- r9733(0.1) CO: SI Motion setpoint speed limit effective

9.4.6.4 Referencing

Description

Once a machine has been switched on, the absolute dimensional reference to the machine's zero point must be established for positioning purposes. This procedure is referred to as referencing.

The following types of referencing are available:

- Setting reference point (all encoder types)
- Active referencing (reference point approach (p2597 = 0), with incremental encoder):
- Referencing cam and encoder zero mark (p2607 = 1)
- Encoder zero mark (p0495 = 0 or p0494 = 0)
- External zero mark (p0495 $=0$ or p0494 $=0$)
- Flying referencing (passive (p2597 = 1), with incremental encoder)
- Absolute encoder adjustment (with absolute value encoder)
- Flying referencing (passive (p2597 = 1), with absolute encoder)

A connector input is provided to enter reference point coordinates for all types of referencing. This allows e.g. changes/input via the higher-level control. An adjustable parameter for this variable is however needed for the fixed specification of reference point coordinates. This adjustable parameter p2599 is connected to connector input p2598 as standard.

Note

Referencing of distance-coded zero marks is not supported.

Set reference point

The reference point can be set using a $0 / 1$ edge at binector input p2596 (set reference point) if no traversing commands are active and the actual position value is valid (p2658 = 1signal).
A reference point can also be set for an intermediate stop.
The current actual position of the drive is set here as the reference point using the coordinates specified by connector input p2598 (reference point coordinates). The setpoint (r2665) is adjusted accordingly.

This function also uses actual position value correction for the position controller (p2512 and p2513). Connector input p2598 is connected to adjustable parameter p2599 as standard. The binector input is not effective for the traversing task being presently executed.

Absolute encoder adjustment

Absolute encoders have to be adjusted during commissioning. Once the machine has been switched off, the encoder's position information is retained.

With the aid of the reference point coordinates in p2599 and by entering p2507 = 2, an offset value (p 2525) is calculated and is then used to calculate the actual position value (r 2521). Parameter p2507 reports calibration using a " 3 ". Bit r2684.11 (reference point set) is also set to "1".

For permanent acceptance, the encoder adjustment offset (p2525) should be saved in a non-volatile manner (RAM to ROM).

Note

If an adjustment is lost on an already adjusted axis, the axis will remain unadjusted even after a POWER ON of the drive unit. The axis needs to be adjusted again in such cases.

> DCAUTION
> During adjustment with the rotary absolute encoder, a range is aligned symmetrically around the zero point with half the encoder range within which the position is restored after switch off/on. If position tracking is deactivated ($2720.0=0$), only one encoder overflow is permitted to occur in this range (further details are given in chapter "Position controller -> Actual position value conditioning"). Once adjustment has been carried out, the range must not be exited because a unique reference between the actual encoder value and the mechanical components cannot be established outside the range.
> If the reference point p2599 is in the encoder range, the actual position value is set in line with the reference point during adjustment. Otherwise, it is set to a corrected value in the encoder range.
> No overflow occurs with linear absolute encoders, which means that the position can be restored within the entire traversing range after switch on/off once adjustment has been carried out. During adjustment, the actual position value is set in line with the reference point.

Referencing with DRIVE-CLiQ encoders

DRIVE-CLiQ encoders are available as either a "multiturn" or "singleturn" absolute encoders. If the "referencing" function is selected via the PROFIdrive encoder interface and if a DRIVECLiQ encoder or other type of absolute encoder is connected via the DRIVE-CLiQ interface, the zero crossing of the singleturn position is used as the reference point.

Reference point approach of incremental measuring systems

The reference point approach (when using an incremental measuring system) is used to move the drive to its reference point. The entire referencing cycle is controlled and monitored by the drive.

Incremental measuring systems require the absolute dimensional reference to the machine's zero point to be established once a machine has been switched on. When powering-up the position actual value x_{0} in the non-referenced state is set to $x_{0}=0$. The reference point approach can be used to move the drive to its reference point in a reproducible manner. The geometry gained with a positive start direction (p2604 = " 0 ") is shown below.

Figure 9-29 Example: reference point approach with reference cam
The signal on binector input p2595 (start referencing) is used to trigger travel to the reference cam ($\mathrm{p} 2607=1$) if reference point approach is selected at the same time (0 signal at binector input p2597 (referencing type selection). The signal in binector input p2595 (start referencing) must be set during the entire referencing process otherwise the process is aborted. Once started, the status signal r2684.11 (reference point set) is reset.

During the entire reference point approach, monitoring of the software limit switches is inactive; only the maximum traversing range is checked. If necessary, monitoring of the software limit switches is reactivated once complete.

The velocity override set is only effective during the search for the reference cam (step 1). This ensures that the "cam end" and "zero mark" positions are always overrun at the same speed. If signal propagation delays arise during switching processes, this ensures that the offset caused during establishment of position is the same in each referencing process.

Axes which only have one zero mark over their entire traversing and/or modulo range, are identified using parameter p2607 = 0 (reference cam present). After starting the referencing process, synchronization to the reference zero marks is started straight away (see step 2) for these axes.

- Reference point approach, step 1: travel to reference cam

If there is no reference cam present (p2607 = 0), go to step 2.
When the referencing process is started, the drive accelerates at maximum acceleration (p 2572) to the reference cam approach velocity (p 2605). The direction of the approach is determined by the signal of binector input p2604 (reference point approach start direction).

The drive is informed that the reference cam has been reached by the signal at binector input p2612 (reference cam). The drive is then decelerated to a standstill using the maximum delay (p2573).

If a signal at binector input p2613 (reversing cam, MINUS) or at binector input p2614 (reversing cam, PLUS) is detected during reference point approach, the search direction is reversed.

If the "reversing cam, MINUS" is approached in the positive direction, or the "reversing cam, PLUS" is approached in the negative direction, fault F07499 (EPOS: reversing cam approached with the incorrect traversing direction) is output. In this case, the wirng of the reversing cam (p2613, p2614) and/or the traversing direction for approaching the reversing cam must be checked.
The reversing cams are low active cams. If both reversing cams are active (p2613 = "0" and p2614 = "0"), the drive remains stationary. As soon as the reference cam is found, then synchronization to the reference zero mark is immediately started (refer to step 2).

If the axis leaves its start position and travels the distance defined in parameter p2606 (max. distance to reference cam) heading towards the reference cam without actually reaching the reference cam, the drive remains stationary and fault F07458 (reference cam not found) is issued.
When starting the referencing process, if the axis is already at the cam, it does not have to travel to the reference cam and instead synchronization to the reference zero mark is started straight away (see step 2).

Note

The velocity override is effective during the search for the cam. By changing the encoder data set, status signal r2684.11 (reference point set) is reset.
The cam switch must be able to delivery both a rising and a falling edge.
During the reference point approach when evaluating the sensor zero mark, the 0/1 edge is evaluated with increasing actual position values and the $1 / 0$ edge with falling actual position values. Inversion of the edge evaluation is not possible at the sensor zero mark.

If the length measuring system has several zero marks which repeat at cyclic intervals (e.g. incremental, rotary measuring system), you must ensure that the cam is adjusted so that the same zero mark is always evaluated.

The following factors may impact on the characteristics of the "reference cam" control signal:

- Switching accuracy and time delay of reference cam switch
- Position controller cycle of drive
- Interpolation cycle of drive
- Temperature sensitivity of machine's mechanical system
- Reference point approach, step 2: Synchronization to reference zero mark (encoder zero mark or external zero mark)
Reference cam available (p2607 = 1):
In step 2, the drive accelerates to the velocity specified in p2608 (zero mark approach velocity) in the direction opposite to that specified by binector input p2604 (reference point approach start direction). The zero mark is expected at distance p2609 (max. distance to zero mark). The search for the zero mark is active (status bit r2684.0 = "1" (reference point approach active)) as soon as the drive leaves the cam (p2612 = "0") and is within the tolerance band for evaluation (p2609-p2610). If the position of the zero mark is known (encoder evaluation), the actual position of the drive can be synchronized using the zero mark.

The drive starts the reference point approach (see step 3). The distance traveled between the cam end and zero mark is displayed in parameter r2680 (difference between cam and zero mark).
Encoder zero mark present (p0495 = 0 or p0495 = 0), no reference cam (p2607 = 0):
Synchronization to the reference zero mark begins as soon as the signal at binector input p2595 (start referencing) is detected. The drive accelerates to the velocity specified in parameter p2608 (zero mark approach velocity) in the direction specified by the signal of the binector input p2604 (reference point approach start direction).
The drive synchronizes to the first zero mark. and then starts to travel towards the reference point (see step 3).

Note

In this case the direction of approach to the encoder zero mark is the opposite to the axes with reference cams!

External zero mark available (p0495 $=0$ or p0494 $\ddagger 0$) *), no reference cams (p2607 = 0):
Synchronization to an external zero mark begins as soon as the signal at binector input p2595 (start referencing) is detected. The drive accelerates to the velocity specified in parameter p2608 (zero mark approach velocity) in the direction specified by the signal of the binector input p2604 (reference point approach start direction).

The drive synchronizes to the first external zero mark (p0495). The drive continues at the same speed and travel to the reference point is started (see step 3).

Note

The velocity override is inoperative during this process.
Parameter p0494 or p0495 (equivalent zero mark at input terminal) can be used to set an equivalent zero mark and to select the corresponding digital input. The 0/1 edge is evaluated with increasing actual position values and the $1 / 0$ edge with falling actual position values as standard. This can be inverted for an equivalent zero mark using parameter p0490 (measurement probe or equivalent zero mark).

- Reference point approach, step 3: travel to reference point

Travel to the reference point is started when the drive has successfully synchronized to the reference zero mark (see step 2). Once the reference zero mark has been detected, the drive accelerates on-the-fly to the reference point approach velocity set in parameter p2611. The drive moves through the reference point offset (p2600), i.e. the distance between the zero mark and reference point.

Once the axis has reached the reference point, the actual and setpoint position value is set to the value specified at connector input p2598 (reference point coordinates) (connector input p2598 is linked to adjustable parameter p2599 as standard). The axis is then referenced and the status signal r2684.11 (reference point set) set.

Note

The velocity override is inoperative during this process.
If the braking distance is longer than the reference point offset or a direction reversal is required as a result of the selected reference point offset, then, after the reference zero mark has been detected, the drive initially brakes to standstill and then travels back.

Flying referencing

The "on-the-fly referencing" mode (also known as post-referencing), which is selected using a "1" signal at binector input p2597 (select referencing type), can be used in every mode (jogging, traversing block and direct setpoint input for positioning/setup) and is superimposed on the currently active mode. Flying referencing can be selected both with incremental and absolute measuring systems.
With "flying referencing" during incremental positioning (relative), you can select whether the offset value is to be taken into account for the travel path or not (p2603).
"Flying referencing" is activated by a 0/1 edge at binector input p2595 (start referencing). The signal in binector input p2595 (start referencing) must be set during the entire referencing process otherwise the process is aborted.

Status bit r2684.1 (passive/flying referencing active) is linked with binector input p2509 (activate measurement probe evaluation). It activates measurement probe evaluation. Binector inputs p2510 (measurement probe selection) and p2511 (measurement probe edge evaluation) can be used to set which measurement probe (1 or 2) and which measurement edge ($0 / 1$ or $1 / 0$) is to be used.

The probe pulse is used to supply connector input p2660 (referencing/homing measured value) with the measured value via parameter r2523. The validity of the measurement is reported to binector input p2661 (measurement valid feedback) via r2526.2.

Note

The following must always apply to the "Flying referencing mode" windows:
p2602 (outer window) > p2601 (inner window).
See function diagram 3614 for more information on the "Flying referencing mode" function.

The following then happens:

- If the drive has not yet been referenced, status bit r2684.11 (reference point set) is set to "1".
- If the drive has already been referenced, status bit r2684.11 (reference point set) is not reset when starting flying referencing.
- If the drive has already been referenced and the position difference is less than the inner window (p 2601), the old actual position value is retained.
- If the drive has already been referenced and the position difference is more than the outer window (p2602), alarm A07489 (reference point offset outside window 2) is output and the status bit r2684.3 (pressure mark outside window 2) set. No offset to the actual position value is undertaken.
- If the drive has already been referenced and the position difference is more than the inner window (p2601) and less that the outer window (p2602), the actual position value is offset.

Note

Flying referencing is not an active operating mode. It is superimposed by an active operating mode.

In contrast to eference point approach, flying referencing can be carried out superimposed by the machine process.

As standard, for flying referencing, measuring probe evaluation is used; when enabled, the measuring probe is selected (p2510) and the edge evaluation (p2511) (in the factory setting, measuring probe 1 is always the measuring probe, flank evaluation in the factory setting is always the 0/1 edge).

Instructions for switching data sets

Using drive data set changeover (DDS), motor data sets (MDS, p0186) and encoder data sets (EDS, p0187 to p0189) can be changed over. The following table shows when the reference bit (r2684.11) or the status of the adjustment with absolute encoders (p2507) is reset.

In the following cases, when a DDS changeover takes place, the actual position value becomes invalid (p2521 $=0$) and the reference point (r2684.11 $=0$) is reset.

- The encoder data set (EDS) that is effective for the position control changes.
- The encoder assignment changes (p2502).
- The mechanical conditions change (p2503 ... p2506).

With absolute encoders, the status of the adjustment (p2507) is also reset, if the same absolute encoder is selected for the position control although the mechanical conditions have changed (p2503 ... p2506).

In operating mode, an error message (F07494) is also generated.
The following table contains a few examples for data set switching. The initial data set is always DDS0.

Table 9-16 DDS switch without load gear position tracking

DDS	$\begin{aligned} & \text { p0186 } \\ & \text { (MDS) } \end{aligned}$	$\begin{aligned} & \text { p0187 } \\ & \text { (encoder_1) } \end{aligned}$	$\begin{array}{\|l} \hline \text { p0188 } \\ \text { (encoder_2) } \end{array}$	$\begin{array}{\|l} \hline \text { p0189 } \\ \text { (encoder_3) } \end{array}$	Encoder for position control p2502	Mechan. Relation- ships p2504/ p2505/ p2506 or p2503	Load gear position tracking	Changeover response
0	0	EDS0	EDS1	EDS2	$\begin{array}{\|l} \text { encoder_ } \\ 1 \end{array}$	xxx	disabled	---
1	0	EDS0	EDS1	EDS2	$\begin{aligned} & \text { encoder_ } \\ & 1 \end{aligned}$	xxx	disabled	Switching during pulse inhibit or operation has no effect
2	0	EDS0	EDS1	EDS2	$\text { encoder_}^{\prime}$ 1	yyy	disabled	Pulse inhibit: Position actual value preprocessing is newly initiated ${ }^{1)}$ and reference bit ${ }^{2}$) is reset. Operation: Fault message is generated. Position actual value preprocessing is newly initiated ${ }^{1)}$ and reference bit ${ }^{2}$) is reset.
3	0	EDS0	EDS1	EDS2	$\begin{array}{\|l} \hline \text { encoder_ } \\ 2 \\ \hline \end{array}$	xxx	disabled	Pulse inhibit: Position actual value preprocessing is newly initiated ${ }^{1)}$ and reference bit ${ }^{3}$) is reset. Operation: Fault message is generated. Actual position value conditioning newly set ${ }^{1)}$ and reference bit ${ }^{3}$) is reset.
4	0	EDS0	EDS3	EDS2	encoder_ 2	xxx	disabled	
5	1	EDS4	EDS1	EDS2	encoder_ 1	xxx	disabled	
6	2	EDS5	EDS6	EDS7	$\begin{aligned} & \text { encoder_ } \\ & 1 \end{aligned}$	zzz	disabled	
7	3	EDS0	EDS1	EDS2	$\begin{array}{\|l} \text { encoder_ } \\ 1 \end{array}$	xXX	disabled	MDS switching alone during pulse inhibit or operation has no effect

${ }^{1)}$ Is newly initiated means: For absolute encoders, the absolute value is read out anew and for incremental encoders a restart is performed just like after a POWER ON.
2) For incremental encoders r2684.11 (reference point set) is reset, and additionally for absolute encoders the status of adjustment (p2507).
3) For incremental encoders r2684.11 (reference point set) is reset, and for absolute encoders the status of adjustment (p2507) is not reset in addition, because the encoder data set is different from the original.
$x x x, y y y, z z z:$ different mechanical conditions

Function diagram

FP 3612	Referencing
FP 3614	Flying referencing

Parameter

- p0494[0...n] Equivalent zero mark input terminal *)
- p0495 Equivalent zero mark, input terminal
- p2596 BI: EPOS set reference point
- p2597 BI: EPOS referencing type selection
- p2598 CI: EPOS reference point coordinates signal source
- p2599 CO: EPOS reference point coordinates value
- p2600 EPOS reference point approach, reference point offset

Jarameter p0494 corresponds to parameter p0495 regarding its significance. In addition, parameter p0494 is dependent on a particular encoder data set.

9.4.6.5 Traversing blocks

Description

Up to 64 different traversing blocks can be saved. The maximum number is set using parameter p2615 (maximum number of traversing blocks).

All parameters which describe a traversing task are effective during a block change after the following events:

- If the corresponding block number is selected using binector inputs p2625 to p2630 (block selection bits $0 \ldots 5$) and is started using the signal at binector input p2531 (activate traversing task).
- If a block change is made in a sequence of traversing tasks.
- If an external block change p2632 (external block change) is triggered.

Traversing blocks are parameterized using parameter sets that have a fixed structure:

- Traversing block number (p2616[0...63])

A job number (in STARTER "No.") must be assigned to each traversing block. The traversing blocks are processed in the sequence of the job numbers. Numbers containing the job number "-1" are ignored, which means that the space can be reserved for subsequent traversing blocks, for example.
Task (p2621[0...63])
1: POSITIONING
2: FIXED ENDSTOP
3: ENDLESS_POS
4: ENDLESS_NEG
5: WAIT
6: GOTO
7: SET_O
8: RESET_O
9: JERK

- Motion parameters
- Target position or traversing distance (p2617[0...63])
- Velocity (p2618[0...63])
- Acceleration override (p2619[0...63])
- Deceleration override (p2620[0...63])
- Task mode (p2623[0...63])

Processing a traversing block can be influenced by means of parameter p2623 (task mode). This is described automatically by programming the traversing blocks in STARTER.

Value $=0000 \operatorname{cccc}$ bbbb aaaa
aaaa: Display / hide

0000:	Block is not hidden
0001:	Block is hidden

A hidden block cannot be selected binary-coded via binector inputs p2625 to p2630. An alarm is output if you attempt to do so.
bbbb: Continuation condition
0000, END: 0/1 edge at p2631
0001, CONTINUE_WITH_STOP: The position parameterized in the block is approached
accurately (brake to standstill and positioning window
monitoring) before block processing is continued.

0010, CONTINUE_ON-THE- An on-the-fly change is made to the next traversing block FLY: once the brake usage point of the current block is reached (if a change in direction is required, the change only takes place during a stop in the positioning window)
0011, CONTINUE_EXTERNAL: Behavior such as CONTINUE_ON-THE-FLY; however, an immediate block change can be triggered by a $0 / 1$ edge, up to the braking point. The $0 / 1$ edge can be connected to parameter r2526.2 of the "position control" function module, via the binector input p2633 with p2632 = 1, or via the measuring input p2661 with p2632 $=0$. Position detection via the measuring input can be used as an accurate starting position for relative positioning. If no external block change is triggered, a block change occurs at the braking point.
0100, An on-the-fly change can be triggered in the next request
CONTINUE_EXTERNAL_WAIT: during the entire motion phase via the control signal "External block change". If "External block change" is not triggered, the axis remains in the parameterized target position until the signal is issued. CONTINUE_EXTERNAL differs in that an on-the-fly change is executed at the braking point if no "External block change" was triggered, while there is a wait for the signal here in the target position.
0101, The behavior is the same as for
CONTINUE_EXTERNAL_ALAR CONTINUE_EXTERNAL_WAIT, but alarm A07463 M:
"External traversing block change in traversing block x not requested" is output if an "external block change" has not been triggered before standstill is reached. The alarm can be converted to a fault with a stop response so that block processing can be aborted if the control signal is not issued.
cccc: Positioning mode
With the POSITION task (p2621 = 1), this defines how the position specified in the traversing block is to be approached.
0000, ABSOLUTE: The position specified in p2617 is approached
0001, RELATIVE:
The axis is traveled along by the value in p2617.
0010, ABS_POS:

0011, ABS_NEG:

Only for rotary axes with modulo offset! The position specified in p2617 is approached in a positive direction.
Only for rotary axes with modulo offset! The position specified in p2617 is approached in a negative direction.

- Task parameter (command-dependent significance) (p2622[0...63])

Intermediate stop and reject traversing task

The intermediate stop is activated by a 0 signal at p 2640 . After activation, the system brakes with the parameterized deceleration value (p2620 or p2645).

The current traversing task can be rejected by a 0 signal at p2641. After activation, the system brakes with the maximum deceleration (p2573).
The "intermediate stop" and "reject traversing task" functions are only effective in "traversing blocks" and "direct setpoint input/MDI" modes.

POSITIONING

The POSITIONING task initiates motion. The following parameters are evaluated:

- p2616[x]: Block number
- p2617[x]: Position
- p2618[x]: Velocity
- p2619[x]: Acceleration override
- p2620[x]: Deceleration override
- p2623[x]: Task mode

The task is executed until the target position is reached. If, when the task is activated, the drive is already located at the target position, then for the block change enable (CONTINUE_ON-THE-FLY or CONTINUE_EXTERNAL, the text task is selected in the same interpolation clock cycle. For CONTINUE_WITH_STOP, the next block is activated in the next interpolation clock cycle. CONTINUE_EXTERNAL_ALARM causes a message to be output immediately.

FIXED STOP

The FIXED STOP task triggers a traversing movement with reduced torque to fixed stop.
The following parameters are relevant:

- p2616[x]: Block number
- p2617[x]: Position
- p2618[x]: Velocity
- p2619[x]: Acceleration override
- p2620[x]: Deceleration override
- p2623[x]: Task mode
- p2622[x]: Task parameter, clamping torque [0.01 Nm] for rotary motors or clamping force in [0.01 N] for linear motors.

Possible continuation conditions include END, CONTINUE_WITH_STOP, CONTINUE_EXTERNAL, CONTINUE_EXTERNAL_WAIT.

ENDLESS POS, ENDLESS NEG

Using these tasks, the axis is accelerated to the specified velocity and is moved, until:

- a software limit switch is reached.
- A STOP cam signal has been issued.
- The traversing range limit is reached.
- Motion is interrupted by the control signal "no intermediate stop/intermediate stop (p2640).
- Motion is interrupted by the control signal "do not reject traversing task/reject traversing task" (p2641).
- An external block change is triggered (with the appropriate continuation condition).

The following parameters are relevant:

- p2616[x]: Block number
- p2618[x]: Velocity
- p2619[x]: Acceleration override
- p2623[x]: Task mode

All continuation conditions are possible.

JERK

Jerk limitation can be activated (command parameter $=1$) or deactivated (task parameter $=$ 0) by means of the JERK task. The signal at the binector input p2575 "Active jerk limitation" must be set to zero. The value parameterized in "jerk limit" (p2574) is the jerk limit.

A precise stop is always carried out here regardless of the parameterized continuation condition of the task preceding the JERK task.

The following parameters are relevant:

- p2616[x]: Block number
- p2622[x]: Task parameter $=0$ or 1

All continuation conditions are possible.

WAITING

The WAIT task can be used to define a waiting period which should expire before the next task is executed.

The following parameters are relevant:

- p2616[x]: Block number
- $\mathrm{p} 2622[\mathrm{x}]$: Task parameter $=$ delay time in milliseconds $\geq 0 \mathrm{~ms}$
- p2623[x]: Task mode

The delay time is entered in milliseconds - but is rounded-off to a multiple of the interpolator clock cycles $\mathrm{p} 0115[5]$. The minimum delay time is one interpolation clock cycle; this means that if a delay time is parameterized, which is less than an interpolation clock cycle, then the system waits for one interpolation clock cycle.

Example:

- Delay time: 9 ms
- Interpolation cycle: 4 ms
- Effective delay time: 12 ms

Regardless of the parameterized continuation condition of the task preceding the WAIT task, a precise stop is always carried out here before the delay time. The WAIT task can be executed by an external block change.

Possible continuation conditions include END, CONTINUE_WITH_STOP, CONTINUE_EXTERNAL, CONTINUE_EXTERNAL_WAIT, and CONTINUE_EXTERNAL_ALARM. The alarm or fault is triggered when "External block change" has still not been issued after the delay time has elapsed.

GOTO

Using the GOTO task, jumps can be executed within a sequence of traversing tasks. The block number which is to be jumped to must be specified as task parameter. No continuation conditions are permitted. If there is a block with this number, then alarm A07468 (jump destination does not exist in traversing block x) is output and the block is designated as being inconsistent.

The following parameters are relevant:

- p2616[x]: Block number
- p2622[x]: Task parameter = next task number

Any two of the tasks SET_O, RESET_O and GOTO can be processed in an interpolation cycle and a subsequent POSITION and WAIT task can be started.

SET_O, RESET_O

Tasks SET_O and RESET_O allow up to two binary signals (output 1 or 2) to be simultaneously set or reset. The number of the output (1 or 2) is specified bit-coded in the task parameter.

The following parameters are relevant:

- p2616[x]: Block number
- p2622[x]: Task parameter = output (bit encoded):

0x1: Output 1
0×2 : Output 2
0×3 : Output $1+2$
Possible continuation conditions are END, CONTINUE_ON-THE-FLY and CONTINUE_WITH_STOP, and CONTINUE_EXTERNAL_WAIT.

The binary signals (r2683.10 (output 1) (or r2683.11 (output 2)) can be assigned to digital outputs. The assignment in STARTER is made using the button "Configuration digital output".

Any two of the SET_O, RESET_O and GOTO orders can be processed in an interpolation cycle and a subsequent POSITION and WAIT order can be started.

Function diagram

FP 3616 Traversing blocks operating mode

Parameter

- p2616 EPOS traversing block, block number
- p2617 EPOS traversing block, position
- p2618 EPOS traversing block, velocity
- p2619 EPOS traversing block, acceleration override
- p2620 EPOS traversing block, delay override
- p2621 EPOS traversing block, order
- p2622 EPOS traversing block, order parameter
- p2623 EPOS traversing block, order mode
- p2625

BI: EPOS block selection, bit 0

- p2626

BI: EPOS block selection, bit 1

- p2627 BI: EPOS block selection, bit 2
- p2628 BI: EPOS block selection, bit 3
- p2629 BI: EPOS block selection, bit 4
- p2630 BI: EPOS block selection, bit 5

9.4.6.6 \quad Traversing to fixed stop

Description

The "Travel to fixed stop" function can be used, for example, to traverse spindle sleeves to a fixed stop against the workpiece with a predefined torque. In this way, the workpiece can be securely clamped. The clamping torque can be parameterized in the traversing task (p2622). An adjustable monitoring window for travel to fixed stop prevents the drive from traveling beyond the window if the fixed stop should break away.

In positioning mode, traversing to a fixed stop is started when a traversing block is processed with the FIXED STOP command. In addition to the dynamic parameters of position, velocity, acceleration override and deceleration override, the required clamping torque can be specified as task parameter (p2622) in this traversing block. From the start position onwards, the target position is approached with the parameterized speed. The fixed stop (the workpiece) must be between the start position and the braking point of the axis; that is, the target position is placed inside the workpiece. The preset torque limit is effective from the start, i.e. traversing to fixed stop also occurs with a reduced torque. The preset acceleration and delay overrides and the current speed override are also effective. Dynamic following error monitoring (p2546) in the position controller is not effective when traveling to the fixed stop. As long as the drive travels to the fixed stop or is in fixed stop, the status bit r2683.14 (Travel to fixed stop active) is set.

Fixed stop reached

As soon as the axis comes into contact with the mechanical fixed stop, the closedloop control in the drive raises the torque so that the axis can move on. The torque increases up to the value specified in the task and then remains constant. The status bit r2683.12 (Fixed stop reached) is set depending on the binector input p2637 (Fixed stop reached):

- If the following error exceeds the value set in parameter p2634 (fixed stop: maximum following error) $(\mathrm{p} 2637=$ r2526.4 $)$
- If the state is triggered externally by the signal at binector input p2637 (fixed stop reached) (p2637 \ddagger r2526.4)

For traversing to fixed stop, the clamping torque in the traversing block is configured via the task parameter. This is specified in units of 0.01 Nm (rotary motor) or 1 N (linear motor). The function module is coupled to the torque limit of the basic system via the connector output r2686[0] (torque limit upper) or r2686[1] (torque limit lower), which are connected to the connector input p1528 (torque limit upper scaling) or p1529 (torque limit lower scaling). The connector outputs $\mathbf{r 2 6 8 6 [0]}$ (torque limit upper) and r2686[1] (torque limit lower) are not set to 100% during active fixed stop. During an active fixed stop, r2686[0] (upper torque limit) or r2686[1] (lower torque limit) are evaluated as p1522/p1523 in such a way that a limitation to the predefined clamping torque is applied.
When the fixed stop is acknowledged (p2637), the "Speed setpoint total" (p2562) is recorded, as long as the binector input p2553 (fixed stop reached message) is set. The speed control holds the target torque on the basis of the available speed setpoint. The target torque is output for diagnosis via the connector output r2687 (torque setpoint).

If the parameterized clamping torque is reached at the fixed stop, the status bit r2683.13 (Fixed stop clamping torque reached) is set.
Once the "fixed stop reached" status has been detected, the traversing task "traverse to fixed stop" is ended. Block relaying is carried out in accordance with the parameterization. The drive remains in fixed stop until the next positioning task is processed or the system is switched to jog mode. The clamping torque is therefore also applied during subsequent waiting tasks. The continuation condition CONTINUE_EXTERNAL_WAIT can be used to specify that the drive should remain in fixed stop until an external signal is given for progression.
As long as the drive remains in fixed stop, the position setpoint is adjusted to the actual position value (position setpoint $=$ actual position value). Fixed stop monitoring and controller enable are active.

Note

If the drive is in fixed stop, it can can be referenced using the control signal "set reference point."

If the axis moves away from the position that it had at detection of the fixed stop by more than the selected monitoring window for the fixed stop (p2635), then the status bit r2683.12 (fixed stop reached) is reset. At the same time, the speed setpoint is set to zero, and fault F07484 "fixed stop outside of the monitoring window" is triggered with the reaction OFF3 (quick stop). The monitoring window can be set using parameter p2635 (Fixed stop monitoring window). It applies to both positive and negative traversing directions and must be selected in such a way that only a breaking away causes the alarm to be triggered.

Fixed stop is not reached

If the brake application point is reached without the "fixed stop reached" status being detected, then the fault F07485 "Fixed stop is not reached" is output with fault reaction OFF1, the torque limit is canceled and the drive cancels the traversing block.

Note

The fault can be changed into an alarm, which means that the drive program will advance to the next specified block.
The target point must be sufficiently far inside the workpiece.

Interruption to "Travel to fixed stop"

The "travel to fixed stop" traversing task can be interrupted and continued using the (intermediate stop) signal at the binector input p2640. The block is canceled using the binector input signal p2641 (reject traversing task) or by removing the controller enable. In all of these cases, the drive is correspondingly braked. When canceling occurs, it is ensured that an almost-achieved fixed stop (setpoint already beyond the fixed stop, but still within the threshold for fixed stop detection) will not result in damage. To do this, the setpoint is updated after the standstill (position setpoint = actual position value). As soon as the fixed stop is reached, the drive remains in fixed stop even after cancellation. It can be moved on from the fixed stop using jogging or by selecting a new traversing task.

Note

The fixed stop monitoring window (p2635) is only activated when the drive is in fixed stop and remains active until the fixed stop is exited.

Vertical axes

With asymmetrical torque limits p1522 and p1523, when traversing to fixed stop, the fixed weight is taken into account in the parameters r2686 and r2687.

If, for example, with a suspended load, the values of p1522 $=+1000 \mathrm{Nm}$ and of p1523 $=-$ 200 Nm are specified, then an intrinsic weight of 400 Nm (p1522-p1523) is assumed. If the clamping torque is now configured as 400 Nm , then, during active traversing to fixed stop, r2686[0] is set with the value 80% and r2686[1] with the value 0% and $r 2687$ with the value 800 Nm.

Function diagram

FP 3616
FP 3617
FP 4025

Traversing blocks mode (r0108.4 = 1)
Traversing to fixed stop (r0108.4 = 1)
Dynamic following error monitoring, cam controllers (r0108.3 = 1)

Parameter

- p1528 CI: Torque limit, upper/motoring, scaling
- p1529 CI: Torque limit, lower/regenerative scaling
- p1545 Bl: Activates travel to fixed stop
- r2526 CO/BO: LR status word
- p2622 EPOS traversing block, order parameter
- p2634 EPOS Fixed stop maximum permissible following error
- p2635 EPOS Fixed stop monitoring window
- p2637 BI: EPOS Fixed stop reached
- p2638 BI: EPOS Fixed stop outside monitoring window
- r2683 CO/BO: EPOS status word 1
- r2686 CO: EPOS Torque limit effective
9.4 Extended functions

9.4.6.7 Direct setpoint specification (MDI)

Description

The direct setpoint input function allows for positioning (absolute, relative) and setup (endless position-controlled) by means of direct setpoint input (e.g. via the PLC using process data).
During traversing, the motion parameters can also be influenced (on-the-fly setpoint acceptance) and an on-the-fly change can be undertaken between the Setup and Positioning modes.

The "direct setpoint input" mode (MDI) can also be used if the axis is not referenced in the "setup" or "relative positioning" modes, which means that "flying referencing" (see the separate section), flying synchronization, and post-referencing are possible.
The direct setpoint input function is activated by p2647 = 1 . A distinction is made between two modes: positioning mode (p2653 = 0) and setup mode (p2653 = 1).

- In "positioning" mode, the parameters (position, velocity, acceleration and deceleration) can be used to carry out absolute (p2648 = 1) or relative (p2648 = 0) positioning with the parameter p2690 (fixed setpoint position).
- In the setting-up mode, using parameters (velocity, acceleration and deceleration) "endless" closed-loop position control behavior can be carried-out.
It is possible to make a flying changeover between the two modes.
If continuous acceptance (p2649 = 1) is activated, changes to the MDI parameters are accepted immediately. Otherwise the values are only accepted when there is a positive edge at binector input p2650 (setpoint acceptance edge).

Note

Continuous acceptance (p2649 = 1) can only be set with free telegram configuration (p0922 = 999). No relative positioning is allowed with continuous acceptance.

The direction of positioning can be specified using p2651 (positive direction specification) and p2652 (negative direction specification). If both inputs have the same status, the shortest distance is traveled during absolute positioning (p2648 = "1") of modulo axes (p2577 = "1").

To use the positioning function, the drive must be in operating mode (r0002 = 0). The following options are available for starting positioning:

- p2649 is "1" and positive edge on p2647
- p2649 is "0" and p2647 is "1"
- positive edge on p2650 or
- positive edge on p2649

An overview of the setpoint acceptance/direct setpoint input is show in function block diagram 3620.

MDI mode with the use of PROFIdrive telegram 110.

If connector input p2654 is preset with a value $\neq 0$ (e.g. for PROFIdrive telegram 110 with r2059[11]), then it will internally supply the control signals "Select positioning type", "Positive direction selection" and "Negative direction selection". The following characteristics are evaluated from the value of the connector input:

- $x x 0 x=$ absolute $->$ p2648
- $x x 1 x=$ relative $->$ p2648
- $x x 2 x=A B S _P O S ~->~ p 2648, ~ p 2651 ~$
- $x x 3 x$ = ABS_NEG -> p2648, p2652

Intermediate stop and reject traversing task

The intermediate stop is activated by a 0 signal at p 2640 . After activation, the system brakes with the parameterized deceleration value (p2620 or p2645).

The current traversing task can be rejected by a 0 signal at p2641. After activation, the system brakes with the maximum deceleration (p2573).

The "intermediate stop" and "reject traversing task" functions are only effective in "traversing blocks" and "direct setpoint input/MDI" modes.

Function diagram

$$
\begin{array}{ll}
\text { FD } 3618 & \text { EPOS - direct setpoint specification mode/MDI, dynamic values } \\
\text { FD } 3620 & \text { EPOS - direct setpoint specification mode/MDI }
\end{array}
$$

Parameter

- p2577	BI: EPOS modulo offset activation
- p2642	CI: EPOS direct setpoint input/MDI, position setpoint
- p2643	CI: EPOS direct setpoint input/MDI, velocity setpoint
- p2644	CI: EPOS direct setpoint input/MDI, acceleration override
- p2645	CI: EPOS direct setpoint input/MDI, delay override
- p2648	BI: EPOS direct setpoint input/MDI, positioning type
- p2649	BI: EPOS direct setpoint input/MDI, acceptance type
- p2650	BI: EPOS direct setpoint input/MDI, setpoint acceptance edge
- p2651	BI: EPOS direct setpoint input/MDI, positive direction selection
- p2652	BI: EPOS direct setpoint input/MDI, negative direction selection
- p2653	BI: EPOS direct setpoint input/MDI, setup selection
- p2654	CI: EPOS direct setpoint input/MDI, mode adaptation
- p2690	CO: EPOS position, fixed setpoint
- p2691	CO: EPOS velocity, fixed setpoint
- p2692	CO: EPOS acceleration override, fixed setpoint
- p2693	CO: EPOS delay override, fixed setpoint

9.4.6.8 Jog

Description

Parameter p2591 can be used to switch between "Incremental jog" and "Jog velocity".
Jog signals p2589 and p2590 are used to specify the travel distances p2587 and/or p2588 and the velocities p2585 and p2586. The traversing distances are only effective for a "1" signal at p2591 (jog, incremental). When p2591 = " 0 ", the travel range start or the travel range end is approached at the specified velocity.
An overview of the "Jog" function is show in function block diagram 3610.

Function diagram

FP $3610 \quad$ EPOS jog mode

Parameter

- p2585 EPOS inching 1 setpoint velocity
- p2586 EPOS inching 2 setpoint velocity
- p2587 EPOS inching 1 travel distance
- p2588 EPOS inching 2 travel distance
- p2589 BI: EPOS jog 1 signal source
- p2590 BI: EPOS jog 2 signal source
- p2591 BI: EPOS jog incremental

9.4.6.9 Status signals

The status signals relevant to positioning mode are described below.

Follow-up mode active (r2683.0)

The "Follow-up mode active" status signal indicates that follow-up mode has been activated (via binector input p2655 (follow-up mode) or via a fault). In this status, the position setpoint follows the actual position value, i.e. position setpoint $=$ actual position value.

Setpoint stationary (r2683.2)

The "Setpoint stationary" status signal indicates that the setpoint velocity has a value of " 0 ". The actual velocity may deviate from zero due to a following error. A traversing block is being processed while the status signal has the value " 0 ".

Motion command active (r2684.15)

The "Motion command active" status signal indicates that a motion command is active. A motion command covers all of the movements carried out (including jog, setup etc.). In contrast to the "Setpoint stationary" status signal, this status signal remains active when a motion command, for example, has been stopped by a velocity override or intermediate stop.

SW limit switch + approached (r2683.7)
SW limit switch - approached (r2683.6)
These status signals indicates that the parameterized negative (p2578/p2580) or positive (p2579/p2581) traversing range limit has been reached or exceeded. If both status signals are " 0 ", the drive is within the traversing range limits.

These status signals indicate that "Stop cam, minus" (p2569) or "Stop cam. plus" (p2570) has been exceeded or not reached. The signals are reset when the cams are left in the direction other than that in which they were approached.

Axis moves forwards (r2683.4)
Axis moves backwards (r2683.5)
Axis accelerates (r2684.4)
Drive decelerates (r2684.5)
Drive stationary (zero speed) (r2199.0)
These status signals indicate the current condition of motion. If the actual absolute speed is less or equal to p2161, then the status signal "drive stationary" is set - otherwise it is deleted. The signals are appropriately set if jog mode, reference point approach or a traversing task is active.

Cam switching signal 1 (r2683.8)
 Cam switching signal 2 (r2683.9)

The electronic cam function can be implemented using these signals. Cam switch signal 1 is " 0 " when the actual position is greater than p2547, otherwise the signal is " 1 ". Cam switch signal 2 is " 0 " when the actual position is greater than p 2548 , otherwise the signal is " 1 ". The signal is, therefore, canceled when the drive is beyond the cam switch position. The position controller initiates these signals.

Direct output 1 (r2683.10)
Direct output 2 (r2683.11)
If a digital output is parameterized, the function "direct output 1" or "direct output 2", then it can be set by a corresponding command in the traversing task (SET_O) or reset (RESET_O).

Following error in tolerance (r2684.8)

When the axis is traversed in closed-loop position-controlled mode, the permissible following error is calculated from the current velocity and the selected Kv factor on the basis of a model. Parameter p2546 (dynamic following error monitoring tolerance) defines a dynamic following error window that defines the permissible deviation from the calculated value. The status signal indicates as to whether the following error is within the window (status 1).

Target position reached (r2684.10)

The status signal "target position reached" indicates that the drive has reached its target position at the end of a traversing command. This signal is set as soon as the actual drive position is inside the positioning window (p2544). The signal is reset when the positioning window is exited.

The status signal will not be set under the following conditions:

- A "1" signal is present at the binector input p2554 (message traversing command active).
- A " 0 " signal is present at the binector input p2551 (message setpoint stationary).

The status signal remains set until a "1" signal is present at the binector input p2551 (message setpoint stationary).

Reference point set (r2684.11)

The signal is set as soon as referencing has been successfully completed. It is reset when reference point approach is started.

Acknowledgement, traversing block activated (r2684.12)

A positive edge is used to acknowledge that a new motion command or setpoint has been accepted in "Traversing blocks" mode (same signal level as for binector input p2631 (activate traversing block)). In the mode "direct setpoint input / MDI for setting-up/positioning" a positive edge is used to acknowledge that a new traversing task or setpoint was transferred (the same signal level as binector input p2650 (edge setpoint transfer), if the transfer type was selected using a signal edge (binector input p2649 "0" signal)).

Velocity limiting active (r2683.1)

If the actual setpoint velocity exceeds the maximum velocity (p2571) - taking into account the velocity override - then it is limited and the status signal is set.

9.5 Monitoring and protective functions

9.5.1 Protecting power components

Description

SINAMICS power modules offer comprehensive protection of power components.

Table 9-17 General protection for power units

Protection against:	Protective measure	Response
Overcurrent ${ }^{1)}$	Monitoring with two thresholds: - First threshold exceeded	A30031, A30032, A30033 Current limiting in phase U has responded. Pulsing in this phase is inhibited for one pulse period. F30017 -> OFF2 is triggered if the threshold is exceeded too often.
	- Second threshold exceeded	F30001 "Overcurrent" -> OFF2
DC link overvoltage ${ }^{\text {1) }}$	Comparison of DC link voltage with hardware shutdown threshold	F30002 "Overvoltage" -> OFF2
DC link undervoltage ${ }^{1)}$	Comparison of DC link voltage with hardware shutdown threshold	F30003 "Undervoltage" -> OFF2
Short-circuit ${ }^{1}$)	Second monitoring threshold checked for overcurrent Uce monitoring for IGBT module	F30001 "Overcurrent" -> OFF2 F30022 "Monitoring Uce" -> OFF2
Ground fault	Monitoring the sum of all phase currents	After threshold in p0287 is exceeded: F30021 "power unit: Ground fault" -> OFF2 Note: The sum of all phase currents is displayed in r0069[6]. For operation, the value in p0287[1] must be greater than the sum of the phase currents when the insulation is intact.
Line phase-failure detection ${ }^{1)}$		F30011 "Line phase-failure in main circuit" -> OFF2

${ }^{1)}$ The monitoring thresholds are permanently set in the converter and cannot be changed by the user.

9.5.2 Thermal monitoring and overload responses

Description

The thermal power module monitor is responsible for identifying critical situations. Possible reactions can be assigned and used when alarm thresholds are exceeded to enable continued operation (e.g., with reduced power) and prevent immediate shutdown. The parameterization options, however, only enable intervention below the shutdown thresholds, which cannot be changed by the user.
The following thermal monitoring options are available:

- $i^{2} t$ monitoring - A07805 - F30005
$i^{2} t$ monitoring is used to protect components that have a high thermal time constant compared with semi-conductors. Overload with regard to $i^{2 t}$ is present when the converter load (r0036) is greater than 100\% (load as a \% of rated operation).
- Heat sink temperature - A05000 - F30004

Used to monitor the temperature r0037[0] of the heat sinks on the power semiconductors (IGBT).

- Chip temperature - A05001 - F30025

Significant temperature differences can occur between the barrier layer of the IGBT and the heatsink. The calculated barrier junction temperature is displayed in r0037[13...18]; the monitoring ensures that the specified maximum barrier junction temperature is not exceeded.

If an overload occurs with respect to any of these three monitoring functions, an alarm is first output. The alarm threshold p0294 (i^{2} t monitoring) can be parameterized relative to the shutdown (trip) values.

Example

The temperature difference between two sensors must not exceed 15 Kelvin (K); a temperature difference of 5 K is set for the temperature monitoring of the heat sink and the air intake. This means that 15 K or 5 K below the shutdown threshold an alarm is issued regarding the pending overtemperature. Parameter p0294 merely allows a change in the alarm threshold so that an alarm is received earlier and, if necessary, steps can be taken to intervene in the drive process (e.g., reduce the load, reduce the ambient temperature).

Overload responses

The power module responds with alarm A07805. The control unit initiates the responses assigned via p0290 at the same time that the alarm is issued. Possible responses include:

- Reduction in pulse frequency $(p 0290=2,3)$

This is a highly effective method of reducing losses in the power unit, since switching losses account for a high proportion of overall losses. In many applications, a temporary pulse frequency reduction in favor of maintaining the process can be tolerated. Disadvantage:
The pulse frequency reduction increases the current ripple, which can cause increased torque ripple on the motor shaft (when moment of inertia is low) and increased noise level. Reducing the pulse frequency does not affect the dynamic response of the current control circuit, since the sampling time for the current control circuit remains constant.

- Reducing the output frequency ($\mathrm{p} 0290=0,2$)

This variant is recommended when you do not need to reduce the pulse frequency or the pulse frequency has already been set to the lowest level. Further, the load should also have a characteristic similar to a fan, that is, a square law torque characteristic with decreasing speed. Reducing the output frequency has the effect of significantly reducing the converter output current which, in turn, reduces losses in the power unit.

- No reduction (p0290 = 1)

You should choose this option if it is neither possible to reduce the pulse frequency nor reduce the output current. The converter does not change its operating point once an alarm threshold has been overshot, which means that the drive can be operated until it reaches its shutdown values. Once the shutdown threshold is reached, the converter switches off with an "overtemperature" or "overload" fault. The time until shutdown, however, is not defined and depends on the degree of overload. Only the alarm threshold can be changed so that an alarm is received earlier and, if necessary, steps can be taken to intervene in the drive process (e.g., reduce the load, reduce the ambient temperature).

Function diagram

FP 8014 Thermal monitoring, power unit

Parameter

- r0036 CO: Power module overload I2t
- r0037 CO: Power module temperatures
- p0290 Power unit overload response
- r0293 CO: Power unit alarm threshold model temperature
- p0294 Power module alarm I2t overload
- r2135.13 Fault: thermal overload in power unit
- r2135.15 Alarm: thermal overload in power unit

9.5.3 Blocking protection

Description

The "Motor blocked" fault is only triggered when the speed of the drive is below the adjustable speed threshold in p2175. With vector control, it must also be ensured that the speed controller is at the limit. With V/f control, the current limit must already have been reached.
Once the ON delay (p2177) has elapsed, the message "Motor blocked" and fault F07900 are generated.
The blocking monitoring enable can be deactivated via p2144.

Figure 9-30 Blocking protection

Function diagram

FP 8012 Messages and monitoring - Torque messages, motor blocked/stalled

Parameter

- p2144 BI: Motor stall monitoring enable (negated)
- p2175 Motor locked speed threshold
- p2177 Motor locked delay time

9.5.4 Stall protection (only for vector control)

Description

If, for closed-loop speed control with encoder, the speed threshold set in p1744 for stall detection is exceeded, then r1408.11 (speed adaptation, speed deviation) is set.

If the fault threshold value set in p1745 is exceeded when in the low speed range (less than p1755 x (100\%-p1756)), r1408.12 (motor stalled) is set.

If one of these two signals is set, then after the delay time in p2178, fault F07902 (motor stalled) is returned.

Figure 9-31 Stall protection

Function diagram

FP 6730 Current control
FP 8012 Messages and monitoring - Torque messages, motor blocked/stalled

Parameters

- r1408 CO/BO: Control status word 3
- p1744 Motor model speed threshold stall detection
- p1745 Motor model error threshold stall detection
- p1755 Motor model changeover speed encoderless operation
- p1756 Motor model changeover speed hysteresis encoderless operation
- p2178 Motor stalled delay time

9.5.5 Thermal motor protection

9.5.5.1 Description

Description

The priority of thermal motor protection is to identify critical situations. Possible reactions can be assigned (p0610) and used when alarm thresholds are exceeded to enable continued operation (e.g., with reduced power) and prevent immediate shutdown.

- Effective protection is also possible without a temperature sensor (p0600=0 or $\mathrm{p} 4100=0$). The temperatures of different motor components (stators, core, rotors) can be determined indirectly using a temperature model.
- Connecting temperature sensors allows the motor temperature to be determined directly. In this way, accurate start temperatures are available immediately when the motor is switched on again or after a power failure.

9.5.5.2 Temperature sensor connection at the customer terminal block TM31 (option G60)

Temperature measurement via KTY

The device is connected to terminals X522:7 (Temp+) and X522:8 (Temp-) on the customer terminal block (TM31) in the forward direction of the diode. The measured temperature is limited to between $-140^{\circ} \mathrm{C}$ and $+188.6^{\circ} \mathrm{C}$ and is available for further evaluation.

- Activating the motor temperature measurement via the external sensor: p0600 $=10$ If the customer terminal block TM31 (option G60) is present and on completion of commissioning, the source for the external sensor is set to the customer terminal block (p0603 = \{TM31\} r4105).
- Set the KTY temperature sensor type: p4100 = 2

Temperature measurement via PTC

The device is connected to terminal X522:7/8 at the customer terminal block (TM31). The threshold for switching to an alarm or fault is 1650Ω. If the threshold is exceeded, the system switches internally from an artificially generated temperature value of $-50^{\circ} \mathrm{C}$ to +250 ${ }^{\circ} \mathrm{C}$ and makes it available for further evaluation.

- Activating the motor temperature measurement via the external sensor: p0600 = 10 If the customer terminal block TM31 (option G60) is present and on completion of commissioning, the source for the external sensor is set to the customer terminal block (p0603 $=\{$ TM31 $\}$ r4105).
- Set the PTC temperature sensor type: p4100 = 1

9.5.5.3 Temperature sensor connection to a Sensor Module (options K46, K48, K50)

Temperature measurement via KTY

The device is connected to the appropriate terminals Temp- and Temp+ on the Sensor Module in the forward direction of the diode (see corresponding section in chapter "Electrical installation").

- Activate motor temperature measurement via encoder 1: p0600 $=1$.
- Set the KTY temperature sensor type: p0601 = 2

Temperature measurement via PTC

The device is connected to the appropriate terminals Temp- and Temp+ on the Sensor Module (see corresponding section in chapter "Electrical installation"). The threshold for changing over to an alarm or fault is 1650Ω.

- Activate motor temperature measurement via encoder 1: p0600 = 1 .
- \quad Set the PTC temperature sensor type: p0601 = 1

9.5.5.4 Temperature sensor connection directly at the Control Interface Module

Temperature measurement via KTY

The device is connected to terminals $\times 41: 3$ (Temp-) and $\mathrm{X} 41: 4$ (Temp+) on the Control Interface Module in the forward direction of the diode.

- Activate motor temperature measurement via Motor Module: p0600=11.
- Set the KTY temperature sensor type: p0601 = 2

Temperature measurement via PTC

The connection is made at the terminals $\mathrm{X} 41: 3$ (Temp-) and $\mathrm{X} 41: 4$ (Temp+) at the Control Interface Module. The threshold for changing over to an alarm or fault is 1650Ω.

- Activate motor temperature measurement via Motor Module: p0600 = 11 .
- Set the PTC temperature sensor type: $00601=1$

Temperature measurement using the bimetal normally closed contact
The connection is made at the terminals X41:3 (Temp-) and X41:4 (Temp+) at the Control Interface Module. The threshold for changing over to an alarm or fault is 100Ω.

- Activate motor temperature measurement via Motor Module: p0600 = 11 .
- Set the temperature sensor type bimetal normally closed contact: p0601 = 4

Temperature measurement via PT100

The connection is made at the terminals $\mathrm{X} 41: 3$ (Temp-) and $\mathrm{X} 41: 4$ (Temp+) at the Control Interface Module. p0624 can be used to set the temperature offset for the PT100 measured value.

- Activate motor temperature measurement via Motor Module: p0600=11.
- Set the PT100 temperature sensor type: p0601 = 5

9.5.5.5 Temperature sensor evaluation

Temperature measurement via KTY or PT100

- When the alarm threshold is reached (set via p0604; delivery state after commissioning $120^{\circ} \mathrm{C}$), alarm A07910 is triggered.

Parameter p0610 can be used to set how the drive responds to the alarm triggered:

- 0: No response, only alarm, no reduction of I_max
- 1: Alarm and reduction of I_max and fault (F07011)
- 2: Alarm and fault (F07011), no reduction of I_max
- When the fault threshold is reached (set via p0605, delivery state after commissioning $155^{\circ} \mathrm{C}$), fault F07011 is triggered in conjunction with the setting in p0610.

Temperature measurement via PTC or bimetallic normally closed contact

- Once the PTC or the bimetallic normally closed contact responds, alarm A07910 is initiated.
- Fault F07011 is triggered once the waiting time defined in p0606 has elapsed.

Sensor monitoring for wire breakage/short-circuit

If the temperature of the motor temperature monitor is outside the range $-140^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$, then the sensor cable is broken or has a short-circuit - and Alarm A07015 "Motor temperature sensor alarm" is triggered. Fault F07016 ("Drive: Motor temperature sensor fault") is triggered once the waiting time defined in p0607 has elapsed.

Fault F07016 can be suppressed using p0607 $=0$. If an induction motor is connected, the drive continues operating with the data calculated in the thermal motor model.

If the system detects that the motor temperature sensor set in p0600 is not connected, alarm A07820 "Temperature sensor not connected" is triggered.

Thermal 3 mass model (for induction machines)

For induction machines, the motor temperature is calculated using the thermal 3-mass model. This makes thermal motor protection possible - even for operation without temperature sensor or with the temperature sensor deactivated ($p 0600=0$).

For operation with a KTY sensor, the calculated temperature value of the 3-mass model permanently tracks the measured temperature value. After the temperature sensor is switched off ($\mathrm{p} 0600=0$), the last temperature value continues to be used for calculation.

Thermal I2t motor model (for permanently excited synchronous machines)

By using the thermal $12 t$ motor model, the temperature rise of the motor windings as a result of dynamic motor loads is also determined in addition to data acquired using a temperature sensor.

If the thermal $12 t$ motor model is activated via p0612.0 $=1$, it calculates the motor load (r0034) from the following values:

- Absolute value of the actual current, unsmoothed (r0068[0])
- Motor stall current (p0318)
- I2t motor model thermal time constant (p0611)
- Measured motor temperature (r0035) or motor ambient temperature (p0625) for operation without temperature sensor

If the fault threshold is exceeded (set via p0605; delivery state after commissioning $155^{\circ} \mathrm{C}$), alarm A0712 "I2t motor model overtemperature" is triggered.

When the I 2 t motor model fault threshold is reached (p0615), fault F07011 is triggered in conjunction with the setting in p0610.

9.5.5. \quad Function diagram

FP 8016 Thermal monitoring motor
FP 8017 Thermal I2t motor model (PEM, p0300 = 2xx)
FP 9576 TM31 - temperature evaluation (KTY/PTC)
FP 9577 TM31 - sensor monitoring (KTY/PTC)

9.5.5.7 Parameters

Temperature sensor evaluation

- r0035 CO: Motor temperature
- p0600 Motor temperature sensor for monitoring
- p0601 Motor temperature sensor type
- p0603 Motor temperature signal source
- p0604 Motor overtemperature fault threshold
- p0605 Motor overtemperature fault threshold
- p0606 Motor overtemperature timer
- p0607 Temperature sensor fault timer
- p0610 Motor overtemperature response
- p0624 Motor temperature offset PT100
- p4100 TM31 temperature evaluation sensor type
- r4105 CO: TM31 temperature evaluation actual value

Thermal I2t motor model (for permanently excited synchronous machines)

- r0034 CO: Motor utilization
- r0068[0] CO: Absolute value of actual current, unsmoothed
- p0318 Motor stall current
- p0605 Motor overtemperature fault threshold
- p0610 Motor overtemperature response
- p0611 I2t motor model thermal time constant
- p0612 Thermal motor model configuration
- p0615 I2t motor model fault threshold
- p0625 Motor ambient temperature

Diagnosis / faults and alarms

10.1 Chapter content

This chapter provides information on the following:

- Troubleshooting
- Service and support offered by Siemens AG

10.2 Diagnosis

Description

This section describes procedures for identifying the causes of problems and the measures you need to take to rectify them.

Note

If errors or malfunctions occur in the device, you must carefully check the possible causes and take the necessary steps to rectify them. If you cannot identify the cause of the problem or you discover that components are defective, your regional office or sales office should contact Siemens Service and describe the problem in more detail.

10.2.1 Diagnostics via LEDs

Control Unit (-A10)

Table 10-1 Description of the LEDs on the CU320-2 DP Control Unit

LED	Color	State	Description
RDY (READY)	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place. The control unit is waiting for initial commissioning.
		0.5 Hz flashing light	Commissioning/reset
		2 Hz flashing light	Writing to CompactFlash card.
	Red	2 Hz flashing light	General faults
	Red/green	0.5 Hz flashing light	Control Unit is ready for operation. However, there are no software licenses.
	Orange	0.5 Hz flashing light	Firmware update in progress for the connected DRIVE-CLiQ components.
		2 Hz flashing light	Firmware update of components has been completed. Wait for POWER ON of the respective component.
	Green/oran ge or red/orange	2 Hz flashing light	Component detection via LED is activated (p0124[0]). Note: The two options depend on the LED status when component detection is activated via $p 0124[0]=1$.

LED	Color	State	Description
DP PROFIdrive cyclic operation	---	OFF	Cyclic communication is not (yet) running. Note: PROFIdrive is ready for communication when the control unit is ready for operation (see RDY LED).
	Green	Continuous light	Cyclic communication is taking place.
		0.5 Hz flashing light	Cyclic communication has still not been fully established. Possible causes: - The controller is not transmitting any setpoints. - In isochronous mode, the controller did not send a Global Control or it sent a defective Global Control (GC).
	Red	0.5 Hz flashing light	PROFIBUS master is sending incorrect parameter assignment/configuration
		2 Hz flashing light	Cyclic bus communication has been interrupted or could not be established.
OPT (OPTION)	---	OFF	Electronic power supply outside permissible tolerance range. The component is not ready for operation. The Option Board is missing or an associated drive object has not been created.
	Green	Continuous light	Option Board is ready.
		0.5 Hz flashing light	Depends on the Option Board used.
	Red	2 Hz flashing light	This component has at least one fault. The option board is not ready (e.g., after switching on).
RDY and DP	Red	2 Hz flashing light	Bus error - communication has been interrupted.
RDY and OPT	Orange	0.5 Hz flashing light	Firmware update in progress for connected option board CBE20.

Table 10-2 Description of the LEDs on the CU320-2 PN control unit

LED	Color	State	Description
RDY (READY)	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place. The control unit is waiting for initial commissioning.
		0.5 Hz flashing light	Commissioning/reset
		2 Hz flashing light	Writing to CompactFlash card.
	Red	2 Hz flashing light	General faults
	Red/green	0.5 Hz flashing light	Control Unit is ready for operation. However, there are no software licenses.
	Orange	0.5 Hz flashing light	Firmware update in progress for the connected DRIVE-CLiQ components.
		2 Hz flashing light	Firmware update of components has been completed. Wait for POWER ON of the respective component.
	Green/oran ge or red/orange	2 Hz flashing light	Component detection via LED is activated (p0124[0]). Note: The two options depend on the LED status when component detection is activated via $p 0124[0]=1$.
PN PROFIdrive cyclic operation	---	OFF	Cyclic communication is not (yet) running. Note: PROFIdrive is ready for communication when the control unit is ready for operation (see RDY LED).
	Green	Continuous light	Cyclic communication is taking place.
		0.5 Hz flashing light	Cyclic communication has still not been fully established. Possible causes: - The controller is not transmitting any setpoints. - In isochronous mode, the controller did not send a Global Control or it sent a defective Global Control (GC).
	Red	0.5 Hz flashing light	Bus error, incorrect parameter assignment/configuration
		2 Hz flashing light	Cyclic bus communication has been interrupted or could not be established.
OPT (OPTION)	---	OFF	Electronic power supply outside permissible tolerance range. The component is not ready for operation. The option board is missing or an associated drive object has not been created.
	Green	Continuous light	Option board is ready.
		0.5 Hz flashing light	Depends on the option board used.
	Red	2 Hz flashing light	This component has at least one fault. The option board is not ready (e.g., after switching on).
RDY and DP	Red	2 Hz flashing light	Bus error - communication has been interrupted.
RDY and OPT	Orange	0.5 Hz flashing light	Firmware update in progress for connected option board CBE20.

Customer Terminal Block TM31 (-A60)

Table 10-3 Description of the LEDs on the TM31

LED	Color	State	Description
READY	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Orange	Continuous light	DRIVE-CLiQ communication is being established.
	Red	Continuous light	At least one fault is present for this component. Note: LED is activated irrespective of the corresponding messages being reconfigured.
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.
	2 Hz flashing light	Firmware download is complete. Waiting for POWER ON.	
	Green/orange or red/orange	Flashing light	Detection of the components via LED is activated (p0154). Note: Both options depend on the LED state when activated via p0154 = 1.

Control Interface Module - Interface module in the Power Module (-T1)

Table 10-4 Description of the LEDs "READY" and "DC LINK" on the Control Interface Module

LED state		Description
READY	DC LINK	
OFF	OFF	The electronics power supply is missing or out of tolerance.
Green	Orange	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Red	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place. The DC link voltage is present.
Orange	Orange	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place. The DC link voltage is too high.
Red	DRIVE-CLiQ communication is being established.	
Flashing, 0.5 Hz Green/red	---	At least one fault is pending on this component. Note: LED is driven irrespective of the corresponding messages being reconfigured.
Flashing, $2 \mathrm{~Hz}:$ Green/red	---	Firmware is being downloaded.
Flashing, $2 \mathrm{~Hz}:$ Green/orange or red/orange	---	Firmware download is complete. Waiting for POWER ON.

Table 10-5 Meaning of the LED "POWER OK" on the Control Interface Module

LED	Color	State	Description
POWER OK	Green	OFF	DC link voltage $<100 \mathrm{~V}$ and voltage at -X9:1/2 less than 12 V.
		ON	The component is ready for operation.
		Flashing light	There is a fault. If the LED continues to flash after you have performed a POWER ON, please contact your Siemens service center.

! WWARNING

Hazardous DC link voltages may be present at any time regardless of the status of the "DC LINK" LED.
The warning information on the components must be carefully observed!

Control Interface Module - Interface module in the Power Module (-G1)

Table 10-6 Description of the LEDs "READY" and "DC LINK" on the Control Interface Module

LED state		Description
READY	DC LINK	
OFF	OFF	The electronics power supply is missing or out of tolerance.
Green	Orange	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Red	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place. The DC link voltage is present.
Orange	Orange	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place. The DC link voltage is too high.
Red	DRIVE-CLiQ communication is being established.	
Flashing, 0.5 Hz Green/red	---	At least one fault is pending on this component. Note: LED is driven irrespective of the corresponding messages being reconfigured.
Flashing, $2 \mathrm{~Hz}:$ Green/red	---	Firmware is being downloaded.
Flashing, $2 \mathrm{~Hz}:$ Green/orange or red/orange	---	Firmware download is complete. Waiting for POWER ON.

Table 10-7 Meaning of the LED "POWER OK" on the Control Interface Module

LED	Color	State	Description		
POWER OK	Green	OFF	DC link voltage $<100 \mathrm{~V}$ and voltage at -X9:1/2 less than 12 V.		
		ON	The component is ready for operation. Flashing light		There is a fault. If the LED continues to flash after you have performed
:---					
a POWER ON, please contact your Siemens service center.					

WARNING

Hazardous DC link voltages may be present at any time regardless of the status of the "DC LINK" LED.
The warning information on the components must be carefully observed!

VSM - Interface Module in the Active Interface Module (-A2)

Table 10-8 Description of the LEDs on the Voltage Sensing Module

LED	Color	State	Description
READY	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Orange	Continuous light	DRIVE-CLiQ communication is being established.
	Red	Continuous light	At least one fault is present for this component. Note: LED is activated irrespective of the corresponding messages being reconfigured.
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.
		2 Hz flashing light	Firmware download is complete. Waiting for POWER ON.
	Green/orange or red/orange	Flashing light	Detection of the components via LED is activated (p0144). Note: Both options depend on the LED state when activated via p0144 $=1$.

SMC10 - encoder evaluation (-B81)

Table 10-9 Description of the LEDs on the SMC10

LED	Color	State	Description
READY	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Orange	Continuous light	DRIVE-CLiQ communication is being established.
	Red	Continuous light	At least one fault is present for this component. Note: LED is activated irrespective of the corresponding messages being reconfigured.
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.
	2 Hz flashing light	Firmware download is complete. Waiting for POWER ON.	
	Green/orange or red/orange	Flashing light	Detection of the components via LED is activated (p0144). Note: Both options depend on the LED state when activated via p0144 = 1.

SMC20 - encoder evaluation (-B82)

Table 10-10 Description of the LEDs on the SMC20

LED	Color	State	Description
READY	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Orange	Continuous light	DRIVE-CLiQ communication is being established.
	Red	Continuous light	At least one fault is present for this component. Note: LED is activated irrespective of the corresponding messages being reconfigured.
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.
		2 Hz flashing light	Firmware download is complete. Waiting for POWER ON.
	Green/orange or red/orange	2 Hz flashing light	Detection of the components via LED is activated (p0144). Note: Both options depend on the LED state when activated via p0144 $=1$.

SMC30 - encoder evaluation (-B83)

Table 10-11 Description of the LEDs on the SMC30

LED	Color	State	Description
READY	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range.
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.
	Orange	Continuous light	DRIVE-CLiQ communication is being established.
	Red	Continuous light	At least one fault is present for this component. Note: LED is activated irrespective of the corresponding messages being reconfigured.
	Green/red	0.5 Hz flashing light	Firmware is being downloaded.
		2 Hz flashing light	Firmware download is complete. Waiting for POWER ON.
	Green/orange or red/orange	Flashing light	Detection of the components via LED is activated (p0144). Note: Both options depend on the LED state when activated via p0144 $=1$.
OUT>5 V	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range. Power supply $\leq 5 \mathrm{~V}$.
	Orange	Continuous light	Electronic power supply for measuring system present. Supply voltage > 5 V . Notice: You must ensure that the connected encoder can be operated with a 24 V supply. Operating an encoder designed for a 5 V supply with a 24 V supply can destroy the encoder electronics.

CBE20 - Communication Board Ethernet (option G33)

Table 10-12 Description of the LEDs at ports 1-4 of the X1400 interface on the CBE20

LED	Color	State	Description
Link port	---	OFF	Electronics power supply is missing or outside permissible tolerance range (link missing or defective).
	Green	Continuous light	A different device is connected to port x and a physical connection exists.
Activity port	---	OFF	Electronics power supply is missing or outside permissible tolerance range (no activity).
	Yellow	Continuous light	Data is being received or sent at port x.

Table 10-13 Description of the Sync and Fault LEDs on the CBE20

LED	Color	State	Description
Fault	---	OFF	If the link port LED is green: The CBE20 is operating normally, data is being exchanged with the configured IO Controller.
	Red	Flashing light	- The response monitoring time has elapsed. - Communication has been interrupted. - The IP address is incorrect. - Incorrect or missing configuration. - Incorrect parameter assignment. - Incorrect or missing device name. - IO controller not present/switched off but Ethernet connection present. - Other CBE20 errors.
		Continuous light	CBE20 bus fault - No physical connection to a subnet/switch. - Incorrect transmission rate. - Full-duplex transmission not activated.
Sync	---	OFF	If the link port LED is green: Control Unit task system is not synchronized with the IRT clock. An internal substitute clock is generated.
	Green	Flashing light	Control Unit task system has synchronized with the IRT clock and data is being exchanged.
		Continuous light	Task system and MC-PLL have synchronized with the IRT clock.

10.2 Diagnosis

Table 10-14 Description of the OPT LED on the control unit

LED	Color	State	Description
OPT	---	OFF	The electronics power supply is missing or lies outside the permissible tolerance range. Communication Board either defective or not inserted.
	Green	Continuous light	Communication Board is ready and cyclic communication is taking place.
		0.5 Hz flashing light	The Communication Board is ready, but cyclic communication is not yet taking place. Possible causes: - At least one fault is pending. - Communication is being established.
	Red	Continuous light	Cyclic communication via PROFINET has not yet been established. However, acyclic communication is possible. SINAMICS is waiting for a parameterization/configuration telegram.
		0.5 Hz flashing light	The firmware download to the CBE20 has failed. Possible causes: - The CBE20 is defective. - The memory card for the Control Unit is defective. In this state, the CBE20 cannot be used.
		2 Hz flashing light	Communication between the Control Unit and the CBE20 is faulty. Possible causes: - The CBE20 was removed following power-up. - The CBE20 is defective.
	Orange	0.5 Hz flashing light	Firmware is being updated.

10.2.2 Diagnostics via parameters

All Objects: key diagnostic parameters (details in List Manual)

Parameters	Name
	Description
r0945	Fault code
	Displays the fault number. Index 0 is the most recent fault (last fault to have occurred).
r0948	Fault time received in milliseconds
	Displays the system runtime in ms at which the fault occurred.
r0949	Fault value
	Displays additional information about the fault. This information is required for detailed fault diagnosis.
r2123	Fault time removed in milliseconds
	Displays the system runtime in ms at which the fault was rectified.
r2124	Alarm time received in milliseconds
	Displays the system runtime in ms at which the alarm occurred.
r2125	Alarm value
	Displays additional information about the alarm. This information is required for detailed alarm diagnosis.
	Alarm time removed in milliseconds
	Displays the system runtime in ms at which the alarm was rectified.

Control Unit: key diagnostic parameters (details in List Manual)

Parameters	Name
	Description
r0002	Control Unit status display
	Status display for the Control Unit
	Control Unit firmware version
	Displays the firmware version of the Control Unit. For the display parameters for the firmware version of the other connected components, see the parameter description in the List Manual.
r0722	Digital inputs actual terminal value
	Displays the actual value at the digital input terminals on the CU. This parameter shows the actual value, uninfluenced by simulation mode of the digital inputs.
Status of digital inputs (CU)	
	Displays the status of the digital inputs on the CU. This parameter shows the status of the digital inputs under the influence of simulation mode of the digital inputs.
r2054	Status of digital outputs (CU)
	Display of the CU digital output status. This parameter shows the status of the digital inputs under the influence of simulation mode of the digital inputs.
	Profibus status
	Displays the status of the Profibus interface.

Parameters	Name
	Description
r9976[0..7]	System load
	Displays the system load. The individual values (computation load and cyclic load) are measured over short time slices; from these values, the maximum, the minimum and the average value are generated and displayed in the appropriate indices. Further, the degree of memory utilization of the data and program memory is displayed.

Supply: key diagnostic parameters (details in List Manual)

Parameters	Name
	Description
r0002	Status display
	The value provides information about the current operating status and the conditions necessary to reach the next status.
r0025	Infeed input voltage, smoothed
	Displays the smoothed actual value of the input voltage. This voltage is present at the line supply connection of the infeed voltage.
r0026	DC link voltage smoothed
	Displays the smoothed actual value of the DC link.
r0027	Absolute actual current, smoothed
	Displays the smoothed actual value of the current.
r0037	Power Module temperatures
	Displays the measured temperatures in the Power Module.
r0046	Missing enable signals
	Displays missing enable signals that are preventing the closed-loop infeed control from being commissioned.
r0050	Active command data set (CDS):
	Displays the effective command data set (CDS)
r0206	Rated power module power
	Displays the rated power module power for various load duty cycles.
r0207	Rated power module current
	Displays the rated power module power for various load duty cycles.
r0208	Rated power module line supply voltage
	Displays the rated line supply voltage of the Power Module.

VECTOR: key diagnostic parameters (details in List Manual)

Parameters	Name
	Description
r0002	Operating display
	The value provides information about the current operating status and the conditions necessary to reach the next status.
r0020	Speed setpoint smoothed
	Displays the actual smoothed speed/velocity setpoint at the input of the speed/velocity controller or V/f characteristic (after the interpolator).
r0021	Actual speed value smoothed
	Displays the smoothed actual value of the motor speed/velocity.
r0026	DC link voltage smoothed
	Displays the smoothed actual value of the DC link.
r0027	Absolute actual current smoothed
	Displays the smoothed actual value of the current.
r0031	Actual torque smoothed
	Displays the smoothed actual torque.
r0035	Motor temperature
	If r0035 does not equal $-200.0^{\circ} \mathrm{C}$, the following applies: - This temperature indicator is valid. - An KTY sensor is connected. - If using an asynchronous motor, the thermal motor model is activated ($\mathrm{p} 0600=0$ or $\mathrm{p} 0601=0$). If r0035 equals $-200.0^{\circ} \mathrm{C}$, the following applies: - This temperature indicator is invalid (temperature sensor fault). - An PTC sensor is connected. If using a synchronous motor, the thermal motor model is activated ($\mathrm{p} 0600=0$ or $\mathrm{p} 0601=0$).
r0037	Power Module temperatures
	Displays the measured temperatures in the Power Module.
r0046	Missing drive enable signals
	Displays missing enable signals that are preventing the closed-loop drive control from being commissioned.
r0049	Motor/encoder data set effective (MDS, EDS)
	Displays the effective motor data set (MDS) and the effective encoder data sets (EDS).
r0050	Command data set effective (CDS)
	Displays the effective command data set (CDS)
r0051	Drive data set (DDS) effective
	Effective drive data set (DDS) display.
r0206	Rated power module power
	Displays the rated power module power for various load duty cycles.
r0207	Rated power module current
	Displays the rated power module power for various load duty cycles.
r0208	Rated power module line supply voltage
	Displays the rated line supply voltage of the power module.

TM31: key diagnostic parameters (details in List Manual)

Parameters	Name
	Description
r0002	TM31 operating display
	Operating display for terminal board 31 (TB31).
r4021	Digital inputs actual terminal value
	Displays the actual value at the digital input terminals on the TM31. This parameter shows the actual value, uninfluenced by simulation mode of the digital inputs.
	Status of digital inputs
	Displays the status of the digital inputs on the TM31. This parameter shows the status of the digital inputs under the influence of simulation mode of the digital inputs.
	Status of digital outputs
	Displays the status of the TM31 digital outputs. Inversion via p4048 is taken into account.

10.2.3 Indicating and rectifying faults

The device features a wide range of functions that protect the drive against damage if a fault occurs (faults and alarms).

Indicating faults and alarms

If a fault occurs, the drive displays the fault and/or alarm on the AOP30 operator panel. Faults are indicated by the red "FAULT" LED and a fault screen is automatically displayed. You can use the F1 Help function to call up information about the cause of the fault and how to remedy it. You can use F5 Ack. to acknowledge a stored fault.
Any alarms are displayed by the yellow flashing "ALARM" LED. The system also displays a note in the status bar providing information on the cause.

Every fault and alarm is entered in the fault/alarm buffer along with time the error occurred. The time stamp refers to the relative system time in milliseconds (r0969).

Activate the "Set date/time - AOP synchronization -> Drive" setting to date- and time-stamp errors on the AOP30.

What is a fault?

A fault is a message from the drive indicating an error or other exceptional (unwanted) status. This could be caused by a fault within the converter or an external fault triggered, for example, from the winding temperature monitor for the induction motor. The faults are displayed and can be reported to a higher-level control system via PROFIdrive. In the delivery condition, the message "Drive fault" is also sent to a relay output. Once you have rectified the cause of the fault, you have to acknowledge the fault message.

What is an alarm?

An alarm is the response to a fault condition identified by the drive. It does not result in the drive being switched off and does not have to be acknowledged. Alarms are "self acknowledging", that is, they are reset automatically when the cause of the alarm has been eliminated.

10.3 Overview of warnings and faults

If a fault occurs, the drive indicates the fault and/or alarm. Faults and alarms are listed in a fault/alarm list, together with the following information:

- Fault/alarm number
- Standard drive response
- Description of the possible cause of the fault/alarm
- Description of the procedure for rectifying the problem
- Standard fault acknowledgement after it has been rectified

Note

The list of faults and alarms is included on the customer DVD!
It also contains descriptions of the responses (OFF1, OFF2, etc.).

Note

The faults and alarms described below have been wired specially for the cabinet units listed in this document and preset via macro. In this way, the appropriate reaction is triggered by the additional components in the cabinet unit when faults and alarms are signaled.

It is possible to reprogram the faults and alarms described, provided that the stated options are not included in the scope of the equipment.

10.3.1 "External alarm 1"

Causes

Alarm A7850 ("External alarm 1") is triggered by the following optional protection devices in the cabinet unit:

- Thermistor motor protection unit alarm (option L83)
- PT100 Evaluation Unit (Option L86)

Remedy

When a fault is indicated, the following procedure is recommended:

1. Identify the cause by examining the specified devices (display or LEDs).
2. Check the fault display on the relevant protection device and establish the fault.
3. Rectify the displayed fault with the help of the appropriate operating instructions provided in "Additional Operating Instructions".

10.3.2 "External fault 1"

Causes

Fault code F7860 ("External Fault 1") is triggered by the following optional protection devices in the cabinet unit:

- Thermistor motor protection unit shutdown (option L84)
- PT100 Evaluation Unit (Option L86)

Remedy

When a fault is indicated, the following procedure is recommended:

1. Identify the cause by examining the specified devices (display or LEDs).
2. Check the fault display on the relevant protection device and establish the fault.
3. Rectify the displayed fault with the help of the appropriate operating instructions provided in "Additional Operating Instructions".

10.3.3 "External fault 2"

Causes

Fault code F7861 "External Fault 2" is triggered when the braking resistor available with options L61/L62/L64/L65 is subject to thermal overload, thereby activating the thermostat. The drive is switched off with OFF2.

Remedy

The cause of the braking resistor overload must be eliminated and the fault code acknowledged.

10.3.4 "External fault 3"

Causes

Fault code F7862 "External fault 3" is triggered when the braking unit fitted for options L61/L62/L64/L65 triggers a fault. The drive is switched off with OFF2.

Remedy

The cause of the braking unit overload must be eliminated and the fault code acknowledged.

10.4 Service and Support

Technical support

We offer technical support in both German and English for deploying products, systems, and solutions in drive and automation technology.

In special cases, help is available from professional, trained, and experienced specialists via teleservice and video conferencing.

If you have any questions, please contact our hotline:

Time zone Europe/Africa	
Phone	$+49(0) 9118957222$
Fax	$+49(0) 9118957223$
Internet	http://www.siemens.com/automation/support-request

Time zone America	
Phone	+14232622522
Fax	+14232622200
Internet	techsupport.sea@siemens.com

Time zone Asia/Pacific	
Phone	+861064757575
Fax	+861064747474
Internet	support.asia.automation@siemens.com

10.4.1 Spare parts

The spare parts available for the ordered cabinet unit can be found in the spare parts list. This list is provided on the customer DVD.

Maintenance and servicing

11.1 Chapter content

This chapter provides information on the following:

- Maintenance and servicing procedures that have to be carried out on a regular basis to ensure the availability of the cabinet units.
- Exchanging device components when the unit is serviced
- Forming the DC link capacitors
- Upgrading the cabinet unit firmware
- Loading the new operator panel firmware from the PC.

! 1 DANGER

Five safety rules
When carrying out any kind of work on electrical devices, the "five safety rules" according to EN 50110 must always be observed:

1. Disconnect the system
2. Protect against reconnection.
3. Make sure that the equipment has zero potential
4. Ground and short-circuit.
5. Cover or fence off adjacent components that are still live.

\DDANGER

Before carrying out any maintenance or repair work on the de-energized cabinet unit, wait for 5 minutes after switching off the supply voltage. This allows the capacitors to discharge to a harmless level (<25 V) after the supply voltage has been switched off.

Before starting work, you should also measure the voltage after the 5 minutes have elapsed. The voltage can be measured on DC link terminals DCP and DCN.

DANGER

When the external power supply for individual options (L50 / L55) or the external 230 V AC auxiliary supply is connected, dangerous voltages are still present in the cabinet unit even when the main circuit breaker is open.

11.2 Maintenance

The cabinet unit mainly comprises electronic components. Apart from the fan(s), the unit contains very few components that are subject to wear or require maintenance or servicing. Maintenance aims to preserve the specified condition of the cabinet unit. Dirt and contamination must be removed regularly and parts subject to wear replaced.

The following points must generally be observed.

11.2.1 Cleaning

Dust deposits

Dust deposits inside the cabinet unit must be removed at regular intervals (or at least once a year) by qualified personnel in line with the relevant safety regulations. The unit must be cleaned using a brush and vacuum cleaner, and dry compressed air (max. 1 bar) for areas that cannot be easily reached.

Ventilation

The ventilation openings in the cabinet must never be obstructed. The fan must be checked to make sure that it is functioning correctly.

Cable and screw terminals

Cable and screw terminals must be checked regularly to ensure that they are secure in position, and if necessary, retightened. Cabling must be checked for defects. Defective parts must be replaced immediately.

Note

The actual intervals at which maintenance procedures are to be performed depend on the installation conditions (cabinet environment) and the operating conditions.

Siemens offers its customers support in the form of a service contract. For further details, contact your regional office or sales office.

11.3 Maintenance

Servicing involves activities and procedures for maintaining and restoring the specified condition of the device.

Required tools

The following tools are required for replacing components:

- Spanner or socket spanner (w/f 10)
- Spanner or socket spanner (w/f 13)
- Spanner or socket spanner (w/f 16/17)
- Spanner or socket spanner (w/f 18/19)
- Hexagon-socket spanner (size 8)
- Torque wrench from 5 Nm to 50 Nm
- Screwdriver size 1 / 2
- Screwdriver Torx T20
- Screwdriver Torx T30

Tightening torques for current-carrying parts

When securing connections for current-conducting parts (DC link/motor connections, busbars), you must observe the following tightening torques.

Table 11-1 Tightening torques for connecting current-carrying parts

Screw	Torque
M6	6 Nm
M8	13 Nm
M10	25 Nm
M12	50 Nm

11.3.1 Installation device

Description

The installation device is used for installing and removing the power blocks.
It is used as an installation aid, which is placed in front of and secured to the module. The telescopic guide support allows the withdrawable device to be adjusted according to the height at which the power blocks are installed. Once the mechanical and electrical connections have been removed, the power block can be removed from the module, whereby the power block is guided and supported by the guide rails on the withdrawable devices.

Figure 11-1 Installation device

Order number
Order number for the installation device: 6SL3766-1FA00-0AA0.

11.3.2 Using crane lifting lugs to transport power blocks

Crane lifting lugs

The power blocks are fitted with crane lifting lugs for transportation on a lifting harness in the context of replacement.

The positions of the crane lifting lugs are illustrated by arrows in the figures below.

1 WARNING
A lifting harness with vertical ropes or chains must be used to prevent any risk of damage
to the housing.

CAUTION

The power block busbars must not be used to support or secure lifting harnesses for the purpose of transportation.

Figure 11-2 Crane lifting lugs on $F X, G X$ power block

Figure 11-3 Crane lifting lugs on HX, JX power block

Note

On HX and JX power blocks, the front crane lifting lug is located behind the busbar.

11.4 Replacing components

! WARNING

The following must be taken into account when the devices are transported:

- The devices are heavy or generally top heavy. The center of gravity is marked on the devices.
- Due to their weight, the devices must be handled with care by trained personnel.
- Serious injury or even death and substantial material damage can occur if the devices are not lifted or transported properly.

WARNING

The devices are operated with high voltages.
All connection work must be carried out when the cabinet is de-energized!
All work on the device must be carried out by trained personnel only. Non-observance of these warnings can result in death, serious personal injury, or substantial property damage.

Work on an open device must be carried out with extreme caution because external supply voltages may be present. The power and control terminals may be live even when the motor is not running.

Dangerously high voltage levels are still present in the device up to five minutes after it has been disconnected due to the DC link capacitors. For this reason, the unit should not be opened until a reasonable period of time has elapsed.

\. Danger

Five safety rules
When carrying out any kind of work on electrical devices, the "five safety rules" according to EN 50110 must always be observed:

1. Disconnect the system
2. Protect against reconnection.
3. Make sure that the equipment has zero potential
4. Ground and short-circuit.
5. Cover or fence off adjacent components that are still live.

11.4.1 Replacing the filter mats

The filter mats must be checked at regular intervals. If the mats are too dirty to allow the air supply to flow normally, they must be replaced.

Note

Filter mat replacement is only relevant for options M23, M43 and M54.
Not replacing contaminated filter mats can cause premature drive shutdown.

11.4.2 Replacing the Control Interface Module, frame size FX

Replacing the Control Interface Module

Figure 11-4 Replacing the Control Interface Module, frame size FX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Disconnect the plug-in connections for the fiber-optic cables and signal cables (5 plugs).
2. Remove the DRIVE-CLiQ cables and connections on -X41, -X42, -X46 (6 plugs).
3. Take out the retaining screws for the IPD card (2 screws) and remove the IPD card from plug -X45 on the Control Interface Module.
4. Remove the retaining screws for the Control Interface Module (2 screws).

When removing the Control Interface Module, you have to disconnect 5 further plugs one after the other (2 at the top, 3 below).

CAUTION

When removing the unit, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The fiber optic cable plugs must be remounted at their original slot. Fiber optic cables and sockets are accordingly labeled for correct assignment (U11, U21, U31).

The screw connections for the protective covers must only be tightened finger-tight.

11.4.3 Replacing the Control Interface Module, frame size GX

Replacing the Control Interface Module

Figure 11-5 Replacing the Control Interface Module, frame size GX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Disconnect the plug-in connections for the fiber-optic cables and signal cables (5 plugs).
2. Remove the DRIVE-CLiQ cables and connections on -X41, -X42, -X46 (6 plugs).
3. Take out the retaining screws for the IPD card (2 screws) and remove the IPD card from plug -X45 on the Control Interface Module.
4. Remove the retaining screws for the Control Interface Module (2 screws).

When removing the Control Interface Module, you have to disconnect 5 further plugs one after the other (2 at the top, 3 below).

CAUTION

When removing the unit, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The fiber optic cable plugs must be remounted at their original slot. Fiber optic cables and sockets are accordingly labeled for correct assignment (U11, U21, U31).

The screw connections for the protective covers must only be tightened finger-tight.

Figure 11-6 Replacing the Control Interface Module, frame size HX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Disconnect the plug-in connections for the fiber-optic cables and signal cables (5 plugs).
2. Remove the DRIVE-CLiQ cables and connections on -X41, -X42, -X46 (6 plugs).
3. Take out the retaining screws for the IPD card (2 screws) and remove the IPD card from plug -X45 on the Control Interface Module.
4. Remove the retaining screws for the Control Interface Module (2 screws).

When removing the Control Interface Module, you have to disconnect 5 further plugs one after the other (2 at the top, 3 below).

CAUTION

When removing the unit, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The fiber optic cable plugs must be remounted at their original slot. Fiber optic cables and sockets are accordingly labeled for correct assignment (U11, U21, U31).

The screw connections for the protective covers must only be tightened finger-tight.

11.4.5 Replacing the Control Interface Module, frame size JX

Replacing the Control Interface Module

Figure 11-7 Replacing the Control Interface Module, frame size JX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Disconnect the plug-in connections for the fiber-optic cables and signal cables (5 plugs).
2. Remove the DRIVE-CLiQ cables and connections on -X41, -X42, -X46 (6 plugs).
3. Take out the retaining screws for the IPD card (2 screws) and remove the IPD card from plug -X45 on the Control Interface Module.
4. Remove the retaining screws for the Control Interface Module (2 screws).

When removing the Control Interface Module, you have to disconnect 5 further plugs one after the other (2 at the top, 3 below).

CAUTION

When removing the unit, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The fiber optic cable plugs must be remounted at their original slot. Fiber optic cables and sockets are accordingly labeled for correct assignment (U11, U21, U31).

The screw connections for the protective covers must only be tightened finger-tight.

11.4.6 Replacing the power block (frame size FX)

Replacing the power block

Figure 11-8 Replacing the power block, frame size FX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access to the power block.
- Remove the protective cover.
- Removing the Control Interface Module (see corresponding section)

Removal steps

The removal steps are numbered in accordance with the figure.

1. Unscrew the connection to the line or to the motor (3 screws).
2. Unscrew the connection to the DC link (4 screws).
3. Remove the retaining screws at the top (2 screws).
4. Remove the retaining screws at the bottom (2 screws).
5. Disconnect the plug for the thermocouple.
6. Unscrew the two retaining screws for the fan and attach the equipment for assembling the power block at this position.
You can now remove the power block.

CAUTION

When removing the power block, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The screw connections for the protective covers must only be tightened finger-tight.

11.4.7 Replacing the power block (frame size GX)

Replacing the power block

Figure 11-9 Replacing the power block, frame size GX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access to the power block.
- Remove the protective cover.
- Removing the Control Interface Module (see corresponding section)

Removal steps

The removal steps are numbered in accordance with the figure.

1. Unscrew the connection to the line or to the motor (3 screws).
2. Unscrew the connection to the DC link (4 screws).
3. Remove the retaining screws at the top (2 screws).
4. Remove the retaining screws at the bottom (2 screws).
5. Disconnect the plug for the thermocouple.
6. Unscrew the two retaining screws for the fan and attach the equipment for assembling the power block at this position.

You can now remove the power block.

CAUTION

When removing the power block, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The screw connections for the protective covers must only be tightened finger-tight.

11.4.8 Replacing the power block (frame size HX)

Replacing the left power block

Figure 11-10 Replacing the power block, frame size HX, left power block

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access to the power block.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the busbar (6 screws).
2. Unscrew the connection to the DC link (8 nuts).
3. Remove the retaining screw at the top (1 screw).
4. Remove the retaining screws at the bottom (2 screws).
5. Disconnect the plug-in connections for the fiber-optic cables and signal cables (2 plugs).
6. Remove the connection for the current transformer and associated PE connection (1 plug).
7. Unscrew the two retaining screws for the fan and attach the equipment for assembling the power block at this position.

You can now remove the power block.

CAUTION

When removing the power block, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The screw connections for the protective covers must only be tightened finger-tight.

Replacing the right power block

Figure 11-11 Replacing the power block, frame size HX , right power block

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access to the power block.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the busbars (12 screws).
2. Unscrew the connection to the DC link (8 nuts).
3. Remove the retaining screw at the top (1 screw).
4. Remove the retaining screws at the bottom (2 screws).
5. Disconnect the plugs for the fiber optic cables and signal cables (2 plugs). The second plug for the fiber optic cables cannot be disconnected until the power block has been pulled out slightly.
6. Remove the connection for the current transformer and associated PE connection (2 plug).
7. Unscrew the two retaining screws for the fan and attach the tool for de-installing the power block at this position.

You can now remove the power block.

CAUTION

When removing the power block, ensure that you do not damage any signal cables.
The second plug connection for the fiber optic cables cannot be disconnected until the power block has been pulled out slightly (see Step 5).

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.
Carefully establish the plug connections and then ensure that they are secure.
The screw connections for the protective covers must only be tightened finger-tight.
11.4.9 Replacing the power block (frame size JX)

Replacing the power block

Figure 11-12 Replacing the power block, frame size JX

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access to the power block.
- Remove the protective cover.

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the busbar (8 screws).
2. Unscrew the connection to the DC link (8 nuts).
3. Remove the retaining screw at the top (1 screw).
4. Remove the retaining screws at the bottom (2 screws).
5. Disconnect the plug-in connections for the fiber-optic cables and signal cables (3 plugs).
6. Remove the connection for the current transformer and associated PE connection (1 plug).
7. Unscrew the two retaining screws for the fan and attach the equipment for assembling the power block at this position.

You can now remove the power block.

CAUTION

When removing the power block, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully establish the plug connections and then ensure that they are secure.
The screw connections for the protective covers must only be tightened finger-tight.
11.4.10 Replacing the fan (frame size FX)

Replacing the fan

Figure 11-13 Replacing the fan, frame size FX

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to maintain the availability of the cabinet unit.

Preparatory steps

- Disconnect the cabinet unit from the power supply
- Allow unimpeded access.
- Remove the protective cover

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the retaining screws for the fan (2 screws)
2. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", $1 \times \mathrm{N}$ ")

You can now carefully remove the fan.

CAUTION

When removing, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully insert the plug-in connections, and then check them for a secure fit.
The screw connections for the protective covers may only be tightened by hand.

Note

Following fan replacement, the operating hours counter of the fan should be reset via p0251 $=0$.

11.4.11 Replacing the fan (frame size GX)

Replacing the fan

Figure 11-14 Replacing the fan, frame size GX

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to maintain the availability of the cabinet unit.

Preparatory steps

- Disconnect the cabinet unit from the power supply
- Allow unimpeded access.
- Remove the protective cover

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the retaining screws for the fan (3 screws)
2. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", $1 \times \mathrm{N}$ ")

You can now carefully remove the fan.

CAUTION

When removing, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully insert the plug-in connections, and then check them for a secure fit.
The screw connections for the protective covers may only be tightened by hand.

Note

Following fan replacement, the operating hours counter of the fan should be reset via p0251 $=0$.
11.4.12 Replacing the fan (frame size HX)

Replacing the fan, left power block

Figure 11-15 Replacing the fan, frame size HX , left power block

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to maintain the availability of the cabinet unit.

Preparatory steps

- Disconnect the cabinet unit from the power supply
- Allow unimpeded access.
- Remove the protective cover

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the busbar (6 screws).
2. Remove the retaining screws for the fan (3 screws)
3. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", $1 \times \mathrm{N}$ ")

You can now carefully remove the fan.

CAUTION

When removing, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully insert the plug-in connections, and then check them for a secure fit.
The screw connections for the protective covers may only be tightened by hand.

Note

Following fan replacement, the operating hours counter of the fan should be reset via p0251 $=0$.

Replacing the fan, right power block

Figure 11-16 Replacing the fan, frame size HX, right power block

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to maintain the availability of the cabinet unit.

Preparatory steps

- Disconnect the cabinet unit from the power supply
- Allow unimpeded access.
- Remove the protective cover

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the busbars (12 screws).
2. Remove the retaining screws for the fan (3 screws)
3. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", $1 \times \mathrm{N}$ ")

You can now carefully remove the fan.

CAUTION

When removing, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully insert the plug-in connections, and then check them for a secure fit.
The screw connections for the protective covers may only be tightened by hand.

Note

Following fan replacement, the operating hours counter of the fan should be reset via p0251 $=0$.
11.4.13 Replacing the fan (frame size JX)

Replacing the fan

Figure 11-17 Replacing the fan, frame size JX

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to maintain the availability of the cabinet unit.

Preparatory steps

- Disconnect the cabinet unit from the power supply
- Allow unimpeded access.
- Remove the protective cover

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the busbar (8 screws).
2. Remove the retaining screws for the fan (3 screws)
3. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", $1 \times \mathrm{N}$ ")

You can now carefully remove the fan.

CAUTION

When removing, ensure that you do not damage any signal cables.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentconducting parts" must be observed.

Carefully insert the plug-in connections, and then check them for a secure fit.
The screw connections for the protective covers may only be tightened by hand.

Note

Following fan replacement, the operating hours counter of the fan should be reset via p0251 $=0$.

11.4.14 Replacing the fan in the Active Interface Module (frame size FI)

Replacing the fan

Figure 11-18 Replacing the fan in the Active Interface Module (frame size FI)

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to maintain the availability of the cabinet unit.

Preparatory steps

- Disconnect the cabinet unit from the power supply
- Allow unimpeded access.
- Remove the protective cover

Removal steps

The removal steps are numbered in accordance with the figure.

1. Remove the retaining screws for the fan unit (2 screws).
2. Unplug connector -X630.

You can now carefully remove the fan unit.

CAUTION

When removing the fan unit, ensure that the cables are not damaged.

Installation steps

For installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentcarrying parts" must be observed.

Carefully insert the plug-in connections, and then check them for a secure fit.
The screw connections for the protective covers may only be tightened by hand.
11.4.15 Replacing the fan in the Active Interface Module (frame size GI)

Replacing the fan

Figure 11-19 Replacing the fan in the Active Interface Module (frame size GI)

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to ensure that the cabinet unit is available.

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal

The steps for the removal procedure are numbered in accordance with the diagram.

1. Remove the retaining screws for the fan unit (3 screws).
2. Unplug connector-X630.

You can now carefully remove the fan unit.

CAUTION

When removing the fan unit, ensure that the cables are not damaged.

Installation

For re-installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentcarrying parts" must be observed.

Carefully re-establish the plug connections and ensure that they are secure.
The screwed connections for the protective covers must only be tightened by hand.

11.4.16 Replacing the fan in the Active Interface Module (frame size HI)_S150

Replacing the fan

Figure 11-20 Replacing the fan in the Active Interface Module (frame size HI)

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to ensure that the cabinet unit is available.

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal

The steps for the removal procedure are numbered in accordance with the diagram.

1. Remove the retaining screws for the fan (3 screws).
2. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", 1 x " N ").

You can now carefully remove the fan.

CAUTION

When removing the fan, ensure that the cables are not damaged.

Installation

For re-installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentcarrying parts" must be observed.

Carefully re-establish the plug connections and ensure that they are secure.
The screwed connections for the protective covers must only be tightened by hand.

11.4.17 Replacing the fan in the Active Interface Module (frame size JI)

Replacing the fan

Figure 11-21 Replacing the fan in the Active Interface Module (frame size JI)

Description

The average service life of the device fans is 50,000 hours. In practice, however, the service life depends on other variables (e.g. ambient temperature, degree of cabinet protection, etc.) and, therefore, may deviate from this value.

The fans must be replaced in good time to ensure that the cabinet unit is available.

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Allow unimpeded access.
- Remove the protective cover.

Removal

The steps for the removal procedure are numbered in accordance with the diagram.

1. Remove the retaining screws for the fan (3 screws).
2. Disconnect the supply cables ($1 \times \mathrm{L} \mathrm{L}$ ", 1 x " N ").

You can now carefully remove the fan.

CAUTION

When removing the fan, ensure that the cables are not damaged.

Installation

For re-installation, carry out the above steps in reverse order.

CAUTION

The tightening torques specified in the table "Tightening torques for connecting currentcarrying parts" must be observed.

Carefully re-establish the plug connections and ensure that they are secure.
The screwed connections for the protective covers must only be tightened by hand.

11.4.18 Replacing the fan fuses (-R2-F101/F102, -G1-F10/F11, -T1 -F10/F11)

The order numbers for replacement fan fuses can be found in the spare parts list.
\TWARNING
Make sure that the cause of the fault is found before the fuse is replaced.
11.4.19 Replacing the fuse for the auxiliary power supply (-F11/-F12)

The order numbers for replacing auxiliary power supply fuses that have blown can be found in the spare parts list.

WARNING

You must carry out the following:

- First disconnect the auxiliary power supply.
- Then rectify the cause of the fault.
- Replace the fuse.

11.4.20 Replacing the main fuses

Preparatory steps

- Disconnect the cabinet unit from the power supply.
- Open the cabinet door.
- Remove the protective cover.

Removal

1. Insert the holder for the main fuse.
2. Remove the main fuse.

Installation

1. Insert the new main fuse into the holder.
2. Insert the holder for the main fuse in the cabinet.

11.4.21 Replacing the cabinet operator panel

1. Switch the unit into a no-voltage condition.
2. Open the cabinet.
3. Disconnect the power supply and communications line on the operator panel.
4. Release the fastenings on the operator panel.
5. Remove the operator panel.
6. Install the new operator panel.
7. Carry out any other work by reversing the sequence.

11.4.22 Replacing the Backup Battery for the Cabinet Operator Panel

Table 11-2 Technical specifications of the backup battery

Type	CR2032 3 V lithium battery
Manufacturer	Maxell, Sony, Panasonic
Nominal capacity	220 mAh
Self-discharge at $20^{\circ} \mathrm{C}$	$1 \% /$ year
Service life (in backup mode)	>1 year at $70^{\circ} \mathrm{C} ;>1.5$ years at $20^{\circ} \mathrm{C}$
Service life (in operation)	>2 years

Replacement

1. Switch the unit into a no-voltage condition.
2. Open the cabinet.
3. Disconnect the 24 V DC power supply and communications line on the operator panel.
4. Open the cover of the battery compartment.
5. Remove the old battery.
6. Insert the new battery.
7. Close the cover of the battery compartment.
8. Reconnect the 24 V DC power supply and communications line.
9. Close the cabinet.

NOTICE

The battery must be replaced within one minute to ensure that no AOP settings are lost.

Figure 11-22 Replacing the backup battery for the cabinet operator panel

Note

The battery must be disposed of in accordance with the applicable country-specific guidelines and regulations.

11.5 Forming the DC link capacitors

Description

If the device is kept in storage for more than 2 years, the DC link capacitors have to be reformed. If this is not done, the unit could be damaged when it is operated under load.
If the cabinet is commissioned within two years of its date of manufacture, the DC link capacitors do not need to be re-formed. The date of manufacture is indicated in the serial number on the type plate (see "Device Overview").

Note

It is important that the storage period is calculated from the date of manufacture and not from the date that the equipment was shipped.

Procedure

The DC link capacitors are re-formed by applying the rated voltage without load for at least 30 minutes at room temperature.

- Operation via PROFIBUS:
- Set bit 3 of control word 1 (operation enable) permanently to " 0 ".
- Switch on the converter by means of an ON signal (bit 0 of the control word); all the other bits must be set in such a way that the converter can be operated.
- Once the delay time has elapsed, switch off the converter and restore the original PROFIBUS setting.
- Operation via terminal block:
- Set p0852 to "0" (factory setting is "1").
- Switch on the converter (via digital input 0 on the customer terminal block).
- Once the delay time has elapsed, switch off the converter and restore the original setting for p 0852 .

Note

Reforming cannot be carried out in LOCAL mode via the AOP30.

11.6 Messages after replacing DRIVE-CLiQ components

After DRIVE-CLiQ components are replaced (Control Interface Module, TM31, SMCxx) when service is required, generally no message is output after power-up, since an identical component is identified and accepted as component when the system boots.

The reason for this is that an identical component is detected and accepted as spare part when running-up. If, unexpectedly, a fault message of the "topology fault" category is displayed, then when replacing a component, one of the following faults/errors should have occurred:

- A Control Interface Module with different firmware data was installed.
- When connecting-up DRIVE-CLiQ cables, connections were interchanged.

Automatic firmware update

As of firmware 2.5, an automatic firmware update can be carried out once the electronics have been powered up on replacement DRIVE-CLiQ components.

- The following LEDs will flash slowly to indicate that an automatic firmware update is in progress: the "RDY" LED on the Control Unit (orange, 0.5 Hz) and an LED on the relevant DRIVE-CLiQ component (green/red, 0.5 Hz).

CAUTION

The drive converter must not be shut down during this process!

- Once the automatic firmware update is complete, the "RDY" LED on the Control Unit will flash quickly (orange, 2 Hz) along with an LED on the relevant DRIVE-CLiQ component (green/red, 2 Hz).
- To complete the automatic firmware update process, a POWER ON is required (switch the device off and back on again).

11.7 Upgrading the cabinet unit firmware

When you upgrade the cabinet unit firmware (by installing a new CompactFlash Card with a new firmware version, for example), you might also have to upgrade the firmware for the DRIVE-CLiQ components in the cabinet unit.

If the system detects that the firmware in the DRIVE-CLiQ components needs to be updated, it will trigger this process automatically when the automatic firmware update is performed.

Automatic firmware update sequence

1. During an automatic firmware update, the "RDY" LED on the Control Unit flashes slowly (orange, 0.5 Hz).
2. The firmware update is performed automatically and in sequence on the DRIVE-CLiQ components; during the update process, an LED on the component whose firmware is being updated will flash slowly (green/red, 0.5 Hz).
3. Once the firmware update on an individual DRIVE-CLiQ component is complete, the LED on that component will flash quickly (green/red, 2 Hz).
4. Once the firmware update on all components is complete, the LED on the Control Unit will flash quickly (orange, 2 Hz).
5. To complete the automatic firmware update process, a POWER ON is required (switch the device off and back on again).

CAUTION

The power supply to the components must not be interrupted while the firmware is being upgraded.

CAUTION

New firmware should only be installed if there is a problem with the cabinet unit.

11.8 Loading the new operator panel firmware from the PC.

Description

Firmware might need to be loaded to the AOP if the AOP functionality needs to be upgraded.
If, once the drive has powered up, the CompactFlash Card is found to contain a newer version of the firmware, a message will appear on the AOP30 prompting you to load the new firmware. You should click "YES" in response to this prompt.
The firmware will then be loaded automatically on the operator panel and the following dialog screen will appear.

Figure 11-23 Dialog screen: loading firmware
If the firmware cannot be loaded successfully, it can be loaded using the following manual method.

The load program LOAD_AOP30 and the firmware file can be found on the customer DVD.

Loading the firmware

1. Establish the RS232 connection from the PC to the AOP30.
2. Provide the supply voltage (24 V DC).
3. Start the LOAD_AOP30 program on the PC.
4. Choose the PC interface (COM1, COM2).
5. Choose and open the firmware (AOP30.H86).
6. Follow the instructions in the status window of the program and connect the power supply for the AOP30 while pressing the red key (O).
7. The load procedure is started automatically.
8. Switch the power on (switch the power supply off and then back on).

Technical specifications

12.1 Chapter content

This chapter provides information on the following:

- General and specific technical specifications for the devices.
- Information on restrictions that apply when the devices are used in unfavorable ambient conditions (derating)

12.2 General technical specifications

Table 12-1 General technical data

Electrical data			
Line system configurations	Grounded TN/TT systems or ungrounded IT systems (a grounded phase conductor is not permissible in 690 V line supplies)		
Line frequency	47 Hz to 63 Hz		
Output frequency	0 Hz to 300 Hz		
Power factor	Variable via reactive current (factory setting: $\cos \varphi=1$)		
Switching at input	Once every 3 minutes		
Overvoltage category	III according to EN 61800-5-1		
Mechanical data			
Degree of protection	IP20 (higher degrees of protection up to IP54 optional)		
Class of protection	I acc. to EN 61800-5-1		
Cooling method	Forced air cooling AF to EN 60146		
Sound pressure level $L_{p A}$ (1 m)	$\leq 78 \mathrm{~dB}(\mathrm{~A})$ at 50 Hz line frequency $\leq 80 \mathrm{~dB}(\mathrm{~A})$ at 60 Hz line frequency		
Touch protection	EN 50274 and BGV A3 when used as intended		
Cabinet system	Rittal TS 8, doors with double-barb lock, three-section base plates for cable entry		
Paint finish	RAL 7035 (indoor requirements)		
Compliance with standards			
Standards	EN 60146-1, EN 61800-2, EN 61800-3, EN $50178{ }^{1}$), EN 61800-5-1, EN 60204-1, EN $60529{ }^{\text {2) }}$		
CE mark	To EMC directive No. 2004/108/EC and low-voltage directive No. 2006/95/EC		
RI suppression	In accordance with the EMC product standard for variable-speed drives EN 61800-3, "second environment". Application in "first environment" possible with line filters (option LOO).		
Ambient conditions	Storage	Transport	Operation
Ambient temperature	$-25 \ldots+5{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -25 \ldots+70^{\circ} \mathrm{C} \\ & \text { as of }-40^{\circ} \mathrm{C} \text { for } 24 \text { hours } \end{aligned}$	$\begin{aligned} & 0 \ldots+40^{\circ} \mathrm{C} \\ & \text { up to }+50^{\circ} \mathrm{C} \text { with derating } \end{aligned}$
Humidity range ${ }^{2)}$ (non-condensing) corresponds to class	$5 \text { to } 95 \%$ 1K4 to EN 60721-3-1	$5 \ldots 95 \% \text { at } 40^{\circ} \mathrm{C}$ 2K3 to EN 60721-3-2	$5 \ldots 95 \%$ 3K3 to EN 60721-3-3
Environmental class/harmful chemical substances ${ }^{2)}$	1C2 to EN 60721-3-1	2C2 to EN 60721-3-2	3 C 2 to EN 60721-3-3
Organic/biological influences 2)	1B1 to EN 60721-3-1	2B1 to EN 60721-3-2	3B1 to EN 60721-3-3
Degree of pollution	2 according to EN 61800-5-1		
Installation altitude	Up to 2000 m above sea level without derating, > 2000 m above sea level with derating (see "Derating data")		
Mechanical strength	Storage	Transport	Operation

Electrical data			
Vibrational load ${ }^{2)}$	1.5 mm at 5 to 9 Hz	3.1 mm at $5 \ldots 9 \mathrm{~Hz}$	0.075 mm at $10 \ldots 58 \mathrm{~Hz}$
- Displacement	$5 \mathrm{~m} / \mathrm{s}^{2}$ at >9 to 200 Hz	$10 \mathrm{~m} / \mathrm{s}^{2}$ at $>9 \ldots 200 \mathrm{~Hz}$	$10 \mathrm{~m} / \mathrm{s}^{2}$ at $>58 \ldots 200 \mathrm{~Hz}$
- Acceleration	1 M 2 to EN $60721-3-1$	2 M 2 to EN $60721-3-2$	-
corresponds to class			
Shock load ${ }^{2)}$	$40 \mathrm{~m} / \mathrm{s}^{2}$ at 22 ms	$100 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms	$100 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms
- Acceleration	1 M 2 to EN $60721-3-1$	2 M 2 to EN $60721-3-2$	3 M 4 to EN $60721-3-3$
corresponds to class			

Deviations from the defined classes are shown in italics.
${ }^{1)}$ The EN standard specified is the European edition of international standard IEC 62103.
${ }^{2)}$ The EN standards specified are the European editions of the international IEC standards with the same designations.

12.2.1 Derating data

Permissible output current as a function of the ambient temperature

The cabinet devices and the associated system components are rated for an ambient temperature of $40^{\circ} \mathrm{C}$ and installation altitudes up to 2000 m above sea level. The output current must be reduced if the cabinet devices are operated at ambient temperatures above $40^{\circ} \mathrm{C}$. Ambient temperatures above $50^{\circ} \mathrm{C}$ are not permissible. The following tables specify the permissible output current as a function of the ambient temperature for the different degrees of protection.

Table 12-2 Current derating factors as a function of the ambient temperature (inlet air temperature at the air inlet of the cabinet unit) and installation altitude for cabinet units with degree of protection IP20/IP21/IP23/IP43

Installation altitude above sea level in m	Current derating factor						
	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$\mathbf{4 5}{ }^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
$0 \ldots 2000$	100%	100%	100%	100%	100%	93.3%	86.7%

Table 12-3 Current derating factors as a function of the hambient temperature (inlet air temperature at the air inlet of the cabinet unit) and installation altitude for cabinet units with degree of protection IP54

Installation altitude above sea level in m	Current derating factor at an						
	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
$0 \ldots 2000$	100%	100%	100%	100%	93.3%	86.7%	80.0%

Installation altitudes between 2000 m and 5000 m above sea level

If the SINAMICS S150 cabinet units are operated at an installation altitude >2000 m above sea level, it must be taken into account that the air pressure and, consequently, the air density decreases. The lower air density also reduces the cooling efficiency and the insulation capacity of the air.

Installation altitudes between 2000 m and 5000 m can be achieved by applying the following measures.

CAUTION

These measures apply only for SINAMICS S150 cabinet units in voltage level 380 to 480 V 3 AC.
Measures for cabinet units in voltage level 500 to 690 V 3 AC are available on request

Reduce the ambient temperature and the output current

Due to the reduced cooling efficiency, it is necessary, on the one hand, to reduce the ambient temperature and, on the other, to lower heat loss in the cabinet unit by reducing the output current, whereby ambient temperatures lower than $40^{\circ} \mathrm{C}$ may be offset to compensate and are taken into account in the tables. The following tables specify the permissible output currents as a function of installation altitude and ambient temperature for the different degrees of protection. The specified values already include a permitted correction in respect of installation altitude and ambient temperatures less than $40^{\circ} \mathrm{C}$ (incoming air temperature at the inlet to the cabinet unit). The values apply under the precondition that the cabinet layout ensures a cooling air flow though the units as stated in the technical specifications.

Table 12-4 Current derating as a function of ambient temperature (inlet air temperature at the air inlet of the cabinet unit) and installation altitude for cabinet units with degree of protection IP20/IP21/IP23/IP43

Installation altitude above sea level in m	Current derating factor at an ambient temperature (air intake temperature) of						
	$\mathbf{2 0}{ }^{\circ} \mathrm{C}$	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\mathbf{3 0}{ }^{\circ} \mathrm{C}$	$\mathbf{3 5}{ }^{\circ} \mathrm{C}$	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{4 5}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$
$0 \ldots 2000$	100%	100%	100%	100%	100%	93.3%	86.7%
$\ldots 2500$	100%	100%	100%	100%	96.3%		
$\ldots 3000$	100%	100%	100%	98.7%			
$\ldots 3500$	100%	100%	100%				
$\ldots 4000$	100%	100%	96.3%				
$\ldots 4500$	100%	97.5%					
$\ldots 5000$	98.2%						

Table 12-5 Current derating as a function of the ambient temperature (inlet air temperature at the air inlet of the cabinet unit) and installation altitude for cabinet units with degree of protection IP54

Installation altitude above sea level in m	Current derating factor at an ambient temperature (air intake temperature) of						
	$20^{\circ} \mathrm{C}$	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{4 5}{ }^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
$0 \ldots 2000$	100%	100%	100%	100%	93.3%	86.7%	80.0%
$\ldots 2500$	100%	100%	100%	96.3%	89.8%		
$\ldots 3000$	100%	100%	$98,7 \%$	92.5%			
$\ldots 3500$	100%	100%	94.7%				
$\ldots 4000$	100%	96.3%	90.7%				
$\ldots 4500$	97.5%	92.1%					
$\ldots 5000$	93.0%						

Using an isolating transformer to reduce transient overvoltages according to IEC 61800-5-1

This drops overvoltage category III to overvoltage category II, thereby reducing the requirements for insulation capacity of the air. Additional voltage derating (reduction of the input voltage) is not required if the following framework conditions are observed:

- The isolating transformer must be fed from a low-voltage or medium-voltage network and must not be power directly from a high-voltage supply system.
- The isolating transformer may be connect to one or more cabinet units.
- The cables between the isolating transformer and the cabinet unit(s) must be routed in such a manner as to rule out direct lightening strike, i.e. overland lines must not be used.
- The following types of system are permissible:
- TN systems with grounded star point (no grounded outer conductor, no IT systems).

Current derating as a function of the pulse frequency

When the pulse frequency is increased, the derating factor of the output current must be taken into account. This derating factor must be applied to the currents specified in the technical specifications for the cabinet units.

Table 12-6 Derating factor of the output current as a function of the pulse frequency for devices with a rated pulse frequency of 2 kHz

Order no. 6SL3710-...	Unit rating $[\mathrm{kW}]$	Output current at 2 kHz [A]	Derating factor at 4 kHz
Supply voltage 380-480 V 3 AC			
7LE32-1AAx	110	210	82%
7LE32-6AAx	132	260	83%
7LE33-1AAx	160	310	88%
7LE33-8AAx	200	380	87%
7LE35-0AAx	250	490	78%

Table 12-7 Derating factor of the output current as a function of the pulse frequency for units with a rated pulse frequency of 1.25 kHz

$\begin{aligned} & \text { Order no. } \\ & \text { 6SL3710-... } \end{aligned}$	Unit rating [kW]	Output current at $1.25 \mathrm{kHz}[\mathrm{A}]$	$\begin{aligned} & \text { Derating factor } \\ & \text { at } 2.5 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \text { Derating factor } \\ \text { at } 5 \mathrm{kHz} \end{gathered}$
Supply voltage 380-480 V 3 AC				
7LE36-1AAx	315	605	72 \%	60 \%
7LE37-5AAx	400	745	72 \%	60 \%
7LE38-4AAx	450	840	79 \%	55 \%
7LE41-0AAx	560	985	87 \%	60 \%
7LE41-2AAx	710	1260	87 \%	60 \%
7LE41-4AAx	800	1405	95 \%	60 \%
Supply voltage 500-690 V 3 AC				
7LG28-5AAx	75	85	89 \%	60 \%
7LG31-0AAx	90	100	88 \%	60 \%
7LG31-2AAx	110	120	88 \%	60 \%
7LG31-5AAx	132	150	84 \%	55 \%
7LG31-8AAx	160	175	87 \%	60 \%
7LG32-2AAx	200	215	87 \%	60 \%
7LG32-6AAx	250	260	88 \%	60 \%
7LG33-3AAx	315	330	82 \%	55 \%
7LG34-1AAx	400	410	82 \%	55 \%
7LG34-7AAx	450	465	87 \%	55 \%
7LG35-8AAx	560	575	85 \%	50 \%
7LG37-4AAx	710	735	79 \%	55 \%
7LG38-1AAx	800	810	95 \%	55 \%
7LG38-8AAx	900	910	87 \%	55 \%
7LG41-0AAx	1000	1025	86 \%	50 \%
7LG41-3AAx	1200	1270	79 \%	40 \%

For pulse frequencies in the range between the fixed values, the relevant derating factors can be determined by means of linear interpolation.

The following formula applies for this:

Example:
The derating factor is required for when $X_{2}=2 \mathrm{kHz}$ for 6SL3710-7LE41-0AAx.
$\mathrm{X}_{0}=1.25 \mathrm{kHz}, \mathrm{Y}_{0}=100 \%, \mathrm{X}_{1}=2.5 \mathrm{kHz}, \mathrm{Y}_{1}=87 \%, \mathrm{X}_{2}=2 \mathrm{kHz}, \mathrm{Y}_{2}=? ?$
$\mathrm{Y}_{2}=100 \%+\frac{87 \%-100 \%}{2.5 \mathrm{kHz}-1.25 \mathrm{kHz}}(2 \mathrm{kHz}-1.25 \mathrm{kHz})=$
$100 \%+\frac{-13 \%}{1.25 \mathrm{kHz}}(0.75 \mathrm{kHz})=100 \%-7.8 \%=\underline{\underline{92.2} \%}$

Figure 12-1 Calculating derating factors by means of linear interpolation

12.2.2 Overload capability

The converter is equipped with an overload reserve to deal with breakaway torques, for example.

In drives with overload requirements, the appropriate base load current must, therefore, be used as a basis for the required load.

The overloads apply under the precondition that the converter is operated at its base-load current before and after the overload (a duty cycle duration of 300 s is used as a basis here).

Low overload

The base-load current for low overload (I_{L}) is based on a load duty cycle of 110% for 60 s or 150% for 10 s.

Converter current

Figure 12-2 Low overload

High overload
The base-load current for a high overload I_{H} is based on a duty cycle of 150% for 60 s or 160% for 10 s.

Converter current

Figure 12-3 High overload

12.3 Technical specifications

Note

Current, voltage and power figures in these tables are rated values.
The cables to the device are protected by fuses of operating class gG.
The cable cross-sections have been determined for three-core copper cables routed horizontally in air at $40^{\circ} \mathrm{C}$ ambient temperature (according to DIN VDE 0276-1000 and IEC 60364-5-52) with a permissible operating temperature of $70^{\circ} \mathrm{C}$ (e.g. Protodur NYY or NYCWY) and the recommended conductor protection according to DIN VDE 0100 section 430 and IEC 60364-4-43.

CAUTION

When the conditions differ from the above stated (cable routing, cable grouping, ambient temperature), the following instructions for routing the cables must be taken into account:

The required cable cross-section depends on the amperage which flows through the cable. The permissible current loading of cables is defined, for example, in DIN VDE 0276-1000 and IEC 60364-5-52. It depends partly on ambient conditions such as temperature and partly on the type of routing. If the cables are routed individually, they will be cooled relatively well. If several cables are routed together, they may heat each other up. Please note the corresponding derating factors for these supplementary conditions in DIN VDE 0276-1000 and IEC 60364-5-52.

12.3.1 Cabinet unit version $A, 380$ V - 480 V 3 AC

Table 12-8 Version A, $380 \mathrm{~V}-480 \mathrm{~V} 3 \mathrm{AC}$, part 1

Order number	6SL3710	7LE32-1AAx	7LE32-6AAx	7LE33-1AAx
Unit rating - for IL at 50 Hz 400 V 1) - for IH at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1}$) - for IL at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2}$)	kW kW hp hp	$\begin{array}{\|l} 110 \\ 90 \\ 150 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l} 132 \\ 110 \\ 200 \\ 200 \end{array}$	$\begin{array}{\|l} 160 \\ 132 \\ 250 \\ 200 \end{array}$
Output current - Rated current $l_{N A^{3}}{ }^{3)}$ - Base load current lL ${ }^{4}$) - Base load current $l_{H}{ }^{5}$) - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 210 \\ & 205 \\ & 178 \\ & 307 \end{aligned}$	$\begin{array}{\|l} 260 \\ 250 \\ 233 \\ 375 \end{array}$	$\begin{array}{\|l\|} 310 \\ 302 \\ 277 \\ 453 \end{array}$
Infeed/regenerative current - Rated current lNE^{6}) - Maximum current $I_{\text {max }} E$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 197 \\ & 315 \end{aligned}$	$\begin{array}{\|l} 242 \\ 390 \\ \hline \end{array}$	$\begin{array}{\|l\|} 286 \\ 467 \end{array}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 380 \vee 3 \mathrm{AC}-10 \% \text { to } 480 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. - at $50 \mathrm{~Hz}, 400 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 460 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 6.31 \\ & 6.49 \end{aligned}$	$\begin{aligned} & 7.55 \\ & 7.85 \end{aligned}$	$\begin{aligned} & 10.01 \\ & 10.45 \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	0.58	0.70	1.19
Sound pressure level LpA $(1 \mathrm{~m}) \text { at } 50 / 60 \mathrm{~Hz}$	dB(A)	71/73	71/73	72/74
Line connection - Recommended: IEC 7) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} \hline 2 \times 70 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 95 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l} 2 \times 120 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} \hline 2 \times 70 \\ 2 \times 150 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 95 \\ 2 \times 150 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 120 \\ 2 \times 150 \\ \text { M12 (2 holes) } \\ \hline \end{array}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (2 holes)
Max. motor cable length shielded / unshielded	m	$300 / 450$	300 / 450	300 / 450
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 1400 \\ & 2000 \\ & 600 \end{aligned}$	$\begin{array}{\|l} 1400 \\ 2000 \\ 600 \end{array}$	$\begin{array}{\|l} 1600 \\ 2000 \\ 600 \end{array}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{array}{\|l\|} \hline \mathrm{FI} \\ \mathrm{FX} \\ \mathrm{FX} \\ \hline \end{array}$	$\begin{aligned} & \text { FI } \\ & \text { FX } \\ & \text { FX } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { GI } \\ \text { GX } \\ \text { GX } \\ \hline \end{array}$
Weight (without options), approx.	kg	708	708	892

Order number	6SL3710	7LE32-1AAx	7LE32-6AAx	7LE33-1AAx
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{array}{\|l} \hline \text { 3NA3252 } \\ 315 \\ 2 \\ \text { 3NE1230-2 } \\ 315 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \text { 3NA3254 } \\ & 355 \\ & 2 \\ & \\ & \text { 3NE1331-2 } \\ & 350 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline \text { 3NA3365 } \\ 500 \\ 3 \\ \text { 3NE1334-2 } \\ 500 \\ 2 \\ \hline \end{array}$
1) Rated output of a typical 6-pole standard induction motor based on I_{L} or I_{H} at $400 \vee 3 \mathrm{AC} 50 \mathrm{~Hz}$. 2) Rated output of a typical 6-pole standard induction motor based on IL or I_{H} at $460 \vee 3 \mathrm{AC} 60 \mathrm{~Hz}$. 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current l_{L} is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability").				

Table 12-9 Version A, $380 \mathrm{~V}-480 \vee 3 \mathrm{AC}$, part 2

Order number	6SL3710	7LE33-8AAx	7LE35-0AAx	7LE36-1AAx
Unit rating - for IL at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 460 \mathrm{~V}^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$	kW kW hp hp	$\begin{aligned} & 200 \\ & 160 \\ & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 400 \\ & 350 \end{aligned}$	$\begin{aligned} & 315 \\ & 250 \\ & 500 \\ & 350 \\ & \hline \end{aligned}$
Output current - Rated current $\mathrm{INA}^{3)}$ - Base load current lı ${ }^{4}$ - Base load current $l_{H}{ }^{5}$ - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 380 \\ & 370 \\ & 340 \\ & 555 \end{aligned}$	$\begin{aligned} & 490 \\ & 477 \\ & 438 \\ & 715 \end{aligned}$	$\begin{aligned} & 605 \\ & 590 \\ & 460 \\ & 885 \end{aligned}$
Infeed/regenerative current - Rated current INE^{6}) - Maximum current $I_{\max E}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|} \hline 349 \\ 570 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 447 \\ 735 \\ \hline \end{array}$	$\begin{aligned} & 549 \\ & 907 \end{aligned}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 380 \vee 3 \text { AC }-10 \% \text { to } 480 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. at $50 \mathrm{~Hz}, 400 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 460 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 10.72 \\ & 11.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.13 \\ & 13.65 \end{aligned}$	$\begin{aligned} & 17.69 \\ & 18.55 \\ & \hline \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	1.19	1.19	1.96
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	72/74	72/74	77/79
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 120 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 240 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 240 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$
Motor connection - Recommended: IEC 7) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 120 \\ & 2 \times 150 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 185 \\ & 2 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 240 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (2 holes)
Max. motor cable length shielded / unshielded	m	300 / 450	$300 / 450$	$300 / 450$
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 1800 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{array}{\|l\|} \hline \text { GI } \\ \text { GX } \\ \text { GX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \mathrm{GI} \\ \mathrm{GX} \end{array}$ GX	$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{HX} \end{aligned}$
Weight (without options), approx.	kg	980	980	1716

Order number	6SL3710	7LE33-8AAx	7LE35-0AAx	7LE36-1AAx
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{array}{\|l} \hline \text { 3NA3365 } \\ 500 \\ 3 \\ \text { 3NE1334-2 } \\ 500 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & \text { 3NA3372 } \\ & 630 \\ & 3 \\ & \text { 3NE1436-2 } \\ & 630 \\ & 3 \end{aligned}$	$\begin{array}{\|l} \hline \text { 3NA3475 } \\ 800 \\ 4 \\ \text { 3NE1438-2 } \\ 800 \\ 3 \\ \hline \end{array}$
1) Rated output of a typical 6-pole standard induction motor based on I_{L} or I_{H} at $400 \vee 3 \mathrm{AC} 50 \mathrm{~Hz}$. 2) Rated output of a typical 6-pole standard induction motor based on IL or I_{H} at $460 \vee 3 \mathrm{AC} 60 \mathrm{~Hz}$. 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current l_{L} is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability").				

Table 12-10 Version A, $380 \mathrm{~V}-480 \mathrm{~V} 3 \mathrm{AC}$, part 3

Order number	6SL3710	7LE37-5AAx	7LE38-4AAx	7LE41-0AAx
Unit rating - for IL at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 460 \mathrm{~V}^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$	kW kW hp hp	$\begin{aligned} & 400 \\ & 315 \\ & 600 \\ & 450 \end{aligned}$	$\begin{aligned} & 450 \\ & 400 \\ & 700 \\ & 600 \end{aligned}$	$\begin{aligned} & 560 \\ & 450 \\ & 800 \\ & 700 \end{aligned}$
Output current - Rated current $\mathrm{INA}^{3)}$ - Base load current lı ${ }^{4}$ - Base load current $l_{H}{ }^{5}$ - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} 745 \\ 725 \\ 570 \\ 1087 \end{array}$	$\begin{array}{\|l} 840 \\ 820 \\ 700 \\ 1230 \end{array}$	$\begin{array}{\|l\|} 985 \\ 960 \\ 860 \\ 1440 \end{array}$
Infeed/regenerative current - Rated current INE^{6}) - Maximum current $I_{\max E}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \hline 674 \\ 1118 \\ \hline \end{array}$	$\begin{array}{\|l} 759 \\ 1260 \end{array}$	$\begin{array}{\|l\|} \hline 888 \\ 1477 \\ \hline \end{array}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 380 \text { V } 3 \text { AC }-10 \% \text { to } 480 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. at $50 \mathrm{~Hz}, 400 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 460 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 20.63 \\ & 11.15 \end{aligned}$	$\begin{aligned} & \hline 21.1 \\ & 13.65 \end{aligned}$	$\begin{aligned} & 27.25 \\ & 18.55 \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	1.96	1.96	2.6
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	77/79	77/79	77/79
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 300 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 4 \times 150 \\ 8 \times 240 \\ \text { M12 (4 holes) } \\ \hline \end{array}$	$\begin{aligned} & 4 \times 185 \\ & 8 \times 240 \\ & \text { M12 (} 4 \text { holes) } \\ & \hline \end{aligned}$
Motor connection - Recommended: IEC 7) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 300 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \times 150 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \end{aligned}$	$\begin{aligned} & 4 \times 185 \\ & 6 \times 240 \\ & \text { M12 (3 holes) } \end{aligned}$
Protective conductor connection Fixing screw		M12 (10 holes)	M12 (16 holes)	M12 (18 holes)
Max. motor cable length shielded / unshielded	m	300 / 450	$300 / 450$	$300 / 450$
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{array}{\|l} 2200 \\ 2000 \\ 600 \\ \hline \end{array}$	$\begin{array}{\|l} 2200 \\ 2000 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & 2800 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{HX} \end{aligned}$	$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{HX} \end{aligned}$	$\begin{aligned} & \mathrm{JI} \\ & \mathrm{JX} \\ & \mathrm{JX} \end{aligned}$
Weight (without options), approx.	kg	1731	1778	2408

Order number	6SL3710	7LE37-5AAx	7LE38-4AAx	7LE41-0AAx
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{array}{\|l} \text { 3NA3475 } \\ 800 \\ 4 \\ \text { 3NE1448-2 } \\ 850 \\ 3 \end{array}$	Circuit breaker Circuit breaker	Circuit breaker Circuit breaker
${ }^{1)}$ Rated output of a typical 6-po 2) Rated output of a typical 6-po 3) The currents are based on a ${ }^{4)}$ The base-load current I_{L} is ba (see "Overload capability"). 5) The base-load current It is ba (see "Overload capability"). 6) The current values given here 7) The recommendations for the (National Electrical Code) or CE	ndard indu ndard indu ower facto on a duty n a duty based on America anadian E	tion motor ba tion motor ba of $\cos \varphi=1$. cle of 110% fo cle of 150% fo e rated output market in AW ectrical Code)	I_{H} at 400 V 3 AC I_{H} at 460 V 3 AC 0\% for 10 s with 60% for 10 s with must be taken fr	ycle duration of 300 s ycle duration of 300 s propriate NEC

Table 12-11 Version A, $380 \mathrm{~V}-480 \vee 3 \mathrm{AC}$, part 4

Order number	6SL3710	7LE41-2AAx	7LE41-4AAx	
Unit rating - for IL at $50 \mathrm{~Hz} 400 \mathrm{~V}^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 400 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 460 \mathrm{~V}^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 460 \mathrm{~V}{ }^{2)}$	kW kW hp hp	$\begin{array}{\|l} 710 \\ 560 \\ 1000 \\ 900 \\ \hline \end{array}$	$\begin{array}{\|l} 800 \\ 710 \\ 1000 \\ 1000 \\ \hline \end{array}$	
Output current - Rated current IN A ${ }^{3)}$ - Base load current IL ${ }^{4}$) - Base load current lH^{5}) - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1260 \\ & 1230 \\ & 1127 \\ & 1845 \end{aligned}$	$\begin{aligned} & 1405 \\ & 1370 \\ & 1257 \\ & 2055 \end{aligned}$	
Infeed/regenerative current - Rated current INE^{6}) - Maximum current $I_{\max E}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1133 \\ & 1891 \end{aligned}$	$\begin{aligned} & 1262 \\ & 2107 \end{aligned}$	
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 380 \text { V } 3 \text { AC }-10 \% \text { to } 480 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. at $50 \mathrm{~Hz}, 400 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 460 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 33.05 \\ & 34.85 \end{aligned}$	$\begin{aligned} & 33.95 \\ & 35.85 \end{aligned}$	
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	2.6	2.6	
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	dB(A)	78/80	78/80	
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} 4 \times 240 \\ 8 \times 240 \\ \text { M12 (4 holes) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 6 \times 185 \\ 8 \times 240 \\ \text { M12 (4 holes) } \\ \hline \end{array}$	
Motor connection - Recommended: IEC 7) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 4 \times 240 \\ & 6 \times 240 \\ & \text { M12 (3 holes) } \end{aligned}$	$\begin{array}{\|l} 6 \times 185 \\ 6 \times 240 \\ \text { M12 (3 holes) } \\ \hline \end{array}$	
Protective conductor connection Fixing screw		M12 (18 holes)	M12 (18 holes)	
Max. motor cable length shielded / unshielded	m	$300 / 450$	$300 / 450$	
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 2800 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 2800 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{aligned} & \mathrm{JI} \\ & \mathrm{JX} \\ & \mathrm{JX} \end{aligned}$	$\begin{aligned} & \mathrm{JI} \\ & \mathrm{JX} \\ & \mathrm{JX} \end{aligned}$	
Weight (without options), approx.	kg	2408	2408	

Order number	6SL3710	7LE41-2AAx	7LE41-4AAx	
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	Circuit breaker Circuit breaker	Circuit breaker Circuit breaker	
${ }^{1)}$ Rated output of a typical 6-pole standard induction motor based on IL_{L} or I_{H} at 400 V 3 AC 50 Hz . 2) Rated output of a typical 6-pole standard induction motor based on IL or IH at 460 V 3 AC 60 Hz . 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current IL is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability"). ${ }^{5)}$ The base-load current $l_{\text {t }}$ is based on a duty cycle of 150% for 60 s or 160% for 10 s with a duty cycle duration of 300 s (see "Overload capability"). ${ }^{6)}$ The current values given here are based on the rated output current. ${ }^{\text {7) }}$ The recommendations for the North American market in AWG or MCM must be taken from the appropriate NEC (National Electrical Code) or CEC (Canadian Electrical Code) standards.				

12.3.2 Cabinet unit version $A, 500 \mathrm{~V}$ - 690 V 3 AC

Table 12-12 Version A, $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$, part 1

Order number	6SL3710	7LG28-5AAx	7LG31-0AAx	7LG31-2AAx
Unit rating - for IL at 50 Hz 690 V 1) - for IH at 50 Hz 690 V 1) - for IL at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for I at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1}$) - for I_{L} at $60 \mathrm{~Hz} 575 \mathrm{~V}^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 575 \mathrm{~V}^{2)}$	kW kW kW kW hp hp	$\begin{aligned} & 75 \\ & 55 \\ & 55 \\ & 45 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 90 \\ & 75 \\ & 55 \\ & 55 \\ & 75 \\ & 75 \end{aligned}$	$\begin{array}{\|l} 110 \\ 90 \\ 75 \\ 75 \\ 100 \\ 100 \end{array}$
Output current - Rated current $l_{N A^{3}}{ }^{3)}$ - Base load current $\mathrm{IL}^{4}{ }^{4}$ - Base load current $l_{H}{ }^{5}$ - Max. current $I_{\max A}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{\|l\|} \hline 85 \\ 80 \\ 76 \\ 120 \end{array}$	$\begin{array}{\|l\|} 100 \\ 95 \\ 89 \\ 142 \end{array}$	$\begin{array}{\|l\|} \hline 120 \\ 115 \\ 107 \\ 172 \\ \hline \end{array}$
Infeed/regenerative current - Rated current lNE^{6}) - Maximum current $I_{\text {max }}$ E	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 86 \\ 125 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 99 \\ 144 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 117 \\ 170 \\ \hline \end{array}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 500 \vee 3 \text { AC }-10 \% \text { to } 690 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. at $50 \mathrm{~Hz}, 690 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 575 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{array}{\|l} 5.12 \\ 4.45 \end{array}$	$\begin{array}{\|l\|l} 5.38 \\ 4.65 \end{array}$	$\begin{aligned} & 5.84 \\ & 5.12 \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	0.58	0.58	0.58
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	71/73	71/73	71/73
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 50 \\ 4 \times 240 \\ \mathrm{M} 12 \text { (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 70 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 2 \times 70 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 50 \\ 2 \times 150 \\ \text { M12 (2 holes) } \end{array}$	$\begin{array}{\|l} 70 \\ 2 \times 150 \\ \text { M12 (2 holes) } \end{array}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (2 holes)
Max. motor cable length shielded / unshielded	m	300 / 450	300 / 450	$300 / 450$
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 1400 \\ & 2000 \\ & 600 \end{aligned}$	$\begin{array}{\|l} 1400 \\ 2000 \\ 600 \end{array}$	$\begin{aligned} & 1400 \\ & 2000 \\ & 600 \end{aligned}$

Order number	6SL3710	7LG28-5AAx	7LG31-0AAx	7LG31-2AAx
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{aligned} & \mathrm{FI} \\ & \mathrm{FX} \\ & \mathrm{FX} \end{aligned}$	$\begin{aligned} & \mathrm{FI} \\ & \mathrm{FX} \\ & \mathrm{FX} \end{aligned}$	$\begin{aligned} & \mathrm{FI} \\ & \mathrm{FX} \\ & \mathrm{FX} \end{aligned}$
Weight (without options), approx.	kg	708	708	708
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{array}{\|l} \text { 3NA3132-6 } \\ 125 \\ 1 \\ \text { 3NE1022-2 } \\ 125 \\ 00 \end{array}$	$\begin{array}{\|l} \text { 3NA3132-6 } \\ 125 \\ 1 \\ \text { 3NE1022-2 } \\ 125 \\ 00 \end{array}$	$\begin{aligned} & \text { 3NA3136-6 } \\ & 160 \\ & 1 \\ & \text { 3NE1224-2 } \\ & 160 \\ & 1 \end{aligned}$
${ }^{1)}$ Rated output of a typical 6-pole standard induction motor based on IL or I_{H} at 500 V 3 AC 50 Hz or 690 V 3 AC 50 Hz . 2) Rated output of a typical 6-pole standard induction motor based on IL or I_{H} at 575 V 3 AC 60 Hz . 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current lL is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability"). ${ }^{5)}$ The base-load current l_{H} is based on a duty cycle of 150% for 60 s or 160% for 10 s with a duty cycle duration of 300 s (see "Overload capability"). 6) The current values given here are based on the rated output current. 7) The recommendations for the North American market in AWG or MCM must be taken from the appropriate NEC (National Electrical Code) or CEC (Canadian Electrical Code) standards.				

Table 12-13 Version A, $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$, part 2

Order number	6SL3710	7LG31-5AAx	7LG31-8AAx	7LG32-2AAx
Unit rating - for I_{L} at $50 \mathrm{~Hz} 690 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 690 \mathrm{~V}^{1)}$ - for I_{L} at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 575 \mathrm{~V}^{2}$	kW kW kW kW hp hp	$\begin{aligned} & 132 \\ & 110 \\ & 90 \\ & 90 \\ & 150 \\ & 125 \end{aligned}$	$\begin{aligned} & 160 \\ & 132 \\ & 110 \\ & 90 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & 160 \\ & 132 \\ & 110 \\ & 200 \\ & 200 \end{aligned}$
Output current - Rated current INA ${ }^{3)}$ - Base load current $\mathrm{I}{ }^{4}$) - Base load current I^{5}) - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 150 \\ & 142 \\ & 134 \\ & 213 \end{aligned}$	$\begin{array}{\|l} 175 \\ 170 \\ 157 \\ 255 \\ \hline \end{array}$	$\begin{aligned} & 215 \\ & 208 \\ & 192 \\ & 312 \\ & \hline \end{aligned}$
Infeed/regenerative current - Rated current INE^{6}) - Maximum current $I_{\max } \mathrm{E}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 144 \\ & 210 \end{aligned}$	$\begin{aligned} & 166 \\ & 253 \end{aligned}$	$\begin{aligned} & 202 \\ & 308 \end{aligned}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 500 \text { V } 3 \text { AC }-10 \% \text { to } 690 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. - at $50 \mathrm{~Hz}, 690 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 575 \mathrm{~V}$	$\begin{array}{\|l\|} \hline \mathrm{kW} \\ \mathrm{~kW} \\ \hline \end{array}$	$\begin{array}{\|} 5.75 \\ 4.97 \\ \hline \end{array}$	$\begin{aligned} & 11.02 \\ & 11.15 \end{aligned}$	$\begin{aligned} & 11.44 \\ & 11.56 \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	0.58	1.19	1.19
Sound pressure level LpA (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	71/73	75/77	75/77
Line connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} 95 \\ 4 \times 240 \\ \text { M12 (2 holes) } \end{array}$	$\begin{aligned} & 120 \\ & 4 \times 240 \\ & \mathrm{M} 12 \text { (2 holes) } \end{aligned}$	$\begin{aligned} & 2 \times 70 \\ & 4 \times 240 \\ & \text { M12 (} 2 \text { holes) } \end{aligned}$
Motor connection - Recommended: IEC ${ }^{7}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 95 \\ 2 \times 150 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{aligned} & 120 \\ & 2 \times 150 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 70 \\ & 2 \times 150 \\ & \text { M12 (} 2 \text { holes) } \\ & \hline \end{aligned}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (2 holes)
Max. motor cable length shielded / unshielded	m	$300 / 450$	$300 / 450$	$300 / 450$
Dimensions (standard version) - Width - Height - Depth	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 1400 \\ 2000 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & 1600 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{array}{\|l\|} \hline F I \\ F X \\ F X \\ \hline \end{array}$	GI GX GX	GI GX GX
Weight (without options), approx.	kg	708	892	892

Order number	6SL3710	7LG31-5AAx	7LG31-8AAx	7LG32-2AAx
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{aligned} & \text { 3NA3240-6 } \\ & 200 \\ & 2 \\ & \text { 3NE1225-2 } \\ & 200 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3NA3244-6 } \\ & 250 \\ & 2 \\ & \text { 3NE1227-2 } \\ & 250 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3NA3252-6 } \\ & 315 \\ & 2 \\ & \text { 3NE1230-2 } \\ & 315 \\ & 1 \end{aligned}$
${ }^{1)}$ Rated output of a typical 6-pole standard induction motor based on I_{L} or I_{H} at $500 \vee 3 \mathrm{AC} 50 \mathrm{~Hz}$ or 690 V 3 AC 50 Hz . 2) Rated output of a typical 6-pole standard induction motor based on IL or IH at 575 V 3 AC 60 Hz . 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current I_{L} is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability").				

Table 12-14 Version A, $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$, part 3

Order number	6SL3710	7LG32-6AAx	7LG33-3AAx	7LG34-1AAx
Unit rating - for IL at 50 Hz 690 V 1) - for I_{H} at $50 \mathrm{~Hz} 690 \mathrm{~V}^{1)}$ - for IL at $50 \mathrm{~Hz} 500 \mathrm{~V}^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 575 \mathrm{~V}^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2)}$	kW kW kW kW hp hp	$\begin{aligned} & 250 \\ & 200 \\ & 160 \\ & 132 \\ & 250 \\ & 200 \end{aligned}$	$\begin{array}{\|l} 315 \\ 250 \\ 200 \\ 160 \\ 300 \\ 250 \end{array}$	$\begin{array}{\|l} 400 \\ 315 \\ 250 \\ 200 \\ 400 \\ 350 \end{array}$
Output current - Rated current IN A ${ }^{3)}$ - Base load current lL ${ }^{4}$) - Base load current I^{5}) - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 260 \\ & 250 \\ & 233 \\ & 375 \end{aligned}$	$\begin{array}{\|l} 330 \\ 320 \\ 280 \\ 480 \end{array}$	$\begin{array}{\|l} 410 \\ 400 \\ 367 \\ 600 \end{array}$
Infeed/regenerative current - Rated current INE^{6}) - Maximum current $I_{\max } \mathrm{E}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} 242 \\ 370 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 304 \\ 465 \end{array}$	$\begin{array}{\|l} 375 \\ 619 \\ \hline \end{array}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 500 \text { V } 3 \text { AC }-10 \% \text { to } 690 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. - at $50 \mathrm{~Hz}, 690 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 575 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 11.97 \\ & 12.03 \end{aligned}$	$\begin{aligned} & 12.69 \\ & 12.63 \end{aligned}$	$\begin{aligned} & 19.88 \\ & 18.86 \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	1.19	1.19	1.96
Sound pressure level LpA (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	75/77	75/77	77/79
Line connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} 2 \times 95 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 120 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 185 \\ 4 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$
Motor connection - Recommended: IEC ${ }^{7}$) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 95 \\ 2 \times 185 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 120 \\ 2 \times 240 \\ \text { M12 (2 holes) } \\ \hline \end{array}$	$\begin{aligned} & 2 \times 185 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (2 holes)
Max. motor cable length shielded / unshielded	m	$300 / 450$	300 / 450	300 / 450
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 1600 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 1600 \\ 2000 \\ 600 \end{array}$	$\begin{array}{\|l} 2200 \\ 2000 \\ 600 \\ \hline \end{array}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		GI GX GX	$\begin{array}{\|l\|} \mathrm{GI} \\ \mathrm{GX} \end{array}$ GX	$\begin{array}{\|l\|} \hline \mathrm{HI} \\ \mathrm{HX} \\ \mathrm{HX} \\ \hline \end{array}$
Weight (without options), approx.	kg	892	892	1716

Order number	6SL3710	7LG32-6AAx	7LG33-3AAx	7LG34-1AAx
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{aligned} & \text { 3NA3354-6 } \\ & 355 \\ & 3 \\ & \\ & \text { 3NE1331-2 } \\ & 350 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3NA3365-6 } \\ & 500 \\ & 3 \\ & \text { 3NE1334-2 } \\ & 500 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3NA3365-6 } \\ & 500 \\ & 3 \\ & \text { 3NE1334-2 } \\ & 500 \\ & 2 \end{aligned}$
${ }^{1)}$ Rated output of a typical 6-pole standard induction motor based on I_{L} or I_{H} at $500 \vee 3 \mathrm{AC} 50 \mathrm{~Hz}$ or 690 V 3 AC 50 Hz . 2) Rated output of a typical 6-pole standard induction motor based on IL or IH at 575 V 3 AC 60 Hz . 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current I_{L} is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability").				

Table 12-15 Version A, $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$, part 4

Order number	6SL3710	7LG34-7AAx	7LG35-8AAx	7LG37-4AAx
Unit rating - for I_{L} at $50 \mathrm{~Hz} 690 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 690 \mathrm{~V}^{1)}$ - for I_{L} at 50 Hz 500 V 1) - for I_{H} at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for I_{L} at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2}$	kW kW kW kW hp hp	$\begin{aligned} & 450 \\ & 400 \\ & 315 \\ & 250 \\ & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 560 \\ & 450 \\ & 400 \\ & 315 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 710 \\ & 630 \\ & 500 \\ & 450 \\ & 700 \\ & 700 \end{aligned}$
Output current - Rated current IN A ${ }^{3)}$ - Base load current IL ${ }^{4}$) - Base load current $\mathrm{I}_{\mathrm{H}}{ }^{5}$) - Max. current $I_{\text {max } A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 465 \\ & 452 \\ & 416 \\ & 678 \end{aligned}$	$\begin{aligned} & 575 \\ & 560 \\ & 514 \\ & 840 \end{aligned}$	$\begin{aligned} & 735 \\ & 710 \\ & 657 \\ & 1065 \end{aligned}$
Infeed/regenerative current - Rated current $\mathrm{l}_{\mathrm{NE}}{ }^{6}$) - Maximum current $I_{\text {max }}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 424 \\ & 700 \end{aligned}$	$\begin{aligned} & 522 \\ & 862 \\ & \hline \end{aligned}$	$\begin{aligned} & 665 \\ & 1102 \end{aligned}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$\mathrm{V}_{\mathrm{ACrms}}$ Hz VDC	$\begin{gathered} 500 \vee 3 \text { AC }-10 \% \text { to } 690 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. - at $50 \mathrm{~Hz}, 690 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 575 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 20.55 \\ & 19.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.05 \\ & 22.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.25 \\ & 28.75 \\ & \hline \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	1.96	1.96	2.6
Sound pressure level LpA (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	77/79	77/79	77/79
Line connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 185 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \end{aligned}$	$\begin{aligned} & 2 \times 240 \\ & 4 \times 240 \\ & \text { M12 (} 2 \text { holes) } \end{aligned}$	$\begin{aligned} & 3 \times 185 \\ & 8 \times 240 \\ & \mathrm{M} 12 \text { (} 4 \text { holes) } \end{aligned}$
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times 185 \\ & 4 \times 240 \\ & \text { M12 (2 holes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 240 \\ & 4 \times 240 \\ & \text { M12 (} 2 \text { holes) } \end{aligned}$	$\begin{aligned} & 3 \times 185 \\ & 6 \times 240 \\ & \mathrm{M} 12 \text { (3 holes) } \end{aligned}$
Protective conductor connection Fixing screw		M12 (2 holes)	M12 (2 holes)	M12 (18 holes)
Max. motor cable length shielded / unshielded	m	$300 / 450$	$300 / 450$	300 / 450
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{aligned} & 2200 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 2200 \\ & 2000 \\ & 600 \end{aligned}$	$\begin{aligned} & 2800 \\ & 2000 \\ & 600 \\ & \hline \end{aligned}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{HX} \end{aligned}$	$\begin{aligned} & \mathrm{HI} \\ & \mathrm{HX} \\ & \mathrm{HX} \end{aligned}$	$\begin{aligned} & \mathrm{JI} \\ & \text { JX } \\ & \text { JX } \end{aligned}$
Weight (without options), approx.	kg	1716	1716	2300

Order number	6SL3710	7LG34-7AAx	7LG35-8AAx	7LG37-4AAx
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	$\begin{aligned} & \text { 3NA3352-6 } \\ & 2 \times 315 \\ & 2 \\ & \text { 3NE1435-2 } \\ & 560 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3NA3354-6 } \\ & 2 \times 355 \\ & 3 \\ & \text { 3NE1447-2 } \\ & 670 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3NA3365-6 } \\ & 2 \times 500 \\ & 3 \\ & 3 N E 1448-2 \\ & 850 \\ & 3 \end{aligned}$
${ }^{1)}$ Rated output of a typical 6-pole standard induction motor based on I_{L} or I_{H} at $500 \vee 3 \mathrm{AC} 50 \mathrm{~Hz}$ or 690 V 3 AC 50 Hz . 2) Rated output of a typical 6-pole standard induction motor based on IL or IH at 575 V 3 AC 60 Hz . 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4)}$ The base-load current I_{L} is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability").				

Table 12-16 Version A, $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$, part 5

Order number	6SL3710	7LG38-1AAx	7LG38-8AAx	7LG41-0AAx
Unit rating - for I_{L} at $50 \mathrm{~Hz} 690 \mathrm{~V}^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 690 \mathrm{~V}^{1)}$ - for IL at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for I_{H} at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1}$ - for I_{L} at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2}$	kW kW kW kW hp hp	$\begin{array}{\|l} \hline 800 \\ 710 \\ 560 \\ 500 \\ 800 \\ 700 \end{array}$	$\begin{array}{\|l} 900 \\ 800 \\ 630 \\ 560 \\ 900 \\ 800 \end{array}$	$\begin{array}{\|l} 1000 \\ 900 \\ 710 \\ 630 \\ 1000 \\ 900 \end{array}$
Output current - Rated current lna ${ }^{3)}$ - Base load current IL ${ }^{4}$) - Base load current $l_{H}{ }^{5}$ - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} 810 \\ 790 \\ 724 \\ 1185 \end{array}$	$\begin{array}{\|l} 910 \\ 880 \\ 814 \\ 1320 \end{array}$	$\begin{aligned} & 1025 \\ & 1000 \\ & 917 \\ & 1500 \end{aligned}$
Infeed/regenerative current - Rated current $\mathrm{l}_{\mathrm{NE}}{ }^{6}$) - Maximum current $I_{\text {max }} E$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{\|l\|} \hline 732 \\ 1218 \end{array}$	$\begin{array}{\|l\|} 821 \\ 1367 \end{array}$	$\begin{array}{\|l\|} \hline 923 \\ 1537 \end{array}$
Max. current requirement - Auxiliary 24 V DC supply	A	Internal	Internal	Internal
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz Voc	$\begin{gathered} 500 \vee 3 \text { AC }-10 \% \text { to } 690 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. at $50 \mathrm{~Hz}, 690 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 575 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 34.45 \\ & 32.75 \end{aligned}$	$\begin{aligned} & 34.65 \\ & 32.85 \end{aligned}$	$\begin{aligned} & 36.15 \\ & 34.25 \end{aligned}$
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	2.6	2.6	2.6
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	77/79	77/79	77/79
Line connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} 4 \times 150 \\ 8 \times 240 \\ \text { M12 (4 holes) } \end{array}$	$\begin{array}{\|l\|} \hline 4 \times 150 \\ 8 \times 240 \\ \text { M12 (} 4 \text { holes }) \\ \hline \end{array}$	$\begin{aligned} & 4 \times 185 \\ & 8 \times 240 \\ & \text { M12 (4 holes) } \end{aligned}$
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{array}{\|l} 4 \times 150 \\ 6 \times 240 \\ \text { M12 (3 holes) } \\ \hline \end{array}$	$\begin{aligned} & 4 \times 150 \\ & 6 \times 240 \\ & \text { M12 (3 holes) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} 4 \times 185 \\ 6 \times 240 \\ \text { M12 (3 holes) } \\ \hline \end{array}$
Protective conductor connection Fixing screw		M12 (18 holes)	M12 (18 holes)	M12 (18 holes)
Max. motor cable length shielded / unshielded	m	300 / 450	300 / 450	300 / 450
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{array}{\|l} 2800 \\ 2000 \\ 600 \end{array}$	$\begin{array}{\|l} 2800 \\ 2000 \\ 600 \\ \hline \end{array}$	$\begin{array}{\|l} 2800 \\ 2000 \\ 600 \\ \hline \end{array}$
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{array}{\|l} \mathrm{JI} \\ \mathrm{JX} \\ \mathrm{JX} \end{array}$	$\begin{aligned} & \mathrm{JI} \\ & \mathrm{JX} \\ & \mathrm{JX} \end{aligned}$	$\begin{array}{\|l} \mathrm{JI} \\ \mathrm{JX} \\ \mathrm{JX} \end{array}$
Weight (without options), approx.	kg	2408	2408	2408

Table 12-17 Version A, $500 \mathrm{~V}-690 \mathrm{~V} 3 \mathrm{AC}$, part 6

Order number	6SL3710	7LG41-3AAx		
Unit rating - for I_{L} at 50 Hz 690 V 1) - for I_{H} at $50 \mathrm{~Hz} 690 \mathrm{~V}^{1)}$ - for I_{L} at 50 Hz 500 V 1) - for I_{H} at $50 \mathrm{~Hz} 500 \mathrm{~V}{ }^{1)}$ - for IL at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2)}$ - for I_{H} at $60 \mathrm{~Hz} 575 \mathrm{~V}{ }^{2}$)	kW kW kW kW hp hp	$\begin{array}{\|l} 1200 \\ 1000 \\ 1250 \\ 800 \\ 1000 \\ 1000 \end{array}$		
Output current - Rated current lna ${ }^{3)}$ - Base load current IL ${ }^{4}$) - Base load current $l_{H}{ }^{5}$ - Max. current $I_{\max A}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1270 \\ & 1230 \\ & 1136 \\ & 1845 \end{aligned}$		
Infeed/regenerative current - Rated current $\mathrm{l}_{\mathrm{NE}}{ }^{6}$) - Maximum current $I_{\text {max }} \mathrm{E}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1142 \\ & 1905 \end{aligned}$		
Max. current requirement - Auxiliary 24 V DC supply	A	Internal		
Supply voltages - Line voltage - Line frequency - Electronics power supply	$V_{\text {ACrms }}$ Hz VDC	$\begin{gathered} 500 \vee 3 \text { AC }-10 \% \text { to } 690 \vee 3 \mathrm{AC}+10 \%(-15 \%<1 \mathrm{~min}) \\ 47 \text { to } 63 \mathrm{~Hz} \\ 24(20.4-28.8) \end{gathered}$		
Power loss, max. at $50 \mathrm{~Hz}, 690 \mathrm{~V}$ - at $60 \mathrm{~Hz}, 575 \mathrm{~V}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 42.25 \\ & 39.25 \end{aligned}$		
Cooling air requirement	$\mathrm{m}^{3} / \mathrm{s}$	2.6		
Sound pressure level L_{pA} (1 m) at $50 / 60 \mathrm{~Hz}$	$\mathrm{dB}(\mathrm{A})$	77/79		
Line connection - Recommended: IEC 7) - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 4 \times 240 \\ & 8 \times 240 \\ & \text { M12 (4 holes) } \end{aligned}$		
Motor connection - Recommended: IEC ${ }^{7)}$ - maximum: IEC - Retainer screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 4 \times 240 \\ & 6 \times 240 \\ & \text { M12 (3 holes) } \\ & \hline \end{aligned}$		
Protective conductor connection Fixing screw		M12 (18 holes)		
Max. motor cable length shielded / unshielded	m	300 / 450		
Dimensions (standard version) - Width - Height - Depth	mm mm mm	$\begin{array}{\|l} 2800 \\ 2000 \\ 600 \end{array}$		
Frame sizes - Active Interface Module - Active Line Module - Motor Module		$\begin{array}{\|l} \mathrm{JI} \\ \mathrm{JX} \\ \mathrm{JX} \end{array}$		
Weight (without options), approx.	kg	2408		

Order number	6SL3710	7LG41-3AAx		
Recommended protection - Line protection (with option L26) Rated current frame size to IEC 60269 - Line and semiconductor protection (without option L26) Rated current Frame size to IEC 60269	A	Circuit breaker Circuit breaker		
1) Rated output of a typical 6-pole standard induction motor based on I_{L} or I_{H} at $500 \vee 3 \mathrm{AC} 50 \mathrm{~Hz}$ or 690 V 3 AC 50 Hz . 2) Rated output of a typical 6-pole standard induction motor based on IL or I_{H} at 575 V 3 AC 60 Hz . 3) The currents are based on a line power factor of $\cos \varphi=1$. ${ }^{4}$) The base-load current IL is based on a duty cycle of 110% for 60 s or 150% for 10 s with a duty cycle duration of 300 s (see "Overload capability"). ${ }^{5)}$ The base-load current l_{H} is based on a duty cycle of 150% for 60 s or 160% for 10 s with a duty cycle duration of 300 s (see "Overload capability"). ${ }^{6)}$ The current values given here are based on the rated output current. 7) The recommendations for the North American market in AWG or MCM must be taken from the appropriate NEC (National Electrical Code) or CEC (Canadian Electrical Code) standards.				

Appendix

A. 1 List of abbreviations

A	
A...	Alarm
AC	Alternating current
AI	Analog input
AO	Analog output
AOP	Advanced operator panel (with plain-text display)
B	
BI	Binector input
BICO	Binector/connector
BO	Capacitance
C	Serial bus system
C	Communication board
CAN	Command data set
CB	Connector input
CDS	Center contact on a changeover contact
CI	Control Unit
COM	Rardware
CU	Direct current
D	Drive data set
DC	Digital input
DDS	Digital input/output bidirectional
DI	Digital output
DI/DO	
DO	Electrostatic devices
E	Electromagnetic compatibility
ESD	European standard
EMC	Firmware
EN	F

I/O	Input/output
IEC	International electrical engineering standard
IGBT	Insulated gate bipolar transistor
J	
JOG	Jog mode
L	
L	Inductance
LED	Light-emitting diode
M	
M	Ground
MDS	Motor data set
N	
NC	Normally closed contact
NEMA	Standardization body in the USA (United States of America)
NO	Normally open contact
P	
p ...	Adjustable parameter
PDS	Power unit data set
PE	Protective earth
PROFIBUS	Serial data bus
PTC	Positive temperature coefficient
R	
r...	Visualization parameter (read-only)
RAM	Read and write memory
RS 232	Serial interface
RS 485	Standard. Describes the physical characteristics of a digital serial interface.
S	
SI	Safety Integrated
STW	PROFIdrive control word
SW	Software
T	
TIA	Totally Integrated Automation
TM	Terminal Module
U	
UL	Underwriters Laboratories Inc.
V	
Vdc	DC link voltage
Z	
ZSW	PROFIdrive status word

A. $2 \quad$ Parameter macros

Parameter macro p0015 = S150 cabinet unit

This macro is used to make default settings for operating the cabinet unit.

Table A-1 Parameter macro p0015 = S150 cabinet unit

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p0500	Technology application	Vector	0	Standard drive	Vector
p0600	Motor temperature sensor for monitoring	Vector	0	No sensor	Vector
p0601	Motor temperature sensor type	Vector	0	No sensor	Vector
p0603	Cl : Motor temperature	Vector	r4105	Sensor on TM31	TM31
p0604	Motor overtemperature alarm threshold	Vector	120	$120{ }^{\circ} \mathrm{C}$	Vector
p0605	Motor overtemperature fault threshold	Vector	155	$155{ }^{\circ} \mathrm{C}$	Vector
p0606	Motor overtemperature timer	Vector	0	0 s	Vector
p0610	Response to motor overtemperature condition	Vector	1	Alarm with reduction of I_max and fault	Vector
p0700[0]	Macro binector input (BI)	Vector	70005	PROFIdrive	Vector
p0857	Power unit monitoring time	Vector	30000	30 s	Vector
p0864	BI: Infeed operation	Vector	r0863.0	Drive link - open-loop control	A_INF
p1000[0]	Macro connector inputs (Cl) for speed setpoints	Vector	10001	PROFIdrive	Vector
p1001	CO: Fixed speed setpoint 1	Vector	300	300 rpm	Vector
p1002	CO: Fixed speed setpoint 2	Vector	600	600 rpm	Vector
p1003	CO: Fixed speed setpoint 3	Vector	1500	1500 rpm	Vector
p1083	CO: Speed limit in positive direction of rotation	Vector	6000	6000 rpm	Vector
p1086	CO: Speed limit in negative direction of rotation	Vector	-6000	-6000 rpm	Vector
p1115	Ramp-function generator selection	Vector	1	Extended ramp-function generator	Vector
p1120	Ramp-function generator ramp-up time	Vector	20	20 s	Vector
p1121	Ramp-function generator rampdown time	Vector	30	30 s	Vector
p1135	OFF3 ramp-down time	Vector	10	10 s	Vector
p1200	Flying restart operating mode	Vector	0	Flying restart not active	Vector
p1208.0	BI: WEA infeed fault	Vector	r2139.3	Fault active	A_INF
p1208.1	BI: WEA infeed supply break	Vector	r0863.2	Drive link - infeed supply break	A_INF
p1240	Vdc controller configuration	Vector	0	Disable Vdc-max controller	Vector

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p1254	Vdc controller automatic ON level detection	Vector	1	Automatic detection enabled	Vector
p1280	Vdc controller configuration (V/f)	Vector	0	Disable Vdc-max controller	Vector
p1300	Open-loop/closed-loop control operating mode	Vector	20	Encoderless speed control	Vector
p1911	Number of phases to be identified	Vector	3	3 phases	Vector
p2051[0]	CI: PROFIBUS PZD send word	Vector	r2089[0]	ZSW1	Vector
p2051[1]	CI : PROFIBUS PZD send word	Vector	r0063[0]	n -act unsmoothed	Vector
p2051[2]	CI : PROFIBUS PZD send word	Vector	r0068[0]	l-act unsmoothed	Vector
p2051[3]	CI : PROFIBUS PZD send word	Vector	r0080[0]	M-act unsmoothed	Vector
p2051[4]	Cl : PROFIBUS PZD send word	Vector	r0082[0]	P-act unsmoothed	Vector
p2051[5]	CI : PROFIBUS PZD send word	Vector	r2131	FAULT	Vector
p2080[0]	BI: PROFIBUS send status word 1	Vector	r0899.0	Ready for switching on	Vector
p2080[1]	BI: PROFIBUS send status word 1	Vector	r0899.1	Ready for operation	Vector
p2080[2]	BI: PROFIBUS send status word 1	Vector	r0899.2	Operation	Vector
p2080[3]	BI: PROFIBUS send status word 1	Vector	r2139.3	Fault	Vector
p2080[4]	BI: PROFIBUS send status word 1	Vector	r0899.4	No OFF2	Vector
p2080[5]	BI: PROFIBUS send status word 1	Vector	r0899.5	No OFF3	Vector
p2080[6]	BI: PROFIBUS send status word 1	Vector	r0899.6	Switching on inhibited	Vector
p2080[7]	BI: PROFIBUS send status word 1	Vector	r2139.7	Alarm active	Vector
p2080[8]	BI: PROFIBUS send status word 1	Vector	r2197.7	No setpoint/actual value deviation	Vector
p2080[9]	BI: PROFIBUS send status word 1	Vector	r0899.9	Control request	Vector
p2080[10]	BI: PROFIBUS send status word 1	Vector	r2199.1	Comparison value reached	Vector
p2080[11]	BI: PROFIBUS send status word 1	Vector	r1407.7	M/I/P limiting not active	Vector
p2080[12]	BI: PROFIBUS send status word 1	Vector	0		Vector
p2080[13]	BI: PROFIBUS send status word 1	Vector	r2129.14	No alarm for motor overtemperature	Vector
p2080[14]	BI: PROFIBUS send status word 1	Vector	r2197.3	Clockwise	Vector
p2080[15]	BI: PROFIBUS send status word 1	Vector	r2129.15	No Therm. alarm Power unit overload	Vector
p2088	PROFIBUS Invert status word	Vector	B800h		Vector
p2128[14]	Select fault/alarm code for trigger	Vector	7910	A7910: Alarm, motor overtemperature	Vector
p2128[15]	Select fault/alarm code for trigger	Vector	5000	A5000: Therm. alarm Power unit overload	Vector
p2153	Time constant revolutions actual value filter	Vector	20	20 ms	Vector
p0840[0]	ON/OFF 1	A_INF	r0863.1	Energize line contactor	Vector
p2105	BI: 3. Acknowledge faults	A_INF	r1214.3	Automatic restart status - set acknowledgement command	Vector
p1207	BI: WEA link, following DO	A_INF	r1214.2	Automatic restart status - restart active	Vector

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
$p 4053[0]$	TM31 analog inputs, smoothing time constant	TM31	0	0 ms	TM31
$p 4053[1]$	TM31 analog inputs, smoothing time constant	TM31	0	0 ms	TM31
$p 4056[0]$	Type of analog inputs	TM31	2	Current $0 \ldots 20 \mathrm{~mA}$	TM31
$p 4056[1]$	Type of analog inputs	TM31	2	Current $0 \ldots 20 \mathrm{~mA}$	TM31
$p 4076[0]$	Type of analog outputs	TM31	0	Current $0 \ldots 20 \mathrm{~mA}$	TM31
$p 4076[1]$	Type of analog outputs	TM31	0	Current 0...20 mA	TM31
$p 4071[0]$	Signal analog output 0	TM31	r0063	Actual speed value smoothed	Vector
$p 4071[1]$	Signal analog output 1	TM31	r0068	Absolute current actual value	Vector
$p 4100$	Type of temperature sensor	TM31	0	Evaluation disabled	TM31
$p 4102[0]$	Alarm threshold, temperature sensing	TM31	$251^{\circ} \mathrm{C}$	When this value is exceeded, alarm A35211 is triggered.	TM31
$p 4102[1]$	Fault threshold for temperature sensing	TM31	$251^{\circ} \mathrm{C}$	When this value is exceeded, fault F35207 is triggered.	TM31

Parameter macro p0700 = 5: PROFIdrive (70005)

This macro is used to set the PROFIdrive interface as the default command source.

Table A- 2 Parameter macro p0700 = 5: PROFIdrive

Sink		Source			
Parameters	Description	DO	Parameters	Description	DO
p0840[0]	ON/OFF1	Vector	r2090.0	PZD 1 bit 0	Vector
p0844[0]	No OFF2_1	Vector	r2090.1	PZD 1 bit 1	Vector
p0845[0]	No OFF2_2	Vector	r0722.3	CU DI3	CU
p0848[0]	No OFF3_1	Vector	r2090.2	PZD 1 bit 2	Vector
p0849[0]	No OFF3_2	Vector	r0722.2	CU DI2	CU
p0806	Inhibit LOCAL mode	Vector	0		Vector
p0810	Changeover CDS bit 0	Vector	0	Vector	
p0852	Enable operation	Vector	r2090.3	PZD 1 bit 3	Vector
p0854	Control request	Vector	r2090.10	PZD 1 bit 10	Vector
p0922	PROFIdrive PZD telegram selection	Vector	999	Free telegram configuration	
p1020	FSW bit 0	Vector	0		Vector
p1021	FSW bit 1	Vector	0	Vector	
p1035	MOP raise	Vector	r2090.13	PZD 1 bit 13	Vector
p1036	MOP lower	Vector	r2090.14	PZD 1 bit 14	Vector
p1113	Setpoint inversion	Vector	r2090.11	PZD 1 bit 11	Vector
p1140	Enable RFG	Vector	r2090.4	PZD 1 bit 4	Vector
p1141	Continue RFG	Vector	r2090.5	PZD 1 bit 5	Vector
p1142	Enable nsetp	Vector	r2090.6	PZD 1 bit 6	Vector

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p2103	Acknowledge fault 1	Vector	r2090.7	PZD 1 bit 7	Vector
p2104	Acknowledge fault 2	Vector	r4022.3	TM31 DI3	TM31
p2106	Ext. fault_1	Vector	r0722.1	CU DI1	CU
p2107	Ext. fault_2	Vector	1		Vector
p2112	Ext. alarm_1	Vector	r0722.0	CU DIO	CU
p2116	Ext. alarm_2	Vector	1		Vector
p0738	DI/DO8	CU	1	+24 V	CU
p0748.8	Invert DI/DO8	CU	0	Not inverted	
p0728.8	Set DI/DO8 input or output	CU	1	Output	
p0739	DI/DO9	CU	1	+24 V	CU
p0748.9	Invert DI/DO9	CU	0	Not inverted	
p0728.9	Set DI/DO9 input or output	CU	1	Output	
p0740	DI/DO10	CU	1	+24 V	CU
p0748.10	Invert DI/DO10	CU	0	Not inverted	
p0728.10	Set DI/DO10 input or output	CU	1	Output	
p0741	DI/DO11	CU	1	+24 V	CU
p0748.11	Invert DI/DO11	CU	0	Not inverted	
p0728.11	Set DI/DO11 input or output	CU	1	Output	
p0742	DI/DO12	CU	1	+24 V	CU
p0748.12	Invert DI/DO12	CU	0	Not inverted	
p0728.12	Set DI/DO12 input or output	CU	1	Output	
p0743	DI/DO13	CU	r0899.6	Switching on inhibited	Vector
p0748.13	Invert DI/DO13	CU	1	Inverted	
p0728.13	Set DI/DO13 input or output	CU	1	Output	
p0744	DI/DO14	CU	1	+24 V	CU
p0748.14	Invert DI/DO14	CU	0	Not inverted	
p0728.14	Set DI/DO14 input or output	CU	1	Output	
p0745	DI/DO15	CU	r2138.7	Ack. fault	Vector
p0748.15	Invert DI/DO15	CU	0	Not inverted	
p0728.15	Set DI/DO15 input or output	CU	1	Output	
p2103	Acknowledge fault 1	TM31	r2090.7	PZD 1 bit 7	Vector
p2104	Acknowledge fault 2	TM31	r4022.3	TM31 DI3	TM31
p4030	DO0	TM31	r0899.11	Pulses enabled	Vector
p4031	DO1	TM31	r2139.3	Fault	Vector
p4048.1	Invert DO1	TM31	1	Inverted	
p4038	DO8	TM31	r0899.0	Ready for switching on	Vector
p4028.8	Set DI/DO8 input or output	TM31	1	Output	
p4039	DO9	TM31	0		TM31
p4028.9	Set DI/DO9 input or output	TM31	0	Input	
p4040	DO10	TM31	0		TM31
p4028.10	Set DI/DO10 input or output	TM31	0	Input	

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p4041	DO11	TM31	0		TM31
p4028.11	Set DI/DO11 input or output	TM31	0	Input	

Parameter macro p0700 = 6: Terminal block TM31 (70006)

This macro is used to set customer terminal block TM31 as the command source.

Table A-3 Parameter macro p0700 = 6: Terminal block TM31

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p0840[0]	ON/OFF1	Vector	r4022.0	TM31 DI0	TM31
p0844[0]	No OFF2_1	Vector	1		CU
p0845[0]	No OFF2_2	Vector	r0722.3	CU DI3	CU
p0848[0]	No OFF3_1	Vector	1		Vector
p0849[0]	No OFF3_2	Vector	r0722.2	CU DI2	CU
p0806	Inhibit LOCAL mode	Vector	0		Vector
p0810	Changeover CDS bit 0	Vector	0		Vector
p0852	Enable operation	Vector	r4022.4	TM31 DI4	TM31
p0854	Control request	Vector	1		Vector
p0922	PROFIdrive PZD telegram selection	Vector	999	Free telegram configuration	
p1020	FSW bit 0	Vector	r4022.1	TM31 DI1	TM31
p1021	FSW bit 1	Vector	r4022.2	TM31 DI2	TM31
p1035	MOP raise	Vector	r4022.1	TM31 DI1	TM31
p1036	MOP lower	Vector	r4022.2	TM31 DI2	TM31
p1113	Direction of rotation reversal	Vector	0		TM31
p1140	Enable RFG	Vector	1		Vector
p1141	Start RFG	Vector	1		Vector
p1142	Enable nsetp	Vector	1		Vector
p2103	Acknowledge fault 1	Vector	0		Vector
p2104	Acknowledge fault 2	Vector	r4022.3	TM31 DI3	TM31
p2106	Ext. fault_1	Vector	r0722.1	CU DI1	CU
p2107	Ext. fault_2	Vector	1		Vector
p2112	Ext. alarm_1	Vector	r0722.0	CU DIO	CU
p2116	Ext. alarm_2	Vector	1		Vector
p0738	DI/DO8	CU	1	+24 V	CU
p0748.8	Invert DI/DO8	CU	0	Not inverted	
p0728.8	Set DI/DO8 input or output	CU	1	Output	
p0739	DI/DO9	CU	1	+24 V	CU
p0748.9	Invert DI/DO9	CU	0	Not inverted	
p0728.9	Set DI/DO9 input or output	CU	1	Output	

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p0740	DI/DO10	CU	1	+24 V	CU
p0748.10	Invert DI/DO10	CU	0	Not inverted	
p0728.10	Set DI/DO10 input or output	CU	1	Output	
p0741	DI/DO11	CU	1	+24 V	CU
p0748.11	Invert DI/DO11	CU	0	Not inverted	
p0728.11	Set DI/DO11 input or output	CU	1	Output	
p0742	DI/DO12	CU	1	+24 V	CU
p0748.12	Invert DI/DO12	CU	0	Not inverted	
p0728.12	Set DI/DO12 input or output	CU	1	Output	
p0743	DI/DO13	CU	r0899.6	Switching on inhibited	Vector
p0748.13	Invert DI/DO13	CU	1	Inverted	
p0728.13	Set DI/DO13 input or output	CU	1	Output	
p0744	DI/DO14	CU	1	+24 V	CU
p0748.14	Invert DI/DO14	CU	0	Not inverted	
p0728.14	Set DI/DO14 input or output	CU	1	Output	
p0745	DI/DO15	CU	r2138.7	Ack. fault	Vector
p0748.15	Invert DI/DO15	CU	0	Not inverted	
p0728.15	Set DI/DO15 input or output	CU	1	Output	
p2103	Acknowledge fault 1	TM31	0		TM31
p2104	Acknowledge fault 2	TM31	r4022.3	TM31 DI3	TM31
p4030	DO0	TM31	r0899.11	Pulses enabled	Vector
p4031	DO1	TM31	r2139.3	Fault	Vector
p4048.1	Invert DO1	TM31	1	Inverted	
p4038	DO8	TM31	r0899.0	Ready for switching on	Vector
p4028.8	Set DI/DO8 input or output	TM31	1	Output	
p4039	DO9	TM31	0		TM31
p4028.9	Set DI/DO9 input or output	TM31	0	Input	
p4040	DO10	TM31	0		TM31
p4028.10	Set DI/DO10 input or output	TM31	0	Input	
p4041	DO11	TM31	0		TM31
p4028.11	Set DI/DO11 input or output	TM31	0	Input	

Parameter macro p0700 = 7: NAMUR (70007)

This macro is used to set the NAMUR terminal block as the default command source.

Table A- 4 Parameter macro p0700 = 7: NAMUR

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p0840[0]	ON/OFF1	Vector	r4022.0	TM31 DI0	TM31
p0844[0]	No OFF2_1	Vector	r4022.4	TM31 DI4	TM31
p0845[0]	No OFF2_2	Vector	r0722.3	CU DI3	CU
p0848[0]	No OFF3_1	Vector	r4022.5	TM31 DI5	TM31
p0849[0]	No OFF3_2	Vector	1		Vector
p0806	Inhibit LOCAL mode	Vector	0		Vector
p0810	Changeover CDS bit 0	Vector	0		Vector
p0852	Enable operation	Vector	1		Vector
p0854	Control request	Vector	1		Vector
p0922	PROFIdrive PZD telegram selection	Vector	999	Free telegram configuration	
p1020	FSW bit 0	Vector	r4022.1	TM31 DI1	TM31
p1021	FSW bit 1	Vector	r4022.2	TM31 DI2	TM31
p1035	MOP raise	Vector	r4022.1	TM31 DI1	TM31
p1036	MOP lower	Vector	r4022.2	TM31 DI2	TM31
p1113	Direction of rotation reversal	Vector	r4022.6	TM31 DI6	TM31
p1140	Enable RFG	Vector	1		Vector
p1141	Start RFG	Vector	1		Vector
p1142	Enable nsetp	Vector	1		Vector
p2103	Acknowledge fault 1	Vector	0		Vector
p2104	Acknowledge fault 2	Vector	r4022.3	TM31 DI3	TM31
p2106	Ext. fault_1	Vector	r0722.1	CU DI1	CU
p2107	Ext. fault_2	Vector	1		Vector
p2112	Ext. alarm_1	Vector	r0722.0	CU DIO	CU
p2116	Ext. alarm_2	Vector	1		Vector
p0738	DI/DO8	CU	1	+24 V	CU
p0748.8	Invert DI/DO8	CU	0	Not inverted	
p0728.8	Set DI/DO8 input or output	CU	1	Output	
p0739	DI/DO9	CU	1	+24 V	CU
p0748.9	Invert DI/DO9	CU	0	Not inverted	
p0728.9	Set DI/DO9 input or output	CU	1	Output	
p0740	DI/DO10	CU	1	+24 V	CU
p0748.10	Invert DI/DO10	CU	0	Not inverted	
p0728.10	Set DI/DO10 input or output	CU	1	Output	
p0741	DI/DO11	CU	1	+24 V	CU
p0748.11	Invert DI/DO11	CU	0	Not inverted	
p0728.11	Set DI/DO11 input or output	CU	1	Output	

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p0742	DI/DO12	CU	1	+24 V	CU
p0748.12	Invert DI/DO12	CU	0	Not inverted	
p0728.12	Set DI/DO12 input or output	CU	1	Output	
p0743	DI/DO13	CU	r0899.6	Switching on inhibited	Vector
p0748.13	Invert DI/DO13	CU	1	Inverted	
p0728.13	Set DI/DO13 input or output	CU	1	Output	
p0744	DI/DO14	CU	1	+24 V	CU
p0748.14	Invert DI/DO14	CU	0	Not inverted	
p0728.14	Set DI/DO14 input or output	CU	1	Output	
p0745	DI/DO15	CU	r2138.7	Ack. fault	Vector
p0748.15	Invert DI/DO15	CU	0	Not inverted	
p0728.15	Set DI/DO15 input or output	CU	1	Output	TM31
p2103	Acknowledge fault 1	TM31	0		TM31
p2104	Acknowledge fault 2	TM31	r4022.3	TM31 DI3	Vector
p4030	DO0	TM31	r0899.11	Pulses enabled	Vector
p4031	DO1	TM31	r2139.3	Fault	
p4048.1	Invert DO1	TM31	1	Inverted	Vector
p4038	DO8	TM31	r0899.0	Ready for switching on	
p4028.8	Set DI/DO8 input or output	TM31	1	Output	TM31
p4039	DO9	TM31	0		
p4028.9	Set DI/DO9 input or output	TM31	0	Input	
p4040	DO10	TM31	0		
p4028.10	Set DI/DO10 input or output	TM31	0	Input	
p4041	DO11	TM31	0		
p4028.11	Set DI/DO11 input or output	TM31	0	Input	

Parameter macro p0700 = 10: PROFIdrive NAMUR (70010)

This macro is used to set the PROFIdrive NAMUR interface as the default command source.

Table A-5 Parameter macro p0700 = 10: PROFIdrive NAMUR

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p0840[0]	ON/OFF1	Vector	0	Assignment with p0922 = 20	Vector
p0844[0]	No OFF2_1	Vector	1	Assignment with p0922 $=20$	Vector
p0845[0]	No OFF2_2	Vector	r0722.3	CU DI3	CU
p0848[0]	No OFF3_1	Vector	0	Assignment with p0922 = 20	Vector
p0849[0]	No OFF3_2	Vector	1		Vector
p0806	Inhibit LOCAL mode	Vector	0		Vector
p0810	Changeover CDS bit 0	Vector	0		Vector
p0852	Enable operation	Vector	1	Assignment with p0922 $=20$	Vector
p0854	Control request	Vector	1	Assignment with p0922 $=20$	Vector
p0922	PROFIdrive PZD telegram selection	Vector	20	PROFIdrive NAMUR	
p1020	FSW bit 0	Vector	0		Vector
p1021	FSW bit 1	Vector	0		Vector
p1035	MOP raise	Vector	0		Vector
p1036	MOP lower	Vector	0		Vector
p1113	Direction of rotation reversal	Vector	0	Assignment with p0922 = 20	Vector
p1140	Enable RFG	Vector	1	Assignment with p0922 $=20$	Vector
p1141	Start RFG	Vector	1	Assignment with p0922 $=20$	Vector
p1142	Enable nsetp	Vector	1	Assignment with p0922 $=20$	Vector
p2103	Acknowledge fault_1	Vector	0	Assignment with p0922 $=20$	Vector
p2104	Acknowledge faults_2	Vector	0		Vector
p2106	Ext. fault_1	Vector	r0722.1	CU DI1	CU
p2107	Ext. fault_2	Vector	1		Vector
p2112	Ext. alarm_1	Vector	r0722.0	CU DIO	CU
p2116	Ext. alarm_2	Vector	1		Vector
p0738	DI/DO8	CU	1	+24 V	CU
p0748.8	Invert DI/DO8	CU	0	Not inverted	
p0728.8	Set DI/DO8 input or output	CU	1	Output	
p0739	DI/DO9	CU	1	+24 V	CU
p0748.9	Invert DI/DO9	CU	0	Not inverted	
p0728.9	Set DI/DO9 input or output	CU	1	Output	
p0740	DI/DO10	CU	1	+24 V	CU
p0748.10	Invert DI/DO10	CU	0	Not inverted	
p0728.10	Set DI/DO10 input or output	CU	1	Output	
p0741	DI/DO11	CU	1	+24 V	CU
p0748.11	Invert DI/DO11	CU	0	Not inverted	
p0728.11	Set DI/DO11 input or output	CU	1	Output	

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p0742	DI/DO12	CU	1	+24 V	CU
p0748.12	Invert DI/DO12	CU	0	Not inverted	
p0728.12	Set DI/DO12 input or output	CU	1	Output	
p0743	DI/DO13	CU	r0899.6	Switching on inhibited	Vector
p0748.13	Invert DI/DO13	CU	1	Inverted	
p0728.13	Set DI/DO13 input or output	CU	1	Output	
p0744	DI/DO14	CU	1	+24 V	CU
p0748.14	Invert DI/DO14	CU	0	Not inverted	
p0728.14	Set DI/DO14 input or output	CU	1	Output	
p0745	DI/DO15	CU	r2138.7	Ack. fault	Vector
p0748.15	Invert DI/DO15	CU	0	Not inverted	
p0728.15	Set DI/DO15 input or output	CU	1	Output	
p2103	Acknowledge fault 1	TM31	0		TM31
p2104	Acknowledge fault 2	TM31	0		TM31
p4030	DO0	TM31	0		Vector
p4031	DO1	TM31	0		Vector
p4038	DO8	TM31	0		Vector
p4028.8	Set DI/DO8 input or output	TM31	0	Input	
p4039	DO9	TM31	0		TM31
p4028.9	Set DI/DO9 input or output	TM31	0	Input	
p4040	DO10	TM31	0		TM31
p4028.10	Set DI/DO10 input or output	TM31	0	Input	
p4041	DO11	TM31	0		TM31
p4028.11	Set DI/DO11 input or output	TM31	0	Input	

Parameter macro p1000 = 1: PROFIdrive (100001)

This macro is used to set the default setpoint source via PROFIdrive.

Table A- 6 Parameter macro p1000 = 1: PROFIdrive

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p1070	Main setpoint	Vector	r2050[1]	PROFIdrive PZD2	Vector
p1071	Main setpoint scaling	Vector	1	100%	Vector
p1075	Supplementary setpoint	Vector	0		Vector
p1076	Supplementary setpoint scaling	Vector	1	100%	Vector

Parameter macro p1000 = 2: Terminal TM31 (100002)

This macro is used to set analog input 0 on customer terminal block TM31 as the setpoint source.

Table A- $7 \quad$ Parameter macro p1000 = 2: TM31 terminals

Sink			Source		
Parameter	Description	DO	Parameter	Description	DO
p1070	Main setpoint	Vector	r4055	AI0 TM31	TM31
p1071	Main setpoint scaling	Vector	1	100%	Vector
p1075	Supplementary setpoint	Vector	0		Vector
p1076	Supplementary setpoint scaling	Vector	1	100%	Vector

Parameter macro p1000 = 3: Motorized potentiometer (100003)
This macro is used to set the motorized potentiometer as the setpoint source.

Table A- 8 Parameter macro p1000 = 3: Motorized potentiometer

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p1070	Main setpoint	Vector	r1050	Motorized potentiometer	Vector
p1071	Main setpoint scaling	Vector	1	100%	Vector
p1075	Supplementary setpoint	Vector	0		Vector
p1076	Supplementary setpoint scaling	Vector	1	100%	Vector

Parameter macro p1000 = 4: Fixed setpoint (100004)

This macro is used to set the fixed setpoint as the setpoint source.

Table A-9 Parameter macro p1000 = 4: Fixed setpoint

Sink			Source		
Parameters	Description	DO	Parameters	Description	DO
p1070	Main setpoint	Vector	r1024	Active fixed setpoint	Vector
p1071	Main setpoint scaling	Vector	1	100%	Vector
p1075	Supplementary setpoint	Vector	0		Vector
p1076	Supplementary setpoint scaling	Vector	1	100%	Vector

Index

2

230 V AC auxiliary supply, 73
25 kW braking unit (option L61/L64), 119

3

3-mass model, 556

5

50 kW braking unit (option L62/L65), 119

A

A7850 - External alarm 1, 576

Accessory kit

Original roof screws, 45
Acknowledge error from the AOP, 291
Acyclic communication, 308
Determining drive object numbers, 316
DPV1 parameter request and response, 311
Error values in DPV1 parameter responses, 313
Parameter request and parameter response, 310
Additional customer terminal block TM31 (option G61), 154
Adjustable hardware filter, 467
Alarms, 576
Analog inputs, 92, 269
Analog outputs, 93, 402
AOP setpoint, 290
AOP30, 226
Application classes, 298
Armature short-circuit brake
external, 442
Internal, 443
Assembly
Line connection from above, 49
Motor connection from above, 49
Automatic restart, 429
Automatic speed controller optimization, 415
Auxiliary supply, 73
Auxiliary Voltage, 94

B

B00, 181
B02, 183
B03, 183
Basic commissioning
Enter the motor data, 231
Entering the basic parameters, 235
Entering the encoder data., 232
Motor identification, 237
Selecting the motor type, 231
Basic information
BICO technology, 256
Binector input (BI), 256
Binector output (BO), 256
Command data set (CDS), 250
Connector input (CI), 256
Connector output (CO), 256
Copy motor data set (MDS), 254
Copying the command data set (CDS), 254
Copying the drive data set (DDS), 254
Data sets, 249
Drive data set (DDS), 251
Drive objects, 248
Encoder data set (EDS), 252
Interconnecting signals, 257
Motor data set (MDS), 253
Parameter, 245
Parameter categorization, 246
Parameter types, 245
Basic information about the drive system, 245
Basic positioner, 512
Absolute encoder adjustment, 523
Direct setpoint input (MDI), 542
Flying referencing, 528
Jerk limit, 519
Jog, 544
Limitations, 517
Maximum acceleration, 518
Maximum delay, 518
Maximum velocity, 517
Mechanical system, 514
Reference point approach, 524
Referencing, 522
Set reference point, 523
Software limit switch, 518
Status signals, 545

STOP cam, 519
Traversing blocks, 532
Traversing to fixed stop, 538
BICO technology, 256
Interconnecting signals, 257
Bimetallic normally closed contact, 555
Binector input (BI), 256
Binector output (BO), 256
Blocking protection, 551
brake control
Extended, 489
Simple, 458
Bypass
Bypass with synchronizer with degree of
overlapping, 481
Bypass with synchronizer without degree of overlapping, 484
Without synchronization, 486
Bypass function, 480

C

Cabinet anti-condensation heating (option L55), 114
Cabinet illumination with service socket (option
L50), 114
Cable lengths, 64
CAN bus, 135
CBC10, 135
CBC10 Communication Board
CAN bus, 135
CBE20, 132
CDS (command data set), 250
Copy, 254
Center of gravity of cabinet, 44
Certificate of compliance with order, 17
Certification, 17
Changing the language, 287
Checklist
Electrical installation, 52
Mechanical installation, 37
Circuit breaker (option L26), 111
Cleaning, 580
Closed-loop position control, 496
Closed-loop torque control, 392
Command data set, 250
Command sources
General information, 244
NAMUR, 265
PROFIdrive, 261
PROFIdrive NAMUR, 267
TM31 terminals, 263
Communication
via PROFIdrive, 296
Communication Board Ethernet CBE20 (option
G33), 132
Communication interfaces
Parallel operation, 349
CompactFlash card
Slot, 87, 180
Connection cross-sections, 64
Connection for External Auxiliary Equipment (Option
L19), 109
Connector input (CI), 256
Connector output (CO), 256
Control Interface Module
Frame size FX, replacement, 587
Frame size GX, replacement, 589
Frame size HX, replacement, 591
Frame size JX, replacement, 593
Control Unit CU320-2 DP, 74, 75
Control Unit CU320-2 PN, 170
Control via PROFIBUS, 327
Crane transport aids, 44
Removal, 45
CU320-2 DP, 75
CU320-2 PN, 170
Customer terminal block, 88
Customer terminal block TM31 (option G60), 153
Cyclic communication, 303

D

Data sets, 249
Data transfer
PROFINET, 341
Date of manufacture, 30
DC brake, 445
DCC, 24, 353
DDS (drive data set), 251
Copy, 254
Decrease Key, 289
Derating behavior at increased pulse frequency, 456
Derating data, 633
Current derating as a function of the pulse
frequency, 636
Installation altitudes between 2000 m and 5000 m above sea level, 634
Permissible output current as a function of the
ambient temperature, 633
Reduce the ambient temperature and the output
current, 634
Using an isolating transformer, 635
Determining drive object numbers, 316
Determinism, 338

Diagnosis, 560
Parameters, 571
Diagnostics
LEDs, 560
Digital inputs, 91, 92
Digital inputs/outputs, 80, 81, 95, 175, 176
Digital outputs, 406
Direction of motor rotation, 65
Direction reversal, 357, 453
Downloading the firmware (operator panel), 629
DPV1 parameter request and response, 311
Drive Control Chart, 353
Drive Control Chart (DCC), 24
Drive data set, 251
Drive objects, 248
DRIVE-CLiQ interface, 79, 174
Droop Function, 389
dV/dt filter compact plus Voltage Peak Limiter (Option L07), 101
dv/dt filter plus Voltage Peak Limiter (option L10), 104

E

EC declaration of conformity, 17
Edge evaluation of the zero mark, 468
EDS (encoder data set), 252
Efficiency optimization, 422
Electrical installation
Checklist, 52
Electromagnetic compatibility
EMC compliant design, 61
Introduction, 59
Noise emissions, 60
Operational reliability and noise immunity, 59
EMERGENCY OFF category 0 (option L57), 115
EMERGENCY OFF pushbutton (option L45), 113
EMERGENCY STOP category 1 (option L59), 117
EMERGENCY STOP Category 1 (option L60), 118
Encoder data set, 252
Encoder evaluation, 464
Encoder track monitoring, 465
Encoder with gear factor, 239
Energy-saving display, 461
Error values in DPV1 parameter responses, 313
Ethernet interface, 134, 221
Extended brake control, 489
Extended monitoring functions, 493
External alarm 1, 576
External fault 1,577
External fault 2, 577
External fault 3,578
External supply, 73

F

F7860 - External fault 1, 577
F7861 - External fault 2, 577
F7862 - External fault 3, 578
Factory setting, 240
Fan
Active Interface Module (frame size FI)
replacement, 615
Active Interface Module (frame size GI)
replacement, 617
Active Interface Module (frame size HI)
replacement, 619
Active Interface Module (frame size JI)
replacement, 621
Frame size FX, replacement, 605
Frame size GX, replacement, 607
Frame size HX, replacement, 609
Frame size JX, replacement, 613
Fan voltage, adjustment, 66
Fast magnetization, 423
Faults, 576
Faults and alarms, 576
Faults and alarms, 576
Features, 24
Filtermatten, Austausch, 586
Firmware update, 628
Firmware, upgrading, 628
Fixed setpoints, 272
Fixed speed setpoints, 272
Floor levelness, 39
Flying restart, 433
with encoder, 435
without encoder, 434
Forming the DC link capacitors, 626
Freezing the actual speed for dn/dt errors, 466
Friction characteristic curve, 439
Fuse
Auxiliary power supply (-F11 / -F12), 623
Fan (-G1 -F10/F11), 623
Fan (-R2 -F101/F102), 623
Fan (-T1 -F10/F11), 623

G

G20, 135
G33, 132
G60, 153
G61, 154
G62, 155
Gear factor, 239

H

Harmonics controller, 411
High overload, 638

I

I2t motor model, 556
IF1, 349
IF2, 349
Increase Key, 289
Increasing the output frequency, 447
Indexed actual value acquisition, 498
Infeed module rated one level lower (option L04), 97
Installation
Installation, 46
Lifting the cabinet off the transport pallet, 43
Installation device, 582
Installation location, 38
Insulation Monitor (Option L87), 130
Internal voltage protection, 444
IO controller, 337
IO Device, 337
IO supervisor, 337
IT system, 69

K

K01, 162
K46, 138
K48, 142
K50, 146
K51, 153
K82, 163
K82, terminal module for activating Safe Torque Off and "Safe STOP 1,
K87, 164
K88, 166
K89, 168
K95, 170
Kinetic buffering, 426
KTY, 555

L

L04, 97
L07, 101
L10, 104
L19, 109
L26, 111
L45, 113

L50, 114
L55, 114
L57, 115
L59, 117
L60, 118
L61, 119
L62, 119
L64, 119
L65, 119
L83, 128
L84, 128
L86, 129
L87, 130
Line and DC link identification, 410
Load gear position tracking, 499
Load monitoring, 493
LOCAL/REMOTE key, 288
Lock AOP local mode, 290
Low overload, 638

M

M13, 49
M21, 47
M23, 48
M43, 48
M54, 48
M78, 49
Main switch incl. fuses (option L26), 111
Maintenance, 580, 581
Maintenance and servicing, 579
MDS (motor data set), 253
Copy, 254
Measurement probe evaluation, 511
Measuring time to evaluate zero speed, 469
Mechanical installation
Checklist, 37
Menu
AOP30 diagnosis, 286
AOP30 settings, 280
Basic Commissioning, 280
Battery status, 286
Commissioning / service, 280
Complete commissioning, 280
Control settings, 280
Database version, 286
Date format, 285
Defining the operation screen, 281
Device commissioning, 280
Display settings, 280
DO name display mode, 285
Drive commissioning, 280

Fault/alarm memory, 279
Keyboard test, 287
Language/Sprache/Langue/Idioma/Lingua, 287
LED test, 287
Motor identification, 280
Operation screen, 276
Parameterization, 277
Resetting AOP settings, 286
Resetting the fan runtime, 280
Setting the date, 284
Setting the time, 284
Software Version, 286
Structure, 275
Minimum speed, 358
Monitoring functions, 508
Monitoring Functions, 548
Monitoring, tolerance band, pulse number, 472
Motor changeover/selection, 437
Motor data set, 253
Motor identification, 415
Motorized potentiometer, 271
Mounting
Canopies and hoods, 46
Canopy to increase the degree of protection to IP21, 47
Hood to increase the degree of protection to IP23/IP43/IP54, 48

N

NAMUR
Outlet for external auxiliaries (option B03), 183
Separate 24 V DC power supply (option B02), 183
NAMUR terminal block (option B00), 181
Non-grounded system, 69

0

OFF Key, 288

ON Key, 288
Online operation with STARTER, 333
open actual speed value, 390
Operating hours counters, 451
Operation on a non-grounded system, 69
Operation screen, 276
Operator input inhibit / parameters inhibit key, 291
Operator panel, 226
Overview, 274
Option K95, 170
Option M90 (crane transport aids), 44
Option short codes, 31

Original roof screws, 45
Outgoing section for external auxiliary equipment for NAMUR (option B03), 183
Output terminals, 401
Overload capability, 638
Overload responses, 549

P

Parallel operation of communication interfaces, 349
Parameter request and parameter response, 310
Parameter reset, 240
Parameter reset via STARTER, 240
Resetting Parameters via AOP30, 240
Parameterization errors, 295
Permanent-magnet synchronous motors, 396
Position actual value conditioning, 497
Position controller, 507
Power block
Crane lifting lugs, 583
Frame size FX, replacement, 595
Frame size GX, replacement, 597
Frame size HX, replacement, 599
Frame size JX, replacement, 603
Power connections, 63
Connecting the motor and power cables, 65
Power supply, internal, 68
Preparation
Mechanical installation, 38
PROFIBUS, 323
Address switches, 84, 328
Bus terminating resistor, 83, 324
Connectors, 83, 324
Setting the address, 84, 327
Setting the PROFIBUS Address, 327
PROFIBUS connection, 82
PROFIBUS port, 323
PROFIdrive, 296
Acyclic communication, 308
Application classes, 298
Controller, 296
Cyclic communication, 303
Drive Unit, 296
Supervisor, Drive Unit, 296
PROFINET
Data transfer, 341
PROFINET interface, 178
PROFINET IO, 337
Addresses, 339
RT and IRT, 338
PROFINET IO with IRT, 339
PROFINET IO with RT, 338

Protecting power components, 548
Protective functions, 548
PT100, 555
PT100 evaluation unit (option L86), 129
PTC, 555
Pulse frequency wobbling, 449
Pulse number correction for faults, 471

Q

Quality, 25

R

Ramp-function generator, 360
Ramp-function generator tracking, 361
Reactive power compensation, 412
Real-time communication, 338
Reference mark search, 511
Reference model, 386
Relay outputs, 96
Removing the interference suppression capacitor, 69
Replacement
Control Interface Module, frame size FX, 587
Control Interface Module, frame size GX, 589
Control Interface Module, frame size HX, 591
Control Interface Module, frame size JX, 593
Crane lifting lugs, 583
Fan in the Active Interface Module (frame size FI), 615
Fan in the Active Interface Module (frame size GI), 617
Fan in the Active Interface Module (frame size HI), 619
Fan in the Active Interface Module (frame size JI), 621
Fan, frame size FX, 605
Fan, frame size GX, 607
Fan, frame size HX, 609
Fan, frame size JX, 613
Filter mats, 586
Installation device, 582
Operator panel, 624
Operator panel battery, 624
Power block, frame size FX, 595
Power block, frame size GX, 597
Power block, frame size HX, 599
Power block, frame size JX, 603
Replacing
Automatic firmware update, 627
Error messages, 627

Replacing components, 585
Replacing the Backup Battery of the Cabinet Operator Panel, 624
Replacing the cabinet operator panel, 624
Residual risks, 20
Resonance damping, 370
Rotating measurement, 419
Rotor position adaptation, 470
Runtime, 451

S

S5 - Selector for voltage/current AIO, Al1, 93
Safe Brake Adapter, 166, 168
230 V AC, 166
24 V DC, 168
Safe Brake Adapter 230 V AC (option K88), 166
Safe Brake Adapter 24 V DC (option K89), 168
Safe Brake Control, 166, 168
Safety license for one axis (option K01), 162
Saving the Parameters, Permanently, 294
SBC (Safe Brake Control), 166, 168
Separate 24 V DC power supply for NAMUR (option
B02), 183
Serial interface (RS232), 86, 178
Service, 25
Service and Support, 578
Setpoint addition, 356
Setpoint channel, 356
Setpoint sources, 269
Analog inputs, 269
Fixed speed setpoints, 272
General information, 244
Motorized potentiometer, 271
Setting the PROFIBUS Address, 327
Settings for the infeed (Active Infeed) under difficult line conditions, 413
Shield connection, 88
Shipping and handling monitors, 40
Shock indicator, 40
Tilt indicator, 40
Shock indicator, 40
Signal connections, 88
Signal edge evaluation, 468
Simple brake control, 458
Simulation operation, 452
Sine-wave filter (option L15), 107
Skip frequency bands, 358
Sliding averaging of the speed actual value, 470
Slip compensation, 371
SMC10, 138
Connection example, 140

SMC10 Sensor Module Cabinet-Mounted (option K46), 138
SMC20, 142
Connection example, 144
SMC20 Sensor Module Cabinet-Mounted (option K48), 142
SMC30, 146
SMC30 Sensor Module Cabinet-Mounted (option K50), 146
SMC30:connection examples, 152
Speed controller, 379
Speed controller adaptation, 387
Speed controller optimization, 419
Speed controller pre-control, 383
Speed limitation, 359
Stall protection, 552
Standstill measurement, 416
STARTER, 186
Access point, 219
Commissioning, 189
Creating a project, 189
DEVICE, 220
Installation, 187
Online operation via PROFINET, 333
S7ONLINE, 220
Target device selection, 219
Transferring the drive project, 220
User interface, 188
STARTER via Ethernet, 221
Parameters, 225
Setting the IP Address of the drive, 223
Setting the IP address of the PC interface, 222
Storage, 35
Structure, 25
Switching between clockwise and counter-clockwise rotation, 289

T

TB30, 155
Technical data
Version A with option L04, 380 V - 480 V 3 AC, 98
Technical specifications, 639
Version A, 380 V - 480 V 3 AC, 640
Version A, 500 V-690 V 3 AC, 648
Technology controller, 477
Telegram selection, user defined, 304
Telegrams and process data, 303
Temperature sensor, 93
Temperature sensor connection
Control Interface Module, 554
Sensor Module, 554

TM31, 553
Temperature sensor evaluation, 553
3-mass model, 556
Bimetallic normally closed contact, 555
I2t motor model, 556
KTY, 555
PT100, 555
PTC, 555
Wire-break monitoring, 555
Terminal Board TB30 (option G62), 155
Terminal Module TM54F, 164
Terminal Module TM54F (option K87), 164
Thermal monitoring, 549
Thermal motor protection, 553
Thermistor Motor Protection Unit (Option L83/L84), 128
Tilt indicator, 40
Timeout monitoring, 291
TM31, 88, 153
TM31 (front view), 89
TM31, connection overview, 90
TM54F, 164
Tolerant encoder monitoring, 464
Tool, 42, 57, 581
Torque limiting, 394
Transport eyebolts, 44
Transportation, 34
Type plate, 29
Date of manufacture, 30
Option short codes, 31

U

Unit changeover, 454
Unpacking, 42

V

V/f control, 363
Variable power factor, 412
Vdc control, 425
Vdc_min control, 426
Vector control
sensorless, 373
with encoder, 378
Vector speed/torque control with/without encoder, 372
Voltage boost, 366
at startup, 368
During acceleration, 368
Permanent, 367
Voltage Sensing Module VSM10 (option K51), 153
VSM10, 153

w

Wire-break monitoring, 555

X

X100, 79, 174
X101, 79, 174
X102, 79, 174
X103, 79, 174
X122, 80, 175
X126, 82
X127, 85, 177
X132, 81, 176
X140, 86, 178
X1400, 134
X150, 178
X451 (CAN bus), 137
X452 (CAN bus), 137
X520, 91
SMC20, 143
SMC30, 150
X521, 92, 151
X522, 93
X530, 92
X531, 151
X540, 94
X541, 95
X542, 96

Z

Zero mark tolerance, 466

Siemens AG
Industry Sector
Drive Technologies
Large Drives
Postfach 4743
90025 NUREMBERG
GERMANY
www.siemens.com/automation

[^0]: ! WWARNING
 If p1210 is set to values >1, the motor can be restarted automatically without the need to issue the ON command.

 In the event of prolonged power failures and when the automatic restart function is activated (p1210>1), the drive may have been at a standstill for a long time and mistakenly considered to have been switched off.

 For this reason, entering the area around the drive when it is in this condition can cause death, serious injury, or considerable material damage.

[^1]: \. Warning
 When the flying restart (p 1200) function is active, the drive may still be accelerated by the detection current despite the fact that it is at standstill and the setpoint is 0 .

 For this reason, entering the area around the drive when it is in this condition can cause death, serious injury, or considerable material damage.

